WO2011128140A2 - Batterie mit integriertem pulswechselrichter - Google Patents

Batterie mit integriertem pulswechselrichter Download PDF

Info

Publication number
WO2011128140A2
WO2011128140A2 PCT/EP2011/052410 EP2011052410W WO2011128140A2 WO 2011128140 A2 WO2011128140 A2 WO 2011128140A2 EP 2011052410 W EP2011052410 W EP 2011052410W WO 2011128140 A2 WO2011128140 A2 WO 2011128140A2
Authority
WO
WIPO (PCT)
Prior art keywords
battery
pulse inverter
outputs
positive
pole
Prior art date
Application number
PCT/EP2011/052410
Other languages
English (en)
French (fr)
Other versions
WO2011128140A3 (de
Inventor
Stefan Butzmann
Holger Fink
Original Assignee
Sb Limotive Company Ltd.
Sb Limotive Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sb Limotive Company Ltd., Sb Limotive Germany Gmbh filed Critical Sb Limotive Company Ltd.
Priority to CN201180019269.9A priority Critical patent/CN102844221B/zh
Priority to EP11707118A priority patent/EP2558328A2/de
Priority to US13/641,456 priority patent/US20130200694A1/en
Priority to KR1020127029980A priority patent/KR101451855B1/ko
Publication of WO2011128140A2 publication Critical patent/WO2011128140A2/de
Publication of WO2011128140A3 publication Critical patent/WO2011128140A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery with integrated pulse inverter and an electric motor vehicle with such a battery.
  • Battery systems will be used. In order to meet the voltage and available power requirements of a particular application, a large number of battery cells are connected in series. Since the power provided by such a battery must flow through all the battery cells and a battery cell can only conduct a limited current, battery cells are often additionally connected in parallel in order to increase the maximum current. This can be done either by providing multiple cell wraps within a battery cell housing or by externally interconnecting battery cells. It is, however,
  • FIG. 1 The schematic diagram of a conventional electric drive system, as used for example in electric and hybrid vehicles or in stationary applications such as in the rotor blade adjustment of wind turbines is shown in Fig. 1.
  • a battery 10 is connected to a
  • Capacitor 1 1 is buffered.
  • a pulse inverter 12 which in each case via two switchable semiconductor valves and two diodes at three outputs against each other
  • the capacitance of the capacitor 1 1 must be large enough to the voltage in the DC link for a
  • FIG. 2 shows the battery 10 of FIG. 1 in a more detailed block diagram.
  • a variety of battery cells are in series as well as optional in addition
  • a charging and disconnecting device 16 is connected between the positive pole of the battery cells and a positive battery terminal 14.
  • a charging and disconnecting device 16 is connected between the positive pole of the battery cells and a positive battery terminal 14.
  • a separating device 17 can additionally be connected between the negative pole of the battery cells and a negative battery terminal 15.
  • the separating and charging device 16 and the separating device 17 each include a contactor 18 and 19, respectively, which are provided to disconnect the battery cells from the battery terminals in order to disconnect the battery terminals from voltage. Because of the high
  • a charging contactor 20 with a charging resistor 20 connected in series with the charging contactor 20 is provided in the charging and disconnecting device 16.
  • the charging resistor 21 limits a charging current for the capacitor 1 1 when the battery is connected to the DC link.
  • the contactor 18 is initially left open and only the charging contactor 20 is closed.
  • the contactor 19 can be closed and
  • the charging contactor 20 are opened.
  • the contactors 18, 19 and the charging contactor 20 increase the cost of a battery 10 is not insignificant, since high demands are placed on their reliability and the currents to be led by them. Disclosure of the invention
  • the battery comprises a pulse inverter, which is integrated in the battery and has at least one first and one second input and at least one output.
  • a pulse inverter which is integrated in the battery and has at least one first and one second input and at least one output.
  • Pulse inverter connected to the positive battery pole or the negative battery pole.
  • the invention thus counteracts a trend to integrate the pulse inverter in the electric drive motor and so let the drive motor appear from the outside as a DC motor, which directly with a
  • Buffer capacitor and a battery can be connected.
  • the integration of the pulse inverter into the battery has the advantage that the contactors provided in the prior art can be omitted, because the high DC voltage of the battery cell string is no longer accessible from outside the battery. Instead of opening the contactors according to the prior art, the output of the pulse inverter can simply be switched to high impedance, whereby without additional components of the output of
  • Pulse inverter is connected, a possibly existing
