WO2011129279A1 - メタ型全芳香族ポリアミド繊維 - Google Patents

メタ型全芳香族ポリアミド繊維 Download PDF

Info

Publication number
WO2011129279A1
WO2011129279A1 PCT/JP2011/058909 JP2011058909W WO2011129279A1 WO 2011129279 A1 WO2011129279 A1 WO 2011129279A1 JP 2011058909 W JP2011058909 W JP 2011058909W WO 2011129279 A1 WO2011129279 A1 WO 2011129279A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
dyeing
meta
aromatic polyamide
wholly aromatic
Prior art date
Application number
PCT/JP2011/058909
Other languages
English (en)
French (fr)
Inventor
聡史 菊池
瀧上 康太郎
Original Assignee
帝人テクノプロダクツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人テクノプロダクツ株式会社 filed Critical 帝人テクノプロダクツ株式会社
Priority to EP11768800.2A priority Critical patent/EP2559792B1/en
Priority to CA2796362A priority patent/CA2796362C/en
Priority to US13/639,033 priority patent/US9243350B2/en
Priority to CN201180018053.0A priority patent/CN102844478B/zh
Priority to RU2012148283/05A priority patent/RU2550178C2/ru
Priority to MX2012010832A priority patent/MX351840B/es
Priority to KR1020127029447A priority patent/KR20130092966A/ko
Priority to ES11768800.2T priority patent/ES2640918T3/es
Priority to SG2012073342A priority patent/SG184413A1/en
Publication of WO2011129279A1 publication Critical patent/WO2011129279A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • D01F6/605Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/106Radiation shielding agents, e.g. absorbing, reflecting agents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/02Material containing basic nitrogen
    • D06P3/04Material containing basic nitrogen containing amide groups
    • D06P3/24Polyamides; Polyurethanes
    • D06P3/242Polyamides; Polyurethanes using basic dyes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/14Dyeability
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/22Physical properties protective against sunlight or UV radiation
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/06Bed linen
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/06Bed linen
    • D10B2503/062Fitted bedsheets
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene

