WO2011129302A1 - Coal gasification furnace - Google Patents

Coal gasification furnace Download PDF

Info

Publication number
WO2011129302A1
WO2011129302A1 PCT/JP2011/059020 JP2011059020W WO2011129302A1 WO 2011129302 A1 WO2011129302 A1 WO 2011129302A1 JP 2011059020 W JP2011059020 W JP 2011059020W WO 2011129302 A1 WO2011129302 A1 WO 2011129302A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
reaction vessel
burner
partial oxidation
gasification furnace
Prior art date
Application number
PCT/JP2011/059020
Other languages
French (fr)
Japanese (ja)
Inventor
小菅 克志
泰樹 並木
眞須美 糸永
良之 幸
卓 武田
小水流 広行
矢部 英昭
Original Assignee
新日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄エンジニアリング株式会社 filed Critical 新日鉄エンジニアリング株式会社
Priority to CN2011800191978A priority Critical patent/CN102892870A/en
Priority to AU2011241999A priority patent/AU2011241999B2/en
Priority to JP2012510648A priority patent/JP5552157B2/en
Publication of WO2011129302A1 publication Critical patent/WO2011129302A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • C10J3/487Swirling or cyclonic gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • C10J3/76Water jackets; Steam boiler-jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]

Definitions

  • the present invention relates to a coal gasification furnace that produces combustible gas by gasifying coal with an oxidizing agent such as oxygen gas or water vapor.
  • Patent Document 1 Conventionally, as a gasification furnace (coal gasification furnace) for producing a combustible gas from pulverized coal or the like, for example, the one shown in Patent Document 1 is known.
  • this gasification furnace four combustor burners are arranged at equal distances on a circumference in a predetermined plane in a pressure vessel (reaction vessel) in a plan view.
  • the two sets of combustor burners arranged at symmetrical positions across the central axis of the circumference are arranged so as to face each other.
  • the combustor burner consists of a light oil burner for gasifier start-up provided in the center, and an air nozzle, char nozzle, fuel coal nozzle, and secondary air nozzle arranged concentrically with the light oil burner from the inside to the outside. It is configured. Air, char (ungasified coal residue or pyrolysis residue), and fuel coal are swung in their respective nozzles, then ignited by a light oil burner and injected into a pressure vessel.
  • gas generated by gasification rises in the gasification furnace, but if the flow of gas in the gasification furnace rises unevenly, carbon (char) in the coal is sufficiently gasified. Before it reacts, it may flow out of the gasifier and the reaction rate (conversion rate of carbon in coal to gas) may decrease.
  • the present invention has been made in view of such problems, and can sufficiently react coal in a compact reaction vessel and can stably attach slag to the inner peripheral surface of the reaction vessel.
  • the object is to provide a highly efficient coal gasifier.
  • the coal gasifier of the present invention is A reaction vessel formed in a cylindrical shape extending upward and provided with a discharge port on the upper end side; A plurality of a plurality of flat plates are provided on a reference plane that is parallel to a horizontal plane and located below the discharge port and spaced circumferentially on the inner peripheral surface of the reaction vessel, and supplies coal and an oxidant into the reaction vessel.
  • each of the burner parts has its own axis smaller than the inner diameter of the reaction vessel and is in contact with a virtual circle centered on the center axis in the same direction, and its own axis is parallel to the horizontal plane. Alternatively, it is arranged so as to be directed downward toward the tip of the burner portion.
  • a coal gasification furnace that produces at least hydrogen gas and carbon monoxide gas by gasifying coal in a reaction vessel, A reaction vessel formed in a cylindrical shape extending upward; An outlet provided on the upper end side of the reaction vessel; A plurality of cylindrical burner portions for supplying coal and oxidant into the reaction vessel; The plurality of burner portions are provided on a reference plane parallel to a horizontal plane located below the discharge port, with an interval in the circumferential direction of the inner peripheral surface of the reaction vessel, When viewed from above the reaction vessel, each burner portion has an axis line in contact with a virtual circle having a diameter smaller than the inner diameter of the reaction vessel centered on the central axis line of the reaction vessel, in the same direction. Place the part, The burner portion is arranged such that an axis of the burner portion is parallel to a horizontal plane or is directed downward toward the tip of the burner portion.
  • the burner part is arrange
  • the coal is expanded by gasification, and the coal that is going to rise while swirling in the reaction vessel is made to flow horizontally or downward once from the burner section, thereby increasing the time for the coal to flow through the reaction vessel and from the discharge port.
  • the gas can be sufficiently gasified in the reaction vessel before being discharged.
  • the burner portions are arranged at regular intervals around the central axis of the reaction vessel. According to the present invention, the flow of fluid containing coal and oxidant supplied from the burner section and gas generated by combustion of coal in the reaction vessel can be further stabilized.
  • the ratio of the diameter of the virtual circle to the inner diameter of the reaction vessel is more preferably set to 1/10 or more and 1/3 or less.
  • the ratio of the diameter of the virtual circle to the inner diameter of the reaction vessel (hereinafter also referred to as “diameter ratio”) to 1/3 or less, the velocity gradient of the fluid on the inner peripheral surface of the reaction vessel can be obtained. It is made small and it is suppressed that the slag adhering to the internal peripheral surface of reaction container peels from an internal peripheral surface. Therefore, it is possible to prevent the inner peripheral surface of the reaction vessel from being exposed to a high temperature, thereby reducing the performance due to an increase in heat loss and damaging the inner peripheral surface.
  • the diameter ratio to 1/10 or more, coal and oxidant supplied from the burner portion are prevented from colliding with each other from the front, and the flow swirling around the central axis of the reaction vessel is ensured. As a result, the gasification reaction time can be lengthened and the reaction rate can be improved.
  • mass flow rates of the coal and the oxidant supplied from the burner portions into the reaction vessel are m1 (kg / s) and m2 (kg / s), respectively.
  • the average flow rate Va (m / s) according to the equation (1) is 10 (m / S) and more preferably 50 (m / s) or less.
  • Va (m1 ⁇ V1 + m2 ⁇ V2) / (m1 + m2) (1)
  • the average flow velocity Va 50 (m / s) or less, it is possible to suppress the slag adhering to the inner peripheral surface of the reaction vessel from being peeled off from the inner peripheral surface and to be transmitted from the reaction vessel to the outside. Heat loss can be reduced.
  • coal can be stably conveyed with an oxidizing agent in a burner part because average flow velocity Va shall be 10 (m / s) or more.
  • the angle of the axis of each burner part with respect to the horizontal plane is more preferably set to 0 ° or more and 10 ° or less. According to the present invention, by setting the angle to 0 ° or more and 10 ° or less, the coal particles blown from the burner part can exist in the high-temperature field near the burner part for a long time. It is promoted and the reaction rate can be increased.
  • a char burner is arranged in the same manner as the burner portion on the second reference plane parallel to the reference plane and immediately above the burner portion in the reaction vessel. More preferably.
  • the char gasification reaction rate of carbon in coal is 99% or more by recycling the char recovered unreacted by the char burner of the reaction vessel to the coal gasification furnace to cause the gasification reaction. can do.
  • coal can be sufficiently reacted in a compact reaction vessel, and slag can be stably adhered to the inner peripheral surface of the reaction vessel.
  • FIG. 3 is a plan sectional view taken along a cutting line AA in FIG. 2. It is a figure which shows the flow-velocity distribution in the reference plane in FIG. It is a figure which shows the relationship between the heat loss ratio with respect to the diameter ratio in the partial oxidation part of the coal gasification furnace, and the reaction rate ratio. It is a figure which shows the relationship of the heat loss ratio with respect to the average flow velocity of coal and an oxidizing agent in the coal gasifier.
  • a coal gasification furnace is an apparatus that is used by being incorporated in a part of a coal gasification system, and that produces at least hydrogen gas and carbon monoxide gas by burning coal inside.
  • the coal gasification synthesis gas production system 1 is a plant facility that produces synthesis gas mainly composed of hydrogen gas and carbon monoxide gas using coal as a raw material. By supplying this product synthesis gas as a raw material for chemical synthesis equipment, methane, methanol, ammonia and the like can be finally produced.
  • a coal gasification synthesis gas production system 1 includes a coal pulverization / drying facility 2, a coal supply facility 3, a coal gasification furnace 4 of the present embodiment, a heat recovery facility 5, a char recovery facility 6, and a shift reaction facility. 7, a gas purification facility 8, and an air separation facility 9.
  • the outer diameter of coal is not uniform, and depending on the type, coal may contain more water than desired. Therefore, first, in the coal pulverization / drying facility 2, the coal is pulverized so as to become pulverized coal having an average particle size of about 30 to 60 ( ⁇ m) and about 75% of 200 mesh or less, and further has a predetermined moisture content, preferably Is dried so that the total water content is 10% or less, and then supplied to the coal supply facility 3. In addition, from the coal pulverization / drying facility 2 to the coal gasification furnace 4, the coal moves in a sealed space so that the moisture content in the dried coal does not change.
  • the coal is pressurized to a predetermined pressure by a carrier gas or the like in the coal supply facility 3, and then a predetermined weight is supplied to the coal gasification furnace 4 by airflow conveyance. A fixed amount is supplied.
  • the operating pressure of the coal gasification furnace is not particularly limited, but is preferably 2 MPaG or more and 5 MPaG or less from the viewpoint of improving reaction efficiency by reducing the gasification furnace, reducing facility costs, and utility costs.
  • the air separation facility 9 compresses and liquefies air, and separates dried oxygen gas, nitrogen gas, and the like from the liquid air due to a difference in boiling point.
  • the oxygen gas separated by the air separation facility 9 is supplied to the coal gasification furnace 4 at a predetermined flow rate.
  • the coal gasification furnace 4 has at least a partial oxidation part (reaction vessel) 12 in an upper part D ⁇ b> 1, and a preheating part 15 is provided in a lower part D ⁇ b> 2 of the partial oxidation part 12.
  • the partial oxidation unit 12 and the preheating unit 15 communicate with each other in the vertical direction D.
  • the partial oxidation portion 12 is formed in a cylindrical shape extending in the vertical direction D with a heat-resistant refractory or the like, and on the inner peripheral surface of the partial oxidation portion 12 along the axis C ⁇ b> 1.
  • Eight burner portions 17a to 17h formed in a cylindrical shape are provided (hereinafter, when these burner portions 17a to 17h are not particularly distinguished, they are collectively referred to as “burner portion 17”. .)
  • the number of burner portions 17 provided in the partial oxidation unit 12 is not limited and may be any number as long as it is two or more. However, as the size of the partial oxidation portion 12 increases, it is preferable to increase the number to provide even groups such as 4, 6, 8,... .
  • the eight burner portions 17 are provided on a reference plane P1 parallel to the horizontal plane, and are arranged at equal intervals around the central axis C2 of the partial oxidation portion 12.
  • the burner portion 17 has the same direction as the virtual circle E centered on the central axis C2 with the axis C1 of the burner portion 17 smaller than the inner diameter R1 of the partial oxidation portion 12 when viewed from above D1. It arrange
  • contacting around the same direction F1 means that the axis C1 contacts the virtual circle E around the direction F1 when the axis C1 of each burner portion 17 is assumed to extend from the tip of the burner portion 17.
  • the axis C1 of each burner part 17 may be arrange
  • the diameter ratio which is the ratio of the virtual circle diameter R2 to the internal diameter R1 of the partial oxidation portion 12 (the virtual circle diameter R2 / the internal diameter R1 of the reaction vessel), is set to be 1/10 or more and 1/3 or less. ing. The diameter ratio is more preferably 1/5 or more and 3/10 or less. Furthermore, as shown in FIG. 2, the angle ⁇ of the axis C1 of the burner portion 17 with respect to the horizontal plane is set to be 0 ° or more and 10 ° or less.
  • the tip of the burner part 17 is inclined at 0 ° or more and 10 ° or less, more preferably 0 ° or more and 2 ° or less, with respect to the horizontal plane toward the lower side of the partial oxidation part 12.
  • the finely pulverized coal pulverized and dried in the coal pulverization / drying facility 2 is supplied by the coal supply unit 20 to each burner unit 17 at a predetermined flow rate.
