WO2011131144A1 - 含木质素的混合燃料及其生产方法以及能使用该混合燃料的喷油器 - Google Patents

含木质素的混合燃料及其生产方法以及能使用该混合燃料的喷油器 Download PDF

Info

Publication number
WO2011131144A1
WO2011131144A1 PCT/CN2011/073159 CN2011073159W WO2011131144A1 WO 2011131144 A1 WO2011131144 A1 WO 2011131144A1 CN 2011073159 W CN2011073159 W CN 2011073159W WO 2011131144 A1 WO2011131144 A1 WO 2011131144A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
oil
mixture
lignin
needle valve
Prior art date
Application number
PCT/CN2011/073159
Other languages
English (en)
French (fr)
Inventor
秦才东
Original Assignee
Qin Caidong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201010170885 external-priority patent/CN102234550A/zh
Priority claimed from CN2010101851898A external-priority patent/CN102251850A/zh
Priority claimed from CN 201010228830 external-priority patent/CN102312764A/zh
Priority claimed from CN 201110038502 external-priority patent/CN102618339A/zh
Application filed by Qin Caidong filed Critical Qin Caidong
Priority to CN2011800204535A priority Critical patent/CN102858926A/zh
Publication of WO2011131144A1 publication Critical patent/WO2011131144A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/14Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders
    • C10L5/143Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders with lignin-containing products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/403Solid fuels essentially based on materials of non-mineral origin on paper and paper waste
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/02Regeneration of pulp liquors or effluent waste waters of acid, neutral or alkaline sulfite lye
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/10Concentrating spent liquor by evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/12Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for fuels in pulverised state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a mixed fuel containing lignin colloid or granules from pulping wastewater or waste liquid, and a method for producing the same; the present invention also relates to a fuel tank and a fuel injector capable of utilizing the above-described mixed fuel, in particular A fuel injector structure and fuel injection method that are not susceptible to clogging of non-liquid impurities or non-liquid alternative fuels in oils, such as lignin.
  • the object of the present invention is to provide a method for treating organic pollutants in waste water of pulping (including solvent pulping), so that pulp wastewater and waste liquid can be resourced after low-cost treatment. And the use of industrialization.
  • Lignin is a traditional pulp, and it also includes the main organic waste in the solvent pulping process. Because of its high energy density (its volumetric energy density is comparable to that of gasoline and diesel), it naturally has the potential to develop into a fuel for internal combustion engines.
  • the activity of the surface of the fine lignin particles makes the fine lignin particles easily condense and grow with each other, or easily absorbs and binds to each other due to easy absorption of a trace amount of moisture in the air or contained in the fuel, and can be caused in a short time.
  • the blockage of the engine oil circuit and the problem of unstable engine operation and shutdown of the engine may cause a knot problem between the lignin particles in the mixed fuel for a long time.
  • a proposal to limit the weight of carbohydrates to less than 4% is proposed to overcome the effect of aggregation or consolidation of carbohydrate particles on the engine oil circuit, as can be seen in order to increase the replacement amount of petroleum fuel and to solve the fuel in the engine pipeline.
  • the prior art injector structure still uses the shaft needle spray method, so the fuel injector or the injector has high requirements on the quality of the fuel (such as purity, water content, etc.), and is not suitable for ordinary fuel. , including powdered fuels, is widely used in internal combustion engines.
  • an object of the present invention is to provide a method for treating organic pollutants in a waste water of a pulping wastewater, so that the pulp wastewater and the waste liquid can be utilized for energy utilization and resource utilization through low-cost treatment.
  • the acidification of lignin is used to increase the hydrophobicity of lignin, and the stability of mixing in liquid fuel, and to reduce the viscosity of the lignin-containing mixed fuel, so as to facilitate the mixing of fuel in the engine or Stable delivery in the fuel delivery line.
  • the object of the invention is also to combustible organic matter in the pulping waste liquid, in particular acidified lignin (including other organic matter in the pulping waste liquid), or / and part of the inorganic substance, a small amount of acid or / and moisture or / And a mixed combustion method of a mixture of a surfactant and a liquid fuel for an internal combustion engine (including a fuel oil-fueled gas turbine), in the field of power fuel and kiln fuel, using a general mixed fuel to replace the existing liquid or
  • pellet fuel is to save energy and protect the environment, and to solve the pollution discharge of pulp mills. It is also an object of the present invention to provide a method of producing the above fuel.
  • an injector that can be mixed and burned in a cylinder or in a combustion chamber of an internal combustion engine using different first and second fuels.
  • solid particulate fuel such as lignin or impurities in fuel in engine injector systems (including various types of diesel engines, Direct injection ignition type gasoline engine, gas turbine), especially in the case of the surface of the needle valve near the cylinder side, the deposition of solid particles causes the needle valve to move poorly or the sealing is not strict, which causes the problem of poor atomization of the fuel.
  • the injection method of the open type injector structure of the porous or single hole needle valve structure, the oil storage chamber, that is, the oil storage volume chamber or the oil storage pressure chamber and the nozzle position are separated from each other, whether or not it is in the fuel injection state, the needle valve and
  • the needle valve sleeve is always in close contact with the fuel injection nozzle, that is, the position of the fuel injection hole, that is, the timing of the fuel is quantitatively determined by using the translational movement of the needle valve in the needle valve sleeve of the injector with respect to the fuel injection nozzle.
  • the spraying action avoids the traditional seating of the needle valve when the fuel is sprayed by the lifting movement of the needle valve relative to the injector.
  • the injector needle Into fuel or fuel
  • the deposition of particulate matter in the material causes the needle valve to gradually become less rigid, that is, the structure in which the conventional injector needle valve is sealed by being seated on the needle valve sleeve is easily affected by the particulate fuel or impurities.
  • the problem that the needle valve and the needle valve sleeve cannot be tightly sealed at the seating position, especially by reciprocating the movement of the needle valve, can avoid the problem that the needle valve and the needle valve sleeve are easily blocked or stuck by solid particles.
  • the injector needle has two independent oil passages or oil passages and oil outlets or outlets communicating with the oil passage holes.
  • the oil ring groove belt and the sealed and isolated double volume chamber respectively transport and spray respective fuels into the cylinder of the internal combustion engine, so that various fuels are conveniently and reliably and independently and sequentially delivered into the cylinder of the internal combustion engine, and mixed and burned after being sprayed. It also provides better spray space distribution.
  • a method for economically and efficiently utilizing high energy density, renewable lignin, and other organic matter in pulping waste liquid instead of fossil fuel for driving an internal combustion engine or the like to provide power is provided. Replacing fossil fuels with renewable lignin biomass resources for the purpose of driving internal combustion engines.
  • the present invention firstly provides an acid lignin-containing mixed fuel for an internal combustion engine, which comprises organic matter in a liquid fuel and a pulping waste liquid, in particular, a lignin colloid or fine particles. Or a mixture of a part of inorganic substances and a small amount of acid, and the liquid fuel includes one or a mixture of two or more of ethanol, gasoline, kerosene, diesel oil, heavy oil for use in an internal combustion engine, emulsified heavy oil, and the like.
  • the acidic lignin is a lignin obtained by acidifying a lignin obtained by various methods using an inorganic acid, and is called an acidic lignin in the present invention, and is subjected to high-temperature heating condensation stabilization treatment of an acidic lignin, in particular The heat treatment in the liquid fuel in a stirred or ground state is carried out, and the obtained condensation-stabilized lignin particles are referred to as condensation-stabilized acidic lignin in the present invention, that is, lignin particles in the present invention. It means a particle obtained by a condensation stabilization treatment.
  • the condensation-stabilized lignin particles also include various other organic components in the high-temperature treatment or acidification treatment pulping waste liquid, such as a complex of lignin carbohydrates, pectin, starch, alkaloids, hemicellulose, fibers.
  • the present invention also provides an engine using the above-described mixed fuel in order to achieve various components in the mixed fuel, since the specific gravity of the various components in the mixed fuel is different, and stratification easily occurs in the fuel tank. It can be uniformly transported into the cylinder of the engine for atomizing combustion.
  • the engine includes a fuel tank whose volume is automatically reduced with the consumption of oil, or includes an oil discharge device with a uniform output mixed fuel. It is distributed in the oil inlet of the oil system at different heights of the fuel tank, and each oil inlet is equipped with an oil pump suction device, so that the part of the mixed fuel which has different solid contents can be layered due to different specific gravity.
  • An oil pump or fuel injection pump that is delivered to the engine, Or the engine is further equipped with a fuel tank filled with pure diesel or gasoline.
  • a conventional fuel tank has an oil inlet and an oil outlet.
  • the control timing alternately supplies fuel to the engine's oil pump or fuel injection pump.
  • the engine is applicable not only to the mixed fuel provided by the present invention, but also to various existing liquid fuels such as gasoline, diesel, ethanol, and the like.
  • the present invention also provides a process for producing a mixed fuel containing condensation-stabilized solid particles and a liquid fuel from a pulping waste liquid.
  • the inner wall of the heat-dehydrated container is coated with a polytetrafluoroethylene layer to prevent the acidic lignin from being mixed with a common material (such as glass or metal material before condensation stabilization).
  • a common material such as glass or metal material before condensation stabilization
  • a lignin-containing mixed fuel contains an acidified pulverized wastewater or an acidic lignin colloid or granule in a waste liquid,
  • the amount is fuel oil.
  • the acidic lignin colloid or granules have a water weight of 50-90%; further preferably, the aqueous weight is 1-15%.
  • the water in the acidic lignin colloid or granule is acidic in pH.
  • the mixed fuel further contains an acid and/or a salt; further preferably, the acid is nitric acid, and the salt is sodium nitrate.
  • the fuel oil in the mixed fuel is ethanol, gasoline, diesel, kerosene, heavy oil, lubricating oil or lubricant.
  • the mixed fuel is further added with a surfactant and/or an antioxidant; preferably, the surfactant is added in an amount ranging from 0 to 2000 ppm, and the type of the surfactant may be, for example, US Pat.
  • antioxidants are added in an amount ranging from 50 to 1000 ppm, and the antioxidants which may be selected are selected from the group consisting of: anthraquinone antioxidants, antioxidants added to foods and fats, BHA (butyl Antioxidants such as hydroxyanisole), BHT (dibutylhydroxytoluene), PG (propyl gallate) or TBHQ (tert-butyl hydroquinone).
  • BHA butyl Antioxidants such as hydroxyanisole
  • BHT dibutylhydroxytoluene
  • PG propyl gallate
  • TBHQ tert-butyl hydroquinone
  • a method for producing a lignin-containing colloid or granule-mixed fuel comprises the steps of: Step A: adjusting the pH of the alkaline or acidic or neutral lignin-containing mash or mixture discharged from the pulping waste liquid or acid hydrolysis or enzymatic biomass to alkaline to completely dissolve the lignin in the aqueous solution; Step B Adding a chemical substance for removing silicate ions to the aqueous solution of the above step, filtering and removing the silicate precipitate to obtain a mixture containing less inorganic impurities; Step C, adding sulfuric acid or hydrochloric acid or nitric acid to the mixture solution of the above step Or carbonic acid (ie carbon dioxide gas) or phosphoric acid or organic acid to a pH of less than 7 greater than 6, after standing, filtering to remove the precipitate, to obtain a near neutral mixture further reducing inorganic impurities; Step D, distillation of the above steps
  • a metal ion chelating agent is further added to the mixture.
  • the weight percentage of the metal ion chelating agent added is 1% by weight of the mixture.
  • the water content can be reduced to 50% or less for the purpose of maintaining the fluidity of the mixture.
  • the production method further adds the following steps after the step C: Step H, adding a calcium hydroxide solution to the mixture obtained in the step C to precipitate sulfate, carbonate or phosphate or silicate ions, or using ions Membrane or electrodialysis to remove sulfates, nitrates, carbonates, hydrochlorides, phosphates or silicates to obtain a mixture; Step I, introducing carbon dioxide gas into the mixture prepared in step H or dropping into carbonated water, precipitating excess calcium ions, removing the precipitate to obtain a mixture; Step J, dropping in the mixture of step H and step I The nitric acid solution returns the mixture to an acidic state; preferably, the pH of the mixture is less than 4.
  • step K replaces steps H and I
  • step of step K is: adding a calcium nitrate or lanthanum nitrate solution to the mixture obtained in step C to precipitate sulfate, carbonate or The phosphate ion gives a mixture of the nitrate-containing acidic state.
  • the invention also discloses a method for producing a mixed fuel containing lignin colloid or particles, which is used for the mixture obtained in the above steps B, C, D, E, F, G, H, I, J or step K.
  • the nozzle spray method is sprayed onto the surface of the hot fuel oil or sprayed into the interior thereof, wherein the acidic lignin mixture sinking to the bottom of the container together with part of the fuel oil from the bottom or the bottom of the container is sprayed from top to bottom toward the fuel oil.
  • the high-pressure spray atomization operation is performed on the surface or inside of the fuel oil.
  • the mixture of the acid-stable lignin and the acid and the salt is subjected to high-temperature aging treatment in the fuel oil.
  • the inner wall of the container for heating and dehydrating treatment is coated with a layer of polytetrafluoroethylene.
  • the method for producing the mixed fuel containing lignin colloid or granule comprises the following steps: Step L: directly using a solvent method to prepare a pulp waste liquid, or directly using an organic solvent to dissolve the dried and dehydrated lignin, or directly utilizing The organic solvent dissolves the biomass raw material containing lignin, or the acidic lignin obtained in step 8, C, D, E, F, G, H, I, J or step K in the above production method is dissolved in an organic solvent.
  • the acidic lignin obtained in step 8 C, D, E, F, G, H, I, J or step K is emulsified and mixed with a small amount of fuel oil, a small amount of surfactant and a small amount of organic solvent to obtain acid lignin.
  • Organic solvent or colloidal mixed fuel Step M, spraying the lignin-containing organic solvent or mixture obtained in the step L into the fuel oil, diluting or volatilizing the organic solvent to obtain fine lignin particles dispersed in the fuel oil; Step N Filtering the fuel oil in step M to obtain fine lignin particles; wherein step N is any optional step.
  • the organic solvent described in the step L contains water, and the water is added with an acidic substance.
  • the temperature of the fuel oil in the step M is greater than the boiling temperature of the organic solvent in which the lignin is dissolved or the boiling temperature of the water, whichever is the greater.
  • the method for producing a mixed fuel of lignin particles of the present invention comprises the following steps: Step A: adjusting alkaline or acidic or neutral lignin discharged from pulping waste liquid or acid hydrolysis or enzymatic hydrolysis biomass The pH of the mash or mixture is alkaline to completely dissolve the lignin in the aqueous solution;
  • Step B adding a chemical substance for removing silicate ions to the aqueous solution of the above step, filtering and removing the silicate precipitate to obtain a mixture containing less inorganic impurities;
  • Step C adding sulfuric acid or hydrochloric acid or nitric acid or carbonic acid or phosphoric acid to the mixture solution of the above step to a pH of less than 4, filtering out or taking out the lignin-containing mixture;
  • Step D adding a saturated aqueous solution of inorganic salt particles, inorganic salt powder or inorganic salt to the lignin-containing mixture prepared in the step C to form a mixture;
  • Step E The mixture of the above step C or D is naturally dried or dried at a low temperature or slowly dehydrated under a low temperature hot air or slowly dehydrated under a hot air or environmental condition at a relatively high temperature but maintained a certain humidity, thereby obtaining a naturally broken product. Or a mixture of powders or mixtures that are easily broken;
  • Step F further mixing or shearing the mixture powder or mixture of the above step E to obtain a refined mixture powder
  • Step G drying and drying the mixture powder of the above step F to further reduce the water to obtain a mixture powder having a low moisture content
  • Step H The mixture powder of the above step G having a low moisture content is subjected to cyclone separation to obtain a main lignin-containing mixture powder having a reduced salt content.
  • Step I rinsing the mixture powder obtained in the above step H with water or an acidic aqueous solution to obtain a mixture having reduced salt;
  • Step J drying and dehydrating the mixture of the above step I to obtain a mixture having a low water content
  • Step K further agitating and shearing the mixture obtained in the above step J to obtain a refined main lignin Mixture powder
  • Step A is an optional step for the treatment of the alkali pulping waste liquid
  • step B is an optional step for the aqueous solution containing no silicate ions.
  • the order of step F and step G can be interchanged, step D, F, G, H,
  • the inorganic salt described in the step D is selected from the sodium or ammonium salt of hydrochloric acid, nitric acid, sulfuric acid or phosphoric acid; the low temperature or low temperature hot air temperature described in the step E is less than 60 ° C, preferably 30 ° C. The higher temperature described in step E is less than 10 CTC and greater than 40 ° C while maintaining a certain humidity.
  • an engine for use in the above-described mixed fuel is also disclosed, characterized in that the conveying line is intermittently cleaned by a second fuel containing a compound which dissolves lignin.
  • the lignin-dissolving compound is glycerin, ethanol, methanol, a basic amine compound such as monoethanolamine, or diethanolamine or triethanolamine, ammonia or a mixture thereof.
  • an engine fuel tank for the above-described mixed fuel is disclosed, and characterized in that the engine oil tank has an oil discharge device that uniformly outputs the mixed fuel, and the oil discharge device can make the volume of the fuel tank It decreases as the fuel is reduced.
  • the oil discharge device comprises a plurality of oil delivery system oil inlets distributed with suction pumps at different heights of the fuel tank.
  • an engine injector for the mixed fuel characterized in that: the needle valve of the injector is provided with an oil passage hole or a grease passage communicating with the oil storage volume chamber And an oil outlet hole or an oil outlet ring groove communicating with the oil passage hole or the oil passage groove, and when the oil outlet hole or the oil outlet ring groove on the needle valve is fitted to the needle valve
  • the spray action occurs when the fuel injection holes on the needle valve sleeve overlap.
  • the needle valve sleeve is coupled with an oil quantity control sleeve, and the left and right movement or rotation on the needle valve body controls the start and/or stop of the oil supply amount.
  • the needle valve of the injector has two independent oil passage holes or oil passage grooves, and an oil outlet hole or an oil outlet ring groove communicating with the oil passage hole or the oil passage groove, and is sealed.
  • An isolated two-volume chamber when the oil outlet hole or the oil outlet ring groove on the needle valve overlaps with corresponding oil injection holes of the needle valve sleeve fitted to the needle valve, the double volume chamber.
  • the respective fuels are delivered and sprayed into the cylinders of the internal combustion engine, respectively.
  • the hybrid fuel replaces the fossil fuel for driving an internal combustion engine or the like to provide power or heat.
  • the solution of acidic lignin particles and the production of the solid particles requires the use of a lower economic cost of sulfuric acid, Hydrochloric acid or phosphoric acid but these acids or acid radicals are not conducive to the problem of mixed fuel combustion in the engine cylinder.
  • the production of mixed fuels can be realized in an economical and reliable way, especially to solve the problem of the removal of moisture introduced by the mixed fuel production process (such as direct mixing with fuel oil after pickling) and to solve the solid particle refinement and condensation. Stabilization problem.
  • the components of the heterogeneous mixed fuel having different specific gravity or the components of the layered layer can be uniformly transferred from the oil tank into the oil pipeline by using a suitable fuel tank structure, and the engine oil transportation method and
  • the porous or single-hole open nozzle injection method avoids the problem that the conventional injector needle valve structure is susceptible to particulate fuel or impurities, and in particular enables the mixed fuel to be conveniently and reliably transported into the cylinder of the internal combustion engine for injection combustion. At the same time, it provides a better nozzle spray effect.
  • FIG. 1 is a schematic view of a circulating spray dewatering apparatus provided in Embodiment 7;
  • FIG. 2 is a schematic view showing the structure of an injector needle valve provided in Embodiment 12;
  • FIG. 3 is a structure of an oil discharging apparatus of Embodiment 13 in which a fuel tank uniformly outputs mixed fuel.
  • 4 is a schematic structural view of a fuel injector provided in Embodiment 14;
  • FIG. 5 is another schematic structural view of the fuel injector provided in Embodiment 14;
  • FIG. 6 is another schematic structural view of the fuel injector provided in Embodiment 14.
  • Figure 7 is a schematic view showing another structure of the fuel injector provided in Embodiment 14;
  • Figure 8 is a schematic structural view of the fuel injector provided in Embodiment 15;
  • Figure 9 is another schematic structural view of the fuel injector provided in Embodiment 15;
  • 10 is another schematic structural view of the fuel injector provided in Embodiment 15;
  • FIG. 11 is another schematic structural view of the fuel injector provided in Embodiment 15;
  • Figure 17 is a front view of the fuel injector structure of the two-volume chamber with two oil passages provided in the embodiment 17;
  • Figure 18 is a side view of the fuel injector structure of the two-volume chamber provided in Figure 17;
  • FIG. 20 is a side view of the fuel injector structure of the dual volume chamber provided in FIG. 18; FIG.
  • FIG. Figure 21 is a dual volume chamber provided in embodiment 17.
  • FIG. Figure 2 is a side view of the fuel injector structure of the dual volume chamber provided in Figure 20;
  • Figure 23 is a fuel injector needle body and needle valve provided in embodiment 19. The combination shows the main view.
  • the figure below is a schematic view of the needle body AA direction.
  • Figure 24 is a front view of the needle valve provided in Embodiment 19, and the right side is a side view of the needle valve.
  • Figure 25 is a schematic front view showing the combination of the injector needle body and the needle valve provided in Embodiment 19.
  • Figure 26 is a view of the needle valve of Figure 25, the left side is the front view of the needle valve, and the right side is the side view of the needle valve.
  • Figure 27 is a front elevational view showing the combination of the injector needle body and the needle valve provided in the embodiment 20.
  • the figure below is a schematic view of the needle body BB direction.
  • Figure 28 is a front view of the needle valve provided in Embodiment 20, and a right side view of the needle valve.
  • Figure 29 is a front view of the needle valve provided in Embodiment 20, and the right side is a side view of the needle valve.
