WO2011132484A1 - 光学素子 - Google Patents

光学素子 Download PDF

Info

Publication number
WO2011132484A1
WO2011132484A1 PCT/JP2011/056402 JP2011056402W WO2011132484A1 WO 2011132484 A1 WO2011132484 A1 WO 2011132484A1 JP 2011056402 W JP2011056402 W JP 2011056402W WO 2011132484 A1 WO2011132484 A1 WO 2011132484A1
Authority
WO
WIPO (PCT)
Prior art keywords
ridge line
optical element
concave
convex
deepest
Prior art date
Application number
PCT/JP2011/056402
Other languages
English (en)
French (fr)
Inventor
猛 日▲高▼
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201180019196.3A priority Critical patent/CN102870016B/zh
Publication of WO2011132484A1 publication Critical patent/WO2011132484A1/ja
Priority to US13/612,232 priority patent/US20130003183A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • B29D11/00326Production of lenses with markings or patterns having particular surface properties, e.g. a micropattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • B29D11/00326Production of lenses with markings or patterns having particular surface properties, e.g. a micropattern
    • B29D11/00336Production of lenses with markings or patterns having particular surface properties, e.g. a micropattern by making depressions in the lens surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material

Definitions

  • the present invention relates to an optical element.
  • reflected light of about several percent with respect to incident light is generated, and an antireflection structure is provided for the purpose of improving the transmittance or reducing light noise caused by the reflected light. It is done.
  • an antireflection film is formed by transferring a fine concavo-convex pattern, which is isolated and arranged at a predetermined pitch on a plane, onto a light-transmitting plastic or the like with a stamper, thereby producing an antireflection effect.
  • Technology is disclosed.
  • An object of the present invention is to provide a technique capable of improving the optical performance such as antireflection performance by reducing the flat portion of the outermost surface of the optical element.
  • a first aspect of the present invention includes a convex portion in which a ridge line portion is continuous in a mesh shape and a plurality of concave portions surrounded by the convex portion, and at least a part of the ridge line portion intersects the ridge line portion.
  • an optical element having at least a part of a fine concavo-convex structure formed deeper in the depth direction of the concave portion than a ridge line intersection portion.
  • a second aspect of the present invention includes a convex portion in which a ridge line portion is continuous in a mesh shape and a plurality of concave portions surrounded by the convex portion, and at least a part of the ridge line portion intersects the ridge line portion.
  • an antireflection structure comprising a fine concavo-convex structure formed deeper in the depth direction of the concave portion than a ridge line intersection portion.
  • the manufacturing method of the optical element containing is provided.
  • the present invention it is possible to provide a technique capable of improving the optical performance such as antireflection performance by reducing the flat portion of the outermost surface of the optical element.
  • the ridge line intersection point of the convex part constituting the ridge line part surrounding the concave part is defined as the ridge line intersection point. It is formed higher than the ridge line part between the parts. In other words, the height of the ridge line part between the ridge line intersection parts is made lower than that of the ridge line intersection part.
  • FIG. 1 is an enlarged plan view showing a part of an optical element according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing a part of an optical element according to an embodiment of the present invention.
  • FIG. 3 is an enlarged perspective view showing a part of an optical element according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing, in an enlarged manner, a state in the middle of formation of the fine concavo-convex structure formed in the optical element according to one embodiment of the present invention.
  • FIG. 2 the cross sections of the lines A-A ′ and B-B ′ in FIG. 1 are shown side by side with reference to the deepest part of the recess.
  • FIG. 3 shows an example of a wire frame model that shows the height distribution in the Z direction of the concavo-convex shape of the ridge line portion that is continuous in a mesh shape.
  • the optical element K of the present embodiment has a fine concavo-convex structure 10 formed on at least a part of a surface such as an optical functional surface.
  • the fine concavo-convex structure 10 of the present embodiment has a configuration in which a plurality of concave portions 15 are arranged so as to be surrounded by the convex portions 11 that are continuous in a mesh shape along a ridge line portion 13 that connects the convex top portions 12.
  • the convex top portion 12 is a position of a broken line at the boundary between the adjacent concave portions 15. That is, the convex top part 12 is the top part of the convex part 11 located between the adjacent recessed parts 15.
  • the XY plane parallel to the optical surface is an array surface of the concave portions 15 and the depth direction of the concave portions 15 ( That is, the normal direction of the optical surface is the Z direction.
  • the optical surface of the optical element K is a curved surface
  • the XY plane is a tangential plane
  • the Z direction is a normal direction of the optical surface.
  • the ridge curved surface 14 that is, the inner peripheral surface 17 of the concave portion 15
  • the ridge line portion 13 of the convex portion 11 is convex toward the outside, that is, the concave portion 15 side.
  • the width dimension of the cross section of the convex portion 11 is increased in a curved manner in the depth direction of the concave portion 15.
  • the cross-sectional shape of the concave portion 15 surrounded by the continuous convex portion 11 has, for example, a substantially mortar shape that tapers toward the deepest portion 16 of the concave portion.