  • the oxygen gas separated by the air separation equipment 9 and the water vapor supplied by the heat recovery equipment 5 as will be described later are supplied to each burner section 17 by the oxidant supply section 21 so as to have a predetermined flow rate.
  • the mass flow rates of coal and oxidant (oxygen gas and water vapor) supplied from the burner unit 17 into the partial oxidation unit 12 are m1 (kg / s), m2 (kg / s),
  • the flow rates of coal and oxidant at V are defined as V1 (m / s) and V2 (m / s).
  • the coal supply unit 20 and the oxidant supply unit 21 are set so that the average flow velocity Va (m / s) according to the following formula (2) is 10 (m / s) or more and 50 (m / s) or less.
  • Va (m1 ⁇ V1 + m2 ⁇ V2) / (m1 + m2) (2) That is, the average flow velocity Va is an average flow velocity of the fluid injected from the raw material injection port of the burner unit 17.
  • oxygen gas in the oxidizing agent is 0.7 to 0.9 in terms of weight ratio of oxygen and coal (oxygen / coal)
  • water vapor is 0.05 to 0 in terms of weight ratio of water vapor to coal (steam / coal).
  • the flow rate V1 (m / s) of the oxidant in the burner unit 17 is a flow rate in a state where oxygen gas and water vapor are mixed. Differences in coal brands can be indicated by industrial analysis values, elemental analysis values, ash composition, etc. of coal.
  • the average flow velocity Va is more preferably 10 (m / s) or more and 30 (m / s) or less.
  • a cooling wall pipe 22 for cooling the partial oxidation section 12 is disposed on the outer peripheral surface of the partial oxidation section 12.
  • the cooling wall pipe 22 includes water and saturated water (boiler-water). ) Is connected.
  • the water or saturated water flowing in the cooling wall pipe 22 may be circulated in the cooling wall pipe 22 or after the partial oxidation unit 12 is heated as a boiler and becomes high-temperature steam. It may be recovered and used as steam.
  • the pulverized and pressurized coal and oxidant are supplied from the burner unit 17 to the partial oxidation unit 12 at an average flow rate Va. Since the eight burner portions 17 are arranged as shown in FIG. 3, the coal and the oxidant supplied from the burner portion 17 are first rotated around the central axis C2 of the partial oxidation portion 12 as shown in FIG. It is sprayed so as to flow downward or on the same horizontal plane while turning.
  • the inside of the partial oxidation part 12 is high temperature and high pressure (for example, temperature is 1200 degreeC or more and 1800 degrees C or less, and pressure is 2 Mpa or more).
  • the coal becomes high temperature and is thermally decomposed to separate char from volatile gas containing tar, water vapor, etc., and the gasification of the coal results in the following chemical reaction formulas (1) to (3) High temperature carbon monoxide gas, carbon dioxide gas, and hydrogen gas, and slag (ash) are generated.
  • FIG. 4 shows the flow velocity distribution of hydrogen gas, carbon monoxide gas, etc. at each part in the partial oxidation part 12 at this time.
  • FIG. 4 shows the flow velocity v with respect to the position in the r direction from the central axis C2 on the reference plane P2 including the central axis C2 of the partial oxidation unit 12 shown in FIG.
  • the reference plane P2 is a plane perpendicular to the reference plane P1 parallel to the horizontal plane.
  • a fluid such as hydrogen gas or carbon monoxide gas rises while turning in the same direction (for example, direction F1) from the central axis C2 in the radial direction (r direction).
  • the position of a certain height is any location along the height direction of the partial oxidation unit 12 and may be any position above the burner unit 17a.
  • the horizontal axis indicates the position in the r direction with respect to the central axis C2
  • the vertical axis indicates the flow velocity v.
  • the position in the r direction is on the positive side (the burner portion 17a side with respect to the central axis C2 in FIG. 3), and the position in the r direction is on the negative side (the burner with respect to the central axis C2 in FIG. 3).
  • FIG. 4 shows only the magnitude that does not consider the direction of the flow velocity v. Further, FIG. 4 shows the thickness of a slag, which will be described later, attached to the inner peripheral surface of the partial oxidation portion 12 without considering it.
  • a burner unit 17 is installed in the partial oxidation unit 12 so that the diameter ratio of the virtual circle to the inner diameter of the partial oxidation unit (reaction vessel) 12 is 1/5 or more and 3/10 or less, and the average flow velocity A model of the flow velocity v when Va is 10 (m / s) or more and 30 (m / s) or less is indicated by a solid line. As indicated by the solid line in FIG.
  • the position in the r direction where the position in the r direction which is the position on the axis C1 of the burner portion 17c is R2 / 2 and the position in the r direction which is the position on the axis C1 of the burner portion 17g are Near the position where ⁇ R2 / 2, the flow velocity v becomes maximum. Then, at the position where the position in the r direction which is the position of the inner peripheral surface of the partial oxidation portion 12 is R1 / 2 and the position where ⁇ R1 / 2, the flow velocity v approaches 0 and the gradient of the curve of the flow velocity v ( The absolute value of (velocity gradient) is a small value.
  • the force (shearing force) at which the fluid tries to peel off the slag is obtained by multiplying the velocity gradient of the fluid flow velocity v by the fluid viscosity coefficient ⁇ ( ⁇ (Dv / dr)), it can be seen that the shear force in this case is relatively small.
  • the position where the flow velocity v takes the maximum value does not change as shown by the dotted line in FIG.
  • the maximum value of the flow velocity v increases. Accordingly, the absolute value of the slope of the curve of the flow velocity v increases, the shearing force acting on the slag increases, and the slag becomes easy to peel off.
  • the diameter C ratio exceeds 1/3 by separating the axis C1 of the burner unit 17b from the central axis C2 of the partial oxidation unit 12.
  • the flow velocity distribution of the fluid is a distribution as shown by a two-dot chain line in FIG. That is, also in this case, the absolute value of the slope of the curve of the flow velocity v at the position where the position in the r direction that is the position of the inner peripheral surface of the partial oxidation portion 12 is R1 / 2 and ⁇ R1 / 2 is increased. As the shearing force acting on the slag increases, the slag is easily peeled off.
  • the gas, slag, etc. generated in the partial oxidation part 12 move radially outward while turning around the central axis C2 of the partial oxidation part 12 and expand at a high temperature.
  • the upward force is received by the buoyancy, and the inner peripheral surface side of the partial oxidation unit 12 is raised.
  • the slag generated in the partial oxidation part 12 is in a molten state, a part of the slag S is cooled and adhered on the inner peripheral surface of the partial oxidation part 12, and the other part is below the partial oxidation part 12. It falls on the slag tap 24 provided in D2, flows out into the preheating part 15, and is collect
  • heat loss the amount of heat transferred to water or the like
  • the heat loss will be described with reference to FIG.
  • the ratio of heat loss to other conditions with the heat loss amount being 1 (reference) when the diameter ratio is 1/3 is defined as the heat loss ratio
  • heat is generated when the value of the diameter ratio exceeds 1/3.
  • the loss ratio (L1) increases rapidly. This is because the distance between the axis C1 of the burner portion 17 and the inner peripheral surface of the partial oxidation portion 12 is reduced. That is, the fluid ejected from the burner portion 17 is likely to face the inner peripheral surface instead of the central portion of the partial oxidation portion 12. Therefore, the slag adhering to the inner peripheral surface of the partial oxidation part 12 becomes easy to peel off.
  • the reaction rate ratio means the ratio of the reaction rate with other conditions when the reaction rate when the diameter ratio is 1/3 is 1 (reference). Then, as shown in FIG. 6, when the average flow velocity Va exceeds 50 (m / s), the slag is easily peeled off as described above, and the heat loss ratio increases rapidly.
  • char is accompanied by high-temperature synthesis gas mainly composed of hydrogen gas and carbon monoxide gas from above the coal gasification furnace 4, and is supplied to the heat recovery facility 5.
  • the heat recovery facility 5 steam is produced by exchanging heat between the synthesis gas conveyed from the coal gasification furnace 4 and the boiler water.
  • This water vapor is supplied to the above-described coal pulverization / drying facility 2 or the like for the purpose of drying the coal.
  • the synthesis gas cooled by the heat recovery facility 5 is supplied from the heat recovery facility 5 to the char recovery facility 6, and the char contained in the synthesis gas is recovered by the char recovery facility 6.
  • the recovered char can be used externally as fuel or the like, but the char can also be recycled to the coal gasification furnace 4 for gasification.
  • the synthesis gas that has passed through the char recovery facility 6 is supplied to the shift reaction facility 7.
  • steam was supplied in the shift reaction equipment 7, and the catalyst shown by following Chemical reaction formula (4) was used.
  • causes a shift reaction By this shift reaction, carbon monoxide gas is consumed and hydrogen gas is generated instead.
  • the synthesis gas whose components have been adjusted by the shift reaction facility 7 is supplied to the gas purification facility 8, and carbon dioxide gas contained in the synthesis gas, gas containing sulfur as a component, and the like are recovered.
  • the product synthesis gas purified by the gas purification facility 8 is supplied to the chemical synthesis facility and the like, and methane, methanol, ammonia and the like are produced.
  • the burner unit 17 is swung around the central axis C ⁇ b> 2 of the reaction vessel 12 by supplying coal and an oxidant into the cylindrical reaction vessel 12. A flow can be generated. For this reason, the fluid flow in the vicinity of the inner peripheral surface of the reaction vessel 12 is stabilized regardless of the position in the circumferential direction, and the molten slag generated by the gasification of coal adheres to the inner peripheral surface of the reaction vessel 12. The thickness can be made substantially uniform.
  • the burner part 17 is arrange
  • the burning coal that expands by gasification and is going to rise while turning in the partial oxidation unit 12 is once directed horizontally or downward D2 from the burner unit 17 before moving to the heat recovery facility 5.
  • the burner part 17 is arrange
  • the burner part 17 is arrange
  • the inner peripheral surface of the partial oxidation portion 12 is exposed to high temperatures and being damaged. Further, by setting the diameter ratio to 1/10 or more, the coal and the oxidant supplied from the burner unit 17 are prevented from colliding with each other from the front, and turn around the central axis C2 of the partial oxidation unit 12. It is possible to reliably generate a flow and prevent the reaction rate ratio from being reduced.
  • the shape of the burner portion 17 is a cylindrical shape, but may be a flat cylindrical shape, a rectangular tube shape, or the like as long as the shape extends along a predetermined axis.
  • the flow of the fluid in the partial oxidation unit 12 is a swirling flow even if the burner unit 17 is not arranged at equal intervals around the central axis C2 of the partial oxidation unit 12, so the burner unit 17 may not be arranged at equal intervals around the central axis C2.
  • the char burner is arranged in the same manner as the burner unit 17 on the second reference plane parallel to the reference plane P ⁇ b> 1 immediately above the burner unit 17 in the partial oxidation unit 12. May be. That is, when viewed from above D1, the char burner is arranged so that the axis of the char burner is smaller than the inner diameter R1 of the partial oxidation portion 12 and is in contact with a virtual circle centered on the central axis C2 around the same direction. Good. Furthermore, the char burner may be arranged so that the axis of the char burner is parallel to the horizontal plane or goes downward as it goes toward the tip of the char burner.
  • coal is blown into the synthesis gas which has a thermal decomposition part in the upper part of the partial oxidation part 12, and has the high temperature hydrogen gas and carbon monoxide gas from the partial oxidation part 12 as a main component, Gas heat may be used for pyrolysis.
  • the inner peripheral surface has a diameter of 0.65 (m) and an internal height of 1.0 (m), and the partial oxidation unit 12 has 4 at regular intervals.
  • a basic burner portion 17 was provided. And it tested using the bituminous coal of 5% of ash for coal. When the average flow velocity Va of the burner portion 17 was 30 (m / s) and the diameter ratio was changed from 1/3 to 1/5, the diameter ratio was 1/3 when the diameter ratio was 1/5. It was found that the heat loss transferred from the partial oxidation unit 12 to the water in the cooling wall pipe 22 is reduced by about 20%.
  • the coal gasification furnace 4 having the shape of the above-described embodiment, when the diameter ratio is 1/4 and the average flow rate Va is 10 (m / s) and the coal is gasified and operated with 1% ash, the partially oxidized portion is operated. It was found that the slag thickness adhering to the 12 inner peripheral surfaces can be kept constant. However, the above heat loss is equivalent to the case where the ash content is 3% or more when the ash content is 3% or more. However, when the ash content is 5%, the heat loss is reduced by about 30% from the case where the ash content is 1%. ing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)

