JP5211369B1 - Coal pyrolysis method - Google Patents

Coal pyrolysis method Download PDF

Info

Publication number
JP5211369B1
JP5211369B1 JP2012281518A JP2012281518A JP5211369B1 JP 5211369 B1 JP5211369 B1 JP 5211369B1 JP 2012281518 A JP2012281518 A JP 2012281518A JP 2012281518 A JP2012281518 A JP 2012281518A JP 5211369 B1 JP5211369 B1 JP 5211369B1
Authority
JP
Japan
Prior art keywords
amount
coal
furnace
gasification
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012281518A
Other languages
Japanese (ja)
Other versions
JP2014125503A (en
Inventor
広行 小水流
英昭 矢部
泰樹 並木
克志 小菅
眞須美 糸永
卓 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2012281518A priority Critical patent/JP5211369B1/en
Application granted granted Critical
Publication of JP5211369B1 publication Critical patent/JP5211369B1/en
Publication of JP2014125503A publication Critical patent/JP2014125503A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】ガス化炉および改質炉からなる二室二段反応器において、ガス化炉での石炭投入量変動の際のガス性状変化を抑える。
【解決手段】下段にセルフコーティング方式で炉壁を保護するガス化炉、上段に改質炉を設けた上下二室二段の気流層型の熱分解装置を用いて、前記ガス化炉に、石炭と、酸素又は酸素及び水蒸気とを投入して、部分酸化によりガス化ガスを生成し、当該ガス化ガスを前記改質炉に導入し、前記改質炉に、石炭を投入して、前記ガス化ガスの顕熱を用いた前記石炭の熱分解により、ガス、オイル、及びチャーを生成する石炭の熱分解方法であって、前記ガス化炉の炉壁をボイラー構造として、当該ボイラーで発生した蒸気量を測定し、当該測定した蒸気量の増加時にガス化炉への酸素投入量を減少させることを特徴とする。
【選択図】図1
In a two-chamber two-stage reactor composed of a gasification furnace and a reforming furnace, a change in gas properties when a coal input amount is changed in the gasification furnace is suppressed.
A gasification furnace that protects a furnace wall by a self-coating method in a lower stage, and a gasification type pyrolysis apparatus having two stages of upper and lower chambers provided with a reforming furnace in an upper stage, Coal and oxygen or oxygen and water vapor are introduced to produce gasified gas by partial oxidation, the gasified gas is introduced into the reforming furnace, coal is introduced into the reforming furnace, A coal pyrolysis method for generating gas, oil, and char by pyrolysis of the coal using sensible heat of gasification gas, wherein the furnace wall of the gasification furnace has a boiler structure, and is generated in the boiler. It is characterized in that the amount of steam that has been measured is measured and the amount of oxygen input to the gasifier is reduced when the measured amount of steam is increased.
[Selection] Figure 1

Description

本発明は、二室二段の気流層型の熱分解装置を用いて、石炭を気流層中で急速にガス化、熱分解させて、ガス、オイル、チャーを製造する方法に関するものである。   The present invention relates to a method for producing gas, oil, and char by rapidly gasifying and pyrolyzing coal in an airflow layer using a two-chamber, two-stage airflow layer type pyrolysis apparatus.

現在まで、石炭を高温で熱分解し、直接メタンを始めとする炭化水素ガスを含んだ燃料ガスおよびベンゼン、トルエン、キシレン(BTX)を始めとするオイルを製造する石炭熱分解プロセスがいくつか提案されている。   To date, several coal pyrolysis processes have been proposed in which coal is pyrolyzed at high temperatures to produce fuel gas containing hydrocarbon gas such as methane and oil such as benzene, toluene and xylene (BTX). Has been.

特許文献1において、石炭および炭素質原料の酸素によるガス化で生じる高温ガス中に、石炭を吹き込み、石炭の急速加熱・熱分解反応を気流層で行わせ、特にBTXを高収率で得ることが可能であり、かつ、設備のイニシャルコストを低減し、熱補給の必要がない高い熱効率の石炭熱分解方法が示されている。   In Patent Document 1, coal is blown into a high-temperature gas generated by gasification of coal and carbonaceous raw material with oxygen, and rapid heating / pyrolysis reaction of coal is performed in an air flow layer, and in particular, BTX is obtained in a high yield. It is possible to reduce the initial cost of the equipment, and there is shown a high thermal efficiency coal pyrolysis method that does not require heat supply.

また、特許文献2において、石炭および炭素質原料の酸素によるガス化で生じる高温ガス中に石炭および水素を吹き込み、石炭の急速加熱・水素化熱分解反応を気流層で行わせ、軽質なオイルやメタン等の燃料ガスを高収率で得ることが可能な石炭の水素化熱分解方法が示されている。   Further, in Patent Document 2, coal and hydrogen are blown into a high-temperature gas generated by gasification of coal and carbonaceous raw material with oxygen, and rapid heating / hydrocracking reaction of coal is performed in an airflow layer, A coal hydrothermal pyrolysis method that can obtain a fuel gas such as methane in a high yield is shown.

特許文献3において、スラグタップでの溶融スラグの流動性を確保するためにスラグタップを構成する水冷管の冷却水温度を監視し、冷却水温度に基づいてガス化炉(コンバスタ)に投入される酸素の量を調整する操業方法が示されている。   In patent document 3, in order to ensure the fluidity | liquidity of the molten slag in a slag tap, the cooling water temperature of the water cooling pipe which comprises a slag tap is monitored, and it inputs into a gasification furnace (combustor) based on a cooling water temperature. An operating method for adjusting the amount of oxygen is shown.