  • the fine concavo-convex structure 10 of the present embodiment is completely different from the structure in which holes are discretely formed on the XY plane, which is an arrangement surface, and at the boundary between adjacent concave portions 15.
  • the XY plane which is an arrangement surface
  • There is almost no flat portion parallel to the XY plane and there is a ridge curved surface 14 that falls into the inside of the concave portion 15 adjacent to the ridge line portion 13 that is connected to the convex top portion 12 of the convex portion 11 and is continuous in a mesh shape. Just do it.
  • the ridge curved surface 14 of this convex part 11 becomes a structure used as the internal peripheral surface 17 of the recessed part 15 simultaneously.
  • At least part of the ridge line portion 13 of the convex portion 11 is formed so as to be deeper in the depth direction of the concave portion 15 than the ridge line intersection point 13a (ridge line intersection point portion).
  • the height h1 from the ridgeline portion deepest portion 13b to the concave portion deepest portion 16 is lower than the height h0 from the ridgeline intersection 13a to the deepest portion 16 of the concave portion.
  • the formation position of the ridge line portion deepest portion 13 b in the ridge line portion 13 of the protrusion 11 is shallower than the deepest portion 16 of the recess 15.
  • the ridge line portion 13 of the convex apex portion 12 is not flat in the length direction, and a region between any two ridge line intersection points 13 a.
  • the envelope surface of the ridge line intersection 13a at the highest position of the fine concavo-convex structure 10 is a flat surface, and when the optical surface is a curved surface, The envelope surface of the ridge line intersection 13a of the structure 10 is the curved surface.
  • the maximum value Lmax of the distance L1 of the center line 15c of the recess 15 located at both ends is set to Lmax ⁇ .
  • the distance L2 between the center lines 15c of the two concave portions 15 (in the example of FIG. 1, the concave portion 15-3 and the concave portion 15-4) adjacent to each other across the ridge line portion 13 (ridge line portion deepest portion 13b) is greater than the distance L1. Is also small (L2 ⁇ L1).
  • each concave portion 15 in a plane parallel to the XY plane is exemplified as a substantially circular shape. It may be a closed curve.
  • the outline of the recess 15 is illustrated by a circular solid line, but in reality, the inner peripheral surface as a curved surface continuous from the ridge line portion 13 to the deepest recess portion 16 of the surrounding protrusion 11.
  • a recess 15 is formed by 17 (ridge curved surface 14).
  • the center of the concave portion 15 having an arbitrary shape has all the ridge line intersections 13 a intersecting with the ridge line portion 13 of the convex portion 11 surrounding the concave portion 15. It is defined as the center of gravity 15b of the polygon 15a as the vertex.
  • the center line 15c is a line segment passing through the center of gravity 15b and parallel to the Z direction.
  • distance L1 and distance L2 are distances between the centroids 15b of the figures characterizing the related recesses 15.
  • the size and shape of the concave portion 15 are varied as necessary,
  • the fine uneven structure 10 can be arranged evenly.
  • the variation in the distance 15d between the ridge line intersections of the polygon 15a is used as an index for evaluating variations in the size and shape of the recesses 15 and the arrangement positional relationship in the fine concavo-convex structure 10. be able to.
  • the optical surface of the optical element K on which the fine concavo-convex structure 10 is to be formed is covered with a mask pattern in which the positions of the concave portions 15 are selectively opened.
  • the optical surface is etched by isotropic etching to form a recess 15 having a desired depth.
  • erosion also proceeds in the width direction on the lower side of the mask pattern, and a convex portion 11 having a convex top portion 12 having a bell-shaped cross section immediately below the mask pattern between the concave portions 15. Is formed.
  • FIG. 4 shows a cross section of the same portion as FIG.
  • the thickness of the convex portion 11 surrounding the concave portion 15 is the thinnest at the intermediate portion between the adjacent ridge line intersections 13a. Therefore, the height reduction of the convex top portion 12 (ridge line portion 13) by etching proceeds at the fastest in the middle portion of the ridge line intersection point 13a, and the ridge line portion 13 between the ridge line intersection points 13a is eroded so as to exhibit a substantially bowl-shaped surface. Thus, the height h1 ( ⁇ height h0) ridge line deepest portion 13b as illustrated in FIG. 2 is formed.
  • the fine concavo-convex structure 10 and the concavo-convex structure may be formed by performing the above-described etching or the like directly on the optical surface of the optical element K. It is also possible to prepare a mold having an inverted shape and transfer the fine concavo-convex structure 10 from the mold to the optical element K to form the mold.
  • the height from the concave portion deepest portion 16 to the ridge line intersection point 13a is lower than the height h0 between the ridge line intersection points 13a. Since the ridge line portion deepest portion 13b having the height h1 is formed, the ridge line portion 13 is not flat in the length direction.
  • the maximum value of the distance L1 between the central portions of the adjacent concave portions is set to be smaller than the wavelength ⁇ of visible light, and at least one of the shape and size of the concave portion 15 is randomly formed, so that the maximum value for visible light is increased. An antireflection effect can be realized.
  • the fine concavo-convex structure 10 of the optical element K it is possible to reduce the flat portion of the outermost surface portion on which light is incident, and it is possible to efficiently obtain the antireflection effect with respect to the visible light wavelength or the like. .
  • the flat portion on the outermost surface of the optical element K can be reduced, and optical performance such as antireflection performance can be improved.
