WO2011125733A1 - Film-forming apparatus - Google Patents

Film-forming apparatus Download PDF

Info

Publication number
WO2011125733A1
WO2011125733A1 PCT/JP2011/058001 JP2011058001W WO2011125733A1 WO 2011125733 A1 WO2011125733 A1 WO 2011125733A1 JP 2011058001 W JP2011058001 W JP 2011058001W WO 2011125733 A1 WO2011125733 A1 WO 2011125733A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency power
power supply
film
abnormal discharge
unit
Prior art date
Application number
PCT/JP2011/058001
Other languages
French (fr)
Japanese (ja)
Inventor
美和 田中
誠 菊地
研也 中島
太郎 矢島
童吾 大橋
善識 宮野
浩平 細野
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2012509512A priority Critical patent/JP5691081B2/en
Publication of WO2011125733A1 publication Critical patent/WO2011125733A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge

Definitions

  • the present invention relates to a film forming apparatus.
  • Such a solar cell element includes a semiconductor layer, a passivation film formed on the semiconductor layer, and an electrode.
  • the passivation film is a film that functions as a protective film for protecting the semiconductor layer and also functions as an antireflection film, and is formed by a plasma CVD method.
  • the plasma CVD method is a method of forming a film by forming a source gas into plasma by applying a high frequency from a high frequency power source in order to activate a chemical reaction.
  • this passivation film is made of a silicon nitride film or the like.
  • a mixed gas of silane (SiH 4 ) and ammonia (NH 3 ) is diluted with nitrogen (N 2 ) and decomposed by glow discharge. It is formed by being plasmarized and deposited.
  • Patent Document 1 there is a problem that it is easy to damage parts in the chamber when abnormal discharge occurs. Further, the film forming method described in Patent Document 1 has a problem that a desired film forming speed cannot be obtained and a film having a desired film quality cannot be formed. Such a problem is not limited to the formation of the passivation film in the solar cell element, and is a problem that occurs in the plasma CVD apparatus in general.
  • an object of the present invention is to solve the above-described problems of the prior art, and to suppress damage to parts constituting the chamber when abnormal discharge occurs, and to sufficiently obtain film quality and film thickness.
  • An object of the present invention is to provide a film forming apparatus that can perform the above process.
  • the film formation apparatus of the present invention is provided in a vacuum chamber, and is provided so as to face a film formation target placed on the placement unit on which the film formation target is placed.
  • a shower plate for introducing gas; and a plurality of AC power sources connected to at least one of the shower plate and the mounting portion, wherein the plurality of AC power sources include at least one high frequency power source for supplying high frequency power;
  • each abnormal discharge detecting means is configured to stop the power supply of the AC power supply when the abnormal discharge is detected, so that damage to the components in the chamber can be reduced.
  • the plurality of AC power supplies are composed of at least one high-frequency power supply that supplies high-frequency power and one low-frequency power supply that supplies low-frequency power, so that sufficient film quality and film thickness can be obtained.
  • each abnormal discharge detection means when detecting abnormal discharge, stops the power supply of all the AC power supplies, thereby suppressing the power supply from being alternately stopped due to erroneous recognition of the occurrence of arc discharge. Sufficient film quality and film thickness can be obtained.
  • one high frequency power source and one low frequency power source are provided on the shower plate.
  • each abnormal discharge detecting means includes a switch unit that supplies or stops power from each AC power source to the shower plate, and an output signal from each AC power source. Abnormality of detecting a reflected wave component, and determining whether or not the reflected wave component detected by the detection unit exceeds a threshold, and sending a stop signal to turn off the switch unit when the threshold is exceeded A discharge determination unit, and a stop signal from the abnormal discharge determination unit of each abnormal discharge detection unit is input to the switch units of all the abnormal discharge detection units.
  • the film forming apparatus of the present invention it is possible to suppress damage to the components constituting the interior of the chamber when abnormal discharge occurs, and to sufficiently obtain the film quality and film thickness.
  • the film forming apparatus 1 performs a film formation by performing a plasma CVD method, for example, for forming a passivation film in a solar cell element.
  • the film forming apparatus 1 includes a vacuum chamber 11 that can maintain a desired vacuum state.
  • the vacuum chamber 11 is provided with a placement unit 12 having a heating device (not shown), and the substrate S to be deposited is placed on the placement unit 12.
  • the substrate S can be adjusted to a desired substrate temperature during film formation by a heating device.
  • a shower plate 13 is provided on the ceiling surface of the vacuum chamber 11 so as to face the substrate S.
  • the shower plate 13 is connected to gas introducing means 14 for introducing a film forming gas, and is configured so that the film forming gas can be uniformly introduced into the vacuum chamber 11.
  • the gas introduction means 14 is configured to be able to introduce, for example, three kinds of gases, and different gases (in this embodiment, SiH 4 , NH 3 , and N 2 ) are sealed therein.
  • Sources 14a, 14b, and 14c are connected to the gas introduction pipe 14d through valves 14e, respectively.
  • the gas introduction unit 14 is configured so that three kinds of film formation gases can be introduced.
  • a gas introduction unit may be used so that the film formation gas can be introduced according to a desired film configuration. 14 may be provided with six types of gas sources, and the film forming gas may be selected according to the film structure.
  • the shower plate 13 is connected to a high frequency power supply 15 so that a high frequency voltage is applied to the shower plate 13. Further, a low frequency power supply 16 is also connected to the shower plate 13 so that a low frequency voltage is applied to the shower plate 13. Therefore, the shower plate 13 functions as a gas inlet for uniformly introducing the film forming gas into the vacuum chamber 11 and also functions as a discharge electrode to which a high frequency voltage and a low frequency voltage are applied. . That is, in the film forming apparatus 1 according to the present embodiment, it is possible to perform film formation by forming a plasma by applying voltages of different frequencies to the shower plate 13 by the high frequency power supply 15 and the low frequency power supply 16 during film formation. It is configured as follows.
  • the film forming apparatus 1 of the present embodiment forms the mixed plasma in this way, so that the film forming speed when only a high frequency voltage is applied is fast and the film quality when only a low frequency voltage is applied is high. Both have the advantage of being good. That is, according to the film forming apparatus 1 of the present embodiment, the film forming speed is high and the film quality of the obtained film is good.
  • the film quality of the passivation film can be improved in the formation of the passivation film, thereby suppressing loss due to carrier recombination in the solar cell element. That is, the plasma density and plasma potential are determined by the conditions for generating plasma such as the gas type, input power, and electrode distance, but are formed by applying only a high frequency (13.56 MHz to 27.12 MHz) voltage. In the case of plasma, the film quality necessary for the solar cell element, that is, the film density and the fixed charge in the film could not be obtained under the high-speed film formation condition of 30 ⁇ / s or more. For this reason, the conventional passivation film cannot sufficiently suppress the loss due to carrier recombination.
  • the passivation film is formed, for example, by a solar cell by superimposing and applying voltages having different frequencies of high frequency and low frequency to form the passivation film.
  • the film quality preferable as an element, specifically, high film density and high fixed charge concentration in the film. This is because the electric charge of ions excited at a low frequency voltage is added to the charge of plasma excited at a high frequency voltage, thereby increasing the potential difference between the substrate and the plasma, that is, the sheath electric field. As a result, the ion energy incident on the substrate surface can be increased.
  • the passivation film is formed more densely (high film density), and the charge present in the passivation film also increases. As a result, the passivation film Has a high positive fixed charge concentration.