Abstract

Disclosed is a coal gasification furnace comprising: a reaction vessel (12) formed in a cylindrical shape extending upwards, equipped with an outlet at the upper end thereof; and a plurality of cylindrical burner units (17) disposed on a reference plane (P1) parallel to a horizontal plane and lower than the outlet, and in a circumferential direction with gaps left therebetween on an inside surface of the reaction vessel, which supply coal and an oxidising agent to the inside of the reaction vessel; and coal is burned inside the reaction vessel to produce at least hydrogen gas and carbon monoxide gas. When seen from above, the axes (C1) of the burners are oriented in the same direction as and touch an imaginary circle centred on a central axis with a diameter less than the inside diameter of the reaction vessel, where the axes are parallel to a horizontal plane or where the tips of the burner units are oriented downwards.

Description

石炭ガス化炉Coal gasifier
 本発明は、石炭を酸素ガスや水蒸気等の酸化剤でガス化して可燃性ガスを生産する石炭ガス化炉に関する。
 本願は、2010年4月16日に、日本に出願された特願2010-095496号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a coal gasification furnace that produces combustible gas by gasifying coal with an oxidizing agent such as oxygen gas or water vapor.
This application claims priority based on Japanese Patent Application No. 2010-095496 filed in Japan on Apr. 16, 2010, the contents of which are incorporated herein by reference.
 従来、微粉炭等から可燃性ガスを生産するガス化炉(石炭ガス化炉)として、たとえば、特許文献1に示すようなものが知られている。このガス化炉では、圧力容器(反応容器)内に、平面視で4基のコンバスタバーナが所定の平面における円周上に等距離ごとに配置されている。そして、円周の中心軸を挟んで対称の位置に配置された2組のコンバスタバーナは、互いに向かい合うように配置されている。 Conventionally, as a gasification furnace (coal gasification furnace) for producing a combustible gas from pulverized coal or the like, for example, the one shown in Patent Document 1 is known. In this gasification furnace, four combustor burners are arranged at equal distances on a circumference in a predetermined plane in a pressure vessel (reaction vessel) in a plan view. The two sets of combustor burners arranged at symmetrical positions across the central axis of the circumference are arranged so as to face each other.
 コンバスタバーナは、中心部に設けられガス化炉起動用の軽油バーナーと、軽油バーナーと同心円状に内側から外側にかけて順に配置された空気ノズル、チャーノズル、燃料用石炭ノズル、2次空気ノズルとで構成されている。
 空気、チャー(未ガス化石炭残滓または熱分解残滓)、燃料用石炭はそれぞれのノズル内で旋回したあとで、軽油バーナーで着火されて圧力容器内に噴射される。
The combustor burner consists of a light oil burner for gasifier start-up provided in the center, and an air nozzle, char nozzle, fuel coal nozzle, and secondary air nozzle arranged concentrically with the light oil burner from the inside to the outside. It is configured.
Air, char (ungasified coal residue or pyrolysis residue), and fuel coal are swung in their respective nozzles, then ignited by a light oil burner and injected into a pressure vessel.
特許第3595404号公報Japanese Patent No. 3595404
 しかしながら、上記特許文献1に示すガス化炉では、それぞれのコンバスタバーナから旋回して流れるガス等が噴射されるとき、コンバスタバーナは互いに対向する位置に配置されているので、コンバスタバーナから噴射されたガス等が互いに衝突し、ガス化炉内のガスなどの流れが安定しないという問題がある。そして、ガス化炉の内周面は、石炭の部分酸化(以下、「ガス化」と称する)により高温環境下にさらされるが、ガス化炉の内周面に一定の厚さのスラグが安定して付着しないと、熱損失が大きくなり性能低下につながるとともに、この内周面が熱による影響を受けて損傷する恐れがある。
 さらに、ガス化によって生じたガス等はガス化炉内を上昇するが、ガス化炉内におけるガス等の上昇する流れの不均一が生じたりすると、石炭中のカーボン(チャー)が十分にガス化反応する前にガス化炉から流出してしまい、反応率(石炭中の炭素のガスへの転換率)が低下してしまうことがある。
However, in the gasification furnace shown in the above-mentioned Patent Document 1, when gas or the like that swirls and flows from each combustor burner is injected, the combustor burners are arranged at positions facing each other, and thus are injected from the combustor burner. There is a problem that gases and the like collide with each other and the flow of the gas and the like in the gasifier is not stable. The inner peripheral surface of the gasifier is exposed to a high-temperature environment by partial oxidation of coal (hereinafter referred to as “gasification”), but a slag of a certain thickness is stable on the inner peripheral surface of the gasifier. If it does not adhere, heat loss will increase, leading to performance degradation, and this inner peripheral surface may be damaged by heat.
Furthermore, gas generated by gasification rises in the gasification furnace, but if the flow of gas in the gasification furnace rises unevenly, carbon (char) in the coal is sufficiently gasified. Before it reacts, it may flow out of the gasifier and the reaction rate (conversion rate of carbon in coal to gas) may decrease.
 本発明は、このような問題点に鑑みてなされたものであって、コンパクトな反応容器内で石炭を十分に反応させるとともに、反応容器の内周面にスラグを安定させて付着させることができる高効率の石炭ガス化炉を提供することを目的とする。 The present invention has been made in view of such problems, and can sufficiently react coal in a compact reaction vessel and can stably attach slag to the inner peripheral surface of the reaction vessel. The object is to provide a highly efficient coal gasifier.
 上記課題を解決するために、この発明は以下の手段を提案している。
 本発明の石炭ガス化炉は、
 上方に延びる円筒状に形成され上端側に排出口が設けられた反応容器と、
 水平面に平行で前記排出口より下方に位置する基準平面上であって前記反応容器の内周面上に周方向に間隔を開けて複数設けられ、前記反応容器内に石炭および酸化剤を供給する筒状のバーナー部と、を備え、
 前記石炭を前記反応容器内でガス化させることで少なくとも水素ガスおよび一酸化炭素ガスを製造する石炭ガス化炉において、
 それぞれの前記バーナー部は、上方からみたときに、自身の軸線が前記反応容器の内径よりも小径で前記中心軸線を中心とする仮想円に同一方向回りに接するとともに、自身の軸線が水平面に平行に、または前記バーナー部の先端に向かうほど下方に向かうように配置されていることを特徴としている。
 即ち、本発明では、石炭を反応容器内でガス化させることで少なくとも水素ガスおよび一酸化炭素ガスを製造する石炭ガス化炉が、
 上方に延びる円筒状に形成した反応容器と、
 前記反応容器の上端側設けられた排出口と、
 前記反応容器内に石炭および酸化剤を供給する複数の筒状のバーナー部とを有し、
 前記複数のバーナー部は、前記排出口より下方に位置する水平面に平行な基準平面上で、前記反応容器の内周面の周方向に向けて間隔を開けて設けられ、
 前記反応容器の上方からみて、前記各バーナー部の軸線が、前記反応容器の中心軸線を中心としている反応容器の内径よりも径の小さい仮想円に、同一方向回りに接するように、前記各バーナー部を配置し、
 前記バーナー部が、前記バーナー部の軸線が水平面に平行に、または前記バーナー部の先端に向かうほど下方に向かうように配置されていることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
The coal gasifier of the present invention is
A reaction vessel formed in a cylindrical shape extending upward and provided with a discharge port on the upper end side;
A plurality of a plurality of flat plates are provided on a reference plane that is parallel to a horizontal plane and located below the discharge port and spaced circumferentially on the inner peripheral surface of the reaction vessel, and supplies coal and an oxidant into the reaction vessel. A cylindrical burner, and
In a coal gasification furnace for producing at least hydrogen gas and carbon monoxide gas by gasifying the coal in the reaction vessel,
When viewed from above, each of the burner parts has its own axis smaller than the inner diameter of the reaction vessel and is in contact with a virtual circle centered on the center axis in the same direction, and its own axis is parallel to the horizontal plane. Alternatively, it is arranged so as to be directed downward toward the tip of the burner portion.
That is, in the present invention, a coal gasification furnace that produces at least hydrogen gas and carbon monoxide gas by gasifying coal in a reaction vessel,
A reaction vessel formed in a cylindrical shape extending upward;
An outlet provided on the upper end side of the reaction vessel;
A plurality of cylindrical burner portions for supplying coal and oxidant into the reaction vessel;
The plurality of burner portions are provided on a reference plane parallel to a horizontal plane located below the discharge port, with an interval in the circumferential direction of the inner peripheral surface of the reaction vessel,
When viewed from above the reaction vessel, each burner portion has an axis line in contact with a virtual circle having a diameter smaller than the inner diameter of the reaction vessel centered on the central axis line of the reaction vessel, in the same direction. Place the part,
The burner portion is arranged such that an axis of the burner portion is parallel to a horizontal plane or is directed downward toward the tip of the burner portion.
 この発明によれば、バーナー部が円筒状の反応容器内に石炭および酸化剤を供給するときに、反応容器の中心軸線回りに旋回する流体の流れを発生させることが出来る。このため、反応容器の内周面近傍における流体の流れが周方向の位置のいずれであっても安定し、石炭がガス化することによって発生した溶融したスラグが反応容器の内周面に付着する厚さをほぼ均一にすることができる。
 また、バーナー部は、自身の軸線が水平面に平行に、またはバーナー部の先端に向かうほど下方に向かうように配置されている。ガス化して膨張し、反応容器内を旋回しながら上昇しようとする石炭を、バーナー部から一度水平または下方に向かうように流すことにより、石炭が反応容器中を流れる時間を増加させ、排出口から排出される前に反応容器内で十分にガス化させることができる。
According to this invention, when coal and an oxidizing agent are supplied into a reaction vessel having a cylindrical burner portion, a flow of fluid swirling around the central axis of the reaction vessel can be generated. For this reason, the flow of the fluid in the vicinity of the inner peripheral surface of the reaction vessel is stable at any position in the circumferential direction, and molten slag generated by gasification of coal adheres to the inner peripheral surface of the reaction vessel. The thickness can be made substantially uniform.
Moreover, the burner part is arrange | positioned so that an own axis line may go to the downward direction, so that it may go in parallel with a horizontal surface, or the tip of a burner part. The coal is expanded by gasification, and the coal that is going to rise while swirling in the reaction vessel is made to flow horizontally or downward once from the burner section, thereby increasing the time for the coal to flow through the reaction vessel and from the discharge port. The gas can be sufficiently gasified in the reaction vessel before being discharged.
 また、上記の石炭ガス化炉において、前記バーナー部は、前記反応容器の中心軸線回りに等間隔毎に配置されていることがより好ましい。
 この発明によれば、反応容器内における、バーナー部から供給される石炭および酸化剤、そして石炭の燃焼により生じるガスを含む流体の流れをより安定させることができる。
Moreover, in the above coal gasification furnace, it is more preferable that the burner portions are arranged at regular intervals around the central axis of the reaction vessel.
According to the present invention, the flow of fluid containing coal and oxidant supplied from the burner section and gas generated by combustion of coal in the reaction vessel can be further stabilized.
 また、上記の石炭ガス化炉において、前記反応容器の内径に対する前記仮想円の直径の比が、1/10以上且つ1/3以下に設定されていることがより好ましい。
 この発明によれば、反応容器の内径に対する仮想円の直径の比(以下、「直径比」とも称する。)を1/3以下とすることで、反応容器の内周面における流体の速度勾配を小さくし、反応容器の内周面に付着したスラグが内周面から剥がれるのが抑えられる。したがって、反応容器の内周面が高温下にさらされて、熱損失の増加により性能が低下することや内周面が損傷するのを防止することができる。
 また、直径比を1/10以上とすることで、バーナー部から供給される石炭および酸化剤等が互いに正面から衝突するのを防止して、反応容器の中心軸線回りに旋回する流れを確実に生じさせ、ガス化反応時間を長くし、反応率を向上することができる。
In the above coal gasification furnace, the ratio of the diameter of the virtual circle to the inner diameter of the reaction vessel is more preferably set to 1/10 or more and 1/3 or less.
According to this invention, by setting the ratio of the diameter of the virtual circle to the inner diameter of the reaction vessel (hereinafter also referred to as “diameter ratio”) to 1/3 or less, the velocity gradient of the fluid on the inner peripheral surface of the reaction vessel can be obtained. It is made small and it is suppressed that the slag adhering to the internal peripheral surface of reaction container peels from an internal peripheral surface. Therefore, it is possible to prevent the inner peripheral surface of the reaction vessel from being exposed to a high temperature, thereby reducing the performance due to an increase in heat loss and damaging the inner peripheral surface.
Further, by setting the diameter ratio to 1/10 or more, coal and oxidant supplied from the burner portion are prevented from colliding with each other from the front, and the flow swirling around the central axis of the reaction vessel is ensured. As a result, the gasification reaction time can be lengthened and the reaction rate can be improved.
 また、上記の石炭ガス化炉において、それぞれの前記バーナー部から前記反応容器内に供給される前記石炭、前記酸化剤の質量流量をm1(kg/s)、m2(kg/s)、それぞれの前記バーナー部内での前記石炭、前記酸化剤の流速をV1(m/s)、V2(m/s)としたときに、(1)式による平均流速Va(m/s)が、10(m/s)以上且つ50(m/s)以下に設定されていることがより好ましい。
 Va=(m1×V1+m2×V2)/(m1+m2) ・・(1)
 この発明によれば、平均流速Vaを50(m/s)以下とすることで、反応容器の内周面に付着したスラグが内周面から剥がれるのが抑えられて反応容器から外部に伝えられる熱損失を低下させることができる。また、平均流速Vaを10(m/s)以上とすることで、バーナー部において酸化剤により石炭を安定して搬送させることができる。
In the above coal gasification furnace, mass flow rates of the coal and the oxidant supplied from the burner portions into the reaction vessel are m1 (kg / s) and m2 (kg / s), respectively. When the flow rates of the coal and the oxidizer in the burner part are V1 (m / s) and V2 (m / s), the average flow rate Va (m / s) according to the equation (1) is 10 (m / S) and more preferably 50 (m / s) or less.
Va = (m1 × V1 + m2 × V2) / (m1 + m2) (1)
According to this invention, by setting the average flow velocity Va to 50 (m / s) or less, it is possible to suppress the slag adhering to the inner peripheral surface of the reaction vessel from being peeled off from the inner peripheral surface and to be transmitted from the reaction vessel to the outside. Heat loss can be reduced. Moreover, coal can be stably conveyed with an oxidizing agent in a burner part because average flow velocity Va shall be 10 (m / s) or more.
