WO2011126049A1 - Comparator, differential amplifier circuit, and analog/digital converter - Google Patents

Comparator, differential amplifier circuit, and analog/digital converter Download PDF

Info

Publication number
WO2011126049A1
WO2011126049A1 PCT/JP2011/058723 JP2011058723W WO2011126049A1 WO 2011126049 A1 WO2011126049 A1 WO 2011126049A1 JP 2011058723 W JP2011058723 W JP 2011058723W WO 2011126049 A1 WO2011126049 A1 WO 2011126049A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
period
voltage
comparison reference
input signal
Prior art date
Application number
PCT/JP2011/058723
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 大畠
喜市 山下
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to JP2012509685A priority Critical patent/JP5439590B2/en
Publication of WO2011126049A1 publication Critical patent/WO2011126049A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/45968Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by offset reduction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45212Indexing scheme relating to differential amplifiers the differential amplifier being designed to have a reduced offset

Definitions

  • the present invention relates to an analog / digital converter (AD converter) and a comparator suitable for use in an AD converter.
  • AD converter analog / digital converter
  • a parallel analog-to-digital converter can perform AD conversion at high speed by operating a comparator in parallel and performing a comparison between an analog input signal and a plurality of comparison reference voltages in parallel. Is possible.
  • n-bit parallel AD converter all-bit flash AD converter
  • (2 n ⁇ 1) comparators are required. Due to the large number of comparators, the parallel AD converter has a problem of high power consumption.
  • the comparator used in the AD converter includes a preamplifier unit that amplifies the difference between the analog input signal and the comparison reference voltage, and a latch unit that determines the sign of the output of the preamplifier unit.
  • the power consumption in the preamplifier section occupies most of the power consumption in the entire comparator.
  • a normal preamplifier unit requires a bias current source for biasing a transistor included in the preamplifier unit, and power is always consumed, so that it is difficult to reduce power consumption.
  • a steering (CS) amplifier has been proposed (for example, see Non-Patent Document 1).
  • the CS amplifier uses a charge source CS instead of a conventionally used current source and a load capacitance CL instead of a load resistance.
  • the CS amplifier sets the signal ⁇ to a high level (“H”, for example, 5 V) and the signal / ⁇ to a low level (“L”, for example, 0 V) in the reset period.
  • the CS amplifier sets the signal ⁇ to “L” and the signal / ⁇ to “H” during the amplification period. In this way, the CS amplifier performs amplification by moving the charge stored in the charge source CS to the load capacitor CL.
  • the CS amplifier does not use a current source through which a constant current flows, so that power consumption can be greatly reduced.
  • the CS amplifier does not perform amplification during the reset period. For this reason, the CS amplifier has a problem that a conventional offset cancellation method that is generally used cannot be applied. For this reason, only a bipolar transistor having a relatively small offset voltage has been applied as a transistor that controls amplification in the CS amplifier.
  • An object of the present invention is to enable offset cancellation while maintaining the low power consumption of a CS amplifier even when a MOS transistor is used as a drive element.
  • the comparator determines a magnitude relationship between the analog input signal and the comparison reference voltage based on a preamplifier unit that amplifies a difference between the analog input signal and the comparison reference voltage, and an output of the preamplifier unit.
  • a latch unit, and the preamplifier unit includes a transistor having a drain as an output terminal, a load capacitor connected to the output terminal, a charge source connected to a source of the transistor, the analog input signal, and the comparison
  • a compensation circuit that receives a reference voltage at an input terminal and has an output terminal connected to the gate of the transistor, and the compensation circuit includes a compensation circuit connected to the transistor in a first period in which the comparison reference voltage is input to the input terminal.
  • the gate and drain are connected, voltage information including information related to the offset voltage of the transistor is detected and stored, and the analog input is input to the input terminal. Signal and for compensating the offset voltage of the transistor using the voltage information stored in the first period to the second period is entered.
  • the analog-to-digital converter according to the present invention is an analog-to-digital converter that converts an input analog input signal into a digital signal, and each has a preamplifier section that amplifies a difference between the analog input signal and a comparison reference voltage.
  • a plurality of comparators that receive the comparison reference voltages different from each other, compare the comparison reference voltages with the analog input signal, and encode an output of the plurality of comparators to output the digital signal;
  • the preamplifier unit includes a transistor having a drain as an output terminal, a load capacitor connected to the output terminal, a charge source connected to a source of the transistor, the analog input signal, and the comparison reference voltage.
  • a compensation circuit having an input terminal and an output terminal connected to the gate of the transistor.
  • the gate and drain of the transistor are connected in a first period in which the comparison reference voltage is input to the input terminal, voltage information including information related to the offset voltage of the transistor is detected and stored, and the input terminal is The offset voltage of the transistor is compensated using the voltage information stored in the first period in the second period in which the analog input signal is input.
  • the compensation circuit detects and stores voltage information including information relating to the offset voltage in the first period, and cancels the offset voltage in the second period using the stored voltage information.
  • the offset can be canceled even if a MOS transistor is used as the drive element in the CS amplifier. Therefore, it is possible to provide a comparator having a preamplifier unit that can perform offset cancellation while maintaining the low power consumption of the CS amplifier, and an analog-digital converter using the comparator.
  • FIG. 1 is a diagram illustrating a configuration example of an analog-digital converter in the present embodiment.
  • FIG. 2 is a diagram illustrating a circuit configuration example of the preamplifier unit in the present embodiment.
  • FIG. 3 is a diagram for explaining the operation in the reset period of the preamplifier unit in the present embodiment.
  • FIG. 4 is a diagram for explaining the operation of the preamplifier section in the present embodiment during the amplification period.
  • FIG. 5A is a diagram for explaining the effect of offset compensation in the present embodiment.
  • FIG. 5B is a diagram for explaining the effect of offset compensation in the present embodiment.
  • FIG. 6A is a diagram illustrating another configuration example of the preamplifier unit in the present embodiment.
  • FIG. 6B is a diagram illustrating an offset voltage in the preamplifier unit illustrated in FIG. 6A.
  • FIG. 7 is a diagram illustrating another configuration example of the preamplifier unit in the present embodiment.
  • FIG. 8A is a diagram illustrating another configuration example of the analog-digital converter in the present embodiment.
  • FIG. 8B is a diagram illustrating another configuration example of the analog-digital converter in the present embodiment.
  • FIG. 9 is a diagram showing a circuit configuration of a conventional CS amplifier.
  • FIG. 10 is a diagram illustrating a circuit configuration example of the latch unit in the present embodiment.
  • FIG. 11 is a diagram illustrating another circuit configuration example of the latch unit according to the present embodiment.
  • FIG. 12A is a diagram illustrating a configuration example of a comparator according to the related art.
  • FIG. 12A is a diagram illustrating a configuration example of a comparator according to the related art.
  • FIG. 12B is a diagram illustrating a configuration example of the comparator according to the present embodiment.
  • FIG. 13 is a diagram illustrating another configuration example of the latch unit in the present embodiment.
  • FIG. 14 is a diagram illustrating another configuration example of the latch unit in the present embodiment.
  • FIG. 15 is a diagram illustrating another configuration example of the latch unit in the present embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of an analog-digital converter (AD converter) according to an embodiment of the present invention.
  • FIG. 1 shows an example of a parallel AD converter (flash AD converter) that converts an input analog input signal VIN into an n-bit (n is a natural number) digital signal DT [n ⁇ 1: 0]. Yes.
  • n-bit a natural number
  • CMPi is a comparator (comparator), and ENC1 is an encoder.
  • the comparator CMPi receives the analog input signal VIN and the comparison reference voltage Vrefi.
  • the comparator CMPi compares the input analog input signal VIN with the comparison reference voltage Vrefi and outputs the comparison result.
  • the comparison reference voltage Vrefi is generated, for example, by dividing (for example, resistance voltage dividing) between the voltage VRH (reference voltage on the high potential side) and the voltage VRL (reference voltage on the low potential side).
  • dividing for example, resistance voltage dividing
  • each of the comparators CMPi has a preamplifier part and a latch part.
  • the preamplifier unit receives the analog input signal VIN and the comparison reference voltage Vrefi.
  • the preamplifier unit amplifies and outputs the difference (difference voltage) between the input analog input signal VIN and the comparison reference voltage Vrefi.
  • the latch unit determines the sign of the output of the preamplifier unit (finally determines a value of “1” or “0”) and outputs a determination result. In other words, the latch unit determines the magnitude relationship between the analog input signal VIN and the comparison reference voltage Vrefi based on the output of the preamplifier unit.
  • the encoder ENC1 receives a comparison result (an output from the latch unit of each comparator CMPi) between the analog input signal VIN and the comparison reference voltage Vrefi in each comparator CMPi.
  • the encoder ENC1 encodes these comparison results, converts them into digital signals DT [n-1: 0], and outputs them.
  • FIG. 2 is a diagram illustrating a circuit configuration example of the preamplifier unit in the present embodiment.
  • the preamplifier unit in the present embodiment is a circuit configuration of a CS (Charge-steering) amplifier by applying a CMOS manufacturing technology (process technology).
  • the preamplifier section in this embodiment is configured by applying a MOS (metal oxide semiconductor) transistor as a differential pair transistor (driving element) that controls amplification.
  • MOS metal oxide semiconductor
  • the preamplifier unit in this embodiment includes load capacitors CL1 and CL2, MOS transistors M1 and M2, charge source CS, detection capacitors CC1 and CC2, and switches SW11, SW12, SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52 and SW6 are provided.
  • the load capacities CL1 and CL2 form load elements.
  • the load capacitor CL1 has one electrode connected to the power supply voltage (Vcc) and the other electrode connected to the drain of the MOS transistor M1 via the switch SW21.
  • the load capacitor CL2 has one electrode connected to the power supply voltage (Vcc) and the other electrode connected to the drain of the MOS transistor M2 via the switch SW22.
  • switches SW11 and SW12 are provided in parallel with the load capacitors CL1 and CL2.
  • One electrode and the other electrode of the load capacitor CL1 can be connected by the switch SW11, and one electrode and the other electrode of the load capacitor CL2 can be connected by the switch SW12.
  • MOS transistors M1 and M2 form drive elements.
  • the MOS transistor M1 has a gate connected to one electrode of the detection capacitor CC1.
  • a positive-phase analog input signal VINP is supplied to the other electrode of the detection capacitor CC1 through the switch SW41, and a positive-phase comparison reference voltage VREFP is supplied through the switch SW51.
  • the gate of the MOS transistor M2 is connected to one electrode of the detection capacitor CC2.
  • a negative-phase analog input signal VINN is supplied to the other electrode of the detection capacitor CC2 via the switch SW42, and a negative-phase comparison reference voltage VREFN is supplied via the switch SW52.
  • the sources of the MOS transistors M1 and M2 are connected to one electrode of the charge source CS and to a reference potential (for example, ground) through the switch SW6.
  • the control signal ⁇ is supplied to the other electrode.
  • the drain and gate of the MOS transistor M1 can be connected by the switch SW31, and the drain and gate of the MOS transistor M2 can be connected by the switch SW32.
  • Each of the switches SW11, SW12, SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52, SW6 is composed of an arbitrary switching element or an arbitrary switching circuit.
  • an N channel MOS transistor may constitute a switch
  • a P channel MOS transistor may constitute a switch.
  • the switch may be constituted by a transfer gate composed of a pair of N channel MOS transistor and P channel MOS transistor.
  • each switch is in a conductive state (closed state, on state) when the supplied control signal ⁇ (or / ⁇ ) is at a high level (“H”, for example, the power supply voltage Vcc). In the case of a low level (“L”, for example, a reference potential), a non-conduction state (open state, off state) is assumed.
  • the preamplifier unit outputs the voltage at the connection point between the other electrode of the load capacitor CL1 and the switch SW21 as a reverse phase output signal VOUTN.
  • the preamplifier unit outputs the voltage at the connection point between the other electrode of the load capacitor CL2 and the switch SW22 as the positive phase output signal VOUTP.
  • the normal phase output signal VOUTP and the negative phase output signal VOUTN are output to a latch unit in the comparator.
  • the preamplifier section in this embodiment stores the charge in the charge source CS with the control signal ⁇ set to “H” and the control signal / ⁇ set to “L” during the reset period. Then, the preamplifier unit sets the control signal ⁇ to “L” and sets the control signal / ⁇ to “H” during the amplification period, and moves the charges stored in the charge source CS to the load capacitors CL1 and CL2, thereby amplifying the signals. Do.
  • the offset compensation is realized by paying attention to the fact that the main factor of the offset is the threshold voltage variation of the transistors M1 and M2 responsible for amplification.
  • the preamplifier unit in the present embodiment detects voltage information related to the threshold voltage including the offset voltage in the reset period and stores it in the detection capacitors CC1 and CC2, and uses the voltage information stored in the detection capacitors CC1 and CC2 in the amplification period. Cancel the offset.
  • the threshold voltages of the transistors M1 and M2 are VTH1 and VTH2, and the variations thereof are ⁇ VTH1 and ⁇ VTH2. 3 and 4, voltages corresponding to threshold voltage variations are schematically illustrated as voltage sources OV1 and OV2.
  • the control signal ⁇ is set to “H” and the control signal / ⁇ is set to “L”.
  • the switches SW11, SW12, SW31, SW32, SW51, SW52, and SW6 are in a conductive state (on state), and the switches SW21, SW22, SW41, and SW42 are in a nonconductive state ( Off state).
  • the switch SW41 when the switch SW41 is turned off and the switch SW51 is turned on, the potential of the node N11 becomes the comparison reference voltage VREFP. Further, when the switch SW21 is turned off and the switches SW31 and SW6 are turned on, the transistor M1 is connected between the gate and the drain, and the source is connected to the reference potential. Therefore, the transistor M1 discharges the electric charge stored in the detection capacitor CC1, so that the potential of the node N21 decreases. When the potential of the node N21 decreases to (VTH1 + ⁇ VTH1), the transistor M1 is turned off. That is, in the reset period, the potential of the node N21 finally becomes a constant value of (VTH1 + ⁇ VTH1).
  • the switch SW42 is turned off and the switch SW52 is turned on, so that the potential of the node N12 becomes the comparison reference voltage VREFN.
  • the switch SW22 is turned off and the switches SW32 and SW6 are turned on, the potential of the node N22 finally becomes a constant value of (VTH2 + ⁇ VTH2). Therefore, assuming that the capacitance of the detection capacitor CC2 is CV2, the charge of CV2 ⁇ (VREFN ⁇ (VTH2 + ⁇ VTH2)) is accumulated in the detection capacitor CC2. In this manner, voltage information related to the threshold voltage including the offset voltage ⁇ VTH2 is stored in the detection capacitor CC2.
  • the control signal ⁇ is set to “L” and the control signal / ⁇ is set to “H”.
  • the switches SW21, SW22, SW41, and SW42 are in a conductive state (ON state) and the switches SW11, SW12, SW31, SW32, SW51, SW52, and SW6 are in a nonconductive state during the amplification period. Off state).
  • the detection capacitor CC1 is connected in series between the input terminal of the positive-phase analog input signal VINP and the gate of the transistor M1.
  • the potential of the node N11 is the potential of the positive phase analog input signal VINP.
  • the charge accumulated in the detection capacitor CC1 during the reset period is stored. Therefore, the potential of the node N21 is (VINP ⁇ VREFP) + (VTH1 + ⁇ VTH1), and the potential of the node N31 is (VINP ⁇ VREFP) + VTH1.
  • the detection capacitor CC2 is connected in series between the input terminal of the negative-phase analog input signal VINN and the gate of the transistor M2. .
  • the potential of the node N12 becomes the potential of the negative-phase analog input signal VINN. Therefore, the potential of the node N22 is (VINN ⁇ VREFN) + (VTH2 + ⁇ VTH2), and the potential of the node N32 is (VINN ⁇ VREFN) + VTH2.
  • the voltage information stored in the detection capacitor CC1 during the reset period is used to cancel the threshold voltage variation ⁇ VTH1 of the transistor M1 that is the cause of the offset, and the potential (VINP ⁇ VREFP) + VTH1 is applied to the gate of the transistor M1. Is entered.
  • the voltage information stored in the detection capacitor CC2 during the reset period is used to cancel the threshold voltage variation ⁇ VTH2 of the transistor M2, which is a cause of the offset, and the potential (VINN ⁇ VREFN) + VTH2 is input to the gate of the transistor M2. Is done.
  • the transistor M1 is turned on / off according to the potential difference (VINP ⁇ VREFP), whereby the differential voltage between the positive phase analog input signal VINP and the positive phase comparison reference voltage VREFP is amplified and output as the negative phase output signal VOUTN. Is done.
  • the transistor M2 is turned on / off according to the potential difference (VINN ⁇ VREFN)
  • the differential voltage between the negative phase analog input signal VINN and the negative phase comparison reference voltage VREFN is amplified and output as the positive phase output signal VOUTP. Is done.
  • the preamplifier unit included in the comparator CMPi voltage information related to the threshold voltage including the offset voltage is detected and stored in the detection capacitors CC1 and CC2 during the reset period. During the period, the offset is canceled using the voltage information stored in the detection capacitors CC1 and CC2.
  • the circuit configuration of the CS amplifier is realized by applying the CMOS manufacturing technology, and the offset can be canceled even if the MOS transistor is used as the drive element. Therefore, a comparator having a preamplifier unit capable of performing offset cancellation can be provided by CMOS manufacturing technology while maintaining the low power consumption of the CS amplifier, and it is easy to integrate with other functional blocks and manufacture. Cost can be reduced. Further, by configuring the AD converter using the comparator, the power consumption of the AD converter can be greatly reduced.
  • the clock signal for driving the switch is ⁇ and / ⁇ .