  • FIG. 5 is a perspective view showing a configuration example of an optical element according to an embodiment of the present invention.
  • FIG. 5 illustrates a prism 110 as an example of the optical element K1 provided with the fine concavo-convex structure 10 described above.
  • a reflective coating forming surface 111, an incident surface 112, and an output surface 113 are disposed on each of the three side surfaces of the triangular prism.
  • the reflective coat forming surface 111 is a reflective surface made of, for example, an aluminum coating layer.
  • the light 120 incident from the incident surface 112 is reflected by the reflective coating forming surface 111 and is emitted from the emission surface 113.
  • the fine concavo-convex structure 10 described above is formed on each of the incident surface 112 and the exit surface 113.
  • the plane of each of the incident surface 112 and the exit surface 113 is an XY plane in the fine concavo-convex structure 10 described above, and the normal direction is a positional relationship in which it is the Z direction.
  • the prism 110 which is the optical element K1 provided with the fine concavo-convex structure 10 of the present embodiment, a high antireflection effect is realized by the fine concavo-convex structure 10 formed on the surfaces such as the entrance surface 112 and the exit surface 113. High optical performance can be realized.
  • the convex portion 11 surrounding the concave portion 15 is continuously formed so that the ridge line portion 13 connecting the convex top portions 12 is continuous in a mesh shape. Compared with the shape in which the convex portion is formed independently, the strength of the convex portion 11 against the external force is greatly improved.
  • the antireflection effect of the fine concavo-convex structure 10 with respect to visible light is more remarkably exhibited by setting the maximum value of the distance L1 to be equal to or less than the wavelength ⁇ of visible light.
  • FIG. 6 is a perspective view showing another configuration example of the optical element of the present invention.
  • the optical element K2 illustrated in FIG. 6 includes, for example, a convex optical surface 131 that is a spherical surface having an effective diameter D0 of 5.4 mm and a curvature radius R0 of 3.5 mm as a first surface, and a flat optical surface as a second surface.
  • This is a plano-convex lens 130 having 132.
  • the fine concavo-convex structure 10 described above is formed on the convex optical surface 131 which is the first surface.
  • fine concavo-convex structure 10 may be formed on the flat optical surface 132 as necessary.
  • the convex optical surface 131 on which the fine concavo-convex structure 10 is formed is a curved surface
  • the above-described Z direction (the direction of the center line 15c of the concave portion 15) is the normal direction of the convex optical surface 131.
  • the fine concavo-convex structure 10 is formed.
  • the size of the concave portion 15 is adjusted in accordance with the design shape of the convex optical surface 131 so as to obtain an antireflection effect that is uniform over the entire surface of the convex optical surface 131 formed of a curved surface and does not cause anisotropy. And the array state can be determined.
  • the parameters such as the height h0 of the ridge line intersection 13a, the height h1 of the ridge line deepest part 13b, the standard deviation of the distance L1, the distance L2, and the distance 15d between the ridge line intersections are set. Is done.
  • this optical element K2 by forming the fine concavo-convex structure 10 on the surface, it is possible to eliminate the influence of the flat portion on the outermost surface on which light is incident and realize a high antireflection effect.
  • the optical element K2 in which the antireflection effect of the fine concavo-convex structure 10 with respect to visible light is more remarkably exhibited.
  • the fine concavo-convex structure 10 is formed on the convex optical surface 131 of the plano-convex lens 130 as the optical element K2, the optical element K2 having an antireflection effect and a high light transmittance with respect to the visible light wavelength. In addition, incident light can be collected efficiently.
  • plano-convex lens 130 having the fine concavo-convex structure 10 can be applied to various optical systems by efficiently collecting incident light.
  • the optical element K1 or the optical element K2 of the present embodiment is disposed at a position where light such as the first surface on the incident side is incident, thereby preventing reflection more effectively in the optical surface. Since an effect can be obtained, it becomes possible to construct an optical system having high antireflection performance.
  • the optical element K2 is exemplified by the plano-convex lens 130 having one convex optical surface 131 and the other flat optical surface 132.
  • both surfaces may be curved surfaces, and any curved surface shape such as spherical, aspherical, free curved surface, etc. It may be a simple curved surface.
  • the optical surface on which the fine concavo-convex structure 10 is formed may be a concave lens having a concave surface.
  • the depth direction in which the fine concavo-convex structure 10 is formed is exemplified as the normal direction of the optical surface, it may not be formed in the normal direction of the optical surface according to the required optical performance.
  • cross-sectional shape of the concave portion surrounded by the continuous convex portion is exemplified as a tapered mortar shape, it may be a cylinder shape or a bell shape.
  • the optical element K provided with the fine concavo-convex structure 10 is not limited to the above-described lens and prism, but can be applied to all components of the optical system such as a panel, a film, a thin film, and a wall surface of a lens barrel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 光学素子の最表面の平坦部を減らして、反射防止性能等の光学性能を向上させる。凹部15を取り囲む断面が釣り鐘形の凸部11の凸頂部12を連ねた網目状の稜線部13を有し、稜線部13における稜線交点13aの間に、稜線交点13aよりも低い稜線部最深部13bを有する略鞍形面を設けることで、最表面部に平坦部の存在しない微細凹凸構造10を光学素子Kの表面に形成し、光学素子Kにおける反射防止性能等の光学性能を向上させる。