Definitions

  • the present invention relates to a meta-type wholly aromatic polyamide fiber, and more particularly, to a meta-type wholly aromatic polyamide fiber having light resistance capable of suppressing the fallout of the light-resistant agent during carrier dyeing.
  • aramid fiber For the wholly aromatic polyamide (hereinafter abbreviated as aramid) fiber, meta-aramid fibers represented by Conex (registered trademark) and Nomex (registered trademark), Technora (registered trademark), and Kevlar (registered) Trademark) and para-aramid fibers represented by Twaron (registered trademark).
  • Conex registered trademark
  • Nomex registered trademark
  • Technora registered trademark
  • Kevlar registered trademark
  • Twaron registered trademark
  • these aramid fibers have a rigid molecular structure and high crystallinity, they have heat resistance and flame resistance (compared to conventionally widely used aliphatic polyamide fibers such as nylon 6 and nylon 66). It has excellent thermal properties such as flame retardancy) and safety such as chemical resistance, strong radiation resistance and electrical properties. Therefore, it is widely used for apparel applications such as protective clothing that requires flame resistance (flame resistance) and heat resistance, industrial material applications such as bag filters, and interior applications such as curtains.
  • a method for obtaining colored fibers used for clothing there are generally a method by dyeing and a method by dyeing using dyes and pigments.
  • a method of coloring the wholly aromatic polyamide fiber for example, a method of dyeing using a basic dye and a dyeing assistant (carrier) such as benzyl alcohol or acetophenone is generally known.
  • the wholly aromatic polyamide fiber is dyed with a basic dye such as that used for dyeing aliphatic polyamide fiber, there is a problem that the light resistance of the obtained colored fiber is extremely deteriorated and the fading due to light is remarkable. .
  • Patent Document 1 For the purpose of improving the light resistance of the colored wholly aromatic polyamide fiber, Japanese Patent Application Laid-Open No. 49-075824 (Patent Document 1) cleans the resulting fiber by dry- or wet-spinning the aromatic polyamide solution. Then, before drying, a method for impregnating the fiber with an aqueous dispersion of an ultraviolet shielding material has been proposed. However, this method has a problem that the ultraviolet shielding material is likely to fall off due to the influence of the carrier during carrier dyeing.
  • JP 2003-239136 contains an alkylbenzene sulfonic acid onium salt as a dyeing assistant and a hindered amine light stabilizer.
  • a meta-type wholly aromatic polyamide fiber is disclosed.
  • the fiber can be dyed non-carrier, the light-resistant agent is less likely to fall off during dyeing.
  • the addition of the onium salt increases the production cost of the fiber and reduces the flame retardancy of the resulting fiber. Therefore, it was necessary to add a flame retardant etc. further.
  • Patent Document 3 Japanese Patent Laid-Open No. 50-59522, Patent Document 3
  • the pigment since the pigment is contained in the fiber production process, the loss during production increases, it is difficult to deal with small lots, and it is difficult to obtain fibers of various required hues. There was a problem.
  • the present invention has been made in view of the above-described background art, and the object of the present invention is that it can be dyed in various hues by carrier dyeing, and can suppress the fallout of the light-resistant agent at the time of dyeing.
  • the object is to provide a meta-type wholly aromatic polyamide fiber having light resistance.
  • the present inventors have intensively studied to solve the above problems. As a result, the present inventors have found that the above-mentioned problems can be solved by forming a meta-type wholly aromatic polyamide fiber having specific properties using a highly hydrophobic ultraviolet absorber, and have completed the present invention.
  • the present invention includes an ultraviolet absorber having a solubility in water of less than 0.04 mg / L, the dyeing rate of dyed fibers is 90% or more, and the light fastness retention before and after carrier dyeing is 80% or more. Is a wholly aromatic polyamide fiber.
  • the meta-type wholly aromatic polyamide fiber of the present invention is a light-resistant fiber that can be dyed in various hues by carrier dyeing and that can suppress the removal of the light-resistant agent during dyeing.
  • the meta-type wholly aromatic polyamide fiber of the present invention can suppress deterioration and maintain its strength even when subjected to long-term light irradiation such as long-term exposure to sunlight.
  • the meta-type wholly aromatic polyamide fiber of the present invention has the following specific physical properties. The physical properties, configuration, production method and the like of the meta-type wholly aromatic polyamide fiber of the present invention will be described below.
  • the meta-type wholly aromatic polyamide fiber is usually produced from a spinning stock solution in which a polymer is dissolved in an amide solvent, the solvent necessarily remains in the fiber.
  • the amount of the solvent remaining in the fiber is preferably 0.1% by mass or less with respect to the fiber mass.
  • the content is preferably 0.1% by mass or less, and more preferably 0.08% by mass or less.
  • the solvent When the solvent remains in the fiber in excess of 0.1% by mass with respect to the fiber mass, the residual solvent volatilizes during processing and use in a high temperature atmosphere exceeding 200 ° C. Inferior to environmental safety. Moreover, since the strength is remarkably reduced by destroying the molecular structure, it is not preferable.
  • the components or conditions of the coagulation bath are set in the fiber production process so that a solidified form having no skin core is obtained. Adjust and carry out plastic stretching at a specific magnification.
  • the “residual solvent amount of undyed fiber (fibril)” refers to a value obtained by the following method.
  • the breaking strength of the meta-type wholly aromatic polyamide fiber (fibril) before dyeing according to the present invention is preferably 2.5 cN / dtex or more. It is more preferably 2.7 cN / dtex or more, and particularly preferably 3.0 cN / dtex or more.
  • the breaking strength is less than 2.5 cN / dtex, the fiber is broken in a post-processing step such as spinning, and the passability is deteriorated.
  • the breaking strength of the meta-type wholly aromatic polyamide fiber (raw fiber) before dyeing can be controlled by the draw ratio in the plastic drawing bath drawing step in the production method described later and the heat treatment temperature in the dry heat treatment step. it can.
  • the draw ratio may be set to 3.5 to 5.0 times, and the dry heat treatment temperature may be set to a range of 260 to 330 ° C.
  • the “breaking strength” in the present invention refers to a value obtained by measurement under the following conditions using a tensile tester (manufactured by Instron, model number 5565) based on JIS L1015.
  • the breaking elongation of the meta-type wholly aromatic polyamide fiber (fibril) before dyeing according to the present invention is preferably 30% or more. It is more preferably 35% or more, and particularly preferably 40% or more. When the elongation at break is less than 30%, passability in post-processing steps such as spinning deteriorates, which is not preferable.
  • the elongation at break of the meta-type wholly aromatic polyamide fiber (raw fiber) before dyeing can be controlled by the coagulation bath conditions in the coagulation step in the production method described later.
  • the coagulating liquid is an aqueous amide solvent such as N-methyl-2-pyrrolidone (NMP) having a concentration of 45 to 60% by mass, and the bath temperature is 10 to 35 ° C. do it.
  • NMP N-methyl-2-pyrrolidone
  • the “breaking elongation” in the present invention is obtained based on JIS L1015, using a tensile tester (manufactured by Instron, model number 5565) under the same conditions as the above-mentioned “breaking strength”. Value.
  • the Raman orientation index of the meta-type wholly aromatic polyamide fiber (fibril) before dyeing of the present invention is preferably in the range of 1.3 to 2.2.
  • the range of 1.5 to 2.0 is more preferable, and the range of 1.7 to 2.0 is particularly preferable.
  • the Raman index is less than 1.3, it is not preferable because the strength of the dyed fiber after dyeing cannot be sufficiently expressed.
  • the orientation is more than 2.2 because the dyeability is greatly reduced.
  • the Raman orientation index of the pre-dyeing fiber (raw fiber) is out of the above range, it is difficult to set the dyeing rate of the meta-type wholly aromatic polyamide fiber (raw fiber) of the present invention to 90% or more. It may become.
  • the Raman orientation index of the meta-type wholly aromatic polyamide fiber (raw fiber) before dyeing can be controlled by the draw ratio in the plastic drawing bath drawing step in the production method described later.
  • the draw ratio may be set to 3.5 to 5.0 times.
  • the “Raman orientation index” in the present invention refers to a value obtained by the following method.
  • the “Raman orientation index” is determined from the following formula using the polarization anisotropy of the peak in the vicinity of the Raman shift wavenumber of 1000 cm ⁇ 1, which is an eigenvalue of the meta-type wholly aromatic polyamide.
  • crystallinity of undyed fiber (raw fiber) is preferably 5 to 20%. It is more preferably 5% to 15%, particularly preferably 5 to 10%. If the crystallinity exceeds 20%, the dyeability is greatly reduced, which is not preferable.
  • the shrinkage of the fiber becomes high and handling in the dyeing process becomes difficult, which is not preferable. Further, when the crystallinity of the pre-dyeing fiber (raw fiber) is outside the above range, it is difficult to set the dyeing rate of the meta-type wholly aromatic polyamide fiber (raw fiber) of the present invention to 90% or more. It may become.
  • the crystallinity of the meta-type wholly aromatic polyamide fiber (raw fiber) before dyeing is controlled by the draw ratio in the plastic drawing bath drawing step in the production method described later and the heat treatment temperature in the dry heat treatment step.
  • the draw ratio may be 3.5 to 5.0 times
  • the dry heat treatment temperature may be in the range of 260 to 330 ° C.
  • the “crystallinity” in the present invention is measured by bundling pre-dyeing fibers (fibrils) in a bundle of about 1 mm diameter and using an X-ray diffraction measurement device (trade name: Rigaku RINT TTRIII) under the following conditions. Convert from the profile obtained.
  • X-ray source Cu-K ⁇ ray Fiber sample stage: 50 rpm rotation 2 ⁇ scan: 5-50 ° Continuous measurement: 0.1 ° Width measurement: 1 ° / minute scanning
  • air scattering and incoherent scattering are corrected from a measured diffraction profile by linear approximation to obtain a total scattering intensity profile.
  • An undried yarn profile of the meta-type wholly aromatic polyamide fiber that is amorphous is fitted to the obtained total scattering intensity, and the difference is defined as the crystal scattering intensity.
  • the crystallinity is obtained from the following equation using the area (integrated value) of the crystal scattering intensity and the total scattering intensity.
  • the dyeing rate of the dyed fiber is 90% or more, and preferably 92% or more.
  • the dyeing rate of the dyed fiber is less than 90%, it is not preferred in terms of aesthetics required in the clothing field, and it cannot be dyed to a desired hue.
  • the dyeing rate of the meta-type wholly aromatic polyamide fiber (dyed fiber) after dyeing is adjusted in the coagulation bath conditions so as to form a coagulation form having no skin core in the coagulation step in the production method described later,
  • it can be achieved by performing a dry heat treatment at a specific temperature in the dry heat treatment step to bring the fiber orientation and crystallinity into a specific state.
  • the coagulation liquid is an aqueous amide solvent such as N-methyl-2-pyrrolidone (NMP) having a concentration of 45 to 60% by mass, and the bath liquid temperature is 10 to 10%.
  • the dry heat treatment temperature may be in the range of 260 to 330 ° C. which is equal to or higher than the glass transition temperature (Tg) of the fiber. Further, it is more preferable that the Raman orientation index of the pre-dyed fiber (raw fiber) is in the range of 1.3 to 2.2 and the crystallinity is in the range of 5 to 20%.
  • dyeing for obtaining “dyeing rate” is dyeing by the following dyeing method.
  • a dyeing treatment is performed at 120 ° C. for 60 minutes with the bath ratio of the fiber and the dyeing solution being 1:40.
  • hydrosulfite 2.0 g / L amylazine D (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name: amirazine D) 2.0 g / L, treatment solution containing sodium hydroxide 1.0 g / L
  • the dyed fiber is obtained by carrying out reduction washing at 80 ° C. for 20 minutes at a bath ratio of 1:20, and drying after washing with water.
  • the “dyeing rate” in the present invention refers to a value obtained by the following method.
  • the meta type wholly aromatic polyamide fiber of the present invention preferably has a strength retention of 65% or more after dyeing in a 20% by mass sulfuric acid aqueous solution at 50 ° C. for 150 hours.
  • the strength retention after immersion in an aqueous sulfuric acid solution is preferably 65% or more, more preferably 70% or more, and most preferably 75% or more.
  • the strength retention rate of the dyed fiber after being immersed in the sulfuric acid aqueous solution is an index of acid resistance, and when the strength retention rate is less than 65%, the acid resistance becomes insufficient and the safety is lowered, which is not preferable.
  • the components or conditions of the coagulation bath are adjusted in the fiber production process so as to obtain a coagulation form having no skin core.
  • the dyed fiber used for the evaluation of the “strength retention rate” is a fiber dyed by the same method as the dyeing method for obtaining the “dyeing rate” described above, and “dyeing before and after immersion in a sulfuric acid aqueous solution” in the present invention.
  • the “fiber strength retention” refers to a value obtained by the following method.
  • the “breaking strength” when determining “strength retention rate (acid resistance) of dyed fiber before and after immersion in sulfuric acid aqueous solution” is obtained by the same measurement method as the breaking strength of the above-mentioned pre-dyed fiber (raw fiber). Value.
  • the meta-type wholly aromatic polyamide fiber of the present invention has a light resistance retention of 80% or more before and after carrier dyeing. It is preferably 85% or more, and particularly preferably 90% or more.
  • a low light fastness retention before and after carrier dyeing means that the light-proofing agent is frequently dropped during carrier dyeing. When the weather resistance retention before and after dyeing is less than 80%, the light resistance effect of the dyed product is not sufficiently exhibited, which is not preferable.
  • the “light resistance retention” in the present invention refers to a value obtained by the following method.
  • light discoloration chromaticity ( ⁇ E *) is obtained using light-irradiated cotton and unirradiated cotton irradiated at 63 ° C. for 24 hours with a carbon arc fade meter.
  • ⁇ E * As the light resistance change chromaticity ( ⁇ E *), first, the diffuse reflectance in a -10 degree visual field is measured using the light source D65, and the lightness index L * value, chromaticness index a *, b are obtained by a normal calculation process. * Calculate the value and use the obtained value to obtain the value according to the following equation in accordance with JIS Z-8730.
  • Light resistance retention rate is the value calculated by the following equation by calculating the above light resistance color change ( ⁇ E *) for cotton before and after dyeing.
  • dyeing in the evaluation of “light resistance retention” is dyeing without using a dye by the following method.
  • a dyeing treatment is performed at 120 ° C. for 60 minutes with the bath ratio of the fiber and the dyeing solution being 1:40.
  • hydrosulfite 2.0 g / L amylazine D (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name: amirazine D) 2.0 g / L, treatment solution containing sodium hydroxide 1.0 g / L
  • the dyed fiber is obtained by carrying out reduction washing at 80 ° C. for 20 minutes at a bath ratio of 1:20, and drying after washing with water.
  • the meta-type wholly aromatic polyamide fiber of the present invention preferably has a strength retention (light resistance) of 80% or more after irradiation with a xenon arc fade meter at 63 ° C. for 40 hours. More preferably, it is 85% or more, and particularly preferably 90% or more.
  • a strength retention of 80% or more after irradiation with a xenon arc fade meter at 63 ° C. for 40 hours. More preferably, it is 85% or more, and particularly preferably 90% or more.
  • the strength retention before and after the light irradiation is less than 80%, it is not preferable because the strength of the fiber cannot be maintained by long-term exposure to sunlight.
  • the components of the coagulation bath in order to make the strength retention (light resistance) of the dyed fiber 80% or more before and after the light resistance test, in the fiber manufacturing process described later, the components of the coagulation bath or Adjust the conditions.
  • the dyed fiber used for the evaluation of “strength retention rate (light resistance) of the dyed fiber before and after the light resistance test” is a fiber dyed by the same method as the dyeing method for obtaining the “dye rate” described above, and “The strength retention of the dyed fiber before and after the light resistance test (light resistance)” refers to a value obtained by the following method.
  • the dyed fiber is wound around a holder and irradiated with a xenon arc fade meter at 63 ° C. for 40 hours. With respect to the light irradiated fiber and the unirradiated fiber, the breaking strength is measured, and the strength retention of the dyed fiber after the light irradiation is obtained.
  • the “breaking strength” in determining the “strength retention rate (light resistance) of the dyed fiber before and after the light resistance test” is a value obtained by the same measurement method as the breaking strength of the above-mentioned pre-dyed fiber (raw fiber).
  • the meta-type wholly aromatic polyamide constituting the meta-type wholly aromatic polyamide fiber of the present invention is composed of a meta-type aromatic diamine component and a meta-type aromatic dicarboxylic acid component, and the object of the present invention is impaired.