  • the main lignin-containing residue obtained after the dissolution is dissolved in The caustic soda is 5-10% by weight in an aqueous solution; or the residue containing lignin and other organic substances obtained by removing the organic solvent by distillation in the solvent pulping production process is dissolved in an aqueous solution containing 5-10% by weight of caustic soda; Or directly taken from a pulp wastewater solution in which a lignin or the like is dissolved in a caustic soda pulp mill; a chemical agent for removing silicate ions, such as a solution of dissolved aluminum hydroxide or chlorine in a saturated caustic soda solution, is added to the obtained solution by titration. Iron solution until no precipitate appears.
  • the lignin When the pH value is less than 7 and greater than 6, the lignin has not formed a precipitate at this time, and after standing for one day, the salt formed by the metal ion is filtered by a 400 mesh sieve to obtain a woody substance having a pH which is less acidic and less acidic.
  • a small amount such as 1% mixture weight
  • metal ion chelating agent such as acetic acid, Acrylic acid, etc.
  • a mixture of organic solvents such as ethanol, methanol, formic acid, etc.
  • lignin and other organic compounds is acidified to a pH less than ⁇ as a mixed fuel.
  • the lignin-containing fuel is mixed with pure fuel oil in the cylinder of the internal combustion engine by the spray method provided in Embodiment 17, and the purpose of replacing the pure fuel oil is the optimal technical solution; or, instead of the optimal method, the fuel can be utilized.
  • Two separate injectors will be pure gasoline, kerosene or diesel fuel and wood
  • the quality fuel spray enters the cylinder of the internal combustion engine for mixed combustion.
  • Example 2 In Example 1, the inorganic acid or organic acid is added in an amount such that the pH of the solution is less than 4, preferably less than 3, to obtain an organic component contained in the aqueous fraction, acidic lignin, and other wastewater, correspondingly a mixture of salt and residual acid. When lignin and some organic matter are completely precipitated by cloud-gel precipitation, the mixed solution in the container is taken out. At this time, the bottom layer is removed with a small amount of dross, and then sieved with a 400 mesh nylon cloth.
  • a part of the water, a part of the acid and a part of the salt are roughly filtered off to obtain a colloidal slurry mixture of the acidic lignin and other organic substances and inorganic substances having a water content of about 60-90%. Things. Evaporation of the solution minimizes the moisture content, but still allows the solution to have good fluidity. Generally, the water content can be reduced to less than 50%, that is, a flowable colloidal mixture is obtained as a mixed fuel.
  • Example 3 Adding fuel oil (1-80% by weight of lignin) to the alternative fuel obtained in Example 2, and performing sufficient mechanical stirring to obtain acidified lignin, other organic matter, acid, salt and oil A colloidal mixture formed with moisture as a mixed fuel. In order to keep the colloidal mixture stable for a long period of time, 50 to 1000 ppm of a usual surfactant is further added during emulsification mixing.
  • Example 4 The mixture obtained in Example 2 was dried by natural air drying for 1 to 3 months (determined according to climatic conditions) to obtain a mixture of mainly acidified lignin having a water content of 15% by weight (in After heating in a dry box at 120 ° C for 3 hours, the water content was calculated to be 15% by measuring the amount of water volatilized. The mixture was brown in appearance, due to the slow drying and dehydration process, that is, during the process of water reduction, in the mixture.
  • the salt gradually crystallizes into fine white salt crystals and is dispersed in the volume of the mixture, thereby spatially dividing and dispersing the lignin in the dehydration, so that the lignin is finally naturally dispersed into fine particles (for example, the sieve can be sieved through 40 mesh). Or it becomes easy to be broken into a finer powder, which is used for spray combustion in a kiln directly or after drying to reduce moisture. With this feature, the mixture can be simply stirred, or shear-crushed or further dried and dried (the powder state is more easily dry and dehydrated) at a low energy cost and low cost.
  • the lignin-containing mixed fuel is low in water content. powder.
  • the aforementioned particles or powder may be added without adding other fuels ( That is, when the weight of the added diesel or hot body fuel is 0%), the fuel such as petroleum coke powder and pulverized coal is directly replaced for combustion in the kiln.
  • the above powder is quickly dried and dried at a temperature of 80-105 ° C or at a temperature of 105-120 ° C to reduce the water content to a water content of 1-10%, after drying.
  • the powder particles may be further refined by stirring or shearing.
  • nitric acid is preferably used in the acidification in Example 2 (because nitrate can support combustion).
  • the salt in the mixture fuel use salt crystal particles and wood
  • the dried mixture powder that is, the powder mainly lignin
  • the separated lignin particles may be reused with water or an acidic aqueous solution.
  • lignin particles There is a loose bonding phenomenon.
  • the obtained lignin can be directly dehydrated by extrusion or filtered, then sprayed in a hot air stream or spray dried or quickly hot air dried and dried again.
  • the moisture brought in, the main lignin-containing mixture granules or loose lumps after drying and drying can be easily broken into fine particles or powder by shearing or stirring.
  • the lignin mixture after drying at a low temperature for a long time (ie low energy consumption and low cost) or hot air drying and acidification is used to slowly evaporate the water in the mixture, and the salt has sufficient time to form crystal nuclei and crystallize.
  • lignin can be broken naturally or easily broken. For example, at a low temperature such as 60 ° C, preferably hot air drying at a temperature of 30 ° C (drying time is determined according to the water content of the final mixture product) to obtain a naturally broken or easily broken mixture powder or Mixture; To further refine the mixture powder, the aforementioned mixture powder or mixture is crushed by stirring or shearing.
  • the above crystallization process utilizing the salt carried in the mixture causes the lignin to be dispersed and refined. Since the salt content is accidental, the length of time for forming the dispersed particles and the size of the particles are uncertain.
  • 100 g (about 90% by weight of water) of the mixture obtained in Example 2 is added with 50-100 g of salt and mixed well with sufficient stirring, such as adding sodium or ammonium salt of hydrochloric acid, nitric acid, sulfuric acid or phosphoric acid.
  • the crystal powder or a saturated aqueous solution of these salts accelerates the crystallization process and shortens the time for dispersing the lignin.
  • the lignin can be evenly distributed. Segmentation and dispersion.
  • fine particles of lignin and salt were formed from the surface of the mixture after 1 hour, and it was measured that the mixture having a thickness of about 0.5 mm per hour was converted into a powder state at 40°.
  • a mixture having a thickness of about 1 mm per hour was measured and converted into a powder state.
  • the mixture after adding salt particles can be uniformly coated on a corrosion-resistant belt conveyor with a thickness of 1-5 mm, and swept through the hot air passage or duct in 1 to 5 hours. Or scraping off a mixed powder of lignin and a salt crystal which has become a powder or granules, to be subjected to further separation treatment, including the aforementioned treatment for crushing and refining the granules and reducing salt and moisture.
  • a similar effect is obtained by replacing the above-mentioned anhydrous sodium sulfate with a commercially available salt granule.
  • the morphology of the crystal particles is different, the effects of other salts are similar, and will not be described again.
  • the water content in the mixture is required to be slowly volatilized, that is, the water volatilization rate is lower than the crystallization rate, because the crystallization of the crystal requires sufficient moisture to facilitate the diffusion movement of the salt ions.
  • This can be achieved by adding a salt crystal method or a slow evaporation of low-temperature low-dry air volume, or by allowing the hot air to contain a certain amount of moisture (ie, humidity), such as by spraying moisture onto hot air or by placing water next to the mixture in the drying cabinet. In order to maintain a certain humidity in the surrounding environment of the mixture.
  • the salt in the mixture can be crystallized and precipitated in time, it can be slowly dehydrated under hot air or ambient conditions at a higher temperature but maintained a certain humidity, that is, the oven or hot air temperature is raised above 40 ° C. Less than 100 °C to avoid rapid evaporation of water boiling, but need to maintain a dry environment or oven environment or hot air contains a certain degree of humidity, the size of the mixture can continue to evaporate water and the salt can crystallize out, ie below The humidity balance of the hot air or drying environment used.
  • Example 5 Considering economical cost, a mixed fuel of acidified lignin and other organic substances which is stabilized with sulfuric acid is the most economically competitive, but a mixed fuel containing sulfuric acid or sodium sulfate is used for the metal material of the cylinder or combustion chamber of the internal combustion engine. It is highly corrosive and therefore needs to be removed.
  • a mixture of acidic lignin, other organic substances, sulfuric acid, sodium sulfate or a mixture of oil fuel oil diesel oil obtained by acidification using sulfuric acid is added with a calcium hydroxide aqueous solution to form sulfuric acid and a portion of sodium sulfate to form calcium sulfate.
  • the excess calcium hydroxide in the above mixture is removed by passing carbon dioxide gas or dropping into carbonated water to form a calcium carbonate precipitate.
  • nitric acid is added to the mixture in which the precipitate is filtered to maintain its acidifying properties.
  • calcium nitrate is added to the mixture in which the precipitate is filtered to maintain its acidifying properties.
  • nitric acid may be further added to the mixture in which the precipitate is filtered to maintain or increase its acidification characteristics. Or remove the sulfate ion by ion-exchange membrane method and add a small amount of relatively expensive nitric acid to maintain the acidified environment or characteristics of acidic lignin.
  • the salt contained in the mixed fuel obtained after the above chemical reaction is a strong oxidant, and therefore, its presence is advantageous for the combustion of the mixed fuel in the engine cylinder, but there is corrosion in the combustion product in the cylinder wall.
  • Embodiment 6 In order to achieve the purpose of being used as a power fuel in an internal combustion engine after being mixed with fuel oil, the dehydrated or anhydrous lignin particles must be fine and stabilized by high temperature condensation, preferably by acidification beforehand. The problem that the particles adhere to each other after water absorption or adsorption of moisture on the surface of the particles.
  • the mixture in the aqueous state of Example 1, 2 or 3 was placed in an electric heating oven, and after air drying for 5-10 hours between 110-130 ° C, a lump mixture was obtained, and 50 g of the lump mixture was placed.
  • the melting point of niobium is 286 ° C, 2-naphthol
  • the melting point is also higher at 123-124 ° C, which can be dispersed in the solution during the grinding process; the melting point of low melting point such as naphthalene 80.3 ° C, the melting point of 1-naphthol 96 ° C can be stirred in the hot solution of distillation dehydration By shearing and dispersing in the mixture, it is possible to produce cloud-like, fine acidic lignin particles in oil.
  • Embodiment 7 This embodiment provides a production method of a mixed fuel.
  • the mixture in Embodiment 1, 2 or 3 (in order to increase the fluidity and reduce the viscosity, further adding 1-10% of fuel oil to the mixture or Dissolve a small amount of organic solvent, ammonia, and gasoline infiltrated with lignin, spray it onto the surface of hot fuel oil or spray it into the interior to perform dynamic distillation and dehydration.
  • the fuel oil used is preferably boiling point.
  • the temperature of hot diesel is preferably greater than 120 ° C, but less than 180 ° C to avoid loss of carbonization of lignin and other organic matter.
  • the temperature of the high-temperature fuel can be selected between 150-160 ° C, and can also be used to heat the fuel oil.
  • a stirring slurry or a shear emulsification mechanism (for example, a high-speed emulsification shearing machine) is disposed in the fuel tank. The obtained mixture is filtered or precipitated to separate a part of the fuel oil, and a mixed fuel having different condensation-stabilized solid particle contents can be obtained.
  • the fuel oil is preferably kerosene.
  • the foregoing mixture is sprayed by a spray nozzle to a hot fuel oil (or other heat resistant organic solvent such as high temperature melted). Paraffin) surface or sprayed into the interior, or the mixture is directly mixed with the fuel oil in the heating vessel, and the mixture of acidic lignin and the like that sinks to the bottom of the vessel together with a portion of the fuel is sprayed from top to bottom toward the fuel oil.
  • the oil is pumped out from the bottom or the bottom of the vessel by a heat-resistant oil pump and then subjected to a high-pressure spray atomization operation on the surface or inside of the fuel oil until the water vapor escapes in the fuel oil, so that the acidic lignin and other organic substances are sufficiently condensed and stabilized.
  • the upper and lower portions of the heated and insulated container 101 may have a certain temperature difference, keeping the moisture in the mixed fuel boiling and evaporating in the upper portion of the container, and the lower portion functions as a heat preservation.
  • Fig. 1 the upper and lower portions of the heated and insulated container 101 may have a certain temperature difference, keeping the moisture in the mixed fuel boiling and evaporating in the upper portion of the container, and the lower portion functions as a heat preservation.
  • a mixture of an acidic lignin mixture and a fuel oil which is a heat-resistant high-pressure pump conveying bottom is sprayed from the upper portion into the hot oil
  • 103 is a high-pressure pump for conveying and atomizing substances such as acidic lignin
  • 104 is the inlet of the mixture
  • 105 is the outlet of the oil and gas entrained oil
  • 106 is the hot oil level.
  • the fuel oil in the heating vessel is maintained in constant agitation so that the as-injected mixture is formed into solid particles but is difficult to contact each other before the condensation is stabilized.
  • a slurry mixture of an aqueous, a small amount of acid and a salt acid lignin is mixed with a fuel oil.
  • “Panning" from the aqueous phase into the liquid fuel avoids the process of solidifying the lignin or other organic matter into solids and then breaking into small particles, which not only saves production costs, but also avoids the organic matter such as lignin after direct drying. Due to the action of electric charge and mechanical action, the original fine solid particles are turned into large particles of several tens or hundreds of micrometers, and the dry fine solid particles can be prevented from adsorbing moisture in the air again before being added to the fuel oil due to the high specific surface area. Therefore, the "translation" method is easy to obtain a condensation-stable acidic lignin of fine particles mixed in a liquid fuel.
  • the obtained lignin particles and other solid particles should be in an irregular and loose state, and the edges of the particles may have flagella and dendritic capillary structure, which play the role of supporting each other in the fuel oil, so that the solid particles are not easily precipitated and cloud-like.
  • the three-dimensional grid structure with good fluidity can be uniformly floated and mixed in the liquid fuel in a slightly disturbed state, and therefore has the advantage of better transporting fluidity.
  • the inner wall of the reaction vessel is preferably coated with Teflon to form a non-stick layer (small amount of non-stick rice for testing) The pot replaces the reaction vessel).
  • Example 8 Substituting the pulp wastewater in the foregoing Examples 1-7 with a waste liquid in a solvent method (such as ethanol method) or acidifying the waste liquid to a pH of less than 4 or 3, that is, extracting the pulp raw material
  • a solvent method such as ethanol method
  • the extract obtained afterwards (containing an organic solvent such as an organic solvent, water, lignin or an acid or an alkali substance as a catalyst) is acidified (preferably acidified with nitric acid) directly as a colloidal mixture containing an organic solvent such as ethanol.
  • a solvent method such as ethanol method
  • the organic solvent is dissolved in water to precipitate a substance mainly composed of lignin (such as the technique used in US Pat. No. 4,764,596).
  • lignin and organic matter have a certain viscosity, and are not suitable as a part of a mixed fuel which needs to be dimensionally stable and can be stably transported in a fuel oil path of diesel, gasoline, kerosene or heavy oil; and the obtained commercial wood
  • the average size of the granules is 20-40 microns.
  • the particle size of the lignin is still too large, which is not conducive to the rapid and full combustion and transportation of the lignin particles. Therefore, in order to obtain condensed stable fine particle lignin so as to maintain good fluidity after mixing with diesel, gasoline, kerosene or heavy oil fuel, it is necessary to use the above extract as a mixed fuel production raw material, lignin in a solvent.
  • the modification treatment is carried out, in particular, acidification condensation stabilization and particle burst type refining treatment.
  • the method of acidifying the extract obtained by the solvent method and directly spraying it into hot oil to obtain fine particle lignin after bursting in hot oil has The most concise process and economic competitiveness.
  • the organic solvent remaining in the hot oil and the liquid organic component such as the produced furfural can also be used as a part of the mixed fuel without increasing the separation cost.
  • Example 9 This example uses the acidified lignin acidified in Example 1 or Example 8 by any method (for example, using acidified lignin to float up to form a lignin colloidal block when heated, or with a fuel such as diesel oil) The oil is uniformly emulsified and mixed, floated and agglomerated during further heating, and the concentrated lignin is removed or filtered out. Dehydration (such as the dry dehydration method used in Example 6) or partial dehydration to reduce the moisture content.
  • the acidified dehydrated lignin ethanol solution (aqueous 5% w) is sprayed directly onto the surface or inside of the heated fuel oil, and the temperature of the hot fuel oil (such as diesel or kerosene) is sprayed. Above the boiling point of the various components in the organic solvent or solvent, if the mixture also contains water, the temperature of the hot fuel oil is higher than the boiling point of the water. In short, the temperature of the fuel oil is greater than the organic solvent in which the lignin is dissolved. The boiling point temperature or the boiling point temperature of water, whichever is the greater.
  • the hot oil temperature is preferably greater than 120 ° C, but less than 160 ° C, instantaneously make various organic solvents and moisture Boiling and volatilizing, leaving only fine lignin particles to settle and disperse in hot diesel. Filtration of the fuel oil results in refined lignin particles that can be used as various fuels or as alternative fuel oils. For partially grown lignin particles, it can be ground and refined in diesel fuel.
  • the above-mentioned organic solvent for dissolving lignin needs to add a small amount of water, such as 5%-50% by weight, in order to increase or further increase the hydrophobicity of the granular lignin obtained after spraying and reduce the mixing.
  • a mineral acid such as nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, etc.
  • nitric acid preferably nitric acid
  • the organic matter other than lignin contained in the pulp mash or the biomass may be dissolved by the aforementioned organic solvent, the granular lignin in the present invention also contains these dissolved in the organic solvent.
  • Material composition such as resin, organic acid, hemicellulose, etc.
  • Example 10 It was found that after the dehydration treatment, the fine acidified lignin particles were aged for a long time, even if diluted in diesel oil, after a month or more, the viscosity between the lignin particles appeared obviously, and it was necessary to shake vigorously. Re-expressing good fluidity or floating like a cloud.
  • antioxidants such as terpenoid antioxidants, or antioxidants added to foods and fats, BHA (butylhydroxyanisole), or in the diesel (or other fuel) that is wrapped or mixed with it.
  • BHT dibutylhydroxytoluene
  • PG propyl gallate
  • TBHQ tert-butyl hydroquinone
  • Example 11 During the long-term delivery of the mixed fuel, lignin particles inevitably accumulate in the pipeline.
  • the fuel supplied to the burner can be intermittently switched from the fuel tank to the second lignin-free pure liquid fuel (diesel or gasoline, etc.), such as providing the pure fuel. Burn for 5-10 minutes.
  • lignin-soluble diesel can be dissolved in lignin-free diesel fuel and also flammable substances such as glycerin, ethanol, methanol, basic amine compounds such as monoethanolamine, or Diethanolamine or triethanolamine, ammonia or a mixture thereof to unblock and clean the tubing, i.e., the tubing is intermittently cleaned by a second pure fuel containing a compound that dissolves the lignin.
  • lignin-free diesel fuel and also flammable substances such as glycerin, ethanol, methanol, basic amine compounds such as monoethanolamine, or Diethanolamine or triethanolamine, ammonia or a mixture thereof to unblock and clean the tubing, i.e., the tubing is intermittently cleaned by a second pure fuel containing a compound that dissolves the lignin.
  • Example 12 When using solid particles of 10% v/v condensation-stabilized acidic lignin and other organic matter as fuel for R175 (A) and R180 diesel engines, it was found that there was a knocking cylinder after 10 hours of operation under no-load conditions. The phenomenon occurs. As shown in FIG. 2, the reason is that acidic lignin or agglomerates or partial carbonized layers of the solid particles are formed at the seating 202 of the needle valve 201 in the nozzle sleeve (in a corner of a right angle), thereby The seat seal is not tight, causing the injector nozzle to drip the fuel and causing the engine to knock on the cylinder (Note: When the needle valve moves in the axial direction, it determines whether the fuel injection action occurs.
  • the needle valve When the needle valve is seated on the inner wall of the injector sleeve, it seals. Isolating the inner chamber of the injector from the role of the engine cylinder). Therefore, changing the angle of the needle valve 101 at a right angle to the inclination angle of the needle valve 101 will facilitate the cleaning action of the fuel valve while the fuel is being ejected from the injector.
  • Example 13 Due to the influence of gravity, mutually incompatible components of different specific gravities may have different concentrations at different locations within the fuel tank.
  • the oil can be introduced through a plurality of oil inlets distributed at different liquid level (that is, an oil discharge device using a uniform output mixed fuel)
  • mixed fuel also includes various other fuels that may be used), so that components of different specific gravity or layered components are uniformly introduced into the oil pipeline, and It is possible to achieve a more stable and reliable uniform delivery than mechanical agitation.
  • Figure 3 is a schematic view showing the structure of an oil discharge device for uniformly outputting a mixed fuel.
  • a plurality of oil delivery system inlet ports are provided at different heights of one side of the oil tank 301 provided with the fuel tank inlet port 309.
  • the oil discharging device for outputting the mixed fuel is provided with four oil delivery system inlet ports 303, 304, 305, 306, which are respectively connected to the oil delivery pump 302 through the oil pipeline, and the oil delivery pump 302 as an associated suction device sucks the fuel along the arrow.
  • the direction is sent to the fuel injection pump (the pumping action of the fuel injection pump itself can also act as a suction instead of the oil pump 302.
  • the oil pump 302 can be omitted, not shown in the figure); and the oil pipeline can also be provided.
  • a suction pump 307 There is a suction pump 307, and a suction pump 307 is provided with a sensor 308.
  • a suction pump 307 When the height of the fuel liquid level is lowered to expose the oil inlet 303, 304, 305 or 306 to the air, the supplementary input fuel is kept in the fuel tank.
  • the liquid level, or the corresponding suction pump 307 is closed to prevent air from being pumped into the oil passage; or, the volume of the oil tank 301 can be contracted and expanded with the amount of fuel contained, so that the liquid level in the tank is not Change or change is small.