特開平5−295371号公報JP-A-5-295371 特開2004−217868号公報JP 2004-217868 A 特開平9−13050号公報Japanese Patent Laid-Open No. 9-13050

特許文献1および2において提案されているプロセスにおいては、上下二室二段の反応器の下段のガス化炉では、炉壁は溶融したスラグにより水冷壁やボイラー管を保護するスラグセルフコーティングが一般に用いられる。同方法は壁面を構成する水冷壁やボイラー管に石炭に含まれる灰分を付着させることで壁面を保護するものである。これらのプロセスでは石炭は気流搬送で炉内に投入されるが、粉体の気流搬送では投入量が反応器内と供給系の圧力バランスが変化した場合など変動することが多く、下段のガス化炉に投入される石炭等原料の量が変動した場合に、石炭等原料の投入量は供給ホッパの重量変化で測られるが投入量の把握に時間がかかるため酸素量の調整が追いつかずに同ガス化炉での酸素/石炭比が変動し、生成ガスの組成が変化して例えば(1)式で定義される発熱効率が低下するという問題があった。石炭投入量の変動時にはガス化炉内部の温度が変化し、変化を抑えるように酸素投入量を調整すれば変動の回避は可能であるが、ガス化炉2内部は1500℃程度の高温であるため長時間の連続温度測定は現実的には不可能である。   In the processes proposed in Patent Documents 1 and 2, in the lower gasification furnace of the upper and lower two-chamber two-stage reactor, the furnace wall is generally provided with slag self-coating that protects the water-cooled wall and the boiler tube with molten slag. Used. In this method, the wall surface is protected by adhering ash contained in the coal to the water-cooled wall or the boiler pipe constituting the wall surface. In these processes, coal is introduced into the furnace by airflow conveyance, but in the airflow conveyance of powder, the input amount often fluctuates, such as when the pressure balance between the reactor and the supply system changes, and gasification in the lower stage When the amount of coal and other raw materials charged into the furnace fluctuates, the input amount of coal and other raw materials is measured by the change in the weight of the supply hopper. There has been a problem that the oxygen / coal ratio in the gasification furnace fluctuates, the composition of the product gas changes, and the heat generation efficiency defined by, for example, equation (1) decreases. When the amount of coal input varies, the temperature inside the gasifier changes, and if the amount of oxygen input is adjusted so as to suppress the change, the fluctuation can be avoided, but the inside of the gasifier 2 is at a high temperature of about 1500 ° C. Therefore, long-term continuous temperature measurement is practically impossible.

特許文献3の方法は、スラグタップでの溶融スラグの付着状況をスラグタップを構成する水冷管の冷却水の入出温度差で判断しガス化炉に投入する酸素量を調整するものであるが、冷却水温度差は一般には5℃以下になるように冷却水量を設定するため、ガス化炉からの抜熱量変動10%で0.5℃程度になりスラグタップ周辺状況を判断するために1℃以下の微妙な調整が必要となり、測定誤差が生じやすいという問題があった。また、特許文献3の方法ではスラグタップから流出する溶融スラグの状態を水温により監視するものであり、ガス化炉内の状況を監視するものではない。
発熱効率=(生成ガス発熱量+生成タール発熱量)/(投入石炭発熱量−生成チャー発熱量)・・・(1)
The method of Patent Document 3 is to determine the adhesion state of the molten slag at the slag tap based on the temperature difference between the cooling water in and out of the water-cooled pipe constituting the slag tap, and adjust the amount of oxygen to be charged into the gasification furnace. Since the cooling water amount is generally set so that the cooling water temperature difference is 5 ° C. or less, it becomes about 0.5 ° C. when the amount of heat removal from the gasification furnace is 10%, and 1 ° C. to judge the situation around the slag tap. The following subtle adjustments are required, and there is a problem that measurement errors are likely to occur. Moreover, in the method of patent document 3, the state of the molten slag which flows out from a slag tap is monitored by water temperature, and the condition in a gasification furnace is not monitored.
Heat generation efficiency = (Production gas heat generation amount + Production tar heat generation amount) / (Input coal heat generation amount−Production char heat generation amount) (1)

本発明は、下段にセルフコーティング方式で炉壁を保護するガス化炉、上段に改質炉を設けた上下二室二段の気流層型の熱分解装置を用いて、石炭を熱分解する際に、ガス化炉への石炭投入量が増加しても、改質炉で生成する生成ガスの発熱量の低下が少ない、石炭の熱分解方法を提供することを目的とする。   The present invention is a method for pyrolyzing coal using a gasification furnace that protects the furnace wall by a self-coating method at the lower stage and a two-stage, two-stage, gas-flow-type pyrolysis apparatus provided with a reforming furnace at the upper stage. In addition, an object of the present invention is to provide a method for pyrolyzing coal, in which even if the amount of coal input to the gasification furnace is increased, there is little decrease in the calorific value of the product gas generated in the reforming furnace.

かかる問題を解決するため、本発明の要旨とするところは、以下の通りである。
(1)下段にセルフコーティング方式で炉壁を保護するガス化炉、上段に改質炉を設けた上下二室二段の気流層型の熱分解装置を用いて、前記ガス化炉に、石炭と、酸素又は酸素及び水蒸気とを投入して、部分酸化によりガス化ガスを生成し、当該ガス化ガスを前記改質炉に導入し、前記改質炉に、石炭を投入して、前記ガス化ガスの顕熱を用いた前記石炭の熱分解により、ガス、オイル、及びチャーを生成する石炭の熱分解方法であって、前記ガス化炉の炉壁をボイラー構造として、当該ボイラーで発生した蒸気量を測定し、当該測定した蒸気量の増加時にガス化炉への酸素投入量を減少させることを特徴とする。
(2)前記ガス化炉への酸素投入量を減少させることで、前記ボイラーで発生した蒸気量を、前記蒸気量の増加前の量になるように調整することを特徴とする。
(3)前記ガス化炉への酸素投入量の減少量に応じて、前記改質炉への石炭投入量を減少させることを特徴とする。
In order to solve this problem, the gist of the present invention is as follows.
(1) Using a gasification furnace that protects the furnace wall by the self-coating method at the lower stage and a two-stage, two-stage, gas-flow type thermal decomposition apparatus with a reforming furnace at the upper stage, And oxygen or oxygen and water vapor are added to generate gasified gas by partial oxidation, the gasified gas is introduced into the reforming furnace, coal is charged into the reforming furnace, and the gas A coal pyrolysis method for producing gas, oil, and char by pyrolysis of the coal using sensible heat of gasification gas, wherein the furnace wall of the gasification furnace has a boiler structure and is generated in the boiler. The amount of steam is measured, and when the measured amount of steam increases, the amount of oxygen input to the gasifier is reduced.
(2) It is characterized in that the amount of steam generated in the boiler is adjusted to be the amount before the increase in the amount of steam by reducing the amount of oxygen input to the gasifier.
(3) The amount of coal input to the reforming furnace is reduced according to the amount of decrease in the amount of oxygen input to the gasifier.