  • a high frequency power source side control unit 17 for controlling a high frequency signal from the high frequency power source 15 is interposed, and between the low frequency power source 16 and the shower plate 13.
  • a low frequency power supply side control unit 18 for controlling a low frequency signal from the low frequency power supply 16 is interposed therebetween.
  • the high frequency power supply side control unit 17 and the low frequency power supply side control unit 18 (hereinafter collectively referred to as the control units 17 and 18) have the same configuration.
  • the control units 17 and 18 will be described with reference to FIG.
  • the control units 17 and 18 include a switch unit 20, an amplifier 21, a matching box 22, a detector 23, a feedback control unit 24, and an arc cut unit 25, respectively.
  • the switch unit 20 When the stop signal is input from the arc cut unit 25 described later, the switch unit 20 is turned off and stops the power supply from the power source. When no stop signal is input, the power supply is turned on and power is supplied from the power source.
  • the amplifier 21 amplifies the input signal input to the amplifier 21 based on the set gain of the amplification operation.
  • the matching box 22 matches the input signal input to the matching box 22 so as to have a desired impedance.
  • the detector 23 detects the traveling wave component and the reflected wave component of the input signal input to the detector 23. Then, the detector 23 inputs a traveling wave detection signal corresponding to the power of the traveling wave component of the input signal to the feedback control unit 24. The detector 23 inputs a reflected wave detection signal corresponding to the power of the reflected wave component of the input signal to the arc cut unit 25.
  • the feedback control unit 24 performs PI control, sets the gain of the amplification operation of the amplifier 21 so that the input traveling wave detection signal follows a preset target value, and sets the gain of the set gain.
  • a setting signal indicating a value is input to the amplifier 21. Thereby, traveling wave power is controlled.
  • the arc cut unit 25 determines that the detection signal from the detector 23 exceeds the threshold value, that is, when it is determined that arc discharge (abnormal discharge) is occurring, the arc cut unit 25 outputs a stop signal for a predetermined time. To send.
  • the operation of the control units 17 and 18 will be described by taking the high frequency power supply side control unit 17 as an example.
  • the high frequency power supply 15 is turned on and a high frequency signal is generated.
  • the generated high frequency signal is input to the amplifier 21 through the switch unit 20, amplified with a predetermined gain, and output from the amplifier 21.
  • the high-frequency signal output from the amplifier 21 is input to the matching box 22, matched so as to have a desired impedance, and output from the matching box 22.
  • the high frequency signal output from the matching box 22 is applied to the shower plate 13. When a high frequency signal is applied to the shower plate 13, plasma is generated in the vacuum chamber 11.
  • the detector 23 detects the traveling wave component and the reflected wave component of the high-frequency signal that generates plasma, generates a traveling wave detection signal corresponding to the power of the traveling wave component, and inputs it to the feedback control unit 24.
  • the feedback control unit 24 sets the gain of the amplification operation of the amplifier 21 so that the high frequency signal becomes a target value based on the input detection signal, and inputs a setting signal indicating the set gain value to the amplifier 21.
  • the amplifier 21 changes the gain of the amplifier 21 based on the input setting signal. Thereby, the high frequency signal input to the amplifier 21 is amplified so as to follow the target value based on the changed gain. In this way, in this embodiment, feedback control is performed so that desired plasma can always be generated in the vacuum chamber 11.
  • the detector 23 generates a reflected wave detection signal corresponding to the power of the reflected wave component of the high frequency signal, and inputs this reflected wave detection signal to the arc cut unit 25.
  • the reflected wave detection input to the arc cut unit 25 is detected.
  • the signal also increases.
  • the arc cut unit 25 determines that the reflected wave detection signal input from the detector 23 has exceeded the threshold value, the arc cut unit 25 determines that arc discharge (abnormal discharge) has occurred, and stops the signal for a predetermined time. Is sent to the switch unit 20.
  • the switch unit 20 When the stop signal is input to the switch unit 20, the switch unit 20 is turned off, and the high frequency signal from the high frequency power supply 15 is cut off. Thereby, the plasma by the high frequency signal formed in the vacuum chamber 11 disappears. There is a problem that the shower plate 13 is damaged if the electric power is continuously supplied when the arc discharge is generated in the vacuum chamber 11, but in this embodiment, the electric power supply is cut off when the arc discharge is generated. Can reduce the damage.
  • the low frequency power supply side control unit 18 is configured similarly to the high frequency power supply side control unit 17.
  • the switch unit 20, the amplifier 21, the matching box 22, the detector 23, the feedback control unit 24, and the arc cut unit 25 are configured to be able to execute each function, The configuration is not limited.
  • the arc cut unit 25 sends a stop signal to the switch unit 20 based on the determination that the reflected wave detection signal exceeds the threshold value. As a result, the switch unit 20 is turned off for a predetermined time, and the power supply from the high frequency power supply 15 is stopped. Thereby, the plasma by the high frequency power supply 15 disappears.
  • the impedance in the vacuum chamber 11 becomes different from a predetermined value (plasma from both power supplies).
  • the high frequency power supply side control unit 17 and the low frequency power supply side control unit 18 erroneously recognize that the arc discharge has occurred alternately, thereby stopping the power supply alternately.
  • the desired plasma cannot be formed, and as a result, there is a possibility that the film quality of the obtained film is deteriorated. Further, since the power sharing is alternately stopped, there is a problem that the film forming speed is lowered.
  • the control units 17 and 18 are configured such that the stop signal output from one arc cut unit 25 is also input to the other switch unit 20. That is, in the high frequency power supply side control unit 17, the stop signal output from the arc cut unit 25 is input to the switch unit 20 and the switch unit 20 of the low frequency power supply side control unit 18.
  • each arc cut unit 25 is connected to each switch from the coupling wiring 26 so that the stop signal output from the arc cut unit 25 is input to the switch unit 20 and the switch unit 20 of the high frequency power supply side control unit 17. Connected to the unit 20.
  • the power supply is stopped as shown in FIG. 4 shows, at each time, (1) the value of the reflected wave component of the high frequency power supply 15 detected by the detector 23, (2) the presence or absence of occurrence of arc discharge on the high frequency power supply 15 side, and (3) the high frequency power supply side.
  • the on / off state of the switch unit 20 of the low frequency power supply side control unit 18 is shown.
  • the arc cut unit 25 sends a stop signal to the switch unit 20 when determining that the reflected wave detection signal input from the detector 23 has exceeded the threshold value.
  • the switch unit 20 is turned off for a predetermined time, and the power supply from the high frequency power supply 15 is stopped. Thereby, the plasma by the high frequency power supply 15 disappears.
  • each arc cut unit 25 is configured to be connected to each switch unit 20, deterioration in film quality and film formation speed due to alternately stopping plasma formation due to erroneous recognition of the arc cut unit 25. The decrease can be suppressed.
  • a film forming method using the film forming apparatus 1 will be described.
  • the substrate S is placed on the placement unit 12 in the vacuum chamber 11.
  • the vacuum chamber 11 is brought into a desired vacuum state.
  • a film forming gas is introduced from the gas introducing means 14, and power supply is started from the high frequency power supply 15 and the low frequency power supply 16 to generate plasma, and a film is formed on the substrate S.
  • a passivation film while applying a voltage from the high-frequency power supply 15 and the low-frequency power supply 16 a film with good film quality can be formed with a short tact time.
  • SiH 4 is introduced as a Si-containing gas, and at least one gas selected from NH 3 and N 2 is used as an N-containing gas. Introduce.
