WO2011129446A1 - 人工多能性幹細胞の製造方法 - Google Patents

人工多能性幹細胞の製造方法 Download PDF

Info

Publication number
WO2011129446A1
WO2011129446A1 PCT/JP2011/059429 JP2011059429W WO2011129446A1 WO 2011129446 A1 WO2011129446 A1 WO 2011129446A1 JP 2011059429 W JP2011059429 W JP 2011059429W WO 2011129446 A1 WO2011129446 A1 WO 2011129446A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
dedifferentiation
mononuclear
pluripotent stem
gene
Prior art date
Application number
PCT/JP2011/059429
Other languages
English (en)
French (fr)
Inventor
恵一 福田
慎介 湯浅
倫久 関
長谷川 護
Original Assignee
学校法人慶應義塾
ディナベック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾, ディナベック株式会社 filed Critical 学校法人慶應義塾
Priority to CN2011800298477A priority Critical patent/CN103097521A/zh
Priority to AU2011241514A priority patent/AU2011241514A1/en
Priority to EP11768967.9A priority patent/EP2559757B1/en
Priority to SG2012076873A priority patent/SG184892A1/en
Priority to CA2796599A priority patent/CA2796599A1/en
Priority to US13/641,370 priority patent/US9447432B2/en
Priority to JP2012510720A priority patent/JP5856949B2/ja
Publication of WO2011129446A1 publication Critical patent/WO2011129446A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2302Interleukin-2 (IL-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/515CD3, T-cell receptor complex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/11Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from blood or immune system cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to a method for producing induced pluripotent stem cells.
  • iPS cells Artificial pluripotent stem cells
  • iPS cells are useful in transplantation therapy for various diseases, and are expected to be applied to regenerative medicine.
  • somatic cells such as fibroblasts and hepatocytes and expressed. It has been reported that cells can be produced (for example, WO 2007/069666 International Publication, Takahashi K, Yamanaka S. (2006). “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors”.
  • an object is to provide a method for producing iPS cells with low invasiveness and high efficiency.
  • the method for producing induced pluripotent stem cells (iPS cells) according to the present invention is characterized by using a mononuclear cell population derived from peripheral blood as a material.
  • the above-mentioned iPS cell production method comprises the steps of (a) culturing a mononuclear cell population derived from peripheral blood for 3 to 14 days in the presence of anti-CD3 antibody and interleukin 2, and (b) the mononuclear cells after culturing. And a step of performing a dedifferentiation treatment on the population.
  • step (b) it is more preferable to introduce a dedifferentiation factor into the mononuclear cell population.
  • a dedifferentiation factor an operation of introducing a recombinant expression vector that expresses the dedifferentiation factor may be performed.
  • the dedifferentiation factor is preferably Sox2, Oct3 / 4, Klf4 and c-Myc, and the recombinant expression vector is more preferably a Sendai virus vector.
  • the method for producing iPS cells according to the present invention preferably further includes (c) a step of culturing the mononuclear cell population subjected to the dedifferentiation treatment for 14 to 25 days in the presence of a growth factor.
  • peripheral blood is derived from a human.
  • alkaline phosphatase-positive stem cells obtained by adding a virus at a MOI of 1 to 20 to a medium of a mononuclear cell population cultured in the presence of a CD3 antibody to dedifferentiate the mononuclear cell population. It is the graph which showed the colony rate of.
  • it is a microscope picture of the iPS cell manufactured from the peripheral blood origin mononuclear cell dye
  • Example of this invention it is a photograph of the immunohistochemical dyeing
  • the mononuclear cell population when the mononuclear cell population is cultured in the presence of anti-CD3 antibody and interleukin 2 to produce iPS cells (anti-CD3 + IL2 + group), the mononuclear cell population is divided into anti-CD3 antibody and interleukin. It is a graph which shows iPS establishment efficiency in the case of culturing in the absence of leukin 2 to produce iPS cells (anti-CD3-IL2-group).
  • Peripheral blood is preferably derived from mammals and may be derived from animals such as mice, rats, hamsters, guinea pigs, rabbits, sheep, horses, pigs, cats, dogs, monkeys, etc. Is more preferable.
  • the growth stage of these animals may be any of adults, pups, fetuses and embryos, and is not limited as long as peripheral blood containing mononuclear cells is obtained.
  • the blood collection method may be appropriately selected from well-known methods by those skilled in the art in consideration of the size of the animal and the amount of blood collected, and is not particularly limited. However, in order to reduce the burden on the animal, it is preferable to collect blood with a syringe.
  • the peripheral blood is preferably derived from the same animal as the patient or animal. And more preferably derived from the patient itself.
  • the mononuclear cell population may be mixed with peripheral blood-derived cells and components other than mononuclear cells or may contain only mononuclear cells. However, considering the production efficiency of iPS cells, It is preferable that it is contained in a high ratio.
  • a method for preparing a mononuclear cell population from peripheral blood can be appropriately selected by those skilled in the art from well-known methods. For example, density gradient centrifugation, lymphoquick method (One ⁇ Lambda), immunomagnetic bead method, etc. It may be used.
  • a solution of a water-soluble copolymer of sucrose and epichlorohydrin such as sucrose solution or ficoll solution, or ficoll-conlay, ficoll-hypac, or the like, or Those skilled in the art may appropriately select from well-known solutions such as a solution of colloidal silica coated with polyvinylpyrrolidone such as Percoll.
  • the peripheral blood is preferably fresh, but may be refrigerated or frozen.
  • the culture conditions may be appropriately selected by those skilled in the art.
  • the culture may be performed at 35 to 40 ° C, preferably 37 ° C in the presence of 5% CO 2 .
  • the medium can be appropriately selected by those skilled in the art from the medium normally used for mononuclear cell culture.
  • KBM502, DMEM / F12, DMEM, KBM530, KBM540, KBM560, RPM1640 may be used, and KBM502 is preferable. .
  • the anti-CD3 antibody may be fixed to a culture dish or a culture tube, or may be suspended in a liquid medium.
  • the anti-CD3 antibody may be immobilized, for example, it may be immobilized on a plastic or the like constituting the culture dish or culture tube via a covalent bond or a non-covalent bond such as electrostatic interaction.
  • the immobilization method is not particularly limited, and can be appropriately selected from methods well known to those skilled in the art.
  • a culture dish in which an anti-CD3 antibody is immobilized can be purchased from BD BioCoat.
  • the concentration of the anti-CD3 antibody in the liquid medium may be determined by those skilled in the art, but is preferably 1 to 100 ⁇ g / ml in view of the final iPS cell yield.
  • the anti-CD3 antibody may be any antibody as long as it can specifically stimulate the CD3 antigen of mononuclear cells as a material and promote the proliferation of CD3 antigen-positive mononuclear cells. Or an antibody obtained from any animal, and it is not particularly limited.
  • the antibody may be a part of an antibody including an antigen binding site including a variable region, and may be, for example, a Fab fragment, an F (ab ′) 2 fragment, or the like.
  • the interleukin may be any known interleukin, and examples include interleukin 1, interleukin 2, interleukin 4, interleukin 6, interleukin 8, interleukin 11, and interleukin 12. Considering the ease of handling and preparation, it is preferable to use a commercially available interleukin 2.
  • one or more kinds of substances usually added to mononuclear cell culture may be contained in the medium.