  • Buffer capacitor basically have the voltage of the battery cell string, so that even the charging contactor can be omitted. If such a buffer capacitor is provided, it preferably has a first capacitor terminal connected to the positive battery pole and a second capacitor terminal connected to the negative battery pole and is likewise integrated in the battery.
  • the pulse inverter may have n outputs, where n is a natural number greater than 1.
  • the pulse inverter is formed at each of Outputs to generate and output a phase-shifted with respect to the other outputs sinusoidal voltage.
  • the number n is preferably 3, in order to provide a suitable interface to those customary in the art
  • the battery can have n battery cell strings, the pulse inverter having n pairs of inputs, of which in each case one pair with the positive or negative battery pole of an associated one of the n
  • Battery cell strands is connected. Instead of a single battery cell string and DC intermediate circuit thus resulting as many
  • DC voltage intermediate circuits, as outputs of the pulse inverter are provided.
  • buffer capacitors can be smaller or completely eliminated.
  • the capacity of the battery is divided into several independent battery cell strings, whereby it is no longer compensating currents between the otherwise parallel
  • the pulse inverter can n first semiconductor valves and n second
  • the battery may also comprise 2 * n diodes, one of which is connected in antiparallel to one of the n first or n second semiconductor valves.
  • Such pulse inverters can, for example, in a known manner by
  • Pulse width modulation can be controlled.
  • the battery may include a cooling device configured to cool both the battery cells and the pulse inverter.
  • Pulse inverter is integrated into the battery, eliminating the additional expense for the cooling of each pulse inverter and battery cells.
  • Control units for the battery (cell balancing, loading and unloading,
  • the battery cells are lithium-ion battery cells.
  • Lithium-ion battery cells have the advantages of a high cell voltage and a particularly high capacity per volume.
  • a second aspect of the invention relates to a motor vehicle with an electric drive motor for driving the motor vehicle and one with the
  • Figure 1 shows an electrical drive system according to the prior art
  • Figure 2 is a block diagram of a battery according to the prior art
  • Figure 3 shows a first embodiment of the invention
  • Figure 4 shows a second embodiment of the invention.
  • FIG. 3 shows a first embodiment of the invention.
  • a battery string 31 a buffer capacitor 32 and a pulse inverter 33 are integrated, with any contactors for separating the positive and negative pole of the battery string are omitted.
  • the pulse inverter 33 is advantageously designed to switch all its outputs high impedance, if
  • the battery 30 exchanged and thus from one to the
  • Pulse inverter 33 connected drive motor or the like to be separated. In this way, the battery 30 is completely free of voltage from the outside, so that there is no danger potential.
  • FIG 4 shows a second embodiment of the invention.
  • the battery 40 has a plurality of battery strings, in the example shown three battery strings 41 -1, 41 -2, 41 -3.
  • the battery 40 could also have two or more than three battery strings.
  • the number of three battery strings is advantageous because it standardizes the simple connection of the battery 40
  • the pulse inverter 43 here dissects into as many parts 43-1, 43-2, 43-3 as battery strings 41 -1, 41 -2, 41 -3 are provided. In each case one of the parts 43-1, 43-2, 43-3 is connected to a battery string 41 -1, 41 -2, 41 -3. Due to the much lower load of each battery string 41 -1, 41 -2, 41 -3 through a portion 43-1, 43-2, 43-3 of the pulse inverter 43 can in the shown
  • each part 43-1, 43-2, 43-3 of the pulse inverter 43 contains two
  • the semiconductor valves are preferably controlled by pulse width modulation by a control unit.
  • pulse width modulation by a control unit.
  • any desired forms of pulse inverters can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Es wird eine Batterie (30, 40) mit wenigstens einem Batteriezellstrang (31, 41 ) beschrieben. Der wenigstens eine Batteriezellstrang (31, 41 ) weist eine Mehrzahl von zwischen einen jeweiligen positiven Batteriepol und einen jeweiligen negativen Batteriepol in Serie geschalteten Batteriezellen auf. Erfindungsgemäß umfasst die Batterie (30, 40) einen Pulswechselrichter (33, 43), welcher in die Batterie (30, 40) integriert ist und wenigstens einen ersten und einen zweiten Eingang sowie mindestens einen Ausgang aufweist, wobei der erste und der zweite Eingang mit dem positiven Batteriepol beziehungsweise dem negativen Batteriepol verbunden sind. Ferner wird ein Kraftfahrzeug mit einem elektrischen Antriebsmotor (13) zum Antreiben des Kraftfahrzeuges und einer mit dem elektrischen Antriebsmotor (13) verbundenen erfindungsgemäßen Batterie (30, 40) vorgeschlagen.