  • SiH 4 is introduced as a Si-containing gas, and at least one gas selected from CO 2 , N 2 O, and O 2 is introduced as an O (oxygen) -containing gas.
  • SiH 4 is introduced as the Si-containing gas, and at least one gas selected from NH 3 and N 2 as the N-containing gas is used as the N-containing gas.
  • one or more gases selected from CO 2 , N 2 O and O 2 are introduced.
  • an inert gas such as Ar gas may be introduced into the film forming gas as a carrier gas.
  • the flow rate of each gas is 1500 to 1600 sccm for SiH 4 , 3000 to 6000 sccm for NH 3 , and 4000 to 7000 sccm for N 2 .
  • the high frequency power source 15 only needs to be able to apply a high frequency voltage of 13.56 to 27.12 MHz, and the low frequency power source 16 only needs to be able to apply a low frequency voltage of 20 to 400 kHz.
  • the input power of the high frequency power supply 15 is 1000 to 3500 W.
  • the input power of the low frequency power supply 16 is 300 to 2000 W.
  • the stop signal output from one arc cut unit 25 is also input to the other switch unit 20 by the coupling wiring 26. It is configured as such.
  • the stop signal is input to the switch unit 20 and at the same time the other control unit Since the stop signal is also input to the switch unit 20, the power supply can be stopped at the same time, and the power supply is not stopped alternately. Therefore, according to the present embodiment, the deposition rate does not decrease and the quality of the obtained film does not decrease.
  • Example 5 the SiN film was formed using the film forming apparatus 1.
  • a substrate S silicon substrate
  • the substrate temperature 350 ° C.
  • pressure 190 Pa
  • SiH 4 flow rate 1500 sccm
  • NH 3 flow rate 5000 sccm
  • N 2 flow rate 6000 sccm
  • E / S 23 mm
  • frequency of the low frequency power supply 16 250 kHz
  • input power of the low frequency power supply 16 2000 MHz
  • film formation time 20 seconds
  • a nitride film was formed.
  • Examples 2 to 5 silicon nitride films were formed in the same manner as in Example 1 under the conditions shown in Table 1. (Comparative Examples 1 to 5) As Comparative Examples 1 to 5, the stop signal from the arc cut unit 25 of one control unit is not input to the switch unit 20 of the other control unit, that is, except that a film forming apparatus having no coupling wiring is used. Film formation was performed in the same manner under the same conditions as in Examples 1-5.
  • Example 1 compared to Comparative Examples 1 to 5, since the erroneous recognition of arc discharge was suppressed by the coupling wiring 26, the number of times the switch unit 20 was turned off decreased. Along with this, in Examples 1 to 5, the film thickness increased as compared with Comparative Examples 1 to 5.
  • the number of times of off on the high frequency power supply 15 side is 300 times, and the number of times of off on the low frequency power supply 16 side is 295 times, which is often erroneously recognized.
  • Example 1 the number of off times on the high frequency power supply 15 side was 54 times, the number of off times on the low frequency power supply 16 side was 53 times, and the number of off times decreased to about 1/6.
  • the film thickness was 605 mm in the case of Example 1 and 527 mm in the case of Comparative Example 1, and the film thickness increased by about 10% or more. Note that the number of off times on the high frequency power supply 15 side and the number of off times on the low frequency power supply 16 side may not match because a time lag may occur in transmission / reception of the stop signal.
  • the stop signal is input to both the high frequency power supply side control unit 17 and the low frequency power supply side control unit 18 by one coupling wiring 26, but the present invention is not limited to this.
  • another coupling wiring may be provided.
  • the switch part 20 will not be limited if it functions as a switch.
  • a NAND circuit may be used.
  • the SiN film is formed as an example, but the plasma CVD apparatus is not limited to this application.
  • one high-frequency power source 15 and one low-frequency power source 16 are provided on the shower plate 13, but the present invention is not limited to this. It is sufficient that at least one high frequency power supply 15 and low frequency power supply 16 are provided. For example, two high frequency power supplies 15 and one low frequency power supply 16 may be provided. Moreover, you may provide one each in the mounting part 12 and the shower plate 13. FIG.
  • the present invention can form a film with good film quality and a sufficient film formation speed, it can be used, for example, in the field of manufacturing solar cell elements.

Abstract

Disclosed is a film-forming apparatus equipped with a stage unit (12) upon which a target for film-forming is placed, disposed in a vacuum chamber (11); a shower plate (13), disposed to face the target for film-forming placed on the stage unit (12), for introducing a film-forming gas; and a plurality of AC power supplies connected to the shower plate and/or the stage unit. The plurality of AC power supplies is composed of at least one high-frequency power supply (15) that supplies high-frequency power; and one low-frequency power supply (16) that supplies low-frequency power that is lower than the high-frequency power supply. Abnormal discharge detection means is provided to detect abnormal discharges in the vacuum chamber; when each abnormal discharge detection means detects an abnormal discharge, all power supply from the AC power supplies is stopped.

Description

成膜装置Deposition equipment
 本発明は成膜装置に関する。 The present invention relates to a film forming apparatus.
 クリーンなエネルギー源として注目されている太陽電池素子は、出力特性向上のために、出力特性の損失を抑制することが求められている。このような太陽電池素子は、半導体層と、半導体層上に形成されたパッシベーション膜と、電極とを備える。このパッシベーション膜とは、半導体層を保護する保護膜として機能すると共に、反射防止膜としても機能する膜をいい、プラズマCVD法により形成される。 Solar cell elements that are attracting attention as clean energy sources are required to suppress loss of output characteristics in order to improve output characteristics. Such a solar cell element includes a semiconductor layer, a passivation film formed on the semiconductor layer, and an electrode. The passivation film is a film that functions as a protective film for protecting the semiconductor layer and also functions as an antireflection film, and is formed by a plasma CVD method.
 プラズマCVD法とは、化学反応を活性化させるため、高周波電源から高周波を印加することで原料ガスをプラズマ化させて成膜する方法である。例えば、特許文献1では、このパッシベーション膜は、窒化シリコン膜などからなり、例えばシラン(SiH)とアンモニア(NH)との混合ガスを窒素(N)で希釈し、グロー放電分解してプラズマ化させて堆積させて形成される。 The plasma CVD method is a method of forming a film by forming a source gas into plasma by applying a high frequency from a high frequency power source in order to activate a chemical reaction. For example, in Patent Document 1, this passivation film is made of a silicon nitride film or the like. For example, a mixed gas of silane (SiH 4 ) and ammonia (NH 3 ) is diluted with nitrogen (N 2 ) and decomposed by glow discharge. It is formed by being plasmarized and deposited.
特開2005-159171号公報(請求項1、請求項7等)Japanese Patent Laying-Open No. 2005-159171 (Claim 1, Claim 7, etc.)
 しかしながら、かかる特許文献1に記載された装置においては、異常放電が生じた場合に、チャンバ内の部品にダメージを与えやすいという問題がある。また、特許文献1に記載された成膜方法では、所望の成膜速度を得ることができず、かつ、所望の膜質を有する膜を形成することができないという問題がある。なお、このような問題は、太陽電池素子におけるパッシベーション膜形成時に限定されず、プラズマCVD装置全般に生じる問題である。 However, in the apparatus described in Patent Document 1, there is a problem that it is easy to damage parts in the chamber when abnormal discharge occurs. Further, the film forming method described in Patent Document 1 has a problem that a desired film forming speed cannot be obtained and a film having a desired film quality cannot be formed. Such a problem is not limited to the formation of the passivation film in the solar cell element, and is a problem that occurs in the plasma CVD apparatus in general.