  • substances usually added to mononuclear cell culture include growth factors such as fibroblast growth factor (FGF) and epidermal growth factor (EGF), FBS, knockoutknserum replacement (Invitrogen), L-glutamine, non-essential amino acids, penicillin, streptomycin, etc.
  • FGF fibroblast growth factor
  • EGF epidermal growth factor
  • Invitrogen knockoutknserum replacement
  • L-glutamine L-glutamine
  • non-essential amino acids penicillin, streptomycin, etc.
  • Antibiotics, mercaptoethanol, and the like but are not limited thereto.
  • the dedifferentiation treatment of the mononuclear cell population can be performed by a method well known to those skilled in the art, and is not limited as long as desired iPS cells can be produced.
  • a dedifferentiation factor may be used, or a well-known agent that promotes mononuclear cell dedifferentiation may be administered.
  • a dedifferentiation factor (initialization factor) that is usually used when producing iPS cells can be used.
  • the initialization method described in Takahashi et al.'S paper (Cell 2007 vol.131: 861-872) can be used, and is incorporated herein by reference.
  • genes belonging to the Oct gene group include each gene such as Oct3 / 4, Oct1A, and Oct6.
  • genes belonging to the Klf gene group include Klf1, Klf2, Klf4, Klf5 and the like.
  • genes belonging to the Sox gene group include Sox1, Sox2, Sox3, Sox7, Sox15, Sox17, and Sox18.
  • genes belonging to the Myc gene group include genes such as c-Myc, N-Myc, and L-Myc.
  • cytokines and compounds may be added to the medium as cofactors.
  • dedifferentiation factors examples include combinations including the gene product of Oct gene group, the gene product of Sox gene group, the gene product of Nanog gene, the gene product of lin-28 gene, and the like. Further, in addition to the combination of these dedifferentiation factors, for example, SV40 LargeT antigen gene product, TERT gene product, immortalization inducing factor and the like may be used.
  • the dedifferentiation factor in the mononuclear cells that are dedifferentiated by the dedifferentiation factor, when one or more of the above dedifferentiation factors are already expressed, the dedifferentiation factor can be omitted.
  • the gene product of the Myc gene group may be replaced with a cytokine or a compound, and examples of the cytokine in this case include SCF and bFGF.
  • examples of compounds that can replace the c-Myc gene and the Klf4 gene include valproic acid.
  • genes encoding dedifferentiation factors are all highly conserved genes in vertebrates, and unless otherwise indicated in the present specification, the genes including homologs are expressed.
  • gene products having mutations, including gene polymorphisms have a function equivalent to that of the wild type gene product, for example, 1 to 10, preferably 1 to 6, of the wild type gene product, More preferably, mutant gene products in which 1 to 4, more preferably 1 to 3, particularly preferably 1 to 2 amino acids are substituted, inserted, or deleted are also included.
  • the method of dedifferentiation of the mononuclear cell population using the dedifferentiation factor as described above is not particularly limited.
  • the dedifferentiation treatment is performed by introducing the dedifferentiation factor into the mononuclear cell population.
  • a complex of a cationic lipid reagent such as SAINT-PhD (Cosmo Bio Inc.) or Cellvader (GEderHealthcare) and a dedifferentiation factor, or a peptide called Protein ⁇ ⁇ Transduction Domain (PTD)
  • SAINT-PhD Cosmo Bio Inc.
  • GEderHealthcare Cellvader
  • PTD Protein ⁇ ⁇ Transduction Domain
  • a dedifferentiation factor can be introduced into the mononuclear cells by adding these complexes to the culture medium of the mononuclear cell population and bringing them into contact with the mononuclear cell population.
  • the mononuclear cells thus introduced with the dedifferentiation factor are dedifferentiated and acquire pluripotency.
  • the amount of dedifferentiation factor to be added can be appropriately determined by those skilled in the art.
  • the mononuclear cell population may be dedifferentiated by introducing an expression vector capable of expressing the dedifferentiation factor into the mononuclear cell population.
  • an expression vector capable of expressing the dedifferentiation factor into the mononuclear cell population.
  • a gene encoding a dedifferentiation factor (dedifferentiation factor gene) is introduced downstream of an appropriate promoter for expression in mononuclear cells to prepare a recombinant expression vector.
  • a dedifferentiation factor gene is expressed using a virus-derived promoter.
  • an RNA encoding the dedifferentiation factor is used.
  • a recombinant virus vector in the genome is prepared.
  • the expression vector to be used is not particularly limited as long as it has a desired dedifferentiation-inducing function, and is not limited to any of wild type, mutant type, natural type, artificially modified type, etc. It is preferable that For example, it may be a viral vector such as Sendai virus-derived, retrovirus-derived, adenovirus-derived, adeno-associated virus-derived, or box virus-derived, but it is derived from Sendai virus having the feature of not causing fusion due to transfer to the host chromosome. It is preferable that it is a vector.
  • Such a Sendai virus vector preferably has a gene encoding a protein necessary for genome replication, such as N protein, P protein, and L protein, in order to perform a function of inducing dedifferentiation in mononuclear cells.
  • the artificially modified Sendai virus vector may be a Sendai virus vector having a mutation regarding cytotoxicity or temperature sensitivity.
  • a Sendai virus vector having a mutation or deletion in a gene encoding a viral envelope protein or outer shell protein such as F gene, H gene, HN gene, or G gene derived from a minus-strand RNA virus Good (see WO00 / 70055, WO00 / 70070, Li, H.-O. et al., J. Virol. 74 (14) 6564-6569 (2000)).
  • Such Sendai virus vectors are highly safe because they can replicate the genome in mononuclear cells but cannot form infectious virus particles.
  • the recombinant expression vector and virus particles thus prepared are introduced into mononuclear cells.
  • the gene of interest can be introduced into mononuclear cells by adding a recombinant expression vector such as a plasmid or virus particles to the medium.
  • a recombinant expression vector such as a plasmid
  • the recombinant expression vector can be introduced into mononuclear cells by treatment according to known gene transfer methods such as the calcium phosphate method, lipofection method, DEAE dextran method, electroporation method, etc.
  • virus particles such as recombinant Sendai virus are added, the target gene is introduced into the mononuclear cells by infecting the mononuclear cells with the virus.
  • a mononuclear cell into which a recombinant expression vector has been introduced expresses a dedifferentiation factor
  • the mononuclear cell is dedifferentiated by the expressed dedifferentiation factor.
  • the amount of the recombinant expression vector to be added can be appropriately determined by those skilled in the art.
  • the cells are cultured in a serum-free medium for 1 to 5 days, preferably 2 days in the presence of 5% CO 2 at 35 ° C. to 40 ° C., preferably 37 ° C. .
  • the serum-free medium may be DMEM / F12, VP-SFM, DMEM, KBM530, KBM540, KBM560, ROM1640, or KBM502, preferably KBM502.
  • MEF mouse embryonic fibroblast
  • SNL strained mouse embryonic fibroblast
  • the mononuclear cell population subjected to the dedifferentiation treatment as described above is cultured under general conditions for culturing iPS cells for 10 to 30 days, preferably 14 to 25 days, more preferably 20 days.
  • growth factor-containing DMEM / F12 may be used and cultured at 35 ° C. to 40 ° C., preferably 37 ° C. in the presence of 5% CO 2 .
  • a medium such as DMEM may be used, and feeder cells prepared with MEF or SNL may be used.
  • the growth factor is not particularly limited and can be appropriately selected by those skilled in the art from known growth factors.
  • FGF fibroblast growth factor
  • EGF epidermal growth factor