  • the switch is composed of MOS transistors, the offset canceling effect may be reduced due to channel charge injection, clock feedthrough, or the like. In such a case, it is desirable to take an appropriate timing margin between the clocks using a conventionally known method such as a non-overlap clock.
  • FIG. 10 is a diagram illustrating a configuration example of the latch unit in the present embodiment.
  • the latch unit shown in FIG. 10 is obtained by applying the circuit technology of the CS amplifier to which the above-described CMOS manufacturing technology is applied to the latch unit.
  • M1, M2, M5, and M6 are MOS transistors (N channel MOS transistors), and M7 and M8 are MOS transistors (P channel MOS transistors).
  • CS is a charge source, and CC1 and CC2 are detection capacitors.
  • SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52, SW6, SW91, and SW92 are switches.
  • the reference potential input is the same potential VREF for both the positive phase input and the negative phase input.
  • components having the same functions as those shown in FIG. 2 are denoted by the same reference numerals, and redundant description of the components is omitted.
  • MOS transistors M5 and M7 are connected to form an inverter, and MOS transistors M6 and M8 are connected to form an inverter.
  • the output of one inverter is connected to the input of the other inverter, and positive feedback is applied. That is, the interconnection point between the drains of the MOS transistors M5 and M7 is connected to the gates of the MOS transistors M6 and M8, and the interconnection point between the drains of the MOS transistors M6 and M8 is connected to the gates of the MOS transistors M5 and M7.
  • switches SW91 and SW92 are connected to the outputs VOUTP and VOUTN of the latch unit, and the outputs VOUTP and VOUTN are connected to the power supply voltage (Vcc) and reset during the reset period.
  • the input signal is amplified by the MOS transistors M1 and M2, and is latched by the positive feedback circuit including the MOS transistors M5, M6, M7, and M8.
  • the latch unit illustrated in FIG. 10 with the preamplifier unit illustrated in FIG. 2 or FIG. 7, a comparator with low power consumption and a small offset voltage can be realized. .
  • FIG. 11 is a diagram illustrating another configuration example of the latch unit according to the present embodiment.
  • M1, M2, M5 and M6 are MOS transistors (N channel MOS transistors), and M7 and M8 are MOS transistors (P channel MOS transistors).
  • CC1 and CC2 are detection capacities.
  • SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52, SW6, SW91, SW92, and SW10 are switches.
  • the reference potential input is the same potential VREF for both the positive phase input and the negative phase input.
  • components having the same functions as those shown in FIGS. 2 and 10 are denoted by the same reference numerals, and redundant description of the components is omitted.
  • the sources of the MOS transistors M1 and M2 are connected to a reference potential (for example, ground) via the switch SW6 and to the reference potential via the switch SW10.
  • the clock signal / ⁇ 'for controlling the switch SW10 is a clock signal slightly delayed from the clock signal / ⁇ . By controlling the switch SW10 with the clock signal / ⁇ ', it is possible to prevent malfunction due to noise generated in the switches SW21, SW22, SW41, and SW42.
  • the potential of the outputs VOUTP and VOUTN of the latch unit can be reliably set to the reference potential (for example, 0 V) or the power supply voltage (Vcc), and the logic circuit connected to the next stage Can be driven without error.
  • the reference potential for example, 0 V
  • Vcc the power supply voltage
  • 5A and 5B are diagrams for explaining the effect of offset compensation of the preamplifier unit in the present embodiment.
  • 5A and 5B show simulation results relating to the offset voltage in the CS amplifier configured by applying the CMOS manufacturing technology.
  • the simulation results shown in FIGS. 5A and 5B are calculated using the Monte Carlo method on the assumption that the 90 nm CMOS manufacturing technology is used.
  • FIG. 5A shows a simulation result when the offset compensation function is not provided for comparison and reference
  • FIG. 5B shows a simulation result in the preamplifier unit having the offset compensation function in the present embodiment.
  • the offset voltage can be reduced to about 1/7 by applying the offset compensation technique in the present embodiment.
  • FIG. 6A is a diagram illustrating another configuration example of the preamplifier unit in the present embodiment.
  • Capacitive The example of a structure of the preamplifier part at the time of applying the averaging technique is shown.
  • PA1, PA2, PA3, PA4,... Are preamplifier units, and CAVP1, CAVP2, CAVP3,... And CAVN1, CAVN2, CAVN3,.
  • the positive phase side output of the preamplifier unit PAi and the positive phase side output of the preamplifier unit PA (i + 1) are coupled via the capacitor CAVPi.
  • the negative phase side output of the preamplifier part PAi and the negative phase side output of the preamplifier part PA (i + 1) are coupled via a capacitor CAVNi.
  • the offset voltage can be further reduced as shown in FIG. 6B.
  • 6B shows a case where LN1 applies the Capacitive Averaging technique (with capacity), and LN2 shows a case where the Capacitive Averaging technique is not applied (without capacity).
  • FIG. 7 is a diagram showing another configuration example of the preamplifier unit in the present embodiment.
  • FIG. 7 shows a configuration example of the preamplifier unit in the case where a positive feedback circuit is further provided.
  • CL1 and CL2 are load capacitors
  • M1 and M2 are MOS transistors (N channel MOS transistors)
  • M3 and M4 are MOS transistors (P channel MOS transistors).
  • CS and CSP are charge sources
  • CC1 and CC2 are detection capacitors.
  • SW11, SW12, SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52, SW6, SW7, and SW8 are switches.
  • components having the same functions as those shown in FIG. 2 are denoted by the same reference numerals, and redundant description of the components is omitted.
  • One electrode of the charge source CSP is connected to the power supply voltage (Vcc) via a switch SW7 that is controlled to be opened and closed by a control signal ⁇ , and is connected to the transistors M3 and M4 via a switch SW8 that is controlled to be opened and closed by a control signal / ⁇ . Connected to the source. Therefore, one electrode of the charge source CSP is connected to the power supply voltage (Vcc) in the reset period, and is connected to the sources of the transistors M3 and M4 in the amplification period. A control signal / ⁇ is supplied to the other electrode of the charge source CSP.
  • the drain of the transistor M3 and the gate of the transistor M4 are connected to the connection point between the switch SW21 and the other electrode of the load capacitor CL1 whose one electrode is connected to the power supply voltage (Vcc).
  • the gate of the transistor M3 and the drain of the transistor M4 are connected to the connection point between the switch SW22 and the other electrode of the load capacitor CL2 whose one electrode is connected to the power supply voltage.
  • one electrode is connected to the power supply voltage (Vcc) and the other electrode is set to “L” in the reset period, and charges are accumulated.
  • one electrode of the charge source CSP is connected to the sources of the transistors M3 and M4, so that the potential at the connection point between the load capacitor CL1 and the switch SW21 and the connection point between the load capacitor CL2 and the switch SW22 are connected. Based on the potential, the charge stored in the charge source CSP is supplied to the load capacitance.
  • the configuration shown in FIG. 7 can improve the gain and increase the gain.
  • FIG. 13 is a diagram illustrating another configuration example of the latch unit in the present embodiment.
  • the latch unit shown in FIG. 13 is similar to the latch unit shown in FIG. 10 and FIG. 11 by using the above-described offset cancellation technique with a double tail latch (for example, D. Scinkel et al., “A Double-Tail Latch-Type Voltage Sense Amplifier with 18 ps Setup-Hold Time ”, IEEE ISSCC Dig. of Tech. Papers, pp.314-315, Feb. (See 2007).
  • D. Scinkel et al. “A Double-Tail Latch-Type Voltage Sense Amplifier with 18 ps Setup-Hold Time ”, IEEE ISSCC Dig. of Tech. Papers, pp.314-315, Feb. (See 2007).
  • the latch portion shown in FIG. 13 has a two-stage configuration.
  • the circuit unit L1 in the first stage operates as a capacitive load amplifier having the input capacitor in the next stage as a load.
  • the second-stage circuit unit L2 latches the output of the first-stage circuit unit L1 using a positive feedback circuit, and outputs digital signals VOUTP and VOUTN.
  • M1, M2, M9, M10, M13, and M14 are MOS transistors (N-channel MOS transistors), and M11 and M12 are MOS transistors (P-channel MOS transistors).
  • CC1 and CC2 are detection capacities. SW11, SW12, SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52, SW6, SW10, and SW13 are switches.
  • the reference potential input is the same potential VREF for both the positive phase input and the negative phase input.
  • components having the same functions as those shown in FIGS. 2 and 11 are denoted by the same reference numerals, and redundant description of the components is omitted.
  • MOS transistors M9 and M11 are connected to form an inverter, and MOS transistors M10 and M12 are connected to form an inverter.
  • the output of one inverter is connected to the input of the other inverter, and positive feedback is applied. That is, the interconnection point between the drains of the MOS transistors M9 and M11 is connected to the gates of the MOS transistors M10 and M12, and the interconnection point between the drains of the MOS transistors M10 and M12 is connected to the gates of the MOS transistors M9 and M11.
  • the sources of the MOS transistors M9 and M10 are connected to the reference potential, and the sources of the MOS transistors M11 and M12 are connected to the power supply voltage (Vcc) via the switch SW13 controlled by the clock signal / ⁇ .
  • the MOS transistor M13 has a source connected to the reference potential and a drain connected to the gates of the MOS transistors M10 and M12.
  • the MOS transistor M14 has a source connected to the reference potential and a drain connected to the gates of the MOS transistors M9 and M11.
  • the output V1N of the first-stage circuit portion L1 is supplied to the gate of the MOS transistor M13, and the output V1P of the first-stage circuit portion L1 is supplied to the gate of the MOS transistor M14.
  • the latch unit shown in FIG. 13 operates in the same manner as the latch unit shown in FIG. 11, and during the reset period, the offset voltages of the MOS transistors M1 and M2 constituting the differential pair in the first-stage circuit unit L1. Is detected and stored in the detection capacitors CC1 and CC2. In the subsequent amplification period, the offset of the MOS transistors M1 and M2 constituting the differential pair is canceled using the voltage information stored in the detection capacitors CC1 and CC2, so that the offset of the latch unit can be reduced. become.
  • the first-stage circuit portion L1 that performs differential amplification and the second-stage circuit portion L2 that performs latching are cascade-connected, so that the voltage is lower than that of the latch portion shown in FIG. It is a configuration suitable for the conversion. Therefore, according to the configuration shown in FIG. 13, it is possible to realize a latch unit with a small offset voltage capable of low voltage operation.
  • FIG. 14 is a diagram illustrating another configuration example of the latch unit in the present embodiment.
  • the latch unit shown in FIG. 14 is obtained by applying the capacitive averaging technique to the latch unit shown in FIG. 14, each of L11, L12, L13, L14,... Corresponds to the first stage circuit section L1 in the latch section shown in FIG. 13, and each of L21, L22, L23, L24,. Corresponds to the second-stage circuit portion L2 in the latch portion shown in FIG. CAVP1, CAVP2, CAVP3,..., And CAVN1, CAVN2, CAVN3,.
  • the capacitive averaging technique By applying the capacitive averaging technique to the latch unit shown in FIG. 13, it is possible to average the offset voltage at the output of the first stage circuit units L11, L12, L13, L14,. According to the configuration shown in FIG. 14, the offset voltage can be further reduced as compared with the configuration shown in FIG. 13.
  • FIG. 15 is a diagram showing another configuration example of the latch unit in the present embodiment.
  • the latch unit shown in FIG. 15 further includes a positive feedback circuit in the first-stage circuit unit L1 in the latch unit shown in FIG. 13 to increase the gain of the first-stage circuit unit L1.
  • M1, M2, M9, M10, M13, and M14 are MOS transistors (N-channel MOS transistors), and M11, M12, M15, and M16 are MOS transistors (P-channel MOS transistors).
  • CC1 and CC2 are detection capacities, and CPF is a capacity.
  • SW11, SW12, SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52, SW6, SW10, SW13, and SW14 are switches.
  • the reference potential input is the same potential VREF for both the positive phase input and the negative phase input.
  • components having the same functions as those shown in FIGS. 2, 11, and 15 are denoted by the same reference numerals, and redundant description of the components is omitted.
  • the positive feedback circuit provided in the first-stage circuit unit L1 includes MOS transistors M15 and M16, a capacitor CPF, and a switch SW14.
  • the sources of the MOS transistors M15 and M16 are connected to the power supply voltage (Vcc) via the switch SW14 that is controlled to be opened and closed by the clock signal ⁇ .
  • the drain of the MOS transistor M15 and the gate of the MOS transistor M16 are connected to the node of the output V1N.
  • the gate of the MOS transistor M15 and the drain of the MOS transistor M16 are connected to the node of the output V1P.
  • the capacitor CPF has one electrode connected to the power supply voltage (Vcc) and the other electrode connected to the sources of the MOS transistors M15 and M16.
  • the positive feedback amount can be adjusted by the capacitance value of the capacitor CPF.
  • the capacitance value of the capacitor CPF For example, by increasing the capacitance value of the capacitor CPF, the gain of the first-stage circuit unit L1 can be increased.
  • the contribution of the offset from the second-stage circuit unit L2 can be reduced, and the offset voltage can be reduced as compared with the configuration shown in FIG.
  • the capacitive averaging technique can be applied to the latch unit shown in FIG. 15, and the offset voltage can be further reduced.
  • FIG. 12A and FIG. 12B the effect of the power reduction of the comparator in this embodiment is demonstrated.
  • the results of calculating the power consumption using a simulation when the operating frequency is 1 GHz and the standard deviation of the offset voltage is 0.6 mV or less under the 90 nm CMOS manufacturing technology are shown.
  • the power consumption of the comparator according to the prior art shown in FIG. 12A was compared with the power consumption of the comparator according to the present embodiment shown in FIG. 12B.
  • FIG. 12A is a diagram illustrating a configuration example of a comparator according to a conventional technique.
  • PA1, PA2, and PA3 are preamplifier units
  • L is a latch unit.
  • COP1, COP2, COP3, CON1, CON2, and CON3 are capacitors, and SW101, SW102, SW103, and SW104 are switches.
  • preamplifier units PA1, PA2, and PA3 in order to reduce the input conversion offset of the latch unit L, three stages of preamplifier units PA1, PA2, and PA3 are used.
  • the preamplifier sections PA1, PA2, and PA3 use differential amplifiers biased by a conventional constant current source.
  • offset information is stored in the capacitors COP1, COP2, COP3 and CON1, CON2, CON3 connected to the output terminals of the preamplifier units PA1, PA2, PA3, thereby canceling the offsets of the preamplifier units PA1, PA2, PA3. is doing.
  • the power consumption of the comparator is 1.7 mW.
  • FIG. 12B is a diagram illustrating a configuration example of the comparator according to the present embodiment.
  • OCPA is a preamplifier unit
  • CAN is a capacitive averaging network
  • OCL is a latch unit.
  • the preamplifier section OCPA is an offset cancelable CS amplifier whose circuit configuration is shown in FIG. 2
  • the latch section OCL is a latch section whose circuit configuration is shown in FIG.
  • the capacitive averaging network CAN shown in FIG. 6A is connected to the output of the preamplifier unit OCPA.
  • the preamplifier unit OCPA has a one-stage configuration.
  • the power consumption of the comparator is only 0.2 mW, and the power consumption can be greatly reduced by the present invention.
  • the parallel AD converter (all-bit flash AD converter) is described as an example, but the present invention is not limited to this.
  • the present invention can be applied to a subranging AD converter ⁇ subranging AD converter> as shown in FIG. 8A, or a successive approximation (successive approximation) AD converter ⁇ SAR (successive approximation register as shown in FIG. 8B. )
  • AD ⁇ ⁇ converter> is also applicable.
  • FIG. 8A is a diagram showing another configuration example of the analog-digital converter in the present embodiment.
  • FIG. 8A shows an example of a sub-ranging AD converter that converts an input analog input signal VIN into an n-bit (n is a natural number) digital signal DT [n ⁇ 1: 0].
  • reference numeral 71 denotes a sample hold amplifier (SHA).
  • amplifiers 72, 75 are parallel AD converters (flash AD converters), 73 is a digital-analog converter (DA converter), and 74 is a subtractor.
  • the first-stage parallel AD converter 72 performs AD conversion processing to determine the digital signal DT [n ⁇ 1: m], where m is an integer of 0 ⁇ m ⁇ (n ⁇ 1).
  • the parallel AD converter 75 performs AD conversion processing for determining the digital signal DT [m: 0].
  • the first-stage parallel AD converter 72 performs AD conversion processing on the higher-order bits of the digital signal DT [n ⁇ 1: 0]
  • the second-stage parallel AD converter 75 AD conversion processing is performed on the lower-order bits of the digital signal DT [n ⁇ 1: 0].
  • the input analog input signal VIN is sampled and held by the sample and hold amplifier 71 and supplied to the parallel AD converter 72 and the subtractor 74.
  • the parallel AD converter 72 performs AD conversion processing using the supplied analog input signal VIN, and the digital signal DT [n ⁇ 1: m] of the digital signals DT [n ⁇ 1: 0] is parallel.
  • the digital signal DT [n ⁇ 1: m] output from the parallel AD converter 72 is supplied to the DA converter 73 and output to the outside.
  • the digital signal DT [n ⁇ 1: m] supplied to the DA converter 73 is subjected to DA conversion processing, and an analog signal corresponding to the digital signal DT [n ⁇ 1: m] is output from the DA converter 73.
  • the analog signal output from the DA converter 73 from the analog input signal VIN output from the sample and hold amplifier 71 is subtracted by the subtractor 74 and supplied to the parallel AD converter 75.
  • the residual component obtained by subtracting the analog signal corresponding to the digital signal DT [n ⁇ 1: m] determined by the parallel AD converter 72 from the input analog input signal VIN becomes the parallel AD converter 75. To be supplied.
  • the parallel AD converter 75 performs AD conversion processing of the analog signal supplied from the subtractor 74, and the digital signal DT [m: 0] of the digital signals DT [n-1: 0] is converted into the parallel AD. Output from the converter 75. As described above, the input analog input signal VIN is converted into an n-bit digital signal DT [n ⁇ 1: 0] and output.
  • FIG. 8B is a diagram illustrating another configuration example of the analog-digital converter in the present embodiment.
  • FIG. 8B shows an example of a successive approximation (successive approximation) AD converter that converts an input analog input signal VIN into an n-bit (n is a natural number) digital signal DT [n ⁇ 1: 0].
  • 76 is a sample hold amplifier (SHA)
  • 77 is a comparator
  • 78 is a SAR circuit
  • 79 is a DA converter.
  • the comparator 77 is configured using, for example, the preamplifier unit shown in FIG.
  • the input analog input signal VIN is sampled and held by the sample and hold amplifier 76 and supplied to the comparator 77.
  • the comparator 77 compares the input analog input signal VIN with the output of the DA converter 79, and stores information indicating the magnitude relationship between the analog input signal VIN and the output of the DA converter 79 according to the comparison result.
  • the SAR circuit 78 sequentially determines the digital signal DT [n ⁇ 1: 0] bit by bit from the upper side based on the output from the comparator 77. Further, the SAR circuit 78 outputs a voltage generation code for generating a voltage to be compared with the analog input signal VIN next to the DA converter 79 according to the determined value.