  • Other copolymer components such as the para type may be copolymerized within the range not included.
  • Particularly preferably used in the present invention is a meta-type wholly aromatic polyamide having a metaphenylene isophthalamide unit as a main component from the viewpoint of mechanical properties, heat resistance and flame retardancy.
  • the metaphenylene isophthalamide units are preferably 90 mol% or more of the total repeating units, more preferably 95 mol% or more, particularly preferably. 100 moles.
  • [Raw material for meta-type wholly aromatic polyamide] (Meta-type aromatic diamine component)
  • the meta-type aromatic diamine component used as a raw material for the meta-type wholly aromatic polyamide include metaphenylene diamine, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl sulfone, and the like, halogens in these aromatic rings, Examples of derivatives having a substituent such as an alkyl group having 1 to 3 carbon atoms, such as 2,4-toluylenediamine, 2,6-toluylenediamine, 2,4-diaminochlorobenzene, 2,6-diaminochlorobenzene, etc. can do.
  • Metal-type aromatic dicarboxylic acid component examples of the raw material of the meta type aromatic dicarboxylic acid component constituting the meta type wholly aromatic polyamide include a meta type aromatic dicarboxylic acid halide.
  • the meta-type aromatic dicarboxylic acid halide include isophthalic acid halides such as isophthalic acid chloride and isophthalic acid bromide, and derivatives having substituents such as halogen and an alkoxy group having 1 to 3 carbon atoms on the aromatic ring, such as 3 -Chloroisophthalic acid chloride and the like can be exemplified.
  • isophthalic acid chloride itself or a mixed carboxylic acid halide containing 90% by mole or more, preferably 95% by mole or more of isophthalic acid chloride is preferable.
  • copolymer components that can be used other than the above-mentioned meta-type aromatic diamine components and meta-type aromatic dicarboxylic acid components include, for example, paraphenylene diamine, 2,5-diaminochlorobenzene, 2,5- Benzene derivatives such as diaminobromobenzene and aminoanisidine, 1,5-naphthylenediamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ketone, 4,4'-diaminodiphenylamine, 4,4'- And diaminodiphenylmethane.
  • paraphenylene diamine 2,5-diaminochlorobenzene
  • 2,5- Benzene derivatives such as diaminobromobenzene and aminoanisidine
  • 1,5-naphthylenediamine 4,4'-diaminodiphenyl ether, 4,4'-diamino
  • aromatic dicarboxylic acid components include terephthalic acid chloride, 1,4-naphthalenedicarboxylic acid chloride, 2,6-naphthalenedicarboxylic acid chloride, 4,4′-biphenyldicarboxylic acid chloride, 4,4′-diphenyl ether dicarboxylic acid. Examples include chloride.
  • each of the copolymerization components should be 10 mol% or less based on the total diamine component and total acid component of the polyamide. It is preferable.
  • a suitable meta-type wholly aromatic polyamide is a polyamide in which 90 mol% or more of all repeating units are metaphenylene isophthalamide units, and polymetaphenylene isophthalamide is particularly preferable.
  • the production method of the meta-type wholly aromatic polyamide is not particularly limited. For example, it is produced by solution polymerization or interfacial polymerization using a meta-type aromatic diamine component and a meta-type aromatic dicarboxylic acid chloride component as raw materials. be able to.
  • the molecular weight of the meta-type wholly aromatic polyamide used in the present invention is not particularly limited as long as it can form fibers.
  • a polymer having an intrinsic viscosity (IV) measured in a concentrated sulfuric acid at 30 ° C. with a polymer concentration of 100 mg / 100 mL sulfuric acid is in a range of 1.0 to 3.0.
  • Appropriate polymers in the range of 1.2 to 2.0 are particularly preferred.
  • the meta-type wholly aromatic polyamide fiber of the present invention uses the meta-type wholly aromatic polyamide obtained by the above production method, for example, a spinning solution preparation step, a spinning / coagulation step, and a plastic drawing bath drawing described below. It is manufactured through a process, a cleaning process, a relaxation process, and a heat treatment process.
  • spinning liquid preparation process In the spinning solution preparation step, the meta-type wholly aromatic polyamide is dissolved in an amide solvent, and an ultraviolet absorber is added to prepare a spinning solution (meta-type wholly aromatic polyamide polymer solution).
  • a spinning solution metal-type wholly aromatic polyamide polymer solution
  • an amide solvent is usually used, and examples of the amide solvent used include N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), and dimethylacetamide (DMAc). be able to. Of these, NMP or DMAc is preferably used from the viewpoints of solubility and handling safety.
  • the concentration of the solution may be appropriately selected from the viewpoint of the coagulation rate and the solubility of the polymer in the next spinning and coagulation step.
  • the polymer is polymetaphenylene isophthalamide and the solvent is NMP. In this case, it is usually preferable to set the content in the range of 10 to 30% by mass.
  • UV absorber The ultraviolet absorber used in the present invention is highly hydrophobic and needs to have a solubility in water of less than 0.04 mg / L. If it is 0.04 mg / L or more, the ultraviolet absorber is eluted during carrier dyeing, and the light resistance after dyeing is undesirably lowered.
  • the ultraviolet absorber used in the present invention is a compound that efficiently shields light around 360 nm, which is the photodegradation characteristic wavelength of the meta wholly aromatic polyamide, and has almost no absorption in the visible region. preferable.
  • a specific substituted benzotriazole is preferable, specifically, 2- (2H-benzotriazol-2-yl) -4,6-di-tert-pentylphenol, 2- [5-Chloro (2H) -benzotriazol-2-yl] -4-methyl-6- (tert-butyl) phenol, 2- [2H-benzotriazol-2-yl] -4-6-bis ( 1-methyl-1-phenylethyl) phenol, 2- [2H-benzotriazol-2-yl] -4- (1,1,3,3-tetramethylbutyl) phenol, and the like.
  • 2- [2H-benzotriazol-2-yl] -4-6-bis (1-methyl-1-phenylethyl) phenol has high hydrophobicity and low absorption in the visible region. Is particularly preferred.
  • the content of the ultraviolet absorber with respect to the meta-type wholly aromatic polyamide fiber is preferably in the range of 3.0% by mass to 6.5% by mass with respect to the total mass of the meta-type wholly aromatic polyamide fiber. Preferably it is the range of 4.5 mass% or more and 6.5 mass% or less. When the amount is less than 3.0% by mass, the light resistance effect is not sufficiently exhibited, which is not preferable. When the amount is more than 6.5% by mass, the physical properties of the obtained raw cotton are deteriorated, which is not preferable.
  • the mixing method of the meta type wholly aromatic polyamide and the UV absorber is a method of mixing and dissolving the UV absorber in the solvent and adding the meta type wholly aromatic polyamide solution thereto, or the UV absorber is added to the meta type wholly aromatic.
  • the method of dissolving in a polyamide solution is not particularly limited.
  • the spinning solution thus obtained is formed into a fiber through the following steps.
  • the spinning solution metal-type wholly aromatic polyamide polymer solution obtained above is spun into a coagulating solution and coagulated.
  • the spinning apparatus is not particularly limited, and a conventionally known wet spinning apparatus can be used. Further, the number of spinning holes, the arrangement state, the hole shape and the like of the spinneret are not particularly limited as long as they can be stably wet-spun. For example, the number of holes is 500 to 30,000, and the spinning hole diameter is 0.05. A multi-hole spinneret for ⁇ 0.2 mm sufu may be used.
  • the temperature of the spinning solution (meta-type wholly aromatic polyamide polymer solution) when spinning from the spinneret is suitably in the range of 10 to 90 ° C.
  • an aqueous amide solvent such as N-methyl-2-pyrrolidone (NMP) having a concentration of 45 to 60% by mass not containing an inorganic salt is used. Use in the range of 35 ° C.
  • NMP N-methyl-2-pyrrolidone
  • the amide solvent concentration is less than 45% by mass, the skin becomes thick, the cleaning efficiency in the cleaning process is lowered, and the residual solvent amount of the fibers before dyeing (raw fibers) is 0.1% by mass or less. It becomes difficult.
  • the amide solvent concentration exceeds 60% by mass, uniform coagulation cannot be performed until the inside of the fiber is reached. For this reason, the residual solvent amount of the fiber before dyeing (fibril) is 0.1% by mass. It becomes difficult to make the following, and the acid resistance becomes insufficient.
  • the fiber immersion time in the coagulation bath is suitably in the range of 0.1 to 30 seconds.
  • the skin formed on the fiber surface can be made thin, and a uniform structure can be formed up to the inside of the fiber. It is possible to further improve the dyeability, and to improve the breaking elongation of the obtained fiber and the strength retention (light resistance) of the dyed fiber before and after the light resistance test.
  • the plastic stretching bath liquid is not particularly limited, and a conventionally known bath liquid can be employed.
  • the draw ratio in the plastic drawing bath needs to be in the range of 3.5 to 5.0 times, more preferably in the range of 3.7 to 4.5 times. .
  • the draw ratio in the plastic drawing bath is less than 3.5 times, the solvent removal from the coagulated yarn becomes insufficient, and the residual solvent amount of the fibers before dyeing (raw fibers) is 0.1% by mass or less. It becomes difficult to do. Further, the fibers before dyeing (raw fibers) are not sufficiently oriented, the breaking strength is insufficient, and handling in a processing step such as a spinning step becomes difficult.
  • the draw ratio exceeds 5.0 times, single yarn breakage occurs, resulting in poor production stability. Further, the Raman orientation index of the pre-dyeing fibers (raw fibers) is increased, and the dyeability is lowered.
  • the temperature of the plastic stretching bath is preferably in the range of 10 to 90 ° C.
  • the process condition is good.
  • washing process In the washing step, the fiber drawn in the plastic drawing bath is thoroughly washed. Washing is preferably performed in multiple stages because it affects the quality of the resulting fiber.
  • the temperature of the cleaning bath in the cleaning step and the concentration of the amide solvent in the cleaning bath liquid affect the state of extraction of the amide solvent from the fibers and the state of penetration of water from the cleaning bath into the fibers. For this reason, it is preferable to control the temperature condition and the concentration condition of the amide solvent by setting the washing process in multiple stages for the purpose of bringing them into an optimum state.
  • the temperature condition and the concentration condition of the amide solvent are not particularly limited as long as the quality of the finally obtained fiber can be satisfied, but if the initial washing bath is at a high temperature of 60 ° C. or higher, water Intrusion into the fiber occurs at a stretch, generating huge voids in the fiber, leading to quality degradation. For this reason, it is preferable that the first washing bath has a low temperature of 30 ° C. or lower.
  • the solvent remains in the fiber, environmental safety in processing of the product using the fiber and use of the product formed using the fiber is not preferable.
  • the amount of solvent contained in the fiber of the present invention is 0.1% by mass or less, more preferably 0.08% by mass or less.
  • the fiber that has undergone the washing step is dried and heat treated.
  • a method of dry heat processing For example, the method of using a hot roller, a hot plate, etc. can be mentioned.
  • the meta-type wholly aromatic polyamide fiber of the present invention can be finally obtained through the dry heat treatment.
  • the heat treatment temperature in the dry heat treatment step needs to be in the range of 260 to 330 ° C, and more preferably in the range of 270 to 310 ° C.
  • the heat treatment temperature is lower than 260 ° C.
  • the degree of crystallinity of the fibers becomes insufficient, and the shrinkage of the fibers becomes high, so that handling in the dyeing process becomes difficult.
  • the temperature exceeds 330 ° C.
  • the crystallinity of the fiber becomes too high and the dyeability is greatly reduced, making it difficult to increase the dyeing rate of the dyed fiber to 90% or more.
  • the dry heat treatment temperature is in the range of 260 to 330 ° C., it contributes to the improvement of the breaking strength of the obtained fiber.
  • the carrier which is a dyeing assistant.
  • the dye cannot sufficiently penetrate into the dense structure of the fiber, and the dyeing rate is lowered, which is not preferable.
  • Intrinsic viscosity After the aromatic polyamide polymer was isolated from the polymer solution and dried, it was measured in concentrated sulfuric acid at a polymer concentration of 100 mg / 100 mL sulfuric acid at 30 ° C.
  • the “Raman orientation index” was determined from the following equation based on the polarization anisotropy of the peak in the vicinity of the Raman shift wavenumber of 1000 cm ⁇ 1 , which is a meta-type wholly aromatic polyamide intrinsic value .
  • X-ray source Cu-K ⁇ ray Fiber sample stage: 50 rpm rotation 2 ⁇ scan: 5-50 ° Continuous measurement: 0.1 ° Width measurement: 1 ° / min scanning
  • air scattering and incoherent scattering were corrected from the measured diffraction profile by linear approximation to obtain a total scattering intensity profile.
  • the undried yarn profile of the meta-type wholly aromatic polyamide fiber that is amorphous was fitted to the obtained total scattering intensity, and the difference was defined as the crystal scattering intensity.
  • the degree of crystallinity was determined from the following equation using the area (integrated value) of the crystal scattering intensity and the total scattering intensity.
  • a dyeing treatment was carried out at 120 ° C. for 60 minutes with the bath ratio of the raw cotton and the dyeing solution being 1:40.
  • hydrosulfite 2.0 g / L, amylazine D (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name: amirazine D) 2.0 g / L, treatment solution containing sodium hydroxide 1.0 g / L was used for reduction washing at 80 ° C. for 20 minutes at a bath ratio of 1:20, and after washing with water, dried raw cotton was obtained.
  • Light resistance retention rate is the value calculated by the following equation by calculating the above light resistance color change ( ⁇ E *) for cotton before and after dyeing.
  • a dyeing treatment was carried out at 120 ° C. for 60 minutes with the bath ratio of the raw cotton and the dyeing solution being 1:40.
  • hydrosulfite 2.0 g / L, amylazine D (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name: amirazine D) 2.0 g / L, treatment solution containing sodium hydroxide 1.0 g / L was used for reduction washing at 80 ° C. for 20 minutes at a bath ratio of 1:20, and after washing with water, dried raw cotton was obtained.
  • Example 1 [Spinning liquid preparation process] 20.0 parts by mass of polymetaphenylene isophthalamide powder produced by an interfacial polymerization method according to the method described in Japanese Patent Publication No. 47-10863 and having an intrinsic viscosity (IV) of 1.9 is placed at ⁇ 10 ° C. It was suspended in 80.0 parts by mass of cooled N-methyl-2-pyrrolidone (NMP) to form a slurry. Subsequently, the suspension was heated to 60 ° C. and dissolved to obtain a transparent polymer solution.
  • NMP N-methyl-2-pyrrolidone
  • the spinning dope was spun from a spinning nozzle having a hole diameter of 0.07 mm and a hole number of 500 into a coagulation bath having a bath temperature of 30 ° C.
  • the washed fiber was subjected to a dry heat treatment with a heat roller having a surface temperature of 280 ° C. to obtain a meta-type wholly aromatic aramid fiber.
  • the obtained raw cotton was dyed for 60 minutes at 120 ° C. with a bath ratio of the raw cotton to the dyeing liquid of 1:40.
  • hydrosulfite 2.0 g / L, amylazine D (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name: amirazine D) 2.0 g / L, treatment solution containing sodium hydroxide 1.0 g / L was used for reduction washing at 80 ° C. for 20 minutes at a bath ratio of 1:20, and dyed cotton was obtained by drying after washing with water.
  • the obtained raw cotton was dyed for 60 minutes at 120 ° C. with a bath ratio of the raw cotton to the dyeing liquid of 1:40.
  • hydrosulfite 2.0 g / L, amylazine D (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name: amirazine D) 2.0 g / L, treatment solution containing sodium hydroxide 1.0 g / L was used for reduction washing at 80 ° C. for 20 minutes at a bath ratio of 1:20, and dyed cotton was obtained by drying after washing with water.
  • NMP N-methyl-2-pyrrolidone
  • MPDA metaphenylenediamine
  • IPC isophthalic acid chloride
  • a polymetaphenylene isophthalamide fiber was obtained in the same manner as in Example 1 except that the obtained polymerization solution was used as a spinning dope, the draw ratio in the plastic drawing bath was 3.7 times, and the surface temperature in the dry heat treatment step was 310 ° C. It was.
  • Example 3 [Manufacture of pre-dyeing fibers (raw fibers)] The amount of 2- [2H-benzotriazol-2-yl] -4-6-bis (1-methyl-1-phenylethyl) phenol (solubility in water: 0.01 mg / L) was adjusted to 5.0 relative to the polymer. A polymetaphenylene isophthalamide fiber was obtained in the same manner as in Example 2 except that the mass% was changed.
  • Example 4 [Manufacture of pre-dyeing fibers (raw fibers)] The amount of 2- [2H-benzotriazol-2-yl] -4-6-bis (1-methyl-1-phenylethyl) phenol (solubility in water: 0.01 mg / L) added to the polymer was 6.5. A polymetaphenylene isophthalamide fiber was obtained in the same manner as in Example 2 except that the mass% was changed.
  • the dyeing rate was 91.5%.
  • the breaking strength of the dyed cotton is 2.6 cN / dtex
  • the breaking strength of the dyed cotton after the acid resistance test is 1.9 cN / dtex
  • the strength retention before and after immersion in the sulfuric acid aqueous solution is 73. %Met.
  • the strength retention before and after the light resistance test was 69%. The results are shown in Table 1.
  • the meta-type wholly aromatic polyamide fiber of the present invention is a light-resistant fiber that can be dyed in various hues by carrier dyeing and that can suppress the removal of the light-resistant agent during dyeing. Furthermore, even if it is a case where it receives long-term light irradiation, such as long-term exposure to sunlight, deterioration can be suppressed and the intensity