本発明により、下段にセルフコーティング方式で炉壁を保護するガス化炉、上段に改質炉を設けた上下二室二段の気流層型の熱分解装置を用いて、石炭を熱分解する際に、炉内の状況を迅速に把握、対応できるため、ガス化炉への石炭投入量が増加しても、改質炉におけるガス化の効率の低下が少なく、安定した石炭の熱分解ガス化操業が可能となる。   According to the present invention, when pyrolyzing coal using a gasification furnace that protects the furnace wall by a self-coating method in the lower stage and a two-stage, two-stage, gas-flow-type pyrolysis apparatus provided with a reforming furnace in the upper stage In addition, since the situation inside the furnace can be quickly grasped and dealt with, even if the amount of coal input to the gasifier increases, there is little reduction in the efficiency of gasification in the reformer and stable pyrolysis gasification of coal Operation becomes possible.

本発明に係る、石炭の気流層型の熱分解装置の概略図である。1 is a schematic view of a coal air-flow type thermal decomposition apparatus according to the present invention. ガス化炉におけるスラグコーティング厚みと放散熱量との関係を示した図である。It is the figure which showed the relationship between the slag coating thickness and the amount of heat dissipation in a gasification furnace.

石炭を、酸素をガス化剤としてガス化すると、主に一酸化炭素、二酸化炭素、水素、水蒸気で構成されるガス化ガスが生成する。ガス化炉の温度はガス化する石炭に含まれる灰分を溶融排出する必要からその灰分の融点以上とする必要がある。ガス化炉から出て行くガス化ガスもその温度であり、改質炉においてこのガス化ガス中に石炭を投入することで石炭を昇温、熱分解反応を起こし生成物を得ることができる。   When coal is gasified using oxygen as a gasifying agent, a gasified gas mainly composed of carbon monoxide, carbon dioxide, hydrogen, and water vapor is generated. The temperature of the gasifier must be equal to or higher than the melting point of the ash because it is necessary to melt and discharge the ash contained in the coal to be gasified. The temperature of the gasification gas exiting from the gasification furnace is also the temperature, and by introducing coal into the gasification gas in the reforming furnace, the temperature of the coal is raised and a thermal decomposition reaction is caused to obtain a product.

上記ガス化および熱分解反応は、下段にセルフコーティング方式で炉壁を保護するガス化炉、上段に改質炉を設けた上下二室二段式の気流層反応器を使用して行うことができる。また、ガス化炉と改質炉の境界部はスロート構造となっており、二室二段とすることで石炭のガス化を行う部分と熱分解を行う部分を完全に分けることができ、各部分の操作条件を自由に設定することが可能となる。ここで二室の反応器とは、反応器の構造でガスの流路に絞りを入れて部分的に流速を増加させることにより、上室に投入された石炭粒子等が下室に落下することを防ぎ、各室で独立した反応条件を設定できる反応器を言う。   The above gasification and pyrolysis reaction can be carried out using a gasification furnace that protects the furnace wall in the lower stage using a self-coating method, and an upper and lower two-chamber, two-stage airflow bed reactor equipped with a reforming furnace in the upper stage. it can. The boundary between the gasification furnace and the reforming furnace has a throat structure, and the two-chamber two-stage can completely separate the part that performs gasification of coal and the part that performs thermal decomposition. It becomes possible to freely set the operating conditions of the part. Here, the two-chamber reactor is a reactor structure in which the gas flow path is partially throttled to partially increase the flow velocity, so that coal particles or the like thrown into the upper chamber fall into the lower chamber. A reactor that can prevent reaction and set independent reaction conditions in each chamber.

以下に、詳細に本発明を説明する。図1において本発明に使用する石炭の気流層型の熱分解装置の概略図を示す。本装置は、改質炉1、ガス化炉2および両者を接続するスロート3で主に構成される。   The present invention will be described in detail below. FIG. 1 is a schematic view of a coal air-bed type thermal decomposition apparatus used in the present invention. This apparatus is mainly composed of a reforming furnace 1, a gasification furnace 2, and a throat 3 that connects the two.

ガス化石炭9に含まれる灰分はガス化炉2内でのガス化石炭9の部分酸化による高温により溶融状態のスラグ15となるため、ガス化炉2の下部から排出できるように、スラグタップ6およびスラグ15を捕集する水槽8を設けることが好ましい。   Since the ash contained in the gasification coal 9 becomes a molten slag 15 due to the high temperature due to partial oxidation of the gasification coal 9 in the gasification furnace 2, the slag tap 6 can be discharged from the lower part of the gasification furnace 2. It is preferable to provide a water tank 8 for collecting the slag 15.

ガス化石炭9に含まれる灰分の融点を調整する為、または充分なスラグセルフコーティング層を形成する為、ガス化石炭9には石灰石、硅砂、葉ろう石、シャモット、高炉スラグ等およびこれらの混合物である融点調整剤11を添加することがある。   In order to adjust the melting point of the ash contained in the gasified coal 9 or to form a sufficient slag self-coating layer, the gasified coal 9 includes limestone, cinnabar, granite, chamotte, blast furnace slag, etc. and mixtures thereof. The melting point adjusting agent 11 may be added.

ガス化炉2の壁面はボイラー管17で構成され同ボイラー部で生成した蒸気は蒸気ドラム19で蒸気が分離され、圧力調整弁21により蒸気ドラム19内の圧力に応じて排出される。排出された蒸気の量は蒸気流量計21で測定され発生蒸気22として排出される。   The wall of the gasification furnace 2 is constituted by a boiler tube 17, and the steam generated in the boiler section is separated by a steam drum 19 and discharged by a pressure adjusting valve 21 according to the pressure in the steam drum 19. The amount of discharged steam is measured by a steam flow meter 21 and discharged as generated steam 22.