 また、上記の石炭ガス化炉において、ぞれぞれの前記バーナー部の軸線の水平面に対する角度が、0°以上且つ10°以下に設定されていることがより好ましい。
 この発明によれば、この角度を0°以上且つ10°以下とすることで、バーナー部より吹き込んだ石炭粒子をバーナー部近傍の高温場に長く存在させることができるので、チャーのガス化反応が促進され、反応率を上昇させることができる。
In the above coal gasification furnace, the angle of the axis of each burner part with respect to the horizontal plane is more preferably set to 0 ° or more and 10 ° or less.
According to the present invention, by setting the angle to 0 ° or more and 10 ° or less, the coal particles blown from the burner part can exist in the high-temperature field near the burner part for a long time. It is promoted and the reaction rate can be increased.
 また、上記の石炭ガス化炉において、前記反応容器における、前記バーナー部の直近の上方であって前記基準平面に平行な第二の基準平面上には、チャーバーナーが前記バーナー部と同様に配置されることがより好ましい。
 この発明によれば、反応容器のチャーバーナーによって未反応で回収されたチャーを石炭ガス化炉へリサイクルさせてガス化反応をさせることで、石炭中のカーボンのガス化反応率を99%以上とすることができる。
Further, in the above coal gasification furnace, a char burner is arranged in the same manner as the burner portion on the second reference plane parallel to the reference plane and immediately above the burner portion in the reaction vessel. More preferably.
According to this invention, the char gasification reaction rate of carbon in coal is 99% or more by recycling the char recovered unreacted by the char burner of the reaction vessel to the coal gasification furnace to cause the gasification reaction. can do.
 本発明の石炭ガス化炉によれば、コンパクトな反応容器内で石炭を十分に反応させるとともに、反応容器の内周面にスラグを安定させて付着させることができる。 According to the coal gasification furnace of the present invention, coal can be sufficiently reacted in a compact reaction vessel, and slag can be stably adhered to the inner peripheral surface of the reaction vessel.
本発明の実施形態の石炭ガス化炉が用いられた石炭ガス化合成ガス製造システムのブロック図である。It is a block diagram of the coal gasification synthesis gas manufacturing system using the coal gasification furnace of the embodiment of the present invention. 同石炭ガス化炉の要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part of the coal gasifier. 図2中の切断線A-Aによる平面断面図である。FIG. 3 is a plan sectional view taken along a cutting line AA in FIG. 2. 図3中の基準平面における流速分布を示す図である。It is a figure which shows the flow-velocity distribution in the reference plane in FIG. 同石炭ガス化炉の部分酸化部における直径比に対する熱損失比と反応率比の関係を示す図である。It is a figure which shows the relationship between the heat loss ratio with respect to the diameter ratio in the partial oxidation part of the coal gasification furnace, and the reaction rate ratio. 同石炭ガス化炉における石炭と酸化剤の平均流速に対する熱損失比の関係を示す図である。It is a figure which shows the relationship of the heat loss ratio with respect to the average flow velocity of coal and an oxidizing agent in the coal gasifier.
 以下、本発明に係る石炭ガス化炉の実施形態を、図1から図6を参照しながら説明する。石炭ガス化炉は、石炭ガス化システムの一部に組み込まれて用いられ、石炭を内部で燃焼させることで少なくとも水素ガスおよび一酸化炭素ガスを製造する装置である。
 図1に示すように、石炭ガス化合成ガス製造システム1は、石炭を原料として水素ガスと一酸化炭素ガスを主成分とする合成ガスを製造するプラント設備である。この製品合成ガスを化学合成設備等の原料として供給することで、最終的にメタン、メタノールおよびアンモニア等を製造することができる。
 石炭ガス化合成ガス製造システム1は、石炭粉砕・乾燥設備2と、石炭供給設備3と、本実施形態の石炭ガス化炉4と、熱回収設備5と、チャー回収設備6と、シフト反応設備7と、ガス精製設備8と、空気分離設備9とを備えている。
Hereinafter, an embodiment of a coal gasifier according to the present invention will be described with reference to FIGS. 1 to 6. A coal gasification furnace is an apparatus that is used by being incorporated in a part of a coal gasification system, and that produces at least hydrogen gas and carbon monoxide gas by burning coal inside.
As shown in FIG. 1, the coal gasification synthesis gas production system 1 is a plant facility that produces synthesis gas mainly composed of hydrogen gas and carbon monoxide gas using coal as a raw material. By supplying this product synthesis gas as a raw material for chemical synthesis equipment, methane, methanol, ammonia and the like can be finally produced.
A coal gasification synthesis gas production system 1 includes a coal pulverization / drying facility 2, a coal supply facility 3, a coal gasification furnace 4 of the present embodiment, a heat recovery facility 5, a char recovery facility 6, and a shift reaction facility. 7, a gas purification facility 8, and an air separation facility 9.
 一般に石炭は、外径が不均一であり、その種類によって所望の値より多くの水分を含む場合がある。そこで、まず石炭粉砕・乾燥設備2において、石炭は、200メッシュ以下75%程度、平均粒子径が30~60(μm)程度の微粉炭となるように粉砕され、さらに所定の水分含有量、望ましくは全水分量で10%以下となるように乾燥された後に、石炭供給設備3に供給される。なお、石炭粉砕・乾燥設備2の後から石炭ガス化炉4までは、乾燥した石炭中の水分量が変化しないように、石炭は密閉された空間内を移動する。
 続いて、石炭は、石炭ガス化炉4内に供給するために石炭供給設備3内で搬送ガス等により所定の圧力まで昇圧され、その後で石炭ガス化炉4に気流搬送にて所定の重量が定量供給される。石炭ガス化炉の運転圧力は特に限定されないが、ガス化炉のコンパクト化による反応効率の向上、設備費及び用役費低減の観点から、2MPaG以上且つ5MPaG以下であることが望ましい。
 一方で、空気分離設備9は、空気を圧縮して液化し、液体となった空気から沸点の違いにより乾燥した酸素ガスや窒素ガス等を分離する。空気分離設備9で分離された酸素ガスは、石炭ガス化炉4に所定流量供給される。
In general, the outer diameter of coal is not uniform, and depending on the type, coal may contain more water than desired. Therefore, first, in the coal pulverization / drying facility 2, the coal is pulverized so as to become pulverized coal having an average particle size of about 30 to 60 (μm) and about 75% of 200 mesh or less, and further has a predetermined moisture content, preferably Is dried so that the total water content is 10% or less, and then supplied to the coal supply facility 3. In addition, from the coal pulverization / drying facility 2 to the coal gasification furnace 4, the coal moves in a sealed space so that the moisture content in the dried coal does not change.
Subsequently, in order to supply the coal into the coal gasification furnace 4, the coal is pressurized to a predetermined pressure by a carrier gas or the like in the coal supply facility 3, and then a predetermined weight is supplied to the coal gasification furnace 4 by airflow conveyance. A fixed amount is supplied. The operating pressure of the coal gasification furnace is not particularly limited, but is preferably 2 MPaG or more and 5 MPaG or less from the viewpoint of improving reaction efficiency by reducing the gasification furnace, reducing facility costs, and utility costs.
On the other hand, the air separation facility 9 compresses and liquefies air, and separates dried oxygen gas, nitrogen gas, and the like from the liquid air due to a difference in boiling point. The oxygen gas separated by the air separation facility 9 is supplied to the coal gasification furnace 4 at a predetermined flow rate.
 図2に示すように、石炭ガス化炉4は、上方D1に少なくとも部分酸化部(反応容器)12を有し、部分酸化部12の下方D2には、予熱部15が設けられている。部分酸化部12、および予熱部15は上下方向Dに連通している。 As shown in FIG. 2, the coal gasification furnace 4 has at least a partial oxidation part (reaction vessel) 12 in an upper part D <b> 1, and a preheating part 15 is provided in a lower part D <b> 2 of the partial oxidation part 12. The partial oxidation unit 12 and the preheating unit 15 communicate with each other in the vertical direction D.
 図2および図3に示すように、部分酸化部12は、耐熱性の耐火物等で上下方向Dに延びる円筒状に形成され、部分酸化部12の内周面上には、軸線C1に沿って延びる円筒状に形成された8基のバーナー部17a~17hが設けられている(以下、これらのバーナー部17a~17hを特に区別無く示すときは、これらをまとめて「バーナー部17」と称する。)。
 なお、部分酸化部12に設けられるバーナー部17の数に制限はなく、2つ以上であれば幾つでもよい。ただし、部分酸化部12の大きさが大きくなるのに応じて、4基、6基、8基、‥、というように、数を増やして偶数基設けることが好ましいが、奇数基でも全く問題ない。
 8基のバーナー部17は、水平面に平行な基準平面P1上設けられるとともに、部分酸化部12の中心軸線C2回りに等間隔毎に配置されている。
As shown in FIGS. 2 and 3, the partial oxidation portion 12 is formed in a cylindrical shape extending in the vertical direction D with a heat-resistant refractory or the like, and on the inner peripheral surface of the partial oxidation portion 12 along the axis C <b> 1. Eight burner portions 17a to 17h formed in a cylindrical shape are provided (hereinafter, when these burner portions 17a to 17h are not particularly distinguished, they are collectively referred to as “burner portion 17”. .)
Note that the number of burner portions 17 provided in the partial oxidation unit 12 is not limited and may be any number as long as it is two or more. However, as the size of the partial oxidation portion 12 increases, it is preferable to increase the number to provide even groups such as 4, 6, 8,... .
The eight burner portions 17 are provided on a reference plane P1 parallel to the horizontal plane, and are arranged at equal intervals around the central axis C2 of the partial oxidation portion 12.
 バーナー部17は、図3に示すように、上方D1からみたときに、バーナー部17の軸線C1が部分酸化部12の内径R1よりも小径で中心軸線C2を中心とする仮想円Eに同一方向F1回りに接するように配置されている。ここで、同一方向F1回りに接するとは、それぞれのバーナー部17の軸線C1をバーナー部17の先端から延びるものとしてみたときに、軸線C1が仮想円Eに対して方向F1回りに接することを意味する。なお、それぞれのバーナー部17の軸線C1が、仮想円Eに方向F1とは反対方向である方向F2回りに接するように配置されていてもよい。
 そして、部分酸化部12の内径R1に対する仮想円の直径R2の比(仮想円の直径R2/反応容器の内径R1)である直径比が1/10以上且つ1/3以下となるように設定されている。直径比はより好ましくは1/5以上且つ3/10以下である。
 さらに、図2に示すように、バーナー部17の軸線C1の水平面に対する角度θが、0°以上且つ10°以下となるように設定されている。
 即ち、バーナー部17の先端が、部分酸化部12の下方に向けて、水平面に対して0°以上かつ10°以下であることが好ましく、より好ましくは0°以上且つ2°以下傾いている。
As shown in FIG. 3, the burner portion 17 has the same direction as the virtual circle E centered on the central axis C2 with the axis C1 of the burner portion 17 smaller than the inner diameter R1 of the partial oxidation portion 12 when viewed from above D1. It arrange | positions so that F1 circumference may be touched. Here, contacting around the same direction F1 means that the axis C1 contacts the virtual circle E around the direction F1 when the axis C1 of each burner portion 17 is assumed to extend from the tip of the burner portion 17. means. In addition, the axis C1 of each burner part 17 may be arrange | positioned so that the virtual circle E may contact | connect around the direction F2 which is the direction opposite to the direction F1.
The diameter ratio, which is the ratio of the virtual circle diameter R2 to the internal diameter R1 of the partial oxidation portion 12 (the virtual circle diameter R2 / the internal diameter R1 of the reaction vessel), is set to be 1/10 or more and 1/3 or less. ing. The diameter ratio is more preferably 1/5 or more and 3/10 or less.
Furthermore, as shown in FIG. 2, the angle θ of the axis C1 of the burner portion 17 with respect to the horizontal plane is set to be 0 ° or more and 10 ° or less.
That is, it is preferable that the tip of the burner part 17 is inclined at 0 ° or more and 10 ° or less, more preferably 0 ° or more and 2 ° or less, with respect to the horizontal plane toward the lower side of the partial oxidation part 12.
 石炭粉砕・乾燥設備2において粉砕・乾燥された微粉状の石炭は、石炭供給部20により各バーナー部17に所定の流量となるように供給される。空気分離設備9で分離された酸素ガス、および後述するように熱回収設備5により供給された水蒸気は、酸化剤供給部21により各バーナー部17に所定の流量となるように供給される。
 より詳しく説明すると、バーナー部17から部分酸化部12内に供給される石炭、酸化剤(酸素ガスおよび水蒸気)の質量流量をm1(kg/s)、m2(kg/s)、バーナー部17内での石炭、酸化剤の流速をV1(m/s)、V2(m/s)とする。このとき、下記の(2)式による平均流速Va(m/s)が、10(m/s)以上且つ50(m/s)以下となるように、石炭供給部20および酸化剤供給部21により、石炭及び酸化剤の流量が調節されている。
 Va=(m1×V1+m2×V2)/(m1+m2) ・・(2)
 即ち、平均流速Vaとはバーナー部17の原料噴射口から射出される流体の平均流速である。
 ただし、酸化剤中の酸素ガスは、酸素と石炭の重量比(酸素/石炭)で0.7~0.9、水蒸気は、水蒸気と石炭の重量比(水蒸気/石炭)で0.05~0.3の範囲で、石炭銘柄や運転計画温度にて適切に設定される。また、バーナー部17内の酸化剤の流速V1(m/s)は、酸素ガスおよび水蒸気の混合された状態での流速とする。石炭銘柄の違いは、石炭の工業分析値及び元素分析値、灰組成等で示すことが出来る。
 また、平均流速Vaは、10(m/s)以上且つ30(m/s)以下であることがより好ましい。
The finely pulverized coal pulverized and dried in the coal pulverization / drying facility 2 is supplied by the coal supply unit 20 to each burner unit 17 at a predetermined flow rate. The oxygen gas separated by the air separation equipment 9 and the water vapor supplied by the heat recovery equipment 5 as will be described later are supplied to each burner section 17 by the oxidant supply section 21 so as to have a predetermined flow rate.
More specifically, the mass flow rates of coal and oxidant (oxygen gas and water vapor) supplied from the burner unit 17 into the partial oxidation unit 12 are m1 (kg / s), m2 (kg / s), The flow rates of coal and oxidant at V are defined as V1 (m / s) and V2 (m / s). At this time, the coal supply unit 20 and the oxidant supply unit 21 are set so that the average flow velocity Va (m / s) according to the following formula (2) is 10 (m / s) or more and 50 (m / s) or less. Thus, the flow rates of coal and oxidant are adjusted.
Va = (m1 × V1 + m2 × V2) / (m1 + m2) (2)
That is, the average flow velocity Va is an average flow velocity of the fluid injected from the raw material injection port of the burner unit 17.
However, oxygen gas in the oxidizing agent is 0.7 to 0.9 in terms of weight ratio of oxygen and coal (oxygen / coal), and water vapor is 0.05 to 0 in terms of weight ratio of water vapor to coal (steam / coal). Within the range of .3, it is set appropriately according to the coal brand and the planned operation temperature. Further, the flow rate V1 (m / s) of the oxidant in the burner unit 17 is a flow rate in a state where oxygen gas and water vapor are mixed. Differences in coal brands can be indicated by industrial analysis values, elemental analysis values, ash composition, etc. of coal.