Description

光学素子
 本発明は、光学素子に関する。
 例えば、光学素子の光学面では入射光に対して数%程度の反射光が発生しており、透過率を向上させたり、反射光に起因する光ノイズを低減する等の目的で反射防止構造を設けることが行われている。
 例えば、特許文献1では、平面上に所定のピッチで孤立して配列された微細な凹凸パターンを光透過性のプラスチック等にスタンパで転写して反射防止膜を形成し、反射防止効果を発現させる技術が開示されている。
特開2003-43203号公報
 ところで、反射防止効果を効果的に得るためには、光が入射する最表面部の平坦部を極力減らし鋭利な形状とすることが必要であるが、特許文献1のように、平面上に離散的に孤立して形成された凹凸パターンの転写成形等で作製された反射防止膜においては凹凸パターンの間に平坦部が形成されるため、光が入射する最表面部を鋭利な形状にすることが難しく、平坦部の占める割合が多くなり反射防止効果が減少する、という技術的課題があった。
 本発明の目的は、光学素子の最表面の平坦部を減らして、反射防止性能等の光学性能を向上させることが可能な技術を提供することにある。
 本発明の第1の観点は、稜線部が網目状に連続する凸部と、前記凸部に囲まれた複数の凹部とを含み、前記稜線部の少なくとも一部が、当該稜線部が交差する稜線交点部よりも前記凹部の深さ方向に深く形成されている微細凹凸構造を少なくとも一部に有する光学素子を提供する。
 本発明の第2の観点は、稜線部が網目状に連続する凸部と、前記凸部に囲まれた複数の凹部とを含み、前記稜線部の少なくとも一部が、当該稜線部が交差する稜線交点部よりも前記凹部の深さ方向に深く形成されている微細凹凸構造からなる反射防止構造を提供する。
 本発明の第3の観点は、光学面を複数の開口を有するマスクで覆う工程と、
 等方性のエッチングで前記開口に対応する前記光学面に複数の凹部を形成する工程と、
 前記凹部を取り囲み稜線部が網目状に連続する凸部において、前記稜線部の少なくとも一部が、当該稜線部が交差する稜線交点部よりも前記凹部の深さ方向に深くなるようにさらにエッチングする工程と、
を含む光学素子の製造方法を提供する。
 本発明によれば、光学素子の最表面の平坦部を減らして、反射防止性能等の光学性能を向上させることが可能な技術を提供することができる。
本発明の一実施の形態である光学素子の一部を拡大して示す平面図である。 本発明の一実施の形態である光学素子の一部を拡大して示す断面図である。 本発明の一実施の形態である光学素子の一部を拡大して示す斜視図である。 本発明の一実施の形態である光学素子に形成される微細凹凸構造の形成途中の状態を拡大して示す略断面図である。 本発明の一実施の形態である光学素子の構成例を示す斜視図である。 本発明の一実施の形態である光学素子の別の構成例を示す斜視図である。
 本実施の形態では、一態様として、光学素子の表面に、網目状に連続的に形成されている微細凹凸構造において、凹部を取り囲む稜線部を構成する凸部の稜線交点部を、当該稜線交点部間の稜線部よりも高く形成させる。換言すれば、稜線交点部の間の稜線部の高さを稜線交点部よりも低くする。
 これにより、光が入射する最表面部の平坦部を減らすことができ、反射防止効果をより効率的に得ることができる。
 以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
 なお、以下の本実施の形態の説明では、各図において、X、Y、Zの各方向は図示の通りとする。
 図1は、本発明の一実施の形態である光学素子の一部を拡大して示す平面図である。
 図2は、本発明の一実施の形態である光学素子の一部を拡大して示す断面図である。
 図3は、本発明の一実施の形態である光学素子の一部を拡大して示す斜視図である。
 図4は、本発明の一実施の形態である光学素子に形成される微細凹凸構造の形成途中の状態を拡大して示す略断面図である。
 なお、図2では、図1における線A-A’および線B-B’の部分の断面を、凹部最深部を基準にした状態で左右に並べて図示されている。
 また、図2の左側では線A-A’の断面部分のみを図示し、右側の線B-B’の断面図では、奥側の稜線部の輪郭も図示している。
 また、図3は、網目状に連続する稜線部の凹凸形状のZ方向の高さ分布を示すワイヤーフレームモデルが例示されている。
 図1および図2に例示されるように、本実施の形態の光学素子Kは、光学機能面等の表面の少なくとも一部に、微細凹凸構造10が形成されている。
 本実施の形態の微細凹凸構造10は、凸頂部12を連ねた稜線部13に沿って網目状に連続する凸部11に取り囲まれるように複数の凹部15が配列された構成となっている。
 この場合、図1に例示されるように、凸頂部12は、隣り合う凹部15の境界の破線の位置である。すなわち、凸頂部12は、隣り合う凹部15の間に位置する凸部11の頂上部である。
 例えば、微細凹凸構造10が配置形成される光学素子Kの光学面が平面の場合には、当該光学面に平行なX-Y平面が凹部15の配列面であり、凹部15の深さ方向(すなわち光学面の法線方向)がZ方向である。
 また、光学素子Kの光学面が曲面の場合は、X-Y平面は接平面であり、Z方向は光学面の法線方向である。
 本実施の形態の微細凹凸構造10の場合、凸部11の稜線部13から分かれる稜曲面14(すなわち凹部15の内周面17)は、外側、すなわち凹部15の側に凸となっており、凸部11の断面の幅寸法が凹部15の深さ方向に曲線的に増加している。
 すなわち、連続した凸部11に囲まれた凹部15の断面形状は、例えば、凹部最深部16に向かって先細りの略すり鉢形を呈している。
 このように、本実施の形態の微細凹凸構造10は、単に配列面であるX-Y平面に穴を離散的に配列形成した構造とは全く異なり、隣り合う凹部15と凹部15の境界部にはX-Y平面に平行な平坦部はほとんど存在せず、凸部11の凸頂部12を連ねて網目状に連続する稜線部13を境に隣り合う凹部15の内部に落ち込む稜曲面14が存在するだけである。そして、この凸部11の稜曲面14が、同時に凹部15の内周面17となる構造である。