Abstract

Disclosed is a comparator for performing comparison between an analog input signal and a comparison reference voltage at an analog/digital converter comprising a pre-amp unit constituted to include: a load carrying capacitor; a charge source; a transistor wherein a drain is connected to the load carrying capacitor and a source is connected to the charge source; and a compensation circuit wherein the analog input signal or the comparison reference voltage is input to an input terminal, and an output terminal is connected to a gate of the transistor. The compensation circuit detects and stores voltage information including information of an offset voltage in a reset period, and compensates the offset voltage using the stored voltage information in an amplifying period so as to be able to perform offset cancellation while maintaining low power consumption even if an MOS transistor is used as a driving element in a CS amplifier.

Description

比較器、差動アンプ回路、ラッチ回路、及びアナログデジタル変換器Comparator, differential amplifier circuit, latch circuit, and analog-digital converter
 本発明は、アナログデジタル変換器(AD変換器)及びAD変換器に用いて好適な比較器に関する。 The present invention relates to an analog / digital converter (AD converter) and a comparator suitable for use in an AD converter.
 並列型アナログデジタル変換器(AD変換器)は、比較器を並列に動作させて、アナログ入力信号と複数の比較基準電圧との比較を並列に実行することで、高速にAD変換を行うことが可能である。その反面、例えばnビット並列型AD変換器(全ビットフラッシュAD変換器)の場合には(2n-1)個の比較器が必要となる。比較器の数が多いために、並列型AD変換器は消費電力が大きいという課題がある。 A parallel analog-to-digital converter (AD converter) can perform AD conversion at high speed by operating a comparator in parallel and performing a comparison between an analog input signal and a plurality of comparison reference voltages in parallel. Is possible. On the other hand, for example, in the case of an n-bit parallel AD converter (all-bit flash AD converter), (2 n −1) comparators are required. Due to the large number of comparators, the parallel AD converter has a problem of high power consumption.
 AD変換器に用いられる比較器は、アナログ入力信号と比較基準電圧との差を増幅するプリアンプ部と、プリアンプ部の出力の符号を判定するラッチ部とを有する。プリアンプ部での消費電力が、比較器全体での消費電力の大半を占めている。通常のプリアンプ部には、プリアンプ部が有するトランジスタをバイアスするためのバイアス電流源が必要であり、常時電力が消費されてしまうために低消費電力化が困難であった。 The comparator used in the AD converter includes a preamplifier unit that amplifies the difference between the analog input signal and the comparison reference voltage, and a latch unit that determines the sign of the output of the preamplifier unit. The power consumption in the preamplifier section occupies most of the power consumption in the entire comparator. A normal preamplifier unit requires a bias current source for biasing a transistor included in the preamplifier unit, and power is always consumed, so that it is difficult to reduce power consumption.
 前述した問題を解決するための1つの手法として、図9に示すようなCharge
steering(CS)アンプが提案されている(例えば非特許文献1参照。)。CSアンプは、従来用いられていた電流源の代わりに電荷源CSを用いるとともに、負荷抵抗の代わりに負荷容量CLを用いる。CSアンプは、リセット期間において信号φをハイレベル(“H”、例えば5V)とするとともに信号/φをローレベル(“L”、例えば0V)とする。また、CSアンプは、増幅期間において信号φを“L”とするとともに信号/φを“H”とする。このようにしてCSアンプは、電荷源CSに蓄えられた電荷を負荷容量CLへ移動させることで増幅を行う。図9に示すようにCSアンプは、常時電流が流れる電流源を用いないため、消費電力を大幅に削減することが可能となる。
One method for solving the above-mentioned problem is Charge as shown in FIG.
A steering (CS) amplifier has been proposed (for example, see Non-Patent Document 1). The CS amplifier uses a charge source CS instead of a conventionally used current source and a load capacitance CL instead of a load resistance. The CS amplifier sets the signal φ to a high level (“H”, for example, 5 V) and the signal / φ to a low level (“L”, for example, 0 V) in the reset period. The CS amplifier sets the signal φ to “L” and the signal / φ to “H” during the amplification period. In this way, the CS amplifier performs amplification by moving the charge stored in the charge source CS to the load capacitor CL. As shown in FIG. 9, the CS amplifier does not use a current source through which a constant current flows, so that power consumption can be greatly reduced.
 しかし、CSアンプは、リセット期間において増幅動作を行わない。そのため、CSアンプは、一般に使用される従来のオフセットキャンセルに係る手法が適用できないという問題があった。このような理由から、CSアンプにおいて増幅を司るトランジスタとしては、比較的オフセット電圧が小さいバイポーラトランジスタのみが適用されていた。 However, the CS amplifier does not perform amplification during the reset period. For this reason, the CS amplifier has a problem that a conventional offset cancellation method that is generally used cannot be applied. For this reason, only a bipolar transistor having a relatively small offset voltage has been applied as a transistor that controls amplification in the CS amplifier.
 本発明は、駆動素子としてMOSトランジスタを用いても、CSアンプの低消費電力性を維持したまま、オフセットキャンセルを行えるようにすることを目的とする。 An object of the present invention is to enable offset cancellation while maintaining the low power consumption of a CS amplifier even when a MOS transistor is used as a drive element.
 本発明に係る比較器は、アナログ入力信号と比較基準電圧との差を増幅するプリアンプ部と、前記プリアンプ部の出力を基に、前記アナログ入力信号と前記比較基準電圧との大小関係を判定するラッチ部とを備え、前記プリアンプ部は、ドレインを出力端子とするトランジスタと、前記出力端子に接続される負荷容量と、前記トランジスタのソースに接続される電荷源と、前記アナログ入力信号及び前記比較基準電圧を入力端に受け、出力端が前記トランジスタのゲートに接続される補償回路とを備え、前記補償回路は、前記入力端に前記比較基準電圧が入力される第1の期間に前記トランジスタのゲートとドレインを接続し、前記トランジスタのオフセット電圧に係る情報を含む電圧情報を検出して記憶し、前記入力端に前記アナログ入力信号が入力される第2の期間に前記第1の期間において記憶した前記電圧情報を用いて前記トランジスタのオフセット電圧を補償することを特徴とする。 The comparator according to the present invention determines a magnitude relationship between the analog input signal and the comparison reference voltage based on a preamplifier unit that amplifies a difference between the analog input signal and the comparison reference voltage, and an output of the preamplifier unit. A latch unit, and the preamplifier unit includes a transistor having a drain as an output terminal, a load capacitor connected to the output terminal, a charge source connected to a source of the transistor, the analog input signal, and the comparison A compensation circuit that receives a reference voltage at an input terminal and has an output terminal connected to the gate of the transistor, and the compensation circuit includes a compensation circuit connected to the transistor in a first period in which the comparison reference voltage is input to the input terminal. The gate and drain are connected, voltage information including information related to the offset voltage of the transistor is detected and stored, and the analog input is input to the input terminal. Signal and for compensating the offset voltage of the transistor using the voltage information stored in the first period to the second period is entered.
 本発明に係るアナログデジタル変換器は、入力されるアナログ入力信号をデジタル信号に変換するアナログデジタル変換器であって、前記アナログ入力信号と比較基準電圧との差を増幅するプリアンプ部をそれぞれが有し、互いに異なる前記比較基準電圧が入力され、当該比較基準電圧と前記アナログ入力信号とを比較する複数の比較器と、前記複数の比較器の出力をエンコードして前記デジタル信号を出力するエンコーダとを備え、前記プリアンプ部は、ドレインを出力端子とするトランジスタと、前記出力端子に接続される負荷容量と、前記トランジスタのソースに接続される電荷源と、前記アナログ入力信号及び前記比較基準電圧を入力端に受け、出力端が前記トランジスタのゲートに接続される補償回路とを備え、前記補償回路は、前記入力端に前記比較基準電圧が入力される第1の期間に前記トランジスタのゲートとドレインを接続し、前記トランジスタのオフセット電圧に係る情報を含む電圧情報を検出して記憶し、前記入力端に前記アナログ入力信号が入力される第2の期間に前記第1の期間において記憶した前記電圧情報を用いて前記トランジスタのオフセット電圧を補償することを特徴とする。 The analog-to-digital converter according to the present invention is an analog-to-digital converter that converts an input analog input signal into a digital signal, and each has a preamplifier section that amplifies a difference between the analog input signal and a comparison reference voltage. A plurality of comparators that receive the comparison reference voltages different from each other, compare the comparison reference voltages with the analog input signal, and encode an output of the plurality of comparators to output the digital signal; The preamplifier unit includes a transistor having a drain as an output terminal, a load capacitor connected to the output terminal, a charge source connected to a source of the transistor, the analog input signal, and the comparison reference voltage. A compensation circuit having an input terminal and an output terminal connected to the gate of the transistor. The gate and drain of the transistor are connected in a first period in which the comparison reference voltage is input to the input terminal, voltage information including information related to the offset voltage of the transistor is detected and stored, and the input terminal is The offset voltage of the transistor is compensated using the voltage information stored in the first period in the second period in which the analog input signal is input.
 本発明によれば、補償回路により第1の期間にてオフセット電圧に係る情報を含む電圧情報を検出して記憶し、記憶した電圧情報を用いて第2の期間にてオフセット電圧をキャンセルする。これにより、CSアンプにおける駆動素子としてMOSトランジスタを用いてもオフセットをキャンセルすることができる。したがって、CSアンプの低消費電力性を維持したまま、オフセットキャンセルを行えるプリアンプ部を有する比較器、及びそれを用いたアナログデジタル変換器を提供することが可能となる。 According to the present invention, the compensation circuit detects and stores voltage information including information relating to the offset voltage in the first period, and cancels the offset voltage in the second period using the stored voltage information. As a result, the offset can be canceled even if a MOS transistor is used as the drive element in the CS amplifier. Therefore, it is possible to provide a comparator having a preamplifier unit that can perform offset cancellation while maintaining the low power consumption of the CS amplifier, and an analog-digital converter using the comparator.
図1は、本実施形態におけるアナログデジタル変換器の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of an analog-digital converter in the present embodiment. 図2は、本実施形態におけるプリアンプ部の回路構成例を示す図である。FIG. 2 is a diagram illustrating a circuit configuration example of the preamplifier unit in the present embodiment. 図3は、本実施形態におけるプリアンプ部のリセット期間での動作を説明するための図である。FIG. 3 is a diagram for explaining the operation in the reset period of the preamplifier unit in the present embodiment. 図4は、本実施形態におけるプリアンプ部の増幅期間での動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of the preamplifier section in the present embodiment during the amplification period. 図5Aは、本実施形態におけるオフセット補償の効果を説明するための図である。FIG. 5A is a diagram for explaining the effect of offset compensation in the present embodiment. 図5Bは、本実施形態におけるオフセット補償の効果を説明するための図である。FIG. 5B is a diagram for explaining the effect of offset compensation in the present embodiment. 図6Aは、本実施形態におけるプリアンプ部の他の構成例を示す図である。FIG. 6A is a diagram illustrating another configuration example of the preamplifier unit in the present embodiment. 図6Bは、図6Aに示すプリアンプ部でのオフセット電圧を示す図である。6B is a diagram illustrating an offset voltage in the preamplifier unit illustrated in FIG. 6A. 図7は、本実施形態におけるプリアンプ部の他の構成例を示す図である。FIG. 7 is a diagram illustrating another configuration example of the preamplifier unit in the present embodiment. 図8Aは、本実施形態におけるアナログデジタル変換器の他の構成例を示す図である。FIG. 8A is a diagram illustrating another configuration example of the analog-digital converter in the present embodiment. 図8Bは、本実施形態におけるアナログデジタル変換器の他の構成例を示す図である。FIG. 8B is a diagram illustrating another configuration example of the analog-digital converter in the present embodiment. 図9は、従来のCSアンプの回路構成を示す図である。FIG. 9 is a diagram showing a circuit configuration of a conventional CS amplifier. 図10は、本実施形態におけるラッチ部の回路構成例を示す図である。FIG. 10 is a diagram illustrating a circuit configuration example of the latch unit in the present embodiment. 図11は、本実施形態におけるラッチ部の他の回路構成例を示す図である。FIG. 11 is a diagram illustrating another circuit configuration example of the latch unit according to the present embodiment. 図12Aは、従来技術による比較器の構成例を示す図である。FIG. 12A is a diagram illustrating a configuration example of a comparator according to the related art. 図12Bは、本実施形態による比較器の構成例を示す図である。FIG. 12B is a diagram illustrating a configuration example of the comparator according to the present embodiment. 図13は、本実施形態におけるラッチ部の他の構成例を示す図である。FIG. 13 is a diagram illustrating another configuration example of the latch unit in the present embodiment. 図14は、本実施形態におけるラッチ部の他の構成例を示す図である。FIG. 14 is a diagram illustrating another configuration example of the latch unit in the present embodiment. 図15は、本実施形態におけるラッチ部の他の構成例を示す図である。FIG. 15 is a diagram illustrating another configuration example of the latch unit in the present embodiment.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態におけるアナログデジタル変換器(AD変換器)の構成例を示す図である。図1には、入力されたアナログ入力信号VINをnビット(nは自然数)のデジタル信号DT[n-1:0]に変換する並列型AD変換器(フラッシュAD変換器)を一例として示している。また、図1においては、シングルエンド構成で図示している。 FIG. 1 is a diagram illustrating a configuration example of an analog-digital converter (AD converter) according to an embodiment of the present invention. FIG. 1 shows an example of a parallel AD converter (flash AD converter) that converts an input analog input signal VIN into an n-bit (n is a natural number) digital signal DT [n−1: 0]. Yes. In FIG. 1, a single-ended configuration is shown.
 図1において、CMPiは比較器(コンパレータ)であり、ENC1はエンコーダである。
 比較器CMPiは、アナログ入力信号VIN及び比較基準電圧Vrefiが入力される。比較器CMPiは、入力されたアナログ入力信号VINと比較基準電圧Vrefiとを比較し、その比較結果を出力する。比較基準電圧Vrefiは、例えば電圧VRH(高電位側の基準電圧)と電圧VRL(低電位側の基準電圧)間を分圧(例えば抵抗分圧)することで生成される。なお、比較器CMPi及び比較基準電圧Vrefiに付している“i”は添え字であり、iは1~m(m=2n-1)の整数である。
In FIG. 1, CMPi is a comparator (comparator), and ENC1 is an encoder.
The comparator CMPi receives the analog input signal VIN and the comparison reference voltage Vrefi. The comparator CMPi compares the input analog input signal VIN with the comparison reference voltage Vrefi and outputs the comparison result. The comparison reference voltage Vrefi is generated, for example, by dividing (for example, resistance voltage dividing) between the voltage VRH (reference voltage on the high potential side) and the voltage VRL (reference voltage on the low potential side). Note that “i” attached to the comparator CMPi and the comparison reference voltage Vrefi is a subscript, and i is an integer from 1 to m (m = 2 n −1).
 詳細には、比較器CMPiの各々は、プリアンプ部とラッチ部とを有する。プリアンプ部は、アナログ入力信号VINと比較基準電圧Vrefiとが入力される。プリアンプ部は、入力されたアナログ入力信号VINと比較基準電圧Vrefiとの差(差電圧)を増幅して出力する。ラッチ部は、プリアンプ部の出力の符号を判定して(最終的に“1”又は“0”の値に判定して)、判定結果を出力する。言い換えれば、ラッチ部は、プリアンプ部の出力を基に、アナログ入力信号VINと比較基準電圧Vrefiとの大小関係を判定する。 Specifically, each of the comparators CMPi has a preamplifier part and a latch part. The preamplifier unit receives the analog input signal VIN and the comparison reference voltage Vrefi. The preamplifier unit amplifies and outputs the difference (difference voltage) between the input analog input signal VIN and the comparison reference voltage Vrefi. The latch unit determines the sign of the output of the preamplifier unit (finally determines a value of “1” or “0”) and outputs a determination result. In other words, the latch unit determines the magnitude relationship between the analog input signal VIN and the comparison reference voltage Vrefi based on the output of the preamplifier unit.
 エンコーダENC1は、各比較器CMPiでのアナログ入力信号VINと比較基準電圧Vrefiとの比較結果(各比較器CMPiのラッチ部からの出力)が入力される。エンコーダENC1は、それら比較結果をエンコードしてデジタル信号DT[n-1:0]に変換し出力する。 The encoder ENC1 receives a comparison result (an output from the latch unit of each comparator CMPi) between the analog input signal VIN and the comparison reference voltage Vrefi in each comparator CMPi. The encoder ENC1 encodes these comparison results, converts them into digital signals DT [n-1: 0], and outputs them.
 図2は、本実施形態におけるプリアンプ部の回路構成例を示す図である。本実施形態におけるプリアンプ部は、CMOS製造技術(プロセス技術)を適用してCS(Charge steering)アンプの回路構成を実現したものである。本実施形態におけるプリアンプ部は、増幅を司る差動対のトランジスタ(駆動素子)としてMOS(metal oxide semiconductor)トランジスタを適用して構成される。 FIG. 2 is a diagram illustrating a circuit configuration example of the preamplifier unit in the present embodiment. The preamplifier unit in the present embodiment is a circuit configuration of a CS (Charge-steering) amplifier by applying a CMOS manufacturing technology (process technology). The preamplifier section in this embodiment is configured by applying a MOS (metal oxide semiconductor) transistor as a differential pair transistor (driving element) that controls amplification.
 本実施形態におけるプリアンプ部は、負荷容量CL1、CL2、MOSトランジスタM1、M2、電荷源CS、検出容量CC1、CC2、及びスイッチSW11、SW12、SW21、SW22、SW31、SW32、SW41、SW42、SW51、SW52、SW6を有する。 The preamplifier unit in this embodiment includes load capacitors CL1 and CL2, MOS transistors M1 and M2, charge source CS, detection capacitors CC1 and CC2, and switches SW11, SW12, SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52 and SW6 are provided.
 負荷容量CL1、CL2は、負荷素子をなすものである。負荷容量CL1は、一方の電極が電源電圧(Vcc)に接続され、他方の電極がスイッチSW21を介してMOSトランジスタM1のドレインに接続されている。同様に、負荷容量CL2は、一方の電極が電源電圧(Vcc)に接続され、他方の電極がスイッチSW22を介してMOSトランジスタM2のドレインに接続されている。また、負荷容量CL1、CL2に並列してスイッチSW11、SW12が設けられている。スイッチSW11により負荷容量CL1における一方の電極と他方の電極とが接続可能となっており、スイッチSW12により負荷容量CL2における一方の電極と他方の電極とが接続可能となっている。 The load capacities CL1 and CL2 form load elements. The load capacitor CL1 has one electrode connected to the power supply voltage (Vcc) and the other electrode connected to the drain of the MOS transistor M1 via the switch SW21. Similarly, the load capacitor CL2 has one electrode connected to the power supply voltage (Vcc) and the other electrode connected to the drain of the MOS transistor M2 via the switch SW22. Further, switches SW11 and SW12 are provided in parallel with the load capacitors CL1 and CL2. One electrode and the other electrode of the load capacitor CL1 can be connected by the switch SW11, and one electrode and the other electrode of the load capacitor CL2 can be connected by the switch SW12.