  • Example 14 In order to reduce or avoid mixed fuel (including various other fuels that may be used), solid particulate fuel such as lignin or impurities in fuel are included in the engine injector system (including direct injection ignition gasoline engine) , gas turbine), especially the impact on the movement of the needle valve and the sealing effect between the needle valve and the seating surface of the needle valve sleeve, the technical solution adopts the open nozzle structure with a porous or single hole needle valve structure The sealing or conduction injection between the needle valve and the needle valve sleeve depends on the displacement between the opening holes, and the oil storage chamber, that is, the oil storage volume chamber or the oil storage pressure chamber and the nozzle position are separated from each other, whether or not it is in the fuel injection.
  • the oil storage chamber that is, the oil storage volume chamber or the oil storage pressure chamber and the nozzle position are separated from each other, whether or not it is in the fuel injection.
  • FIG. 4 is a schematic structural view of the fuel injector provided by the embodiment (the structure is not shown, the same applies hereinafter).
  • 401 is a needle valve sleeve (the attachment for mounting is not shown, the outer shape can be adapted according to the size and shape requirements of the engine cylinder)
  • 408 is the needle valve body, and the needle valve 408 is moved to the right by the action of the spring 407.
  • 410 is a return port
  • 411 is an optional oil inlet for injecting pure fuel oil or lubricating oil through a high pressure pump to maintain lubrication and cleaning of the inner wall of the needle valve body 408 and the coupled needle valve sleeve 401.
  • the oil passage hole that is, the oil chamber 409, stores a certain amount of fuel, and functions to buffer the internal pressure of the volume chamber 405. Considering that the solid particulate fuel is not pushed between the needle valve body 408 and the coupling surface of the needle valve sleeve 401 when the needle valve body 408 is moved, the end of the needle valve body 408 is formed into a concave plow shape 601, as shown in the figure. Figure 6, or other shapes of the head structure.
  • the shape of the fuel injection hole 403 can be made into a flared shape 602, or a single hole or a porous cylindrical shape, that is, a single oil outlet hole 404 corresponds to one fuel injection hole 403, but the fuel injection hole 403 contains more than one small injection hole; Or, a single injection hole corresponds a plurality of oil injection holes, with the movement of the needle valve body 408, the scanning process of the oil discharge holes 404 to the plurality of oil injection holes 403, that is, pre-injection, main injection, and post-injection occur; or, a plurality of oil discharge holes are one by one Corresponding to a plurality of fuel injection holes, and respectively opening or closing at the same time (except for the case where pre-injection or post-injection is required, or sequential multi-point fuel injection requiring one cycle of multiple injections), the latter solution
  • the spatial distribution of the spray can be adjusted over a larger space.
  • FIG. 7 is a three-dimensional diagram showing seven oil outlet holes 404 on the needle valve body 408 and a positional view of the corresponding eight oil injection holes 403 on the needle valve sleeve 401.
  • the path through which the oil outlet hole 404 passes (where the middle oil outlet hole 4041 is supplied with the pre-injection through the fuel injection hole 4031 and then the main injection is provided through the fuel injection hole 4032), and the post injection is further provided through the fuel injection hole 4031.
  • each pair of oil outlets/injection holes is equivalent to a pump nozzle, which facilitates the spatial distribution of the optimal atomization of the fuel, and can Or instead of requiring a high atomic spray pressure to achieve a wide range of uniform atomization effects, that is, multi-point spray optimization of the fuel's spatial distribution will facilitate the full mixing of fuel and air, promote fuel full combustion, reduce pollutants in the exhaust gas The emissions, while the amount of fuel injection can be easily increased, therefore, is conducive to the matching of high-power engines.
  • each component of the fuel injector and the shape and size of each hole can be optimized according to the prior art simulation technology and actual test adjustment and improvement technology.
  • the overlapping process of the oil outlet 404 and the fuel injection hole 403 determines the change of the fuel injection amount with time. For example, the fuel injection mode and process are optimized to meet the demand of the fuel quantity in different combustion periods in the internal combustion engine.
  • the fuel injection hole 403 is formed into a strip shape or an elliptical shape, or the fuel injection hole 403 has two passages, the first passage is a small flow passage, and the oil discharge hole 404 is first
  • the small passage is turned on to discharge a small amount of pre-injected fuel, and then the left passage of the needle valve body 408 is closed to close the small passage and then communicated with the main passage to supply oil for main injection, and the post injection is completed at the return stroke (not shown).
  • Embodiment 15 shows a further improvement of the structure of the injector shown in Fig. 4, which corresponds to a pump nozzle.
  • the fuel is pressurized by the fuel injection pump or the low-pressure oil pump, it enters the volume chamber 405 from the oil inlet hole 402 and then through the one-way valve 801.
  • the cam 802 interlocked by the machine rotating mechanism pushes the needle valve body 408 to the right to compress the spring 407 until the oil outlet 404 overlaps the fuel injection hole 403, the fuel starts to be atomized and injected into the combustion chamber of the internal combustion engine. Since the high pressure fuel is not supplied through the oil pipe, the injection pressure of the fuel injector can be greatly improved.
  • the oil quantity control sleeve 803 that is coupled to the needle valve body 408 by left and right movement can also be changed, and the oil passage hole is changed. That is, the draining time of the oil drain hole 804 communicating with the oil chamber 409 is changed to change the injection timing of the combustion chamber of the internal combustion engine to achieve the purpose of changing the actual oil supply amount; or the time when the oil drain hole 804 is changed into the oil amount control sleeve 803 That is, the timing of starting the pressure oil is changed to control the magnitude of the actual fuel supply amount (not shown).
  • Fig. 9 shows a case where the injection of oil is completed by the action of the spring 407 when the cam is moved to the left, and the injection hole 403 is closed.
  • one of the advantages is that the overlapping time process of the oil outlet hole 404 and the fuel injection hole 403, that is, the fuel injection regularity (injection time and fuel injection amount) of the fuel injection hole 403 is independent of the fuel injection state. It is only related to the engine speed and the shape of the cam curve of the cam 802, that is, the supply time and amount of the fuel are completely unaffected by the spray state, and therefore, it is advantageous to design the optimum combustion requirement matching oil supply through the cam curve of the cam. process. By changing the shape of the cross section of the cam 802, the adjustment of the oil supply amount in the pressure oil section, the pressure relief section and the transition section can be realized, and the rapid opening and closing of the oil supply or the stop of the oil supply can be realized.
  • the needle valve body 408 is moved to the left to start the recovery before the injection amount is completed, and the recovery speed can be made much faster than the speed of the needle valve body 408 shifting the oil spray to the right, so that the two holes 404 and 403 are still When there are overlapping portions, the fuel that still maintains a higher pressure is allowed to continue to be injected, thereby preventing the gas in the cylinder from entering the injector chamber due to the decrease in fuel pressure during the recovery.
  • a certain pressure in the volume chamber 405 is maintained by a fuel injection pump (not shown) to prevent gas in the combustion chamber from returning into the fuel injection hole 403.
  • FIG. 10 is a further modification of the structure of Figure 8 to eliminate the spring 407 to prevent the spring 407 from pushing the needle valve body 408 to the left when the needle valve body 408 is not moving smoothly, and instead is coupled to the main cam 802 for movement.
  • the driven cam 1001 pushes the needle valve body 408 to the left.
  • Figure 11 shows a further improvement of the structure of Figure 10, by controlling the amount of oil supplied by rotating the oil control sleeve 803, At this time, the oil amount control sleeve 803 is provided with a spiral opening 1101, and the rotation 803 to a different position will cause the oil drain hole 804 to start draining and decompressing at different timings.
  • Embodiment 16 Fig. 12 shows a fuel injector structure which is further improved in the structure of Fig. 11.
  • the original oil hole 404 is changed to the oil ring groove 1201, and the oil passage hole 409 is communicated with the oil passage hole 409 through one or several oil discharge holes 1202.
  • the advantage of this technical solution is that the oil storage in the oil ring groove 1201 reduces the pressure reduction in the volume chamber 405, and the spray pressure is more stable.
  • a driving device (not shown) may be added to keep the needle valve body 408 in a slow and constant rotation state, thereby further reducing the problem that the needle valve body 408 is clogged with particulate fuel.
  • Figure 13 shows an improvement to the structure of Figure 12, with the cam structure removed and replaced by an electromagnetic telescoping or piezoelectric device 1301 that provides or maintains a high pressure of fuel into the volume chamber 405 via a fuel injection pump (not shown), Figure 13
  • the electromagnetic telescopic device 1301 stretches and drives the needle valve body 408 to the right, and on the other hand, the fuel pressure continues to rise, and on the other hand, the oil ring groove 1201 communicates with the fuel injection hole 403 to realize the fuel injection action (in combination with FIG. 7).
  • the porous structure can control the number of injections in one cycle by controlling the change in the amount of expansion and contraction of the solenoid valve.
  • the needle valve body 408 is pushed to the left by the high pressure fuel from the fuel injection pump, so that the injection hole 403 is closed and stops burning. Indoor oil supply.
  • Example 17 In order to optimize the utilization of the mixed fuel of organic matter mixed with diesel oil in lignin or pulp mash, reduce or avoid solid particulate fuel such as lignin or impurities in the fuel in the engine injector system (including straight Spray-ignition gasoline engine, gas turbine), especially the impact on the movement of the needle valve and the seal between the needle valve and the seating surface of the needle sleeve, and at the same time can make the combustion performance not as good as conventional gasoline, kerosene or diesel
  • the alternative fuel works to achieve indirect fuel mixing in the cylinder for the purpose of combustion as a mixed fuel, such as colloidal fuel containing lignin and other organic substances dissolved in water, aqueous solution with improved combustion environment and work environment, methanol, ethanol Or methanol, ethanol aqueous solution, dimethyl ether, biomass pyrolysis oil, powder fuel such as mixed fuel of lignin particles and liquid fuel, coal water slurry, etc.
  • this embodiment is based on the foregoing structure of the inject
  • FIG. 16 are respectively a front view and a side view of the fuel injector structure of the dual volume chamber provided in the embodiment (the structure and the combined structure are not shown, the same applies hereinafter).
  • 15013 is a needle valve sleeve that is tightly coupled with the needle valve (the attachment for mounting is not shown, the external shape can be adapted according to the size and shape requirements of the engine cylinder)
  • 1508 is a needle valve, and the needle is under the action of the spring 15010. The valve 1508 is moved to the right to reduce the volume of the oil storage volume chambers 1501, 1502.
  • the volume chambers 1501, 1502 are sealed and separated by the volume chamber dividing baffle 1509 (the cross section may be elliptical or square, as long as it can function as a seal isolation and division
  • the volume chamber dividing baffle 1509 the cross section may be elliptical or square, as long as it can function as a seal isolation and division
  • the fuel injection pump or the oil pump is pumped into the corresponding volume chambers 1501 and 1502 through the oil inlet holes 15011, 15012 with the check valves, respectively, the fuel Enter the center oil hole 1503, 1504 respectively (or open the oil hole on the side of the needle valve to form the oil groove, no oil hole or oil ring groove is required at this time, the figure is omitted), and two volume chambers
  • the pressure in 1501 and 1502 is increased, and the needle valve 1508 is pushed to the left.
  • the first type of fuel starts to fog.
  • the needle valve 1508 continues to move to the left, and when the oil outlet hole 15041 communicating with the oil passage hole 1504 and the fuel injection hole 1505 opened on the needle valve sleeve 15013 start to overlap,
  • the second fuel begins to atomize into the engine cylinder or into the combustion chamber (not shown) of the internal combustion engine. At this point the total pressure within the volume chambers 1501 and 1502 drops so that the spring 15010 can again push the needle valve 1508 to the right to begin the next cycle.
  • 15014 is the oil return hole.
  • the needle valve 1508 When the needle valve 1508 is displaced to the left and right, the upper and lower sides and the front and rear sides of the split baffle 1509 are always coupled with the inner groove 1507 in the needle valve sleeve 15013 to ensure that the first and second fuels do not mix with each other, so as to leak into the inner groove.
  • the fuel in 1507 can be connected to the inner tank 1507 with an oil hole 15015.
  • the inner tank 1507 also serves to save the first fuel.
  • the first fuel is set to pure diesel, it can also function to lubricate the coupling surface; It may be necessary to cancel the oil return hole 15015.
  • the injector shown in Figs. 15 and 16 is a case where two fuels share one injection hole 1505. 17 and FIG.
  • the oil outlet holes 15031, 15041 are repositioned in the radial position of the needle valve 1508, and the spray direction is along the radial direction of the needle valve 1508.
  • the injector structure has a large contact surface with the combustion chamber, it is necessary to increase the cooling of the injector.
  • the volume chambers 1501, 1502 shown in Fig. 16 are arranged at 90° along the injector shaft so that the fuel having high heat resistance (e.g., high boiling point) has the largest contact surface with the combustion chamber, and the fuel having poor heat resistance is as much as possible. Keep away from the combustion chamber.
  • the needle valve 1508 and the needle valve sleeve 15013 In order to increase the lubrication of the contact surface between the needle valve 1508 and the needle valve sleeve 15013 and to clean and cool the pure fuel oil such as diesel oil, one (or several at different positions) and the center oil hole are opened on the needle valve 1508.
  • the oil groove 1901 of 1503 communicating through the oil hole 1902 is as shown in Figs.
  • an elastic needle valve ring (not shown) is placed on the needle valve 1508, that is, the oil groove 1901 is replaced with a needle valve ring to hold the needle valve 1508. High pressure seal with needle valve sleeve 15013.
  • an oil groove 1901 and an elastic needle valve ring are simultaneously provided on the needle valve 1508.
  • the above-described manner of urging the needle valve 1508 by the interaction between the oil inlet pressure and the spring 15010 can be propelled by a cam driven by the engine's rotating shaft.
  • one end of the needle valve 1508 is provided with two independent non-communicating volume chambers 2101 and 2102, respectively accommodating the first and second fuels, and respectively connected to the central oil passage holes 1503 and 1504. As shown in Figure 21 and Figure 22.
  • the piezoelectric elements 2103 and 2104 provided in the volume chambers 2101 and 2102 can be expanded and contracted by an external power source (not shown) to change the volume in the volume chamber, thereby increasing or decreasing the fuel pressure in the volume chamber.
  • the needle valve 1508 is displaced left and right by the action of the piezoelectric element 2105 to control the overlapping time of the oil holes 15031 and 15041 with the fuel injection holes 1701 and 1702, thereby controlling the timing of the start and end of the injection, and therefore, the fuel injection
  • the time and duration are independent of the oil supply pressure, and the actual fuel injection amount is also related to the magnitude of the oil supply pressure from the oil inlet holes 15011, 15012 and the amount of expansion and contraction of the piezoelectric elements 2103 and 2104.
  • the oil inlet holes 15011 and 15012 are always only communicated with the volume chambers 1501 and 1502, respectively.
  • the oil supply holes 15011 and 15012 can be supplied by a conventional fuel injection pump or a stable high pressure supply. Oil mode (ie high pressure common rail mode).
  • the inner chamber 2106 in which the piezoelectric element 2105 is located is preferably immersed in a low-pressure pure fuel oil (the oil return hole 15015 is in communication with a fuel tank containing pure fuel oil), such as diesel, which achieves lubrication and cooling effects and for piezoelectric elements. Insulation.
  • a fuel tank containing pure fuel oil such as diesel
  • Example 18 The alkali-containing lignin-containing mash obtained by caustic soda pulping is concentrated to 50% by weight after removing silicon. (At this time, the content of inorganic sodium ions is high, and the combustion chamber of the internal combustion engine is required to be resistant to sodium oxide and sodium alkali.
  • the corresponding diesel engine requires two tanks, respectively, to contain pure diesel (the first A fuel) and a lignin colloidal solution or a lignin-containing organic solvent (second fuel), and each tank has a separate filtration system, oil pump, fuel injection pump (or high pressure common rail oil supply) system.
  • the two fuels simultaneously enter the respective volume chambers (1501, 1502 or 2101, 2102) of the aforementioned injectors respectively (the volume of the volume chamber is made to have a relative size according to the ratio between the preset first and second fuels, If the volume of the first fuel is 40% and the proportion of the second fuel is 60% for each spray, the volume ratio between the volume chamber 1501 or 2101 and the volume chamber 1502 or 2102 can be previously 4: 6 manufacturing, and vice versa). Under the joint action of the fuel injection pump and the aforementioned injector, the first and second fuels can be sprayed into the cylinder of the internal combustion engine for combustion at the same time or in a controlled manner.
  • the first type of pure diesel fuel acts as a compression ignition and a part of the work
  • the second type of low calorific value or low cetane number of fuel is used under the same conditions of the engine work. Reduce the use of pure diesel to achieve the purpose of replacing pure diesel.
  • the second fuel may be gasoline, water, a mixed fuel containing lignin, an aqueous lignin solution, ethanol, methanol, dimethyl ether, heavy oil or emulsified heavy oil.
  • the pressure of the pure fuel oil is greater or slightly greater than the pressure of the alternative fuel so that the pure fuel can diffuse to more contact surfaces and avoid the second fuel outward. Penetration and diffusion.
  • the first fuel is selected as pure gasoline
  • the second fuel is lignin aqueous solution, ethanol, methanol, dimethyl ether, water, etc. (because aqueous fuel can be used, therefore, There is no strict dewatering requirement for fuel, which reduces the production cost of various fuels).
  • the first fuel is a flammable gaseous fuel or gasoline, kerosene, diesel
  • the second fuel is an aqueous solution of lignin, water, ethanol, methanol, dimethyl ether, heavy oil or emulsified heavy oil.
  • the structure of the injector can achieve uniform mixing of water and diesel (or gasoline) in the cylinder, thereby avoiding the use of surfactants to previously emulsifie diesel and water to obtain so-called The same purpose of emulsified diesel, such as promoting diesel combustion work and reducing pollutant emissions.
  • the engine can switch the second fuel to pure water when idling, saving fuel on the one hand and cleaning the conveying passage of the second fuel on the other hand.
  • Example 19 This embodiment is an improvement on the structure of the injector described above, so that the installation direction of the injector on the cylinder remains unchanged from the conventional injector mounting structure.
  • the illustration of the injector cap and the injector cap of the conventional structure is omitted.
  • 23 and 24 are schematic views showing the structure of the injector needle body and the needle valve.
  • the needle valve (sleeve) body 2301 of the fuel injector of Fig. 23 there is a coupling needle 2401 in the inner hole 2304, and an upper rod 2402 which is in contact with the pressure regulating spring inside the injector.
  • the illustrated needle valve body 2301 is provided with four symmetric injection holes 2302 which are radially sprayed.
  • the high pressure fuel from the high pressure oil pump passes through the injector internal passage (not shown) through the inlet 2303 into the bottom of the inner bore 2304 of the injector needle body 2301, the high pressure fuel passes through the shaft on the needle valve 2401.
  • the inner bore that is, the oil passage 2403, passes through the lateral inner bore 2404 and enters the annular groove on the needle valve, that is, the oil outlet groove 2405.
  • the needle valve 2401 is moved up; and when the annular groove 2405 intersects the fuel injection hole 2302, the high pressure fuel is sprayed into the cylinder, and then the fuel pressure is applied. Lower, needle valve 2401 moves down to the next injection cycle.
  • the fuel injection hole 2302 can also be flared to change the spray cone angle of the fuel for better atomization.
  • the radial distribution of the injection holes 2302 may be asymmetric non-uniform, and the number may also be 2 or 3 or 4 or more as shown. .
  • FIG. 27 and FIG. 28 are respectively schematic diagrams showing the structure of an injector needle valve body and a needle valve of a dual-volume chamber according to an embodiment. Different or improved from embodiment 19, the injector can simultaneously inject two different properties of fuel.
  • the inner hole 2704 of the needle valve body 2701 is divided into two volume chambers 27041 and 27044 by a sealing action between the partition 2807 of the needle valve body 2701 and the inner wall of the needle valve body 2701, and the groove in the needle valve body 2701.
  • the tight fit between the 2706 and the contact surface of the spacer 2807 on the needle valve 2801 serves to provide a moving space and seal for the needle valve 2801.
  • the high-pressure fuel from different high-pressure oil pumps enters the volume chambers 27041 and 27042 through the inlets 2703 and 27031, respectively, and operates in the same manner as in the embodiment 19, that is, when the annular grooves 2805 and 28051 are respectively associated with the injection holes 2702 and 27021.
  • High-pressure fuel at the time of rendezvous By means of through holes 2803, 28031 to outlets 2804 and 28041, two different (and possibly the same) high pressure fuels can be sprayed into the cylinder.
  • the partition 2807 which may be a cross-sectional shape of any shape, such as a cylindrical shape, an elliptical cylindrical shape
  • the contact surface of the inner groove 2706 is ensured, as shown in Fig. 29, an elastic gasket is added around the periphery thereof. 2808, or an elastic tab is placed between the elastic pad and the bottom plate, or a through hole 2809 is formed in the partition 2807, and a spring is arranged in the through hole 2809, so that the elastic sealing gasket corresponds to the needle body groove 2706
  • the inner wall of the coupling remains in intimate contact.
  • the above solutions provide a solution for the injector portion, which can also be used in various fuel supply systems or fuel injection systems that control the control of the oil quantity solenoid valve.
  • the above various solutions can be used in various combinations, or two injectors of the same structure described above can be simultaneously applied to one cylinder to achieve the best effect in actual use.
  • the specific dimensional parameters are designed and adjusted according to the spray characteristics of the injector including atomization particle size, oil mist distribution, oil beam direction, range and diffusion cone angle, so that these characteristics meet the requirements of the diesel or gasoline engine combustion system.
  • the blended fuel can be burned to perfection and achieve high power and thermal efficiency.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Any one of ordinary skill in the art can use the present invention without departing from the technical features of the present invention. Equivalent embodiments of the present invention may be made without departing from the technical features of the present invention.
  • the terms “including”, “comprising”, etc. are used in the description or the claims to mean the “including” means to the contrary. " The way.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