  • one or more kinds of substances that are usually added to the culture of mononuclear cells may be contained in the medium.
  • examples of such substances include, but are not limited to, serum such as FBS, knockout serum replacement (Invitrogen), L-glutamine, non-essential amino acids, antibiotics such as penicillin and streptomycin, and mercaptoethanol.
  • This example shows that iPS cells can be efficiently produced from a peripheral blood-derived mononuclear cell population by the iPS cell production method according to the present invention. All cultures were performed at 37 ° C. and 5% CO 2 .
  • Sendai virus was prepared by introducing the dedifferentiation factor genes (1) to (4) into a SeV18 + / TS ⁇ F vector (WO2010 / 008054) according to a known method (WO2010 / 008054).
  • RNA viral genomic RNA minus strand
  • plasmid vector expressing a recombinant viral genome of cDNA encoding the complementary strand (plus strand) and a protein (F, N, P, L, T7 RNA polymerase) necessary for virus self-replication.
  • the cells were introduced into 293T / 17 cells, and further cultured by overlaying LLC-MK2 / F / A cells expressing F protein, and the culture supernatant containing the produced virus was collected.
  • Anti-CD3 antibody (BD Biosciences) was prepared to 10 ⁇ g / ml with PBS. The bottom of the 6-well dish was covered with this antibody dilution, and incubated at 37 ° C. for 30 minutes to 3 hours. Immediately before use, the antibody dilution was removed and washed with PBS to give an anti-CD3 antibody-binding dish.
  • Peripheral blood-derived mononuclear cell populations are seeded in anti-CD3 antibody-binding dishes at a density of 1 ⁇ 10 5 to 1 ⁇ 10 6 cells / ml and contain KBM502 medium (containing 20 U / ml recombinant interleukin 2) Cultured in 10 ml for 5 days.
  • KBM502 medium containing 20 U / ml recombinant interleukin 2
  • Dedifferentiation treatment day 2 Cells were peeled off with a cell scraper, and the medium containing the cells was collected in a tube for each well. After centrifuging at 20 ° C. and 800 to 1000 rpm for 5 minutes, 2 ml of KBM502 medium was added to the pellet, and pipetting was performed several times. The pellet was broken to such an extent that it would not become a single cell and suspended. This suspension was returned to the well of the original dish and cultured in KBM502 medium for 24 hours.
  • the cells were peeled off with a cell scraper, and the medium containing the cells was collected in a tube for each well.
  • the cells were made into single cells by pipetting, and the number of cells was counted. After centrifugation at 20 ° C. and 800-1000 rpm for 5 minutes, an appropriate amount of KBM502 medium was added to the pellet.
  • the pellet is made into a single cell by pipetting, and mononuclear cells are seeded at a density of 5 ⁇ 10 4 , 5 ⁇ 10 5 , 5 ⁇ 10 6 / dish on feeder cells (SNL) prepared in a 10 cm dish, and KBM502 The cells were cultured in the medium for 24 hours.
  • SNL feeder cells
  • the iPS cell culture medium is DMEM / F12 (Invitrogen), 20% knockout serum replacement (Invitrogen), 2 mM L-glutamine (Invitrogen), 1 ⁇ 10 ⁇ 4 M non-essential amino acid (Invitrogen), 1 ⁇ 10 ⁇ 4 M2-mercaptoethanol (Invitrogen), 0.5% penicillin-streptomycin (Wako Pure Chemical Industries).
  • colonies of clones obtained by the dedifferentiation treatment were fixed with 10% neutral buffered formalin solution (Wako Pure Chemical Industries), then anti-Nanog antibody (Reprocell, diluted 1000 times), anti-Oct3 / 4 antibody (Santa Cruz, diluted 100-fold), anti-SSEA3 antibody (Millipore, diluted 200-fold), anti-SSEA4 antibody (Millipore, diluted 200-fold), anti-Tral60 antibody (Millipore, diluted 200-fold), anti-Tral81 antibody ( Millipore (200-fold dilution).
  • anti-rabbit IgG antibody, anti-mouse IgG antibody or anti-mouse IgM antibody labeled with Alexa 488 or Alexa 568 was appropriately used as a secondary antibody (all from Molecular Probes).
  • Alexa 488 or Alexa 568 was appropriately used as a secondary antibody (all from Molecular Probes).
  • the stained cells were observed under a fluorescence microscope (IX70, Olympus Corporation), as shown in FIG. 3, all the examined stem cell marker proteins were detected in all three clones.
  • Nanog-F CAGCCCCGATTCTTCCACCAGTCCC (SEQ ID NO: 1)
  • Nanog-R CGGAAGATTCCCAGTCGGGTTCACC (SEQ ID NO: 2)
  • Oct 3 / 4-F GACAGGGGGAGGGGAGGAGCTAGG (SEQ ID NO: 3)
  • Oct 3 / 4-R CTTCCCTCCAACCAGTTGCCCCAAAC (SEQ ID NO: 4)
  • Sox 2-F GGGAAATGGGAGGGGTGCAAAAGAGG
  • Sox 2-R TTGCGTGAGTGTGGATGGGATTGGTG (SEQ ID NO: 6)
  • Klf 4-F ACGATCGTGGCCCCGGAAAAGGACC (SEQ ID NO: 7)
  • Klf 4-R TGATTGTAGTGCTTTCTGGCTGGGCTCC (SEQ ID NO: 8)
  • cMyc-F GCGTCCTGGGAAGGGAGATCCGGAGC (SEQ ID NO: 9)
  • cMyc-R TTGAGGGG
  • anti-CD3-positive T cells are not isolated from the peripheral blood-derived mononuclear cell population using FACS or the like, and the peripheral blood-derived mononuclear cell population is cultured in the presence of the anti-CD3 antibody and then subjected to dedifferentiation treatment.
  • iPS cells can be produced with high efficiency.
  • T cells are selected from the peripheral blood mononuclear cell fraction by FACS to produce iPS cells.
  • CD3-positive T cells were selected by FACS from the same amount of peripheral blood-derived mononuclear cell fraction used in the examples. By this selection, about 30 to 40% of the peripheral blood-derived mononuclear cell fraction was obtained as CD3-positive T cells.
  • the selected T cells were seeded on an anti-CD3 antibody-binding dish and cultured for 5 days in 10 ml of KBM502 medium containing recombinant interleukin 2 (20 U / ml).
  • the cultured T cells were prepared at a density of 7.5 ⁇ 10 5 cells / ml, and recombinant Sendai virus was added at MOI 3 or 20 in the same manner as in Example to introduce a recombinant vector, and CD3 positive T cells The dedifferentiation process was performed.
  • the colony cells obtained by the dedifferentiation treatment were subjected to alkaline phosphatase staining and crystal violet staining.
  • FIG. 5 shows a graph comparing the number of colonies when the dedifferentiation process is performed with MOI 20 in this comparative example with the number of colonies when the dedifferentiation process is performed with MOI 20 in the example.
  • the colonies obtained in the comparative examples were several colonies including alkaline phosphatase positive and negative.
  • the method of the example showed that the efficiency of iPS cell establishment was about 100 times higher than the method of the comparative example.
  • Comparative Example 2 This comparative example shows that when producing iPS cells from the mononuclear cell population described in the Examples, a step of culturing the mononuclear cell population in the presence of anti-CD3 antibody and interleukin 2 is necessary.
  • a mononuclear cell population obtained from peripheral blood was seeded in an anti-CD3 antibody-binding dish, and cells cultured for 5 days in the presence of interleukin 2 were dedifferentiated to establish iPS cells (anti-antibody).
  • CD3 + IL2 + group On the other hand, a mononuclear cell population obtained from peripheral blood was seeded in a dish not bound with anti-CD3 antibody, and the cells cultured for 5 days using KBM502 medium not containing interleukin 2 were dedifferentiated to obtain iPS cells. Established (anti-CD3-IL2-group).
  • the mononuclear cell dedifferentiation treatment was performed by adding Sendai virus expressing the reprogramming factor at MOI 3 to the mononuclear cell population.
  • the ratio (%) of the number of alkaline phosphatase-positive colonies to the number of mononuclear cells added with Sendai virus was calculated as the iPS cell establishment efficiency. As shown in FIG. It was 0% in the CD3-IL2-group, but 0.016% in the anti-CD3 + IL2 + group.
  • a culture step in the presence of anti-CD3 antibody and interleukin 2 is required.
  • iPS cells with high efficiency from mononuclear cells derived from peripheral blood.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Transplantation (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 本発明の目的は、侵襲性が低く、かつ、高い効率でiPS細胞を製造する方法を提供することである。末梢血由来の単核球集団を、抗CD3抗体の存在下で3~14日間培養する工程と、培養した単核球集団に脱分化処理する工程とを含む方法によって、高い効率でiPS細胞を製造することができる。