Description

Beschreibung Titel
Batterie mit integriertem Pulswechselrichter
Die vorliegende Erfindung betrifft ein Batterie mit integriertem Pulswechselrichter und ein elektrisches Kraftfahrzeug mit einer solchen Batterie.
Stand der Technik
Es zeichnet sich ab, dass in Zukunft sowohl bei stationären Anwendungen, als auch bei Fahrzeugen wie Hybrid- und Elektrofahrzeugen vermehrt
Batteriesysteme zum Einsatz kommen werden. Um die für eine jeweilige Anwendung gegebenen Anforderungen an Spannung und zur Verfügung stellbaren Leistung erfüllen zu können, werden eine hohe Zahl von Batteriezellen in Serie geschaltet. Da der von einer solchen Batterie bereitgestellte Strom durch alle Batteriezellen fließen muss und eine Batteriezelle nur einen begrenzten Strom leiten kann, werden oft zusätzlich Batteriezellen parallel geschaltet, um den maximalen Strom zu erhöhen. Dies kann entweder durch Vorsehen von mehreren Zellwickeln innerhalb eines Batteriezellengehäuses oder durch externes Verschalten von Batteriezellen geschehen. Dabei ist jedoch
problematisch, dass es aufgrund nicht exakt identischer Zellkapazitäten und - Spannungen zu Ausgleichsströmen zwischen den parallgeschalteten
Batteriezellen kommen kann.
Das Prinzipschaltbild eines üblichen elektrischen Antriebssystems, wie es beispielsweise in Elektro- und Hybrid-Fahrzeugen oder auch in stationären Anwendungen wie bei der Rotorblattverstellung von Windkraftanlagen zum Einsatz kommt, ist in Fig. 1 dargestellt. Eine Batterie 10 ist an einen
Gleichspannungszwischenkreis angeschlossen, welcher durch einen
Kondensator 1 1 gepuffert wird. An den Gleichspannungszwischenkreis angeschlossen ist ein Pulswechselrichter 12, der über jeweils zwei schaltbare Halbleiterventile und zwei Dioden an drei Ausgängen gegeneinander
phasenversetzte Sinusspannungen für den Betrieb eines elektrischen
Antriebsmotors 13 bereitstellt. Die Kapazität des Kondensators 1 1 muss groß genug sein, um die Spannung im Gleichspannungszwischenkreis für eine
Zeitdauer, in der eines der schaltbaren Halbleiterventile durchgeschaltet wird, zu stabilisieren. In einer praktischen Anwendung wie einem Elektrofahrzeug ergibt sich eine hohe Kapazität im Bereich von mF. Wegen der üblicherweise recht hohen Spannung des Gleichspannungszwischenkreises kann eine so große Kapazität nur unter hohen Kosten und mit hohem Raumbedarf realisiert werden.
Fig. 2 zeigt die Batterie 10 der Fig. 1 in einem detaillierteren Blockschaltbild. Eine Vielzahl von Batteriezellen sind in Serie sowie optional zusätzlich
parallelgeschaltet, um eine für eine jeweilige Anwendung gewünschte hohe Ausgangsspannung und Batteriekapazität zu erreichen. Zwischen den Pluspol der Batteriezellen und ein positives Batterieterminal 14 ist eine Lade- und Trenneinrichtung 16 geschaltet. Optional kann zusätzlich zwischen den Minuspol der Batteriezellen und ein negatives Batterieterminal 15 eine Trenneinrichtung 17 geschaltet werden. Die Trenn- und Ladeeinrichtung 16 und die Trenneinrichtung 17 umfassen jeweils einen Schütz 18 beziehungsweise 19, welche dafür vorgesehen sind, die Batteriezellen von den Batterieterminals abzutrennen, um die Batterieterminals spannungsfrei zu schalten. Aufgrund der hohen
Gleichspannung der seriengeschalteten Batteriezellen ist andernfalls erhebliches Gefährdungspotential für Wartungspersonal oder dergleichen gegeben. In der Lade- und Trenneinrichtung 16 ist zusätzlich ein Ladeschütz 20 mit einem zu dem Ladeschütz 20 in Serie geschalteten Ladewiderstand 21 vorgesehen. Der Ladewiderstand 21 begrenzt einen Aufladestrom für den Kondensator 1 1 , wenn die Batterie an den Gleichspannungszwischenkreis angeschlossen wird. Hierzu wird zunächst der Schütz 18 offen gelassen und nur der Ladeschütz 20 geschlossen. Erreicht die Spannung am positiven Batterieterminal 14 die
Spannung der Batteriezellen, kann der Schütz 19 geschlossen und