含木质素的混合燃料及其生产方法以及能使用该混合燃料的喷油器
技术领域 本发明涉及一种含有来自制浆废水或废液中的木质素胶体或颗粒的混合燃料及其生产 方法; 本发明还涉及一种能利用上述混合燃料的油箱和喷油器, 尤其是一种不容易受到油 品中非液体杂质或非液体的替代燃料, 如木质素等的堵塞的喷油器结构和喷油方法。
背景技术 世界经历了数次石油危机, 可替代石化燃料的替代燃料无疑一直是全世界各国能源化 工行业内的热门课题, 由于其涉及政治、 经济的双重重要性, 各种潜在可代用的燃料都得 到了关注和深入的研究和开发。 可以认为, 所有显而易见能够使替代燃料 (包括木质素燃 料) 成为可实际利用的石油替代燃料的技术方案或技术突破或技术效果均已经被提出来 了, 没有提出的则应属于非显而易见的技术。 对于生物质能源的利用, 包括生物质中组分 之一的木质素能源的利用, 其关键不是技术问题, 而是生物质能的生产和利用的高成本问 题, 正是因为高成本, 阻碍了木质素作为能源、 尤其是作为清洁和高级能源的实际工业化 利用。 因此, 解决生物质能生产应用的成本问题, 是其能否替代石化能源的问题根本。 为 解决高成本问题, 本发明的目的是提供一种解决制浆 (包括溶剂法制浆) 废水废液中有机 污染物处理方法, 使纸浆废水、 废液经过低成本的处理即可实现资源化和工业化的利用。 木质素是传统纸浆, 也包括溶剂法制浆生产过程中主要的有机物废料, 因其具有很高的能 量密度 (其体积能量密度与汽油、 柴油相当), 自然具有开发成为内燃机燃料的吸引力。
1980年美国 Alabama大学的 Djordjevic, M.S.和 Douglas, G.W.提出了木质素粉末作为替代柴 油燃料需要解决的问题是木质素与柴油混合物的稳定化, 而 US7261063 (B1) 2007-08-28 HOLLAND JOHN J则提出了对上述问题的解决方案, 即通过机械搅拌方式保持燃料的混 合均匀和输送。 然而, 在先技术只是提出了干的木质素颗粒可以添加入液体燃料中而没有 涉及或没有注意到未经特别处理的木质素颗粒或由于燃料油中的化学成分对木质素的化 学作用增加了微细木质素颗粒表面的活性, 使微细木质素颗粒容易互相縮合长大, 或由于 容易吸收空气中的或含在燃油中的微量水分而容易互相粘连粘接长大, 短时间内即可造成 发动机油路的堵塞并迫使发动机运行不稳以至停机的问题, 长时间则有可能发生混合燃料 中的木质素颗粒之间的板结问题。 在先专利申请文献中提出了限制碳水化合物重量含量小 于 4%的建议, 以克服碳水化合物颗粒的聚集或板结对发动机油路的影响, 可见为了增加 石油燃料的替代量和解决发动机管路内燃料可靠稳定输送问题, 颗粒燃料的进一步物化处 理是一个需要和有待解决的问题。 2007 年 2 月 7 日 ROWELL DEAN W ( WO 2008098040 (Al), US2008184709 (A1))提供了利用糖化发酵生物质原料所产生的木质 素剩余物颗粒与空气和天然气或乙醇、 丙烷或液化天然气混合后应用于燃气轮机的技术, 由于不同条件下得到的木质素具有不同的特性或性质, 该专利文献并不能也没有表明涵盖 其它各种条件下得到的木质素颗粒。在 TEO KHAY CHUAN和 WATKINSON ALAN PAUL 提交的美国专利 US5478366 中, 提到了将来自造纸厂废水中排放的碱性木质素或从市场 上采购的木质素 (碱性) 与各种燃料油及水分, 在各种表面活性剂的作用下, 相互乳化混 合后制造可以容易进行泵送的混合燃料的方法。 但由于木质素处于碱性或偏碱性的状态, 粘性大, 因此, 难以获得低含水量的混合燃料。 而本发明为了解决此问题以及进一步提高 混合燃料的性能, 对该在先技术方案也进行了改进。 木质素作为一个有重要吸引力的石油替代燃料, 传统的方法和已经开展的大量的工作 主要集中在如何将其加水与燃料油乳化或液化后作为液体燃料来使用, 包括通过化学反应 使其转化为燃料或者将其溶于水再与燃料油乳化混合后来使用, 在先技术的主要问题是增 加了木质素变为可使用的内燃机燃料的生产成本, 或者增加了应用过程中的不方便。 而将 木质素以颗粒的方式作为石油燃料的替代燃料, 从理论研究、 实验室研究到实际工业领域 的使用都还是一个新的领域, 需要大量的开创性的工作, 比如改变传统的液化的思路, 对 木质素微细颗粒的物理化学性质进行改性就是一个新的领域, 本发明的方法是在这一新领 域的进一步的改进工作, 是对在先专利申请 (申请号 PCT/CN2009/074673 ) 的继续改进, 是将制浆造纸领域 (尤其是烧碱法、 硫酸盐法和溶剂法制浆领域)的废液排放治理与内燃机 替代能源方案的有效结合, 是目前最简单和经济的解决纸浆废液污染问题的技术方案, 也 是最简单的将木质素应用于内燃机中的使用方法。 为了改善喷雾雾化性能和特性, 且可以在使用过程中进行调整, 美国专利 6422199提 出了喷油器内设双针阀的技术, 但其缺点是要求对针阀分别进行精确控制。 而美国专利 7284506 则提出了利用在汽缸内布置双油嘴的方法, 解决低十六烷值燃料在压燃式发动机 气缸内的可利用问题, 双油嘴中的两个油嘴按照两种燃料可自动点燃的混合量的要求分别 喷入高十六烷值的燃料和低十六烷值的燃料, 其缺点是需要占用气缸盖上有限的空间。 另 外在先技术的喷油器结构仍然采用轴针喷雾方式, 因此喷油器或喷油嘴正常工作时对燃料 的质量 (如纯净度、 含水量等) 要求仍然较高, 不适合于普通燃料, 包括含粉末的燃料, 在内燃机中的广泛使用。
发明内容 为解决上述问题, 本发明的目的在于提供一种解决制浆废水废液中有机污染物处理方 法, 使纸浆废水、 废液经过低成本的处理即可实现能源化和资源化的利用。 尤其是, 利用 将木质素进行酸化处理, 达到增加木质素的疏水性, 以及混合在液体燃料中的稳定性, 降 低含木质素的混合燃料的粘黏性的目的, 以便于混合燃料在发动机或燃料输送管路中的稳 定输送。 本发明的目的还在于由制浆废液中的可燃有机物, 尤其是酸化后的木质素 (包括制浆 废液中的其它有机物), 或 /及部分无机物、少量酸或 /及水分或 /及表面活性剂与液体燃料混 合而成的用于内燃机 (包括以燃料油为燃料的燃气轮机) 的混合燃烧方法, 达到在动力燃 料和炉窑燃料领域起到利用一般混合燃料替代现有的液体或颗粒燃料的目的, 具有节能环 保, 解决纸浆厂废液排放污染等特点。 本发明的目的还在于提供上述燃料的生产方法。 本发明的目的还在于提供一种能够使用不同的第一种和第二种燃料在气缸内或内燃 机燃烧室内混合燃烧的喷油器。 达到最优化地利用木质素或纸浆黒液中的有机物作为内燃 机的燃料的目的, 也为了减少或避免木质素等固体颗粒燃料或燃料内的杂质在发动机喷油 器系统内 (包括各型柴油机、 直喷点火式汽油发动机、 燃气轮机), 尤其在靠近气缸一侧 的针阀表面受热后固体颗粒的沉积而造成针阀运动不畅或密封不严使燃料雾化不良的问 题, 本技术方案提出了多孔或单孔带针阀结构的开式喷油嘴结构的喷射方法, 储油腔即储 油容积室或蓄油增压腔与喷嘴位置互相分离, 无论是否处在喷油状态, 针阀与针阀套在喷 油嘴即喷油孔位置附近始终保持偶合紧密接触状态, 也即是, 通过利用喷油器针阀套体内 的针阀相对于喷油嘴的平移运动实现燃料的定时定量的喷雾动作, 避免了传统的通过利用 针阀相对于喷油嘴的升降运动实现燃料的喷雾动作时容易在针阀的落座处形成燃料或燃 料中的颗粒物的沉积而使针阀密封逐渐变的不严的问题, 即避免了传统的喷油嘴针阀通过 落座在针阀套上实现密封的结构容易受到颗粒燃料或杂质的影响, 解决了针阀与针阀套在 落座处不能严密密封的问题, 尤其是通过往复推动针阀运动方式可以避免针阀与针阀套之 间容易被固体颗粒堵塞或卡死的问题。 另外, 通过利用多孔或单孔双容积室喷油器 (嘴), 该喷油器的针阀上开有两个独立的通油孔或通油槽以及与通油孔相通的出油孔或出油环 槽带及被密封隔离的双容积室分别向内燃机气缸内输送和喷雾各自的燃料, 使各种燃料被 方便可靠地独立地依序输送入内燃机气缸内, 在被喷雾后进行混合燃烧, 同时也能提供更 好的喷雾空间分布效果。 通过采用本发明的技术方案, 提供了一种经济有效地利用高能量密度、 可再生的木质 素以及制浆废液中的其它有机物替代石化燃料用于驱动内燃机等以提供动力的方法, 达到 了用可再生的木质素生物质资源替代石化燃料用于驱动内燃机的目的。 为达到上述目的, 本发明首先提供了一种用于内燃机的含酸性木质素的混合燃料, 该 混合燃料是含有由液体燃料与制浆废液中的有机物, 尤其是木质素胶体或微细颗粒, 或及 部分无机物、 少量酸形成的混合物, 所述液体燃料包括乙醇、 汽油、 煤油、 柴油、 可用于 内燃机的重油、 乳化重油等中的一种或两种以上的混合物。 所述酸性木质素是利用无机酸对各种方法制得的木质素进行酸化处理后得到的木质 素, 在本发明中称为酸性木质素, 对酸性木质素进行高温加热縮合稳定处理, 尤其是混合 在液体燃料中在搅拌或研磨状态下的加热处理, 得到的经过縮合稳定处理的木质素颗粒, 在本发明中称为縮合稳定的酸性木质素, 也即, 在本发明中的木质素颗粒意指为经过縮合 稳定处理后得到的颗粒。 所述縮合稳定的木质素颗粒还包括高温处理或及酸化处理制浆废 液中的其它各种有机物成分, 如木质素碳水化合物的复合体、 果胶、 淀粉、 生物碱、 半纤 维素、 纤维素、 糖类、 有机物的盐 (主要为钠盐)、 有机酸、 树脂等。 由于混合燃料中各种组分的比重不同,容易在油箱中发生分层现象,为了解决此问题, 本发明还提供了一种使用上述混合燃料的发动机, 以达到使混合燃料中各种组分能够被均 匀地输送入发动机气缸内雾化燃烧的目的, 该发动机包括一个体积随油量消耗而自动减小 的油箱, 或包括一个设有均匀输出混合燃料的出油装置, 该装置为多个分布在油箱不同高 度的输油系统进油口, 且每一个进油口配设有一个输油泵抽吸装置, 以便使混合燃料中因 比重不同而分层的含有不同含量固体粉末的部分均能被输送入发动机的输油泵或喷油泵, 或者该发动机进一步配设有一个盛装有纯的柴油或汽油的油箱, 如常规的油箱有一个进油 口和一个出油口, 发动机运行过程中, 混合燃料和纯液体燃料通过一个三通电磁阀的控制 定时交替向发动机的输油泵或喷油泵提供燃料。 该发动机不仅适用于本发明提供的混合燃 料, 而且也适用于现有的各种液体燃料, 例如汽油、 柴油、 乙醇等。 本发明还提供了一种含有来自制浆废液中的縮合稳定的固体颗粒和液体燃料的混合 燃料的生产方法。 在本发明提供的上述混合燃料生产方法中, 更优选地, 上述加热脱水处理的容器内壁 采用聚四氟乙烯层涂覆, 以避免酸性木质素在縮合稳定之前与普通材料 (如玻璃或金属材 料) 的器壁粘接。 为了实现上述发明目的, 本发明第一方面, 提供了一种含木质素的混合燃料, 且所述 混合燃料中含有酸化处理后的制浆废水或废液中的酸性木质素胶体或颗粒, 余量为燃料 油。 较佳的, 所述酸性木质素胶体或颗粒含水重量 50-90%; 进一步优选为含水重量为 1-15%。 较佳的, 所述酸性木质素胶体或颗粒中的水分为 pH值酸性。 较佳的, 所述该混合燃料中, 还添加有酸和 /或盐; 进一步优选的, 所述酸为硝酸, 所 述盐为硝酸钠。 较佳的, 所述混合燃料中的燃料油为乙醇、 汽油、 柴油、 煤油、 重油、 润滑油或润滑 剂。 较佳的, 所述混合燃料中, 还添加有表面活性剂和 /或抗氧化剂; 优选的, 所述表面活 性剂的添加量范围为 0-2000ppm, 表面活性剂的种类可以如美国专利 US6, 858,046中所描 述的各种表面活性剂; 所述抗氧化剂的添加量范围是 50-1000ppm, 可以选择的抗氧化剂选 自: 蒽醌类抗氧化剂, 食品油脂中添加的抗氧化剂, BHA (丁基羟基茴香醚)、 BHT (二 丁基羟基甲苯)、 PG (没食子酸丙酯) 或 TBHQ (特丁基对苯二酚) 等抗氧化剂。 本发明第二方面, 公开了所述的含木质素胶体或颗粒的混合燃料的生产方法, 其包括 以下步骤: 步骤 A、 调节制浆废液或酸水解或酶解生物质排放的含碱性或酸性或中性木质素的黒 液或混合物的 pH值至碱性使木质素完全溶解于水溶液中; 步骤 B、 在上述步骤的水溶液中加入脱除硅酸根离子的化学物质, 过滤除去硅酸盐沉 淀, 得到含无机物杂质更少的混合物; 步骤 C、 在上述步骤的混合物溶液中加入硫酸或盐酸或硝酸或碳酸 (即二氧化碳气) 或磷酸或有机酸至 pH值小于 7大于 6,静置后过滤去掉沉淀物,得到进一步减少了无机物 杂质的接近中性的混合物; 步骤 D、 蒸馏上述步骤所得的混合物溶液, 使水分尽可能的降低, 但保持混合物的流 动性; 步骤 E、 在步骤 A、 B、 C或 D之后, 加入液体燃料, 进行充分搅拌乳化混合, 得到 混合物; 步骤 F、 在步骤 E得到的混合物中添加表面活性剂, 进行充分搅拌乳化混合, 得到混 合物; 步骤 G、 静置步骤 E或 F得到的混合物, 抽取悬浮于溶液上部的含酸性木质素、 燃料 油及由酸性木质素和 /或由燃料油携带的其它有机物、 酸、 盐等物质, 得到混合物; 其中步骤 A对碱法制浆废液的处理是一可以任意选择的步骤,步骤 B对于不含硅酸根 离子的水溶液是可以任意选择的步骤, 步骤 D、 E、 F、 G是可以任意选用的步骤; 且步骤 B、 C、 D、 E、 F中得到的混合物可直接作为混合燃料来使用。 较佳的, 所述混合物中还加入金属离子螯合剂, 最优选的, 以所述混合物的重量计, 加入的金属离子螯合剂的重量百分比为 1%。 优选的, 步骤 D中, 所述含水量可以减低到 50%或更低, 以可保持混合物的流动性为 目的。 优选的, 所述生产方法在步骤 C之后还增加如下步骤: 步骤 H、 在步骤 C得到的混合物中滴加氢氧化钙溶液以沉淀硫酸根、 碳酸根或磷酸根 或硅酸根离子, 或用离子膜法或电渗析的方法脱除硫酸盐、 硝酸盐、 碳酸盐、 盐酸盐、 磷 酸盐或硅酸盐, 得到混合物; 步骤 I、 在步骤 H中制得的混合物中通入二氧化碳气体或滴入碳酸水, 沉淀多余的钙 离子, 脱除沉淀物, 得到混合物; 步骤 J、在步骤 H、步骤 I的混合物中滴加硝酸溶液使混合物恢复为酸性状态; 最好使 得混合物的 pH值小于 4。 进一步优选的, 所述生产方法中, 步骤 K取代步骤 H和 I, 且所述步骤 K的步骤为: 在步骤 C得到的混合物中滴加硝酸钙或硝酸钡溶液以沉淀硫酸根、 碳酸根或磷酸根离子, 得到含硝酸盐的酸性状态的混合物。 本发明还公开了一种含木质素胶体或颗粒的混合燃料的生产方法, 该生产方法将上述 步骤 B、 C、 D、 E、 F、 G、 H、 I、 J或步骤 K得到的混合物用喷头喷雾方式喷向热的燃料 油表面或喷入其内部, 其中, 在从上向下往燃料油喷雾的同时, 将沉向容器底部的酸性木 质素混合物连同部分燃料油从容器的底部或下部, 用耐热油泵抽出后再向燃料油表面或内 部进行循环高压喷雾雾化操作。 较佳的, 所述生产方法中, 将縮合稳定的酸性木质素与酸、 盐分的混合物在燃料油中 进行高温老化处理。 较佳的, 所述用于加热脱水处理的容器内壁采用聚四氟乙烯层涂覆。 较佳的, 所述含木质素胶体或颗粒的混合燃料的生产方法包括以下步骤: 步骤 L、 直接利用溶剂法制浆废液, 或直接利用有机溶剂溶解干燥脱水后的木质素, 或直接利用有机溶剂溶解含有木质素的生物质原料, 或将上述的生产方法中的步骤8、 C、 D、 E、 F、 G、 H、 I、 J或步骤 K得到的酸性木质素溶于有机溶剂, 或将步骤8、 C、 D、 E、 F、 G、 H、 I、 J或步骤 K得到的酸性木质素与少量燃料油、 少量表面活性剂以及少量有机 溶剂乳化混合, 得到含酸性木质素的有机溶剂或胶体状混合燃料; 步骤 M、 将步骤 L得到的含木质素的有机溶剂或混合物喷雾进入燃料油中, 稀释或 挥发有机溶剂, 得到分散于燃料油中细小的木质素颗粒; 步骤 N、 过滤步骤 M中的燃料油, 得到细小的木质素颗粒; 其中, 步骤 N为任意可选的步骤。 优选的,所述步骤 L中所述的有机溶剂中含有水分, 且所述的水分为添加了酸性物质 至 pH值偏酸性。 优选的, 所述步骤 M中所述的燃料油的温度为大于溶解木质素的有机溶剂的沸点温 度或水的沸点温度, 以最大者为准。 进一步优选的, 本发明的含木质素颗粒的混合燃料的生产方法, 包括以下步骤: 步骤 A、 调节制浆废液或酸水解或酶解生物质排放的含碱性或酸性或中性木质素的黒 液或混合物的 pH值至碱性使木质素完全溶解于水溶液中;
步骤 B、 在上述步骤的水溶液中加入脱除硅酸根离子的化学物质, 过滤除去硅酸盐沉 淀, 得到含无机物杂质更少的混合物;
步骤 C、 在上述步骤的混合物溶液中加入硫酸或盐酸或硝酸或碳酸或磷酸至 pH值小 于 4, 过滤出或取出含木质素的混合物;
步骤 D、 在步骤 C中制得的含木质素的混合物中添加无机盐颗粒、 无机盐粉末或无机 盐的饱和水溶液, 形成混合物;
步骤 E、 将上述步骤 C或 D的混合物经自然风干或在低温下烘干或在低温热风下缓 慢脱水或在较高温度但保持一定湿度的热风或环境条件下缓慢脱水, 得到自然破碎了的或 容易破碎的混合物粉末或混合物;
步骤 F、 将上述步骤 E的混合物粉末或混合物进一步地进行搅拌、 剪切破碎, 得到细 化了的混合物粉末;
步骤 G、 将上述步骤 F的混合物粉末进行烘干干燥处理进一步降低水分, 得到含水分 低的混合物粉末;
步骤 H、 将上述步骤 G的含水分低的混合物粉末进行旋风分离, 得到减少了盐分的主 要含木质素的混合物粉末。
步骤 I、 将上述步骤 H得到的混合物粉末用清水或酸性水溶液冲洗, 得到减少了盐分 的混合物;