Description

人工多能性幹細胞の製造方法
 本発明は、人工多能性幹細胞の製造方法に関する。
 人工多能性幹細胞(iPS細胞)は、様々な疾患に対する移植療法において有用であり、再生医療への応用が期待されている。近年、繊維芽細胞や肝細胞等の体細胞に、Oct3/4遺伝子、Sox2遺伝子、Klf4遺伝子、およびc-Myc遺伝子を導入し発現させた細胞からFbx15遺伝子を発現する細胞を選択することによってiPS細胞を作製できることが報告されている(例えば、WO2007/069666国際公開公報、Takahashi K, Yamanaka S. (2006). “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors”. Cell 126: 663-676、Takahashi K, Okita K, Nakagawa M, Yamanaka S. (2007). “Induction of pluripotent stem cells from fibroblast cultures”. Nature Protocols 2: 3081-3089、Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. (2008). “Generation of pluripotent stem cells from adult mouse liver and stomach cells”. Science 321(5889): 699-702 参照)。
 しかしながら、従来のiPS細胞作製方法では、皮膚や肝臓等の組織を採取する必要があるため患者の負担が大きく、また、iPS細胞作製効率も低かった。そこで、侵襲性が低く、かつ、高い効率でiPS細胞を製造する方法を提供することを目的とする。
 本発明に係る人工多能性幹細胞(iPS細胞)の製造方法は、末梢血由来の単核球集団を材料とすることを特徴とする。
 上記iPS細胞の製造方法は、(イ)末梢血由来の単核球集団を抗CD3抗体およびインターロイキン2の存在下で3~14日間培養する工程と、(ロ)培養後の前記単核球集団に対して脱分化処理を行う工程とを含むことが好ましい。
 また、工程(ロ)において、前記単核球集団に脱分化因子の導入操作を行うことがさらに好ましい。前記脱分化因子の導入操作において、前記脱分化因子を発現する組み換え発現ベクターの導入操作を行ってもよい。
 ここで、脱分化因子がSox2、Oct3/4、Klf4およびc-Mycであることが好ましく、組み換え発現ベクターがセンダイウイルスベクターであることがより好ましい。
 本発明に係るiPS細胞の製造方法は、(ハ)脱分化処理を行った前記単核球集団を、増殖因子の存在下で14~25日間培養する工程をさらに含むことが好ましい。また、末梢血がヒト由来であることが好ましい。
 なお、本明細書で「遺伝子」、「cDNA」などが付加されず、「Sox2」、「Oct3/4」、「Klf4」、「c-Myc」というように因子名のみで用いられた場合、これらの遺伝子の遺伝子産物であるタンパク質を指すこととする。
==クロスリファレンス==
 本出願は、2010年4月16日付で出願した日本国特許出願2010-95404に基づく優先権を主張するものであり、当該基礎出願を引用することにより、本明細書に含めるものとする。
本発明の一実施例において、CD3抗体存在下で培養した単核球集団の培地にMOI 1~20でウイルスを添加して単核球集団を脱分化処理することにより得られたアルカリフォスファターゼ陽性幹細胞のコロニー率を示したグラフである。 本発明の一実施例において、アルカリフォスファターゼ染色およびDAPI染色により染色した、末梢血由来単核球から製造されたiPS細胞の顕微鏡写真である。 本発明の一実施例において、末梢血由来単核球から製造されたiPS細胞における幹細胞マーカータンパク質の免疫組織化学的染色の写真である。 本発明の一実施例において、末梢血単核球から製造されたiPS細胞における幹細胞マーカー遺伝子の発現をRT-PCRにより解析した結果である。 本発明の一実施例において、FACSにより選別したT細胞に対しMOI 20でウイルスを添加して単核球集団を脱分化処理することにより得られたアルカリフォスファターゼ陽性幹細胞のコロニー数(比較例)と、実施例においてMOI 20で脱分化処理して得られたコロニー数(実施例)を比較したグラフである。 本発明の一実施例において、単核球集団を抗CD3抗体およびインターロイキン2の存在下で培養し、iPS細胞を作製した場合(抗CD3+IL2+群)と、単核球集団を抗CD3抗体およびインターロイキン2の非存在下で培養し、iPS細胞を作製した場合(抗CD3-IL2-群)における、iPS樹立効率を示すグラフである。
 以下、上記知見に基づき完成した本発明の実施の形態を、実施例を挙げながら詳細に説明する。
 実施の形態及び実施例に特に説明がない場合には、J. Sambrook, E. F. Fritsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2001); F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons Ltd.等の標準的なプロトコール集に記載の方法、あるいはそれを修飾したり、改変した方法を用いる。また、市販の試薬キットや測定装置を用いる場合には、特に説明が無い場合、それらに添付のプロトコールを用いる。
 なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例等は、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図ならびに範囲内で、本明細書の記載に基づき、様々に修飾ができることは、当業者にとって明らかである。
 以下に、末梢血由来の単核球集団を材料としてiPS細胞を製造する方法を詳述する。
 末梢血は、哺乳動物に由来することが好ましく、マウス、ラット、ハムスター、モルモット、ウサギ、ヒツジ、ウマ、ブタ、ネコ、イヌ、サル等の動物に由来してもよいが、ヒトに由来することがより好ましい。これらの動物の成長段階は、成体、仔、胎児、胚のいずれであってもよく、単核球の含まれる末梢血が得られる範囲内で制限されない。採血方法は、動物のサイズや採血量を考慮して当業者が周知の方法から適宜選択すればよく、特に制限されないが、動物の負担を軽減するためには注射器で採血することが好ましい。
 なお、本発明に係る方法で製造したiPS細胞を何らかの疾病に罹患した患者あるいは患獣の治療に用いる場合には、末梢血は、患者や患獣と同種の動物に由来することが好ましく、患者や患獣自身に由来することがより好ましい。
 単核球集団は、単核球以外の末梢血由来の細胞や成分と混在していても、単核球のみが含まれてもよいが、iPS細胞の製造効率を考慮すると、単核球が高い割合で含まれていることが好ましい。末梢血から単核球集団を調製する方法は、周知の方法から当業者が適宜選択することができ、例えば、密度勾配遠心法、リンフォクイック法(One Lambda社)、免疫磁気ビーズ法等を用いてもよい。密度勾配遠心法の比重液としては、例えば、ショ糖溶液やフィコール溶液、または、フィコール・コンレイ、フィコール・ハイパック等のショ糖とエピクロロヒドリンとの水溶性共重合体の溶液、あるいは、パーコール等のポリビニルピロリドンで被覆したコロイドシリカの溶液等の周知の溶液から当業者が適宜選択すればよい。なお、末梢血は、新鮮なものであることが好ましいが、冷蔵・冷凍保存されたものであっても構わない。
==末梢血由来の単核球集団の培養==
 まず、末梢血から調製した単核球集団を、抗CD3抗体およびインターロイキンの存在下で3~14日間、好ましくは3~7日間培養する。この培養により、単核球のうち、CD3陽性T細胞の増殖が特異的に促進されると考えられる。
 培養条件は、当業者が適宜選択すればよく、例えば5%CO存在下で35~40℃、好ましくは37℃で培養すればよい。培地は単核球の培養に通常用いられる培地から当業者が適宜選択でき、例えば、KBM502、DMEM/F12、DMEM、KBM530、KBM540、KBM560、RPM1640であってもよいが、KBM502であることが好ましい。
 ここで、抗CD3抗体は、培養皿や培養管に固定されていても、あるいは、液体培地中に浮遊した状態であってもよい。抗CD3抗体が固定化されている場合、例えば、共有結合、または、静電相互作用等の非共有結合を介して、培養皿や培養管を構成するプラスチック等に固定化されていてもよいが、固定化方法は特に制限されず、当業者に周知の方法から適宜選択できる。また、抗CD3抗体の固定化された培養皿等は、BD BioCoat社等から購入することもできる。液体培地中の抗CD3抗体の濃度は、当業者が最適濃度を設定すればよいが、最終的なiPS細胞の収率を考慮すると、1~100μg/mlであることが好ましい。なお、抗CD3抗体は、材料となる単核球のCD3抗原に対して特異的に刺激を与え、CD3抗原陽性単核球の増殖を促進することのできる抗体であればよく、ポリクローナル抗体であっても、モノクローナル抗体であってもよく、また、何れの動物から得られた抗体であっても特に制限されない。ここで、抗体は、可変領域を含む抗原結合部位を含む抗体の一部であってもよく、例えば、Fabフラグメント、F(ab’)フラグメント等であってもよい。
 インターロイキンは、周知のいずれのインターロイキンであってもよく、例えば、インターロイキン1、インターロイキン2、インターロイキン4、インターロイキン6、インターロイキン8、インターロイキン11、インターロイキン12等が挙げられるが、取り扱いや調製の容易さを考慮すると、市販されているインターロイキン2を用いることが好ましい。
 なお、上記抗体やインターロイキンに加え、単核球の培養に通常添加される1種類以上の物質が、培地に含まれていてもよい。このような物質として、例えば、繊維芽細胞増殖因子(FGF)や上皮成長因子(EGF)等の増殖因子、FBSやknockout serum replacement (Invitrogen 社)、L-グルタミン、非必須アミノ酸、ペニシリンやストレプトマイシン等の抗生物質、メルカプトエタノール等が挙げられるが、これらに限定されない。
==単核球集団の脱分化処理==
 次に、単核球集団に対して脱分化処理を行う。