 MOSトランジスタM1、M2は、駆動素子をなすものである。MOSトランジスタM1は、ゲートが検出容量CC1の一方の電極に接続される。検出容量CC1の他方の電極には、スイッチSW41を介して正相アナログ入力信号VINPが供給され、スイッチSW51を介して正相比較基準電圧VREFPが供給される。また、MOSトランジスタM2は、ゲートが検出容量CC2の一方の電極に接続される。検出容量CC2の他方の電極には、スイッチSW42を介して逆相アナログ入力信号VINNが供給され、スイッチSW52を介して逆相比較基準電圧VREFNが供給される。 MOS transistors M1 and M2 form drive elements. The MOS transistor M1 has a gate connected to one electrode of the detection capacitor CC1. A positive-phase analog input signal VINP is supplied to the other electrode of the detection capacitor CC1 through the switch SW41, and a positive-phase comparison reference voltage VREFP is supplied through the switch SW51. Further, the gate of the MOS transistor M2 is connected to one electrode of the detection capacitor CC2. A negative-phase analog input signal VINN is supplied to the other electrode of the detection capacitor CC2 via the switch SW42, and a negative-phase comparison reference voltage VREFN is supplied via the switch SW52.
 MOSトランジスタM1、M2のソースは、電荷源CSの一方の電極に接続されるとともに、スイッチSW6を介して基準電位(例えばグラウンド)に接続される。なお、電荷源CSは、他方の電極に制御信号φが供給される。また、スイッチSW31によりMOSトランジスタM1のドレインとゲートとが接続可能となっており、スイッチSW32によりMOSトランジスタM2のドレインとゲートとが接続可能となっている。 The sources of the MOS transistors M1 and M2 are connected to one electrode of the charge source CS and to a reference potential (for example, ground) through the switch SW6. In the charge source CS, the control signal φ is supplied to the other electrode. Further, the drain and gate of the MOS transistor M1 can be connected by the switch SW31, and the drain and gate of the MOS transistor M2 can be connected by the switch SW32.
 スイッチSW11、SW12、SW21、SW22、SW31、SW32、SW41、SW42、SW51、SW52、SW6のそれぞれは、任意のスイッチング素子、もしくは任意のスイッチング回路で構成される。例えば、NチャネルMOSトランジスタでスイッチを構成しても良いし、PチャネルMOSトランジスタでスイッチを構成しても良い。また、1組のNチャネルMOSトランジスタとPチャネルMOSトランジスタとからなるトランスファゲートでスイッチを構成しても良い。 Each of the switches SW11, SW12, SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52, SW6 is composed of an arbitrary switching element or an arbitrary switching circuit. For example, an N channel MOS transistor may constitute a switch, or a P channel MOS transistor may constitute a switch. Further, the switch may be constituted by a transfer gate composed of a pair of N channel MOS transistor and P channel MOS transistor.
 ここで、スイッチSW11、SW12、SW31、SW32、SW51、SW52、及びSW6は、制御信号φが供給され、制御信号φによって開閉制御される。また、スイッチSW21、SW22、SW41、及びSW42は、制御信号/φ(制御信号φの逆相信号)が供給され、制御信号/φによって開閉制御される。以下、本実施形態において、各スイッチは、供給される制御信号φ(又は/φ)がハイレベル(“H”、例えば電源電圧Vcc)の場合に導通状態(閉状態、オン状態)とされ、ローレベル(“L”、例えば基準電位)の場合に非導通状態(開状態、オフ状態)とされるものとする。 Here, the switches SW11, SW12, SW31, SW32, SW51, SW52, and SW6 are supplied with a control signal φ and are controlled to be opened and closed by the control signal φ. The switches SW21, SW22, SW41, and SW42 are supplied with a control signal / φ (a reverse phase signal of the control signal φ) and are controlled to be opened and closed by the control signal / φ. Hereinafter, in the present embodiment, each switch is in a conductive state (closed state, on state) when the supplied control signal φ (or / φ) is at a high level (“H”, for example, the power supply voltage Vcc). In the case of a low level (“L”, for example, a reference potential), a non-conduction state (open state, off state) is assumed.
 プリアンプ部は、負荷容量CL1の他方の電極とスイッチSW21との接続点の電圧を逆相出力信号VOUTNとして出力する。また、プリアンプ部は、負荷容量CL2の他方の電極とスイッチSW22との接続点の電圧を正相出力信号VOUTPとして出力する。正相出力信号VOUTP、逆相出力信号VOUTNは、比較器内のラッチ部に出力される。 The preamplifier unit outputs the voltage at the connection point between the other electrode of the load capacitor CL1 and the switch SW21 as a reverse phase output signal VOUTN. The preamplifier unit outputs the voltage at the connection point between the other electrode of the load capacitor CL2 and the switch SW22 as the positive phase output signal VOUTP. The normal phase output signal VOUTP and the negative phase output signal VOUTN are output to a latch unit in the comparator.
 次に、本実施形態におけるプリアンプ部の動作について、図3及び図4を参照して説明する。本実施形態におけるプリアンプ部は、リセット期間において制御信号φを“H”とするとともに制御信号/φを“L”として電荷源CSに電荷を蓄える。そして、プリアンプ部は、増幅期間において制御信号φを“L”とするとともに制御信号/φを“H”として、電荷源CSに蓄えられた電荷を負荷容量CL1、CL2へ移動させることで増幅を行う。 Next, the operation of the preamplifier unit in this embodiment will be described with reference to FIGS. The preamplifier section in this embodiment stores the charge in the charge source CS with the control signal φ set to “H” and the control signal / φ set to “L” during the reset period. Then, the preamplifier unit sets the control signal φ to “L” and sets the control signal / φ to “H” during the amplification period, and moves the charges stored in the charge source CS to the load capacitors CL1 and CL2, thereby amplifying the signals. Do.
 また、本実施形態におけるプリアンプ部では、オフセットの主要因が増幅を司るトランジスタM1、M2の閾値電圧ばらつきであることに着目してオフセット補償を実現する。本実施形態におけるプリアンプ部は、リセット期間においてオフセット電圧を含む閾値電圧に係る電圧情報を検出して検出容量CC1、CC2に記憶し、増幅期間において検出容量CC1、CC2に記憶した電圧情報を用いてオフセットをキャンセルする。なお、以下の説明では、トランジスタM1、M2のそれぞれにおける閾値電圧をVTH1、VTH2、そのばらつきをΔVTH1、ΔVTH2とする。図3及び図4においては、閾値電圧ばらつきに相当する電圧を電圧源OV1、OV2として模式的に図示している。 Further, in the preamplifier section in this embodiment, the offset compensation is realized by paying attention to the fact that the main factor of the offset is the threshold voltage variation of the transistors M1 and M2 responsible for amplification. The preamplifier unit in the present embodiment detects voltage information related to the threshold voltage including the offset voltage in the reset period and stores it in the detection capacitors CC1 and CC2, and uses the voltage information stored in the detection capacitors CC1 and CC2 in the amplification period. Cancel the offset. In the following description, the threshold voltages of the transistors M1 and M2 are VTH1 and VTH2, and the variations thereof are ΔVTH1 and ΔVTH2. 3 and 4, voltages corresponding to threshold voltage variations are schematically illustrated as voltage sources OV1 and OV2.
 まず、リセット期間での動作について、図3を参照して説明する。リセット期間では、制御信号φが“H”とされるととともに制御信号/φが“L”とされる。これにより、リセット期間においては図3に示すように、スイッチSW11、SW12、SW31、SW32、SW51、SW52、SW6が導通状態(オン状態)となり、スイッチSW21、SW22、SW41、SW42が非導通状態(オフ状態)となる。 First, the operation in the reset period will be described with reference to FIG. In the reset period, the control signal φ is set to “H” and the control signal / φ is set to “L”. Thereby, in the reset period, as shown in FIG. 3, the switches SW11, SW12, SW31, SW32, SW51, SW52, and SW6 are in a conductive state (on state), and the switches SW21, SW22, SW41, and SW42 are in a nonconductive state ( Off state).
 すなわち、スイッチSW41が非導通状態となり、スイッチSW51が導通状態となることで、ノードN11の電位が比較基準電圧VREFPとなる。また、スイッチSW21が非導通状態となり、スイッチSW31、SW6が導通状態となることで、トランジスタM1はゲートとドレインとの間が接続され、ソースが基準電位に接続される。そのため、トランジスタM1が検出容量CC1に蓄えられた電荷を放電することによりノードN21の電位が低下していき、ノードN21の電位が(VTH1+ΔVTH1)まで低下するとトランジスタM1がオフする。つまり、リセット期間においてノードN21の電位は最終的に(VTH1+ΔVTH1)の一定値となる。したがって、検出容量CC1の容量をCV1とすると、検出容量CC1にはCV1×(VREFP-(VTH1+ΔVTH1))の電荷が蓄積される。このようにして、検出容量CC1にオフセット電圧ΔVTH1を含む閾値電圧に係る電圧情報が記憶される。 That is, when the switch SW41 is turned off and the switch SW51 is turned on, the potential of the node N11 becomes the comparison reference voltage VREFP. Further, when the switch SW21 is turned off and the switches SW31 and SW6 are turned on, the transistor M1 is connected between the gate and the drain, and the source is connected to the reference potential. Therefore, the transistor M1 discharges the electric charge stored in the detection capacitor CC1, so that the potential of the node N21 decreases. When the potential of the node N21 decreases to (VTH1 + ΔVTH1), the transistor M1 is turned off. That is, in the reset period, the potential of the node N21 finally becomes a constant value of (VTH1 + ΔVTH1). Therefore, assuming that the capacitance of the detection capacitor CC1 is CV1, a charge of CV1 × (VREFP− (VTH1 + ΔVTH1)) is accumulated in the detection capacitor CC1. In this manner, voltage information related to the threshold voltage including the offset voltage ΔVTH1 is stored in the detection capacitor CC1.
 同様に、スイッチSW42が非導通状態となり、スイッチSW52が導通状態となることで、ノードN12の電位が比較基準電圧VREFNとなる。また、スイッチSW22が非導通状態となり、スイッチSW32、SW6が導通状態となることで、ノードN22の電位は最終的に(VTH2+ΔVTH2)の一定値となる。したがって、検出容量CC2の容量をCV2とすると、検出容量CC2にはCV2×(VREFN-(VTH2+ΔVTH2))の電荷が蓄積される。このようにして、検出容量CC2にオフセット電圧ΔVTH2を含む閾値電圧に係る電圧情報が記憶される。 Similarly, the switch SW42 is turned off and the switch SW52 is turned on, so that the potential of the node N12 becomes the comparison reference voltage VREFN. Further, when the switch SW22 is turned off and the switches SW32 and SW6 are turned on, the potential of the node N22 finally becomes a constant value of (VTH2 + ΔVTH2). Therefore, assuming that the capacitance of the detection capacitor CC2 is CV2, the charge of CV2 × (VREFN− (VTH2 + ΔVTH2)) is accumulated in the detection capacitor CC2. In this manner, voltage information related to the threshold voltage including the offset voltage ΔVTH2 is stored in the detection capacitor CC2.
 次に、前述したリセット期間に続く増幅期間での動作について、図4を参照して説明する。増幅期間では、制御信号φが“L”とされるととともに制御信号/φが“H”とされる。これにより、増幅期間においては図4に示すように、スイッチSW21、SW22、SW41、SW42が導通状態(オン状態)となり、スイッチSW11、SW12、SW31、SW32、SW51、SW52、SW6が非導通状態(オフ状態)となる。 Next, the operation in the amplification period following the reset period described above will be described with reference to FIG. In the amplification period, the control signal φ is set to “L” and the control signal / φ is set to “H”. As a result, as shown in FIG. 4, the switches SW21, SW22, SW41, and SW42 are in a conductive state (ON state) and the switches SW11, SW12, SW31, SW32, SW51, SW52, and SW6 are in a nonconductive state during the amplification period. Off state).
 すなわち、スイッチSW41が導通状態となり、スイッチSW31、SW51が非導通状態となることで、検出容量CC1が正相アナログ入力信号VINPの入力端とトランジスタM1のゲートとの間に直列に接続される。このとき、ノードN11の電位は正相アナログ入力信号VINPの電位である。また、増幅期間において、リセット期間に検出容量CC1に蓄積された電荷は保存される。したがって、ノードN21の電位は(VINP-VREFP)+(VTH1+ΔVTH1)となり、ノードN31の電位は(VINP-VREFP)+VTH1となる。 That is, when the switch SW41 is turned on and the switches SW31 and SW51 are turned off, the detection capacitor CC1 is connected in series between the input terminal of the positive-phase analog input signal VINP and the gate of the transistor M1. At this time, the potential of the node N11 is the potential of the positive phase analog input signal VINP. In the amplification period, the charge accumulated in the detection capacitor CC1 during the reset period is stored. Therefore, the potential of the node N21 is (VINP−VREFP) + (VTH1 + ΔVTH1), and the potential of the node N31 is (VINP−VREFP) + VTH1.
 同様に、スイッチSW42が導通状態となり、スイッチSW32、SW52が非導通状態となることで、検出容量CC2が逆相アナログ入力信号VINNの入力端とトランジスタM2のゲートとの間に直列に接続される。これにより、ノードN12の電位は逆相アナログ入力信号VINNの電位となる。したがって、ノードN22の電位は(VINN-VREFN)+(VTH2+ΔVTH2)となり、ノードN32の電位は(VINN-VREFN)+VTH2となる。 Similarly, when the switch SW42 is turned on and the switches SW32 and SW52 are turned off, the detection capacitor CC2 is connected in series between the input terminal of the negative-phase analog input signal VINN and the gate of the transistor M2. . As a result, the potential of the node N12 becomes the potential of the negative-phase analog input signal VINN. Therefore, the potential of the node N22 is (VINN−VREFN) + (VTH2 + ΔVTH2), and the potential of the node N32 is (VINN−VREFN) + VTH2.
 このようにして、リセット期間において検出容量CC1に記憶された電圧情報を用い、オフセットの要因であるトランジスタM1の閾値電圧のばらつきΔVTH1がキャンセルされ、トランジスタM1のゲートには電位(VINP-VREFP)+VTH1が入力される。同様に、リセット期間において検出容量CC2に記憶された電圧情報を用い、オフセットの要因であるトランジスタM2の閾値電圧のばらつきΔVTH2がキャンセルされ、トランジスタM2のゲートには電位(VINN-VREFN)+VTH2が入力される。 In this way, the voltage information stored in the detection capacitor CC1 during the reset period is used to cancel the threshold voltage variation ΔVTH1 of the transistor M1 that is the cause of the offset, and the potential (VINP−VREFP) + VTH1 is applied to the gate of the transistor M1. Is entered. Similarly, the voltage information stored in the detection capacitor CC2 during the reset period is used to cancel the threshold voltage variation ΔVTH2 of the transistor M2, which is a cause of the offset, and the potential (VINN−VREFN) + VTH2 is input to the gate of the transistor M2. Is done.
 これにより、トランジスタM1が電位差(VINP-VREFP)に応じてオン/オフされることで、正相アナログ入力信号VINPと正相比較基準電圧VREFPとの差電圧が増幅され逆相出力信号VOUTNとして出力される。同様に、トランジスタM2が電位差(VINN-VREFN)に応じてオン/オフされることで、逆相アナログ入力信号VINNと逆相比較基準電圧VREFNとの差電圧が増幅され正相出力信号VOUTPとして出力される。 As a result, the transistor M1 is turned on / off according to the potential difference (VINP−VREFP), whereby the differential voltage between the positive phase analog input signal VINP and the positive phase comparison reference voltage VREFP is amplified and output as the negative phase output signal VOUTN. Is done. Similarly, when the transistor M2 is turned on / off according to the potential difference (VINN−VREFN), the differential voltage between the negative phase analog input signal VINN and the negative phase comparison reference voltage VREFN is amplified and output as the positive phase output signal VOUTP. Is done.
 以上説明したように、本実施形態によれば比較器CMPiが有するプリアンプ部にて、リセット期間にはオフセット電圧を含む閾値電圧に係る電圧情報が検出されて検出容量CC1、CC2に記憶され、増幅期間には検出容量CC1、CC2に記憶した電圧情報を用いてオフセットがキャンセルされる。これにより、CMOS製造技術を適用してCSアンプの回路構成を実現し、駆動素子としてMOSトランジスタを用いても、オフセットをキャンセルすることが可能となる。したがって、CSアンプの低消費電力性を維持したまま、オフセットキャンセルを行えるプリアンプ部を有する比較器をCMOS製造技術により提供することができ、他の機能ブロックとの集積化が容易になるとともに、製造コストを低減することができる。また、その比較器を用いてAD変換器を構成することにより、AD変換器の消費電力を大幅に削減することができる。 As described above, according to the present embodiment, in the preamplifier unit included in the comparator CMPi, voltage information related to the threshold voltage including the offset voltage is detected and stored in the detection capacitors CC1 and CC2 during the reset period. During the period, the offset is canceled using the voltage information stored in the detection capacitors CC1 and CC2. As a result, the circuit configuration of the CS amplifier is realized by applying the CMOS manufacturing technology, and the offset can be canceled even if the MOS transistor is used as the drive element. Therefore, a comparator having a preamplifier unit capable of performing offset cancellation can be provided by CMOS manufacturing technology while maintaining the low power consumption of the CS amplifier, and it is easy to integrate with other functional blocks and manufacture. Cost can be reduced. Further, by configuring the AD converter using the comparator, the power consumption of the AD converter can be greatly reduced.
 前述した説明では、スイッチを駆動する(開閉制御する)クロック信号が、φ及び/φの2種類の場合を示している。しかし、スイッチをMOSトランジスタで構成した場合には、チャネルチャージインジェクションやクロックフィードスルーなどにより、オフセットのキャンセル効果が低下する場合がある。このような場合には、従来から知られているようなノンオーバラップクロックなどの手法を用いて、クロック間に適切なタイミングマージンを取ることが望ましい。 In the above description, there are two cases where the clock signal for driving the switch (opening / closing control) is φ and / φ. However, when the switch is composed of MOS transistors, the offset canceling effect may be reduced due to channel charge injection, clock feedthrough, or the like. In such a case, it is desirable to take an appropriate timing margin between the clocks using a conventionally known method such as a non-overlap clock.
 図10は、本実施形態におけるラッチ部の構成例を示す図である。図10に示すラッチ部は、前述したCMOS製造技術を適用したCSアンプの回路技術をラッチ部に応用したものである。図10において、M1、M2、M5、M6はMOSトランジスタ(NチャネルMOSトランジスタ)であり、M7、M8はMOSトランジスタ(PチャネルMOSトランジスタ)である。CSは電荷源であり、CC1、CC2は検出容量である。また、SW21、SW22、SW31、SW32、SW41、SW42、SW51、SW52、SW6、SW91、SW92はスイッチである。参照電位入力は、正相入力及び逆相入力ともに同じ電位VREFとする。なお、図10において、図2に示した構成要素と同一の機能を有する構成要素には同一の符号を付しており、その構成要素についての重複する説明は省略する。 FIG. 10 is a diagram illustrating a configuration example of the latch unit in the present embodiment. The latch unit shown in FIG. 10 is obtained by applying the circuit technology of the CS amplifier to which the above-described CMOS manufacturing technology is applied to the latch unit. In FIG. 10, M1, M2, M5, and M6 are MOS transistors (N channel MOS transistors), and M7 and M8 are MOS transistors (P channel MOS transistors). CS is a charge source, and CC1 and CC2 are detection capacitors. SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52, SW6, SW91, and SW92 are switches. The reference potential input is the same potential VREF for both the positive phase input and the negative phase input. 10, components having the same functions as those shown in FIG. 2 are denoted by the same reference numerals, and redundant description of the components is omitted.