步骤 J、 将上述步骤 I的混合物进行烘干脱水处理, 得到含水分低的混合物; 步骤 K、将上述步骤 J得到的混合物进一步地进行搅拌、 剪切破碎, 得到细化了的主要 含木质素的混合物粉末;
其中步骤 A对碱法制浆废液的处理是一可以任意选择的步骤,步骤 B对于不含硅酸根 离子的水溶液是可以任意选择的步骤, 步骤 F和步骤 G顺序可以互换, 步骤 D、 F、 G、 H、
I、 J、 K是可以任意选用的步骤。 进一步优选的, 步骤 D中所述的无机盐选自盐酸、 硝酸、 硫酸或磷酸的钠盐或铵盐; 步骤 E中所述的低温或低温热风温度小于 60°C, 最好为 30°C ; 在保持一定湿度的条件下, 步骤 E中所述的较高温度小于 10CTC, 大于 40°C。 本发明第三方面, 还公开了一种用于上述混合燃料的发动机, 其特征在于, 其输送管 路间隙性地由第二种含可溶解木质素的化合物的燃料进行管路清理。 较佳的, 所述的可溶解木质素的化合物为甘油、 乙醇、 甲醇、 碱性的胺类化合物, 如 一乙醇胺、 或二乙醇胺或三乙醇胺、 氨或它们的混合物。 本发明第四方面, 还公开了一种用于上述混合燃料的发动机油箱, 且特征在于, 所述 发动机油箱具有一个均匀输出混合燃料的出油装置, 且所述出油装置可以使油箱的容积随 着燃油的减少而减小。 较佳的, 所述出油装置包括多个分布在油箱不同高度带有抽吸泵的输油系统进油口。 本发明第五方面, 公开了一种用于所述混合燃料的发动机喷油器, 其特征在于, 所 述喷油器的针阀上开有与储油容积室相通的通油孔或通油槽, 以及与所述通油孔或通油槽 相通的出油孔或出油环槽带, 且当所述针阀上的所述出油孔或出油环槽带与配合于所述针 阀的针阀套上的喷油孔重叠时, 喷雾动作发生。 较佳的, 所述针阀套偶合有油量控制套, 其在针阀体上的左右移动或转动控制供油 量的开始和 /或停止的时刻。 优选的, 所述喷油器的针阀上开有两个独立的通油孔或通油槽, 以及与所述通油孔 或通油槽相通的出油孔或出油环槽带, 及被密封隔离的双容积室, 当所述针阀上的所述出 油孔或出油环槽带与配合于所述针阀的针阀套上各自对应的喷油孔重叠时, 所述双容积室 分别向内燃机气缸内输送和喷雾各自的燃料。 通过采用本发明的技术方案解决以下几个主要问题: 第 1、 提供了一种具有良好稳定性和流动性的含縮合稳定的酸性木质素、 以及制浆废 液中的其它有机物、 酸及盐分的混合燃料替代石化燃料用于驱动内燃机等以提供动力或热 能。 第 2、解决酸性木质素颗粒及所述固体颗粒生产过程中需要使用较低经济成本的硫酸、 盐酸或磷酸但这些酸或酸根不利于混合燃料在发动机气缸内燃烧做功的问题。 第 3、 以经济可靠的方法实现混合燃料的生产, 尤其是同时解决混合燃料生产过程中 (如酸洗后直接与燃料油混合)所引进的水分的脱除问题和解决固体颗粒细化以及縮合稳 定化问题。 第 4、 利用合适的油箱结构以简洁的方法使非均质混合燃料中比重不同的各组分或分 层的各组分能够均匀地从油箱中输送入输油管路内, 以及发动机输油方法和多孔或单孔开 式喷油嘴喷射方法, 避免发动机传统的喷油嘴针阀结构容易受到颗粒燃料或杂质的影响问 题, 尤其能使该混合燃料能够被方便可靠地输送入内燃机气缸内喷射燃烧, 同时提供更好 的油嘴喷雾效果。
附图说明 图 1 为实施例 7提供的循环喷雾脱水装置示意图; 图 2为实施例 12提供的喷油器针阀结构示意图; 图 3为实施例 13油箱均匀输出混合燃料的出油装置的结构示意图; 图 4为实施例 14提供的喷油器的结构示意图; 图 5 为实施例 14提供的喷油器的另一结构示意图; 图 6为实施例 14提供的喷油器的另一结构示意图; 图 7为实施例 14提供的喷油器的另一结构示意图; 图 8为实施例 15提供的喷油器的结构示意图; 图 9为实施 15提供的喷油器的另一结构示意图; 图 10为实施例 15提供的喷油器的另一结构示意图; 图 11为实施例 15提供的喷油器的另一结构示意图; 图 12为实施例 16提供的喷油器的结构示意图; 图 13为实施例 16提供的喷油器的另一结构示意图; 图 14为实施例 16提供的喷油器的另一结构示意图; 图 15 为实施例 17提供的双容积室的喷油器结构主视图; 图 16为图 15提供的双容积室的喷油器结构侧视图; 图 17为实施例 17提供的双容积室带有两个通油孔的喷油器结构主视图; 图 18为图 17提供的双容积室的喷油器结构侧视图; 图 19为实施例 17提供的双容积室带有环形油槽的喷油器结构主视图; 图 20为图 18提供的双容积室的喷油器结构侧视图; 图 21为实施例 17提供的双容积室带有压电元件的喷油器结构主视图; 图 22为图 20提供的双容积室的喷油器结构侧视图; 图 23上图为实施例 19提供的喷油器针阀体和针阀的组合示意主视图。 下图是针阀体 A-A向的示意图。 图 24 左图为实施例 19提供的针阀的主视图, 右图为针阀的侧视图。 图 25 为实施例 19提供的喷油器针阀体和针阀的组合示意主视图。 图 26 为图 25中针阀示图, 左图为针阀的主视图, 右图为针阀的侧视图。 图 27上图为实施例 20提供的喷油器针阀体和针阀的组合示意主视图。 下图是针阀体 B-B向的示意图。 图 28 左图为实施例 20提供的针阀的主视图, 右图为针阀的侧视图。 图 29 左图为实施例 20提供的针阀的主视图, 右图为针阀的侧视图。
具体实施方式 实施例 1 : 在常温常压下, 以碱性木质素为例, 将 150克碱性木质素溶于 500毫升水中, 得到木 质素水溶液; 或者将酸水解或酶解生物质中纤维素后得到的主要含木质素的残余物溶于含 烧碱重量 5-10%的水溶液中; 或者将溶剂法制浆生产过程中得到的蒸馏脱除有机溶剂后的 含木质素和其它有机物的残余物溶于含烧碱重量 5-10%的水溶液中; 或者直接取自烧碱法 纸浆厂溶解有木质素等物质的纸浆废水溶液; 在所得的溶液中滴定方式加入脱除硅酸根离 子的化学药剂, 如饱和烧碱溶液中的溶于氢氧化铝水溶液或氯化铁溶液, 直至无沉淀物出 现为止。 由于碱性的木质素粘黏性强, 不便于在发动机或燃料输送管路中的稳定输送, 因 此, 为解决此一问题, 需要进行酸化处理, 增加木质素的疏水性, 降低混合物的粘黏性。 故再在过滤了硅酸铝沉淀后的溶液中加入浓度为 10^%的无机酸 (如盐酸、 硫酸、 磷酸或 硝酸, 或通入二氧化碳得到的碳酸) 或有机酸 (如甲酸、 乙酸等) 至 pH值小于 7大于 6 时,此时木质素尚未形成沉淀,静置一天后用 400目网筛过滤掉金属离子所形成的盐沉淀, 得到含杂质更少的接近 pH值偏酸性的含木质素及其它有机物 10%重量 (含水 90%) 的混 合溶液。 蒸发该溶液使水分含量尽可能的减少, 但仍然使该混合物或混合溶液具有良好的 流动性,一般含水量可以减低到 60%, 即得到可流动的胶体态的液体作为替代重油、柴油、 汽油、 煤油等用于内燃机、 发动机或锅炉的混合燃料 (以下简称 "混合燃料)。 为了屏蔽 胶体中的电解质使胶体保持稳定, 加入少量 (如 1%混合物重量) 的金属离子螯合剂, 如 乙酸、 丙烯酸等。 或者直接取自溶剂法制浆生产过程中得到的含有机溶剂 (如乙醇、 甲醇、 甲酸等)、 木 质素和其它有机物的混合物酸化至 pH值小于 Ί后作为混合燃料。 将所得的含木质素的燃料通过实施例 17 所提供的喷雾方法与纯燃料油在内燃机气缸 内混合燃烧, 实现替代纯燃料油的目的, 是最优的技术方案; 或者, 不是最优的方法, 可 以利用两个独立的喷油器分别将纯汽油、 煤油或柴油燃料和含木质素的燃料喷雾进入内燃 机气缸内混合燃烧。
实施例 2: 在实施例 1中, 增加无机酸或有机酸的加入量, 使溶液的 pH值小于 4, 最好小于 3, 得到含水分、 酸性木质素、 其它废水中所含的有机物、 相应的盐和剩余酸的混合物, 当木 质素以及部分有机物以云雾胶状沉淀完全沉淀后, 将容器内混合溶液取出, 此时最底层如 有少量的渣滓则被除去, 再用 400目尼龙布筛粗过滤掉部分水分、 部分酸和部分盐分, 得 到含水量大约为 60-90%的含水状态的酸性木质素及其它有机物、 无机物的胶体浆状混合 物。 蒸发该溶液使水分含量尽可能的减少, 但仍然使该溶液具有良好的流动性, 一般含水 量可以减低到 50%以下, 即得到可流动的胶体态的混合物作为混合燃料。
实施例 3 : 在实施例 2所得到的替代燃料中加入燃料油 (占木质素重量的 1-80%), 并进行充分的 机械搅拌, 得到含酸化木质素、 其它有机物、 酸、 盐分与油和水分形成的胶体态混合物作 为混合燃料。 为了使该胶体态的混合物保持长时间的稳定, 乳化混合时进一步地加入通常 的表面活性剂 50-1000ppm。
实施例 4: 将实施例 2得到的混合物经自然风干干燥 1-至三个月 (根据气候条件确定), 得到含 水量为 15% (重量含量) 的主要为酸化后的木质素的混合物 (在干燥箱中 120°C加热 3小 时后, 通过测量挥发掉的水分量, 计算出含水量为 15%), 该混合物外观棕色, 由于在缓 慢的干燥脱水过程即水分减少的过程中, 混合物中的盐分逐步结晶成为细小的白色盐晶 体, 并分散在混合物的体积中, 由此将脱水中的木质素在空间上进行分割分散, 使木质素 最终自然分散成为细小的颗粒 (如可过 40 目筛) 或变得容易被破碎成为更细的粉末, 直 接或经干燥减少水分后用于炉窑的喷雾燃烧。 利用此一特性, 可以低能耗低成本地将此混 合物经过简单的搅拌、 或剪切破碎或进一步地经烘干干燥 (粉末状态更易干燥脱水) 成为 含水量低的主要是含木质素的混合燃料粉末。 在实际使用时, 为了尽可能多的利用资源丰富廉价的木质素, 尽可能少的利用柴油或 不利用柴油等液体燃料和尽可能少的含水量, 前述颗粒或粉末可以在不添加其它燃料 (即 添加的柴油或热体燃料重量含量为 0%) 的情况下直接替代石油焦粉、 煤粉等燃料用于炉 窑中燃烧。 为了提高此混合物燃料的能量密度, 将上述粉末在 80-105 °C慢速或在 105-120°C条件 下快速进行烘干干燥处理, 使含水量降低到含水重量 1-10%, 干燥后可以经过搅拌或剪切 进行破碎使粉末颗粒进一步的细化。 考虑到燃烧后的排放问题, 在实施例 2中酸化时最好 选用硝酸 (因为硝酸盐可以助燃)。 为了减少混合物燃料中的盐分, 利用盐晶体颗粒与木 质素颗粒的密度和在气流中流动性的差别, 将上述干燥后的混合物粉末即主要是木质素的 粉末进行旋风分离; 还可进一步地, 分离后的木质素颗粒再用清水或酸性的水溶液 (考虑 燃烧后的尾气排放, 避免氯和硫的污染, 最好用稀硝酸水溶液以减少木质素的吸水和再溶 解)进行快速冲洗, 以减少木质素粉末中的盐分, 此时木质素颗粒之间有松散的粘接现象, 可以直接将所获得的有所粘连的木质素或经挤压过滤初步脱水后再在热气流中喷洒或喷 射干燥或快速热风烘干干燥, 再次脱除因清洗盐分带入的水分, 经烘干干燥后的主要含木 质素的混合物颗粒或松散的块状体可以很容易地再被剪切或搅拌破碎成为细小的颗粒或 粉末。 为了縮短自然风化的时间, 利用低温长时间 (即低能耗低成本) 烘干或热风风干酸化 后的木质素混合物, 使混合物中的水分缓慢挥发脱除, 盐分有足够的时间形成晶核并结晶 长大, 使木质素可以自然破碎或容易地被破碎。 如在低温如 60°C以下, 最好在 30°C温度 进行热风烘干干燥, (干燥时间根据最终混合物产品使用时含水量来确定), 以获得自然破 碎了的或容易破碎的混合物粉末或混合物; 为了进一步细化混合物粉末, 利用搅拌或剪切 的方法将前述混合物粉末或混合物进行破碎。 上述利用混合物中所携带的盐分的结晶过程使木质素分散细化过程中, 因为所含盐分 的多少具有偶然性, 因此形成分散颗粒的时间长短、 颗粒的大小都具有不确定性。 本实施 例中进一步地在实施例 2得到的混合物 100克(含水约 90%重量)中添加盐分 50-100克并 充分搅拌均匀混合, 如添加盐酸、 硝酸、 硫酸或磷酸的钠盐或铵盐晶体粉末或这些盐的饱 和水溶液, 加速结晶过程, 縮短分散木质素的时间, 同时在混合物中主动提供均匀分布的 细小晶体可以作为晶体生长的晶核, 使木质素可以被均匀分布的盐晶体均匀分割和分散。 试验中, 在 30°C热风干燥状态下, 1小时后即开始可见木质素和盐的细小颗粒从混合物的 表面生成, 测得每小时约有 0.5毫米厚度的混合物转化为粉末状态, 在 40°C热风干燥状态 下, 测得每小时约有 1毫米厚度的混合物转化为粉末状态。 因此, 高效工业化生产时, 加 入盐颗粒后的混合物可以以厚度 1-5毫米均匀地涂布在耐腐蚀的皮带运输机上, 在 1至 5 小时内通过热风通道或涵道, 在出口处扫下或刮下已经成为粉末或颗粒的木质素及所含盐 晶体的混合粉末, 以待进一步的分离处理, 包括前述的将颗粒破碎细化以及减少盐分、 水 分的处理。 以市售食盐颗粒代替前述的无水硫酸钠, 得到类似的效果, 虽然, 结晶的颗粒 形态有所不同, 其它盐类的作用也类似, 在此不再赘述。 为便于使木质素被分割和分散, 另外的条件是要求混合物中的含水量缓慢挥发减少, 即水分挥发速度小于结晶速度, 因为晶体的结晶需要有足够的水分以便于盐离子的扩散移 动, 此举可通过增加盐晶体方法或低温低烘干风量的缓慢蒸发的方法达到, 或者使热风含 有一定的水分 (即湿度), 如通过向热风喷雾水分的方法或者在烘干箱内混合物旁放置水 以保持混合物周边环境有一定的湿度。 为了加快混合物的脱水速度但同时保证混合物中的 盐分能够及时容易地结晶析出, 可以在较高温度但保持一定湿度的热风或环境条件下缓慢 脱水, 即提高烘箱或热风温度高于 40°C, 小于 100°C以避免水分的沸腾快速蒸发, 但需保 持烘干环境或烘箱环境或热风中含有一定的湿度, 湿度的大小以混合物能够继续蒸发出水 分而盐分可以结晶析出为度, 即低于所使用的热风或烘干环境的湿度平衡值。
实施例 5 : 从经济成本考虑, 用硫酸酸化稳定的酸性木质素及其它有机物的混合燃料是最有经济 竞争力的, 但含有硫酸或硫酸钠的混合燃料对内燃机的气缸或燃烧室的金属材料具有强烈 的腐蚀性, 因此, 需要将其脱除。 在实施例 1中利用硫酸酸化时获得的含有酸性木质素、 其它有机物、 硫酸、 硫酸钠的 混合物或者进一步混合油燃料油柴油的混合物中加入氢氧化钙水溶液, 使硫酸及部分硫酸 钠生成硫酸钙沉淀:
H2S04+Ca (OH) 2 == CaS04 ϊ +2Η20
Na2S04+Ca (OH) 2 == CaS04 ϊ +2NaOH 上述混合物中多余的氢氧化钙通过通入二氧化碳气体或滴入碳酸水后形成碳酸钙沉 淀而除去。 另外在过滤掉沉淀物的混合物中加入少量比较昂贵的硝酸以保持其酸化特性。 或等效地加入硝酸钙:
H2S04+Ca (N03) 2 == CaS04 ϊ +2ΗΝ03
Na2S04+Ca (Ν03) 2 == CaS04 ϊ +2NaN03 另外在过滤掉沉淀物的混合物中还可再加入硝酸以保持或增加其酸化特性。 或用离子 膜法除去硫酸根离子后加入少量比较昂贵的硝酸维持酸性木质素的酸化环境或特性。 上述化学反应后所得到的混合燃料中含有的盐分硝酸钠是强氧化剂, 因此, 它的存在 对于发动机汽缸内的混合燃料的燃烧是有利的, 但是, 其燃烧产物中会有对气缸壁有腐蚀 性的氧化钠或氢氧化钠产物, 以及产生对环境有污染的氮氧化物 (实验测得各种工况下型 号 S195的柴油机,使用含 10%v/v縮合稳定的木质素与柴油的混合燃料的氮氧化物的排放 含量是使用纯柴油时的一倍, 平均分别为 30ppm和 69ppm)。 而用盐酸酸化稳定的木质素 与柴油的混合燃料, 在经过发动机高温燃烧条件下, 容易产生有毒的含氯有机化合物, 因 此, 氯离子需要除去, 如通过与硝酸银反应生成氯化银沉淀; 或者用离子膜法去除氯离子。 上述方案中通过加入氢氧化钙, 同时可以实现硅酸、 碳酸根、 磷酸根的脱除:
H2Si03+Ca ( OH) 2==CaSi03 ϊ +2Η20