 そこで、本発明の課題は、上記従来技術の問題点を解決することにあり、異常放電が生じた場合におけるチャンバ内部を構成する部品へのダメージを抑制すると共に、膜質及び膜厚を十分に得ることができる成膜装置を提供しようとするものである。 Accordingly, an object of the present invention is to solve the above-described problems of the prior art, and to suppress damage to parts constituting the chamber when abnormal discharge occurs, and to sufficiently obtain film quality and film thickness. An object of the present invention is to provide a film forming apparatus that can perform the above process.
 本発明の成膜装置は、真空チャンバ内に設けられ、成膜対象が載置される載置部と、該載置部に載置された成膜対象に対向するように設けられ、成膜ガスを導入するシャワープレートと、前記シャワープレート及び前記載置部の少なくとも一方に接続された複数の交流電源とを備え、複数の前記交流電源は、少なくとも、高周波電力を供給する一つの高周波電源と、前記高周波電源よりも低い低周波電力を供給する一つの低周波電源とからなり、それぞれ前記真空チャンバ内の異常放電を検出する異常放電検出手段を具備し、各異常放電検出手段は、異常放電を検出すると、全ての前記交流電源の電力供給を停止させるように構成されていることを特徴とする。 The film formation apparatus of the present invention is provided in a vacuum chamber, and is provided so as to face a film formation target placed on the placement unit on which the film formation target is placed. A shower plate for introducing gas; and a plurality of AC power sources connected to at least one of the shower plate and the mounting portion, wherein the plurality of AC power sources include at least one high frequency power source for supplying high frequency power; Each of the low-frequency power supplies for supplying low-frequency power lower than that of the high-frequency power supply, each having an abnormal discharge detection means for detecting abnormal discharge in the vacuum chamber, each abnormal discharge detection means, It is configured to stop the power supply of all the AC power supplies when detecting the AC.
 本発明においては、各異常放電検出手段は、異常放電を検出すると、交流電源の電力供給を停止させるように構成されていることで、チャンバ内の部品に与えるダメージを減少させることができる。かつ、複数の前記交流電源は、少なくとも、高周波電力を供給する一つの高周波電源と、低周波電力を供給する一つの低周波電源とからなることで、膜質及び膜厚を十分に得ることができる。この場合において、各異常放電検出手段は、異常放電を検出すると、全ての前記交流電源の電力供給を停止させることで、アーク放電発生の誤認識により交互に電力供給が停止されることを抑制し、十分な膜質及び膜厚を得ることができる。 In the present invention, each abnormal discharge detecting means is configured to stop the power supply of the AC power supply when the abnormal discharge is detected, so that damage to the components in the chamber can be reduced. The plurality of AC power supplies are composed of at least one high-frequency power supply that supplies high-frequency power and one low-frequency power supply that supplies low-frequency power, so that sufficient film quality and film thickness can be obtained. . In this case, each abnormal discharge detection means, when detecting abnormal discharge, stops the power supply of all the AC power supplies, thereby suppressing the power supply from being alternately stopped due to erroneous recognition of the occurrence of arc discharge. Sufficient film quality and film thickness can be obtained.
 本発明の好ましい実施形態としては、前記シャワープレートに、前記高周波電源及び前記低周波電源がそれぞれ一つ設けられていることが挙げられる。 As a preferred embodiment of the present invention, one high frequency power source and one low frequency power source are provided on the shower plate.
 また、本発明のより好ましい実施形態としては、前記各異常放電検出手段は、前記各交流電源からの電力を前記シャワープレートへ供給し又は停止させるスイッチ部と、前記各交流電源からの出力信号の反射波成分を検出する検出部と、該検出部で検出された反射波成分が閾値を越えたかどうかを判断し、閾値を越えた場合には前記スイッチ部をオフとする停止信号を送出する異常放電判断部とを備え、前記各異常放電検出手段の前記異常放電判断部からの停止信号が、全ての各異常放電検出手段のスイッチ部に入力されるように構成されていることである。 Further, as a more preferred embodiment of the present invention, each abnormal discharge detecting means includes a switch unit that supplies or stops power from each AC power source to the shower plate, and an output signal from each AC power source. Abnormality of detecting a reflected wave component, and determining whether or not the reflected wave component detected by the detection unit exceeds a threshold, and sending a stop signal to turn off the switch unit when the threshold is exceeded A discharge determination unit, and a stop signal from the abnormal discharge determination unit of each abnormal discharge detection unit is input to the switch units of all the abnormal discharge detection units.
 本発明の成膜装置によれば、異常放電が生じた場合におけるチャンバ内部を構成する部品へのダメージを抑制すると共に、膜質及び膜厚を十分に得ることができる。 According to the film forming apparatus of the present invention, it is possible to suppress damage to the components constituting the interior of the chamber when abnormal discharge occurs, and to sufficiently obtain the film quality and film thickness.
本実施形態の成膜装置の模式図である。It is a schematic diagram of the film-forming apparatus of this embodiment. 本実施形態の制御部の構成を示す模式図である。It is a schematic diagram which shows the structure of the control part of this embodiment. 結合配線がない場合のアーク放電時の制御を説明するためのタイミングチャートである。It is a timing chart for demonstrating the control at the time of arc discharge when there is no coupling wiring. 本実施形態のアーク放電時の制御を説明するためのタイミングチャートである。It is a timing chart for demonstrating the control at the time of arc discharge of this embodiment.
 本発明の成膜装置について、図1を用いて説明する。成膜装置1は、プラズマCVD法を実施して成膜を行うものであり、例えば、太陽電池素子におけるパッシベーション膜を形成するためのものである。成膜装置1は、所望の真空状態を保持できる真空チャンバ11を備える。真空チャンバ11には、図示しない加熱装置を備えた載置部12が設けられており、載置部12には成膜対象である基板Sが載置されている。加熱装置により、成膜時においてこの基板Sを所望の基板温度となるように調整することができる。 The film forming apparatus of the present invention will be described with reference to FIG. The film forming apparatus 1 performs a film formation by performing a plasma CVD method, for example, for forming a passivation film in a solar cell element. The film forming apparatus 1 includes a vacuum chamber 11 that can maintain a desired vacuum state. The vacuum chamber 11 is provided with a placement unit 12 having a heating device (not shown), and the substrate S to be deposited is placed on the placement unit 12. The substrate S can be adjusted to a desired substrate temperature during film formation by a heating device.
 真空チャンバ11の天井面には、基板Sに対向するようにシャワープレート13が設けられている。シャワープレート13には、成膜ガスを導入するガス導入手段14が接続されており、真空チャンバ11内に均一に成膜ガスを導入することができるように構成されている。ガス導入手段14は、本実施形態では、例えば3種類のガスを導入できるように構成されており、異なるガス(本実施形態では、SiH、NH、N)がそれぞれ封入されているガス源14a、14b、14cが、ガス導入管14dにそれぞれバルブ14eを介して接続されている。なお、本実施形態では、3種類の成膜ガスを導入できるようにガス導入手段14を構成しているが、成膜ガスを所望の膜構成に応じて導入できるように、例えば、ガス導入手段14が6種類のガス源を備えるようにし、膜構成に応じて成膜ガスを選択するように構成してもよい。 A shower plate 13 is provided on the ceiling surface of the vacuum chamber 11 so as to face the substrate S. The shower plate 13 is connected to gas introducing means 14 for introducing a film forming gas, and is configured so that the film forming gas can be uniformly introduced into the vacuum chamber 11. In this embodiment, the gas introduction means 14 is configured to be able to introduce, for example, three kinds of gases, and different gases (in this embodiment, SiH 4 , NH 3 , and N 2 ) are sealed therein. Sources 14a, 14b, and 14c are connected to the gas introduction pipe 14d through valves 14e, respectively. In the present embodiment, the gas introduction unit 14 is configured so that three kinds of film formation gases can be introduced. However, for example, a gas introduction unit may be used so that the film formation gas can be introduced according to a desired film configuration. 14 may be provided with six types of gas sources, and the film forming gas may be selected according to the film structure.