ガス化炉2には、ガス化石炭9を部分酸化させるための酸化剤である酸素12、または、酸素12および水蒸気13とともに投入するための、1本または複数本のガス化バーナー5が設置されている。ガス化炉2においては、投入されるガス化石炭9にふくまれる炭化水素中の炭素や水素成分を、できるだけ多くCO、Hに転換するため、ガス化石炭9と酸素12、あるいは酸素12と水蒸気13を素早く混合しガス化石炭9から発生する揮発分がすす化する前に酸素12や水蒸気13と反応させる必要がある。そのために、ガス化炉2へのガス化石炭9と酸素12、水蒸気13はガス化バーナー5で吹き込まれ、急速に混合される。ガス化炉2で生成したガス化ガス14はスロート3を通り改質炉1に送られる。 The gasification furnace 2 is provided with one or a plurality of gasification burners 5 to be charged together with oxygen 12 that is an oxidizing agent for partially oxidizing the gasified coal 9 or oxygen 12 and water vapor 13. ing. In the gasification furnace 2, in order to convert as much carbon and hydrogen components in the hydrocarbons contained in the gasified coal 9 to be supplied into CO and H 2 as much as possible, the gasified coal 9 and oxygen 12, or oxygen 12 and It is necessary to react with the oxygen 12 and the water vapor 13 before the water vapor 13 is quickly mixed and the volatile matter generated from the gasified coal 9 is sooted. For this purpose, the gasified coal 9, oxygen 12 and water vapor 13 into the gasification furnace 2 are blown by the gasification burner 5 and mixed rapidly. The gasification gas 14 generated in the gasification furnace 2 is sent to the reforming furnace 1 through the throat 3.

ガス化炉2での操業圧力および温度は、例えば、0.1〜20MPa、1300〜1700℃で維持される。   The operation pressure and temperature in the gasification furnace 2 are maintained at, for example, 0.1 to 20 MPa and 1300 to 1700 ° C.

次に、改質炉1では改質石炭10が投入されて石炭の熱分解反応が起こる。この熱分解反応によって石炭からガス、固体のチャー、そしてタールが生成する。ガスは燃料や化学原料として、チャーは固体燃料として、タールは化学原料あるいは燃料として使用可能である。改質炉1に投入するものとして、改質石炭10単独でも熱分解反応により前記生成物を製造することは可能であるが、改質石炭10の他に水素や水蒸気、酸素のうち一種類以上を同時に投入することで生成するガスやタールの性状や量を変化させることが可能である。   Next, in the reforming furnace 1, the reformed coal 10 is charged and a coal pyrolysis reaction occurs. This pyrolysis reaction produces gas, solid char, and tar from coal. Gas can be used as fuel or chemical raw material, char can be used as solid fuel, and tar can be used as chemical raw material or fuel. Although it is possible to produce the product by the pyrolysis reaction as the reformed coal 10 alone as the one to be charged into the reforming furnace 1, in addition to the reformed coal 10, one or more kinds of hydrogen, steam, and oxygen are used. At the same time, it is possible to change the properties and amount of the gas and tar generated.

改質炉1での操業圧力および温度は、例えば、0.1〜20MPa、500〜1200℃で維持される。改質炉1とガス化炉2はスロートを介して上下接続されているため、圧力は両炉共ほぼ同じ圧力で操業される。改質炉1は、回収物が主としてガスおよびオイルの場合は、圧力は常圧〜1MPa未満、温度は500〜800℃と比較的低い圧力および温度条件で操業し、回収物が主としてガスの場合は、圧力は1MPa以上、温度は800〜1200℃と比較的高い圧力および温度条件で操業する。回収物が主としてガスの場合は、改質炉1に水蒸気や水素などの改質助剤を加たり、ガス化炉2に水蒸気などの改質助剤などを加えたりして、改質炉1内でのガス化反応を促進することが好ましい。   The operating pressure and temperature in the reforming furnace 1 are maintained at, for example, 0.1 to 20 MPa and 500 to 1200 ° C. Since the reforming furnace 1 and the gasification furnace 2 are connected to each other through a throat, the pressure is operated at substantially the same pressure in both furnaces. When the recovered material is mainly gas and oil, the reforming furnace 1 is operated under a relatively low pressure and temperature condition of normal pressure to less than 1 MPa and temperature of 500 to 800 ° C., and the recovered material is mainly gas. Operates under relatively high pressure and temperature conditions, with a pressure of 1 MPa or more and a temperature of 800-1200 ° C. When the recovered material is mainly a gas, a reforming aid such as steam or hydrogen is added to the reforming furnace 1, or a reforming aid such as steam is added to the gasification furnace 2, so that the reforming furnace 1 It is preferable to promote the gasification reaction inside.

また、改質炉1で生じたチャーは、ガス化炉2の燃料として、ガス化石炭9と共に燃料として投入されて、循環利用されることが好ましい。   The char generated in the reforming furnace 1 is preferably used as a fuel for the gasification furnace 2 as a fuel together with the gasified coal 9 and recycled.

また、ガス化炉2へのガス化石炭9の投入は気流搬送により行われるが、ガス化炉2内の圧力変動等でガス化石炭9の投入量は変動しやすく、変動した場合に酸素12の投入量を変化させない場合にはガス化炉2内でのガス化石炭9の部分燃焼状況が変化しガス化ガス14の組成や温度が変化する。ガス化ガス14の温度や組成が変化すると改質炉1の温度も変化し、生産される生成ガス、チャー、オイル16の性状も変化してしまう。   Further, the gasification coal 9 is charged into the gasification furnace 2 by airflow conveyance. However, the amount of gasification coal 9 input is likely to vary due to pressure fluctuations in the gasification furnace 2, and in this case, oxygen 12 If the input amount of the gasified coal 9 is not changed, the state of partial combustion of the gasified coal 9 in the gasification furnace 2 changes, and the composition and temperature of the gasified gas 14 change. When the temperature and composition of the gasification gas 14 change, the temperature of the reforming furnace 1 also changes, and the properties of the produced gas, char, and oil 16 produced also change.