 そして、本実施の形態の場合、この凸部11の稜線部13の少なくとも一部が稜線交点13a(稜線交点部)よりも凹部15の深さ方向に深くなるように形成されている。
 すなわち、稜線交点13aから凹部最深部16までの高さh0よりも、稜線部最深部13bから凹部最深部16までの高さh1のほうが低い。
 換言すれば、凸部11の稜線部13における稜線部最深部13bの形成位置は、凹部15の凹部最深部16よりも浅い場所にある。
 このように、本実施の形態の場合には、図3に例示されるように、凸頂部12の稜線部13は長さ方向にも平坦ではなく、任意の二つの稜線交点13aの間の領域は、最も高く鋭利に突出した稜線交点13a(高さh0)から稜線部最深部13b(高さh1)に向かって下るように傾斜する形状の略鞍形面を呈している。
 そして、微細凹凸構造10が配置される光学面が平面の場合には、微細凹凸構造10の最も高い位置にある稜線交点13aの包絡面が平面となり、光学面が曲面の場合には、微細凹凸構造10の稜線交点13aの包絡面が当該曲面となる。
 凹部15の中心(本実施の形態での正確な定義は後述する)を通り、Z方向に平行な線が、凹部15の中心線15cである。
 そして、本実施の形態の微細凹凸構造10による反射防止を実現する対象が、例えば可視光線(波長λ=380nm~780nm)の場合には、隣り合う任意の二つの稜線交点13aを結ぶ線分の両端に位置する凹部15の中心線15cの距離L1(図1の例では、凹部15-1と凹部15-2の距離L1)の最大値Lmaxは、Lmax<λに設定される。
 また、稜線部13(稜線部最深部13b)を挟んで隣り合う二つの凹部15(図1の例では、凹部15-3と凹部15-4)の中心線15cの距離L2は、距離L1よりも小さい(L2<L1)。
 ここで、図1を参照して、本実施の形態の微細凹凸構造10における各部の寸法やばらつきを評価する方法の一例を説明する。
 上述の図1の例では、個々の凹部15のX-Y平面に平行な平面での断面形状は略円形の場合が例示されているが、例えば、楕円形、繭形、勾玉形等の任意の閉曲線の図形でもよい。
 また、図1では、図示の便宜上、凹部15の輪郭を円形の実線で例示しているが、実際は、周囲の凸部11の稜線部13から凹部最深部16まで連続する曲面としての内周面17(稜曲面14)によって凹部15は形成されている。
 この本実施の形態では、一例として、図1に例示されるように、任意の形状の凹部15の中心は、当該凹部15を取り囲む凸部11の稜線部13が交差するすべての稜線交点13aを頂点とする多角形15aの重心15bと定義する。
 そして、中心線15cは、この重心15bを通りZ方向に平行な線分である。
 従って、上述の距離L1や距離L2は、関係する凹部15を特徴付ける図形の重心15bの間の距離である。
 本実施の形態の微細凹凸構造10では、必要に応じて凹部15のサイズや形状(この場合、多角形15aの大きさや形状、さらには凹部15の位置関係、等)にばらつきを持たせて、微細凹凸構造10がむらなく配置されるようにすることができる。
 なお、多様なサイズの凹部15のX-Y面内の配列は、稠密な俵積み配列等を用いることができる。
 また、微細凹凸構造10における凹部15のサイズや形状、配列位置関係等のばらつきを評価する指標として、本実施の形態では、一例として、上述の多角形15aの稜線交点間距離15dのばらつきを用いることができる。
 次に、本実施の形態の微細凹凸構造10の形成方法の一例を説明する。
 まず、微細凹凸構造10を形成すべき光学素子Kの光学面を、凹部15の配置位置が選択的に開口したマスクパターンで覆う。
 その後、等方性のエッチングで光学面をエッチングし、所望の深さの凹部15を形成する。このとき、等方性のエッチングにより、マスクパターンの下部側にも幅方向に浸食が進行し、凹部15の間のマスクパターンの直下には釣り鐘形の断面形状の凸頂部12を有する凸部11が形成される。
 この途中の状態が、図4であり、凹部15を取り囲む凸部11(稜線部13)の凹部最深部16からの高さ(すなわち凹部15の深さ)は、稜線部13の全体でほぼ均等に高さh0となっている。なお、図4は、図2と同一の部位の断面を示している。
 本実施の形態の場合、図4の状態から、稜線交点13aの間に上述の図2のように稜線部最深部13bが形成されるまで、さらにエッチングを行う。
 すなわち、凹部15を取り囲む凸部11の厚さは、隣り合う稜線交点13aの中間部で最も薄くなっている。従って、この稜線交点13aの中間部でエッチングによる凸頂部12(稜線部13)の高さ減少が最も速く進行し、稜線交点13aの間の稜線部13が略鞍形面を呈するように浸食されて上述の図2に例示されるような高さh1(<高さh0)稜線部最深部13bが形成されることになる。
 なお、任意の光学素子Kに対する微細凹凸構造10の形成方法としては、上述のエッチング等を直接的に光学素子Kの光学面に実施することで形成してもよいが、微細凹凸構造10と凹凸形状が反転した成形型を準備し、この成形型から光学素子Kに対して微細凹凸構造10を転写して形成することもできる。
 このように、本実施の形態の光学素子Kでは、凹部15を取り囲む凸頂部12の稜線部13において、稜線交点13aの間に、凹部最深部16から稜線交点13aまでの高さh0よりも低い高さh1を有する稜線部最深部13bが形成されているため、稜線部13は長さ方向に平坦ではない。
 このため、微細凹凸構造10における光の反射防止効果が一層向上する。
 また、隣り合う凹部の中心部の距離L1の最大値は可視光の波長λよりも小さくするとともに、凹部15の形状および大きさの少なくとも一方がランダムに形成されていることにより、可視光に対する大きな反射防止効果を実現できる。