实施例 6: 为了达到能够与燃料油混合后可用于内燃机中作为动力燃料的目的, 脱水后或无水的 木质素颗粒必须细小且经过高温縮合稳定, 最好还要预先经过酸化处理, 解决其颗粒吸水 后或颗粒表面吸附水分后互相粘连的问题。 将实施例 1、 2或 3 中含水状态的混合物放入 电热烘箱, 在 110-130°C之间, 鼓风干燥 5-10小时后, 得到块状混合物, 将 50克该块状混 合物放入 500克柴油内, 先用胶体磨磨 10分钟至粒径约 50微米大小, 再用高频振动研磨 机进行研磨, 得到縮合稳定的固体微小颗粒的酸性木质素、 酸和盐等与柴油的混合物 (利 用湿润的 pH试纸测试酸性木质素颗粒或混合物的固体颗粒的 pH值显示在 5-6之间), 过 滤提取酸性木质素颗粒尺寸约小于 10微米部分, 再进行计量并与柴油混合得到混合燃料。 另外, 添加蒽醌或蒽醌类物质或其它抗氧化性物质 (最好在木质素溶于水时加入或加 入到造纸废液中, 蒽醌的熔点较高为 286°C, 2-萘酚熔点也较高为 123-124 °C, 可以在研磨 过程中分散在溶液中; 低溶点的如萘熔点 80.3 °C, 1-萘酚熔点 96°C可以在蒸馏脱水的热溶 液中通过搅拌剪切而分散在混合物中), 可以制造出在油中如同云雾状的、 微细的酸性木 质素颗粒, 只要轻轻摇动混合燃料, 木质素即可迅速在液体中均匀分布和流动, 这也更加 便于含木质素的混合燃料的实际使用; 所得到的木质素颗粒大小平均值可以小于 1微米, 最大颗粒 8微米, 而纯粹的机械研磨很难达到平均粒度 5微米以下的尺度, 且颗粒大小分 布也较宽, 最大的颗粒可达 19微米。 实施例 7: 本实施例提供了混合燃料的一种生产方法, 将实施例 1、 2或 3 中的混合物 (为了增 加流动性降低粘性, 在混合物中进一步添加 1-10%的燃料油或可溶解浸润木质素的少量有 机溶剂、 氨水、 汽油), 用喷头喷雾方式喷向热的燃料油表面或喷入其内部, 进行动态的 蒸馏脱水, 为便于加热安全操作, 所用燃料油最好为沸点较高的柴油。 为了脱除与木质素 分子相结合的分子水, 并且使木质素分子或颗粒表面能够縮合稳定, 热柴油温度最好大于 120 °C , 但小于 180°C以免使木质素及其它有机物失水碳化, 为了加快酸化后的木质素及其 它有机物的脱水和縮合稳定的速度以增加单位时间内的产量, 高温燃料的温度可以选择在 150-160°C之间, 还可在盛放热的燃料油的油箱中配置搅拌浆或剪切乳化机构(例如高速乳 化剪切机)。 将所得混合物过滤或沉淀分离掉部分燃料油, 即可获得縮合稳定的固体颗粒 含量不同的混合燃料。 为了易于使燃料油与主要含木质素的固体颗粒相互分离, 如采用加 热蒸发燃料油方式减少固体颗粒中的燃料油含量, 则燃料油最好选用煤油。 在上述混合燃料生产方法中, 更优选地, 为了保证酸性木质素及其它有机物的完全縮 合稳定, 将前述混合物用喷头喷雾方式喷向热的燃料油 (或其它耐热有机溶剂, 如高温融 化的石蜡) 表面或喷入其内部, 或者将该混合物直接与加热容器内的燃料油混合, 在从上 向下往燃料油喷雾的同时, 将沉向容器底部的酸性木质素等的混合物连同部分燃料油从容 器的底部或下部, 用耐热油泵抽出后再向燃料油表面或内部进行循环高压喷雾雾化操作, 直至燃料油内没有水汽逸出为止,使酸性木质素及其它有机物充分縮合稳定。实际运行时, 如图 1所示, 受加热保温的容器 101的上下部分可以有一定的温差, 保持混合燃料中的水 分在容器的上部沸腾蒸发, 而下部起到保温的作用。 图 1 中, 102为耐热高压泵输送沉底 的酸性木质素混合物与燃料油混合的混合物从上部循环地喷雾入热油中, 103 为输送和雾 化含酸性木质素等物质的高压泵, 104 为混合物的进口, 105 为水蒸气夹带油气的出口, 106为热油面位置。 为了减少从喷雾头 107或 108喷雾形成的酸性木质素颗粒等在完全縮 合稳定之前互相粘接的机会, 加热容器 101的高度越高越好, 使酸性木质素颗粒及其它固 体颗粒在沉底的路径上有足够的时间进行縮合稳定反应。 加热容器内的燃料油最好保持持 续的搅动, 以使刚喷入的混合物成型为固体颗粒但未完全縮合稳定前难以相互接触黏结长 大。 上述生产方法中将含水、少量酸和盐状态的酸性木质素等的浆状混合物与燃料油混合 后蒸馏脱水或喷雾入燃料油中蒸馏脱水的优点是比其它生产方法生产流程短, 可利用在酸 的水溶液中易于生成微细酸性木质素颗粒的特点, 使细小的酸性木质素颗粒及其它固体颗 粒从水相 "平移"到液体燃料中, 避免了酸性木质素或其它有机物先固化成固体再破碎成 小颗粒的工艺过程, 既节约了生产成本, 也避免了木质素等有机物在直接干燥后, 由于电 荷及机械的作用, 使本来微细的固体颗粒变成了几十、 几百微米的大颗粒, 也可以避免干 燥的细小固体颗粒由于高的比表面积在加入燃料油之前再次吸附空气中的水分, 因此 "平 移"法易于得到混合于液体燃料中的细小颗粒的縮合稳定的酸性木质素。 与球磨或胶体磨破碎干燥的木质素或经縮合稳定后的酸性木质素或包括其它有机物 的混合物相比, 可能是由于机械力的作用的缘故, 所得固体颗粒致密容易结成大块而发生 在容器壁上或燃料油箱壁上的挂壁现象, 使得固体颗粒容易以较快的速度发生沉淀而影响 混合燃料在燃油系统中的输送, 而通过喷雾进入高温热油中以剧烈爆炸方式縮合稳定所得 到的木质素颗粒及其它固体颗粒应该是不规则和疏松的状态, 或许其颗粒边缘具有鞭毛, 树枝状毛细结构, 起到了在燃料油中互相支撑的效果, 使固体颗粒形成不易沉淀、 云雾状 流动性良好的三维网架结构,在轻微扰动状态即能均匀地漂浮混合在液体燃料之中, 因此, 具有更好的输送流动性的优点。 在向高温热油中大量喷雾木质素溶液或木质素与油及水形成的胶体或各种混合物的 胶体时, 由于縮合脱水反应尚未完全, 部分形成的木质素颗粒或其它有机物颗粒具有很强 的反应活性和粘接性而导致木质素、 有机物与玻璃器皿或金属反应容器器壁粘黏, 因此, 反应容器内壁最好涂以聚四氟乙烯形成不沾层 (小量试验用不沾电饭锅代替反应容器)。
实施例 8: 将前述实施例 1-7 中的纸浆废水以溶剂法 (如乙醇法) 制浆中的废液替代或将此废液 先酸化至 pH值小于 4或 3, 即将抽提纸浆原料后得到的抽提液(含有有机溶剂、水、木质 素等有机物或及作为催化剂的酸、 碱物质) 酸化后 (最好利用硝酸酸化) 直接作为含有机 溶剂 (如乙醇) 的胶体态的混合燃料或混合燃料生产的原料。 传统的将木质素及其它有机物与废液或抽提液中的溶剂分离的方法中, 用水溶出有机 溶剂使主要是木质素的物质析出抽提液 (如美国专利 US4764596 中所使用的技术), 但所 得到的木质素及有机物具有一定的粘黏性, 不适合作为需要在柴油、 汽油、 煤油或重油的 燃料油路中能够保持尺寸稳定和能够被稳定输送的混合燃料的一部分; 且得到的商品木质 素颗粒平均尺寸 20-40微米, 作为内燃机的燃料, 木质素的颗粒尺寸仍然偏大, 不利于木 质素颗粒的快速充分燃烧和输送。 因此, 为了获得縮合稳定的微细颗粒的木质素以便可以 与柴油、 汽油、 煤油或重油的燃料混合后保持良好的流动性, 需要将上述抽提液作为混合 燃料生产原料, 对溶剂中的木质素进行改性处理, 尤其是酸化縮合稳定和颗粒爆裂式的细 化处理。 在上述将纸浆废水或废液转化为燃料的一部分的方法中, 尤其是将溶剂法得到的 抽提液酸化后直接喷到热油中获得在热油中爆裂后细化颗粒木质素的方法具有最简洁的 工艺流程和经济竞争力。 残留在热油中的有机溶剂以及生成的糠醛等液体有机成分还可以 作为混合燃料的一部分而无需增加分离成本。
实施例 9: 本实施例将实施例 1或实施例 8中酸化的酸性木质素以任意方法 (如利用酸化后的木 质素在加热时上浮结块成木质素的胶体块, 或与柴油等燃料油均匀乳化混合后上浮以及在 进一步加热时结块的特点捞出或滤出浓縮了的木质素) 脱水 (如实施例 6中所用的干燥脱 水方法) 或部分脱水以减少水分含量后, 再将该脱水后的木质素搅拌、 破碎溶于乙醇或甲 醇或丁醇或戊醇或乙二醇或丙三醇或甲酸或乙酸或苯酚或甲酚或乙酸乙酯或乙醚或二乙 醚或丙酮或环氧丙烷或氨水或它们的混合物中, 或溶于其它任何能溶解木质素的有机溶剂 中, 最好是溶于低沸点的有机溶剂中, 所述的有机溶剂可以含有水分, 需要时可以在高温 高压、 添加催化剂的条件下促进木质素的溶解。 以乙醇为例, 将该溶解了酸化脱水后的木 质素乙醇溶液(含水 5%w) 以雾化的形式直接喷雾向加热的燃料油表面或内部, 热的燃料 油 (如柴油或煤油) 温度在有机溶剂或溶剂中的各种成分的沸点以上, 若混合物中还含有 水分, 则热的燃料油的温度同时高于水的沸点以上, 总之, 燃料油的温度为大于溶解木质 素的有机溶剂的沸点温度或水的沸点温度, 以最大者为准。 为了脱除与木质素分子相结合 的分子水, 以及同时使木质素分子或颗粒表面縮合稳定, 热油温度最好大于 120°C, 但小 于 160°C, 瞬间使各种有机溶剂及水分都沸腾和挥发, 只留细小的木质素颗粒沉降并分散 于热的柴油中。 过滤燃料油即得到可作为各种燃料或替代燃料油的细化的木质素颗粒。 对 于部分长大了的木质素颗粒可以在柴油中进行研磨细化。 为了有效的使木质素能够溶解, 上述溶解木质素的有机溶剂中需要添加少量的水分, 如 5%-50%重量含量, 为了增加或进一步增加喷雾后得到的颗粒木质素的疏水性以及减少 混合燃料的粘黏性, 则最好在有机溶剂的水分中或在已经溶解木质素后的有机溶剂中的水 分中添加少量无机酸 (如硝酸、 盐酸、 硫酸、 磷酸等), 最好是硝酸, 使其 pH值偏酸性, pH值小于 6, 最好小于 4。 需要特别指出的是, 由于纸浆黒液或生物质中含有的除木质素 外的其它有机成分也可能被前述有机溶剂溶解, 因此, 本发明中的颗粒木质素中也包含了 这些溶于有机溶剂中的物质成分, 如树脂、 有机酸、 半纤维素等。
实施例 10: 实验发现, 脱水处理后细小的酸化木质素颗粒经长时间老化, 即使稀释在柴油中, 经 一个月以上时间, 会出现明显的木质素颗粒之间的粘性, 需要剧烈晃动才可以重新表现出 良好的流动性或如云雾般的漂浮性。 考虑到木质素容易发生部分氧化或自氧化或受柴油中 的化学物质的作用发生表面改性作用形成更多的不稳定基团, 变的具有粘黏性, 因此, 在 生产酸化木质素的过程中或在与之包裹或混合的柴油 (或其它燃料) 中添加抗氧化剂 (50-1000ppm), 如蒽醌类抗氧化剂, 或食品油脂中添加的抗氧化剂, BHA (丁基羟基茴 香醚)、 BHT (二丁基羟基甲苯)、 PG (没食子酸丙酯)、 TBHQ (特丁基对苯二酚)。 从平 行对比实验中发现, 添加了抗氧化剂的酸化木质素, 尤其是脱水后的酸化木质素与柴油的 混合燃料中的木质素颗粒经一个月的时间老化, 液体柴油中的木质素颗粒表现出更好的流 动性 (将两种平行对比的油品封装在塑料瓶内, 直立放置一个月后缓慢倾斜平放塑料瓶, 测 量原先沉降在瓶底的木质素在重力作用下再次流动到平衡位置所需的时间, 以及观察挂壁 的褐色木质素的透光程度), 不会出现明显的粘接现象。
实施例 11 : 在长时间输送混合燃料的过程中, 木质素颗粒在管路中难免会有累积。 为了解决此一 问题, 可以间隙性地将供给燃烧器 (包括内燃机) 的燃料从燃料箱开始切换至第二种的不 含木质素的纯液体燃料 (柴油或汽油等), 如提供该纯燃料燃烧 5 -10分钟。 以燃烧含柴油 的混合燃料为例, 在不含木质素的柴油中添加少量 (0-10%体积) 可溶解木质素且也可燃 的物质如甘油、 乙醇、 甲醇、 碱性的胺类化合物, 如一乙醇胺、 或二乙醇胺或三乙醇胺、 氨或它们的混合物以疏通和清理管路, 即输送管路间隙性地由第二种含可溶解木质素的化 合物的纯燃料进行管路清理。
实施例 12: 在用含 10%v/v縮合稳定的酸性木质素及其它有机物的固体颗粒作为 R175(A)和 R180 柴油机的燃料时, 空载状态下一般运行 10小时后即发现有敲缸现象的发生。 如图 2所示, 其原因是由于喷油嘴套内的针阀 201的落座 202处 (成直角的角落里) 形成了酸性木质素 或及所述固体颗粒结块或部分碳化层, 从而使落座密封不严, 导致喷油器嘴滴漏燃料而造 成发动机敲缸 (注: 针阀沿轴向移动时决定了是否发生喷油动作, 针阀落座于喷油器套的 内壁上时起到密封隔离喷油器的内腔与发动机气缸的作用)。 因此, 将成直角的针阀 101 落座 202处改为倾斜角将有利于燃料喷出喷油嘴的同时对针阀的清洗作用。
实施例 13 : 由于重力影响, 互不相溶的不同比重的组分在油箱内不同位置可有不同浓度。 为使输 送入输油管内的油中所含的组分尽可能的均匀一致, 可以通过多个分布在不同液面高度的 进油口进油的方式 (即采用均匀输出混合燃料的出油装置) 来实现混合燃料 (本发明中所 称 "混合燃料"也包括其它各种可能使用的多种燃料) 的均匀输出, 使比重不同的各组分 或分层的各组分均匀进入输油管路, 且可以实现比机械搅拌更稳定可靠的均匀输送。 图 3 所示的是一种均匀输出混合燃料的出油装置的结构示意图, 在设有油箱进油口 309的油箱 301 的一侧的不同高度设有多个输油系统进油口, 该均匀输出混合燃料的出油装置设有 4 个输油系统进油口 303、 304、 305、 306, 分别通过输油管道与输油泵 302连接, 输油泵 302 作为配设的抽吸装置抽吸燃料沿箭头方向输送给喷油泵 (喷油泵本身的抽吸作用也可 以替代输油泵 302起到抽吸的作用, 此种情况下可以不设置输油泵 302, 图中未示); 并且 输油管道上, 还可以设有抽吸泵 307, 抽吸泵 307内设有传感器 308, 当燃料液面的高度 降低到使进油口 303、 304、 305或 306暴露在空气中时, 即补充输入混合燃料保持油箱中 的液面高度, 或者使相应的抽吸泵 307关闭, 以避免空气被抽送入油路中; 或者, 油箱 301 的容积可以随所盛装的燃料量而收縮和扩张, 使油箱内的液面高度不变或变化较小。
实施例 14: 为了减少或避免混合燃料 (也包括其它各种可能使用的多种燃料) 如木质素等固体颗 粒燃料或燃料内的杂质在发动机喷油器系统内 (包括直喷点火式汽油发动机、 燃气轮机), 尤其是对针阀运动的影响以及对针阀与针阀套偶合面落座处之间密封性的影响, 本技术方 案采用多孔或单孔带针阀结构的开式喷油嘴结构, 针阀与针阀套之间的密封或导通喷射动 作依靠开孔之间的错位, 储油腔即储油容积室或蓄油增压腔与喷嘴位置互相分离, 无论是 否处在喷油状态, 针阀与针阀套在喷油嘴位置附近始终保持偶合紧密接触状态, 避免了现 有技术中针阀为了喷油须要与针阀偶合件在喷孔处分离和再落座的问题, 也就避免了落座 处的颗粒燃料的沉结问题和密封不易的问题, 进一步地, 还可以避免针阀与针阀套之间容 易被固体颗粒堵塞的问题; 且能使混合燃料能够被方便可靠地输送入内燃机气缸内喷射燃 烧, 同时提供更好的油嘴喷雾效果。 图 4为本实施例提供的喷油器结构示意图 (紧冒结构 未示出, 下同)。 401为针阀套 (用于安装的附件未示出, 外部形状可以根据发动机气缸的 尺寸、 形状要求来适配), 408为针阀体, 在弹簧 407的作用下针阀 408右移减小储油容积 室 405的容积, 当喷油泵或输油泵经进油孔 402 (该进油孔也可以配设在针阀套 401的右 端部, 图略) 进入容积室 405时, 燃料经开口 406进入通油孔也即油腔 409, 同时容积室 内压力升高, 推动针阀体左移, 当与通油孔也即油腔 409相通的出油孔 404与针阀套 401 上开设的喷油孔 403开始重叠时,燃料开始雾化喷入发动机气缸内或内燃机的燃烧室 (未图 示)内, 如图 5所示。 当容积室 405内压力下降, 弹簧 407 (或用可控的电磁阀代替弹簧) 再次推动针阀体 408右移开始下一循环。 图中, 410为回油口, 411为可选配的通过高压泵 注入纯燃料油或润滑油的进油口, 以便维持针阀体 408与偶合的针阀套 401内壁的润滑和 清洁。 通油孔也即油腔 409内蓄存一定量的燃料, 起到缓冲容积室 405内压的作用。 考虑到固体颗粒燃料在针阀体 408移动时最好不要被挤入针阀体 408与针阀套 401的 偶合面之间, 针阀体 408的端部做成凹陷的犁形 601, 如图 6所示, 或其它形状的头部结 构。 喷油孔 403 的形状可以做成喇叭形 602, 或单孔或多孔的圆柱形, 即单个出油孔 404 对应一个喷油孔 403, 但该喷油孔 403含有一个以上的小喷油孔; 或者, 单个喷油孔对应 多个喷油孔, 随着针阀体 408的移动, 出油孔 404对多个喷油孔 403的扫描过程, 即发生 预喷射、 主喷射、 后喷射; 或者, 多个出油孔一一对应多个喷油孔, 且分别在同一时刻实 现开或闭的动作 (除了要求发生预喷射或后喷射的情况, 或者要求一个循环多次喷射的顺 序多点燃油喷射的情况), 后一方案可在更大的空间范围内调节喷雾的空间分布。 每个出 油孔可以单独配置一个通油孔也即油腔 409, 或者共享一个通油孔也即油腔 409, 喷油孔 分布在圆柱形针阀体的圆柱面上或在采用方形针阀体时的底平面上,图 7所示为针阀体 408 上开设有 7个出油孔 404的三视简图以及针阀套 401上对应的 8个喷油孔 403的位置示意 图, 虚线为出油孔 404所经过的路径 (其中中间的出油孔 4041经喷油孔 4031提供预喷射 后再经喷油孔 4032提供主喷射), 回程时再经喷油孔 4031提供后喷射。 另外, 每个喷油 孔的喷射油束方向, 可以倾斜交叉, 使喷雾出来的燃料互相碰撞进一步地扰动气缸内的气 流。 因为多个出油孔 404可以布局分布在互相较远的距离, 因此, 每对出油孔 /喷油孔即相 当于一个泵喷嘴, 便于燃料形成最佳雾化的空间分布状态, 可以起到或代替需要超高的燃 油喷射压力才能达到的大范围内均匀雾化效果, 即多点喷雾优化燃料的空间分布将有利于 燃料和空气的充分混合, 促进燃料的充分燃烧, 减低废气中污染物的排放, 同时燃料喷射 量可以容易地得到增加, 因此, 有利于大功率发动机的配套。 具体喷油器各组件结构的尺 寸大小, 各孔的形状大小, 可以依据现有技术的模拟技术和实际测试调整改进技术进行喷 雾效果的最优化设计。 出油孔 404与喷油孔 403交错时的重叠过程决定喷油量随时间的变 化情况, 如控制燃料的喷射方式和过程使之最符合内燃机内燃烧过程中不同时段燃料量的 需求, 也可以实现小量预喷射后的主喷射动作, 如喷油孔 403做成长条形或椭圆形, 或者 喷油孔 403含有两个通道, 第一个通道是一小流量通道, 出油孔 404先与该小通道接通喷 出少量预喷射燃料, 接着随针阀体 408的左移关闭该小通道再与主通道连通供油进行主喷 射, 回程时完成后喷射 (图略)。 再则, 还可以将喷油孔 403 做成厚大的带有内腔的形状 作为汽缸的预燃室或涡流室。