例えば、酸素12の量が一定のもとでガス化石炭9の投入量が減少すると、ガス化炉2内部では、部分酸化反応におけるガス化石炭9に対する酸素12の割合が増加して、ガス化炉2内部の温度が上昇する。温度が上昇するとガス化炉2壁面を構成するスラグのセルフコーティング層が薄くなりガス化炉2からボイラー管17へ伝わる熱量が大きくなり発生蒸気22の量は増加する。その発生蒸気量22の変化を蒸気流量計21で測定することで把握し、酸素12の投入量を発生蒸気22の量が安定状態にあった量まで低下させることでガス化炉2内のガス化状況を安定させることが可能になる。   For example, when the input amount of gasified coal 9 decreases with the amount of oxygen 12 being constant, the ratio of oxygen 12 to gasified coal 9 in the partial oxidation reaction increases in the gasification furnace 2, and gasification occurs. The temperature inside the furnace 2 rises. When the temperature rises, the slag self-coating layer constituting the wall surface of the gasification furnace 2 becomes thin, the amount of heat transferred from the gasification furnace 2 to the boiler tube 17 increases, and the amount of generated steam 22 increases. The change in the generated steam amount 22 is grasped by measuring with the steam flow meter 21, and the gas in the gasifier 2 is reduced by reducing the input amount of the oxygen 12 to an amount where the generated steam 22 is in a stable state. It becomes possible to stabilize the conversion situation.

図2にガス化炉内のスラグセルフコーティング層厚みと放散熱量の関係の例を示す。放散熱量(=ボイラー水蒸気の受熱量)はスラグセルフコーティング厚みが減少するとともに増大する。スラグセルフコーティング厚みは、スラグ性状が一定であればガス化炉2内温度と炉壁のボイラー管17の温度により決まるが、ボイラー管17の温度変動は、ガス化炉2内の温度変動に比べて極僅かで無視することができるため、ガス化炉2内温度により決まる。   FIG. 2 shows an example of the relationship between the thickness of the slag self-coating layer in the gasifier and the amount of heat dissipated. The amount of heat dissipated (= the amount of heat received by the boiler water vapor) increases as the slag self-coating thickness decreases. The slag self-coating thickness is determined by the temperature in the gasification furnace 2 and the temperature of the boiler tube 17 on the furnace wall if the slag property is constant. The temperature fluctuation of the boiler pipe 17 is compared with the temperature fluctuation in the gasification furnace 2. Since it is negligible and can be ignored, it depends on the temperature in the gasification furnace 2.

また、ガス化炉2へのガス化石炭9の投入量変動によりガス化石炭9投入量が減少した場合、改質炉1に送られるガス化ガス14の量が減少するため、改質石炭10の投入量が同じ量のままでは改質炉1内の温度が低下し、熱分解反応で生成する生成ガス、チャー、オイル16の性状、収率が変化する。その変化を防止するため、ガス化炉1へ投入される酸素12の減少量に応じて改質石炭10の投入量も減少させることで一定の熱分解反応を維持することが可能となり、発生ガスの組成・発熱量を安定させることが可能となる。   Further, when the input amount of the gasified coal 9 is reduced due to the change in the input amount of the gasified coal 9 to the gasifier 2, the amount of the gasified gas 14 sent to the reformer 1 is reduced. If the input amount of is kept the same, the temperature in the reforming furnace 1 decreases, and the properties and yield of the product gas, char, and oil 16 generated by the thermal decomposition reaction change. In order to prevent this change, it is possible to maintain a constant pyrolysis reaction by reducing the amount of reformed coal 10 input according to the amount of oxygen 12 input to the gasifier 1 being reduced. It becomes possible to stabilize the composition and calorific value.

本方法により炉内の反応状況を安定させた後に、投入量変動のあったガス化石炭9の調整を行い、本来の操業管理値にすることで操業状況は変動前の状態にすることができ、原料発熱量に対する生成ガスおよびタールの発熱量の割合(発熱効率)を高いまま維持することが可能となる。   After stabilizing the reaction state in the furnace by this method, adjustment of gasified coal 9 with fluctuations in the input amount is performed, and the operation state can be brought to the state before change by setting the original operation control value. In addition, it is possible to maintain the ratio of the heat generation amount of the generated gas and tar to the raw material heat generation amount (heat generation efficiency) at a high level.

発熱効率は例えば、以下の式のように表すことができる。
発熱効率=(生成ガス発熱量+生成タール発熱量)/(投入石炭発熱量−生成チャー発熱量)・・・(1)
The heat generation efficiency can be expressed as the following equation, for example.
Heat generation efficiency = (Production gas heat generation amount + Production tar heat generation amount) / (Input coal heat generation amount−Production char heat generation amount) (1)

定常操業時においてもガス化炉炉壁ボイラー発生蒸気22の量で炉内状況を判断し、一定になるように酸素12の量を調整することで安定した操業が可能となる。   Even during steady operation, the state of the furnace is judged based on the amount of steam generated in the gasification furnace wall boiler, and stable operation is possible by adjusting the amount of oxygen 12 to be constant.

なお、本実施例においては、改質炉1内の圧力および水蒸気分圧が比較的高いため、タールの生成量は少ない上、成分組成変化も殆ど無く、発熱量は低位安定していたため、反応効率に与える影響は無視できるものであった。   In this example, since the pressure in the reforming furnace 1 and the partial pressure of water vapor are relatively high, the amount of tar generated is small, the composition of the components is hardly changed, and the calorific value is low and stable. The impact on efficiency was negligible.