The average flow velocity Va is more preferably 10 (m / s) or more and 30 (m / s) or less.
 部分酸化部12の外周面には、部分酸化部12を冷却するための冷却壁管路22が配設されていて、冷却壁管路22には、その内部に水や飽和水(ボイラ―水)を流すためのポンプ23が接続されている。この冷却壁管路22内を流れる水や飽和水は、冷却壁管路22内を循環してもよいし、部分酸化部12をボイラ―として用いて加熱し、高温の水蒸気となった後で蒸気として回収・利用してもよい。 A cooling wall pipe 22 for cooling the partial oxidation section 12 is disposed on the outer peripheral surface of the partial oxidation section 12. The cooling wall pipe 22 includes water and saturated water (boiler-water). ) Is connected. The water or saturated water flowing in the cooling wall pipe 22 may be circulated in the cooling wall pipe 22 or after the partial oxidation unit 12 is heated as a boiler and becomes high-temperature steam. It may be recovered and used as steam.
 粉砕され昇圧された石炭および酸化剤は、平均流速Vaで上述のバーナー部17から部分酸化部12内に供給される。8基のバーナー部17は図3に示すように配置されているので、バーナー部17から供給される石炭および酸化剤は、図2に示すように、まず、部分酸化部12の中心軸線C2回りに旋回しながら下向きに、または同一水平面上を流れるように噴射される。部分酸化部12内は、高温・高圧(たとえば、温度が1200℃以上1800℃以下であって、圧力が2MPa以上。)になっている。この環境下で石炭が高温になり熱分解してチャーと、タールおよび水蒸気等を含む揮発性ガスとが分離するとともに、石炭がガス化することにより、下記化学反応式(1)~(3)による高温の一酸化炭素ガス、二酸化炭素ガス、および水素ガスと、スラグ(灰分)が発生する。 The pulverized and pressurized coal and oxidant are supplied from the burner unit 17 to the partial oxidation unit 12 at an average flow rate Va. Since the eight burner portions 17 are arranged as shown in FIG. 3, the coal and the oxidant supplied from the burner portion 17 are first rotated around the central axis C2 of the partial oxidation portion 12 as shown in FIG. It is sprayed so as to flow downward or on the same horizontal plane while turning. The inside of the partial oxidation part 12 is high temperature and high pressure (for example, temperature is 1200 degreeC or more and 1800 degrees C or less, and pressure is 2 Mpa or more). Under this environment, the coal becomes high temperature and is thermally decomposed to separate char from volatile gas containing tar, water vapor, etc., and the gasification of the coal results in the following chemical reaction formulas (1) to (3) High temperature carbon monoxide gas, carbon dioxide gas, and hydrogen gas, and slag (ash) are generated.
 2C+O2→2CO  ・・・(1)
 C+O2→CO2    ・・・(2)
 C+H2O→CO+H2 ・・・(3)
2C + O 2 → 2CO (1)
C + O 2 → CO 2 (2)
C + H 2 O → CO + H 2 (3)
 このときの、部分酸化部12内の各部位における、水素ガスや一酸化炭素ガス等の流速分布を図4に示す。図4は、図3中に示す部分酸化部12の中心軸線C2を含む基準平面P2上において、中心軸線C2からr方向の位置に対する流速vを示したものである。ここで、基準平面P2は、水平面に平行な基準平面P1に対して垂直な面である。部分酸化部12では、中心軸線C2から半径方向(r方向)に向けて、水素ガスや一酸化炭素ガスなどの流体が同一方向(例えば方向F1)に旋回しながら上昇する。図4では、この基準平面P2の、ある高さの位置におけるr方向の流体の流速vの変化(分布)を示している。ここで、ある高さの位置とは、部分酸化部12の高さ方向に沿った何れかの場所であり、バーナー部17aより上であればよい。図4において、横軸は中心軸線C2に対するr方向の位置、縦軸は流速vを示す。なお、実際には、r方向の位置が正の側(図3における中心軸線C2に対してバーナー部17a側)と、r方向の位置が負の側(図3における中心軸線C2に対してバーナー部17e側)とで、流速vの向きは異なるが、図4では流速vの向きを考えない大きさのみを示すものとした。さらに、図4では部分酸化部12の内周面に付着する後述するスラグの厚さは考慮せずに示している。 FIG. 4 shows the flow velocity distribution of hydrogen gas, carbon monoxide gas, etc. at each part in the partial oxidation part 12 at this time. FIG. 4 shows the flow velocity v with respect to the position in the r direction from the central axis C2 on the reference plane P2 including the central axis C2 of the partial oxidation unit 12 shown in FIG. Here, the reference plane P2 is a plane perpendicular to the reference plane P1 parallel to the horizontal plane. In the partial oxidation unit 12, a fluid such as hydrogen gas or carbon monoxide gas rises while turning in the same direction (for example, direction F1) from the central axis C2 in the radial direction (r direction). FIG. 4 shows the change (distribution) of the flow velocity v of the fluid in the r direction at a certain height on the reference plane P2. Here, the position of a certain height is any location along the height direction of the partial oxidation unit 12 and may be any position above the burner unit 17a. In FIG. 4, the horizontal axis indicates the position in the r direction with respect to the central axis C2, and the vertical axis indicates the flow velocity v. Actually, the position in the r direction is on the positive side (the burner portion 17a side with respect to the central axis C2 in FIG. 3), and the position in the r direction is on the negative side (the burner with respect to the central axis C2 in FIG. 3). The direction of the flow velocity v is different between the portion 17e side), but FIG. 4 shows only the magnitude that does not consider the direction of the flow velocity v. Further, FIG. 4 shows the thickness of a slag, which will be described later, attached to the inner peripheral surface of the partial oxidation portion 12 without considering it.
 図4中に、部分酸化部(反応容器)12の内径に対する仮想円の直径比が1/5以上で3/10以下となるように、部分酸化部12にバーナー部17を設置し、平均流速Vaが、10(m/s)以上且つ30(m/s)以下としたときの流速vのモデルを実線で示す。
 図4中に実線で示す通り、バーナー部17cの軸線C1上の位置となるr方向の位置がR2/2となる位置付近、およびバーナー部17gの軸線C1上の位置となるr方向の位置が-R2/2となる位置付近で、流速vが最大となる。そして、部分酸化部12の内周面の位置となるr方向の位置がR1/2となる位置、および-R1/2となる位置で、流速vが0に近づくとともに流速vの曲線の傾き(速度勾配)の絶対値は小さな値となる。
 水素ガスや一酸化炭素ガス等がニュートン流体と仮定したときには、流体がスラグを剥がそうとする力(剪断力)は、流体の流速vの速度勾配に流体の粘性係数μを掛けたもの(μ(dv/dr))になるので、この場合の剪断力は比較的小さいことが分かる。
In FIG. 4, a burner unit 17 is installed in the partial oxidation unit 12 so that the diameter ratio of the virtual circle to the inner diameter of the partial oxidation unit (reaction vessel) 12 is 1/5 or more and 3/10 or less, and the average flow velocity A model of the flow velocity v when Va is 10 (m / s) or more and 30 (m / s) or less is indicated by a solid line.
As indicated by the solid line in FIG. 4, the position in the r direction where the position in the r direction which is the position on the axis C1 of the burner portion 17c is R2 / 2 and the position in the r direction which is the position on the axis C1 of the burner portion 17g are Near the position where −R2 / 2, the flow velocity v becomes maximum. Then, at the position where the position in the r direction which is the position of the inner peripheral surface of the partial oxidation portion 12 is R1 / 2 and the position where −R1 / 2, the flow velocity v approaches 0 and the gradient of the curve of the flow velocity v ( The absolute value of (velocity gradient) is a small value.
When hydrogen gas or carbon monoxide gas is assumed to be a Newtonian fluid, the force (shearing force) at which the fluid tries to peel off the slag is obtained by multiplying the velocity gradient of the fluid flow velocity v by the fluid viscosity coefficient μ (μ (Dv / dr)), it can be seen that the shear force in this case is relatively small.
 これに対して、(2)式による平均流速Vaが50(m/s)を超えた比較例では、図4中に点線で示したように、流速vが最大値をとる位置は変わらずに流速vの最大値が増加する。従って、流速vの曲線の傾きの絶対値が増加してスラグに作用する剪断力が増加し、スラグが剥がれやすくなる。
 また、実線で示された流体の流速分布を示す部分酸化部12の構成に対して、バーナー部17bの軸線C1を部分酸化部12の中心軸線C2から離間させて直径比が1/3を超えた比較例では、流体の流速分布は図4中に二点鎖線で示すような分布になる。すなわち、この場合においても、部分酸化部12の内周面の位置となるr方向の位置がR1/2および-R1/2となる位置での流速vの曲線の傾きの絶対値が増加してスラグに作用する剪断力が増加することで、スラグが剥がれやすくなる。
On the other hand, in the comparative example in which the average flow velocity Va according to the equation (2) exceeds 50 (m / s), the position where the flow velocity v takes the maximum value does not change as shown by the dotted line in FIG. The maximum value of the flow velocity v increases. Accordingly, the absolute value of the slope of the curve of the flow velocity v increases, the shearing force acting on the slag increases, and the slag becomes easy to peel off.
Further, with respect to the configuration of the partial oxidation unit 12 showing the flow velocity distribution of the fluid shown by the solid line, the diameter C ratio exceeds 1/3 by separating the axis C1 of the burner unit 17b from the central axis C2 of the partial oxidation unit 12. In the comparative example, the flow velocity distribution of the fluid is a distribution as shown by a two-dot chain line in FIG. That is, also in this case, the absolute value of the slope of the curve of the flow velocity v at the position where the position in the r direction that is the position of the inner peripheral surface of the partial oxidation portion 12 is R1 / 2 and −R1 / 2 is increased. As the shearing force acting on the slag increases, the slag is easily peeled off.
 図2に示すように、部分酸化部12内で発生したガスやスラグ等は、部分酸化部12の中心軸線C2回りを旋回しながら径方向外側に移動するとともに、高温になって膨張することで浮力により上向きの力を受けて、部分酸化部12の内周面側を上昇する。部分酸化部12内で発生したスラグは溶融した状態となっているが、一部のスラグSが部分酸化部12の内周面で冷やされて付着し、その他の部分が部分酸化部12の下方D2に設けられたスラグタップ24に落ちて予熱部15内に流れ出して回収される。
 なお、部分酸化部12の内周面に付着したスラグSが厚くなるほど、スラグSによる断熱効果が増して部分酸化部12が高熱から保護されるとともに、部分酸化部12から冷却壁管路22内の水等に伝えられる熱量(以下、「熱損失」と称する。)が低減される。
As shown in FIG. 2, the gas, slag, etc. generated in the partial oxidation part 12 move radially outward while turning around the central axis C2 of the partial oxidation part 12 and expand at a high temperature. The upward force is received by the buoyancy, and the inner peripheral surface side of the partial oxidation unit 12 is raised. Although the slag generated in the partial oxidation part 12 is in a molten state, a part of the slag S is cooled and adhered on the inner peripheral surface of the partial oxidation part 12, and the other part is below the partial oxidation part 12. It falls on the slag tap 24 provided in D2, flows out into the preheating part 15, and is collect | recovered.
In addition, as the slag S adhering to the inner peripheral surface of the partial oxidation part 12 becomes thicker, the heat insulation effect by the slag S is increased and the partial oxidation part 12 is protected from high heat, and from the partial oxidation part 12 into the cooling wall pipe 22 The amount of heat transferred to water or the like (hereinafter referred to as “heat loss”) is reduced.
 ここで、熱損失について図5を用いて説明する。直径比が1/3のときの熱損失量を1(基準)とした他の条件との熱損失量の比率を熱損失比とすると、直径比の値が1/3を超えたときに熱損失比(L1)が急激に大きくなる。これは、バーナー部17の軸線C1と部分酸化部12の内周面との距離が近くなる。即ち、バーナー部17から射出される流体が部分酸化部12の中心部ではなく、内周面に向かいやすくなる。従って、部分酸化部12の内周面に付着したスラグが剥がれやすくなるためである。また、直径比が1/10未満になると、部分酸化部12の内部の旋回流の径が急激に小さくなるので、必要な反応時間が確保できなくなり反応率比(L2)が急激に小さくなってしまう。ここで言う、反応率比とは、直径比が1/3のときの反応率を1(基準)として他の条件との反応率の比率のことを意味する。
 そして、上記の平均流速Vaは、図6に示すように、値が50(m/s)を超えると、上述のようにスラグが剥がれやすくなり熱損失比が急激に大きくなる。また、平均流速Vaが10(m/s)未満になると、石炭供給設備3からバーナー部17を介して石炭ガス化炉4内への石炭の気流搬送が不安定もしくは閉塞により不能となり、部分酸化部12への石炭供給量が変動してしまう。
Here, the heat loss will be described with reference to FIG. When the ratio of heat loss to other conditions with the heat loss amount being 1 (reference) when the diameter ratio is 1/3 is defined as the heat loss ratio, heat is generated when the value of the diameter ratio exceeds 1/3. The loss ratio (L1) increases rapidly. This is because the distance between the axis C1 of the burner portion 17 and the inner peripheral surface of the partial oxidation portion 12 is reduced. That is, the fluid ejected from the burner portion 17 is likely to face the inner peripheral surface instead of the central portion of the partial oxidation portion 12. Therefore, the slag adhering to the inner peripheral surface of the partial oxidation part 12 becomes easy to peel off. Further, when the diameter ratio is less than 1/10, the diameter of the swirling flow inside the partial oxidation unit 12 is abruptly reduced, so that the required reaction time cannot be secured and the reaction rate ratio (L2) is abruptly reduced. End up. Here, the reaction rate ratio means the ratio of the reaction rate with other conditions when the reaction rate when the diameter ratio is 1/3 is 1 (reference).
Then, as shown in FIG. 6, when the average flow velocity Va exceeds 50 (m / s), the slag is easily peeled off as described above, and the heat loss ratio increases rapidly. Further, when the average flow velocity Va becomes less than 10 (m / s), the air flow of coal from the coal supply facility 3 to the coal gasification furnace 4 through the burner unit 17 becomes unstable or cannot be blocked, and partial oxidation is caused. The amount of coal supplied to the section 12 will fluctuate.
 そして、図1に示すように、石炭ガス化炉4の上方から、水素ガスおよび一酸化炭素ガスを主成分とする高温の合成ガスにチャーが同伴し、熱回収設備5に供給される。
 熱回収設備5では、石炭ガス化炉4から搬送された合成ガスとボイラ水とを熱交換させることにより水蒸気が製造される。この水蒸気は前述の石炭粉砕・乾燥設備2等に石炭の乾燥等の目的のために供給される。
 熱回収設備5で冷却された合成ガスは、熱回収設備5からチャー回収設備6に供給され、チャー回収設備6で合成ガスに含まれるチャーが回収される。ここで、回収されたチャーは、燃料等として外部利用することもできるが、このチャーを石炭ガス化炉4にリサイクルさせてガス化することもできる。