 以上により、光学素子Kの微細凹凸構造10において、光が入射する最表面部の平坦部を減らすことが可能となり、可視光波長等に対して反射防止効果を効率的に得ることが可能となる。
 すなわち、表面に微細凹凸構造10を形成させた光学素子Kにおいて、光学素子Kの最表面の平坦部を減らすことができ、反射防止性能等の光学性能を向上させることが可能となる。
 図5は、本発明の一実施の形態である光学素子の構成例を示す斜視図である。
 図5には、上述の微細凹凸構造10を備えた光学素子K1の一例としてプリズム110の場合が例示されている。
 このプリズム110は、三角柱の三つの側面の各々に、反射コート形成面111、入射面112、出射面113が配置されている。
 反射コート形成面111は、例えば、アルミニウム被覆層からなる反射面である。
 そして、光120の光路121に例示されるように、入射面112から入射した光120は、反射コート形成面111で反射され、出射面113から出射する。
 入射面112および出射面113の各々の表面には、上述の微細凹凸構造10が形成されている。
 この場合、入射面112および出射面113の各々の平面が上述の微細凹凸構造10におけるX-Y平面であり、法線方向が、Z方向となる位置関係である。
 本実施の形態の微細凹凸構造10を備えた光学素子K1であるプリズム110によれば、入射面112および出射面113等の表面に形成された微細凹凸構造10により、高い反射防止効果が実現され、高い光学性能を実現できる。
 さらに、微細凹凸構造10を備えた場合には、凹部15を取り囲む凸部11が、その凸頂部12を連ねた稜線部13が網目状に連続するように連続的に形成されていることにより、凸部が単独で孤立して形成されている形状に比べて、凸部11の外力に対する強度が大幅に向上する。
 さらに、本実施形態においては、一例として、上述の距離L1の最大値を可視光の波長λ以下とすることにより、可視光線に対する微細凹凸構造10の反射防止効果がより顕著に発現される。
 図6は、本発明の光学素子の別の構成例を示す斜視図である。
 この図6に例示される光学素子K2は、例えば、第1面として有効径D0が5.4mm、曲率半径R0が3.5mmの球面である凸光学面131と、第2面として平光学面132を備えた平凸レンズ130である。
 そして、第1面である凸光学面131に、上述の微細凹凸構造10が形成されている。
 なお、必要に応じて、平光学面132にも微細凹凸構造10を形成してよい。
 この場合、微細凹凸構造10が形成される凸光学面131が曲面であるため、上述のZ方向(凹部15の中心線15cの方向)が、凸光学面131の法線方向となるように、当該微細凹凸構造10が形成される。
 この場合、曲面からなる凸光学面131の表面全体で均一に、しかも異方性を生じないような反射防止効果が得られるように、凸光学面131の設計形状に合わせて、凹部15のサイズや配列状態が決定することができる。
 すなわち、凹部15等に関する上述の、稜線交点13aの高さh0、稜線部最深部13bの高さh1、さらには、距離L1、距離L2や、稜線交点間距離15dの標準偏差等のパラメータが設定される。
 この光学素子K2によれば、表面に微細凹凸構造10を形成することにより、光が入射する最表面での平坦部による影響を解消して高い反射防止効果を実現できる。
 さらに、上述の距離L1の最大値を可視光の波長λ以下とすることにより、可視光線に対する微細凹凸構造10の反射防止効果がより顕著に発現される光学素子K2を提供することができる。
 すなわち、光学素子K2としての平凸レンズ130の凸光学面131に微細凹凸構造10が形成されていることにより、可視光波長に対して反射防止効果および高い光の透過率を具備する光学素子K2を提供することができ、また、入射光を効率よく集光することができる。
 このように、微細凹凸構造10を備えた平凸レンズ130は、入射光を効率よく集光できることにより、様々な光学系への適応が可能となる。
 なお、光学系において、特に入射側の第1面などの光が入射する位置に本実施の形態の、光学素子K1や光学素子K2を配置することにより、光学面内においてより効果的に反射防止効果を得ることができるため、高い反射防止能を有する光学系を構築することが可能となる。
 光学素子K2として、一方が凸光学面131で他方が平光学面132の平凸レンズ130を例示したが、両面とも曲面でも良く、また曲面形状であれば球面、非球面、自由曲面など、どのような曲面であっても構わない。また、微細凹凸構造10が形成される光学面が凹面の凹レンズでもよい。
 また、微細凹凸構造10の配置形成される深さ方向が光学面の法線方向と例示したが、必要な光学性能に応じて、光学面の法線方向に形成していなくても構わない。
 また、連続した凸部に囲まれた凹部の断面形状は、先細りの略すり鉢形と例示したが、シリンダ形状、釣り鐘形状などの形状であってもよい。
 さらに、微細凹凸構造10を備える光学素子Kとしては、上述のレンズやプリズム等に限らず、パネル、フィルム、薄膜、鏡筒の壁面、等、光学系のあらゆる構成要素に適用できる。
 なお、本発明は、上述の実施の形態に例示した構成に限らず、その趣旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
10 微細凹凸構造
11 凸部
12 凸頂部
13 稜線部
13a 稜線交点
13b 稜線部最深部
14 稜曲面
15 凹部
15-1 凹部
15-2 凹部
15-3 凹部
15-4 凹部
15a 多角形
15b 重心
15c 中心線
15d 稜線交点間距離
16 凹部最深部
17 内周面
110 プリズム
111 反射コート形成面
112 入射面
113 出射面
120 光
121 光路
130 平凸レンズ
131 凸光学面
132 平光学面
K 光学素子
K1 光学素子
K2 光学素子
h0 凹部最深部16から稜線交点13aまでの高さ
h1 凹部最深部16から稜線部最深部13bまでの高さ