上記の方法では蒸気量の変動が増加する場合について説明したが、蒸気量の変動が減少する場合はガス化石炭9が増加した場合であり、その場合についてはガス量の増加とともにガス温度が低下しており、その場合には上記スラグセルフコーティング層を薄くさせることは無い。ガス組成に及ぼす影響も、ガス化炉2内の酸素量が石炭量に対して減少するため発熱量を悪化させることはない。問題となるのはガス化炉2の温度低下によるスラグタップ6からのスラグ15排出への影響であるが、こちらは温度が低下しても温度低下時には炉壁へのスラグ付着が増加するため極短時間でスラグタップ6の閉塞に至ることがなく、変動後に石炭投入量を確認してからでも対応可能である。このことから、ガス性状の悪化など問題になるのは蒸気量が増加する場合であるが、蒸気量の減少時に前記の逆の操作を行っても特に問題は無い。   In the above method, the case where the fluctuation of the steam amount increases has been described. However, when the fluctuation of the steam amount decreases, the gasified coal 9 increases. In this case, the gas temperature decreases as the gas amount increases. In this case, the slag self-coating layer is not thinned. The influence on the gas composition does not deteriorate the calorific value because the oxygen amount in the gasification furnace 2 is reduced with respect to the coal amount. The problem is the effect on the slag 15 discharge from the slag tap 6 due to the temperature drop of the gasification furnace 2, but this is extremely extreme because the slag adhesion to the furnace wall increases when the temperature drops. The slag tap 6 is not blocked in a short time, and can be dealt with even after confirming the amount of coal input after the fluctuation. For this reason, problems such as deterioration of gas properties occur when the amount of steam increases, but there is no particular problem even if the reverse operation is performed when the amount of steam decreases.

(実施例1)
図1に記載の装置を用いたガス化熱分解操業での実施例を以下に示す。
ガス化炉2の操業条件は、圧力2.5MPa、温度1460℃とし、改質炉1の操業条件は、圧力2.5MPa、温度1100℃とした。
Example 1
An example in the gasification pyrolysis operation using the apparatus shown in FIG. 1 is shown below.
The operating conditions of the gasification furnace 2 were a pressure of 2.5 MPa and a temperature of 1460 ° C., and the operating conditions of the reforming furnace 1 were a pressure of 2.5 MPa and a temperature of 1100 ° C.

ガス化炉2へ、平均粒径40μmに粉砕したガス化石炭9を500kg/h(石炭灰分2.7%、揮発分45%、水分5%)で気流搬送によって投入し、且つ、ガス化炉2へ水蒸気13を50kg/h、酸素12を310Nm/hで投入し、改質炉1には改質石炭10を162kg/hで投入したところ、ガス化炉2出口(スロート3)におけるガス化ガス14の量は1134Nm/h、ガス化ガス14の発熱量は1879kcal/h、改質炉出口7における生成ガスの量は1279Nm/h、生成ガスの発熱量は2239kcal/hであった。タールの生成量は極僅かであった。 Gasified coal 9 pulverized to an average particle size of 40 μm is charged into the gasification furnace 2 at 500 kg / h (coal ash content: 2.7%, volatile content: 45%, moisture content: 5%) by airflow conveyance, and the gasification furnace When steam 13 was charged at 50 kg / h and oxygen 12 at 310 Nm 3 / h, and reformed coal 10 was charged at 162 kg / h into the reformer 1, the gas at the gasifier 2 outlet (throat 3) The amount of the gasified gas 14 is 1134 Nm 3 / h, the amount of heat generated by the gasified gas 14 is 1879 kcal / h, the amount of generated gas at the reforming furnace outlet 7 is 1279 Nm 3 / h, and the amount of generated gas is 2239 kcal / h. It was. The amount of tar produced was negligible.

その状態からガス化炉2へのガス化石炭9の投入量が5%変動により475kg/hへ増加した際に、ガス化炉2の炉壁ボイラー発生蒸気量は圧力4Mpaにおいて250kg/hから275kg/hに増加した。   When the amount of gasified coal 9 input to the gasification furnace 2 increases from that state to 475 kg / h due to a 5% fluctuation, the amount of steam generated in the furnace wall boiler of the gasification furnace 2 increases from 250 kg / h to 275 kg at a pressure of 4 Mpa. / H.

次に、ガス化炉2の炉壁ボイラー発生蒸気量が一定になるようにガス化炉2への酸素12の投入量を減少させて調整したところ、酸素12の投入量は298Nm/hとなり、ガス化炉2で生成したガス化ガス14の量は1088Nm/h、ガス発熱量は1842kcal/h、改質炉1出口(スロート部3)におけるガス量は1228Nm/h、ガス発熱量は2188kcal/hとなった。タールの生成量は極僅かであった。 Next, when the amount of oxygen 12 input to the gasification furnace 2 is decreased and adjusted so that the amount of steam generated in the furnace wall boiler of the gasification furnace 2 is constant, the amount of oxygen 12 input is 298 Nm 3 / h. The amount of gasification gas 14 generated in the gasification furnace 2 is 1088 Nm 3 / h, the gas heating value is 1842 kcal / h, the gas amount at the outlet of the reforming furnace 1 (throat part 3) is 1228 Nm 3 / h, the gas heating value Was 2188 kcal / h. The amount of tar produced was negligible.

上述の(1)式で示す発熱効率は、ガス化石炭9の投入量変動の前後で、79.5%から78.3%へと変化したが、高い発熱効率を維持することができた(タール生成量は極僅かであったため)。   The heat generation efficiency represented by the above formula (1) changed from 79.5% to 78.3% before and after the change in the input amount of the gasified coal 9, but high heat generation efficiency could be maintained ( (The amount of tar produced was very small).

変動前からのガス発熱量の変化はガス化炉出口(スロート3)のガス化ガス14で−2.0%、改質炉1出口ガスで−2.2%に止まった。   The change in the amount of heat generated from the gas before the change was -2.0% for the gasification gas 14 at the gasification furnace outlet (throat 3) and -2.2% for the reforming furnace 1 outlet gas.

(実施例2)
実施例1と同様の装置および反応条件で、ガス化炉2のガス化石炭9投入量の5%変動(増加)時に、ガス化炉2に投入した酸素12の量の減少率に比例して改質石炭10の投入量を減少させた例を示す。
(Example 2)
In the same apparatus and reaction conditions as in Example 1, when the gasification coal 9 input amount of the gasification furnace 2 fluctuates (increases) by 5%, it is proportional to the decrease rate of the amount of oxygen 12 input to the gasification furnace 2. The example which reduced the input amount of the modified coal 10 is shown.