Abstract

 疎水性の高い紫外線吸収剤を用い、かつ、特定の物性を有するメタ型全芳香族ポリアミド繊維を形成することにより、キャリヤー染色によって多様な色相に染色することができ、かつ、染色時における耐光剤の脱落を抑制できる、耐光性を有するメタ型全芳香族ポリアミド繊維を提供する。すなわち、水への溶解度が0.04mg/L未満である紫外線吸収剤を含み、染色繊維の染着率が90%以上であり、キャリヤー染色前後における耐光性保持率が80%以上であるメタ型全芳香族ポリアミド繊維とする。

Description

メタ型全芳香族ポリアミド繊維
 本発明は、メタ型全芳香族ポリアミド繊維に関するものであり、さらに詳しくは、キャリヤー染色時における耐光剤の脱落を抑制できる耐光性を有するメタ型全芳香族ポリアミド繊維に関する。
 全芳香族ポリアミド(以下アラミドと略称する場合がある。)繊維には、コーネックス(登録商標)、ノーメックス(登録商標)に代表されるメタ系アラミド繊維と、テクノーラ(登録商標)、ケブラー(登録商標)、トワロン(登録商標)に代表されるパラ系アラミド繊維とがある。
 これらのアラミド繊維は、剛直な分子構造と高い結晶性を有しているため、ナイロン6、ナイロン66等の従来から広く使用されている脂肪族ポリアミド繊維と比較して、耐熱性、耐炎性(難燃性)等の熱的性質、並びに耐薬品性、強力な耐放射線性、電気特性等の安全性に優れた性質を有している。従って、耐炎性(難燃性)や耐熱性を必要とする防護服等の衣料用途や、バッグフィルター等の産業資材用途、カーテン等のインテリア用途として、広く使用されている。
 ここで、衣料用途等に用いられる着色した繊維を得る方法としては、一般的に、染色による方法、染顔料を使用しての原着染めによる方法がある。そして、全芳香族ポリアミド繊維を着色する方法としては、例えば、塩基性染料とベンジルアルコール、アセトフェノン等の染色助剤(キャリヤー)を用いて染色する方法が一般的に知られている。
 しかしながら、全芳香族ポリアミド繊維は、脂肪族ポリアミド繊維の染色に用いられるような塩基性染料によって染色すると、得られた着色繊維の耐光性が極めて悪くなり、光による褪色が著しいという問題があった。
 そこで、着色した全芳香族ポリアミド繊維の耐光性を向上させる目的で、特開昭49-075824号公報(特許文献1)では、芳香族ポリアミド溶液を乾式または湿式紡糸し、得られた繊維を洗浄した後乾燥する前に、繊維に紫外線遮蔽物質の水性分散液を含浸させる方法が提案されている。しかしながら、該方法では、キャリヤー染色時にキャリヤーの影響によって紫外線遮蔽物質の脱落が起こりやすいという問題があった。
 また、耐光性を有するノンキャリヤー染色が可能な全芳香族ポリアミド繊維として、特開2003-239136号(特許文献2)には、染色助剤のアルキルベンゼンスルフォン酸オニウム塩とヒンダードアミン系耐光剤とを含有させてなるメタ型全芳香族ポリアミド繊維が開示されている。該繊維は、ノンキャリヤー染色が可能となるため染色時に耐光剤の脱落は起こりにくいものの、当該オニウム塩の添加により、繊維の製造コストが高くなり、また、得られる繊維の難燃性が低下するため、難燃剤等をさらに添加する必要があった。
 さらに、光により褪色しない特定の顔料が配合された耐光性を有する着色メタ型全芳香族ポリアミド繊維が提案されている(特開昭50-59522号公報、特許文献3)。しかしながら、当該方法においては繊維の製造工程で顔料を含有させるため、製造時のロスが多くなったり、小ロットによる対応が困難であったり、要求される各種色相の繊維を得ることが難しい等の問題があった。
特開昭49-075824号公報 特開2003-239136号公報 特開昭50-59522号公報
 本発明は、上記の背景技術に鑑みてなされたものであり、その目的とするところは、キャリヤー染色によって多様な色相に染色することができ、かつ、染色時における耐光剤の脱落を抑制できる、耐光性を有するメタ型全芳香族ポリアミド繊維を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、疎水性の高い紫外線吸収剤を用い、かつ、特定の物性を有するメタ型全芳香族ポリアミド繊維を形成することで上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、水への溶解度が0.04mg/L未満である紫外線吸収剤を含み、染色繊維の染着率が90%以上であり、キャリヤー染色前後における耐光性保持率が80%以上である全芳香族ポリアミド繊維である。
 本発明のメタ型全芳香族ポリアミド繊維は、キャリヤー染色によって多様な色相に染色することができ、かつ、染色時における耐光剤の脱落を抑制できる、耐光性を有する繊維となる。
 さらに、本発明のメタ型全芳香族ポリアミド繊維は、日光への長期暴露等、長期の光照射を受けた場合であっても劣化を抑制することができ、その強度を維持することができる。
 このため、染色性および耐光性が必要とされる分野における工業的価値は極めて大きく、例えば、寝具、衣料、インテリア等の審美性や視覚性を重視する分野において、好適に用いることができる。
 <メタ型全芳香族ポリアミド繊維>
 本発明のメタ型全芳香族ポリアミド繊維は、以下の特定の物性を備える。本発明のメタ型全芳香族ポリアミド繊維の物性、構成、および、製造方法等について以下に説明する。
 [メタ型全芳香族ポリアミド繊維の物性]
 〔残存溶媒量〕
 メタ型全芳香族ポリアミド繊維は、通常、ポリマーをアミド系溶媒に溶解した紡糸原液から製造されるため、必然的に該繊維に溶媒が残存する。しかしながら、本発明のメタ型全芳香族ポリアミド繊維は、繊維中に残存する溶媒の量が、繊維質量に対して0.1質量%以下であることが好ましい。0.1質量%以下であることが好ましく、0.08質量%以下であることがより好ましい。
 繊維質量に対して0.1質量%を超えて溶媒が繊維中に残存している場合には、200℃を超えるような高温雰囲気下での加工や使用の際に、残存溶媒が揮発するために環境安全性に劣る。また、分子構造が破壊されることにより、著しく強度が低下するため好ましくない。
 本発明において、染色前繊維(原繊維)の残存溶媒量を0.1質量%以下とするためには、繊維の製造工程において、スキンコアを有しない凝固形態となるよう凝固浴の成分あるいは条件を調節し、かつ、特定倍率で可塑延伸を実施する。
 なお、本発明における「染色前繊維(原繊維)の残存溶媒量」とは、以下の方法で得られる値をいう。
 (残存溶媒量の測定方法)
 染色前繊維(原繊維)を約8.0g採取し、105℃で120分間乾燥させた後にデシケーター内で放冷し、繊維質量(M1)を秤量する。続いて、この繊維について、メタノール中で1.5時間、ソックスレー抽出器を用いて還流抽出を行い、繊維中に含まれるアミド系溶媒の抽出を行う。抽出を終えた繊維を取り出して、150℃で60分間真空乾燥させた後にデシケーター内で放冷し、繊維質量(M2)を秤量する。繊維中に残存する溶媒量(アミド系溶媒質量)N(%)は、得られるM1およびM2を用いて、下記式により算出する。
Figure JPOXMLDOC01-appb-M000001
 〔染色前繊維(原繊維)の破断強度〕
 本発明の染色前のメタ型全芳香族ポリアミド繊維(原繊維)の破断強度は、2.5cN/dtex以上であることが好ましい。2.7cN/dtex以上であることがさらに好ましく、3.0cN/dtex以上であることが特に好ましい。破断強度が2.5cN/dtex未満である場合には、紡績等の後加工工程において繊維が破断して、通過性が悪化するため好ましくない。
 本発明において、染色前のメタ型全芳香族ポリアミド繊維(原繊維)の破断強度は、後記する製造方法における可塑延伸浴延伸工程における延伸倍率、および、乾熱処理工程における熱処理温度により制御することができる。破断強度を2.5cN/dtex以上とするためには、延伸倍率を3.5~5.0倍とし、さらに、乾熱処理温度を260~330℃の範囲とすればよい。
 なお、本発明における「破断強度」とは、JIS L1015に基づき、引張試験機(インストロン社製、型番5565)を用いて、以下の条件で測定して得られる値をいう。
 (測定条件)
   つかみ間隔  :20mm
   初荷重    :0.044cN(1/20g)/dtex
   引張速度   :20mm/分
 〔染色前繊維(原繊維)の破断伸度〕
 本発明の染色前のメタ型全芳香族ポリアミド繊維(原繊維)の破断伸度は、30%以上であることが好ましい。35%以上であることがさらに好ましく、40%以上であることが特に好ましい。破断伸度が30%未満である場合には、紡績等の後加工工程における通過性が悪化するため好ましくない。
 本発明において、染色前のメタ型全芳香族ポリアミド繊維(原繊維)の破断伸度は、後記する製造方法における凝固工程において、凝固浴条件により制御することができる。破断伸度を30%以上とするためには、凝固液を濃度45~60質量%のN-メチル-2-ピロリドン(NMP)等のアミド系溶媒水溶液とし、浴液の温度10~35℃とすればよい。
 なお、本発明における「破断伸度」とは、JIS L1015に基づき、引張試験機(インストロン社製、型番5565)を用いて、上記の「破断強度」の測定と同一条件で測定して得られる値をいう。
 〔染色前繊維(原繊維)のラマン配向指数〕
 本発明の染色前のメタ型全芳香族ポリアミド繊維(原繊維)のラマン配向指数は、1.3~2.2の範囲であることが好ましい。1.5~2.0の範囲であることがさらに好ましく、1.7~2.0であることが特に好ましい。ラマン指数が1.3未満である場合には、染色処理した後の染色繊維の強度を十分に発現できないため好ましくない。一方で、2.2を超えて配向させた場合には、染色性が大きく低下するため好ましくない。また、染色前繊維(原繊維)のラマン配向指数が上記範囲外となる場合には、本発明のメタ型全芳香族ポリアミド繊維(原繊維)の染着率を90%以上とすることが困難となる場合がある。
 本発明において、染色前のメタ型全芳香族ポリアミド繊維(原繊維)のラマン配向指数は、後記する製造方法における可塑延伸浴延伸工程における延伸倍率により制御することができる。具体的には、延伸倍率を3.5~5.0倍とすればよい。
 なお、本発明における「ラマン配向指数」とは、以下の方法で得られる値をいう。
 (ラマン配向指数の求め方)
 染色前繊維(原繊維)を試料ホルダーに固定し、シングル顕微レーザーラマン分光装置(ジョバン-イボン社製、型式:T64000)を用いて、固体レーザー(λ=785nm)、出力76mWの条件下にて測定を行う。「ラマン配向指数」は、メタ型全芳香族ポリアミド固有値であるラマンシフト波数1000cm-1付近のピークの偏光異方性により、以下の式より求める。
Figure JPOXMLDOC01-appb-M000002
 (式中、XXは、入射偏光面と検出偏光面が繊維軸に対して平行であることを表し、YYは、入射偏光面と検出偏光面が繊維軸に対して垂直であることを表す。)
 〔染色前繊維(原繊維)の結晶化度〕
 本発明の染色前のメタ型全芳香族ポリアミド繊維(原繊維)の結晶化度は、5~20%であることが好ましい。5%~15%であることがさらに好ましく、5~10%であることが特に好ましい。結晶化度が20%を超える場合には、染色性が大きく低下するため好ましくない。一方で、5%未満の場合には、繊維の収縮性が高くなり、染色工程での取り扱いが困難となるため好ましくない。また、染色前繊維(原繊維)の結晶化度が上記範囲外となる場合には、本発明のメタ型全芳香族ポリアミド繊維(原繊維)の染着率を90%以上とすることが困難となる場合がある。
 本発明において、染色前のメタ型全芳香族ポリアミド繊維(原繊維)の結晶化度は、後記する製造方法における可塑延伸浴延伸工程における延伸倍率、および、乾熱処理工程における熱処理温度により制御することができる。具体的には、延伸倍率を3.5~5.0倍とし、さらに、乾熱処理温度を260~330℃の範囲とすればよい。
 なお、本発明における「結晶化度」は、染色前繊維(原繊維)を約1mm径のバンドルに束ねて、X線回折測定装置(商品名:RIGAKU RINT TTRIII)により、下記の条件で測定して得られるプロファイルから換算する。
 (測定条件)
   X線原   :Cu-Kα線
   繊維試料台 :50rpm回転
   2θ走査  :5-50°
   連続測定  :0.1°
   幅計測   :1°/分走査
 具体的には、実測回折プロファイルから空気散乱、非干渉性散乱を直線近似で補正して、全散乱強度プロファイルを得る。得られた全散乱強度に非晶質であるメタ型全芳香族ポリアミド繊維の未乾燥糸プロファイルを目測フィットし、差分を結晶散乱強度とする。結晶化度は、結晶散乱強度および全散乱強度の面積(積分値)を用いて、以下の式から求める。
Figure JPOXMLDOC01-appb-M000003
 〔染色繊維の染着率〕
 本発明のメタ型全芳香族ポリアミド繊維は、染色後の繊維(染色繊維)の染着率が90%以上であり、92%以上であることが好ましい。染色繊維の染着率が90%未満の場合には、衣料分野において求められる審美性の点で好ましなく、所望の色相に染色することができない。
 本発明において、染色後のメタ型全芳香族ポリアミド繊維(染色繊維)の染着率は、後記する製造方法における凝固工程において、スキンコアを有しない凝固形態となるよう凝固浴の条件を調節し、かつ、乾熱処理工程において特定温度で乾熱処理し、繊維の配向および結晶化度を特定の状態とすることにより達成できる。染色繊維の染着率を90%以上とするためには、凝固液を濃度45~60質量%のN-メチル-2-ピロリドン(NMP)等のアミド系溶媒水溶液とし、浴液の温度10~35℃とし、乾熱処理温度を繊維のガラス転移温度(Tg)以上となる260~330℃の範囲とすればよい。さらには、染色前繊維(原繊維)のラマン配向指数を1.3~2.2の範囲とし、結晶化度を5~20%の範囲とすることがなお好ましい。
 なお、「染着率」を求めるための「染色」は、以下の染色方法による染色とする。
 (染色方法)
 カチオン染料(日本化薬社製、商品名:Kayacryl Blue GSL-ED(B-54))6%owf、酢酸0.3mL/L、硝酸ナトリウム20g/L、キャリヤー剤としてベンジルアルコール70g/L、分散剤として染色助剤(明成化学工業社製、商品名:ディスパーTL)0.5g/Lを含む染色液を用意する。
 引き続き、繊維と当該染色液の浴比を1:40として、120℃下60分間の染色処理を実施する。染色処理後、ハイドロサルファイト2.0g/L、アミラジンD(第一工業製薬社製、商品名:アミラジンD)2.0g/L、水酸化ナトリウム1.0g/Lの割合で含有する処理液を用いて、浴比1:20で80℃下20分間の還元洗浄を実施し、水洗後に乾燥することにより染色繊維を得る。
 なお、本発明における「染着率」とは、以下の方法によって得られる値をいう。
 (染着率の測定方法)
 染色前繊維(原繊維)を染色した染色残液に、この染色残液と同容積のジクロロメタンを加え、残染料を抽出する。引き続き、抽出液について、波長670nm、540nm、530nmの吸光度をそれぞれ測定し、あらかじめ染料濃度が既知のジクロロメタン溶液から作成した上記3波長の検量線から抽出液の染料濃度をそれぞれ求め、上記3波長における濃度の平均値を抽出液の染料濃度(C)とする。染色前の染料濃度(Co)を用いて、以下の式にて得られる値を染着率(U)とする。
Figure JPOXMLDOC01-appb-M000004
 〔硫酸水溶液浸漬前後における染色繊維の強度保持率(耐酸性)〕
 本発明のメタ型全芳香族ポリアミド繊維は、50℃の20質量%硫酸水溶液に150時間浸漬した後の染色繊維の強度保持率が65%以上であることが好ましい。硫酸水溶液に浸漬後の強度保持率は、65%以上であることが好ましく、70%以上であることがさらに好ましく、75%以上であることが最も好ましい。
 硫酸水溶液に浸漬後の染色繊維の強度保持率は、耐酸性の指標となり、強度保持率が65%を下回る場合には、耐酸性が不十分となり、安全性が低下するため好ましくない。
 本発明において、染色繊維の強度保持率を65%以上とするためには、繊維の製造工程において、スキンコアを有しない凝固形態となるよう凝固浴の成分あるいは条件を調節する。
 なお、「強度保持率」の評価に用いる染色繊維は、上記した「染着率」を求めるための染色方法と同一の方法で染色した繊維とし、また、本発明における「硫酸水溶液浸漬前後における染色繊維の強度保持率」とは、以下の方法で得られる値をいう。
 (硫酸水溶液浸漬前後における強度保持率(耐酸性テスト)の求め方)
 セパラブルフラスコへ20質量%の硫酸水溶液を入れ、染色された繊維51mmを浸漬する。続いて、セパラブルフラスコを恒温水槽中に浸漬して温度50℃に維持し、150時間浸漬する。浸漬前後の染色繊維につき、破断強度の測定をそれぞれ実施し、浸漬後の染色繊維の強度保持率を求める。
 なお、「硫酸水溶液浸漬前後における染色繊維の強度保持率(耐酸性)」を求める際の「破断強度」とは、上記した染色前繊維(原繊維)の破断強度と同一の測定方法で得られる値をいう。
 〔キャリヤー染色前後における耐光性保持率〕
 本発明のメタ型全芳香族ポリアミド繊維は、キャリヤー染色前後における耐光性保持率が80%以上である。85%以上であることが好ましく、90%以上であることが特に好ましい。キャリヤー染色前後における耐光性保持率が低いことは、キャリヤー染色の際に耐光剤の脱落が多いことを意味する。染色前後における耐候性保持率が80%未満の場合には、染色後の製品の耐光性効果が十分に発現しないため好ましくない。
 なお、本発明における「耐光性保持率」とは、以下の方法で得られる値をいう。
 (耐光性保持率の求め方)
 耐光性の評価として、カーボンアークフェードメーターにて63℃24時間照射した光照射綿および未照射綿を用いて、耐光変褪色度(ΔE*)を得る。耐光変褪色度(ΔE*)としては、先ず、光源D65を用いて-10度視野での拡散反射率を測定し、通常の演算処理により、明度指数L*値、クロマティクネス指数a*、b*値を算出し、得られた値を用いてJIS Z-8730に準拠して次式により求める。
Figure JPOXMLDOC01-appb-M000005
 「耐光性保持率」は、染色前後の綿についてそれぞれ、上記耐光変褪色度(ΔE*)を求め、次式により算出される値とする。
Figure JPOXMLDOC01-appb-M000006
 なお、「耐光性保持率」の評価における「染色」とは、以下の方法による、染料を用いない染色とする。
 (耐光性保持率測定用繊維の染色方法)
 染料を用いず、酢酸0.3mL/L、硝酸ナトリウム20g/L、キャリヤー剤としてベンジルアルコール70g/L、分散剤として染色助剤(明成化学工業社製、商品名:ディスパーTL)0.5g/Lを含む染色液を用意する。
 引き続き、繊維と当該染色液の浴比を1:40として、120℃下60分間の染色処理を実施する。染色処理後、ハイドロサルファイト2.0g/L、アミラジンD(第一工業製薬社製、商品名:アミラジンD)2.0g/L、水酸化ナトリウム1.0g/Lの割合で含有する処理液を用いて、浴比1:20で80℃下20分間の還元洗浄を実施し、水洗後に乾燥することにより染色繊維を得る。