 チャー回収設備6を通過した合成ガスは、シフト反応設備7に供給される。そして、合成ガス中の一酸化炭素ガスに対する水素ガスの比率を一定の値まで高めるために、シフト反応設備7中に水蒸気を供給し、下記の化学反応式(4)で示される触媒を用いたシフト反応を生じさせる。このシフト反応により、一酸化炭素ガスが消費されて代わりに水素ガスが発生する。
Then, as shown in FIG. 1, char is accompanied by high-temperature synthesis gas mainly composed of hydrogen gas and carbon monoxide gas from above the coal gasification furnace 4, and is supplied to the heat recovery facility 5.
In the heat recovery facility 5, steam is produced by exchanging heat between the synthesis gas conveyed from the coal gasification furnace 4 and the boiler water. This water vapor is supplied to the above-described coal pulverization / drying facility 2 or the like for the purpose of drying the coal.
The synthesis gas cooled by the heat recovery facility 5 is supplied from the heat recovery facility 5 to the char recovery facility 6, and the char contained in the synthesis gas is recovered by the char recovery facility 6. Here, the recovered char can be used externally as fuel or the like, but the char can also be recycled to the coal gasification furnace 4 for gasification.
The synthesis gas that has passed through the char recovery facility 6 is supplied to the shift reaction facility 7. And in order to raise the ratio of the hydrogen gas with respect to the carbon monoxide gas in a synthesis gas to a fixed value, water vapor | steam was supplied in the shift reaction equipment 7, and the catalyst shown by following Chemical reaction formula (4) was used. Causes a shift reaction. By this shift reaction, carbon monoxide gas is consumed and hydrogen gas is generated instead.
 CO+H2O→CO2+H2 ・・・(4) CO + H 2 O → CO 2 + H 2 (4)
 シフト反応設備7で成分を調整された合成ガスは、ガス精製設備8に供給され、合成ガスに含まれる二酸化炭素ガスや、硫黄を成分として含むガス等が回収される。
 ガス精製設備8で精製された製品合成ガスは、化学合成設備等に供給され、メタンやメタノール及びアンモニア等が製造される。
The synthesis gas whose components have been adjusted by the shift reaction facility 7 is supplied to the gas purification facility 8, and carbon dioxide gas contained in the synthesis gas, gas containing sulfur as a component, and the like are recovered.
The product synthesis gas purified by the gas purification facility 8 is supplied to the chemical synthesis facility and the like, and methane, methanol, ammonia and the like are produced.
 以上説明したように、本実施形態の石炭ガス化炉4では、バーナー部17が円筒状の反応容器12内に石炭および酸化剤を供給することにより、反応容器12の中心軸線C2回りに旋回する流れを発生させることができる。このため、反応容器12の内周面近傍における流体の流れが周方向の位置によらずに安定し、石炭がガス化することによって発生した溶融したスラグが反応容器12の内周面に付着する厚さをほぼ均一にすることができる。
 また、バーナー部17は、自身の軸線C1が水平面に平行に、またはバーナー部の先端に向かうほど下方D2に向かうように配置されている。この構成によれば、ガス化して膨張し、部分酸化部12内を旋回しながら上昇しようとする燃焼する石炭を、熱回収設備5に移動する前にバーナー部17から一度水平または下方D2に向かうように流すことができる。従って、バーナー部17より吹き込んだ石炭粒子をバーナー部17近傍の高温場に長く存在させることができ、さらには、石炭中のカーボン(チャー)が部分酸化部12中を流れる時間を増加させることができるので、部分酸化部12内で十分にガス化させることができる。
As described above, in the coal gasification furnace 4 of the present embodiment, the burner unit 17 is swung around the central axis C <b> 2 of the reaction vessel 12 by supplying coal and an oxidant into the cylindrical reaction vessel 12. A flow can be generated. For this reason, the fluid flow in the vicinity of the inner peripheral surface of the reaction vessel 12 is stabilized regardless of the position in the circumferential direction, and the molten slag generated by the gasification of coal adheres to the inner peripheral surface of the reaction vessel 12. The thickness can be made substantially uniform.
Moreover, the burner part 17 is arrange | positioned so that its own axis C1 may go to the lower part D2 so that it may become parallel to a horizontal surface, or it goes to the front-end | tip of a burner part. According to this configuration, the burning coal that expands by gasification and is going to rise while turning in the partial oxidation unit 12 is once directed horizontally or downward D2 from the burner unit 17 before moving to the heat recovery facility 5. Can be flowed as follows. Therefore, the coal particles blown from the burner unit 17 can be present in the high temperature field near the burner unit 17 for a long time, and further, the time for the carbon (char) in the coal to flow through the partial oxidation unit 12 can be increased. Therefore, the gas can be sufficiently gasified in the partial oxidation part 12.
 そして、バーナー部17は、部分酸化部12の中心軸線C2回りに等間隔毎に配置されているので、バーナー部17から供給される石炭および酸化剤、そして石炭のガス化により生じるガスを含む流体の部分酸化部12内での流れをより安定させることができる。
 また、バーナー部17は、反応容器の内径に対する仮想円の直径比が1/10以上1/3以下となるように配置されている。直径比を1/3以下とすることで、部分酸化部12の内周面における流体の速度勾配を小さくし、部分酸化部12の内周面に付着した溶融したスラグ等が内周面から剥がれるのが抑えられる。したがって、部分酸化部12の内周面が高温下にさらされて損傷するのを防止することができる。さらに、直径比を1/10以上とすることで、バーナー部17から供給される石炭および酸化剤等が互いに正面から衝突するのを防止して、部分酸化部12の中心軸線C2回りに旋回する流れを確実に生じさせ、反応率比が小さくなることを防止することができる。
And since the burner part 17 is arrange | positioned at equal intervals around the central axis C2 of the partial oxidation part 12, the fluid containing the coal and the oxidizing agent supplied from the burner part 17, and the gas produced by gasification of coal The flow in the partial oxidation part 12 can be further stabilized.
Moreover, the burner part 17 is arrange | positioned so that the diameter ratio of the virtual circle with respect to the internal diameter of a reaction container may be 1/10 or more and 1/3 or less. By setting the diameter ratio to 1/3 or less, the velocity gradient of the fluid on the inner peripheral surface of the partial oxidation unit 12 is reduced, and the molten slag and the like attached to the inner peripheral surface of the partial oxidation unit 12 is peeled off from the inner peripheral surface. Is suppressed. Therefore, it is possible to prevent the inner peripheral surface of the partial oxidation portion 12 from being exposed to high temperatures and being damaged. Further, by setting the diameter ratio to 1/10 or more, the coal and the oxidant supplied from the burner unit 17 are prevented from colliding with each other from the front, and turn around the central axis C2 of the partial oxidation unit 12. It is possible to reliably generate a flow and prevent the reaction rate ratio from being reduced.
 そして、平均流速Vaを50(m/s)以下とすることで、部分酸化部12の内周面に付着したスラグが内周面から剥がれるのが抑えられて部分酸化部12から外部に伝えられる熱損失を低下させることができる。一方、平均流速Vaを10(m/s)以上とすることで、バーナー部17において酸化剤により石炭を安定して搬送させることができる。
 また、バーナー部17の軸線C1の水平面に対する角度θを0°以上且つ10°以下とすることで、バーナー部17より吹き込んだ石炭粒子をバーナー部17近傍の高温場に長く存在させることができるので、石炭中のカーボンのガス化反応が促進され、反応率を上昇させることができる。
And by making average flow velocity Va into 50 (m / s) or less, it is suppressed that the slag adhering to the internal peripheral surface of the partial oxidation part 12 peels from an internal peripheral surface, and is transmitted from the partial oxidation part 12 to the exterior. Heat loss can be reduced. On the other hand, by setting the average flow velocity Va to 10 (m / s) or more, coal can be stably conveyed by the oxidizing agent in the burner portion 17.
Moreover, since the angle θ of the axis C1 of the burner portion 17 with respect to the horizontal plane is 0 ° or more and 10 ° or less, coal particles blown from the burner portion 17 can be present in the high-temperature field near the burner portion 17 for a long time. The gasification reaction of carbon in coal is promoted, and the reaction rate can be increased.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更等も含まれる。
 たとえば、上記実施形態では、バーナー部17の形状を円筒状としたが、所定の軸線に沿って延びる形状であれば、扁平した円筒状や角筒状等でもよい。
 また、上記実施形態では、バーナー部17は部分酸化部12の中心軸線C2回りに等間隔毎に配置されていなくても部分酸化部12内の流体の流れは旋回する流れになるので、バーナー部17は中心軸線C2回りに等間隔毎に配置されていなくてもよい。
As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The change of the structure of the range which does not deviate from the summary of this invention, etc. are included.
For example, in the above embodiment, the shape of the burner portion 17 is a cylindrical shape, but may be a flat cylindrical shape, a rectangular tube shape, or the like as long as the shape extends along a predetermined axis.
Further, in the above embodiment, the flow of the fluid in the partial oxidation unit 12 is a swirling flow even if the burner unit 17 is not arranged at equal intervals around the central axis C2 of the partial oxidation unit 12, so the burner unit 17 may not be arranged at equal intervals around the central axis C2.
 また、上記の石炭ガス化炉において、部分酸化部12におけるバーナー部17の直近の上方であって基準平面P1に平行な第二の基準平面上に、チャーバーナーをバーナー部17と同様に配置してもよい。すなわち、チャーバーナーは、上方D1からみたときに、チャーバーナーの軸線が部分酸化部12の内径R1よりも小径で中心軸線C2を中心とする仮想円に同一方向回りに接するように配置されるとよい。更に、チャーバーナーの軸線が水平面に平行に、またはチャーバーナーの先端に向かうほど下方に向かうように、チャーバーナーを配置してもよい。
 尚、上記リサイクルに関しては、チャーバーナーを使用せずチャーを石炭に均一に混合したものをバーナー部17に供給してもよい。
 さらに、上記実施形態では、部分酸化部12の上部に、熱分解部を備えて部分酸化部12からの高温の水素ガスおよび一酸化炭素ガスを主成分とする合成ガスに石炭を吹き込み、上記合成ガスの熱を熱分解に利用してもよい。
In the above coal gasification furnace, the char burner is arranged in the same manner as the burner unit 17 on the second reference plane parallel to the reference plane P <b> 1 immediately above the burner unit 17 in the partial oxidation unit 12. May be. That is, when viewed from above D1, the char burner is arranged so that the axis of the char burner is smaller than the inner diameter R1 of the partial oxidation portion 12 and is in contact with a virtual circle centered on the central axis C2 around the same direction. Good. Furthermore, the char burner may be arranged so that the axis of the char burner is parallel to the horizontal plane or goes downward as it goes toward the tip of the char burner.
In addition, regarding the said recycling, you may supply to the burner part 17 what mixed char with coal uniformly, without using a char burner.
Furthermore, in the said embodiment, coal is blown into the synthesis gas which has a thermal decomposition part in the upper part of the partial oxidation part 12, and has the high temperature hydrogen gas and carbon monoxide gas from the partial oxidation part 12 as a main component, Gas heat may be used for pyrolysis.
 上記の石炭ガス化炉4の部分酸化部12において、内周面の直径を0.65(m)、内部の高さを1.0(m)とし、部分酸化部12に等間隔ごとに4基のバーナー部17を設けた。そして、石炭に灰分5%の瀝青炭を用いて試験を行った。
 バーナー部17の平均流速Vaを30(m/s)として、直径比を1/3から1/5に変えて運転したところ、直径比が1/5とした方が、直径比が1/3とした場合に対して部分酸化部12から冷却壁管路22内の水等に伝えられる上記の熱損失が約20%低減することが分かった。
 また、部分酸化部12の直径比を1/3に固定して、バーナー部17の平均流速Vaを50(m/s)から30(m/s)に変えて運転したところ、平均流速Vaが30(m/s)のときの方が、平均流速Vaが50(m/s)のときに対して熱損失が約10%低減することが分かった。
 そして、直径比を1/3から1/5に変えるとともに、平均流速Vaを50(m/s)から30(m/s)に変えて運転したときには、熱損失が約20%低下した。
In the partial oxidation unit 12 of the coal gasification furnace 4 described above, the inner peripheral surface has a diameter of 0.65 (m) and an internal height of 1.0 (m), and the partial oxidation unit 12 has 4 at regular intervals. A basic burner portion 17 was provided. And it tested using the bituminous coal of 5% of ash for coal.
When the average flow velocity Va of the burner portion 17 was 30 (m / s) and the diameter ratio was changed from 1/3 to 1/5, the diameter ratio was 1/3 when the diameter ratio was 1/5. It was found that the heat loss transferred from the partial oxidation unit 12 to the water in the cooling wall pipe 22 is reduced by about 20%.
Moreover, when the diameter ratio of the partial oxidation part 12 was fixed to 1/3 and the average flow rate Va of the burner part 17 was changed from 50 (m / s) to 30 (m / s), the average flow rate Va was It was found that the heat loss was reduced by about 10% when the average flow velocity Va was 50 (m / s) at 30 (m / s).
When the diameter ratio was changed from 1/3 to 1/5 and the average flow velocity Va was changed from 50 (m / s) to 30 (m / s), the heat loss was reduced by about 20%.
 また、上記の実施例の形状の石炭ガス化炉4において、直径比を1/4、平均流速Vaを10(m/s)として灰分1%の石炭をガス化して運転したところ、部分酸化部12の内周面に付着したスラグ厚さは一定厚みを維持できることがわかった。
 ただし、上記の熱損失は、灰分が3%以上であれば灰分が5%の場合と同等であるが、灰分が5%の場合は灰分が1%の場合より約30%低下することが分かっている。
Further, in the coal gasification furnace 4 having the shape of the above-described embodiment, when the diameter ratio is 1/4 and the average flow rate Va is 10 (m / s) and the coal is gasified and operated with 1% ash, the partially oxidized portion is operated. It was found that the slag thickness adhering to the 12 inner peripheral surfaces can be kept constant.
However, the above heat loss is equivalent to the case where the ash content is 3% or more when the ash content is 3% or more. However, when the ash content is 5%, the heat loss is reduced by about 30% from the case where the ash content is 1%. ing.
 4 石炭ガス化炉
 12 部分酸化部(反応容器)
 17a~17h バーナー部
 C1 軸線
 C2 中心軸線
 E 仮想円
 P1 基準平面
 θ 角度
4 Coal gasifier 12 Partial oxidation section (reaction vessel)
17a to 17h Burner section C1 axis C2 center axis E virtual circle P1 reference plane θ angle