实施例 15 : 图 8所示是对图 4所示的喷油器结构的进一步改进, 该新结构相当于一个泵喷嘴。 燃 料经喷油泵或低压输油泵加压后从进油孔 402再经单向阀 801进入容积室 405, 当与发动 机转动机构联动的凸轮 802推动针阀体 408右移压縮弹簧 407至使出油孔 404与喷油孔 403 重叠时, 燃料开始雾化喷入内燃机燃烧室。 由于不是通过油管提供高压燃料, 喷油嘴的喷 射压力可以大幅度的提高。 为了控制喷油量提供油门控制, 除了可以通过配设的喷油泵或 输油泵改变供油量外, 还可以通过左右移动与针阀体 408偶合接触的油量控制套 803, 改 变与通油孔也即油腔 409 连通的泄油孔 804 的泄油时刻以改变喷入内燃机燃烧室终止时 刻,达到改变实际供油量的目的;或者通过改变泄油孔 804进入油量控制套 803内的时刻, 即改变开始压油的时刻来控制实际供油量的大小 (图示省略)。 或者前述两个控油方式的 油量控制套同时采用, 并通过自动参数测量反馈控制, 实现供油 "提前角"或压油提前角 及泄油时刻的双重控制。 通过泄油孔 804泄出的燃油进入储槽 805再循环进入油箱, 该泄 出的燃油可以起到冷却喷油器的目的。 图 9所示为凸轮左移时, 在弹簧 407的作用下, 喷 油结束, 且使喷油孔 403封闭的情况。 本技术方案中, 优点之一是, 出油孔 404 和喷油孔 403 的重叠时间过程, 即喷油孔 403 的开闭的喷油规律 (喷油时刻及喷油量) 与燃油喷射状态无关, 只与发动机转速及凸 轮 802的凸轮曲线形状相关,也就是燃料的供给时间和量完全不受喷雾状态的影响, 因此, 有利于通过凸轮的凸轮曲线设计出最佳的燃烧要求匹配的供油过程。 通过改变凸轮 802的 横截面的形状即可实现供油量在压油段、 卸压段和过渡段的调节, 实现快速度的开闭供油 或停止供油。 如一种方案为, 在喷射量完成前就开始使针阀体 408左移开始回复, 且可以 使回复的速度远大于针阀体 408右移压油喷雾的速度, 从而在两孔 404和 403仍然有相叠 部分时, 允许仍然保持有较高压力的燃料继续喷射, 从而避免回复过程中, 由于燃油压力 的降低, 造成气缸内的气体进入喷油器腔内。或者, 通过喷油泵(图未示)维持容积室 405 内的一定压力, 避免燃烧室内的气体回返进入喷油孔 403内。 该方案的另外一个优点是, 当两孔 404和 403交叠开始喷雾时, 随着喷雾的进行, 容 积室 405也随之减少, 从而能够使容积室 405及通油孔也即油腔 409内的油压缓慢降低, 维持平稳的喷油嘴喷雾压力。 图 10所示是对图 8结构的进一步改进, 将弹簧 407取消, 以避免在针阀体 408运动 不畅时弹簧 407不能推动针阀体 408左移,代之以与主凸轮 802偶合运动的从动凸轮 1001 推动针阀体 408的向左移行。 图 11所示是对图 10结构的进一步改进,通过转动油量控制套 803实现供油量的控制, 此时, 油量控制套 803上开有螺旋开口 1101, 转动 803至不同位置, 将使泄油孔 804在不 同的时刻开始泄油减压。
实施例 16: 图 12所示为对图 11结构进一步改进的喷油器结构。 将原出油孔 404改为出油环槽带 1201 , 通过一个或数个出油小孔 1202与通油孔也即油腔 409连通。 本技术方案的优点是 出油环槽带 1201 内的储油量使容积室 405 内压力减小的幅度降低, 喷雾压力更加稳定。 另外, 可以加设驱动装置 (未图示), 使针阀体 408 保持缓慢匀速转动状态, 进一步地降 低针阀体 408被颗粒燃料堵塞的问题。 图 13所示为对图 12结构的改进,将凸轮结构取消,代之以电磁伸縮或压电装置 1301, 通过喷油泵(未图示)向容积室 405内提供或维持燃料的高压, 图 13中电磁伸縮装置 1301 伸张驱动针阀体 408右移, 一方面使燃油压力继续升高, 另一方面使出油环槽带 1201与 喷油孔 403连通实现燃料的喷射动作 (结合图 7所示的多孔结构, 可以通过控制电磁阀伸 縮量的变化实现一次循环中喷射次数多少的控制)。 图 14为电磁伸縮装置 1301在收縮状 态 (弹簧 407可替换为可控的电磁阀), 针阀体 408被来自喷油泵的高压燃油推向左侧, 使喷油孔 403被封闭而停止向燃烧室内供油。
实施例 17: 为了最优化地利用木质素或纸浆黒液中的有机物与柴油相混合的混合燃料, 减少或避 免木质素等固体颗粒燃料或燃料内的杂质在发动机喷油器系统内 (包括直喷点火式汽油发 动机、 燃气轮机), 尤其是对针阀运动的影响以及对针阀与针阀套偶合面落座处之间密封 性的影响, 同时能使燃烧性能不如常规的汽油、 煤油或柴油的替代燃料发挥作用, 达到间 接地在汽缸内实现燃料混合而作为混合燃料燃烧的目的, 如含溶于水中的木质素及其它有 机物的胶体燃料、 具有改善燃烧环境和做功环境的水溶液、 甲醇、 乙醇或甲醇、 乙醇的水 溶液、 二甲醚、 生物质的热解油, 粉体燃料如木质素颗粒与液体燃料的混合燃料、 水煤浆 等, 本实施例在前述开始喷油嘴结构的基础上提供一个喷雾器上设有双容积室, 以及分布 有多个喷雾嘴的结构。 图 15、 图 16分别为本实施例提供的双容积室的喷油器结构主视图和侧视图 (紧冒结 构及组合结构未示出, 下同)。 15013为与针阀偶合紧密配合的针阀套(用于安装的附件未 示出,外部形状可以根据发动机气缸的尺寸、形状要求来适配), 1508为针阀,在弹簧 15010 的作用下针阀 1508右移减小储油容积室 1501、 1502的容积, 容积室 1501、 1502被容积 室分割挡板 1509 密封分割隔离 (其截面可以是椭圆形, 方形, 只要能起到密封隔离分割 作用即可); 一个循环开始时, 当喷油泵或输油泵经带有单向阀的进油孔 15011、 15012分 别泵入第一种燃料和第二种燃料进入相应的容积室 1501和 1502时, 燃料分别进入中心通 油孔 1503、 1504 (或将该通油孔开设在针阀的侧边形成通油槽, 此时无需配置出油孔或出 油环槽带, 图略), 同时两个容积室 1501还和 1502内压力升高, 推动针阀 1508左移, 当 与通油孔 1503相通的出油孔 15031与针阀套 15013上开设的喷油孔 1505开始重叠时, 第 一种燃料开始雾化喷入发动机气缸内或内燃机的燃烧室 (未图示)内, 针阀 1508继续左移, 当与通油孔 1504相通的出油孔 15041与针阀套 15013上开设的喷油孔 1505开始重叠时, 第二种燃料开始雾化喷入发动机气缸内或内燃机的燃烧室 (未图示)内。 此时容积室 1501 和 1502内的总压力下降至使弹簧 15010能再次推动针阀 1508右移开始下一循环。 图中, 15014为回油孔。 当针阀 1508左右位移时, 分割挡板 1509的上下和前后侧面始终与针阀 套 15013 内的内槽 1507偶合密封以保证第一、 第二种燃料不会互相混合, 为泄出渗入内 槽 1507内的燃料, 可以与内槽 1507连接一回油孔 15015。 为了降低偶合件的加工难度, 可以只要求分割挡板 1509与内槽 1507的涉及第二种燃料容积室 1502的一侧紧密接触密 封, 而将容积室 1501与内槽 1507连通 (降低接触面的偶合程度, 或开设有油孔 1506), 内槽 1507 同时起到储蓄第一种燃料的作用, 当第一种燃料设定为纯柴油时, 还可以起到 润滑偶合面的作用; 此时则可以需取消回油孔 15015。 图 15、 图 16所示的喷油器是两种燃料共用一个喷油孔 1505的情况。 图 17、 图 18为 两种燃料分别经各自的喷油孔 1701、 1702沿与针阀套 15013轴向垂直方向喷雾进入内燃 机燃烧室的情况, 且流经容积室 1501的第一种燃料喷射后, 流经容积室 1502的第二种燃 料再发生喷射动作。如将喷油孔 1702的位置右移(未图示),使出油孔 15041与出油孔 15031 同时与各自的喷油孔 1701、 1702 重叠, 则两种燃料可以同时进行雾化进入内燃机的燃烧 室。 图 17右下 A-A方向的示图为出油孔 15031、 15041改设在针阀 1508的径向位置上, 且喷雾方向沿针阀 1508 的径向。 考虑到该喷油器结构与燃烧室具有大的接触面, 所以需 要增加对喷油器的冷却, 另外, 一般不同的燃料具有不同的耐热性, 因此, 可以将图 15、 图 16所示的容积室 1501、 1502沿喷油器轴转 90° 设置, 以使耐热性高 (如沸点高) 的燃 料与燃烧室有最大的接触面, 而耐热性差的燃料尽可能的远离燃烧室。 为了增加针阀 1508与针阀套 15013之间接触面的润滑和利用纯燃料油如柴油的清洗、 冷却作用, 在针阀 1508上开设一个 (或在不同位置开设数个) 与中心通油孔 1503经油孔 1902相通的油槽 1901, 如图 19和 20所示。 或者为了增加针阀 1508与针阀套 15013之间 的偶合密封效果, 在针阀 1508上套上弹性针阀环 (图中未示), 即将油槽 1901替换为一 个针阀环以保持针阀 1508与针阀套 15013之间的高压密封。 或者在针阀 1508上同时设置 有油槽 1901及弹性针阀环。 上述依靠进油压力与弹簧 15010之间的相互作用来推动针阀 1508的位移方式可以用由 发动机转动轴驱动的凸轮来推动。 为了利用电控技术的优点, 将针阀 1508的一端开设有两个独立不相通的容积室 2101 和 2102, 分别容留第一种和第二种燃料, 并分别与中心通油孔 1503和 1504相连通, 如图 21、 图 22所示。 容积室 2101和 2102内设有压电元件 2103和 2104可以在外接电源 (图 未示) 的作用下发生伸縮以改变容积室内的体积, 从而增加或减少容积室内的燃料压力。 针阀 1508在压电元件 2105的作用下发生左右位移, 以控制出油孔 15031和 15041与喷油 孔 1701和 1702的重叠时间, 借以控制喷油的开始和结束的时刻, 因此, 喷油的时刻和时 长均与供油压力无关,而实际喷油量的多少还与来自进油孔 15011、 15012的供油压力的大 小及压电元件 2103和 2104的伸縮量有关。 这些相关参数可以方便地用来实现喷雾效果的 电子控制。 其中, 无论针阀 1508处在何处, 进油孔 15011和 15012始终分别只与容积室 1501和 1502相通, 进油孔 15011和 15012供油方式可以采用传统的喷油泵方式也可以采 用稳定高压供油方式 (即高压共轨方式)。 压电元件 2105所在的内腔 2106最好浸没在低 压的纯燃料油中 (回油孔 15015 与盛纯燃料油的油箱连通), 如柴油中, 达到润滑和冷却 的作用以及对压电元件的绝缘作用。 上述各方案可以进行各种组合使用, 以达到实际使用时的最佳效果。具体的尺寸参数, 按照喷油器的喷雾特性包括雾化粒度、 油雾分布、 油束方向、 射程和扩散锥角等的要求来 设计调整,使这些特性符合柴油机或汽油机燃烧系统的要求, 以使混合燃料能够燃烧完善, 并获得高的功率和热效率。 实施例 18: 将烧碱法制浆所得主要含碱木质素的黒液除硅后浓縮至 50wt% (此时无机物钠离子的 含量较高, 内燃机的燃烧室要求耐氧化钠、 钠碱的腐蚀), 或将上述含水重量为 50%的木 质素 (包括制浆废液中的其它有机物质) 胶体溶液作为替代柴油燃料; 所对应的柴油发动 机要求配置两个油箱, 分别盛装纯柴油 (第一种燃料) 和木质素胶体溶液或含木质素的有 机溶剂 (第二种燃料), 且每个油箱有独立的过滤系统、 输油泵、 喷油泵 (或高压共轨供 油) 系统。 两种燃料分别同时进入前述的喷油器中的各自容积室 (1501、 1502 或 2101、 2102) (容积室体积按照预设的第一和第二种燃料之间的使用比例制造出相对大小, 如要 求每次喷雾时, 第一种燃料的体积占 40%, 第二种燃料的比例占 60%, 则可以预先将容积 室 1501或 2101与容积室 1502或 2102之间的体积比例按照 4: 6制造, 反之亦然)。 在喷 油泵和前述喷油器的共同作用下, 第一种和第二种燃料即可按要求的比例同时或分时可控 地喷雾进入内燃机气缸内燃烧做功。 在用于压燃式内燃机时, 其中第一种燃料纯柴油起到 压燃点火和部分做功的作用, 第二种低热值或低十六烷值的燃料在发动机做功相同的条件 下, 起到减少纯柴油的使用量而达到替代纯柴油的目的。其中第二种燃料可以是汽油、水、 含木质素的混合燃料、 木质素水溶液、 乙醇、 甲醇、 二甲醚、 重油或乳化重油等。 为了整 个针阀 1508与针阀套 15013之间的润滑, 最好纯燃料油的压力大于或稍大于替代燃料的 压力, 以便纯燃料可以扩散至更多的接触面并避免第二种燃料向外的渗透和扩散。 在用于点火式且直喷燃料的内燃机时, 第一种燃料选择为纯汽油, 第二种燃料为木质 素水溶液、 乙醇、 甲醇、 二甲醚、 水等 (因为可以使用含水燃料, 因此, 对于燃料可以无 严格的脱水要求, 降低各种燃料的生产成本)。 在用于燃气轮机时, 第一种燃料为易燃的 气体燃料或汽油、 煤油、 柴油, 第二种燃料为木质素的水溶液、 水、 乙醇、 甲醇、 二甲醚、 重油或乳化的重油等。 当第二种燃料为水时, 本喷油器的结构即可实现水与柴油 (或汽油) 在汽缸内的均匀 混合, 从而避免了使用表面活性剂预先需将柴油与水进行乳化得到所谓的乳化柴油的同样 目的, 如促进柴油的燃烧做功以及降低污染物的排放。 另外, 发动机在怠速时可以将第二 种燃料切换为纯水, 一方面节省燃料, 另一方面清洗第二种燃料的输送通道。
实施例 19: 本实施例是对前述喷油器结构的改进, 使喷油器在气缸上的安装方向与传统的喷油器 安装结构保持不变。 为简明起见, 已知传统结构的喷油器帽、 喷油嘴紧帽的图示均省略。 图 23、 图 24所示为喷油器针阀体和针阀结构示意图。 图 23中喷油嘴的针阀(套)体 2301 内孔 2304内有相偶合的针阀 2401,其上部有与喷油器冒内的调压弹簧相接触的顶杆 2402。 图示针阀体 2301上开设有对称的沿径向喷射的四个喷油孔 2302。 当来自高压油泵(图略) 的高压燃料经喷油器冒内通道(图略)经过入口 2303进入喷油嘴针阀体 2301的内孔 2304 的底部时, 高压燃料经针阀 2401上的轴向内孔即通油孔 2403再经过侧向内孔 2404进入 针阀上的环形槽即出油环槽带 2405。 当高压燃料的压力大于调压弹簧 (图略) 的压力时, 针阀 2401上移; 而当环形槽 2405与喷油孔 2302相交会时即可实现高压燃料向气缸内的 喷雾, 随即燃料压力降低, 针阀 2401下移进入下一个喷油循环。 在喷油孔 2302密封状态 时, 为了减少处于环形槽 2405 内的燃料沿针阀 2401与针阀体内孔 2304接触面间渗透至 喷油孔 2302而造成非正常的出油,在喷油孔 2302与环形槽 2405之间的位置,在针阀 2401 上装配上一个狭窄的弹性轴环套 (类似活塞上的活塞环, 图略)。 为了进一步地使燃料在气缸内喷雾均匀, 按照传统的喷雾方式, 在喷油器的轴向向前 增加一个中心喷油孔 2305, 如图 25所示。 相应地, 针阀 2401上的通孔 2403、 2404需要 偏离中心位置, 以及增加轴针 2406, 如图 26所示。 喷油孔 2302 还可以做成喇叭形以改变燃料的喷雾锥角, 实现更好的雾化。 根据气缸 内空气密度分布或气流运动的需要, 喷油孔 2302 沿径向分布可以是非对称非均匀的, 其 个数也可以是 2个或 3个或如图所示的 4个或更多个。
实施例 20: 图 27、图 28分别为本实施例提供的双容积室的喷油器针阀体结构和针阀结构示意图。 与实施例 19不同或改进的是该喷油器可以同时喷射两种不同性质的燃料。通过针阀体 2701 上的隔板 2807与针阀体 2701相接触的内壁之间的密封作用, 将针阀体 2701内孔 2704分 割出两个容积室 27041和 27042, 针阀体 2701内的槽 2706与针阀 2801上的隔板 2807接 触面间紧密配合起到提供针阀 2801 的移动空间和密封的作用。 来自不同的高压油泵 (图 略) 的高压燃料分别经入口 2703和 27031进入容积室 27041和 27042, 与实施例 19同样 的工作原理, 即当环形槽 2805、 28051分别与喷油孔 2702、 27021相交会时, 高压燃料分 别经通孔 2803、 28031至出口 2804和 28041, 即可实现两种不同的 (也可是相同的) 高压 燃料向气缸内的喷雾。 为了加工方便, 保证隔板 2807 (可以是任何形状的截面形状, 如圆 柱形, 椭圆柱形) 与内槽 2706接触面间的紧密配合, 如图 29所示, 在其间四周增加弹性 密封垫片 2808, 或者在弹性密垫封片与底板之间放置弹性凸片, 或者在隔板 2807上开设 通孔 2809, 并在通孔 2809内装有弹簧, 使弹性密封垫片与针阀体内槽 2706对应偶合的内 壁保持紧密接触。 另外, 由于喷油器需要深入气缸内更多的空间, 所受到的热负荷增加, 因此需要增加 内部冷却通道, 或者包裹有效的隔热材料, 如陶瓷类的隔热材料。 上述各方案提供的是喷油嘴部分的方案, 该方案同样可以用于各种供油方式或控制油 量电磁阀控制的喷油系统中。 上述各方案可以进行各种组合使用, 或将两个上述同样结构 的喷油器同时应用于一个气缸中, 以达到实际使用时的最佳效果。 具体的尺寸参数, 按照 喷油器的喷雾特性包括雾化粒度、 油雾分布、 油束方向、 射程和扩散锥角等的要求来设计 调整, 使这些特性符合柴油机或汽油机燃烧系统的要求, 以使混合燃料能够燃烧完善, 并 获得高的功率和热效率。 以上所述, 仅是本发明的较佳实施例, 并非对本发明作任何形式上的限制, 任何所属 技术领域中具有通常知识者, 若在不脱离本发明所提技术特征的范围内, 利用本发明所揭 示技术内容所做出局部更动或修饰的等效实施例, 并且未脱离本发明的技术特征内容, 均 仍属于本发明技术特征的范围内。 另外, 除非文本中清楚地说明, 说明书或权利要求书中 的术语 "包括 "、 "包含"等用于与 "排除"方式相反的 "包含"方式进行解释, 也就是 说是 "包括但不限于" 的方式。