 MOSトランジスタM5とM7とがインバータを構成するように接続されており、MOSトランジスタM6とM8とがインバータを構成するように接続されている。一方のインバータの出力は他方のインバータの入力に接続され、正帰還がかけられている。すなわち、MOSトランジスタM5及びM7のドレインの相互接続点がMOSトランジスタM6及びM8のゲートに接続され、MOSトランジスタM6及びM8のドレインの相互接続点がMOSトランジスタM5及びM7のゲートに接続される。また、ラッチ部の出力VOUTP、VOUTNにはスイッチSW91、SW92が接続されており、リセット期間中には出力VOUTP、VOUTNは、電源電圧(Vcc)に接続されリセットされる。 MOS transistors M5 and M7 are connected to form an inverter, and MOS transistors M6 and M8 are connected to form an inverter. The output of one inverter is connected to the input of the other inverter, and positive feedback is applied. That is, the interconnection point between the drains of the MOS transistors M5 and M7 is connected to the gates of the MOS transistors M6 and M8, and the interconnection point between the drains of the MOS transistors M6 and M8 is connected to the gates of the MOS transistors M5 and M7. Also, switches SW91 and SW92 are connected to the outputs VOUTP and VOUTN of the latch unit, and the outputs VOUTP and VOUTN are connected to the power supply voltage (Vcc) and reset during the reset period.
 図10に示したような構成によれば、入力信号はMOSトランジスタM1、M2により増幅され、MOSトランジスタM5、M6、M7、M8からなる正帰還回路によりラッチされる。例えば、図10に例示したラッチ部と、図2あるいは図7に示すプリアンプ部とを組み合わせて比較器を構成することで、低消費電力かつオフセット電圧の小さな比較器を実現することが可能になる。なお、前述のラッチ部においても、必要に応じてクロック間に適切なタイミングマージンを取ることが望ましい。 According to the configuration shown in FIG. 10, the input signal is amplified by the MOS transistors M1 and M2, and is latched by the positive feedback circuit including the MOS transistors M5, M6, M7, and M8. For example, by combining the latch unit illustrated in FIG. 10 with the preamplifier unit illustrated in FIG. 2 or FIG. 7, a comparator with low power consumption and a small offset voltage can be realized. . In the above-described latch unit, it is desirable to take an appropriate timing margin between clocks as necessary.
 図11は、本実施形態におけるラッチ部の他の構成例を示す図である。図11において、M1、M2、M5、M6はMOSトランジスタ(NチャネルMOSトランジスタ)であり、M7、M8はMOSトランジスタ(PチャネルMOSトランジスタ)である。CC1、CC2は検出容量である。また、SW21、SW22、SW31、SW32、SW41、SW42、SW51、SW52、SW6、SW91、SW92、SW10はスイッチである。参照電位入力は、正相入力及び逆相入力ともに同じ電位VREFとする。なお、図11において、図2、図10に示した構成要素と同一の機能を有する構成要素には同一の符号を付しており、その構成要素についての重複する説明は省略する。 FIG. 11 is a diagram illustrating another configuration example of the latch unit according to the present embodiment. In FIG. 11, M1, M2, M5 and M6 are MOS transistors (N channel MOS transistors), and M7 and M8 are MOS transistors (P channel MOS transistors). CC1 and CC2 are detection capacities. SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52, SW6, SW91, SW92, and SW10 are switches. The reference potential input is the same potential VREF for both the positive phase input and the negative phase input. In FIG. 11, components having the same functions as those shown in FIGS. 2 and 10 are denoted by the same reference numerals, and redundant description of the components is omitted.
 MOSトランジスタM1、M2のソースは、スイッチSW6を介して基準電位(例えばグラウンド)に接続されるとともに、スイッチSW10を介して基準電位に接続される。スイッチSW10を制御するクロック信号/φ’は、クロック信号/φよりもわずかに遅れたクロック信号である。クロック信号/φ’でスイッチSW10を制御することで、スイッチSW21、SW22、SW41、SW42で発生した雑音による誤動作を防止することが可能になる。 The sources of the MOS transistors M1 and M2 are connected to a reference potential (for example, ground) via the switch SW6 and to the reference potential via the switch SW10. The clock signal / φ 'for controlling the switch SW10 is a clock signal slightly delayed from the clock signal / φ. By controlling the switch SW10 with the clock signal / φ ', it is possible to prevent malfunction due to noise generated in the switches SW21, SW22, SW41, and SW42.
 図11に示したような構成によれば、ラッチ部の出力VOUTP、VOUTNの電位を確実に基準電位(例えば0V)あるいは電源電圧(Vcc)とすることができ、次段に接続される論理回路を誤りなく駆動することが可能になる。なお、前述のラッチ部においても、必要に応じてクロック間に適切なタイミングマージンを取ることが望ましい。 According to the configuration as shown in FIG. 11, the potential of the outputs VOUTP and VOUTN of the latch unit can be reliably set to the reference potential (for example, 0 V) or the power supply voltage (Vcc), and the logic circuit connected to the next stage Can be driven without error. In the above-described latch unit, it is desirable to take an appropriate timing margin between clocks as necessary.
 図5A及び図5Bは、本実施形態におけるプリアンプ部のオフセット補償の効果を説明するための図である。図5A及び図5Bには、CMOS製造技術を適用して構成したCSアンプでのオフセット電圧に係るシミュレーション結果を示している。なお、図5A及び図5Bに示したシミュレーション結果は、90nmCMOS製造技術を用いたと仮定し、モンテカルロ法を用いて計算したものである。図5Aには、比較参照のためにオフセット補償機能を有しない場合のシミュレーション結果を示し、図5Bには、本実施形態におけるオフセット補償機能を有するプリアンプ部でのシミュレーション結果を示している。図5A及び図5Bに示されるように、本実施形態におけるオフセット補償技術を適用することにより、オフセット電圧を約1/7に低減することができる。 5A and 5B are diagrams for explaining the effect of offset compensation of the preamplifier unit in the present embodiment. 5A and 5B show simulation results relating to the offset voltage in the CS amplifier configured by applying the CMOS manufacturing technology. The simulation results shown in FIGS. 5A and 5B are calculated using the Monte Carlo method on the assumption that the 90 nm CMOS manufacturing technology is used. FIG. 5A shows a simulation result when the offset compensation function is not provided for comparison and reference, and FIG. 5B shows a simulation result in the preamplifier unit having the offset compensation function in the present embodiment. As shown in FIGS. 5A and 5B, the offset voltage can be reduced to about 1/7 by applying the offset compensation technique in the present embodiment.
 図6Aは、本実施形態におけるプリアンプ部の他の構成例を示す図である。図6Aには、Capacitive
averaging技術を適用した場合のプリアンプ部の構成例を示している。図6Aにおいて、PA1、PA2、PA3、PA4、・・・はプリアンプ部であり、CAVP1、CAVP2、CAVP3、・・・及びCAVN1、CAVN2、CAVN3、・・・は容量である。
FIG. 6A is a diagram illustrating another configuration example of the preamplifier unit in the present embodiment. In FIG. 6A, Capacitive
The example of a structure of the preamplifier part at the time of applying the averaging technique is shown. 6A, PA1, PA2, PA3, PA4,... Are preamplifier units, and CAVP1, CAVP2, CAVP3,... And CAVN1, CAVN2, CAVN3,.
 プリアンプ部PAi(i=1、2、3、4、・・・)は、アナログ入力信号VIN及び比較基準電圧Vrefiが入力される。容量CAVPi(i=1、2、3、・・・)は、一方の電極がプリアンプ部PAiの正相側出力に接続され、他方の電極がプリアンプ部PA(i+1)の正相側出力に接続される。また、容量CAVNi(i=1、2、3、・・・)は、一方の電極がプリアンプ部PAiの逆相側出力に接続され、他方の電極がプリアンプ部PA(i+1)の逆相側出力に接続される。すなわち、プリアンプ部PAiの正相側出力とプリアンプ部PA(i+1)の正相側出力とが容量CAVPiを介して結合されている。プリアンプ部PAiの逆相側出力とプリアンプ部PA(i+1)の逆相側出力とが容量CAVNiを介して結合されている。 The preamplifier section PAi (i = 1, 2, 3, 4,...) Receives the analog input signal VIN and the comparison reference voltage Vrefi. The capacitor CAVPi (i = 1, 2, 3,...) Has one electrode connected to the positive phase side output of the preamplifier part PAi and the other electrode connected to the positive phase side output of the preamplifier part PA (i + 1). Is done. The capacitor CAVNi (i = 1, 2, 3,...) Has one electrode connected to the negative phase side output of the preamplifier part PAi, and the other electrode having the negative phase side output of the preamplifier part PA (i + 1). Connected to. That is, the positive phase side output of the preamplifier unit PAi and the positive phase side output of the preamplifier unit PA (i + 1) are coupled via the capacitor CAVPi. The negative phase side output of the preamplifier part PAi and the negative phase side output of the preamplifier part PA (i + 1) are coupled via a capacitor CAVNi.
 プリアンプ部に対してCapacitive averaging技術を適用することで、図6Bに示すようにオフセット電圧をさらに低減することができる。なお、図6Bにおいて、LN1がCapacitive averaging技術を適用した場合(容量あり)を示しており、LN2がCapacitive averaging技術を適用していない場合(容量なし)を示している。 By applying the capacitive averaging technology to the preamplifier unit, the offset voltage can be further reduced as shown in FIG. 6B. 6B shows a case where LN1 applies the Capacitive Averaging technique (with capacity), and LN2 shows a case where the Capacitive Averaging technique is not applied (without capacity).
 図7は、本実施形態におけるプリアンプ部の他の構成例を示す図である。図7には、正帰還回路をさらに備えるようにした場合のプリアンプ部の構成例を示している。図7において、CL1、CL2は負荷容量であり、M1、M2はMOSトランジスタ(NチャネルMOSトランジスタ)であり、M3、M4はMOSトランジスタ(PチャネルMOSトランジスタ)である。CS、CSPは電荷源であり、CC1、CC2は検出容量である。また、SW11、SW12、SW21、SW22、SW31、SW32、SW41、SW42、SW51、SW52、SW6、SW7、SW8はスイッチである。なお、図7において、図2に示した構成要素と同一の機能を有する構成要素には同一の符号を付しており、その構成要素についての重複する説明は省略する。 FIG. 7 is a diagram showing another configuration example of the preamplifier unit in the present embodiment. FIG. 7 shows a configuration example of the preamplifier unit in the case where a positive feedback circuit is further provided. In FIG. 7, CL1 and CL2 are load capacitors, M1 and M2 are MOS transistors (N channel MOS transistors), and M3 and M4 are MOS transistors (P channel MOS transistors). CS and CSP are charge sources, and CC1 and CC2 are detection capacitors. SW11, SW12, SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52, SW6, SW7, and SW8 are switches. In FIG. 7, components having the same functions as those shown in FIG. 2 are denoted by the same reference numerals, and redundant description of the components is omitted.
 電荷源CSPの一方の電極は、制御信号φによって開閉制御されるスイッチSW7を介して電源電圧(Vcc)に接続され、制御信号/φによって開閉制御されるスイッチSW8を介してトランジスタM3、M4のソースに接続される。したがって、電荷源CSPの一方の電極は、リセット期間において電源電圧(Vcc)に接続され、増幅期間においてトランジスタM3、M4のソースに接続される。電荷源CSPの他方の電極には、制御信号/φが供給されている。 One electrode of the charge source CSP is connected to the power supply voltage (Vcc) via a switch SW7 that is controlled to be opened and closed by a control signal φ, and is connected to the transistors M3 and M4 via a switch SW8 that is controlled to be opened and closed by a control signal / φ. Connected to the source. Therefore, one electrode of the charge source CSP is connected to the power supply voltage (Vcc) in the reset period, and is connected to the sources of the transistors M3 and M4 in the amplification period. A control signal / φ is supplied to the other electrode of the charge source CSP.
 また、トランジスタM3のドレイン及びトランジスタM4のゲートが、一方の電極が電源電圧(Vcc)に接続された負荷容量CL1の他方の電極とスイッチSW21との接続点に接続されている。同様に、トランジスタM3のゲート及びトランジスタM4のドレインが、一方の電極が電源電圧に接続された負荷容量CL2の他方の電極とスイッチSW22との接続点に接続されている。 Further, the drain of the transistor M3 and the gate of the transistor M4 are connected to the connection point between the switch SW21 and the other electrode of the load capacitor CL1 whose one electrode is connected to the power supply voltage (Vcc). Similarly, the gate of the transistor M3 and the drain of the transistor M4 are connected to the connection point between the switch SW22 and the other electrode of the load capacitor CL2 whose one electrode is connected to the power supply voltage.
 このような構成によれば、電荷源CSPは、リセット期間において一方の電極が電源電圧(Vcc)に接続されるとともに他方の電極が“L”とされて電荷を蓄積する。そして、増幅期間において電荷源CSPの一方の電極がトランジスタM3、M4のソースに接続されることで、負荷容量CL1とスイッチSW21との接続点の電位及び負荷容量CL2とスイッチSW22との接続点の電位に基づき、電荷源CSPに蓄えられた電荷が負荷容量に対して供給される。このとき、電荷源CSP及びトランジスタM3、M4からなる回路は正帰還回路として機能するので、図7に示す構成によれば、利得を向上させ高利得化を図ることができる。 According to such a configuration, in the charge source CSP, one electrode is connected to the power supply voltage (Vcc) and the other electrode is set to “L” in the reset period, and charges are accumulated. In the amplification period, one electrode of the charge source CSP is connected to the sources of the transistors M3 and M4, so that the potential at the connection point between the load capacitor CL1 and the switch SW21 and the connection point between the load capacitor CL2 and the switch SW22 are connected. Based on the potential, the charge stored in the charge source CSP is supplied to the load capacitance. At this time, since the circuit including the charge source CSP and the transistors M3 and M4 functions as a positive feedback circuit, the configuration shown in FIG. 7 can improve the gain and increase the gain.
 図13は、本実施形態におけるラッチ部の他の構成例を示す図である。図13に示すラッチ部は、図10や図11に示したラッチ部と同様に、前述のオフセットキャンセル技術をダブルテールラッチ(例えば、D.Scinkel et al., “A Double-Tail Latch-Type Voltage Sense Amplifier
with 18 ps Setup-Hold Time”, IEEE ISSCC Dig. of Tech. Papers, pp.314-315, Feb.
2007参照)に適用したものである。
FIG. 13 is a diagram illustrating another configuration example of the latch unit in the present embodiment. The latch unit shown in FIG. 13 is similar to the latch unit shown in FIG. 10 and FIG. 11 by using the above-described offset cancellation technique with a double tail latch (for example, D. Scinkel et al., “A Double-Tail Latch-Type Voltage Sense Amplifier
with 18 ps Setup-Hold Time ”, IEEE ISSCC Dig. of Tech. Papers, pp.314-315, Feb.
(See 2007).
 図13に示すラッチ部は、2段構成となっている。1段目の回路部L1は、次段の入力容量を負荷とする容量負荷増幅器として動作する。2段目の回路部L2は、1段目の回路部L1の出力を正帰還回路を用いてラッチしデジタル信号VOUTP、VOUTNを出力する。1段目の回路部L1に本実施形態によるオフセットキャンセル技術を適用することで、オフセット電圧の小さなラッチ部を構成することが可能になる。 The latch portion shown in FIG. 13 has a two-stage configuration. The circuit unit L1 in the first stage operates as a capacitive load amplifier having the input capacitor in the next stage as a load. The second-stage circuit unit L2 latches the output of the first-stage circuit unit L1 using a positive feedback circuit, and outputs digital signals VOUTP and VOUTN. By applying the offset cancellation technique according to the present embodiment to the first-stage circuit unit L1, it is possible to configure a latch unit with a small offset voltage.
 図13において、M1、M2、M9,M10、M13、M14はMOSトランジスタ(NチャネルMOSトランジスタ)であり、M11、M12はMOSトランジスタ(PチャネルMOSトランジスタ)である。CC1、CC2は検出容量である。また、SW11、SW12、SW21、SW22、SW31、SW32、SW41、SW42、SW51、SW52、SW6、SW10、SW13はスイッチである。参照電位入力は、正相入力及び逆相入力ともに同じ電位VREFとする。なお、図13において、図2、図11に示した構成要素と同一の機能を有する構成要素には同一の符号を付しており、その構成要素についての重複する説明は省略する。 In FIG. 13, M1, M2, M9, M10, M13, and M14 are MOS transistors (N-channel MOS transistors), and M11 and M12 are MOS transistors (P-channel MOS transistors). CC1 and CC2 are detection capacities. SW11, SW12, SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52, SW6, SW10, and SW13 are switches. The reference potential input is the same potential VREF for both the positive phase input and the negative phase input. In FIG. 13, components having the same functions as those shown in FIGS. 2 and 11 are denoted by the same reference numerals, and redundant description of the components is omitted.
 MOSトランジスタM9とM11とがインバータを構成するように接続されており、MOSトランジスタM10とM12とがインバータを構成するように接続されている。一方のインバータの出力は他方のインバータの入力に接続され、正帰還がかけられている。すなわち、MOSトランジスタM9及びM11のドレインの相互接続点がMOSトランジスタM10及びM12のゲートに接続され、MOSトランジスタM10及びM12のドレインの相互接続点がMOSトランジスタM9及びM11のゲートに接続される。また、MOSトランジスタM9、M10のソースは、基準電位に接続され、MOSトランジスタM11、M12のソースは、クロック信号/φによって制御されるスイッチSW13を介して電源電圧(Vcc)に接続される。 MOS transistors M9 and M11 are connected to form an inverter, and MOS transistors M10 and M12 are connected to form an inverter. The output of one inverter is connected to the input of the other inverter, and positive feedback is applied. That is, the interconnection point between the drains of the MOS transistors M9 and M11 is connected to the gates of the MOS transistors M10 and M12, and the interconnection point between the drains of the MOS transistors M10 and M12 is connected to the gates of the MOS transistors M9 and M11. The sources of the MOS transistors M9 and M10 are connected to the reference potential, and the sources of the MOS transistors M11 and M12 are connected to the power supply voltage (Vcc) via the switch SW13 controlled by the clock signal / φ.
 MOSトランジスタM13は、ソースが基準電位に接続され、ドレインがMOSトランジスタM10及びM12のゲートに接続される。MOSトランジスタM14は、ソースが基準電位に接続され、ドレインがMOSトランジスタM9及びM11のゲートに接続される。MOSトランジスタM13のゲートには1段目の回路部L1の出力V1Nが供給され、MOSトランジスタM14のゲートには1段目の回路部L1の出力V1Pが供給される。 The MOS transistor M13 has a source connected to the reference potential and a drain connected to the gates of the MOS transistors M10 and M12. The MOS transistor M14 has a source connected to the reference potential and a drain connected to the gates of the MOS transistors M9 and M11. The output V1N of the first-stage circuit portion L1 is supplied to the gate of the MOS transistor M13, and the output V1P of the first-stage circuit portion L1 is supplied to the gate of the MOS transistor M14.
 図13に示すラッチ部は、図11に示したラッチ部と同様の動作により、リセット期間中には、1段目の回路部L1にて差動対を構成するMOSトランジスタM1、M2のオフセット電圧を含む閾値電圧に係る電圧情報が検出されて検出容量CC1、CC2に記憶される。続く増幅期間には、検出容量CC1、CC2に記憶された電圧情報を用いて、差動対を構成するMOSトランジスタM1、M2のオフセットがキャンセルされるため、ラッチ部のオフセットを低減することが可能になる。 The latch unit shown in FIG. 13 operates in the same manner as the latch unit shown in FIG. 11, and during the reset period, the offset voltages of the MOS transistors M1 and M2 constituting the differential pair in the first-stage circuit unit L1. Is detected and stored in the detection capacitors CC1 and CC2. In the subsequent amplification period, the offset of the MOS transistors M1 and M2 constituting the differential pair is canceled using the voltage information stored in the detection capacitors CC1 and CC2, so that the offset of the latch unit can be reduced. become.