gegebenenfalls der Ladeschütz 20 geöffnet werden. Die Schütze 18, 19 und der Ladeschütz 20 erhöhen die Kosten für eine Batterie 10 nicht unerheblich, da hohe Anforderungen an ihre Zuverlässigkeit und an die von ihnen zu führenden Ströme gestellt werden. Offenbarung der Erfindung
Erfindungsgemäß wird daher eine Batterie mit wenigstens einem
Batteriezellstrang, welcher eine Mehrzahl von zwischen einen jeweiligen positiven Batteriepol und einen jeweiligen negativen Batteriepol in Serie geschalteten Batteriezellen aufweist, eingeführt. Erfindungsgemäß umfasst die Batterie einen Pulswechselrichter, welcher in die Batterie integriert ist und wenigstens einen ersten und einen zweiten Eingang sowie mindestens einen Ausgang aufweist. Dabei sind der erste und der zweite Eingang des
Pulswechselrichters mit dem positiven Batteriepol beziehungsweise dem negativen Batteriepol verbunden.
Die Erfindung tritt somit einem Trend entgegen, den Pulswechselrichter in den elektrischen Antriebsmotor zu integrieren und so den Antriebsmotor von außen als Gleichstrommotor erscheinen zu lassen, welcher direkt mit einem
Pufferkondensator und einer Batterie verbunden werden kann.
Die Integration des Pulswechselrichters in die Batterie besitzt den Vorteil, dass die im Stand der Technik vorgesehenen Schütze entfallen können, weil die hohe Gleichspannung des Batteriezellstranges nicht mehr von außerhalb der Batterie zugänglich ist. Anstelle des Öffnens der Schütze gemäß dem Stand der Technik kann der Ausgang des Pulswechselrichters einfach hochohmig geschaltet werden, wodurch ohne zusätzliche Komponenten der Ausgang des
Pulswechselrichters und somit alle Ausgänge der Batterie spannungsfrei geschaltet werden. Da der Batteriezellstrang unlösbar mit dem
Pulswechselrichter verbunden ist, wird ein eventuell vorhandener
Pufferkondensator grundsätzlich die Spannung des Batteriezellstranges aufweisen, so dass auch der Ladeschütz entfallen kann. Wird ein solcher Pufferkondensator vorgesehen, so weist dieser vorzugsweise ein mit dem positiven Batteriepol verbundenes erstes Kondensatorterminal und ein mit dem negativen Batteriepol verbundenes zweites Kondensatorterminal auf und ist ebenfalls in die Batterie integriert.
Der Pulswechselrichter kann n Ausgänge aufweisen, wobei n eine natürliche Zahl größer 1 ist. Der Pulswechselrichter ist dabei ausgebildet, an jedem der Ausgänge eine gegenüber den jeweils anderen Ausgängen phasenverschobene Sinusspannung zu erzeugen und auszugeben. Die Zahl n beträgt vorzugsweise 3, um eine geeignete Schnittstelle zu den im Stand der Technik üblichen
Drehfeldmotoren zur Verfügung zu stellen.
Die Batterie kann n Batteriezellstränge aufweisen, wobei der Pulswechselrichter n Paare von Eingängen aufweist, von denen jeweils ein Paar mit dem positiven beziehungsweise negativen Batteriepol eines zugeordneten der n
Batteriezellstränge verbunden ist. Anstelle eines einzigen Batteriezellstranges und Gleichspannungszwischenkreises ergeben sich somit soviele
Gleichspannungszwischenkreise, wie Ausgänge des Pulswechselrichters vorgesehen sind. Dies bietet den Vorteil, dass Pufferkondensatoren kleiner dimensioniert oder vollständig entfallen können. Zudem wird die Kapazität der Batterie auf mehrere unabhängige Batteriezellstränge aufgeteilt, wodurch es nicht mehr zu Ausgleichsströmen zwischen den andernfalls parallelgeschalteten
Batteriezellen oder Batteriezellsträngen kommt.
Der Pulswechselrichter kann n erste Halbleiterventile und n zweite
Halbleiterventile enthalten, wobei jeweils eines der n ersten Halbleiterventile zwischen einen zugeordneten ersten Eingang eines Paares von Eingängen und einen jeweiligen der n Ausgänge und jeweils eines der n zweiten Halbleiterventile zwischen den jeweiligen der n Ausgänge und einen zugeordneten zweiten Eingang des Paares von Eingängen geschaltet sind. Die Batterie kann außerdem 2*n Dioden aufweisen, von denen jeweils eine antiparallel zu einem der n ersten oder n zweiten Halbleiterventile geschaltet ist.