Claims (12)

  1.  稜線部が網目状に連続する凸部と、前記凸部に囲まれた複数の凹部とを含み、前記稜線部の少なくとも一部が、当該稜線部が交差する稜線交点部よりも前記凹部の深さ方向に深く形成されている微細凹凸構造を少なくとも一部に有することを特徴とする光学素子。
  2.  請求項1記載の光学素子において、
     前記凹部の最も深い凹部最深部が、前記稜線部の最も深い稜線部最深部よりも深く形成されていることを特徴とする光学素子。
  3.  請求項1または請求項2記載の光学素子において、
     前記微細凹凸構造において、隣り合う二つの前記稜線交点部を結ぶ方向に隣り合う二つの前記凹部の中心部の距離の最大値が、可視光波長よりも小さいことを特徴とする光学素子。
  4.  請求項1から請求項3のいずれか1項に記載の光学素子において、
     前記微細凹凸構造は前記凹部の形状および大きさの少なくとも一方がランダムになるように形成されていることを特徴とする光学素子。
  5.  稜線部が網目状に連続する凸部と、前記凸部に囲まれた複数の凹部とを含み、前記稜線部の少なくとも一部が、当該稜線部が交差する稜線交点部よりも前記凹部の深さ方向に深く形成されている微細凹凸構造からなることを特徴とする反射防止構造。
  6.  請求項5記載の反射防止構造において、
     前記凹部の最も深い凹部最深部が、前記稜線部の最も深い稜線部最深部よりも深く形成されていることを特徴とする反射防止構造。
  7.  請求項5または請求項6記載の反射防止構造において、
     前記微細凹凸構造において、隣り合う二つの前記稜線交点部を結ぶ方向に隣り合う二つの前記凹部の中心部の距離の最大値が、可視光波長よりも小さいことを特徴とする反射防止構造。
  8.  請求項5記載の反射防止構造において、
     前記微細凹凸構造は前記凹部の形状および大きさの少なくとも一方がランダムになるように形成されていることを特徴とする反射防止構造。
  9.  光学面を複数の開口を有するマスクで覆う工程と、
     等方性のエッチングで前記開口に対応する前記光学面に複数の凹部を形成する工程と、
     前記凹部を取り囲み稜線部が網目状に連続する凸部において、前記稜線部の少なくとも一部が、当該稜線部が交差する稜線交点部よりも前記凹部の深さ方向に深くなるようにさらにエッチングする工程と、
    を含むことを特徴とする光学素子の製造方法。
  10.  請求項9記載の光学素子の製造方法において、
     前記凹部の最も深い凹部最深部が、前記稜線部の最も深い稜線部最深部よりも深くなるようにエッチングを行うことを特徴とする光学素子の製造方法。
  11.  請求項9または請求項10記載の光学素子の製造方法において、
     隣り合う二つの前記稜線交点部を結ぶ方向に隣り合う二つの前記凹部の中心部の距離の最大値が、可視光波長よりも小さいことを特徴とする光学素子の製造方法。
  12.  請求項9記載の光学素子の製造方法において、
     前記微細凹凸構造は前記凹部の形状および大きさの少なくとも一方がランダムになるように形成されていることを特徴とする光学素子の製造方法。
PCT/JP2011/056402 2010-04-22 2011-03-17 光学素子 WO2011132484A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180019196.3A CN102870016B (zh) 2010-04-22 2011-03-17 光学元件
US13/612,232 US20130003183A1 (en) 2010-04-22 2012-09-12 Optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010098867A JP5519386B2 (ja) 2010-04-22 2010-04-22 光学素子
JP2010-098867 2010-04-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/612,232 Continuation US20130003183A1 (en) 2010-04-22 2012-09-12 Optical element