Claims (5)

  1.  石炭を反応容器内でガス化させることで少なくとも水素ガスおよび一酸化炭素ガスを製造する石炭ガス化炉が、
     上方に延びる円筒状に形成した反応容器と、
     前記反応容器の上端側設けられた排出口と、
     前記反応容器内に石炭および酸化剤を供給する複数の筒状のバーナー部とを有し、
     前記複数のバーナー部は、前記排出口より下方に位置する水平面に平行な基準平面上で、前記反応容器の内周面の周方向に向けて間隔を開けて設けられ、
     前記反応容器の上方からみて、前記各バーナー部の軸線が、前記反応容器の中心軸線を中心としている反応容器の内径よりも径の小さい仮想円に、同一方向回りに接するように、前記各バーナー部を配置し、
     前記バーナー部が、前記バーナー部の軸線が水平面に平行に、または前記バーナー部の先端に向かうほど下方に向かうように配置されていることを特徴とする。
    A coal gasification furnace that produces at least hydrogen gas and carbon monoxide gas by gasifying coal in a reaction vessel,
    A reaction vessel formed in a cylindrical shape extending upward;
    An outlet provided on the upper end side of the reaction vessel;
    A plurality of cylindrical burner portions for supplying coal and oxidant into the reaction vessel;
    The plurality of burner portions are provided on a reference plane parallel to a horizontal plane located below the discharge port, with an interval in the circumferential direction of the inner peripheral surface of the reaction vessel,
    When viewed from above the reaction vessel, each burner portion has an axis line in contact with a virtual circle having a diameter smaller than the inner diameter of the reaction vessel centered on the central axis line of the reaction vessel, in the same direction. Place the part,
    The burner portion is arranged such that an axis of the burner portion is parallel to a horizontal plane or is directed downward toward the tip of the burner portion.
  2.  前記バーナー部は、前記反応容器の中心軸線回りに等間隔毎に配置されている請求項1に記載の石炭ガス化炉。 The coal gasifier according to claim 1, wherein the burner portions are arranged at equal intervals around the central axis of the reaction vessel.
  3.  前記反応容器の内径に対する前記仮想円の直径の比が、1/10以上1/3以下に設定されている請求項1または請求項2に記載の石炭ガス化炉。 The coal gasification furnace according to claim 1 or 2, wherein a ratio of a diameter of the virtual circle to an inner diameter of the reaction vessel is set to 1/10 or more and 1/3 or less.
  4.  それぞれの前記バーナー部から前記反応容器内に供給される前記石炭、前記酸化剤の質量流量をm1(kg/s)、m2(kg/s)、それぞれの前記バーナー部内での前記石炭、前記酸化剤の流速をV1(m/s)、V2(m/s)としたときに、(1)式による平均流速Va(m/s)が、10(m/s)以上且つ50(m/s)以下に設定されている請求項1から請求項3のいずれか1項に記載の石炭ガス化炉。
     Va=(m1×V1+m2×V2)/(m1+m2) ・・(1)
    The mass flow rate of the coal and the oxidizer supplied from the burner portions to the reaction vessel is m1 (kg / s), m2 (kg / s), the coal in the burner portions, and the oxidation, respectively. When the flow rate of the agent is V1 (m / s) and V2 (m / s), the average flow rate Va (m / s) according to the formula (1) is 10 (m / s) or more and 50 (m / s) The coal gasifier according to any one of claims 1 to 3, which is set as follows.
    Va = (m1 × V1 + m2 × V2) / (m1 + m2) (1)
  5.  ぞれぞれの前記バーナー部の軸線の水平面に対する角度が、0°以上且つ10°以下に設定されている請求項1から請求項4のいずれか1項に記載の石炭ガス化炉。 The coal gasifier according to any one of claims 1 to 4, wherein an angle of an axis of each burner portion with respect to a horizontal plane is set to 0 ° or more and 10 ° or less.
PCT/JP2011/059020 2010-04-16 2011-04-11 Coal gasification furnace WO2011129302A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800191978A CN102892870A (en) 2010-04-16 2011-04-11 Coal gasification furnace
AU2011241999A AU2011241999B2 (en) 2010-04-16 2011-04-11 Coal gasifier
JP2012510648A JP5552157B2 (en) 2010-04-16 2011-04-11 Coal gasifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010095496 2010-04-16
JP2010-095496 2010-04-16