 ダブルテールラッチは、差動増幅を行う1段目の回路部L1とラッチを行う2段目の回路部L2とが縦属接続されるので、図11に示したラッチ部と比較して低電圧化に好適な構成となっている。したがって、図13に示す構成によれば、低電圧動作が可能なオフセット電圧の小さいラッチ部を実現することができる。 In the double tail latch, the first-stage circuit portion L1 that performs differential amplification and the second-stage circuit portion L2 that performs latching are cascade-connected, so that the voltage is lower than that of the latch portion shown in FIG. It is a configuration suitable for the conversion. Therefore, according to the configuration shown in FIG. 13, it is possible to realize a latch unit with a small offset voltage capable of low voltage operation.
 図14は、本実施形態におけるラッチ部の他の構成例を示す図である。図14に示すラッチ部は、図13に示したラッチ部にCapacitive averaging技術を適用したものである。図14において、L11、L12、L13、L14、・・・の各々は図13に示したラッチ部における1段目の回路部L1に相当し、L21、L22、L23、L24、・・・の各々は図13に示したラッチ部における2段目の回路部L2に相当する。また、CAVP1、CAVP2、CAVP3、・・・及びCAVN1、CAVN2、CAVN3、・・・は容量である。 FIG. 14 is a diagram illustrating another configuration example of the latch unit in the present embodiment. The latch unit shown in FIG. 14 is obtained by applying the capacitive averaging technique to the latch unit shown in FIG. 14, each of L11, L12, L13, L14,... Corresponds to the first stage circuit section L1 in the latch section shown in FIG. 13, and each of L21, L22, L23, L24,. Corresponds to the second-stage circuit portion L2 in the latch portion shown in FIG. CAVP1, CAVP2, CAVP3,..., And CAVN1, CAVN2, CAVN3,.
 1段目の回路部L1i(i=1、2、3、・・・)の正相側出力L1iPと1段目の回路部L1(i+1)の正相側出力L1(i+1)Pとが容量CAVPiで接続される。また、1段目の回路部L1i(i=1、2、3、・・・)の逆相側出力L1iNと1段目の回路部L1(i+1)の逆相側出力L1(i+1)Nとが容量CAVPiで接続される。 The positive phase side output L1iP of the first stage circuit unit L1i (i = 1, 2, 3,...) And the positive phase side output L1 (i + 1) P of the first stage circuit unit L1 (i + 1) are capacitors. Connected by CAVPi. Further, the negative phase side output L1iN of the first stage circuit portion L1i (i = 1, 2, 3,...) And the negative phase side output L1 (i + 1) N of the first stage circuit portion L1 (i + 1). Are connected by a capacitor CAVPi.
 図13に示したラッチ部にCapacitive averaging技術を適用することで、1段目の回路部L11、L12、L13、L14、・・・の出力におけるオフセット電圧を平均化しオフセットを低減することができる。図14に示す構成によれば、図13に示した構成よりもさらにオフセット電圧を低減することが可能になる。 By applying the capacitive averaging technique to the latch unit shown in FIG. 13, it is possible to average the offset voltage at the output of the first stage circuit units L11, L12, L13, L14,. According to the configuration shown in FIG. 14, the offset voltage can be further reduced as compared with the configuration shown in FIG. 13.
 図15は、本実施形態におけるラッチ部の他の構成例を示す図である。図15に示すラッチ部は、図13に示したラッチ部における1段目の回路部L1に正帰還回路をさらに備え、1段目の回路部L1の利得を高めている。 FIG. 15 is a diagram showing another configuration example of the latch unit in the present embodiment. The latch unit shown in FIG. 15 further includes a positive feedback circuit in the first-stage circuit unit L1 in the latch unit shown in FIG. 13 to increase the gain of the first-stage circuit unit L1.
 図15において、M1、M2、M9,M10、M13、M14はMOSトランジスタ(NチャネルMOSトランジスタ)であり、M11、M12、M15、M16はMOSトランジスタ(PチャネルMOSトランジスタ)である。CC1、CC2は検出容量であり、CPFは容量である。また、SW11、SW12、SW21、SW22、SW31、SW32、SW41、SW42、SW51、SW52、SW6、SW10、SW13、SW14はスイッチである。参照電位入力は、正相入力及び逆相入力ともに同じ電位VREFとする。なお、図15において、図2、図11、図15に示した構成要素と同一の機能を有する構成要素には同一の符号を付しており、その構成要素についての重複する説明は省略する。 In FIG. 15, M1, M2, M9, M10, M13, and M14 are MOS transistors (N-channel MOS transistors), and M11, M12, M15, and M16 are MOS transistors (P-channel MOS transistors). CC1 and CC2 are detection capacities, and CPF is a capacity. SW11, SW12, SW21, SW22, SW31, SW32, SW41, SW42, SW51, SW52, SW6, SW10, SW13, and SW14 are switches. The reference potential input is the same potential VREF for both the positive phase input and the negative phase input. In FIG. 15, components having the same functions as those shown in FIGS. 2, 11, and 15 are denoted by the same reference numerals, and redundant description of the components is omitted.
 1段目の回路部L1に設けた正帰還回路は、MOSトランジスタM15、M16、容量CPF、及びスイッチSW14からなる。MOSトランジスタM15、M16のソースは、クロック信号φによって開閉制御されるスイッチSW14を介して電源電圧(Vcc)に接続される。また、MOSトランジスタM15のドレイン及びMOSトランジスタM16のゲートが、出力V1Nのノードに接続されている。同様に、MOSトランジスタM15のゲート及びMOSトランジスタM16のドレインが、出力V1Pのノードに接続されている。容量CPFは、一方の電極が電源電圧(Vcc)に接続され、他方の電極がMOSトランジスタM15、M16のソースに接続される。 The positive feedback circuit provided in the first-stage circuit unit L1 includes MOS transistors M15 and M16, a capacitor CPF, and a switch SW14. The sources of the MOS transistors M15 and M16 are connected to the power supply voltage (Vcc) via the switch SW14 that is controlled to be opened and closed by the clock signal φ. The drain of the MOS transistor M15 and the gate of the MOS transistor M16 are connected to the node of the output V1N. Similarly, the gate of the MOS transistor M15 and the drain of the MOS transistor M16 are connected to the node of the output V1P. The capacitor CPF has one electrode connected to the power supply voltage (Vcc) and the other electrode connected to the sources of the MOS transistors M15 and M16.
 容量CPFの容量値によって正帰還量が調整可能であり、例えば容量CPFの容量値を大きくすることで1段目の回路部L1の利得を増大させることができる。図15に示す構成によれば、2段目の回路部L2からのオフセットの寄与を低減でき、図13に示した構成よりもオフセット電圧を低減することができる。また、図14に示した例と同様にして、図15に示したラッチ部にCapacitive averaging技術を適用することも可能であり、さらにオフセット電圧を低減することが可能になる。 The positive feedback amount can be adjusted by the capacitance value of the capacitor CPF. For example, by increasing the capacitance value of the capacitor CPF, the gain of the first-stage circuit unit L1 can be increased. According to the configuration shown in FIG. 15, the contribution of the offset from the second-stage circuit unit L2 can be reduced, and the offset voltage can be reduced as compared with the configuration shown in FIG. Similarly to the example shown in FIG. 14, the capacitive averaging technique can be applied to the latch unit shown in FIG. 15, and the offset voltage can be further reduced.
 図12A及び図12Bを参照して、本実施形態における比較器の電力削減の効果について説明する。ここでは、90nmCMOS製造技術の下で、動作周波数が1GHz、オフセット電圧の標準偏差が0.6mV以下になるように設計した場合の消費電力を、シミュレーションを用いて計算した結果を示す。図12Aに示す従来技術による比較器の消費電力と、図12Bに示す本実施形態による比較器の消費電力とを比較した。 With reference to FIG. 12A and FIG. 12B, the effect of the power reduction of the comparator in this embodiment is demonstrated. Here, the results of calculating the power consumption using a simulation when the operating frequency is 1 GHz and the standard deviation of the offset voltage is 0.6 mV or less under the 90 nm CMOS manufacturing technology are shown. The power consumption of the comparator according to the prior art shown in FIG. 12A was compared with the power consumption of the comparator according to the present embodiment shown in FIG. 12B.
 図12Aは、従来技術による比較器の構成例を示す図である。図12Aにおいて、PA1、PA2、PA3はプリアンプ部であり、Lはラッチ部である。また、COP1、COP2、COP3及びCON1、CON2、CON3は容量であり、SW101、SW102、SW103、SW104はスイッチである。 FIG. 12A is a diagram illustrating a configuration example of a comparator according to a conventional technique. In FIG. 12A, PA1, PA2, and PA3 are preamplifier units, and L is a latch unit. COP1, COP2, COP3, CON1, CON2, and CON3 are capacitors, and SW101, SW102, SW103, and SW104 are switches.
 図12Aに示す例では、ラッチ部Lの入力換算オフセットを減らすために、3段のプリアンプ部PA1、PA2、PA3を使用している。プリアンプ部PA1、PA2、PA3は、従来の定電流源でバイアスされた差動アンプを用いている。リセット期間中に、プリアンプ部PA1、PA2、PA3の出力端子に接続した容量COP1、COP2、COP3及びCON1、CON2、CON3にオフセット情報を記憶することで、プリアンプ部PA1、PA2、PA3のオフセットをキャンセルしている。図12Aに示した例では、プリアンプ部PA1、PA2、PA3に常時電流が流れるため、比較器の消費電力は1.7mWとなる。 In the example shown in FIG. 12A, in order to reduce the input conversion offset of the latch unit L, three stages of preamplifier units PA1, PA2, and PA3 are used. The preamplifier sections PA1, PA2, and PA3 use differential amplifiers biased by a conventional constant current source. During the reset period, offset information is stored in the capacitors COP1, COP2, COP3 and CON1, CON2, CON3 connected to the output terminals of the preamplifier units PA1, PA2, PA3, thereby canceling the offsets of the preamplifier units PA1, PA2, PA3. is doing. In the example shown in FIG. 12A, since current always flows through the preamplifier sections PA1, PA2, and PA3, the power consumption of the comparator is 1.7 mW.
 図12Bは、本実施形態による比較器の構成例を示す図である。図12Bにおいて、OCPAはプリアンプ部であり、CANはCapacitive averagingネットワークであり、OCLはラッチ部である。プリアンプ部OCPAは、図2に回路構成を示したオフセットキャンセル可能なCSアンプであり、ラッチ部OCLは、図11に回路構成を示したラッチ部である。プリアンプ部OCPAの出力に、図6Aに示したCapacitive averagingネットワークCANが接続される。 FIG. 12B is a diagram illustrating a configuration example of the comparator according to the present embodiment. In FIG. 12B, OCPA is a preamplifier unit, CAN is a capacitive averaging network, and OCL is a latch unit. The preamplifier section OCPA is an offset cancelable CS amplifier whose circuit configuration is shown in FIG. 2, and the latch section OCL is a latch section whose circuit configuration is shown in FIG. The capacitive averaging network CAN shown in FIG. 6A is connected to the output of the preamplifier unit OCPA.
 図12Bに示す例では、オフセットキャンセルによりラッチ部のオフセットを減らせることから、プリアンプ部に必要とされる利得を小さくすることができ、プリアンプ部OCPAは1段構成となっている。このように構成した場合には、比較器の消費電力はわずか0.2mWであり、本発明により大幅な電力削減が可能である。 In the example shown in FIG. 12B, since the offset of the latch unit can be reduced by offset cancellation, the gain required for the preamplifier unit can be reduced, and the preamplifier unit OCPA has a one-stage configuration. In such a configuration, the power consumption of the comparator is only 0.2 mW, and the power consumption can be greatly reduced by the present invention.
 なお、前述した実施形態においては、並列型AD変換器(全ビットフラッシュAD変換器)を一例として説明したが、本発明はこれに限定されるものではない。例えば、図8Aに示すようなサブレンジング型AD変換器<subranging AD converter>にも適用可能であるし、図8Bに示すような逐次比較型(逐次近似型)AD変換器<SAR (successive approximation register) AD converter>にも適用可能である。 In the above-described embodiment, the parallel AD converter (all-bit flash AD converter) is described as an example, but the present invention is not limited to this. For example, the present invention can be applied to a subranging AD converter <subranging AD converter> as shown in FIG. 8A, or a successive approximation (successive approximation) AD converter <SAR (successive approximation register as shown in FIG. 8B. ) AD に も converter> is also applicable.
 図8Aは、本実施形態におけるアナログデジタル変換器の他の構成例を示す図である。図8Aには、入力されるアナログ入力信号VINをnビット(nは自然数)のデジタル信号DT[n-1:0]に変換するサブレンジング型AD変換器を一例として示している。 FIG. 8A is a diagram showing another configuration example of the analog-digital converter in the present embodiment. FIG. 8A shows an example of a sub-ranging AD converter that converts an input analog input signal VIN into an n-bit (n is a natural number) digital signal DT [n−1: 0].
 図8Aにおいて、71はサンプル・ホールド・アンプ(SHA:sample hold
amplifier)であり、72、75は並列型AD変換器(フラッシュAD変換器)であり、73はデジタルアナログ変換器(DA変換器)であり、74は減算器である。mを0<m<(n-1)の整数として、1段目の並列型AD変換器72はデジタル信号DT[n-1:m]を決定するためのAD変換処理を行い、2段目の並列型AD変換器75はデジタル信号DT[m:0]を決定するためのAD変換処理を行う。すなわち、1段目の並列型AD変換器72は、デジタル信号DT[n-1:0]のうちの上位側ビットについてのAD変換処理を行い、2段目の並列型AD変換器75は、デジタル信号DT[n-1:0]のうちの下位側ビットについてのAD変換処理を行う。並列型AD変換器72、75のそれぞれを、例えば図1に示した並列型AD変換器と同様に構成することで、AD変換器の消費電力を削減することができる。
In FIG. 8A, reference numeral 71 denotes a sample hold amplifier (SHA).
amplifiers 72, 75 are parallel AD converters (flash AD converters), 73 is a digital-analog converter (DA converter), and 74 is a subtractor. The first-stage parallel AD converter 72 performs AD conversion processing to determine the digital signal DT [n−1: m], where m is an integer of 0 <m <(n−1). The parallel AD converter 75 performs AD conversion processing for determining the digital signal DT [m: 0]. That is, the first-stage parallel AD converter 72 performs AD conversion processing on the higher-order bits of the digital signal DT [n−1: 0], and the second-stage parallel AD converter 75 AD conversion processing is performed on the lower-order bits of the digital signal DT [n−1: 0]. By configuring each of the parallel AD converters 72 and 75 in the same manner as the parallel AD converter shown in FIG. 1, for example, the power consumption of the AD converter can be reduced.
 図8Aに示したサブレンジング型AD変換器において、入力されたアナログ入力信号VINは、サンプル・ホールド・アンプ71によりサンプルホールドされて、並列型AD変換器72及び減算器74に供給される。並列型AD変換器72では、供給されるアナログ入力信号VINを用いてAD変換処理が行われ、デジタル信号DT[n-1:0]のうちのデジタル信号DT[n-1:m]が並列型AD変換器72から出力される。並列型AD変換器72から出力されたデジタル信号DT[n-1:m]は、DA変換器73に供給されるとともに外部に出力される。 In the sub-ranging AD converter shown in FIG. 8A, the input analog input signal VIN is sampled and held by the sample and hold amplifier 71 and supplied to the parallel AD converter 72 and the subtractor 74. The parallel AD converter 72 performs AD conversion processing using the supplied analog input signal VIN, and the digital signal DT [n−1: m] of the digital signals DT [n−1: 0] is parallel. Output from the type AD converter 72. The digital signal DT [n−1: m] output from the parallel AD converter 72 is supplied to the DA converter 73 and output to the outside.
 DA変換器73に供給されたデジタル信号DT[n-1:m]はDA変換処理され、デジタル信号DT[n-1:m]に応じたアナログ信号がDA変換器73から出力される。そして、サンプル・ホールド・アンプ71より出力されたアナログ入力信号VINからDA変換器73より出力されたアナログ信号が、減算器74によって減算されて並列型AD変換器75に供給される。これにより、入力されたアナログ入力信号VINから、並列型AD変換器72により決定されたデジタル信号DT[n-1:m]に応じたアナログ信号を減じた残差成分が並列型AD変換器75に供給される。 The digital signal DT [n−1: m] supplied to the DA converter 73 is subjected to DA conversion processing, and an analog signal corresponding to the digital signal DT [n−1: m] is output from the DA converter 73. The analog signal output from the DA converter 73 from the analog input signal VIN output from the sample and hold amplifier 71 is subtracted by the subtractor 74 and supplied to the parallel AD converter 75. As a result, the residual component obtained by subtracting the analog signal corresponding to the digital signal DT [n−1: m] determined by the parallel AD converter 72 from the input analog input signal VIN becomes the parallel AD converter 75. To be supplied.
 並列型AD変換器75では、減算器74より供給されるアナログ信号のAD変換処理が行われ、デジタル信号DT[n-1:0]のうちのデジタル信号DT[m:0]が並列型AD変換器75から出力される。以上のようにして、入力されたアナログ入力信号VINがnビットのデジタル信号DT[n-1:0]に変換され出力される。 The parallel AD converter 75 performs AD conversion processing of the analog signal supplied from the subtractor 74, and the digital signal DT [m: 0] of the digital signals DT [n-1: 0] is converted into the parallel AD. Output from the converter 75. As described above, the input analog input signal VIN is converted into an n-bit digital signal DT [n−1: 0] and output.
 図8Bは、本実施形態におけるアナログデジタル変換器の他の構成例を示す図である。図8Bには、入力されるアナログ入力信号VINをnビット(nは自然数)のデジタル信号DT[n-1:0]に変換する逐次比較型(逐次近似型)AD変換器を一例として示している。図8Bにおいて、76はサンプル・ホールド・アンプ(SHA:sample hold amplifier)であり、77は比較器(コンパレータ)であり、78はSAR回路であり、79はDA変換器である。比較器77は、例えば図2に示したプリアンプ部を用いて構成される。 FIG. 8B is a diagram illustrating another configuration example of the analog-digital converter in the present embodiment. FIG. 8B shows an example of a successive approximation (successive approximation) AD converter that converts an input analog input signal VIN into an n-bit (n is a natural number) digital signal DT [n−1: 0]. Yes. In FIG. 8B, 76 is a sample hold amplifier (SHA), 77 is a comparator, 78 is a SAR circuit, and 79 is a DA converter. The comparator 77 is configured using, for example, the preamplifier unit shown in FIG.
 図8Bに示した逐次比較型AD変換器において、入力されたアナログ入力信号VINは、サンプル・ホールド・アンプ76によりサンプルホールドされて、比較器77に供給される。比較器77は、入力されたアナログ入力信号VINとDA変換器79の出力とを比較し、比較結果に応じてアナログ入力信号VINとDA変換器79の出力との大小関係を示す情報をSAR回路78に出力する。SAR回路78は、比較器77からの出力に基づいてデジタル信号DT[n-1:0]を上位側から1ビットずつ順次決定する。また、SAR回路78は、決定された値に応じて次にアナログ入力信号VINと比較する電圧を生成するための電圧生成コードをDA変換器79に出力する。 In the successive approximation AD converter shown in FIG. 8B, the input analog input signal VIN is sampled and held by the sample and hold amplifier 76 and supplied to the comparator 77. The comparator 77 compares the input analog input signal VIN with the output of the DA converter 79, and stores information indicating the magnitude relationship between the analog input signal VIN and the output of the DA converter 79 according to the comparison result. Output to 78. The SAR circuit 78 sequentially determines the digital signal DT [n−1: 0] bit by bit from the upper side based on the output from the comparator 77. Further, the SAR circuit 78 outputs a voltage generation code for generating a voltage to be compared with the analog input signal VIN next to the DA converter 79 according to the determined value.
 なお、前記実施形態は、何れも本発明を実施するにあたっての具体化のほんの一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 Note that each of the above-described embodiments is merely an example of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.
 CSアンプにおける駆動素子としてMOSトランジスタを用い、CSアンプの低消費電力性を維持したまま、オフセットキャンセルを行えるプリアンプ部を有する比較器、及びそれを用いたアナログデジタル変換器を提供することができる。 It is possible to provide a comparator having a preamplifier unit that can perform offset cancellation while using a MOS transistor as a drive element in a CS amplifier and maintaining the low power consumption of the CS amplifier, and an analog-digital converter using the comparator.