ガス化石炭9の投入量の変動時に、ガス化炉2の酸素12の量を310Nm3/hから298Nm/hに減少させた(減少率4%)際に、同様の減少率で、改質石炭9の投入量を162kg/hから156kg/hに減少させたところ、改質炉出口7のガス量は1229Nm/h、ガス発熱量は2204kcal/hとなった。タールの生成量は極僅かであった。 When variation in the input amount of gasification coal 9, when reduced the amount of oxygen 12 of the gasification furnace 2 from 310Nm3 / h to 298Nm 3 / h (reduction rate of 4%), the same reduction rate, modifying When the input amount of coal 9 was reduced from 162 kg / h to 156 kg / h, the gas amount at the reformer outlet 7 was 1229 Nm 3 / h and the gas heating value was 2204 kcal / h. The amount of tar produced was negligible.

変動前からの生成ガスの発熱量の変化は、改質炉出口ガスで−1.5%に止まった。改質炉石炭投入量を減少させることで改質炉内での熱分解反応が変化しメタン発生量が実施例1に比べて微増しておりガス生成量、発熱量の増加が見られた。   The change in the calorific value of the product gas from before the change stopped at -1.5% at the reformer outlet gas. By reducing the amount of coal input to the reforming furnace, the pyrolysis reaction in the reforming furnace was changed, and the amount of methane generated was slightly increased as compared with Example 1, and the amount of gas generation and heat generation was increased.

(比較例)
実施例1と同様の装置および反応条件であるが、ガス化炉2のガス化石炭9の投入量変動時に、酸素12量の調整を行わなかった場合を以下に示す。
(Comparative example)
The apparatus and reaction conditions are the same as in Example 1, but the case where the amount of oxygen 12 was not adjusted when the amount of gasified coal 9 charged in the gasification furnace 2 was varied is shown below.

ガス化炉2のガス化ガス14の量は1088Nm/h、ガス化ガス14の発熱量は1781kcal/h、改質炉からの生成ガス量は1227Nm/h、生成ガスの発熱量は2127kcal/hとなり、変動前からのガス発熱量の変化は、ガス化炉出口(スロート3)のガス化ガスで−5.2%、改質炉からの生成ガスで−5.0%となり、実施例に比べて低下率が大きかった。 The amount of gasification gas 14 in the gasification furnace 2 is 1088 Nm 3 / h, the heat generation amount of the gasification gas 14 is 1781 kcal / h, the amount of generated gas from the reforming furnace is 1227 Nm 3 / h, and the heat generation amount of the generated gas is 2127 kcal. The change in the amount of heat generated from the gas before the change was -5.2% for the gasification gas at the gasifier exit (throat 3) and -5.0% for the product gas from the reforming furnace. The rate of decline was greater than in the examples.

このように、ガス化炉炉壁ボイラーの発生蒸気量が一定になるように、部分酸化部(ガス化炉2)に投入する酸素量を調整し、更には熱分解部(改質炉1)に投入する改質石炭10の量を調整することで、変動前のガス発熱量に近い発熱量のガスを得ることができ、その変動率は酸素量のみ調整時(実施例1)で−2.2%、酸素量とともに改質石炭量調整時(実施例2)で−1.5%となり、ガス発熱量の変動を小さく抑えることができた。   In this way, the amount of oxygen supplied to the partial oxidation section (gasification furnace 2) is adjusted so that the amount of steam generated in the gasifier furnace wall boiler is constant, and further, the thermal decomposition section (reforming furnace 1). By adjusting the amount of the reformed coal 10 to be supplied to the gas, a gas with a calorific value close to the gas calorific value before the fluctuation can be obtained, and the fluctuation rate is -2 when adjusting only the oxygen amount (Example 1). When the amount of reformed coal is adjusted (Example 2) together with .2% and oxygen amount, it becomes -1.5%, and the fluctuation of the gas calorific value can be kept small.

また、実施例1の条件で、ガス化炉壁を水蒸気ボイラーに替えて水冷とした場合は(冷却水の入出口の温度差を5℃に設定)、実施例と同様の調整を行おうとしても、変動時に温度差が0.5℃程度しか生じないため、誤差が大きくなり、制御は困難である。   In addition, when the gasification furnace wall is replaced with a steam boiler and water-cooled under the conditions of Example 1 (the temperature difference between the inlet and outlet of the cooling water is set to 5 ° C.), the same adjustment as in the example is performed. However, since a temperature difference of only about 0.5 ° C. occurs at the time of fluctuation, the error becomes large and control is difficult.

実施例および比較例について変動前の状態とともにガス組成および効率を表1に示す。実施例1および2では比較例に比べて効率が向上し、ガス組成の変化も小さくなっている。   Table 1 shows the gas composition and efficiency of the examples and comparative examples together with the state before the change. In Examples 1 and 2, the efficiency is improved compared to the comparative example, and the change in gas composition is also small.

Figure 0005211369
Figure 0005211369

1…改質炉
2…ガス化炉
3…スロート
4…改質石炭吹き込みノズル
5…ガス化バーナー
6…スラグタップ
7…改質炉出口
8…水槽
9…ガス化石炭
10…改質石炭
11…融点調整剤
12…酸素
13…水蒸気
14…ガス化ガス
15…スラグ
16…生成ガス、チャー、オイル
17…ボイラー管
18…ポンプ
19…蒸気ドラム
20…圧力調整弁
21…蒸気流量計
22…発生蒸気
DESCRIPTION OF SYMBOLS 1 ... Reforming furnace 2 ... Gasification furnace 3 ... Throat 4 ... Reformed coal injection nozzle 5 ... Gasification burner 6 ... Slag tap 7 ... Reforming furnace exit 8 ... Water tank 9 ... Gasification coal 10 ... Reformed coal 11 ... Melting point adjusting agent 12 ... oxygen 13 ... water vapor 14 ... gasification gas 15 ... slag 16 ... generated gas, char, oil 17 ... boiler tube 18 ... pump 19 ... steam drum 20 ... pressure regulating valve 21 ... steam flow meter 22 ... generated steam

Claims (3)