 シャワープレート13には高周波電源15が接続され、シャワープレート13に高周波数の電圧が印加されるように構成されている。さらに、シャワープレート13には低周波電源16も接続されており、シャワープレート13に低周波数の電圧が印加されるように構成されている。従って、シャワープレート13は、均一に成膜ガスを真空チャンバ11内に導入するガス導入口として機能すると共に、高周波数の電圧及び低周波数の電圧が印加される放電電極としても機能するものである。即ち、本実施形態の成膜装置1においては、成膜時に高周波電源15及び低周波電源16により異なる周波数の電圧をシャワープレート13に印加してそれぞれプラズマを形成して成膜を行うことができるように構成している。このように、本実施形態では、高周波電源15により高周波数の電圧を印加しながら低周波電源16により低周波数の電圧を印加することにより、高周波電源15によるプラズマと、低周波電源16によるプラズマとを形成し、その結果、真空チャンバ11内にはこれらのプラズマが混合したプラズマを形成することができる。本実施形態の成膜装置1は、このように混合したプラズマを形成することで、高周波電圧のみを印加した場合の成膜速度が速いという利点と、低周波電圧のみを印加した場合の膜質がよいという利点とを両方有する。即ち、本実施形態の成膜装置1によれば、成膜速度が速く、かつ、得られた膜の膜質が良好である。 The shower plate 13 is connected to a high frequency power supply 15 so that a high frequency voltage is applied to the shower plate 13. Further, a low frequency power supply 16 is also connected to the shower plate 13 so that a low frequency voltage is applied to the shower plate 13. Therefore, the shower plate 13 functions as a gas inlet for uniformly introducing the film forming gas into the vacuum chamber 11 and also functions as a discharge electrode to which a high frequency voltage and a low frequency voltage are applied. . That is, in the film forming apparatus 1 according to the present embodiment, it is possible to perform film formation by forming a plasma by applying voltages of different frequencies to the shower plate 13 by the high frequency power supply 15 and the low frequency power supply 16 during film formation. It is configured as follows. As described above, in this embodiment, by applying a low frequency voltage from the low frequency power supply 16 while applying a high frequency voltage from the high frequency power supply 15, plasma from the high frequency power supply 15 and plasma from the low frequency power supply 16 are applied. As a result, a plasma in which these plasmas are mixed can be formed in the vacuum chamber 11. The film forming apparatus 1 of the present embodiment forms the mixed plasma in this way, so that the film forming speed when only a high frequency voltage is applied is fast and the film quality when only a low frequency voltage is applied is high. Both have the advantage of being good. That is, according to the film forming apparatus 1 of the present embodiment, the film forming speed is high and the film quality of the obtained film is good.
 例えば、本実施形態の成膜装置1を用いれば、パッシベーション膜の形成においてはパッシベーション膜の膜質を向上でき、これにより太陽電池素子におけるキャリアの再結合による損失を抑制することができる。即ち、ガス種類、投入電力、電極間距離などのプラズマを生成するための条件によってプラズマ密度およびプラズマポテンシャルが決まるが、高周波数(13.56MHz~27.12MHz)の電圧のみを印加して形成されたプラズマでは、30Å/s以上の高速度成膜条件においては、太陽電池素子に必要な膜質、即ち膜密度および膜中固定電荷を得ることができなかった。このため、従来のパッシベーション膜ではキャリアの再結合による損失を十分に抑制することができなかった。 For example, when the film forming apparatus 1 of the present embodiment is used, the film quality of the passivation film can be improved in the formation of the passivation film, thereby suppressing loss due to carrier recombination in the solar cell element. That is, the plasma density and plasma potential are determined by the conditions for generating plasma such as the gas type, input power, and electrode distance, but are formed by applying only a high frequency (13.56 MHz to 27.12 MHz) voltage. In the case of plasma, the film quality necessary for the solar cell element, that is, the film density and the fixed charge in the film could not be obtained under the high-speed film formation condition of 30 Å / s or more. For this reason, the conventional passivation film cannot sufficiently suppress the loss due to carrier recombination.
 これに対し、本実施形態の成膜装置1を用いた場合には、高周波及び低周波の異なる周波数の電圧を重畳して印加してパッシベーション膜を形成することで、パッシベーション膜が、例えば太陽電池素子として好ましい膜質、具体的には高膜密度および高膜中固定電荷濃度となる。これは、低周波数の電圧で励起されたイオンの電荷が、高周波数の電圧で励起されたプラズマの電荷に加わることで、基板とプラズマとの電位差、すなわちシース電界を増大させることができ、その結果、基板表面へ入射するイオンエネルギーを増大させることができるからである。そして、このイオンエネルギーの増大により、基板表面への入射イオンによるイオン衝撃も増大し、パッシベーション膜がより緻密に形成され(高膜密度)、パッシベーション膜中に存在する電荷も増大する結果、パッシベーション膜は高い正の固定電荷濃度を有する。 On the other hand, when the film forming apparatus 1 of the present embodiment is used, the passivation film is formed, for example, by a solar cell by superimposing and applying voltages having different frequencies of high frequency and low frequency to form the passivation film. The film quality preferable as an element, specifically, high film density and high fixed charge concentration in the film. This is because the electric charge of ions excited at a low frequency voltage is added to the charge of plasma excited at a high frequency voltage, thereby increasing the potential difference between the substrate and the plasma, that is, the sheath electric field. As a result, the ion energy incident on the substrate surface can be increased. As a result of this increase in ion energy, ion bombardment by ions incident on the substrate surface also increases, the passivation film is formed more densely (high film density), and the charge present in the passivation film also increases. As a result, the passivation film Has a high positive fixed charge concentration.
 このようなパッシベーション膜が形成されることで、パッシベーション膜界面へと移動してきた正のキャリア(正孔)は、反発し押し戻される。これにより、欠陥密度の高い界面でも正孔密度を低減できるため、キャリアの再結合を抑制することができる。その結果、得られた膜はキャリアのライフタイムが長い。従って、太陽電池素子を形成した場合、キャリアのライフタイムが長い優れた太陽電池素子となる。このように、本実施形態では、高周波電源15及び低周波電源16を備えることで、膜厚も膜質も良好な膜を形成することができるのである。 By forming such a passivation film, positive carriers (holes) that have moved to the passivation film interface are repelled and pushed back. Accordingly, since the hole density can be reduced even at an interface having a high defect density, carrier recombination can be suppressed. As a result, the obtained film has a long carrier lifetime. Therefore, when a solar cell element is formed, an excellent solar cell element having a long carrier lifetime is obtained. Thus, in the present embodiment, by providing the high-frequency power supply 15 and the low-frequency power supply 16, a film having a good film thickness and film quality can be formed.