 単核球集団の脱分化処理は、当業者に周知の方法によって行うことができ、所望のiPS細胞が作製できる範囲で制限されない。例えば、脱分化因子を用いても、あるいは、単核球の脱分化を促進する周知の薬剤を投与してもよい。脱分化因子を用いる場合、iPS細胞を作製する際に通常用いられる脱分化因子(初期化因子)を用いることができる。例えばTakahashiらの論文(Cell 2007 vol.131: 861-872)に記載された初期化方法を用いることができ、本刊行物を引用することにより、本明細書に含めるものとする。特に、Oct遺伝子群、Klf遺伝子群、Sox遺伝子群のそれぞれから選択された遺伝子産物の組み合わせを含むことが好ましく、Myc遺伝子群の遺伝子産物をさらに含むことが好ましい。Oct遺伝子群に属する遺伝子としては、Oct3/4、Oct1A、Oct6等の各遺伝子が挙げられる。Klf遺伝子群に属する遺伝子としては、Klf1、Klf2、Klf4、Klf5等の各遺伝子が挙げられる。Sox遺伝子群に属する遺伝子としては、Sox1、Sox2、Sox3、Sox7、Sox15、Sox17、Sox18等の各遺伝子が挙げられる。Myc遺伝子群に属する遺伝子としては、c-Myc、N-Myc、L-Myc等の各遺伝子が挙げられる。さらに、これら遺伝子の組み合わせに加え、サイトカインや化合物を補助因子として培地に添加しても良い。
 上記以外の脱分化因子の組み合わせとして、Oct遺伝子群の遺伝子産物、Sox遺伝子群の遺伝子産物に加え、Nanog遺伝子の遺伝子産物、lin-28遺伝子の遺伝子産物等を含む組み合わせが例示できる。また、これらの脱分化因子の組み合わせに加え、例えば、SV40 LargeT抗原遺伝子産物、およびTERT遺伝子産物、不死化誘導因子等を用いてもよい。
 なお、脱分化因子により脱分化される単核球において、上記の脱分化因子のいずれか、または複数がすでに発現している場合には、その脱分化因子を省略することもできる。また、特定の脱分化因子の機能を代替できる化合物があれば、その脱分化因子の代わりに用いてもよい。例えば、Myc遺伝子群の遺伝子産物は、サイトカインや化合物で置換できる場合があり、この場合のサイトカインとして、SCFやbFGF等が挙げられる。また、c-Myc遺伝子やKlf4遺伝子を代替できる化合物として、例えばバルプロ酸などが挙げられる。
 脱分化因子をコードする遺伝子は、いずれも脊椎動物で高度に保存されている遺伝子であり、本明細書では特に動物名を示さない限り、ホモログを含めた遺伝子を表すものとする。また、遺伝子多型を含め、変異を有する遺伝子の遺伝子産物であっても野生型の遺伝子産物と同等の機能を有する遺伝子産物、例えば、野生型遺伝子産物の1~10、好ましくは1~6、より好ましくは1~4、さらに好ましくは1~3、特に好ましくは1~2アミノ酸が置換、挿入、または欠失した変異遺伝子産物もまた、含まれるものとする。
 以上のような脱分化因子を用いた、単核球集団の脱分化処理方法は特に制限されないが、例えば、単核球集団に対し、脱分化因子の導入操作を行うことによって脱分化処理することができる。具体的には、SAINT-PhD(コスモ・バイオ株式会社)やCellvader(GE Healthcare 社)等の陽イオン性脂質試薬と脱分化因子との複合体、あるいは、Protein Transduction Domain(PTD)と呼ばれるペプチドと脱分化因子との複合体等を調製する。これらの複合体を単核球集団の培地に添加し、単核球集団に接触させることにより、脱分化因子を単核球に導入することができる。こうして脱分化因子が導入された単核球は脱分化し、多能性を獲得する。なお、添加する脱分化因子の量は、当業者が適宜決定できる。
 一方、単核球集団に対し、脱分化因子を発現させることのできる発現ベクターの導入操作を行うことによって、単核球集団の脱分化処理を行ってもよい。DNAベクターの場合、脱分化因子をコードする遺伝子(脱分化因子遺伝子)を、単核球で発現させるための適切なプロモーターの下流に導入し、組み換え発現ベクターを調製する。あるいはセンダイウイルスのようなマイナス鎖RNAウイルスの場合は、ウイルス由来のプロモーターを利用して脱分化因子遺伝子を発現させるが、このようなウイルス由来のRNAベクターの場合、脱分化因子をコードするRNAをゲノムに有する組み換えウイルスベクターを調製する。この時、1つのベクターに2種類以上の脱分化因子遺伝子を挿入してもよい。ここで、使用する発現ベクターは、所望の脱分化誘導機能を有する範囲で特に制限されず、野生型、変異型、天然型、人為的改変型等のいずれであっても制限されないが、ウイルスベクターであることが好ましい。例えば、センダイウイルス由来、レトロウイルス由来、アデノウイルス由来、アデノ随伴ウイルス由来、ボックスウイルス由来等のウイルスベクターであってもよいが、宿主染色体への転移による融合を起こさないという特徴を有するセンダイウイルス由来のベクターであることが好ましい。
 このようなセンダイウイルスベクターは、単核球における脱分化の誘導機能を果たすために、Nタンパク質、Pタンパク質、およびLタンパク質等の、ゲノム複製に必要なタンパク質をコードする遺伝子を有することが好ましい。ここで、人為的改変型のセンダイウイルスベクターは、細胞傷害性や温度感受性についての変異を有するセンダイウイルスベクターであってもよい。例えば、マイナス鎖RNAウイルス由来のF遺伝子、H遺伝子、HN遺伝子、またはG遺伝子等のウイルスのエンベロープタンパク質や外殻タンパク質をコードする遺伝子に変異または欠損を有しているセンダイウイルスベクターであってもよい(WO00/70055、WO00/70070、Li, H.-O. et al., J. Virol. 74(14) 6564-6569 (2000) 参照)。このようなセンダイウイルスベクターは、単核球においてゲノムを複製できるが感染性ウイルス粒子を形成できないため、安全性が高い。特に、F遺伝子欠失型センダイウイルスベクターを用いることが好ましい。
 このように調製した組み換え発現ベクターやウイルス粒子を単核球に導入する。この際、プラスミド等の組み換え発現ベクター、あるいは、ウイルス粒子を培地に添加することにより、単核球に目的遺伝子を導入することができる。プラスミド等の組み換え発現ベクターを添加した場合、リン酸カルシウム法、リポフェクション法、DEAEデキストラン法、エレクトロポレーション法等の周知の遺伝子導入方法に従って処理することによって組み換え発現ベクターを単核球に導入することができる。一方、組み換えセンダイウイルスなどのウイルス粒子を添加した場合、単核球にウイルスが感染することによって単核球に目的遺伝子が導入される。
 組み換え発現ベクターが導入された単核球では脱分化因子が発現するため、その単核球は発現した脱分化因子によって脱分化する。なお、添加する組み換え発現ベクターの量は、当業者が適宜決定できる。
 なお、単核球集団に対する脱分化因子導入操作の間、無血清培地中で1~5日、好ましくは2日間、5%CO存在下、35℃~40℃、好ましくは37℃で培養する。無血清培地は、DMEM/F12、VP-SFM、DMEM、KBM530、KBM540、KBM560、ROM1640、あるいはKBM502であってもよいが、KBM502であることが好ましい。この際、MEF(マウス胚性繊維芽細胞)やSNL(株化マウス胚性繊維芽細胞)等で作製したフィーダー細胞を用いてもよい。
==脱分化処理後の培養==
 以上のようにして脱分化処理した単核球集団を10~30日、好ましくは14~25日、より好ましくは20日間、iPS細胞を培養する一般的な条件下で培養する。例えば、増殖因子含有DMEM/F12を用い、5%CO存在下、35℃~40℃、好ましくは37℃で培養すればよい。あるいは、DMEM等の培地を用いてもよく、MEFやSNL等で作製したフィーダー細胞を用いてもよい。また、増殖因子は特に制限されず、周知の増殖因子から当業者が適宜選択できるが、例えば、繊維芽細胞増殖因子(FGF)や上皮成長因子(EGF)であってもよい。
 なお、上記増殖因子に加え、単核球の培養に通常添加される1種類以上の物質が、培地に含まれていてもよい。このような物質として、FBS等の血清やknockout serum replacement (Invitrogen 社)、L-グルタミン、非必須アミノ酸、ペニシリンやストレプトマイシン等の抗生物質、メルカプトエタノール等が挙げられるがこれらに限定されない。
 本実施例では、本発明に係るiPS細胞製造方法によって、末梢血由来単核球集団から効率的にiPS細胞を製造できることを示す。なお、培養は全て37℃、5%CO条件下で行った。
==単核球分画の調製==
 慶應大学病院倫理委員会で承認されたプロトコールに従って、インフォームドコンセントを行った各健常人ボランティア(11歳~66歳、男女、計5名)から、1~20mlの末梢血を採血した。フィコール・ハイパック(GE Healthcare 社)を比重液とし、遠心分離(30分間、400×g)を行い、末梢血から単核球分画を単離した。
==組み換えセンダイウイルスベクター==
 以下(1)~(4)の脱分化因子遺伝子を公知の方法(WO2010/008054)に従って、SeV18+/TSΔFベクター(WO2010/008054)に導入したセンダイウイルスの調製を行った。
 (1)Oct3/4遺伝子
 (2)Klf4遺伝子
 (3)c-Myc遺伝子
 (4)Sox2遺伝子
 具体的には、(1)~(4)の遺伝子を含む、マイナス鎖RNAウイルスゲノムRNA(マイナス鎖)またはその相補鎖(プラス鎖)をコードするcDNAの組み換えウイルスゲノムを発現するプラスミドベクター、及びウイルスの自己複製に必要な蛋白質(F、N、P、L、T7RNAポリメラーゼ)を発現するプラスミドベクターを293T/17細胞に導入し、さらにFタンパク質を発現するLLC-MK2/F/A細胞を重層して培養を行い、生成したウイルスを含む培養上清を回収することにより製造した。
 ==フィーダー細胞の調製==
(株化マウス胚性繊維芽細胞、SNL)
 ディッシュに0.1%ゼラチンを加え、37℃で約1時間静置し、ディッシュをコーティングした。SNL(EGACC社)を1.5×10細胞/mlの密度に調製し、1ディッシュ(直径10cm)あたり10mlを加え、一晩培養し、フィーダー細胞を調製した。
==抗CD3抗体を用いた単核球集団の培養==
 抗CD3抗体(BD Biosciences 社)をPBSで10μg/mlに調製した。この抗体希釈液で6ウェルディッシュの底面を覆い、37℃で30分間~3時間インキュベートした。使用直前に抗体希釈液を取り除き、PBSで洗浄して抗CD3抗体結合ディッシュとした。
 末梢血由来単核球集団を、1×10~1×10細胞/mlの密度で抗CD3抗体結合ディッシュに播種し、含有KBM502培地(20U/ml組み換えインターロイキン2が含有されている)10mlにおいて5日間培養した。
==単核球の脱分化処理==