Solche Pulswechselrichter können beispielsweise in bekannter Art durch
Pulsweitenmodulation gesteuert werden.
Die Batterie kann eine Kühlvorrichtung aufweisen, welche ausgebildet ist, sowohl die Batteriezellen als auch den Pulswechselrichter zu kühlen. Indem der
Pulswechselrichter in die Batterie integriert wird, entfällt der zusätzliche Aufwand für die Kühlung von jeweils Pulswechselrichter und Batteriezellen. Hierbei kann vorteilhaft die Kühlung des Pulswechselrichters in Reihe hinter der Kühlung der
Batteriezellen erfolgen, da der Pulswechselrichter höhere Temperaturen erreichen kann als die Batteriezellen, so dass das Kühlmittel nach durchströmen der Batteriezellstränge noch kühl genug ist, um auch den Pulswechselrichter zu kühlen.
Ebenso ist es möglich, den Gesamtaufwand zu reduzieren, indem die
Steuergeräte für die Batterie (Cell-Balancing, Auf- und Entladen,
Ladestandsbestimmung) und den Pulswechselrichter (Ansteuerung der
Halbleiterventile) zusammengefasst werden.
Besonders bevorzugt sind die Batteriezellen Lithium-Ionen-Batteriezellen.
Lithium-Ionen-Batteriezellen besitzen die Vorteile einer hohen Zellspannung und einer besonders hohen Kapazität pro Volumen.
Ein zweiter Erfindungsaspekt betrifft ein Kraftfahrzeug mit einem elektrischen Antriebsmotor zum Antreiben des Kraftfahrzeuges und einer mit dem
elektrischen Antriebsmotor verbundenen Batterie gemäß dem ersten Aspekt der Erfindung.
Zeichnungen
Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Figur 1 ein elektrisches Antriebssystem gemäß dem Stand der Technik, Figur 2 ein Blockschaltbild einer Batterie gemäß dem Stand der Technik, Figur 3 ein erstes Ausführungsbeispiel der Erfindung, und Figur 4 ein zweites Ausführungsbeispiel der Erfindung.
Ausführungsformen der Erfindung Figur 3 zeigt ein erstes Ausführungsbeispiel der Erfindung. In die Batterie 30 sind ein Batteriestrang 31 , ein Pufferkondensator 32 und ein Pulswechselrichter 33 integriert, wobei eventuelle Schütze zum Abtrennen des positiven und negativen Pols des Batteriestranges entfallen sind. Der Pulswechselrichter 33 ist vorteilhaft dazu ausgebildet, alle seine Ausgänge hochohmig zu schalten, wenn
beispielsweise die Batterie 30 ausgetauscht und somit von einem an den
Pulswechselrichter 33 angeschlossenen Antriebsmotor oder dergleichen abgetrennt werden soll. Auf diese Weise ist die Batterie 30 von außen vollständig spannungsfrei, so dass keinerlei Gefährdungspotential gegeben ist.
Figur 4 ein zweites Ausführungsbeispiel der Erfindung. Die Batterie 40 besitzt eine Mehrzahl von Batteriesträngen, im gezeigten Beispiel drei Batteriestränge 41 -1 , 41 -2, 41 -3. Die Batterie 40 könnte aber auch zwei oder mehr als drei Batteriestränge besitzen. Die Zahl von drei Batteriesträngen ist jedoch vorteilhaft, weil sie den einfachen Anschluss der Batterie 40 an standardisierte
Elektromotoren mit drei Phasenanschlüssen erlaubt. Der Pulswechselrichter 43 zergliedert sich hier in ebenso viele Teile 43-1 , 43-2, 43-3, wie Batteriestränge 41 -1 , 41 -2, 41 -3 vorgesehen sind. Jeweils einer der Teile 43-1 , 43-2, 43-3 ist dabei mit einem Batteriestrang 41 -1 , 41 -2, 41 -3 verbunden. Aufgrund der sehr viel geringeren Belastung jedes Batteriestranges 41 -1 , 41 -2, 41 -3 durch einen Teil 43-1 , 43-2, 43-3 des Pulswechselrichters 43 kann in dem gezeigten
Ausführungsbeispiel ein Pufferkondensator entfallen. Im gezeigten Beispiel enthält jeder Teil 43-1 , 43-2, 43-3 des Pulswechselrichters 43 zwei
Halbleiterventile sowie zwei antiparallel zu den Halbleiterventilen geschaltete Dioden. Die Halbleiterventile werden vorzugsweise durch Pulsweitenmodulation von einer Steuereinheit gesteuert. Es können jedoch prinzipiell beliebige Formen von Pulswechselrichtern eingesetzt werden.