 ここで、かかる高周波電源15とシャワープレート13との間には、高周波電源15からの高周波信号を制御する高周波電源側制御部17が介設されると共に、低周波電源16とシャワープレート13との間には、低周波電源16からの低周波信号を制御する低周波電源側制御部18が介設される。これらの高周波電源側制御部17及び低周波電源側制御部18(以下、まとめて制御部17、18という)は、同様の構成となっている。以下、制御部17、18について、図2を用いて説明する。 Here, between the high frequency power source 15 and the shower plate 13, a high frequency power source side control unit 17 for controlling a high frequency signal from the high frequency power source 15 is interposed, and between the low frequency power source 16 and the shower plate 13. A low frequency power supply side control unit 18 for controlling a low frequency signal from the low frequency power supply 16 is interposed therebetween. The high frequency power supply side control unit 17 and the low frequency power supply side control unit 18 (hereinafter collectively referred to as the control units 17 and 18) have the same configuration. Hereinafter, the control units 17 and 18 will be described with reference to FIG.
 制御部17、18は、それぞれ、スイッチ部20と、増幅器21と、マッチングボックス22と、検出器23と、フィードバック制御部24と、アークカット部25とを備える。 The control units 17 and 18 include a switch unit 20, an amplifier 21, a matching box 22, a detector 23, a feedback control unit 24, and an arc cut unit 25, respectively.
 スイッチ部20は、後述するアークカット部25から停止信号が入力された場合には、オフ状態となり、電源からの電力供給を停止する。停止信号が入力されていない場合には、オン状態となり、電源から電力を供給する。 When the stop signal is input from the arc cut unit 25 described later, the switch unit 20 is turned off and stops the power supply from the power source. When no stop signal is input, the power supply is turned on and power is supplied from the power source.
 増幅器21は、設定された増幅動作の利得に基づいて、増幅器21に入力された入力信号を増幅するものである。また、マッチングボックス22は、マッチングボックス22に入力された入力信号を所望のインピーダンスとなるように整合するものである。 The amplifier 21 amplifies the input signal input to the amplifier 21 based on the set gain of the amplification operation. The matching box 22 matches the input signal input to the matching box 22 so as to have a desired impedance.
 検出器23は、検出器23に入力された入力信号の進行波成分及び反射波成分を検出する。そして、検出器23は、入力信号の進行波成分の電力に応じた進行波検出信号をフィードバック制御部24に入力する。また、検出器23は、入力信号の反射波成分の電力に応じた反射波検出信号をアークカット部25に入力する。 The detector 23 detects the traveling wave component and the reflected wave component of the input signal input to the detector 23. Then, the detector 23 inputs a traveling wave detection signal corresponding to the power of the traveling wave component of the input signal to the feedback control unit 24. The detector 23 inputs a reflected wave detection signal corresponding to the power of the reflected wave component of the input signal to the arc cut unit 25.
 フィードバック制御部24は、PI制御を行うものであり、入力された進行波検出信号が予め設定された目標値に追従するように、増幅器21の増幅操作の利得を設定し、この設定した利得の値を示す設定信号を増幅器21に入力する。これにより、進行波電力の制御を行っている。アークカット部25は、検出器23からの検出信号が閾値を越えたと判断した場合、即ちアーク放電(異常放電)が発生していると判断した場合には、所定時間、停止信号をスイッチ部20に送出する。 The feedback control unit 24 performs PI control, sets the gain of the amplification operation of the amplifier 21 so that the input traveling wave detection signal follows a preset target value, and sets the gain of the set gain. A setting signal indicating a value is input to the amplifier 21. Thereby, traveling wave power is controlled. When the arc cut unit 25 determines that the detection signal from the detector 23 exceeds the threshold value, that is, when it is determined that arc discharge (abnormal discharge) is occurring, the arc cut unit 25 outputs a stop signal for a predetermined time. To send.
 高周波電源側制御部17を例に挙げて制御部17、18の動作を説明する。高周波電源15がオン状態となり、高周波信号が生成される。生成された高周波信号は、スイッチ部20を介して増幅器21に入力され、所定の利得で増幅されて増幅器21から出力される。増幅器21から出力された高周波信号は、マッチングボックス22に入力されて所望のインピーダンスとなるように整合され、マッチングボックス22から出力される。マッチングボックス22から出力された高周波信号は、シャワープレート13に印加される。シャワープレート13に高周波信号が印加されると、真空チャンバ11内においてプラズマが生成される。 The operation of the control units 17 and 18 will be described by taking the high frequency power supply side control unit 17 as an example. The high frequency power supply 15 is turned on and a high frequency signal is generated. The generated high frequency signal is input to the amplifier 21 through the switch unit 20, amplified with a predetermined gain, and output from the amplifier 21. The high-frequency signal output from the amplifier 21 is input to the matching box 22, matched so as to have a desired impedance, and output from the matching box 22. The high frequency signal output from the matching box 22 is applied to the shower plate 13. When a high frequency signal is applied to the shower plate 13, plasma is generated in the vacuum chamber 11.
 他方で、検出器23は、プラズマを生成する高周波信号の進行波成分及び反射波成分を検出し、進行波成分の電力に応じた進行波検出信号を生成し、フィードバック制御部24に入力する。フィードバック制御部24は、入力された検出信号に基づいて高周波信号が目標値になるように、増幅器21の増幅操作の利得を設定し、この設定した利得の値を示す設定信号を増幅器21に入力する。増幅器21は、入力された設定信号に基づいて、増幅器21の利得を変更する。これにより、増幅器21に入力された高周波信号は、変更された利得に基づいて目標値に追従するように増幅される。このようにして、本実施形態ではフィードバック制御を行って、常に真空チャンバ11内において所望のプラズマを生成することができるように構成している。 On the other hand, the detector 23 detects the traveling wave component and the reflected wave component of the high-frequency signal that generates plasma, generates a traveling wave detection signal corresponding to the power of the traveling wave component, and inputs it to the feedback control unit 24. The feedback control unit 24 sets the gain of the amplification operation of the amplifier 21 so that the high frequency signal becomes a target value based on the input detection signal, and inputs a setting signal indicating the set gain value to the amplifier 21. To do. The amplifier 21 changes the gain of the amplifier 21 based on the input setting signal. Thereby, the high frequency signal input to the amplifier 21 is amplified so as to follow the target value based on the changed gain. In this way, in this embodiment, feedback control is performed so that desired plasma can always be generated in the vacuum chamber 11.