Publications (1)

Publication Number Publication Date
WO2011132484A1 true WO2011132484A1 (ja) 2011-10-27

Family

ID=44834023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056402 WO2011132484A1 (ja) 2010-04-22 2011-03-17 光学素子

Country Status (4)

Country Link
US (1) US20130003183A1 (ja)
JP (1) JP5519386B2 (ja)
CN (1) CN102870016B (ja)
WO (1) WO2011132484A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107195A (ja) * 2009-11-12 2011-06-02 Olympus Corp 光学素子および光学素子の製造方法ならびに微細凹凸構造および成形型
JP2014139667A (ja) * 2012-12-20 2014-07-31 Dainippon Printing Co Ltd 透明体及び建具
KR20170074883A (ko) * 2014-10-24 2017-06-30 오지 홀딩스 가부시키가이샤 광학 소자, 광학 복합 소자 및 보호 필름이 부착된 광학 복합 소자
WO2016084745A1 (ja) * 2014-11-25 2016-06-02 シャープ株式会社 型および型の製造方法ならびに反射防止膜
WO2016098329A1 (ja) * 2014-12-15 2016-06-23 凸版印刷株式会社 表示体及び表示体の製造方法
JP6672585B2 (ja) * 2014-12-15 2020-03-25 凸版印刷株式会社 表示体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061853A (ja) * 2002-07-29 2004-02-26 Nitto Denko Corp 防眩フィルム及びそれを用いた表示装置
JP2009187001A (ja) * 2008-01-11 2009-08-20 Panasonic Corp 反射防止構造体、反射防止構造体の製造方法、及び反射防止構造体を備えた光学装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334608A (ja) * 1995-06-07 1996-12-17 Nippon Sheet Glass Co Ltd 光散乱体およびその製造方法
US6583936B1 (en) * 2002-03-11 2003-06-24 Eastman Kodak Company Patterned roller for the micro-replication of complex lenses
US7268948B2 (en) * 2004-03-31 2007-09-11 Canon Kabushiki Kaisha Optical element and optical scanning device using the same
CN101930085B (zh) * 2008-02-27 2012-10-03 索尼株式会社 防反射用光学元件以及原盘的制造方法
JP5511258B2 (ja) * 2008-08-29 2014-06-04 キヤノン株式会社 光学素子及び光学系

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061853A (ja) * 2002-07-29 2004-02-26 Nitto Denko Corp 防眩フィルム及びそれを用いた表示装置
JP2009187001A (ja) * 2008-01-11 2009-08-20 Panasonic Corp 反射防止構造体、反射防止構造体の製造方法、及び反射防止構造体を備えた光学装置

Also Published As

Publication number Publication date
JP5519386B2 (ja) 2014-06-11
CN102870016B (zh) 2015-03-11
US20130003183A1 (en) 2013-01-03
CN102870016A (zh) 2013-01-09
JP2011227387A (ja) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2011132484A1 (ja) 光学素子
JP2011107195A (ja) 光学素子および光学素子の製造方法ならびに微細凹凸構造および成形型
US10678127B2 (en) Photolithography device for generating pattern on a photoresist substrate
WO2018123466A1 (ja) 光学体、拡散板、表示装置、投影装置及び照明装置
WO2018123465A1 (ja) 反射型拡散板、表示装置、投影装置及び照明装置
JP4206447B2 (ja) 微細格子およびその金型
JP7488309B2 (ja) 凹凸構造体、光学部材及び電子機器
CN114660692B (zh) 一种二维光栅及其形成方法、光波导及近眼显示设备
CN103247733A (zh) 发光半导体的图案化基材及其制造方法与发光半导体装置
JP2009187001A (ja) 反射防止構造体、反射防止構造体の製造方法、及び反射防止構造体を備えた光学装置
CN107144925B (zh) 光纤结构、光通信设备和用于制造其的制造工艺
JP2011017781A (ja) 光学素子及び光学系
JPH08257651A (ja) マイクロレンズ作成用モールド製造方法
JP7238252B2 (ja) 回折光学素子、光照射装置
ES2938663T3 (es) Método de fabricación de una rejilla difractiva óptica modulada en altura
JP2011059264A (ja) 光学素子
JP2021504764A (ja) 非等厚光学レンズの設計方法
JP5484837B2 (ja) 光学素子および光学素子の製造方法ならびに微細凹凸構造
CN111856631A (zh) 匀光片和tof模组
CN107688211B (zh) 一种光波导器件及其制作方法
EP3086026A1 (en) A device for modifying light distribution
JP2018025716A (ja) 反射型露光用マスク及びその製造方法
JP2009175481A (ja) 反射防止光学部材および光モジュール
JP4909287B2 (ja) 光拡散モジュール
KR102368182B1 (ko) 복합 패턴효과를 지니는 디자인 데코레이션 필름 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019196.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771824

Country of ref document: EP

Kind code of ref document: A1