 〔耐光試験前後における染色繊維の強度保持率(耐光性)〕
 本発明のメタ型全芳香族ポリアミド繊維は、キセノンアークフェードメーターにて63℃40時間照射した後の強度保持率(耐光性)が80%以上であることが好ましい。85%以上であることが更に好ましく、90%以上であることが特に好ましい。光照射前後の強度保持率が80%未満の場合には、日光への長期暴露によって繊維の強度を維持することができないため好ましくない。
 本発明において、耐光試験前後における染色繊維の強度保持率(耐光性)を80%以上とするためには、後記する繊維の製造工程において、スキンコアを有しない凝固形態となるよう凝固浴の成分あるいは条件を調節する。
 なお、「耐光試験前後における染色繊維の強度保持率(耐光性)」の評価に用いる染色繊維は、上記した「染着率」を求めるための染色方法と同一の方法で染色した繊維とし、また、「耐光試験前後における染色繊維の強度保持率(耐光性)」とは、以下の方法で得られる値をいう。
 (耐光試験前後における染色繊維の強度保持率(耐光性)の求め方)
 染色繊維をホルダーに巻き付け、キセノンアークフェードメーターにて63℃40時間照射する。光照射繊維および未照射繊維について、破断強度の測定をそれぞれ実施し、光照射後の染色繊維の強度保持率を求める。
 なお、「耐光試験前後における染色繊維の強度保持率(耐光性)」を求める際の「破断強度」とは、上記した染色前繊維(原繊維)の破断強度と同一の測定方法で得られる値をいう。
 <メタ型全芳香族ポリアミド>
 [メタ型全芳香族ポリアミドの構成]
 本発明のメタ型全芳香族ポリアミド繊維を構成するメタ型全芳香族ポリアミドは、メタ型芳香族ジアミン成分とメタ型芳香族ジカルボン酸成分とから構成されるものであり、本発明の目的を損なわない範囲内で、パラ型等の他の共重合成分が共重合されていてもよい。
 本発明において特に好ましく使用されるのは、力学特性、耐熱性、難燃性の観点から、メタフェニレンイソフタルアミド単位を主成分とするメタ型全芳香族ポリアミドである。
 メタフェニレンイソフタルアミド単位から構成されるメタ型全芳香族ポリアミドとしては、メタフェニレンイソフタルアミド単位が、全繰り返し単位の90モル%以上であることが好ましく、さらに好ましくは95モル%以上、特に好ましくは100モルである。
 〔メタ型全芳香族ポリアミドの原料〕
 (メタ型芳香族ジアミン成分)
 メタ型全芳香族ポリアミドの原料となるメタ型芳香族ジアミン成分としては、メタフェニレンジアミン、3,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルスルホン等、および、これらの芳香環にハロゲン、炭素数1~3のアルキル基等の置換基を有する誘導体、例えば、2,4-トルイレンジアミン、2,6-トルイレンジアミン、2,4-ジアミノクロロベンゼン、2,6-ジアミノクロロベンゼン等を例示することができる。なかでも、メタフェニレンジアミンのみ、または、メタフェニレンジアミンを90モル%以上、好ましくは95モル%以上含有する混合ジアミンであることが好ましい。
 (メタ型芳香族ジカルボン酸成分)
 メタ型全芳香族ポリアミドを構成するメタ型芳香族ジカルボン酸成分の原料としては、例えば、メタ型芳香族ジカルボン酸ハライドを挙げることができる。メタ型芳香族ジカルボン酸ハライドとしては、イソフタル酸クロライド、イソフタル酸ブロマイド等のイソフタル酸ハライド、および、これらの芳香環にハロゲン、炭素数1~3のアルコキシ基等の置換基を有する誘導体、例えば3-クロロイソフタル酸クロライド等を例示することができる。なかでも、イソフタル酸クロライドそのもの、または、イソフタル酸クロライドを90モル%以上、好ましくは95モル%以上含有する混合カルボン酸ハライドであることが好ましい。
 (共重合成分)
 上記のメタ型芳香族ジアミン成分とメタ型芳香族ジカルボン酸成分以外で使用しうる共重合成分としては、例えば、芳香族ジアミンとして、パラフェニレンジアミン、2,5-ジアミノクロルベンゼン、2,5-ジアミノブロムベンゼン、アミノアニシジン等のベンゼン誘導体、1,5-ナフチレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルケトン、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニルメタン等が挙げられる。一方、芳香族ジカルボン酸成分としては、テレフタル酸クロライド、1,4-ナフタレンジカルボン酸クロライド、2,6-ナフタレンジカルボン酸クロライド、4,4’-ビフェニルジカルボン酸クロライド、4,4’-ジフェニルエーテルジカルボン酸クロライド等が挙げられる。
 これらの共重合成分の共重合比は、あまり多くなりすぎるとメタ型全芳香族ポリアミドの特性が低下しやすいため、ポリアミドの全ジアミン成分および全酸成分を基準として、それぞれ10モル%以下とすることが好ましい。特に、好適なメタ型全芳香族ポリアミドは、上記した通り、全繰返し単位の90モル%以上がメタフェニレンイソフタルアミド単位であるポリアミドであり、なかでもポリメタフェニレンイソフタルアミドが特に好ましい。
 [メタ型全芳香族ポリアミドの製造方法]
 メタ型全芳香族ポリアミドの製造方法は、特に限定されるものではなく、例えば、メタ型芳香族ジアミン成分とメタ型芳香族ジカルボン酸クロライド成分とを原料とした溶液重合や界面重合等により製造することができる。
 なお、本発明に用いられるメタ型全芳香族ポリアミドの分子量は、繊維を形成し得る程度であれば特に限定されるものではない。一般に、十分な物性の繊維を得るには、濃硫酸中、ポリマー濃度100mg/100mL硫酸で30℃において測定した固有粘度(I.V.)が、1.0~3.0の範囲のポリマーが適当であり、1.2~2.0の範囲のポリマーが特に好ましい。
 <メタ型全芳香族ポリアミド繊維の製造方法>
 本発明のメタ型全芳香族ポリアミド繊維は、上記の製造方法によって得られたメタ型全芳香族ポリアミドを用いて、例えば、以下に説明する紡糸液調製工程、紡糸・凝固工程、可塑延伸浴延伸工程、洗浄工程、弛緩処理工程、熱処理工程を経て製造される。
 [紡糸液調製工程]
 紡糸液調製工程においては、メタ型全芳香族ポリアミドをアミド系溶媒に溶解し、紫外線吸収剤を添加して、紡糸液(メタ型全芳香族ポリアミド重合体溶液)を調製する。本発明においては、紡糸液調製工程において、紡糸液中に特定の紫外線吸収剤を含ませることが重要である。特定の紫外線吸収剤を含む紡糸液から繊維を形成することにより、キャリヤー染色時における紫外線吸収剤の溶出を抑制することができる。
 紡糸液の調製にあたっては、通常、アミド系溶媒を用い、使用されるアミド系溶媒としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)等を例示することができる。これらのなかでは溶解性と取り扱い安全性の観点から、NMPまたはDMAcを用いることが好ましい。
 溶液濃度としては、次工程である紡糸・凝固工程での凝固速度および重合体の溶解性の観点から、適当な濃度を適宜選択すればよく、例えば、ポリマーがポリメタフェニレンイソフタルアミドで溶媒がNMPの場合には、通常は10~30質量%の範囲とすることが好ましい。
 (紫外線吸収剤)
 本発明に用いられる紫外線吸収剤は、疎水性の高いものであって、水への溶解度が0.04mg/L未満であることが必要である。0.04mg/L以上であると、キャリヤー染色時に紫外吸収剤が溶出してしまい、染色後の耐光性が低下するため好ましくない。
 また、本発明に用いられる紫外線吸収剤は、メタ全芳香族ポリアミドの光劣化特性波長である360nm近辺の光を効率よく遮蔽し、可視部での吸収が殆ど有していない化合物であることが好ましい。
 したがって、本発明に用いられる紫外線吸収剤としては、特定の置換ベンゾトリアゾールが好ましく、具体的には、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(tert-ブチル)フェノール、2-[2H-ベンゾトリアゾール-2-イル]-4-6-ビス(1-メチル-1-フェニルエチル)フェノール、2-[2H-ベンゾトリアゾール-2-イル]-4-(1,1,3,3-テトラメチルブチル)フェノール等が挙げられる。これらの中では、疎水性が高く、可視部での吸収量が小さいことから、2-[2H-ベンゾトリアゾール-2-イル]-4-6-ビス(1-メチル-1-フェニルエチル)フェノールが特に好ましい。
 かかる紫外線吸収剤のメタ型全芳香族ポリアミド繊維に対する含有量は、メタ型全芳香族ポリアミド繊維質量全体に対して3.0質量%以上6.5質量%以下の範囲とすることが好ましく、さらに好ましくは4.5質量%以上6.5質量%以下の範囲である。3.0質量%未満の場合には、耐光性効果が十分に発現しないため好ましくなく、6.5質量%より多く配合した場合には、得られる原綿の物性が低下し好ましくない。
 メタ型全芳香族ポリアミドと紫外線吸収剤との混合方法は、溶媒中に紫外線吸収剤を混合、溶解し、それにメタ型全芳香族ポリアミド溶液を加える方法、あるいは紫外線吸収剤をメタ型全芳香族ポリアミド溶液に溶解させる方法等、特に限定されるものではない。このようにして得られた紡糸液は、下記工程を経て、繊維に成形される。
 [紡糸・凝固工程]
 紡糸・凝固工程においては、上記で得られた紡糸液(メタ型全芳香族ポリアミド重合体溶液)を凝固液中に紡出して凝固させる。
 紡糸装置としては特に限定されるものではなく、従来公知の湿式紡糸装置を使用することができる。また、安定して湿式紡糸できるものであれば、紡糸口金の紡糸孔数、配列状態、孔形状等は特に制限する必要はなく、例えば、孔数が500~30000個、紡糸孔径が0.05~0.2mmのスフ用の多ホール紡糸口金等を用いてもよい。
 また、紡糸口金から紡出する際の紡糸液(メタ型全芳香族ポリアミド重合体溶液)の温度は、10~90℃の範囲が適当である。
 本発明の繊維を得るために用いる凝固浴としては、無機塩を含まない濃度45~60質量%のN-メチル-2-ピロリドン(NMP)等のアミド系溶媒水溶液を、浴液の温度10~35℃の範囲で用いる。アミド系溶媒濃度が45質量%未満ではスキンが厚い構造となってしまい、洗浄工程における洗浄効率が低下し、染色前繊維(原繊維)の残存溶媒量を0.1質量%以下とすることが困難となる。またアミド系溶媒濃度が60質量%を超える場合には、繊維内部に至るまで均一な凝固を行うことができず、このため、染色前繊維(原繊維)の残存溶媒量を0.1質量%以下とすることが困難となり、また、耐酸性も不十分となる。なお、凝固浴中への繊維の浸漬時間は、0.1~30秒の範囲が適当である。
 また、本発明においては、凝固浴の成分あるいは条件を上記の通りに設定することにより、繊維表面に形成されるスキンを薄くするとともに、繊維内部まで均一な構造にすることができ、その結果、染色性をより向上させ、また、得られる繊維の破断伸度および耐光試験前後における染色繊維の強度保持率(耐光性)を向上させることが可能となる。
 [可塑延伸浴延伸工程]
 可塑延伸浴延伸工程においては、凝固浴にて凝固して得られた繊維が可塑状態にあるうちに、可塑延伸浴中にて繊維を延伸処理する。
 可塑延伸浴液としては特に限定されるものではなく、従来公知の浴液を採用することができる。
 本発明の繊維を得るためには、可塑延伸浴中の延伸倍率を、3.5~5.0倍の範囲とする必要があり、さらに好ましくは3.7~4.5倍の範囲とする。可塑延伸浴中での延伸倍率が3.5倍未満である場合には、凝固糸中からの脱溶剤が不十分となり、染色前繊維(原繊維)の残存溶媒量を0.1質量%以下とすることが困難となる。また、染色前繊維(原繊維)が十分に配向されず、破断強度が不十分となり、紡績工程などの加工工程における取り扱いが困難となる。一方で、延伸倍率が5.0倍を超える場合には、単糸切れが発生するため、生産安定性が悪くなる。また、染色前繊維(原繊維)のラマン配向指数が高くなり、染色性が低下する。
 可塑延伸浴の温度は、10~90℃の範囲が好ましい。好ましくは温度20~90℃の範囲にあると、工程調子がよい。
 [洗浄工程]
 洗浄工程においては、可塑延伸浴にて延伸された繊維を、十分に洗浄する。洗浄は、得られる繊維の品質面に影響を及ぼすことから、多段で行うことが好ましい。特に、洗浄工程における洗浄浴の温度および洗浄浴液中のアミド系溶媒の濃度は、繊維からのアミド系溶媒の抽出状態および洗浄浴からの水の繊維中への浸入状態に影響を与える。このため、これらを最適な状態とする目的においても、洗浄工程を多段とし、温度条件およびアミド系溶媒の濃度条件を制御することが好ましい。
 温度条件およびアミド系溶媒の濃度条件については、最終的に得られる繊維の品質を満足できるものであれば特に限定されるものではないが、最初の洗浄浴を60℃以上の高温とすると、水の繊維中への浸入が一気に起こるため、繊維中に巨大なボイドが生成し、品質の劣化を招く。このため、最初の洗浄浴は、30℃以下の低温とすることが好ましい。
繊維中に溶媒が残っている場合には、当該繊維を用いた製品の加工、および当該繊維を用いて形成された製品の使用における環境安全性が好ましくない。このため、本発明の繊維に含まれる溶媒量は、0.1質量%以下であり、さらに好ましくは0.08質量%以下である。
 [乾熱処理工程]
 乾熱処理工程においては、洗浄工程を経た繊維を、乾燥・熱処理する。乾熱処理の方法としては特に限定されるものではないが、例えば、熱ローラー、熱板等を用いる方法を挙げることができる。乾熱処理を経ることにより、最終的に、本発明のメタ型全芳香族ポリアミド繊維を得ることができる。
 本発明の繊維を得るためには、乾熱処理工程における熱処理温度を、260~330℃の範囲とする必要があり、270~310℃の範囲とすることがさらに好ましい。熱処理温度が260℃未満の場合には、繊維の結晶化度が不十分となり、繊維の収縮性が高くなるため染色工程での取り扱いが困難となる。一方で、330℃を越える場合には、繊維の結晶化度が大きくなりすぎて染色性が大きく低下し、染色繊維の染着率を90%以上とすることが困難となる。また、乾熱処理温度を260~330℃の範囲とすることは、得られる繊維の破断強度の向上に寄与する。
 <染色処理>
 本発明のメタ型全芳香族ポリアミド繊維を染色処理する際には、既存の合成繊維の染色設備を用いることが出来る。なお、染色処理に用いる染料としては特に限定されるものではないが、緻密な構造に浸透しやすく、染着率の高いカチオン染料を用いることが好ましい。
 また、本発明のメタ型全芳香族ポリアミド繊維を染色するためには、染色助剤であるキャリヤーを用いる必要がある。キャリヤーを使用しない場合には、繊維の緻密な構造に染料が十分に浸透できず、染着率が低下するため好ましくない。
 以下、実施例等をあげて本発明をさらに具体的に説明するが、本発明は、これらの実施例等によって何等限定されるものではない。
 <測定方法>
 実施例および比較例における各物性値は、下記の方法で測定した。
 (1)固有粘度(IV)
 重合体溶液から芳香族ポリアミドポリマーを単離して乾燥した後、濃硫酸中、ポリマー濃度100mg/100mL硫酸で30℃において測定した。
 (2)繊度
 JIS L1015に基づき、正量繊度のA法に準拠した測定を実施し、見掛繊度にて表記した。
 (3)染色前繊維(原繊維)の破断強度、破断伸度
 JIS L1015に基づき、インストロン社製、型番5565を用いて、以下の条件で測定した。
  (測定条件)
   つかみ間隔  :20mm
   初荷重    :0.044cN(1/20g)/dtex
   引張速度   :20mm/分
 (4)染色前繊維(原繊維)の残存溶媒量
 染色前繊維(原繊維)を約8.0g採取し、105℃で120分間乾燥させた後にデシケーター内で放冷し、繊維質量(M1)を秤量した。続いて、この染色前繊維(原繊維)について、メタノール中で1.5時間、ソックスレー抽出器を用いて還流抽出を行い、繊維中に含まれるアミド系溶媒の抽出を行った。抽出を終えた繊維を取り出して、150℃で60分間真空乾燥させた後にデシケーター内で放冷し、繊維質量(M2)を秤量した。繊維中に残存する溶媒量(アミド系溶媒質量)N(%)は、得られたM1およびM2を用いて、下記式により算出した。
Figure JPOXMLDOC01-appb-M000007
 (5)ラマン配向指数
 染色前繊維(原繊維)を試料ホルダーに固定し、シングル顕微レーザーラマン分光装置(ジョバン-イボン社製、型式:T64000)を用いて、固体レーザー(λ=785nm)、出力76mWの条件下にて測定を行った。「ラマン配向指数」は、メタ型全芳香族ポリアミド固有値であるラマンシフト波数1000cm-1付近のピークの偏光異方性により、以下の式より求めた。
Figure JPOXMLDOC01-appb-M000008
 (式中、XXは、入射偏光面と検出偏光面が繊維軸に対して平行であることを表し、YYは、入射偏光面と検出偏光面が繊維軸に対して垂直であることを表す。)
 (6)結晶化度
 染色前繊維(原繊維)を約1mm径のバンドルに束ねて、X線回折測定装置(商品名:RIGAKU RINT TTRIII)により、下記の条件で測定して得られたプロファイルから換算した。
 (測定条件)
   X線原   :Cu-Kα線
   繊維試料台 :50rpm回転
   2θ走査  :5-50°
   連続測定  :0.1°
   幅計測   :1°/分走査
 具体的には、実測回折プロファイルから空気散乱、非干渉性散乱を直線近似で補正して、全散乱強度プロファイルを得た。得られた全散乱強度に非晶質であるメタ型全芳香族ポリアミド繊維の未乾燥糸プロファイルを目測フィットし、差分を結晶散乱強度とした。結晶化度は、結晶散乱強度および全散乱強度の面積(積分値)を用いて、以下の式から求めた。
Figure JPOXMLDOC01-appb-M000009
 (7)染色繊維の染着率
 原綿を染色した染色残液に、この染色残液と同容積のジクロロメタンを加え、残染料を抽出した。引き続き、抽出液について、波長670nm、540nm、530nmの吸光度をそれぞれ測定し、あらかじめ染料濃度が既知のジクロロメタン溶液から作成した上記3波長の検量線から抽出液の染料濃度をそれぞれ求め、上記3波長における濃度の平均値を抽出液の染料濃度(C)とした。染色前の染料濃度(Co)を用いて、以下の式にて得られる値を染着率(U)とした。
Figure JPOXMLDOC01-appb-M000010
 なお、「染着率」を求めるための「染色」としては、以下の染色方法を実施した。
 (染色方法)
 カチオン染料(日本化薬社製、商品名:Kayacryl Blue GSL-ED(B-54))6%owf、酢酸0.3mL/L、硝酸ナトリウム20g/L、キャリヤー剤としてベンジルアルコール70g/L、分散剤として染色助剤(明成化学工業社製、商品名:ディスパーTL)0.5g/Lを含む染色液を用意した。
 引き続き、原綿と当該染色液の浴比を1:40として、120℃下60分間の染色処理を実施した。染色処理後、ハイドロサルファイト2.0g/L、アミラジンD(第一工業製薬社製、商品名:アミラジンD)2.0g/L、水酸化ナトリウム1.0g/Lの割合で含有する処理液を用いて、浴比1:20で80℃下20分間の還元洗浄を実施し、水洗後に乾燥することにより染色原綿を得た。