 また、検出器23は高周波信号の反射波成分の電力に応じた反射波検出信号を生成し、この反射波検出信号をアークカット部25に入力している。真空チャンバ11内でプラズマが生成された状態で、真空チャンバ11内に設置された部品の例えば突起部においてチャージアップが始まり、反射波成分が増大すると、アークカット部25に入力される反射波検出信号も増大する。そして、アークカット部25は、検出器23から入力された反射波検出信号が閾値を越えたと判断した場合には、アーク放電(異常放電)が発生していると判断し、所定時間、停止信号をスイッチ部20に送出する。停止信号がスイッチ部20に入力されるとスイッチ部20がオフ状態となり、高周波電源15からの高周波信号が遮断される。これにより、真空チャンバ11内に形成された高周波信号によるプラズマが消失する。真空チャンバ11内にアーク放電が発生した場合に電力を供給し続けるとシャワープレート13がダメージを受けるという問題があるが、本実施形態では、アーク放電が発生すると電力供給を絶つので、シャワープレート13のダメージを軽減することができる。 In addition, the detector 23 generates a reflected wave detection signal corresponding to the power of the reflected wave component of the high frequency signal, and inputs this reflected wave detection signal to the arc cut unit 25. In the state where plasma is generated in the vacuum chamber 11, when charge-up starts, for example, at a protrusion of a component installed in the vacuum chamber 11, and the reflected wave component increases, the reflected wave detection input to the arc cut unit 25 is detected. The signal also increases. When the arc cut unit 25 determines that the reflected wave detection signal input from the detector 23 has exceeded the threshold value, the arc cut unit 25 determines that arc discharge (abnormal discharge) has occurred, and stops the signal for a predetermined time. Is sent to the switch unit 20. When the stop signal is input to the switch unit 20, the switch unit 20 is turned off, and the high frequency signal from the high frequency power supply 15 is cut off. Thereby, the plasma by the high frequency signal formed in the vacuum chamber 11 disappears. There is a problem that the shower plate 13 is damaged if the electric power is continuously supplied when the arc discharge is generated in the vacuum chamber 11, but in this embodiment, the electric power supply is cut off when the arc discharge is generated. Can reduce the damage.
 なお、低周波電源側制御部18も、高周波電源側制御部17と同様に構成されている。また、スイッチ部20と、増幅器21と、マッチングボックス22と、検出器23と、フィードバック制御部24と、アークカット部25とはそれぞれ各機能を実行することができるように構成されていれば、その構成は限定されるものではない。 The low frequency power supply side control unit 18 is configured similarly to the high frequency power supply side control unit 17. In addition, if the switch unit 20, the amplifier 21, the matching box 22, the detector 23, the feedback control unit 24, and the arc cut unit 25 are configured to be able to execute each function, The configuration is not limited.
 ところで、高周波電源15及び低周波電源16から高周波信号及び低周波信号をそれぞれ制御部17、18を介してシャワープレート13に印加し真空チャンバ11内にそれぞれプラズマを生成すると、プラズマ毎にアーク放電が発生する。この場合に、一方のプラズマにおいてアーク放電が発生すると、アーク放電の発生したプラズマを生成する側の制御部17、18が電力供給をストップするが、電力供給がストップすることにより、真空チャンバ11内のインピーダンスが変わってしまう。このインピーダンスの変化により、他方のプラズマを生成する電源に接続する制御部17、18がアーク放電が発生したと誤って判断し、誤作動して電力供給の停止を繰り返す結果、所望の膜厚及び膜質を得られない場合がある。以下、高周波電源15側でアーク放電が発生した場合に生じる制御部17、18の誤作動を図3を用いて具体的に説明する。 By the way, when a high frequency signal and a low frequency signal are applied from the high frequency power supply 15 and the low frequency power supply 16 to the shower plate 13 via the control units 17 and 18 respectively to generate plasma in the vacuum chamber 11, arc discharge occurs for each plasma. appear. In this case, when an arc discharge occurs in one of the plasmas, the control units 17 and 18 on the side that generates the plasma in which the arc discharge has been generated stop the power supply. Impedance changes. As a result of this impedance change, the control units 17 and 18 connected to the power source that generates the other plasma erroneously determine that arc discharge has occurred, and as a result of malfunction and repeated stoppage of power supply, the desired film thickness and Film quality may not be obtained. Hereinafter, a malfunction of the control units 17 and 18 that occurs when arc discharge occurs on the high-frequency power supply 15 side will be specifically described with reference to FIG.
 図3は、各時間における、(1)検出器23により検出された高周波電源15の反射波成分の値、(2)高周波電源15側でのアーク放電の発生の有無、(3)高周波電源側制御部17のスイッチ部20のオンオフ状態、(4)検出器23により検出された低周波電源16の反射波成分の値、(5)低周波電源16側でのアーク放電の発生の有無、(6)低周波電源側制御部18のスイッチ部20のオンオフ状態を示す。 3 shows, at each time, (1) the value of the reflected wave component of the high frequency power supply 15 detected by the detector 23, (2) the presence or absence of occurrence of arc discharge on the high frequency power supply 15 side, and (3) the high frequency power supply side. ON / OFF state of switch unit 20 of control unit 17, (4) value of reflected wave component of low frequency power supply 16 detected by detector 23, (5) presence or absence of occurrence of arc discharge at low frequency power supply 16 side, ( 6) The on / off state of the switch unit 20 of the low frequency power supply side control unit 18 is shown.
 プラズマ生成中において、高周波電源15側で例えばチャージアップにより真空チャンバ11内のインピーダンスが変化すると、高周波信号側での反射波が増大する(t=t1)。そして、反射波がそのまま増大し続け、アークカット部25が、検出器23から入力された反射波検出信号が閾値を越えたと判断する(t=t2)。この時、高周波電源15側でアーク放電が発生する。アークカット部25は、反射波検出信号が閾値を越えたという判断により、停止信号をスイッチ部20に送出する。これにより、所定時間スイッチ部20がオフ状態となり、高周波電源15からの電力供給が停止される。これにより、高周波電源15によるプラズマが消失する。 During plasma generation, when the impedance in the vacuum chamber 11 changes due to, for example, charge-up on the high-frequency power supply 15 side, the reflected wave on the high-frequency signal side increases (t = t1). Then, the reflected wave continues to increase as it is, and the arc cut unit 25 determines that the reflected wave detection signal input from the detector 23 has exceeded the threshold (t = t2). At this time, arc discharge occurs on the high frequency power supply 15 side. The arc cut unit 25 sends a stop signal to the switch unit 20 based on the determination that the reflected wave detection signal exceeds the threshold value. As a result, the switch unit 20 is turned off for a predetermined time, and the power supply from the high frequency power supply 15 is stopped. Thereby, the plasma by the high frequency power supply 15 disappears.
 このように高周波電源15側でアーク放電の発生により電力供給が停止され、高周波電源15によるプラズマが消失すると、真空チャンバ11内のインピーダンスが所定値とは異なるものとなるので(両電源からのプラズマが生成されている場合の真空チャンバ11内のインピーダンスが所定値である)、低周波電源16側の反射波成分が増大し始める(t=t3)。反射波成分が増大し続けて閾値を越えると(t=t4)、アーク放電が発生していないにも関わらず、低周波電源側制御部18のアークカット部25がアーク放電が発生したと誤認識して所定時間、停止信号をスイッチ部20に送出する。 Thus, when the electric power supply is stopped due to the occurrence of arc discharge on the high frequency power supply 15 side and the plasma by the high frequency power supply 15 disappears, the impedance in the vacuum chamber 11 becomes different from a predetermined value (plasma from both power supplies). When the impedance is generated, the impedance in the vacuum chamber 11 is a predetermined value), and the reflected wave component on the low frequency power supply 16 side starts to increase (t = t3). If the reflected wave component continues to increase and exceeds the threshold value (t = t4), it is erroneously assumed that the arc cut unit 25 of the low frequency power supply side control unit 18 has generated arc discharge even though arc discharge has not occurred. Recognizing and sending a stop signal to the switch unit 20 for a predetermined time.