Publications (1)

Publication Number Publication Date
WO2011129302A1 true WO2011129302A1 (en) 2011-10-20

Family

ID=44798675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059020 WO2011129302A1 (en) 2010-04-16 2011-04-11 Coal gasification furnace

Country Status (4)

Country Link
JP (1) JP5552157B2 (en)
CN (2) CN104479748B (en)
AU (1) AU2011241999B2 (en)
WO (1) WO2011129302A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108998097B (en) * 2018-08-28 2020-11-24 南京六创科技发展有限公司 Coal gasification method
CN113319113A (en) * 2021-05-17 2021-08-31 太原理工大学 Thermal desorption device and process for organic contaminated soil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176391A (en) * 1983-03-28 1984-10-05 Hitachi Ltd Coal gasifying oven
JPH0873869A (en) * 1994-09-06 1996-03-19 Mitsubishi Heavy Ind Ltd Coal gasification furnace having two-stage jet bed
JPH08269466A (en) * 1995-03-29 1996-10-15 Mitsubishi Heavy Ind Ltd Entrained bed coal gasifier
JP2002155289A (en) * 2000-11-21 2002-05-28 Nippon Steel Corp Gas-flowing bed type method for gasifying coal

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295687A (en) * 1988-09-30 1990-04-06 Toshiba Corp Display device for cage position of elevator
JP3504772B2 (en) * 1995-04-25 2004-03-08 三菱重工業株式会社 Spouted bed coal gasifier
WO1997044412A1 (en) * 1996-05-20 1997-11-27 Hitachi, Ltd. Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system
JPH11269471A (en) * 1998-03-23 1999-10-05 Nippon Steel Corp Coal rapid thermal decomposition oven and method for preventing char deposition
JP4085239B2 (en) * 2002-02-12 2008-05-14 株式会社日立製作所 Gasification method and gasification apparatus
EP1896368B1 (en) * 2005-06-28 2013-05-01 Afognak Native Corporation Method and apparatus for automated, modular, biomass power generation
CN101392191B (en) * 2008-10-15 2011-11-23 合肥工业大学 Two stage type dry coal powder entrained flow gasifier
CN101508915B (en) * 2009-03-17 2012-09-05 惠生工程(中国)有限公司 Gasifying device for liquid fuel or solid fuel aqueous slurry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176391A (en) * 1983-03-28 1984-10-05 Hitachi Ltd Coal gasifying oven
JPH0873869A (en) * 1994-09-06 1996-03-19 Mitsubishi Heavy Ind Ltd Coal gasification furnace having two-stage jet bed
JPH08269466A (en) * 1995-03-29 1996-10-15 Mitsubishi Heavy Ind Ltd Entrained bed coal gasifier
JP2002155289A (en) * 2000-11-21 2002-05-28 Nippon Steel Corp Gas-flowing bed type method for gasifying coal

Also Published As

Publication number Publication date
AU2011241999B2 (en) 2013-12-19
JP5552157B2 (en) 2014-07-16
CN104479748A (en) 2015-04-01
AU2011241999A1 (en) 2012-12-06
CN104479748B (en) 2018-01-05
JPWO2011129302A1 (en) 2013-07-18
CN102892870A (en) 2013-01-23

Similar Documents

Publication Publication Date Title
CN100366710C (en) Multi-nozzle coal water mixture or fine coal gasifying furnace and its industrial application
US20150090938A1 (en) Method and Device for the Entrained Flow Gasification of Solid Fuels under Pressure
KR102203125B1 (en) Second stage gasifier in staged gasification
CN101985568B (en) Two-stage oxygen supply dry slag removal pressurized gas flow bed gasification furnace
JP5130459B2 (en) Operation method of coal pyrolysis gasifier
JP5450800B2 (en) Coal pyrolysis gasification method and coal pyrolysis gasification device
JPWO2011129192A1 (en) Coal gasification system and coal gasification method
JP5552157B2 (en) Coal gasifier
CN107429176B (en) Method for operating coal gasification system
JP5827511B2 (en) Coal gas production method and methane production method
JP3976888B2 (en) Coal air bed gasification method and apparatus
EP4163352A1 (en) Method for gasification of carbonaceous feedstock and device for implementing same
JP2004277647A (en) Process for gasification of waste product and installation therefor
US8877097B2 (en) Method for the generation of synthesis gas
JP5211369B1 (en) Coal pyrolysis method
JP5639955B2 (en) Coal gasification system
CN103409170A (en) Slag blockage preventing gasification reactor with graded carbonaceous fuel feeding
JP5851116B2 (en) Coal gasification system
JP4863889B2 (en) Coal hydrocracking process
JP2009019125A (en) Gasification method and apparatus
CN113897222A (en) Gasification furnace for carbon-containing waste and gasification method for carbon-containing waste
JP2010254727A (en) Airflow layer gasification furnace and method for operating the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019197.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510648

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011241999

Country of ref document: AU

Date of ref document: 20110411

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11768823

Country of ref document: EP

Kind code of ref document: A1