(脱分化処理1日目)
 抗CD3抗体を用いて培養した単核球集団を7.5×10細胞/mlの密度に調製し、ここにMOI 1、3、5、10、あるいは20でセンダイウイルスを添加することによって、組み換えベクターを導入した後、KBM502培地中で24時間培養した。
(脱分化処理2日目)
 セルスクレーパーで細胞を剥がし取り、細胞を含む培地を、ウェル毎にチューブに回収した。20℃、800~1000rpmで5分間遠心した後、ペレットにKBM502培地2mlを加え、数回ピペッティングし、ペレットをシングルセルにならない程度に破壊し、懸濁した。この懸濁液を、元のディッシュのウェルに戻し、KBM502培地中で24時間培養した。
(脱分化処理3日目)
 セルスクレーパーで細胞を剥がし取り、細胞を含む培地をウェル毎にチューブに回収した。ピペッティングによって、細胞をシングルセルにし、細胞数を計数した。20℃、800~1000rpmで5分間遠心した後、ペレットに適量のKBM502培地を加えた。ピペッティングによって、ペレットをシングルセルにし、10cmディッシュに調製したフィーダー細胞(SNL)上に、5×10、5×10、5×10/ディッシュの密度で単核球を播種し、KBM502培地中で24時間培養した。
==脱分化処理後の培養==
 上記のように脱分化処理した細胞を、フィーダー細胞(SNL)上に播種し、培地を10ng/mlヒト塩基性繊維芽細胞増殖因子(bFGF、和光純薬工業)添加iPS細胞培地(10ml/10cmディッシュ)に交換した。その後、48時間毎に培地を交換し、20日間培養を続けた。なお、iPS細胞培地は、DMEM/F12(Invitrogen 社)、20%knockout serum replacement (Invitrogen 社)、2mM L-グルタミン、(Invitrogen 社)、1×10-4M 非必須アミノ酸(Invitrogen 社)、1×10-4M2-メルカプトエタノール(Invitrogen 社)、0.5%ペニシリン-ストレプトマイシン(和光純薬工業)から成る。
==アルカリフォスファターゼ染色およびクリスタルバイオレット染色==
 脱分化処理により得られたコロニーに対し、アルカリフォスファターゼ染色、および、クリスタルバイオレット染色を行った。まず、コロニーを10%中性緩衝ホルマリン液(和光純薬工業)で固定した後、1-Step NBT/BCIP(Pierce 社)で染色した。さらに、クリスタルバイオレットをメタノールに溶解して4%クリスタルバイオレット溶液を調製し、細胞に添加して30分間染色した。なお、アルカリフォスファターゼは幹細胞で発現することが知られており、幹細胞のマーカーとして用いられている(例えば、Riekstina U. et al., Stem Cell Rev. 2009 Dec 5(4): 378-386 参照)。また、クリスタルバイオレット染色により生細胞のみが染色される。さらに、DAPI(Molecular Probes 社)を用いて適宜核の対比染色を行った。
 図1に示すように、MOI 3~20のいずれで脱分化処理を行った場合でも、生細胞の80~90%のコロニーがアルカリフォスファターゼ陽性であった
==免疫組織化学的染色による幹細胞マーカータンパク質発現の解析==
 上記アルカリフォスファターゼ陽性細胞のコロニーのうち、3コロニーをランダムにクローニングし、これらの細胞がiPS細胞であることを確認するため、DAPI染色およびアルカリフォスファターゼ染色を行い形態学的観察を行ったところ、3つのクローンとも、胚性幹細胞あるいはiPS細胞に典型的な形態を有し、アルカリフォスファターゼ陽性であった。
 次に、脱分化処理により得られたクローンのコロニーを、10%中性緩衝ホルマリン液(和光純薬工業)で固定した後、抗Nanog抗体(リプロセル社、1000倍希釈)、抗Oct3/4抗体(Santa Cruz 社、100倍希釈)、抗SSEA3抗体(Millipore 社、200倍希釈)、抗SSEA4抗体(Millipore 社、200倍希釈)、抗Tral60抗体(Millipore 社、200倍希釈)、抗Tral81抗体(Millipore 社、200倍希釈)と反応させた。その後、Alexa488またはAlexa568で標識された抗ウサギIgG抗体、抗マウスIgG抗体あるいは抗マウスIgM抗体を二次抗体(全てMolecular Probes 社)として適宜用いた。染色した細胞を蛍光顕微鏡(IX70、オリンパス株式会社)下で観察したところ、図3に示すように、3つのクローン全てにおいて、調べた全ての幹細胞マーカーのタンパク質が検出された。
==RT-PCR法による幹細胞マーカー遺伝子発現の解析==
 さらに、各クローンの細胞について各種幹細胞マーカーのタンパク質および遺伝子発現を、免疫組織学的染色および逆転写ポリメラーゼ連鎖反応(RT-PCR)法により解析した。RT-PCR法では、脱分化処理前の単核球、および、脱分化処理後の単核球について同様に解析を行い、陽性コントロール細胞としてヒト胚性幹細胞を用いた(KhES-2、京都大学より入手)。
 各クローンの細胞から、TRIZOL(Invitrogen 社)を用いて全RNAを単離した。この全RNAから、Superscript First-Strand Synthesis System(Invitorgen 社)を用いてcDNAを調製した。このcDNAを鋳型とし、下記のプライマーを用いてKOD plus(DNAポリメラーゼ、東洋紡社)によるRT-PCRを行ったところ、図4に示すように、ヒト胚性幹細胞に発現する幹細胞マーカー遺伝子が、3クローン全ての細胞において検出された。
プライマー:
Nanog-F: CAGCCCCGATTCTTCCACCAGTCCC(配列番号1)
Nanog-R: CGGAAGATTCCCAGTCGGGTTCACC(配列番号2)
Oct 3/4-F: GACAGGGGGAGGGGAGGAGCTAGG(配列番号3)
Oct 3/4-R: CTTCCCTCCAACCAGTTGCCCCAAAC(配列番号4)
Sox 2-F: GGGAAATGGGAGGGGTGCAAAAGAGG(配列番号5)
Sox 2-R: TTGCGTGAGTGTGGATGGGATTGGTG(配列番号6)
Klf 4-F: ACGATCGTGGCCCCGGAAAAGGACC(配列番号7)
Klf 4-R: TGATTGTAGTGCTTTCTGGCTGGGCTCC(配列番号8)
cMyc-F: GCGTCCTGGGAAGGGAGATCCGGAGC(配列番号9)
cMyc-R: TTGAGGGGCATCGTCGCGGGAGGCTG(配列番号10)
GDF 3-F: CTTATGCTACGTAAAGGAGCTGGG(配列番号11)
GDF 3-R: GTGCCAACCCAGGTCCCGGAAGTT(配列番号12)
Rex 1-F: CAGATCCTAAACAGCTCGCAGAAT(配列番号13)
Rex 1-R: GCGTACGCAAATTAAAGTCCAGA(配列番号14)
DPPA 4-F: GGAGCCGCCTGCCCTGGAAAATTC(配列番号15)
DPPA 4-R: TTTTTCCTGATATTCTATTCCCAT(配列番号16)
DPPA 2-F: CCGTCCCCGCAATCTCCTTCCATC(配列番号17)
DPPA 2-R: ATGATGCCAACATGGCTCCCGGTG(配列番号18)
GAPDH-F: CAGAACATCATCCCTGCCTCTAG(配列番号19)
GAPDH-R: TTGAAGTCAGAGGAGACCACCTG(配列番号20)
 これらの結果は、本実施例において作製した細胞はiPS細胞であることを示している。
 このように、末梢血由来単核球集団からFACSなどを用いて抗CD3陽性T細胞を単離せず、末梢血由来単核球集団を抗CD3抗体の存在下で培養した後、脱分化処理することにより、高い効率でiPS細胞が作製できる。
[比較例1]
 比較例では、FACSにより末梢血単核球分画からT細胞を選別し、iPS細胞を製造する。
 まず、実施例で用いたのと同量の末梢血由来単核球分画から、FACSによりCD3陽性T細胞を選別した。この選別により末梢血由来単核球分画の約30~40%がCD3陽性T細胞として得られた。選別されたT細胞を抗CD3抗体結合ディッシュに播種し、組み換えインターロイキン2(20U/ml)含有KBM502培地10mlにおいて5日間培養した。
 培養後のT細胞を7.5×10細胞/mlの密度に調製し、実施例と同様にMOI 3あるいは20で組み換えセンダイウイルスを添加することによって、組み換えベクターを導入し、CD3陽性T細胞の脱分化処理を行った。
 脱分化処理により得られたコロニーの細胞において、アルカリフォスファターゼ染色、および、クリスタルバイオレット染色を行った。
 本比較例でMOI 20で脱分化処理を行った場合のコロニー数を、実施例でMOI 20で脱分化処理を行った場合のコロニー数と比較したグラフを図5に示す。比較例で得られたコロニーは、アルカリフォスファターゼ陽性、陰性を含めても数コロニーであった。
 比較例の結果を実施例の結果と比較すると、実施例の方法では、比較例の方法に比較して、iPS細胞樹立の効率が約100倍高いことが示された。
[比較例2]
 本比較例では、実施例に記載の単核球集団からiPS細胞を作製する際、抗CD3抗体およびインターロイキン2の存在下で単核球集団を培養する工程が必要であることを示す。
 まず、実施例の記載に従い、末梢血から取得した単核球集団を抗CD3抗体結合ディッシュに播種し、インターロイキン2存在下で5日間培養した細胞を脱分化させてiPS細胞を樹立した(抗CD3+IL2+群)。一方、末梢血から取得した単核球集団を、抗CD3抗体の結合していないディッシュに播種し、インターロイキン2を含有しないKBM502培地を用いて5日間培養した細胞を脱分化させてiPS細胞を樹立した(抗CD3-IL2-群)。なお、抗CD3+IL2+群、抗CD3-IL2-群共に、単核球の脱分化処理は、単核球集団に、MOI 3で、初期化因子を発現するセンダイウイルスを添加して行った。
 以上のiPS樹立工程において、センダイウイルスを添加した単核球数に対するアルカリフォスファターゼ陽性コロニー数の割合(%)をiPS細胞樹立効率として算出したところ、図6に示すように、iPS細胞樹立効率は抗CD3-IL2-群では0%であったが、抗CD3+IL2+群では0.016%であった。
 このように、単核球集団からiPS細胞を作製するためには、抗CD3抗体およびインターロイキン2の存在下での培養工程が必要である。
 本発明により、末梢血由来の単核球から高効率でiPS細胞を製造することが可能になった。