Claims (12)

  1.  アナログ入力信号と比較基準電圧との差を増幅するプリアンプ部と、
     前記プリアンプ部の出力を基に、前記アナログ入力信号と前記比較基準電圧との大小関係を判定するラッチ部とを備え、
     前記プリアンプ部は、
     ドレインを出力端子とするトランジスタと、
     前記出力端子に接続される負荷容量と、
     前記トランジスタのソースに接続される電荷源と、
     前記アナログ入力信号及び前記比較基準電圧を入力端に受け、出力端が前記トランジスタのゲートに接続される補償回路とを備え、
     前記補償回路は、
     前記入力端に前記比較基準電圧が入力される第1の期間に前記トランジスタのゲートとドレインを接続し、前記トランジスタのオフセット電圧に係る情報を含む電圧情報を検出して記憶し、
     前記入力端に前記アナログ入力信号が入力される第2の期間に前記第1の期間において記憶した前記電圧情報を用いて前記トランジスタのオフセット電圧を補償することを特徴とする比較器。
    A preamplifier for amplifying the difference between the analog input signal and the comparison reference voltage;
    Based on the output of the preamplifier unit, a latch unit that determines the magnitude relationship between the analog input signal and the comparison reference voltage,
    The preamplifier section is
    A transistor having a drain as an output terminal;
    A load capacity connected to the output terminal;
    A charge source connected to a source of the transistor;
    A compensation circuit that receives the analog input signal and the comparison reference voltage at an input terminal, and an output terminal connected to a gate of the transistor;
    The compensation circuit includes:
    Connecting a gate and a drain of the transistor in a first period in which the comparison reference voltage is input to the input terminal, and detecting and storing voltage information including information on the offset voltage of the transistor;
    A comparator that compensates an offset voltage of the transistor by using the voltage information stored in the first period in a second period in which the analog input signal is input to the input terminal.
  2.  アナログ入力信号と比較基準電圧との差を増幅するプリアンプ部と、
     前記プリアンプ部の出力を基に、前記アナログ入力信号と前記比較基準電圧との大小関係を判定するラッチ部とを備え、
     前記プリアンプ部は、
     ドレインを出力端子とするトランジスタと、
     前記出力端子に接続される負荷容量と、
     前記トランジスタのソースに接続される電荷源と、
     前記トランジスタのゲートに一方の電極が接続される検出容量と、
     第1の期間に、前記検出容量の他方の電極に前記比較基準電圧を入力させる第1のスイッチと、
     前記第1の期間後の第2の期間に、前記検出容量の前記他方の電極に前記アナログ入力信号を入力させる第2のスイッチと、
     前記第1の期間に、前記トランジスタのドレインとゲートとを接続させる第3のスイッチと、
     前記第1の期間に、前記トランジスタのソースを基準電位に接続させる第4のスイッチとを有することを特徴とする比較器。
    A preamplifier for amplifying the difference between the analog input signal and the comparison reference voltage;
    Based on the output of the preamplifier unit, a latch unit that determines the magnitude relationship between the analog input signal and the comparison reference voltage,
    The preamplifier section is
    A transistor having a drain as an output terminal;
    A load capacity connected to the output terminal;
    A charge source connected to a source of the transistor;
    A detection capacitor having one electrode connected to the gate of the transistor;
    A first switch for inputting the comparison reference voltage to the other electrode of the detection capacitor in a first period;
    A second switch for inputting the analog input signal to the other electrode of the detection capacitor in a second period after the first period;
    A third switch for connecting a drain and a gate of the transistor in the first period;
    And a fourth switch for connecting the source of the transistor to a reference potential in the first period.
  3.  差動アナログ入力信号と比較基準電圧との差を増幅する差動プリアンプ部と、
     前記差動プリアンプ部の出力を基に、前記差動アナログ入力信号と前記比較基準電圧との大小関係を判定するラッチ部とを備え、
     前記差動プリアンプ部は、
     ドレインを正相出力端子とする第1のトランジスタと、
     ドレインを逆相出力端子とし、ソースが前記第1のトランジスタのソースに接続される第2のトランジスタと、
     前記正相出力端子に接続される第1の負荷容量と、
     前記逆相出力端子に接続される第2の負荷容量と、
     前記第1のトランジスタ及び前記第2のトランジスタのソースの共通接続点に接続される電荷源と、
     前記差動アナログ入力信号及び前記比較基準電圧を入力端に受け、出力端が前記第1のトランジスタのゲートに接続される第1の補償回路と、
     前記差動アナログ入力信号及び前記比較基準電圧を入力端に受け、出力端が前記第2のトランジスタのゲートに接続される第2の補償回路とを備え、
     前記第1の補償回路は、
     前記入力端に前記比較基準電圧が入力される第1の期間に前記第1のトランジスタのゲートとドレインを接続し、前記第1のトランジスタのオフセット電圧に係る情報を含む第1の電圧情報を検出して記憶し、
     前記入力端に前記差動アナログ入力信号が入力される第2の期間に前記第1の期間において記憶した前記第1の電圧情報を用いて前記第1のトランジスタのオフセット電圧を補償し、
     前記第2の補償回路は、
     前記入力端に前記比較基準電圧が入力される第1の期間に前記第2のトランジスタのゲートとドレインを接続し、前記第2のトランジスタのオフセット電圧に係る情報を含む第2の電圧情報を検出して記憶し、
     前記入力端に前記差動アナログ入力信号が入力される第2の期間に前記第1の期間において記憶した前記第2の電圧情報を用いて前記第2のトランジスタのオフセット電圧を補償することを特徴とする比較器。
    A differential preamplifier for amplifying the difference between the differential analog input signal and the comparison reference voltage;
    Based on the output of the differential preamplifier unit, a latch unit that determines the magnitude relationship between the differential analog input signal and the comparison reference voltage,
    The differential preamplifier section is
    A first transistor having a drain as a positive phase output terminal;
    A second transistor having a drain as a negative phase output terminal and a source connected to the source of the first transistor;
    A first load capacity connected to the positive phase output terminal;
    A second load capacity connected to the negative phase output terminal;
    A charge source connected to a common connection point of the sources of the first transistor and the second transistor;
    A first compensation circuit that receives the differential analog input signal and the comparison reference voltage at an input terminal, and an output terminal connected to a gate of the first transistor;
    A second compensation circuit that receives the differential analog input signal and the comparison reference voltage at an input terminal, and an output terminal connected to a gate of the second transistor;
    The first compensation circuit includes:
    The first voltage information including information related to the offset voltage of the first transistor is detected by connecting the gate and drain of the first transistor during a first period in which the comparison reference voltage is input to the input terminal. And remember
    Compensating the offset voltage of the first transistor using the first voltage information stored in the first period in a second period in which the differential analog input signal is input to the input terminal;
    The second compensation circuit includes:
    In the first period in which the comparison reference voltage is input to the input terminal, the gate and drain of the second transistor are connected, and second voltage information including information related to the offset voltage of the second transistor is detected. And remember
    The offset voltage of the second transistor is compensated using the second voltage information stored in the first period in a second period in which the differential analog input signal is input to the input terminal. A comparator.
  4.  前記補償回路は、前記第1の期間に前記比較基準電圧が一方の電極に供給され、前記第2の期間に前記アナログ入力信号が前記一方の電極に供給され、かつ前記第1の期間及び前記第2の期間に他方の電極が前記トランジスタのゲートに接続される検出容量を有することを特徴とする請求項1記載の比較器。 In the compensation circuit, the comparison reference voltage is supplied to one electrode in the first period, the analog input signal is supplied to the one electrode in the second period, and the first period and the The comparator according to claim 1, further comprising a detection capacitor in which the other electrode is connected to the gate of the transistor in the second period.
  5.  前記プリアンプ部は、
     前記負荷容量の一方の電極が接続される電源と、
     前記第2の期間に、前記負荷容量の他方の電極と前記トランジスタのドレインとを接続させる第5のスイッチと、
     前記第1の期間に、前記負荷容量の前記他方の電極を前記電源に接続させる第6のスイッチとをさらに有することを特徴とする請求項2記載の比較器。
    The preamplifier section is
    A power source to which one electrode of the load capacitance is connected;
    A fifth switch for connecting the other electrode of the load capacitor and the drain of the transistor in the second period;
    The comparator according to claim 2, further comprising a sixth switch that connects the other electrode of the load capacitor to the power source in the first period.
  6.  前記プリアンプ部は、当該プリアンプ部の出力端子の電位に応じて前記負荷容量に電荷を供給する帰還回路を有することを特徴とする請求項2記載の比較器。 3. The comparator according to claim 2, wherein the preamplifier unit includes a feedback circuit that supplies a charge to the load capacitor in accordance with a potential of an output terminal of the preamplifier unit.
  7.  差動アナログ入力信号と比較基準電圧との差を増幅する差動アンプ回路であって、
     ドレインを正相出力端子とする第1のトランジスタと、
     ドレインを逆相出力端子とし、ソースが前記第1のトランジスタのソースに接続される第2のトランジスタと、
     前記正相出力端子に接続される第1の負荷容量と、
     前記逆相出力端子に接続される第2の負荷容量と、
     前記第1のトランジスタ及び前記第2のトランジスタのソースの共通接続点に接続される電荷源と、
     前記差動アナログ入力信号及び前記比較基準電圧を入力端に受け、出力端が前記第1のトランジスタのゲートに接続される第1の補償回路と、
     前記差動アナログ入力信号及び前記比較基準電圧を入力端に受け、出力端が前記第2のトランジスタのゲートに接続される第2の補償回路とを備え、
     前記第1の補償回路は、
     前記入力端に前記比較基準電圧が入力される第1の期間に前記第1のトランジスタのゲートとドレインを接続し、前記第1のトランジスタのオフセット電圧に係る情報を含む第1の電圧情報を検出して記憶し、
     前記入力端に前記差動アナログ入力信号が入力される第2の期間に前記第1の期間において記憶した前記第1の電圧情報を用いて前記第1のトランジスタのオフセット電圧を補償し、
     前記第2の補償回路は、
     前記入力端に前記比較基準電圧が入力される第1の期間に前記第2のトランジスタのゲートとドレインを接続し、前記第2のトランジスタのオフセット電圧に係る情報を含む第2の電圧情報を検出して記憶し、
     前記入力端に前記差動アナログ入力信号が入力される第2の期間に前記第1の期間において記憶した前記第2の電圧情報を用いて前記第2のトランジスタのオフセット電圧を補償することを特徴とする差動アンプ回路。
    A differential amplifier circuit for amplifying a difference between a differential analog input signal and a comparison reference voltage,
    A first transistor having a drain as a positive phase output terminal;
    A second transistor having a drain as a negative phase output terminal and a source connected to the source of the first transistor;
    A first load capacity connected to the positive phase output terminal;
    A second load capacity connected to the negative phase output terminal;
    A charge source connected to a common connection point of the sources of the first transistor and the second transistor;
    A first compensation circuit that receives the differential analog input signal and the comparison reference voltage at an input terminal, and an output terminal connected to a gate of the first transistor;
    A second compensation circuit that receives the differential analog input signal and the comparison reference voltage at an input terminal, and an output terminal connected to a gate of the second transistor;
    The first compensation circuit includes:
    The first voltage information including information related to the offset voltage of the first transistor is detected by connecting the gate and drain of the first transistor during a first period in which the comparison reference voltage is input to the input terminal. And remember
    Compensating the offset voltage of the first transistor using the first voltage information stored in the first period in a second period in which the differential analog input signal is input to the input terminal;
    The second compensation circuit includes:
    In the first period in which the comparison reference voltage is input to the input terminal, the gate and drain of the second transistor are connected, and second voltage information including information related to the offset voltage of the second transistor is detected. And remember
    The offset voltage of the second transistor is compensated using the second voltage information stored in the first period in a second period in which the differential analog input signal is input to the input terminal. A differential amplifier circuit.
  8.  ソースを共通に接続した第1のトランジスタ及び第2のトランジスタと、
     前記第1のトランジスタ及び前記第2のトランジスタのドレインに接続される正帰還回路と、
     差動アナログ入力信号及び比較基準電圧を入力端に受け、出力端が前記第1のトランジスタのゲートに接続される第1の補償回路と、
     前記差動アナログ入力信号及び前記比較基準電圧を入力端に受け、出力端が前記第2のトランジスタのゲートに接続される第2の補償回路とを備え、
     前記第1の補償回路は、
     前記入力端に前記比較基準電圧が入力される第1の期間に前記第1のトランジスタのゲートとドレインを接続し、前記第1のトランジスタのオフセット電圧に係る情報を含む第1の電圧情報を検出して記憶し、
     前記入力端に前記差動アナログ入力信号が入力される第2の期間に前記第1の期間において記憶した前記第1の電圧情報を用いて前記第1のトランジスタのオフセット電圧を補償し、
     前記第2の補償回路は、
     前記入力端に前記比較基準電圧が入力される第1の期間に前記第2のトランジスタのゲートとドレインを接続し、前記第2のトランジスタのオフセット電圧に係る情報を含む第2の電圧情報を検出して記憶し、
     前記入力端に前記差動アナログ入力信号が入力される第2の期間に前記第1の期間において記憶した前記第2の電圧情報を用いて前記第2のトランジスタのオフセット電圧を補償することを特徴とするラッチ回路。
    A first transistor and a second transistor having sources connected in common;
    A positive feedback circuit connected to the drains of the first transistor and the second transistor;
    A first compensation circuit that receives a differential analog input signal and a comparison reference voltage at an input end, and an output end connected to the gate of the first transistor;
    A second compensation circuit that receives the differential analog input signal and the comparison reference voltage at an input terminal, and an output terminal connected to a gate of the second transistor;
    The first compensation circuit includes:
    The first voltage information including information related to the offset voltage of the first transistor is detected by connecting the gate and drain of the first transistor during a first period in which the comparison reference voltage is input to the input terminal. And remember
    Compensating the offset voltage of the first transistor using the first voltage information stored in the first period in a second period in which the differential analog input signal is input to the input terminal;
    The second compensation circuit includes:
    In the first period in which the comparison reference voltage is input to the input terminal, the gate and drain of the second transistor are connected, and second voltage information including information related to the offset voltage of the second transistor is detected. And remember
    The offset voltage of the second transistor is compensated using the second voltage information stored in the first period in a second period in which the differential analog input signal is input to the input terminal. A latch circuit.
  9.  入力されるアナログ入力信号をデジタル信号に変換するアナログデジタル変換器であって、
     前記アナログ入力信号と比較基準電圧との差を増幅するプリアンプ部をそれぞれが有し、互いに異なる前記比較基準電圧が入力され、当該比較基準電圧と前記アナログ入力信号とを比較する複数の比較器と、
     前記複数の比較器の出力をエンコードして前記デジタル信号を出力するエンコーダとを備え、
     前記プリアンプ部は、
     ドレインを出力端子とするトランジスタと、
     前記出力端子に接続される負荷容量と、
     前記トランジスタのソースに接続される電荷源と、
     前記アナログ入力信号及び前記比較基準電圧を入力端に受け、出力端が前記トランジスタのゲートに接続される補償回路とを備え、
     前記補償回路は、
     前記入力端に前記比較基準電圧が入力される第1の期間に前記トランジスタのゲートとドレインを接続し、前記トランジスタのオフセット電圧に係る情報を含む電圧情報を検出して記憶し、
     前記入力端に前記アナログ入力信号が入力される第2の期間に前記第1の期間において記憶した前記電圧情報を用いて前記オフセット電圧を補償することを特徴とするアナログデジタル変換器。
    An analog-digital converter that converts an input analog input signal into a digital signal,
    A plurality of comparators each having a preamplifier unit for amplifying a difference between the analog input signal and the comparison reference voltage, the comparison reference voltages being different from each other being input, and comparing the comparison reference voltage with the analog input signal; ,
    An encoder that encodes outputs of the plurality of comparators and outputs the digital signal;
    The preamplifier section is
    A transistor having a drain as an output terminal;
    A load capacity connected to the output terminal;
    A charge source connected to a source of the transistor;
    A compensation circuit that receives the analog input signal and the comparison reference voltage at an input terminal, and an output terminal connected to a gate of the transistor;
    The compensation circuit includes:
    Connecting a gate and a drain of the transistor in a first period in which the comparison reference voltage is input to the input terminal, and detecting and storing voltage information including information on the offset voltage of the transistor;
    The analog-to-digital converter, wherein the offset voltage is compensated using the voltage information stored in the first period in a second period in which the analog input signal is input to the input terminal.
  10.  入力されるアナログ入力信号をデジタル信号に変換するアナログデジタル変換器であって、
     前記アナログ入力信号と比較基準電圧との差を増幅するプリアンプ部をそれぞれが有し、互いに異なる前記比較基準電圧が入力され、当該比較基準電圧と前記アナログ入力信号とを比較する複数の比較器と、
     前記複数の比較器の出力をエンコードして前記デジタル信号を出力するエンコーダとを備え、
     前記プリアンプ部は、
     ドレインを出力端子とするトランジスタと、
     前記出力端子に接続される負荷容量と、
     前記トランジスタのソースに接続される電荷源と、
     前記トランジスタのゲートに一方の電極が接続される検出容量と、
     第1の期間に、前記検出容量の他方の電極に前記比較基準電圧を入力させる第1のスイッチと、
     前記第1の期間後の第2の期間に、前記検出容量の前記他方の電極に前記アナログ入力信号を入力させる第2のスイッチと、
     前記第1の期間に、前記トランジスタのドレインとゲートとを接続させる第3のスイッチと、
     前記第1の期間に、前記トランジスタのソースを基準電位に接続させる第4のスイッチとを有することを特徴とするアナログデジタル変換器。
    An analog-digital converter that converts an input analog input signal into a digital signal,
    A plurality of comparators each having a preamplifier unit for amplifying a difference between the analog input signal and the comparison reference voltage, the comparison reference voltages being different from each other being input, and comparing the comparison reference voltage with the analog input signal; ,
    An encoder that encodes outputs of the plurality of comparators and outputs the digital signal;
    The preamplifier section is
    A transistor having a drain as an output terminal;
    A load capacity connected to the output terminal;
    A charge source connected to a source of the transistor;
    A detection capacitor having one electrode connected to the gate of the transistor;
    A first switch for inputting the comparison reference voltage to the other electrode of the detection capacitor in a first period;
    A second switch for inputting the analog input signal to the other electrode of the detection capacitor in a second period after the first period;
    A third switch for connecting a drain and a gate of the transistor in the first period;
    An analog-to-digital converter comprising a fourth switch for connecting a source of the transistor to a reference potential in the first period.
  11.  入力される差動アナログ入力信号をデジタル信号に変換するアナログデジタル変換器であって、
     前記差動アナログ入力信号と比較基準電圧との差を増幅する差動プリアンプ部をそれぞれが有し、互いに異なる前記比較基準電圧が入力され、当該比較基準電圧と前記差動アナログ入力信号とを比較する複数の比較器と、
     前記複数の比較器の出力をエンコードして前記デジタル信号を出力するエンコーダとを備え、
     前記差動プリアンプ部は、
     ドレインを正相出力端子とする第1のトランジスタと、
     ドレインを逆相出力端子とし、ソースが前記第1のトランジスタのソースに接続される第2のトランジスタと、
     前記正相出力端子に接続される第1の負荷容量と、
     前記逆相出力端子に接続される第2の負荷容量と、
     前記第1のトランジスタ及び前記第2のトランジスタのソースの共通接続点に接続される電荷源と、
     前記差動アナログ入力信号及び前記比較基準電圧を入力端に受け、出力端が前記第1のトランジスタのゲートに接続される第1の補償回路と、
     前記差動アナログ入力信号及び前記比較基準電圧を入力端に受け、出力端が前記第2のトランジスタのゲートに接続される第2の補償回路とを備え、
     前記第1の補償回路は、
     前記入力端に前記比較基準電圧が入力される第1の期間に前記第1のトランジスタのゲートとドレインを接続し、前記第1のトランジスタのオフセット電圧に係る情報を含む第1の電圧情報を検出して記憶し、
     前記入力端に前記差動アナログ入力信号が入力される第2の期間に前記第1の期間において記憶した前記第1の電圧情報を用いて前記第1のトランジスタのオフセット電圧を補償し、
     前記第2の補償回路は、
     前記入力端に前記比較基準電圧が入力される第1の期間に前記第2のトランジスタのゲートとドレインを接続し、前記第2のトランジスタのオフセット電圧に係る情報を含む第2の電圧情報を検出して記憶し、
     前記入力端に前記差動アナログ入力信号が入力される第2の期間に前記第1の期間において記憶した前記第2の電圧情報を用いて前記第2のトランジスタのオフセット電圧を補償することを特徴とするアナログデジタル変換器。
    An analog-digital converter that converts an input differential analog input signal into a digital signal,
    Each has a differential preamplifier unit that amplifies the difference between the differential analog input signal and the comparison reference voltage, and the comparison reference voltage different from each other is input, and the comparison reference voltage and the differential analog input signal are compared. A plurality of comparators,
    An encoder that encodes outputs of the plurality of comparators and outputs the digital signal;
    The differential preamplifier section is
    A first transistor having a drain as a positive phase output terminal;
    A second transistor having a drain as a negative phase output terminal and a source connected to the source of the first transistor;
    A first load capacity connected to the positive phase output terminal;
    A second load capacity connected to the negative phase output terminal;
    A charge source connected to a common connection point of the sources of the first transistor and the second transistor;
    A first compensation circuit that receives the differential analog input signal and the comparison reference voltage at an input terminal, and an output terminal connected to a gate of the first transistor;
    A second compensation circuit that receives the differential analog input signal and the comparison reference voltage at an input terminal, and an output terminal connected to a gate of the second transistor;
    The first compensation circuit includes:
    The first voltage information including information related to the offset voltage of the first transistor is detected by connecting the gate and drain of the first transistor during a first period in which the comparison reference voltage is input to the input terminal. And remember
    Compensating the offset voltage of the first transistor using the first voltage information stored in the first period in a second period in which the differential analog input signal is input to the input terminal;
    The second compensation circuit includes:
    In the first period in which the comparison reference voltage is input to the input terminal, the gate and drain of the second transistor are connected, and second voltage information including information related to the offset voltage of the second transistor is detected. Remember,
    The offset voltage of the second transistor is compensated using the second voltage information stored in the first period in a second period in which the differential analog input signal is input to the input terminal. Analog to digital converter.
  12.  前記比較器が有する前記プリアンプ部の出力に一方の電極が接続され、当該比較器とは1異なる値に対応する前記比較基準電圧と前記アナログ入力信号とを比較する比較器が有する前記プリアンプ部の出力に他方の電極が接続された容量を有することを特徴とする請求項9記載のアナログデジタル変換器。 One electrode is connected to the output of the preamplifier unit included in the comparator, and the comparator of the preamplifier unit includes a comparator that compares the comparison reference voltage corresponding to a value different from that of the comparator with the analog input signal. 10. The analog-digital converter according to claim 9, further comprising a capacitor having the other electrode connected to the output.
PCT/JP2011/058723 2010-04-06 2011-04-06 Comparator, differential amplifier circuit, and analog/digital converter WO2011126049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509685A JP5439590B2 (en) 2010-04-06 2011-04-06 Comparator, differential amplifier circuit, and analog-digital converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-087965 2010-04-06
JP2010087965 2010-04-06