Claims

Ansprüche
1 . Eine Batterie (30, 40) mit wenigstens einem Batteriezellstrang (31 , 41 ), welcher eine Mehrzahl von zwischen einen jeweiligen positiven Batteriepol und einen jeweiligen negativen Batteriepol in Serie geschalteten
Batteriezellen aufweist, gekennzeichnet durch einen Pulswechselrichter (33, 43), welcher in die Batterie (30, 40) integriert ist und wenigstens einen ersten und einen zweiten Eingang sowie mindestens einen Ausgang aufweist, wobei der erste und der zweite Eingang mit dem positiven Batteriepol beziehungsweise dem negativen Batteriepol verbunden sind.
2. Die Batterie (30) gemäß Anspruch 1 , mit einem Pufferkondensator (32), welcher ein mit dem positiven Batteriepol verbundenes erstes
Kondensatorterminal und ein mit dem negativen Batteriepol verbundenes zweites Kondensatorterminal aufweist und in die Batterie (30) integriert ist.
3. Die Batterie (30, 40) gemäß einem der Ansprüche 1 oder 2, bei der der Pulswechselrichter (33, 43) n Ausgänge aufweist, wobei n eine natürliche Zahl größer 1 ist, und bei der der Pulswechselrichter (33, 43) ausgebildet ist, an jedem der Ausgänge eine gegenüber den jeweils anderen Ausgängen phasenverschobene Sinusspannung zu erzeugen und auszugeben.
4. Die Batterie (40) gemäß Anspruch 3, mit n Batteriezellsträngen (41 ), wobei der Pulswechselrichter (43) n Paare von Eingängen aufweist, von denen jeweils ein Paar mit dem positiven beziehungsweise negativen Batteriepol eines zugeordneten der n Batteriezellstränge (41 ) verbunden ist.
5. Die Batterie (40) gemäß Anspruch 4, bei der der Pulswechselrichter (43) n erste Halbleiterventile und n zweite Halbleiterventile enthält, wobei jeweils eines der n ersten Halbleiterventile zwischen einen zugeordneten ersten Eingang eines Paares von Eingängen und einen jeweiligen der n Ausgänge und jeweils eines der n zweiten Halbleiterventile zwischen den jeweiligen der n Ausgänge und einen zugeordneten zweiten Eingang des Paares von Eingängen geschaltet sind.
Die Batterie (40) gemäß Anspruch 5, mit 2*n Dioden, von denen jeweils eine antiparallel zu einem der n ersten oder n zweiten Halbleiterventile geschaltet ist.
Die Batterie (40) gemäß einem der Ansprüche 3 bis 6, bei der n gleich drei ist.
Die Batterie (30, 40) gemäß einem der vorhergehenden Ansprüche, mit einer Kühlvorrichtung, welche ausgebildet ist, sowohl die Batteriezellen als auch den Pulswechselrichter (33, 43) zu kühlen.
Die Batterie (30, 40) gemäß einem der vorhergehenden Ansprüche, bei der die Batteriezellen Lithium-Ionen-Batteriezellen sind.
Ein Kraftfahrzeug mit einem elektrischen Antriebsmotor (13) zum
Antreiben des Kraftfahrzeuges und einer mit dem elektrischen Antriebsmotor (13) verbundenen Batterie (30, 40) gemäß einem der vorhergehenden Ansprüche.
PCT/EP2011/052410 2010-04-16 2011-02-18 Batterie mit integriertem pulswechselrichter WO2011128140A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180019269.9A CN102844221B (zh) 2010-04-16 2011-02-18 具有集成的脉冲逆变器的蓄电池
EP11707118A EP2558328A2 (de) 2010-04-16 2011-02-18 Batterie mit integriertem pulswechselrichter
US13/641,456 US20130200694A1 (en) 2010-04-16 2011-02-18 Battery comprising an Integrated Pulse Width Modulation Inverter
KR1020127029980A KR101451855B1 (ko) 2010-04-16 2011-02-18 집적화된 펄스 폭 변조 인버터를 포함하는 배터리