下段にセルフコーティング方式で炉壁を保護するガス化炉、上段に改質炉を設けた上下二室二段の気流層型の熱分解装置を用いて、前記ガス化炉に、石炭と、酸素又は酸素及び水蒸気とを投入して、部分酸化によりガス化ガスを生成し、当該ガス化ガスを前記改質炉に導入し、前記改質炉に、石炭を投入して、前記ガス化ガスの顕熱を用いた前記石炭の熱分解により、ガス、オイル、及びチャーを生成する石炭の熱分解方法であって、
前記ガス化炉の炉壁をボイラー構造として、当該ボイラーで発生した蒸気量を測定し、当該測定した蒸気量の増加時にガス化炉への酸素投入量を減少させることを特徴とする石炭の熱分解方法。
Using a gasification furnace that protects the furnace wall by a self-coating method at the lower stage, and a two-stage, two-stage, gas-flow-type thermal decomposition apparatus with a reforming furnace at the upper stage, coal and oxygen are added to the gasification furnace. Alternatively, oxygen and water vapor are introduced to generate a gasification gas by partial oxidation, the gasification gas is introduced into the reforming furnace, coal is introduced into the reforming furnace, and the gasification gas A coal pyrolysis method for producing gas, oil, and char by pyrolysis of the coal using sensible heat,
The heat of coal is characterized in that the furnace wall of the gasifier has a boiler structure, the amount of steam generated in the boiler is measured, and the amount of oxygen input to the gasifier is reduced when the measured amount of steam is increased. Disassembly method.
前記ガス化炉への酸素投入量を減少させることで、前記ボイラーで発生した蒸気量を、前記蒸気量の増加前の量になるように調整することを特徴とする請求項1に記載の石炭の熱分解方法。   The coal according to claim 1, wherein the amount of steam generated in the boiler is adjusted to be the amount before the increase in the amount of steam by reducing the amount of oxygen input to the gasification furnace. Thermal decomposition method. 前記ガス化炉への酸素投入量の減少量に応じて、前記改質炉への石炭投入量を減少させることを特徴とする請求項1又は2に記載の石炭の熱分解方法。   The method for pyrolyzing coal according to claim 1 or 2, wherein the amount of coal input to the reforming furnace is decreased in accordance with a decrease amount of oxygen input to the gasification furnace.
JP2012281518A 2012-12-25 2012-12-25 Coal pyrolysis method Active JP5211369B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012281518A JP5211369B1 (en) 2012-12-25 2012-12-25 Coal pyrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012281518A JP5211369B1 (en) 2012-12-25 2012-12-25 Coal pyrolysis method

Publications (2)

Publication Number Publication Date
JP5211369B1 true JP5211369B1 (en) 2013-06-12
JP2014125503A JP2014125503A (en) 2014-07-07

Family

ID=48713157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012281518A Active JP5211369B1 (en) 2012-12-25 2012-12-25 Coal pyrolysis method

Country Status (1)

Country Link
JP (1) JP5211369B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106635113A (en) * 2017-01-17 2017-05-10 太原理工大学 Device and method for increasing yield of tar by using coke oven gas as raw material through catalytic reforming

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102014452B1 (en) * 2019-03-15 2019-08-26 장철 System for upgrading coal quality

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182395A (en) * 1981-05-06 1982-11-10 Hitachi Ltd Apparatus for gasification of coal
JPS63254192A (en) * 1987-04-10 1988-10-20 Hitachi Ltd Operation of coal gasifying furnace of jet flow layer
JP2012062376A (en) * 2010-09-15 2012-03-29 Babcock Hitachi Kk Gasification furnace, operation method of the same, and coal gasification compound power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182395A (en) * 1981-05-06 1982-11-10 Hitachi Ltd Apparatus for gasification of coal
JPS63254192A (en) * 1987-04-10 1988-10-20 Hitachi Ltd Operation of coal gasifying furnace of jet flow layer
JP2012062376A (en) * 2010-09-15 2012-03-29 Babcock Hitachi Kk Gasification furnace, operation method of the same, and coal gasification compound power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106635113A (en) * 2017-01-17 2017-05-10 太原理工大学 Device and method for increasing yield of tar by using coke oven gas as raw material through catalytic reforming
CN106635113B (en) * 2017-01-17 2018-06-19 太原理工大学 A kind of device and method for improving tar yield through catalytic reforming using coke-stove gas as raw material

Also Published As

Publication number Publication date
JP2014125503A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
Gong et al. Pilot-scale comparison investigation of different entrained-flow gasification technologies and prediction on industrial-scale gasification performance
CN101096605A (en) Operation of a high capacity transport gassing reactor
JP5130459B2 (en) Operation method of coal pyrolysis gasifier
WO2009153948A1 (en) Process and equipment for reforming gasification gas
US20150159097A1 (en) System and method for continuous slag handling with direct cooling
JP5677095B2 (en) Coal gasification reactor start-up method
JP5450800B2 (en) Coal pyrolysis gasification method and coal pyrolysis gasification device
JP5386635B2 (en) Operation method of coal gasification reactor and coal gasification reactor
JP5211369B1 (en) Coal pyrolysis method
JPWO2011129192A1 (en) Coal gasification system and coal gasification method
CN103703111B (en) Method for producing coal gas and method for producing methane
JP5745288B2 (en) Coal gasification method in coal gasifier
US20230203389A1 (en) Method for gasification of carbonaceous feedstock and device for implementing same
TW202140802A (en) Blast furnace operation method and auxiliary facility for blast furnace
US9822003B2 (en) Process and apparatus for molten slag gasification of solid fuels
JP4863889B2 (en) Coal hydrocracking process
JP4334326B2 (en) Coal hydropyrolysis apparatus and method
JP2001240906A (en) Method for injecting reducing gas into blast furnace
CN104736681B (en) Partial oxidation feed system and method
JP5552157B2 (en) Coal gasifier
TWI775216B (en) Blast furnace operation method and blast furnace accessory equipment
WO2023162712A1 (en) Gasification furnace facility, gasification combined cycle power generation facility, and method for operating gasification furnace
JP2009019125A (en) Gasification method and apparatus
JP2009298909A (en) Utilizing method of pyrolysis char as carbonaceous material for sintering
TW202129015A (en) Blast furnace operation method, and blast furnace ancillary facilities

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

R150 Certificate of patent or registration of utility model

Ref document number: 5211369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250