Publications (1)

Publication Number Publication Date
WO2011126049A1 true WO2011126049A1 (en) 2011-10-13

Family

ID=44762984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058723 WO2011126049A1 (en) 2010-04-06 2011-04-06 Comparator, differential amplifier circuit, and analog/digital converter

Country Status (2)

Country Link
JP (1) JP5439590B2 (en)
WO (1) WO2011126049A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441736B (en) * 2013-08-27 2016-02-10 西北工业大学 The preamplifier circuit of CMOS comparator
KR101622788B1 (en) * 2014-03-04 2016-05-20 고려대학교 산학협력단 High efficiency output driver for reducing power consumption and transmitter having the same
JPWO2018216677A1 (en) * 2017-05-23 2020-01-09 株式会社村田製作所 Comparison circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200115805A (en) * 2019-03-26 2020-10-08 삼성전자주식회사 Receiver for compensating common mode offset

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743397A (en) * 1993-07-30 1995-02-14 Seiko Instr Inc Comparator circuit and control method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743397A (en) * 1993-07-30 1995-02-14 Seiko Instr Inc Comparator circuit and control method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAVEEN VERMA ET AL.: "An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 42, no. 6, 2007, pages 1196 - 1205 *
PETER J. LIM ET AL.: "An 8-bit 200-MHz BiCMOS Comparator", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 25, no. 1, 1990, pages 192 - 199 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441736B (en) * 2013-08-27 2016-02-10 西北工业大学 The preamplifier circuit of CMOS comparator
KR101622788B1 (en) * 2014-03-04 2016-05-20 고려대학교 산학협력단 High efficiency output driver for reducing power consumption and transmitter having the same
JPWO2018216677A1 (en) * 2017-05-23 2020-01-09 株式会社村田製作所 Comparison circuit

Also Published As

Publication number Publication date
JP5439590B2 (en) 2014-03-12
JPWO2011126049A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
US11438004B2 (en) Analog to digital converter with inverter based amplifier
JP2010074636A (en) Differential operational amplifier circuit and pipeline-type a/d conversion device employing the same
JP2006115003A (en) Sample-hold circuit and pipeline a-d converter using the same
JP5439590B2 (en) Comparator, differential amplifier circuit, and analog-digital converter
Tang et al. A charge-pump and comparator based power-efficient pipelined ADC technique
JP4681622B2 (en) AD converter
Cho A 2.24-mW, 61.8-dB SNDR, 20-MS/s pipelined ADC with charge-pump-based dynamic biasing for power reduction in op amp sharing
JP5565903B2 (en) Switched capacitor gain stage
Zhang et al. A low-power pipelined-SAR ADC using boosted bucket-brigade device for residue charge processing
US7414563B2 (en) Analog-to-digital converter with a plurality of conversions
JPH0983316A (en) Comparator and analog-digital converter
JP3851305B2 (en) Analog-digital conversion circuit
Jarvinen et al. A 12-bit ratio-independent algorithmic ADC for a capacitive sensor interface
Hati et al. A 55-mW 300MS/s 8-bit CMOS parallel pipeline ADC
Moosazadeh et al. A pseudo-differential MDAC with a gain-boosting inverter for pipelined ADCs
JPH11112305A (en) Voltage comparator, operational amplifier, analog-to-digital converter, and analog-to digital converting circuit
Picolli et al. A 90nm 8b 120Ms/s-250Ms/s Pipeline ADC
Firouzkouhi et al. A low‐power 10‐bit CCP‐based pipelined ADC using a multi‐level variable current source MDAC and an ultra‐low‐power double‐tail dynamic latch
KR100575102B1 (en) Analog-digital converter with pipeline folding scheme
Harpe et al. Analog calibration of mismatches in an open-loop track-and-hold circuit for time-interleaved ADCs
JP2006121307A (en) Sample and hold circuit or ad converter using the same
JP2006121480A (en) Sample and hold circuit, and pipeline ad converter using the same
Kumar et al. A 1 V, 39 μ W, 5-bit Multi-Level Comparator based Flash ADC
Pelgrom Pipeline Analog-to-Digital Conversion
Silva Pipelined Analog-To-Digital Conversion Using Current-Mode Reference Shifting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012509685

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11765949

Country of ref document: EP

Kind code of ref document: A1