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010027856.4 2010-04-16
DE102010027856.4A DE102010027856B4 (de) 2010-04-16 2010-04-16 Batterie mit integriertem Pulswechselrichter

Publications (2)

Publication Number Publication Date
WO2011128140A2 true WO2011128140A2 (de) 2011-10-20
WO2011128140A3 WO2011128140A3 (de) 2011-12-08

Family

ID=44625319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/052410 WO2011128140A2 (de) 2010-04-16 2011-02-18 Batterie mit integriertem pulswechselrichter

Country Status (6)

Country Link
US (1) US20130200694A1 (de)
EP (1) EP2558328A2 (de)
KR (1) KR101451855B1 (de)
CN (1) CN102844221B (de)
DE (1) DE102010027856B4 (de)
WO (1) WO2011128140A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9434261B2 (en) 2011-10-17 2016-09-06 Robert Bosch Gmbh Welded contactor checking systems and methods
WO2013066867A2 (en) * 2011-10-31 2013-05-10 Cobasys, Llc Parallel configuration of series cells with semiconductor switching
DE102012210602A1 (de) 2012-06-22 2013-12-24 Robert Bosch Gmbh Batterie mit mindestens einer halbleiterbasierten Trenneinrichtung
DE102013204507A1 (de) * 2013-03-15 2014-10-02 Robert Bosch Gmbh Elektrisch eigensicheres Batteriemodul mit umpolbarer Ausgangsspannung und Verfahren zur Überwachung eines Batteriemoduls