Claims (8)

  1.  人工多能性幹細胞の製造方法であって、
     末梢血由来の単核球集団を材料とすることを特徴とする方法。 
  2.  請求項1に記載の人工多能性幹細胞の製造方法であって、
     (イ)末梢血由来の単核球集団を抗CD3抗体およびインターロイキン2の存在下で3~14日間培養する工程と、
     (ロ)培養後の前記単核球集団に対して脱分化処理を行う工程と
     を含むことを特徴とする方法。
  3.  請求項2に記載の人工多能性幹細胞の製造方法であって、
     前記工程(ロ)において、前記単核球集団に脱分化因子の導入操作を行うことを特徴とする方法。
  4.  請求項3に記載の人工多能性幹細胞の製造方法であって、
     前記脱分化因子の導入操作において、前記脱分化因子を発現する組み換え発現ベクターの導入操作を行うことを特徴とする方法。
  5.  請求項3または4に記載の人工多能性幹細胞の製造方法であって、
     前記工程(ロ)において、前記脱分化因子がSox2、Oct3/4、Klf4およびc-Mycであることを特徴とする方法。
  6.  請求項4または5に記載の人工多能性幹細胞の製造方法であって、
     前記組み換え発現ベクターがセンダイウイルスベクターであることを特徴とする方法。
  7.  請求項2~6のいずれかに記載の人工多能性幹細胞の製造方法であって、
     (ハ)脱分化処理を行った前記単核球集団を、増殖因子の存在下で14~25日間培養する工程をさらに含むことを特徴とする方法。
  8.  請求項1~7のいずれかに記載の人工多能性幹細胞の製造方法であって、
     前記末梢血がヒト由来であることを特徴とする方法。
PCT/JP2011/059429 2010-04-16 2011-04-15 人工多能性幹細胞の製造方法 WO2011129446A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2011800298477A CN103097521A (zh) 2010-04-16 2011-04-15 人工多能性干细胞的制造方法
AU2011241514A AU2011241514A1 (en) 2010-04-16 2011-04-15 Method for producing induced pluripotent stem cells
EP11768967.9A EP2559757B1 (en) 2010-04-16 2011-04-15 Method for producing induced pluripotent stem cells
SG2012076873A SG184892A1 (en) 2010-04-16 2011-04-15 Method for producing induced pluripotent stem cells
CA2796599A CA2796599A1 (en) 2010-04-16 2011-04-15 Method for producing induced pluripotent stem cells
US13/641,370 US9447432B2 (en) 2010-04-16 2011-04-15 Method for producing induced pluripotent stem cells
JP2012510720A JP5856949B2 (ja) 2010-04-16 2011-04-15 人工多能性幹細胞の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010095404 2010-04-16
JP2010-095404 2010-04-16