 (8)硫酸水溶液浸漬前後における染色繊維の強度保持率(耐酸性)
 セパラブルフラスコへ20質量%の硫酸水溶液を入れ、上記した「染着率」を求めるための染色方法と同一の方法で染色した染色繊維を浸漬した。続いて、セパラブルフラスコを恒温水槽中に浸漬して温度50℃に維持し、150時間浸漬した。浸漬前後の染色繊維につき、上記の染色前繊維(原繊維)についての破断強度の測定方法と同一の方法により、破断強度の測定をそれぞれ実施し、浸漬後の染色繊維の強度保持率を求めた。
 (9)キャリヤー染色前後における耐光性保持率
 耐光性の評価として、カーボンアークフェードメーターにて63℃24時間照射した光照射綿および未照射綿を用いて、耐光変褪色度(ΔE*)を得た。耐光変褪色度(ΔE*)としては、先ず、光源D65を用いて-10度視野での拡散反射率を測定し、通常の演算処理により、明度指数L*値、クロマティクネス指数a*、b*値を算出し、得られた値を用いてJIS Z-8730に準拠して次式により求めた。
Figure JPOXMLDOC01-appb-M000011
 「耐光性保持率」は、染色前後の綿についてそれぞれ、上記耐光変褪色度(ΔE*)を求め、次式により算出される値とする。
Figure JPOXMLDOC01-appb-M000012
 なお、耐光性保持率評価における「染色」としては、以下の方法による、染料を用いない染色を実施した。
 (耐光性保持率測定用繊維の染色方法)
 染料を用いず、酢酸0.3mL/L、硝酸ナトリウム20g/L、キャリヤー剤としてベンジルアルコール70g/L、分散剤として染色助剤(明成化学工業社製、商品名:ディスパーTL)0.5g/Lを含む染色液を用意した。
 引き続き、原綿と当該染色液の浴比を1:40として、120℃下60分間の染色処理を実施した。染色処理後、ハイドロサルファイト2.0g/L、アミラジンD(第一工業製薬社製、商品名:アミラジンD)2.0g/L、水酸化ナトリウム1.0g/Lの割合で含有する処理液を用いて、浴比1:20で80℃下20分間の還元洗浄を実施し、水洗後に乾燥することにより染色原綿を得た。
 (10)耐光試験前後における染色繊維の強度保持率(耐光性)
 上記した「染着率」を求めるための染色方法と同一の方法で染色した染色繊維をホルダーに巻き付け、キセノンアークフェードメーターにて63℃40時間照射した。光照射繊維および未照射繊維について、上記の染色前繊維(原繊維)についての破断強度の測定方法と同一の方法により、破断強度の測定をそれぞれ実施し、光照射後の染色繊維の強度保持率を求めた。
 <実施例1>
 [紡糸液調製工程]
 特公昭47-10863号公報記載の方法に準じた界面重合法により製造した、固有粘度(I.V.)が1.9のポリメタフェニレンイソフタルアミド粉末20.0質量部を、-10℃に冷却したN-メチル-2-ピロリドン(NMP)80.0質量部中に懸濁させ、スラリー状にした。引き続き、懸濁液を60℃まで昇温して溶解させ、透明なポリマー溶液を得た。
 該ポリマー溶液に、ポリマー対比1.0質量%の2-[2H-ベンゾトリアゾール-2-イル]-4-6-ビス(1-メチル-1-フェニルエチル)フェノール粉末(水への溶解度:0.01mg/L)を混合溶解させ、減圧脱法して紡糸液(紡糸ドープ)とした。
 [紡糸・凝固工程]
 上記紡糸ドープを、孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/NMP=45/55(質量部)であり、凝固浴中に糸速7m/分で吐出して紡糸した。
 [可塑延伸浴延伸工程]
 引き続き、温度40℃の水/NMP=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
 [洗浄工程]
 延伸後、20℃の水/NMP=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
 [乾熱処理工程]
 洗浄後の繊維について、表面温度280℃の熱ローラーにて乾熱処理を施し、メタ型全芳香族アラミド繊維を得た。
 [染色前繊維(原繊維)の物性]
 得られた染色前繊維(原繊維)の物性は、繊度1.7dtex、破断強度2.9cN/dtex、破断伸度52.0%、残存溶媒量0.08質量%であり、良好な力学特性を示した。得られた染色前繊維(原繊維)の物性および構造解析結果を表1に示す。
 [捲縮、カット工程]
 クリンパーを通して得られた繊維に捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、原綿を得た。
 [染色工程1]
 カチオン染料(日本化薬社製、商品名:Kayacryl Blue GSL-ED(B-54))6%owf、酢酸0.3mL/L、硝酸ナトリウム20g/L、キャリヤー剤としてベンジルアルコール70g/L、分散剤として染色助剤(明成化学工業社製、商品名:ディスパーTL)0.5g/Lを含む染色液を用意した。
 得られた原綿につき、原綿と当該染色液の浴比を1:40として、120℃下60分間の染色処理を実施した。染色処理後、ハイドロサルファイト2.0g/L、アミラジンD(第一工業製薬社製、商品名:アミラジンD)2.0g/L、水酸化ナトリウム1.0g/Lの割合で含有する処理液を用いて、浴比1:20で80℃下20分間の還元洗浄を実施し、水洗後に乾燥することにより染色綿を得た。
 [染色綿等の物性]
 染色綿の染着率は91.2%であり、良好な染色性を示した。また、染色綿の破断強度は2.9cN/dtex、耐酸性テストを実施した後の染色綿の破断強度は1.8cN/dtexであり、硫酸水溶液浸漬前後(耐酸性テスト前後)の強度保持率は62%と良好な耐酸性を示した。また、耐光試験前後の強度保持率は80%であった。結果を表1に示す。
 [染色工程2]
 染料を用いず、酢酸0.3mL/L、硝酸ナトリウム20g/L、キャリヤー剤としてベンジルアルコール70g/L、分散剤として染色助剤(明成化学工業社製、商品名:ディスパーTL)0.5g/Lを含む染色液を用意した。
 得られた原綿につき、原綿と当該染色液の浴比を1:40として、120℃下60分間の染色処理を実施した。染色処理後、ハイドロサルファイト2.0g/L、アミラジンD(第一工業製薬社製、商品名:アミラジンD)2.0g/L、水酸化ナトリウム1.0g/Lの割合で含有する処理液を用いて、浴比1:20で80℃下20分間の還元洗浄を実施し、水洗後に乾燥することにより染色綿を得た。
 [耐光性保持率]
 得られた原綿のキャリヤー染色前後の耐光性保持率は、95%であった。結果を表1に示す。
 <実施例2>
 [紡糸液調製工程]
 撹拌装置および原料投入口を備えた反応容器に、N-メチル-2-ピロリドン(以下、NMPと略す)854.8部を入れ、このNMP中にメタフェニレンジアミン(以下、MPDAと略す)83.4部を溶解した。さらに、該溶液にイソフタル酸クロライド(以下、IPCと略す)156.9部を撹拌しながら徐々に添加し、反応を実施した。反応開始から40分間攪拌を継続した後、水酸化カルシウム粉末を57.1部添加し、さらに40分間撹拌した後に反応を終了させた。反応容器から重合溶液を取り出したところ、重合溶液は透明であり、ポリマー濃度は16%であった。
 該ポリマー溶液に、ポリマー対比3.0質量%の2-[2H-ベンゾトリアゾール-2-イル]-4-6-ビス(1-メチル-1-フェニルエチル)フェノール粉末(水への溶解度:0.01mg/L)を混合溶解させ、減圧脱法して紡糸液(紡糸ドープ)とした。
 [紡糸・凝固工程、可塑延伸浴延伸工程、洗浄工程、乾熱処理工程]
 得られた重合溶液を紡糸原液とし、可塑延伸浴中延伸倍率を3.7倍、乾熱処理工程の表面温度310℃とした以外は、実施例1と同様にしてポリメタフェニレンイソフタルアミド繊維を得た。
 [染色前繊維(原繊維)の物性]
 得られた繊維の物性は、繊度1.7dtex、破断強度2.7cN/dtex、破断伸度50.0%、残存溶媒量0.08質量%であった。得られた繊維の物性および構造解析結果を表1に示す。
 [捲縮、カット工程]
 得られた繊維に対し、実施例1と同様に捲縮、カットを実施した。
 [染色工程1]
 得られた原綿に対し、実施例1と同様に染色工程1を実施した。
 [染色綿等の物性]
 染着率は92.4%であり、良好な染色性を示した。また、染色綿の破断強度は2.7cN/dtex、耐酸性テストを実施した後の染色綿の破断強度は2.3cN/dtexであり、硫酸水溶液浸漬前後(耐酸性テスト前後)の強度保持率は67%と良好な耐酸性を示した。また、耐光試験前後の強度保持率は85%であった。結果を表1に示す。
 [染色工程2]
 得られた原綿に対し、実施例1と同様に染色工程2を実施した。
 [耐光性保持率]
 得られた原綿のキャリヤー染色前後の耐光性保持率は、89%であった。結果を表1に示す。
 <実施例3>
 [染色前繊維(原繊維)の製造]
 2-[2H-ベンゾトリアゾール-2-イル]-4-6-ビス(1-メチル-1-フェニルエチル)フェノール(水への溶解度:0.01mg/L)の添加量をポリマー対比5.0質量%とした以外は、実施例2と同様にしてポリメタフェニレンイソフタルアミド繊維を得た。
 [染色前繊維(原繊維)の物性]
 得られた繊維の物性は、繊度1.7dtex、破断強度2.6cN/dtex、破断伸度47.8%、残存溶媒量0.07質量%であった。得られた繊維の物性および構造解析結果を表1に示す。
 [捲縮、カット工程]
 得られた繊維に対し、実施例1と同様に捲縮、カットを実施した。
 [染色工程1]
 得られた繊維に対し、実施例1と同様に染色工程を実施した。
 [染色綿等の物性]
 染着率は91.0%であり、良好な染色性を示した。また、染色綿の破断強度は2.6cN/dtex、耐酸性テストを実施した後の染色綿の破断強度は1.9cN/dtexであり、硫酸水溶液浸漬前後(耐酸性テスト前後)の強度保持率は73%と良好な耐酸性を示した。また、耐光試験前後の強度保持率は89%であった。結果を表1に示す。
 [染色工程2]
 得られた原綿に対し、実施例1と同様に染色工程2を実施した。
 [耐光性保持率]
 得られた原綿のキャリヤー染色前後の耐光性保持率は、91%であった。結果を表1に示す。
 <実施例4>
 [染色前繊維(原繊維)の製造]
 2-[2H-ベンゾトリアゾール-2-イル]-4-6-ビス(1-メチル-1-フェニルエチル)フェノール(水への溶解度:0.01mg/L)の添加量をポリマー対比6.5質量%とした以外は、実施例2と同様にしてポリメタフェニレンイソフタルアミド繊維を得た。
 [染色前繊維(原繊維)の物性]
 得られた繊維の物性は、繊度1.7dtex、破断強度2.5cN/dtex、破断伸度44.3%、残存溶媒量0.08質量%であった。得られた繊維の物性および構造解析結果を表1に示す。
 [捲縮、カット工程]
 得られた繊維に対し、実施例1と同様に捲縮、カットを実施した。
 [染色工程1]
 得られた繊維に対し、実施例1と同様に染色工程を実施した。
 [染色綿等の物性]
 染着率は91.5%であり、良好な染色性を示した。また、染色綿の破断強度は2.5cN/dtex、耐酸性テストを実施した後の染色綿の破断強度は1.8cN/dtexであり、硫酸水溶液浸漬前後(耐酸性テスト前後)の強度保持率は72%と良好な耐酸性を示した。また、耐光試験前後の強度保持率は90%であった。結果を表1に示す。
 [染色工程2]
 得られた原綿に対し、実施例1と同様に染色工程2を実施した。
 [耐光性保持率]
 得られた原綿のキャリヤー染色前後の耐光性保持率は、93%であった。結果を表1に示す
 <実施例5>
 [染色前繊維(原繊維)の製造]
 2-[2H-ベンゾトリアゾール-2-イル]-4-6-ビス(1-メチル-1-フェニルエチル)フェノール(水への溶解度:0.01mg/L)の添加量をポリマー対比8.0質量%とした以外は、実施例2と同様にしてポリメタフェニレンイソフタルアミド繊維を得た。
 [染色前繊維(原繊維)の物性]
 得られた繊維の物性は、繊度1.7dtex、破断強度2.3cN/dtex、破断伸度33.1%、残存溶媒量0.08質量%であった。得られた繊維の物性および構造解析結果を表1に示す。
 [捲縮、カット工程]
 得られた繊維に対し、実施例1と同様に捲縮、カットを実施した。
 [染色工程1]
 得られた繊維に対し、実施例1と同様に染色工程を実施した。
 [染色綿等の物性]
 染着率は93.4%であり、良好な染色性を示した。また、染色綿の破断強度は2.3cN/dtex、耐酸性テストを実施した後の染色綿の破断強度は1.5cN/dtexであり、硫酸水溶液浸漬前後(耐酸性テスト前後)の強度保持率は65%と良好な耐酸性を示した。また、耐光試験前後の強度保持率は91%であった。結果を表1に示す。
 [染色工程2]
 得られた原綿に対し、実施例1と同様に染色工程2を実施した。
 [耐光性保持率]
 得られた原綿のキャリヤー染色前後の耐光性保持率は、95%であった。結果を表1に示す
 <比較例1>
 紫外線吸収剤として、親水性の高いメチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート(水への溶解度:0.05mg/L)を用いた以外は、実施例2と同様にしてポリメタフェニレンイソフタルアミド繊維を得た。
 [染色前繊維(原繊維)の物性]
 得られた繊維の物性は、繊度1.7dtex、破断強度2.9cN/dtex、破断伸度49.8%、残存溶媒量0.10質量%であった。得られた繊維の物性および構造解析結果を表1に示す。
 [捲縮、カット工程]
 得られた繊維に対し、実施例1と同様に捲縮、カットを実施した。
 [染色工程1]
 得られた原綿に対し、実施例1と同様に染色工程を実施した。
 [染色繊維等の物性]
 染着率は91.2%であり、良好な染色性を示した。また、染色綿の破断強度は2.9cN/dtex、耐酸性テストを実施した後の染色綿の破断強度は2.2cN/dtexであり、硫酸水溶液浸漬前後(耐酸性テスト前後)の強度保持率は76%と良好な耐酸性を示した。しかしながら、耐光試験前後の強度保持率は66%であった。結果を表1に示す。
 [染色工程2]
 得られた原綿に対し、実施例1と同様に染色工程2を実施した。
 [耐光性保持率]
 得られた原綿のキャリヤー染色前後の耐光性保持率は52%であり、紫外線吸収剤の親水性が高いために、染色中に紫外線吸収剤の溶出が起こっていた。結果を表1に示す。
 <比較例2>
 [染色前繊維(原繊維)の製造]
 ドデシルベンゼンスルホン酸トリブチルベンジルアンモニウム塩をポリマー対比13.0質量%、2-[2H-ベンゾトリアゾール-2-イル]-4-6-ビス(1-メチル-1-フェニルエチル)フェノール(水への溶解度:0.01mg/L)をポリマー対比5.0質量%、大八化学(株)製非ハロゲン化芳香族燐酸エステル(CR741)ポリマー対比7.5質量%含むノンキャリヤー染色が可能なメタ型全芳香族ポリアミド繊維を、特開平8-81827号公報記載の方法に準じて作成した。
 [染色前繊維(原繊維)の物性]
 得られた染色前繊維(原繊維)の物性は、繊度1.9dtex、破断強度3.4cN/dtex、破断伸度51.1%、残存溶媒量1.70質量%であった。得られた染色前繊維(原繊維)の物性および構造解析結果を表1に示す。
 [捲縮、カット工程]
 得られた繊維に対し、実施例1と同様に捲縮、カットを実施した。
 [染色工程1]
 得られた原綿に対し、実施例1と同様に染色工程を実施した。
 [染色繊維等の物性]
 染着率は71.3%であり、キャリヤー染色性が不十分であった。染色綿の破断強度は3.4cN/dtex、耐酸性テストを実施した後の染色綿の破断強度は2.0cN/dtexであり、硫酸水溶液浸漬前後(耐酸性テスト前後)の強度保持率は59%と耐酸性も不十分な結果となった。また、耐光試験前後の強度保持率は74%であった。結果を表1に示す。
 [染色工程2]
 得られた原綿に対し、実施例1と同様に染色工程2を実施した。
 [耐光性保持率]
 得られた原綿のキャリヤー染色前後の耐光性保持率は、65%であった。結果を表1に示す。
 <比較例3>
 [紡糸液調製工程]
2-[2H-ベンゾトリアゾール-2-イル]-4-6-ビス(1-メチル-1-フェニルエチル)フェノール粉末を添加しなかった以外は、実施例2と同様に紡糸液を調製した。
 [染色前繊維(原繊維)の製造]
 実施例2と同様の方法で紡糸・凝固、可塑延伸浴延伸、洗浄を行い、洗浄工程直後の未乾燥の湿ったメタ型全芳香族ポリアミド繊維を得た。
 [紫外線遮蔽剤の含浸工程]
 10mLの塩化メチレン中に、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート(水への溶解度:0.05mg/L)を7質量%溶解し、該溶液を0.3gの乳化剤「EMCOL P10-59」を溶解した100mLの水溶液中に攪拌しながら注ぎいれた。塩化メチレンが全量蒸発するまで攪拌し、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-t-ブチル-4-ヒドロキシフェニル)プロピオネート(水への溶解度:0.05mg/L)の水性分散液を作成した。
 次に、採取した未乾燥のメタ型全芳香族ポリアミド繊維を20g水性分散液中に入れ、攪拌しながら室温で1時間保持した。続いて、100mLの水で希釈し、沸点まで加熱し、その温度でさらに1時間保持した。取り出した繊維を水で洗浄し、310℃の熱ローラーで乾熱処理を施した。
 [染色前繊維(原繊維)の物性]
 得られた染色前繊維(原繊維)の物性は、繊度1.7dtex、破断強度2.6cN/dtex、破断伸度47.8%、残存溶媒量0.03質量%であった。得られた染色前繊維(原繊維)の物性および構造解析結果を表1に示す。
 [捲縮、カット工程]
 得られた繊維に対し、実施例1と同様に捲縮、カットを実施した。
 [染色工程1]
 得られた原綿に対し、実施例1と同様に染色工程を実施した。
 [染色繊維等の物性]
 染着率は91.5%であった。染色綿の破断強度は2.6cN/dtex、耐酸性テストを実施した後の染色綿の破断強度は1.9cN/dtexであり、硫酸水溶液浸漬前後(耐酸性テスト前後)の強度保持率は73%であった。しかしながら、耐光試験前後の強度保持率は69%であった。結果を表1に示す。
 [染色工程2]
 得られた原綿に対し、実施例1と同様に染色工程2を実施した。
 [耐光性保持率]
 得られた原綿のキャリヤー染色前後の耐光性保持率は64%であり、紫外線吸収剤が多量に溶出していた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000013
 本発明のメタ型全芳香族ポリアミド繊維は、キャリヤー染色によって多様な色相に染色することができ、かつ、染色時における耐光剤の脱落を抑制できる、耐光性の繊維となる。さらに、日光への長期暴露等、長期の光照射を受けた場合であっても劣化を抑制することができ、その強度を維持することができる。このため、染色性および耐光性が必要とされる分野において、本繊維の工業的価値は極めて大きく、例えば、寝具、衣料、インテリア等の審美性や視覚性を重視する分野において、その有用性は極めて大きい。