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146149A (en) * 1985-12-05 1992-09-08 Nilssen Ole K Automotive-type storage battery with built-in charger
US4920475A (en) * 1988-03-07 1990-04-24 California Institute Of Technology Integrated traction inverter and battery charger apparatus
US5315533A (en) * 1991-05-17 1994-05-24 Best Power Technology, Inc. Back-up uninterruptible power system
JP3250354B2 (ja) * 1993-12-24 2002-01-28 オムロン株式会社 電源装置
JPH0888908A (ja) * 1994-09-14 1996-04-02 Hitachi Ltd 電気車用充電装置
JP3346910B2 (ja) * 1994-10-03 2002-11-18 本田技研工業株式会社 電動車両用電源装置
US5642275A (en) * 1995-09-14 1997-06-24 Lockheed Martin Energy System, Inc. Multilevel cascade voltage source inverter with seperate DC sources
DE29909348U1 (de) * 1999-05-28 1999-08-12 Hauck, Erich, Dipl.-Ing., 76287 Rheinstetten Tragbarer 12 VDC / 230 VAC Batterie-Energiespeicher mit integriertem Wechselrichter und Wiederaufladeregeleinrichtung für Solar- und Windgeneratoren
JP2001037247A (ja) * 1999-07-19 2001-02-09 Toyota Motor Corp 電源装置、この電源装置を備えた機器およびモータ駆動装置並びに電動車輌
US6303247B1 (en) * 2000-01-28 2001-10-16 Delphi Technologies, Inc. Battery cover having recessed attachment feature
JP3652634B2 (ja) * 2001-10-05 2005-05-25 本田技研工業株式会社 高圧電装部品の冷却構造
EP1391961B1 (de) * 2002-08-19 2006-03-29 Luxon Energy Devices Corporation Batterie mit eingebautem Lastverteilungs-System
JP3867060B2 (ja) 2003-03-28 2007-01-10 三菱電機株式会社 車両用電源システム
JP2006344447A (ja) * 2005-06-08 2006-12-21 Kokusan Denki Co Ltd 車載用バッテリ・電気ユニット組合せ構造体
JP4826214B2 (ja) 2005-11-04 2011-11-30 日産自動車株式会社 駆動システム
CN2871284Y (zh) * 2006-03-01 2007-02-21 上海御能动力科技有限公司 双逆变器推挽式电机驱动系统
JP4434181B2 (ja) 2006-07-21 2010-03-17 株式会社日立製作所 電力変換装置
US7847437B2 (en) * 2007-07-30 2010-12-07 Gm Global Technology Operations, Inc. Efficient operating point for double-ended inverter system
JP4283326B1 (ja) * 2007-12-25 2009-06-24 本田技研工業株式会社 バッテリの冷却風取入構造
US20090181291A1 (en) * 2008-01-11 2009-07-16 Lewis Ii Lucian R Surgical Instrument With Lithium Ion Energy Source Including Phosphates
JP5193660B2 (ja) * 2008-04-03 2013-05-08 株式会社日立製作所 電池モジュール及びそれを備えた蓄電装置並びに電機システム
US7800247B2 (en) * 2008-05-30 2010-09-21 Chun-Chieh Chang Storage system that maximizes the utilization of renewable energy
US8080973B2 (en) * 2008-10-22 2011-12-20 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
KR101451855B1 (ko) 2014-10-16
KR20130010011A (ko) 2013-01-24
WO2011128140A3 (de) 2011-12-08
CN102844221B (zh) 2015-09-30
DE102010027856B4 (de) 2023-12-14
US20130200694A1 (en) 2013-08-08
DE102010027856A1 (de) 2011-10-20
CN102844221A (zh) 2012-12-26
EP2558328A2 (de) 2013-02-20

Similar Documents

Publication Publication Date Title
EP2559137B1 (de) Koppeleinheit und batteriemodul mit integriertem pulswechselrichter und im betrieb austauschbaren zellmodulen
EP2559132B1 (de) Koppeleinheit und batteriemodul mit integriertem pulswechselrichter und erhöhter zuverlässigkeit
EP2559136B1 (de) Batterie mit variabler ausgangsspannung
EP2619027B1 (de) Batteriesystem mit variabel einstellbarer zwischenkreisspannung
EP2559094B1 (de) Batterie mit cell-balancing
EP2705564B1 (de) Verfahren zur steuerung einer batterie sowie eine batterie zur ausführung des verfahrens
EP2619839B1 (de) Verfahren zum einstellen einer gleichspannungszwischenkreisspannung
DE102010041001A1 (de) Batterie mit integriertem DC/AC-Umsetzer
DE102010038880A1 (de) Energiewandler zum Ausgeben elektrischer Energie
WO2012152586A2 (de) Batterie mit wenigstens einem batteriemodulstrang
DE102010041024A1 (de) Verfahren zum Austausch von Batteriezellen während des Betriebes
DE102010041029A1 (de) Verfahren zur Inbetriebnahme eines Batteriesystems mit einem Gleichspannungszwischenkreis
WO2012152578A2 (de) Antriebseinheit für einen elektrischen motor
DE102010027856B4 (de) Batterie mit integriertem Pulswechselrichter
EP2619840B1 (de) Verfahren zur inbetriebnahme eines batteriesystems mit einem gleichspannungszwischenkreis
DE102010042718A1 (de) Verfahren zur Steuerung einer Batterie mit variabler Ausgangsspannung
EP2559083B1 (de) Batterie mit einer mehrzahl von unabhängigen batteriezellsträngen
WO2012079822A1 (de) Koppeleinheit und batteriemodul mit einer solchen koppeleinheit
DE102011075384A1 (de) Batteriedoppelmodul
DE102010038866A1 (de) Energiewandler zum Ausgeben elektrischer Energie
DE102011082650A1 (de) Trennvorrichtung für eine Batterie

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019269.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11707118

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2011707118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011707118

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127029980

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13641456

Country of ref document: US