Publications (1)

Publication Number Publication Date
WO2011129446A1 true WO2011129446A1 (ja) 2011-10-20

Family

ID=44798814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059429 WO2011129446A1 (ja) 2010-04-16 2011-04-15 人工多能性幹細胞の製造方法

Country Status (8)

Country Link
US (1) US9447432B2 (ja)
EP (1) EP2559757B1 (ja)
JP (1) JP5856949B2 (ja)
CN (1) CN103097521A (ja)
AU (1) AU2011241514A1 (ja)
CA (1) CA2796599A1 (ja)
SG (1) SG184892A1 (ja)
WO (1) WO2011129446A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090909B2 (en) 2010-08-30 2015-07-28 Dnavec Corporation Composition for inducing pluripotent stem cell, and use thereof
JPWO2018143243A1 (ja) * 2017-02-03 2019-11-21 国立大学法人神戸大学 人工多能性幹細胞の作製方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9365866B2 (en) 2009-06-03 2016-06-14 National Institute Of Advanced Industrial Science And Technology Vectors for generating pluripotent stem cells and methods of producing pluripotent stem cells using the same
WO2012063817A1 (ja) * 2010-11-09 2012-05-18 独立行政法人産業技術総合研究所 末梢血単球由来多能性幹細胞作製方法
WO2018232079A1 (en) 2017-06-14 2018-12-20 Daley George Q Hematopoietic stem and progenitor cells derived from hemogenic endothelial cells by episomal plasmid gene transfer
US20230073449A1 (en) 2020-01-23 2023-03-09 The Children's Medical Center Corporation Stroma-free t cell differentiation from human pluripotent stem cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148057A1 (ja) * 2008-06-02 2009-12-10 協和発酵キリン株式会社 血球細胞の初期化法
WO2010131747A1 (ja) * 2009-05-15 2010-11-18 国立大学法人 東京大学 ウイルス産生細胞

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020169306A1 (en) 1999-05-18 2002-11-14 Kaio Kitazato Envelope gene-deficient paramyxovirus vector
US20030022376A1 (en) 1999-05-18 2003-01-30 Kaio Kitazato Paramyxovirus-derived RNP
CN1330767C (zh) 1999-05-18 2007-08-08 株式会社载体研究所 包膜基因缺陷型副粘病毒科的病毒载体
WO2000070055A1 (fr) 1999-05-18 2000-11-23 Dnavec Research Inc. Ribonucleoproteine derivee d'un paramyxovirus
PT1970446E (pt) 2005-12-13 2011-09-01 Univ Kyoto Factor de reprogramação nuclear
EP2288692B1 (en) * 2008-06-27 2017-08-02 Kyoto University Method of efficiently establishing induced pluripotent stem cells
US9127256B2 (en) 2008-07-16 2015-09-08 Dnavec Corporation Method for production of reprogrammed cell using chromosomally unintegrated virus vector
EP2336303B1 (en) * 2008-09-08 2015-07-15 Riken NKT CELL-DERIVED iPS CELLS AND NKT CELLS DERIVED THEREFROM
JP5633075B2 (ja) 2009-05-18 2014-12-03 独立行政法人産業技術総合研究所 多能性幹細胞作成用ベクター材料及びこれを用いた多能性幹細胞作成方法
DK2548950T3 (en) * 2009-06-05 2017-12-11 Cellular Dynamics Int Inc Reprogramming of T cells and hematopoietic cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148057A1 (ja) * 2008-06-02 2009-12-10 協和発酵キリン株式会社 血球細胞の初期化法
WO2010131747A1 (ja) * 2009-05-15 2010-11-18 国立大学法人 東京大学 ウイルス産生細胞

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ANDERSON, P.M. ET AL.: "Anti-CD3 + interleukin-2 stimulation of marrow and blood: comparison of proliferation and cytotoxicity", BLOOD, vol. 80, no. 7, 1992, pages 1846 - 53, XP002411886 *
FUSAKI, N. ET AL.: "Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome", PROC.JPN.ACAD.SER.B PHYS.BIOL.SCI., vol. 85, no. 8, 2009, pages 348 - 62, XP002663242 *
GIORGETTI, A. ET AL.: "Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2", CELL STEM CELL, vol. 5, no. 4, 2009, pages 353 - 7, XP008151555 *
HAASE, A. ET AL.: "Generation of induced pluripotent stem cells from human cord blood", CELL STEM CELL, vol. 5, no. 4, 2009, pages 434 - 41, XP008162338 *
HANNA, J. ET AL.: "Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency", CELL, vol. 133, no. 2, 2008, pages 250 - 64, XP002550844 *
LOH, Y.H. ET AL.: "Generation of induced pluripotent stem cells from human blood", BLOOD, vol. 113, no. 22, 2009, pages 5476 - 9, XP002595207 *
See also references of EP2559757A4 *
SEKI, T. ET AL.: "Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells", CELL STEM CELL, vol. 7, no. 1, July 2010 (2010-07-01), pages LL-4, XP008162341 *
YE, Z. ET AL.: "Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders", BLOOD, vol. 114, no. 27, 2009, pages 5473 - 80, XP008162340 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090909B2 (en) 2010-08-30 2015-07-28 Dnavec Corporation Composition for inducing pluripotent stem cell, and use thereof
JPWO2018143243A1 (ja) * 2017-02-03 2019-11-21 国立大学法人神戸大学 人工多能性幹細胞の作製方法
JP7224021B2 (ja) 2017-02-03 2023-02-17 国立大学法人神戸大学 人工多能性幹細胞の作製方法

Also Published As

Publication number Publication date
AU2011241514A1 (en) 2012-12-06
US9447432B2 (en) 2016-09-20
JP5856949B2 (ja) 2016-02-10
US20130189786A1 (en) 2013-07-25
SG184892A1 (en) 2012-11-29
EP2559757A4 (en) 2014-01-22
EP2559757A1 (en) 2013-02-20
CA2796599A1 (en) 2011-10-20
EP2559757B1 (en) 2017-12-06
CN103097521A (zh) 2013-05-08
JPWO2011129446A1 (ja) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5827220B2 (ja) 人工多能性幹細胞の樹立効率改善方法
JP5553178B2 (ja) 効率的な人工多能性幹細胞の樹立方法
CA2697621C (en) Method of efficiently establishing induced pluripotent stem cells
KR102066761B1 (ko) 효율적 인공 다능성 간세포 수립 방법
JP5856949B2 (ja) 人工多能性幹細胞の製造方法
KR20110015500A (ko) 핵 초기화 방법
US9637732B2 (en) Method of efficiently establishing induced pluripotent stem cells
CA2789749A1 (en) Method of efficiently establishing induced pluripotent stem cells
US8709805B2 (en) Canine iPS cells and method of producing same
WO2016072446A1 (ja) ウイルスベクター、細胞およびコンストラクト
JPWO2017010080A1 (ja) 高品質なiPS細胞の製造方法
EP2940127B1 (en) Method for producing induced pluripotent stem cells, cardiomyocytes or precursor cells thereof
JP5804280B2 (ja) 多能性幹細胞からの肥満細胞の製造方法
JP2011182720A (ja) 生殖系幹細胞の分化誘導および増幅方法、並びにそのための培地
JP2016520288A (ja) 効率的な人工多能性幹細胞の樹立方法
JP2019170393A (ja) iPS細胞の作製方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029847.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2796599

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012510720

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011768967

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011241514

Country of ref document: AU

Date of ref document: 20110415

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13641370

Country of ref document: US