Claims

权利要求书
1、 一种含木质素的混合燃料, 含有酸化处理后的制浆废水或废液中的酸性木质素胶体或 颗粒, 余量为燃料油。
2、 如权利要求 1所述的混合燃料,其中,所述的酸性木质素胶体或颗粒含水重量 50-90%。
3、 如权利要求 1所述的混合燃料, 其中, 所述的酸性木质素胶体或颗粒含水重量 1-15%。
4、 如权利要求 1所述的混合燃料,其中,所述的酸性木质素胶体或颗粒中的水分为 pH值 酸性。
5、 如权利要求 1所述的混合燃料, 其中, 在该混合燃料中, 还添加有酸和 /或盐。
6、 如权利要求 5所述的混合燃料, 其中, 所述酸为硝酸。
7、 如权利要求 5所述的混合燃料, 其中, 所述盐为硝酸钠。
8、 如权利要求 1所述的混合燃料, 其中, 所述燃料油为乙醇、 汽油、 柴油、 煤油、 重油、 润滑油或润滑剂。
9、 如权利要求 8所述的混合燃料, 其中, 以混合燃料的总重量计, 所述燃料油的重量百 分比为 0-99%。
10、 如权利要求 1所述的混合燃料, 其中, 在该混合燃料中, 进一步还添加有表面活性剂 和 /或抗氧化剂。
11、 一种含木质素颗粒的混合燃料的生产方法, 其包括以下步骤:
步骤 A、调节制浆废液或酸水解或酶解生物质排放的含碱性或酸性或中性木质素的黒 液或混合物的 pH值至碱性使木质素完全溶解于水溶液中;
步骤 B、 在上述步骤的水溶液中加入脱除硅酸根离子的化学物质, 过滤除去硅酸盐沉 淀, 得到含无机物杂质更少的混合物;
步骤 C、 在上述步骤的混合物溶液中加入硫酸或盐酸或硝酸或碳酸或磷酸至 pH值小 于 4, 过滤出或取出含木质素的混合物;
步骤 D、在步骤 C中制得的含木质素的混合物中添加无机盐颗粒、无机盐粉末或无机 盐的饱和水溶液, 形成混合物;
步骤 E、 将上述步骤 C或 D的混合物经自然风干或在低温下烘干或在低温热风下缓 慢脱水或在较高温度但保持一定湿度的热风或环境条件下缓慢脱水,得到自然破碎了的或 容易破碎的混合物粉末或混合物;
步骤 F、 将上述步骤 E的混合物粉末或混合物进一步地进行搅拌、 剪切破碎, 得到细 化了的混合物粉末; 步骤 G、 将上述步骤 F的混合物粉末进行烘干干燥处理进一步降低水分, 得到含水分 低的混合物粉末;
步骤 H、 将上述步骤 G的含水分低的混合物粉末进行旋风分离, 得到减少了盐分的主 要含木质素的混合物粉末。
步骤 I、 将上述步骤 H得到的混合物粉末用清水或酸性水溶液冲洗, 得到减少了盐分 的混合物;
步骤 J、 将上述步骤 I的混合物进行烘干脱水处理, 得到含水分低的混合物; 步骤 K、 将上述步骤 J得到的混合物进一步地进行搅拌、 剪切破碎, 得到细化了的主 要含木质素的混合物粉末;
其中步骤 A对碱法制浆废液的处理是一可以任意选择的步骤, 步骤 B对于不含硅酸 根离子的水溶液是可以任意选择的步骤, 步骤 F和步骤 G顺序可以互换, 步骤 D、 F、 G、
H、 I、 J、 K是可以任意选用的步骤。
12、 如权利要求 11所述的生产方法, 其中, 步骤 D中所述的无机盐选自盐酸、 硝酸、 硫 酸或磷酸的钠盐或铵盐。
13、 如权利要求 11 所述的生产方法, 其中, 步骤 E 中所述的低温或低温热风温度小于
60°C, 最好为 30°C。
14、 如权利要求 11所述的生产方法, 其中, 步骤 E中所述的较高温度小于 100° C大于
40° C, 湿度低于所用温度下的湿度平衡值。
15、 一种含木质素胶体或颗粒的混合燃料的生产方法, 其包括以下步骤:
步骤 A、调节制浆废液或酸水解或酶解生物质排放的含碱性或酸性或中性木质素的黒 液或混合物的 pH值至碱性使木质素完全溶解于水溶液中;
步骤 B、 在上述步骤的水溶液中加入脱除硅酸根离子的化学物质, 过滤除去硅酸盐沉 淀, 得到含无机物杂质更少的混合物;
步骤 C、在上述步骤的混合物溶液中加入硫酸或盐酸或硝酸或碳酸或磷酸或有机酸至 PH值小于 7大于 6, 得到进一步减少了无机物杂质的接近中性的混合物;
步骤 D、 蒸馏上述步骤所得的混合物溶液, 使水分尽可能的降低, 但保持混合物的流 动性;
步骤 E、 在步骤 A、 B、 C或 D之后, 加入液体燃料, 进行充分搅拌乳化混合, 得到 混合物;
步骤 F、 在步骤 E得到的混合物中添加表面活性剂, 进行充分搅拌乳化混合, 得到混 合物;
步骤 G、静置步骤 E或 F得到的混合物, 抽取悬浮于溶液上部的含酸性木质素、燃料 油及由酸性木质素和 /或由燃料油携带的其它有机物、 酸、 盐等物质, 得到混合物;
其中步骤 A对碱法制浆废液的处理是一可以任意选择的步骤, 步骤 B对于不含硅酸 根离子的水溶液是可以任意选择的步骤, 步骤 D、 E、 F、 G是可以任意选用的步骤; 且步 骤 C、 D、 E、 F中得到的混合物可直接作为混合燃料来使用。
16、 如权利要求 15所述的生产方法, 其中, 在所述的混合物中加入金属离子螯合剂。
17、 如权利要求 15所述的生产方法, 其中, 该生产方法在步骤 C之后增加以下步骤: 步骤 H、在步骤 C得到的混合物中滴加氢氧化钙溶液以沉淀硫酸根、碳酸根或磷酸根 或硅酸根离子, 或用离子膜法或电渗析的方法脱除硫酸盐、 硝酸盐、 碳酸盐、 盐酸盐、 磷 酸盐或硅酸盐, 得到混合物;
步骤 I、 在步骤 H制得的混合物中通入二氧化碳气体或滴入碳酸水, 沉淀多余的钙离 子, 脱除沉淀物, 得到混合物;
步骤 J、 在步骤 H、 步骤 I的混合物中滴加硝酸溶液使混合物恢复为酸性状态; 最好 使得混合物的 pH值小于 4。
18、 如权利要求 17所述的生产方法, 其中, 步骤 K取代步骤 H和 I, 且所述步骤 K的步 骤为:
在步骤 C得到的混合物中滴加硝酸钙或硝酸钡溶液以沉淀硫酸根、碳酸根或磷酸根离 子, 得到含硝酸盐的酸性状态的混合物。
19、 一种含木质素胶体或颗粒的混合燃料的生产方法,将权利要求 14-17中任一所述的生 产方法中的步骤8、 C、 D、 E、 F、 G、 H、 I、 J或步骤 K得到的混合物用喷头喷雾 方式喷向热的燃料油表面或喷入其内部, 其中, 在从上向下往燃料油喷雾的同时, 将 沉向容器底部的酸性木质素混合物连同部分燃料油从容器的底部或下部,用耐热油泵 抽出后再向燃料油表面或内部进行循环高压喷雾雾化操作。
20、 如权利要求 19所述的生产方法, 其中, 用于加热脱水处理的容器内壁采用聚四氟乙 烯层涂覆。
21、 一种含木质素胶体或颗粒的混合燃料的生产方法, 其中, 该生产方法包括以下步骤: 步骤 L、 直接利用溶剂法制浆废液, 或直接利用有机溶剂溶解干燥脱水后的木质素, 或直接利用有机溶剂溶解含有木质素的生物质原料, 或将权利要求 14-20中任一所述的生 产方法中的步骤8、 C、 D、 E、 F、 G、 H、 I、 J或步骤 K得到的酸性木质素溶于有机溶剂, 或将步骤8、 C、 D、 E、 F、 G、 H、 I、 J或步骤 K得到的酸性木质素与少量燃料油、 少量 表面活性剂以及少量有机溶剂乳化混合, 得到含酸性木质素的有机溶剂或胶体状混合燃 料;
步骤 M、 将步骤 L得到的含木质素的有机溶剂或混合物喷雾进入燃料油中, 稀释或 挥发有机溶剂, 得到分散于燃料油中细小的木质素颗粒;
步骤 N、 过滤步骤 M中的燃料油, 得到细小的木质素颗粒;
其中, 步骤 N为任意可选的步骤。
22、 如权利要求 21所述的生产方法, 其中, 步骤 L中所述的有机溶剂中含有水分。
23、 如权利要求 22所述的生产方法, 其中, 所述的水分为添加了酸性物质至 pH值偏酸 性。
24、 如权利要求 21所述的生产方法, 其中, 步骤 M中所述的燃料油的温度为大于溶解木 质素的有机溶剂的沸点温度或水的沸点温度, 以最大者为准。
25、 一种用于权利要求 1所述的混合燃料的发动机,其特征在于,其输送管路间隙性地由 第二种含可溶解木质素的化合物的燃料进行管路清理。
26、 如权利要求 25所述的混合燃料的发动机, 其中, 所述的第二种可溶解木质素的化合 物为甘油、 乙醇、 甲醇、 碱性的胺类化合物, 如一乙醇胺、 或二乙醇胺或三乙醇胺、 氨或 它们的混合物。
27、 一种用于权利要求 25所述的混合燃料的发动机的燃料, 其中, 燃料中含有甘油、 乙 醇、 甲醇、碱性的胺类化合物, 如一乙醇胺、或二乙醇胺或三乙醇胺、氨或它们的混合物。
28、 一种用于权利要求 1所述的混合燃料或多种燃料的的发动机油箱,其中,该发动机油 箱具有一个均匀输出混合燃料的出油装置,且所述出油装置可以使油箱的容积随着燃油的 减少而减小。
29、 如权利要求 28中所述的混合燃料的发动机油箱, 其中, 所述出油装置包括多个分布 在油箱不同高度带有抽吸泵的输油系统进油口。
30、 一种用于权利要求 1所述的混合燃料或多种燃料的发动机喷油器,其中,该喷油器的 针阀上开有与储油容积室相通的通油孔或通油槽, 以及与所述通油孔或通油槽相通的出油 孔或出油环槽带,且当所述针阀上的出油孔或出油环槽带与配合于所述针阀的针阀套上的 喷油孔重叠时, 喷雾动作发生。
31、 如权利要求 30所述的喷油器, 其中, 所述针阀套偶合有油量控制套, 其在针阀体上 的左右移动或转动控制供油量的开始和 /或停止的时刻。
32、 一种用于权利要求 1所述的混合燃料或多种燃料的发动机喷油器,其中,该喷油器的 针阀上开有两个独立的通油孔或通油槽, 以及与所述通油孔或通油槽相通的出油孔或出油 环槽带, 及被密封隔离的双容积室, 当所述针阀上的出油孔或出油环槽带与配合于所述针 阀的针阀套上各自对应的喷油孔重叠时,所述双容积室分别向内燃机气缸内输送和喷雾各 自的燃料。
PCT/CN2011/073159 2010-04-23 2011-04-22 含木质素的混合燃料及其生产方法以及能使用该混合燃料的喷油器 WO2011131144A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800204535A CN102858926A (zh) 2010-04-23 2011-04-22 含木质素的混合燃料及其生产方法以及能使用该混合燃料的喷油器

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN 201010170885 CN102234550A (zh) 2010-04-23 2010-04-23 混合燃料及其生产方法以及能使用该混合燃料的发动机
CN201010170885.1 2010-04-23
CN2010101851898A CN102251850A (zh) 2010-05-17 2010-05-17 内燃机替代燃料及其生产方法以及能使用该燃料的内燃机喷油器
CN201010185189.8 2010-05-17
CN 201010228830 CN102312764A (zh) 2010-07-05 2010-07-05 内燃机喷油器
CN201010228830.1 2010-07-05
CN201110038502.X 2011-01-30
CN 201110038502 CN102618339A (zh) 2011-01-30 2011-01-30 含木质素的混合燃料及其生产方法

Publications (1)

Publication Number Publication Date
WO2011131144A1 true WO2011131144A1 (zh) 2011-10-27

Family

ID=44833724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073159 WO2011131144A1 (zh) 2010-04-23 2011-04-22 含木质素的混合燃料及其生产方法以及能使用该混合燃料的喷油器

Country Status (2)

Country Link
CN (1) CN102858926A (zh)
WO (1) WO2011131144A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795436A (zh) * 2014-08-14 2017-05-31 因比肯公司 包含木素的流体组合物
CN111760549A (zh) * 2020-06-10 2020-10-13 昆明理工大学 一种造纸黑液制备多孔碳基吸附剂的方法
US11306264B2 (en) 2018-02-16 2022-04-19 A.P. Møller—Mærsk A/S Biofuel composition comprising lignin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110529310B (zh) * 2019-09-24 2024-04-02 西华大学 一种高熔点脂肪酸甲酯或乙酯供油系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478366A (en) * 1994-09-28 1995-12-26 The University Of British Columbia Pumpable lignin fuel
CN1268199A (zh) * 1997-05-29 2000-09-27 邦蒂富尔应用研究公司 处理纸浆工艺产生的失效废弃碱性蒸煮液的方法及其产品
CN1566289A (zh) * 2003-07-03 2005-01-19 陕西科技大学 木素醇燃料制造工艺
CN2861525Y (zh) * 2005-07-08 2007-01-24 武汉科技大学 一种二甲醚发动机喷油器
CN201265468Y (zh) * 2008-10-15 2009-07-01 王海明 柴油发动机油箱
WO2009100042A2 (en) * 2008-02-05 2009-08-13 Syngenta Participations Ag Systems and processes for producting biofuels from biomass
CN101955832A (zh) * 2009-07-18 2011-01-26 秦才东 内燃机或燃气轮机非均质混合燃料的生产、输送方法及油箱结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478366A (en) * 1994-09-28 1995-12-26 The University Of British Columbia Pumpable lignin fuel
CN1268199A (zh) * 1997-05-29 2000-09-27 邦蒂富尔应用研究公司 处理纸浆工艺产生的失效废弃碱性蒸煮液的方法及其产品
CN1566289A (zh) * 2003-07-03 2005-01-19 陕西科技大学 木素醇燃料制造工艺
CN2861525Y (zh) * 2005-07-08 2007-01-24 武汉科技大学 一种二甲醚发动机喷油器
WO2009100042A2 (en) * 2008-02-05 2009-08-13 Syngenta Participations Ag Systems and processes for producting biofuels from biomass
CN201265468Y (zh) * 2008-10-15 2009-07-01 王海明 柴油发动机油箱
CN101955832A (zh) * 2009-07-18 2011-01-26 秦才东 内燃机或燃气轮机非均质混合燃料的生产、输送方法及油箱结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795436A (zh) * 2014-08-14 2017-05-31 因比肯公司 包含木素的流体组合物
US11306264B2 (en) 2018-02-16 2022-04-19 A.P. Møller—Mærsk A/S Biofuel composition comprising lignin
CN111760549A (zh) * 2020-06-10 2020-10-13 昆明理工大学 一种造纸黑液制备多孔碳基吸附剂的方法

Also Published As

Publication number Publication date
CN102858926A (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
US20110239973A1 (en) Fuel mixture containing combustible solid powder and engine using the fuel mixture
CN101551108B (zh) 城市污泥的焚烧处理方法及其装置
WO2011131144A1 (zh) 含木质素的混合燃料及其生产方法以及能使用该混合燃料的喷油器
US20060236595A1 (en) Biofuel conversion process
WO2005080875A1 (fr) Procede de combustion en lit fluidise circulant de liqueur residuaire issue de la production de papier, de cuir, d'impression et de coloration
WO2021129022A1 (zh) 一种生物质基长链醇醚类含氧添加剂及其制备方法与应用
CN110787766B (zh) 一种制备脂肪酸丁酯的塔式反应装置及工艺
Liu et al. An experimental study of rheological properties and stability characteristics of biochar-glycerol-water slurry fuels
CN101797468B (zh) 一种利用造纸白泥与黑液进行煤泥流化床锅炉脱硫的方法
CN1958745A (zh) 一种环保柴油及其制备方法
CN101735871A (zh) 内燃机准液体燃料及其输送和喷射方法
CN204509244U (zh) 一种生物柴油制备工艺中用的脱色装置
CN209196866U (zh) 有机废液焚烧装置
CN101768487A (zh) 内燃机准液体燃料及其输送和喷射方法
CN102182587B (zh) 一种可实现燃油、水、空气三项混合雾化的节油装置
CN101691928B (zh) 一种以煤焦油作为煤粉锅炉启动点火燃料的方法
CN1067593A (zh) 重油掺水多功能乳化剂
CN101633859B (zh) 一种高清洁柴油
CN103818879B (zh) 微负压黑液气化方法及系统装置
CN101955832A (zh) 内燃机或燃气轮机非均质混合燃料的生产、输送方法及油箱结构
CN102234550A (zh) 混合燃料及其生产方法以及能使用该混合燃料的发动机
CN110079364B (zh) 一种生物质气化焦油的处理方法及其处理系统
CN103586255B (zh) 利用锅炉烟道气处理碳酸法制糖厂滤泥的方法
CN210559972U (zh) 一种污泥均质系统及采用其的污泥处理系统
CN100520181C (zh) 煤直接液化油渣热法进入循环流化床锅炉的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020453.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771597

Country of ref document: EP

Kind code of ref document: A1