Claims (6)

  1.  水への溶解度が0.04mg/L未満である紫外線吸収剤を含み、染色繊維の染着率が90%以上であり、キャリヤー染色前後における耐光性保持率が80%以上であるメタ型全芳香族ポリアミド繊維。
  2.  ラマン配向指数が1.3~2.2であり、結晶化度が5~20%である請求項1記載のメタ型全芳香族ポリアミド繊維。
  3.  キセノンアークフェードメーターにて63℃40時間照射した前後における強度保持率が80%以上である請求項1または2記載のメタ型全芳香族ポリアミド繊維。
  4.  染色前繊維の残存溶媒量が0.1質量%以下であり、50℃の20質量%硫酸水溶液に150時間浸漬した前後における染色繊維の強度保持率が65%以上である請求項1から3いずれか記載のメタ型全芳香族ポリアミド繊維。
  5.  前記紫外線吸収剤の配合量が、繊維質量全体に対して3.0質量部以上6.5質量部以下である請求項1から4いずれか記載のメタ型全芳香族ポリアミド繊維。
  6.  前記紫外線吸収剤が、サリチル酸系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤からなる群から選ばれる少なくとも1種である請求項1から5いずれか記載のメタ全芳香族ポリアミド繊維。
PCT/JP2011/058909 2010-04-14 2011-04-08 メタ型全芳香族ポリアミド繊維 WO2011129279A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP11768800.2A EP2559792B1 (en) 2010-04-14 2011-04-08 Meta-type wholly aromatic polyamide fiber
CA2796362A CA2796362C (en) 2010-04-14 2011-04-08 Meta-type wholly aromatic polyamide fiber
US13/639,033 US9243350B2 (en) 2010-04-14 2011-04-08 Meta-type wholly aromatic polyamide fiber
CN201180018053.0A CN102844478B (zh) 2010-04-14 2011-04-08 间位型全芳香族聚酰胺纤维
RU2012148283/05A RU2550178C2 (ru) 2010-04-14 2011-04-08 Волокно из полностью ароматического полиамида мета-типа
MX2012010832A MX351840B (es) 2010-04-14 2011-04-08 Fibra de poliamida completamente aromatica del tipo meta.
KR1020127029447A KR20130092966A (ko) 2010-04-14 2011-04-08 메타형 전방향족 폴리아미드 섬유
ES11768800.2T ES2640918T3 (es) 2010-04-14 2011-04-08 Fibra de poliamida metatipo completamente aromática
SG2012073342A SG184413A1 (en) 2010-04-14 2011-04-08 Meta-type wholly aromatic polyamide fiber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-093289 2010-04-14
JP2010093289 2010-04-14
JP2011084556A JP4804590B1 (ja) 2010-04-14 2011-04-06 メタ型全芳香族ポリアミド繊維
JP2011-084556 2011-04-06

Publications (1)

Publication Number Publication Date
WO2011129279A1 true WO2011129279A1 (ja) 2011-10-20

Family

ID=44798655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058909 WO2011129279A1 (ja) 2010-04-14 2011-04-08 メタ型全芳香族ポリアミド繊維

Country Status (12)

Country Link
US (1) US9243350B2 (ja)
EP (1) EP2559792B1 (ja)
JP (1) JP4804590B1 (ja)
KR (1) KR20130092966A (ja)
CN (1) CN102844478B (ja)
CA (1) CA2796362C (ja)
ES (1) ES2640918T3 (ja)
MX (1) MX351840B (ja)
RU (1) RU2550178C2 (ja)
SG (1) SG184413A1 (ja)
TW (1) TWI547619B (ja)
WO (1) WO2011129279A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061901A1 (ja) * 2011-10-24 2013-05-02 帝人株式会社 原着メタ型全芳香族ポリアミド繊維
WO2013166086A1 (en) * 2012-05-03 2013-11-07 E. I. Du Pont De Nemours And Company Process for obtaining low residual aramid materials
US20150299905A1 (en) * 2012-12-28 2015-10-22 Teijin Limited Heat-resistant fabric

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6072538B2 (ja) * 2012-12-28 2017-02-01 帝人株式会社 高ピリング性耐熱布帛
JP2014198916A (ja) * 2013-03-29 2014-10-23 帝人株式会社 審美性の高い耐熱布帛
JP6199603B2 (ja) * 2013-05-14 2017-09-20 帝人株式会社 布帛および衣料
KR102070137B1 (ko) * 2013-12-30 2020-01-28 코오롱인더스트리 주식회사 공중합 아라미드 원착사 및 그의 제조방법
BR112016023687A2 (pt) * 2014-04-14 2017-08-15 Teijin Ltd fibra orgânica colorida, pano, peças de vestuário, e, método para produção de um pano
BR112017003977B1 (pt) * 2014-09-03 2022-02-08 Teijin Limited Tecido, e, produto têxtil
WO2017094477A1 (ja) * 2015-12-02 2017-06-08 帝人株式会社 布帛および防護製品
IT201900003707A1 (it) * 2019-03-14 2020-09-14 Futura Spa Calandra per il trattamento di materiali nastriformi.
JP7239382B2 (ja) * 2019-04-22 2023-03-14 帝人株式会社 易染性メタ型全芳香族ポリアミド繊維及びその製造方法
JP7315378B2 (ja) * 2019-05-30 2023-07-26 帝人株式会社 メタ型全芳香族ポリアミド繊維及びその製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975824A (ja) 1972-11-02 1974-07-22
JPS5059522A (ja) 1973-10-01 1975-05-22
JPS53126313A (en) * 1977-04-12 1978-11-04 Teijin Ltd Colored fiber of wholly aromatic polyanide and its production
JPS53126312A (en) * 1977-04-05 1978-11-04 Teijin Ltd Wholly aromatic polyamide fiber with good weathering resistance and its production
JPH05214673A (ja) * 1992-02-04 1993-08-24 Asahi Denka Kogyo Kk 疎水性繊維用紫外線吸収剤
JPH06330409A (ja) * 1993-05-18 1994-11-29 Teijin Ltd 制電性ポリエステル繊維
JPH0881827A (ja) 1994-09-09 1996-03-26 Teijin Ltd 易染性メタ型芳香族ポリアミド繊維
JP2003239136A (ja) 2002-02-12 2003-08-27 Teijin Ltd 高耐光性全芳香族ポリアミド繊維構造物
WO2010035834A1 (ja) * 2008-09-29 2010-04-01 帝人テクノプロダクツ株式会社 易染色性メタ型全芳香族ポリアミド繊維

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779705A (en) 1970-08-14 1973-12-18 Teijin Ltd Process for dyeing fibers or fabrics of aromatic polyamides
JPS5152054Y2 (ja) 1971-03-04 1976-12-13
SU907017A1 (ru) * 1980-02-19 1982-02-23 Предприятие П/Я А-3844 Способ получени волокнообразующего ароматического сополиамида
FR2585356B1 (fr) 1985-07-25 1987-10-23 Roussel Uclaf Nouveaux derives de l'acide 4-oh quinoleine carboxylique substitues en 2 par deux fonctions hydroxyle eventuellement etherifiees ou esterifiees, leurs procedes de preparation, les nouveaux intermediaires obtenus, leur application comme medicaments et les compositions les renfermant
US4710200A (en) 1986-05-14 1987-12-01 Burlington Industries, Inc. Process for the continuous dyeing of poly(m-phenylene-isophthalamide) fibers
US5852087A (en) 1996-02-13 1998-12-22 Teijin Limited Easily dyeable meta-linkage-containing aromatic polyamide fibers
JP5085061B2 (ja) * 2006-06-30 2012-11-28 ポリプラスチックス株式会社 ポリアセタール樹脂組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975824A (ja) 1972-11-02 1974-07-22
JPS5059522A (ja) 1973-10-01 1975-05-22
JPS53126312A (en) * 1977-04-05 1978-11-04 Teijin Ltd Wholly aromatic polyamide fiber with good weathering resistance and its production
JPS53126313A (en) * 1977-04-12 1978-11-04 Teijin Ltd Colored fiber of wholly aromatic polyanide and its production
JPH05214673A (ja) * 1992-02-04 1993-08-24 Asahi Denka Kogyo Kk 疎水性繊維用紫外線吸収剤
JPH06330409A (ja) * 1993-05-18 1994-11-29 Teijin Ltd 制電性ポリエステル繊維
JPH0881827A (ja) 1994-09-09 1996-03-26 Teijin Ltd 易染性メタ型芳香族ポリアミド繊維
JP2003239136A (ja) 2002-02-12 2003-08-27 Teijin Ltd 高耐光性全芳香族ポリアミド繊維構造物
WO2010035834A1 (ja) * 2008-09-29 2010-04-01 帝人テクノプロダクツ株式会社 易染色性メタ型全芳香族ポリアミド繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2559792A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061901A1 (ja) * 2011-10-24 2013-05-02 帝人株式会社 原着メタ型全芳香族ポリアミド繊維
CN103906868A (zh) * 2011-10-24 2014-07-02 帝人株式会社 原液染色间位型全芳香族聚酰胺纤维
EP2772571A1 (en) * 2011-10-24 2014-09-03 Teijin Limited Spun-dyed meta-type fully aromatic polyamide fiber
EP2772571A4 (en) * 2011-10-24 2015-03-25 Teijin Ltd TOTALLY AROMATIC POLYAMIDE FIBER OF META TYPE TINTED IN MASS
JPWO2013061901A1 (ja) * 2011-10-24 2015-04-02 帝人株式会社 原着メタ型全芳香族ポリアミド繊維
RU2609913C2 (ru) * 2011-10-24 2017-02-07 Тейдзин Лимитед Окрашенное в процессе прядения чисто ароматическое полиамидное волокно мета-типа
TWI586855B (zh) * 2011-10-24 2017-06-11 Teijin Ltd Dope dyed meta-type wholly aromatic polyamide fiber
WO2013166086A1 (en) * 2012-05-03 2013-11-07 E. I. Du Pont De Nemours And Company Process for obtaining low residual aramid materials
US9580863B2 (en) 2012-05-03 2017-02-28 E I Du Pont De Nemours And Company Process for obtaining low residual aramid materials
US20150299905A1 (en) * 2012-12-28 2015-10-22 Teijin Limited Heat-resistant fabric

Also Published As

Publication number Publication date
CN102844478A (zh) 2012-12-26
EP2559792A1 (en) 2013-02-20
CA2796362C (en) 2017-10-24
CA2796362A1 (en) 2011-10-20
MX351840B (es) 2017-10-31
EP2559792B1 (en) 2017-07-26
EP2559792A4 (en) 2013-10-09
US20130023610A1 (en) 2013-01-24
CN102844478B (zh) 2014-07-02
MX2012010832A (es) 2012-11-12
JP2011236543A (ja) 2011-11-24
ES2640918T3 (es) 2017-11-07
SG184413A1 (en) 2012-11-29
TW201202508A (en) 2012-01-16
RU2012148283A (ru) 2014-05-20
TWI547619B (zh) 2016-09-01
KR20130092966A (ko) 2013-08-21
RU2550178C2 (ru) 2015-05-10
JP4804590B1 (ja) 2011-11-02
US9243350B2 (en) 2016-01-26

Similar Documents

Publication Publication Date Title
JP4804590B1 (ja) メタ型全芳香族ポリアミド繊維
JP4647680B2 (ja) 易染色性メタ型全芳香族ポリアミド繊維
JP5852127B2 (ja) 原着メタ型全芳香族ポリアミド繊維
JP2009120976A (ja) 易染色性メタ型全芳香族ポリアミド繊維
JP2012052249A (ja) 複合紡績糸
JP4266678B2 (ja) 易染性メタ型全芳香族ポリアミド繊維の製造方法
JP2011202326A (ja) 易染色性メタ型全芳香族ポリアミド短繊維を含む繊維構造体
JP2013133569A (ja) 原着メタ型全芳香族ポリアミド紡績糸
JP2012154002A (ja) メタ型全芳香族ポリアミド繊維布帛
JP2020117831A (ja) 易染性メタ型全芳香族ポリアミド繊維及びその製造方法
JP7239382B2 (ja) 易染性メタ型全芳香族ポリアミド繊維及びその製造方法
JP2012052250A (ja) メタ型全芳香族ポリアミド繊維を含む牽切紡績糸
JP2019039097A (ja) 淡色原着メタ型全芳香族ポリアミド繊維及びその製造方法
JP7372118B2 (ja) 易染色性メタ型全芳香族ポリアミド繊維、およびその製造方法
JP2015042790A (ja) 原着メタ型全芳香族ポリアミド牽切紡績糸
JP7466054B2 (ja) 原着メタ型全芳香族ポリアミド繊維及びその製造方法
JP2012154003A (ja) 紡績糸
JP2023144211A (ja) 原着メタ型全芳香族ポリアミド繊維及びその製造方法
JP6523026B2 (ja) 黒色メタ型全芳香族ポリアミド繊維
JP2010261132A (ja) メタ型全芳香族ポリアミド繊維を含む易染色性布帛
JP2012152451A (ja) 積層防護服
JP2013133568A (ja) 原着メタ型全芳香族ポリアミド繊維布帛

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018053.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768800

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/010832

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 13639033

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2796362

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 8855/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1201005419

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011768800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011768800

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127029447

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012148283

Country of ref document: RU

Kind code of ref document: A