 このように低周波電源16側でアーク放電の発生により電力供給が停止され、低周波電源16によるプラズマが消失した場合に、高周波電源15の電力供給が再開されると(t=t5)、低周波電源16の電力供給が停止されていることから、真空チャンバ11内のインピーダンスが所定値とは異なるので、高周波信号で反射波が増大する。そして、反射波が増大し続けると(t=t6)、アークカット部25は、検出器23から入力された反射波検出信号が閾値を越えたと判断するので、アーク放電が発生していないにも関わらず、停止信号をスイッチ部20に送出する。これにより、高周波電源15側のプラズマが消失する。そして、この状態で低周波電源16側の電力供給が再開されると(t=t7)、真空チャンバ11内のインピーダンスが所定値とは異なることから、低周波電源16側で反射波が増大し、低周波電源16側で低周波電源16の電源供給が停止される。 Thus, when the power supply is stopped due to the occurrence of arc discharge on the low frequency power supply 16 side and the plasma from the low frequency power supply 16 disappears, the power supply of the high frequency power supply 15 is resumed (t = t5). Since the power supply of the frequency power supply 16 is stopped, the impedance in the vacuum chamber 11 is different from the predetermined value, so that the reflected wave increases with the high frequency signal. If the reflected wave continues to increase (t = t6), the arc cut unit 25 determines that the reflected wave detection signal input from the detector 23 has exceeded the threshold value, so that no arc discharge has occurred. Regardless, a stop signal is sent to the switch unit 20. As a result, the plasma on the high frequency power supply 15 side disappears. When the power supply on the low frequency power supply 16 side is resumed in this state (t = t7), the reflected wave increases on the low frequency power supply 16 side because the impedance in the vacuum chamber 11 is different from the predetermined value. The power supply of the low frequency power supply 16 is stopped on the low frequency power supply 16 side.
 このように、一度アーク放電が発生すると、高周波電源側制御部17と低周波電源側制御部18とが交互にアーク放電が発生したと誤認識することにより、交互に電力供給をストップしてしまい、所望のプラズマ形成ができず、その結果、得られた膜の膜質が低下するという問題が生じる可能性がある。また、交互に電力共有をストップしていることから、成膜速度が低下するという問題がある。 Thus, once the arc discharge occurs, the high frequency power supply side control unit 17 and the low frequency power supply side control unit 18 erroneously recognize that the arc discharge has occurred alternately, thereby stopping the power supply alternately. The desired plasma cannot be formed, and as a result, there is a possibility that the film quality of the obtained film is deteriorated. Further, since the power sharing is alternately stopped, there is a problem that the film forming speed is lowered.
 そこで、本実施形態では、制御部17、18は、一方のアークカット部25から出力された停止信号が、他方のスイッチ部20にも入力されるように、構成されている。即ち、高周波電源側制御部17では、アークカット部25から出力された停止信号がスイッチ部20と、低周波電源側制御部18のスイッチ部20に入力されるように、また、低周波電源側制御部18では、アークカット部25から出力された停止信号がスイッチ部20と、高周波電源側制御部17のスイッチ部20に入力されるように、各アークカット部25が結合配線26より各スイッチ部20に接続されている。このように構成することで、どちらか一方の制御部17、18のアークカット部25から停止信号が出力されると、スイッチ部20に停止信号が入力されると同時に他方の制御部のスイッチ部20にも停止信号が入力されるので、同時に電力供給をストップさせることで、交互に電力供給をストップしてしまうことがない。従って、本実施形態によれば、成膜速度が低下せず、かつ、得られた膜の膜質が低下しない。 Therefore, in the present embodiment, the control units 17 and 18 are configured such that the stop signal output from one arc cut unit 25 is also input to the other switch unit 20. That is, in the high frequency power supply side control unit 17, the stop signal output from the arc cut unit 25 is input to the switch unit 20 and the switch unit 20 of the low frequency power supply side control unit 18. In the control unit 18, each arc cut unit 25 is connected to each switch from the coupling wiring 26 so that the stop signal output from the arc cut unit 25 is input to the switch unit 20 and the switch unit 20 of the high frequency power supply side control unit 17. Connected to the unit 20. With this configuration, when a stop signal is output from the arc cut unit 25 of one of the control units 17 and 18, the stop signal is input to the switch unit 20 and at the same time the switch unit of the other control unit Since the stop signal is also input to 20, the power supply is not stopped alternately by stopping the power supply at the same time. Therefore, according to the present embodiment, the deposition rate does not decrease and the quality of the obtained film does not decrease.
 即ち、本実施形態では、アーク放電発生時に図4に示すように電力供給がストップする。図4は、各時間における、(1)検出器23により検出された高周波電源15の反射波成分の値、(2)高周波電源15側でのアーク放電の発生の有無、(3)高周波電源側制御部17のスイッチ部20のオンオフ状態、(4)検出器23により検出された低周波電源16の反射波成分の値、(5)低周波電源16側でのアーク放電の発生の有無、(6)低周波電源側制御部18のスイッチ部20のオンオフ状態を示す。 That is, in this embodiment, when arc discharge occurs, the power supply is stopped as shown in FIG. 4 shows, at each time, (1) the value of the reflected wave component of the high frequency power supply 15 detected by the detector 23, (2) the presence or absence of occurrence of arc discharge on the high frequency power supply 15 side, and (3) the high frequency power supply side. ON / OFF state of switch unit 20 of control unit 17, (4) value of reflected wave component of low frequency power supply 16 detected by detector 23, (5) presence or absence of occurrence of arc discharge at low frequency power supply 16 side, ( 6) The on / off state of the switch unit 20 of the low frequency power supply side control unit 18 is shown.
 プラズマ生成中において、高周波電源15側で例えばチャージアップにより真空チャンバ11内のインピーダンスが変化すると、高周波信号側での反射波が増大する(t=t1)。そして、反射波がそのまま増大し続けると、アークカット部25は、検出器23から入力された反射波検出信号が閾値を越えたと判断すると、停止信号をスイッチ部20に送出する。これにより、所定時間スイッチ部20がオフ状態となり、高周波電源15からの電力供給が停止される。これにより、高周波電源15によるプラズマが消失する。 During plasma generation, when the impedance in the vacuum chamber 11 changes due to, for example, charge-up on the high-frequency power supply 15 side, the reflected wave on the high-frequency signal side increases (t = t1). When the reflected wave continues to increase as it is, the arc cut unit 25 sends a stop signal to the switch unit 20 when determining that the reflected wave detection signal input from the detector 23 has exceeded the threshold value. As a result, the switch unit 20 is turned off for a predetermined time, and the power supply from the high frequency power supply 15 is stopped. Thereby, the plasma by the high frequency power supply 15 disappears.
 この場合に、低周波電源16側では、アーク放電が発生しておらず、また、反射波が発生したとしても閾値に達していない場合であっても、高周波電源側制御部17から停止信号がスイッチ部20に入力される(t=t2)。これにより、低周波電源側制御部18でも電源供給が停止されてプラズマが消失する。このように同時にプラズマが消失する場合には、アーク放電と同じ回数だけプラズマが消失しているので、その消失している時間は短い。従って、本実施形態によれば、成膜速度も早く、所望の膜厚の膜を得ることができる。 In this case, no arc discharge is generated on the low frequency power supply 16 side, and even if a reflected wave is generated and the threshold is not reached, a stop signal is output from the high frequency power supply side control unit 17. It is input to the switch unit 20 (t = t2). Thereby, the power supply is stopped also in the low frequency power supply side control unit 18 and the plasma disappears. When the plasma disappears at the same time as described above, the disappearance time is short because the plasma disappears as many times as the arc discharge. Therefore, according to this embodiment, a film having a desired film thickness can be obtained at a high film forming speed.
 このように、本実施形態においては、アークカット部25を設けることで、アーク放電発生時におけるシャワープレート13のダメージを軽減することができる。かつ、各アークカット部25が各スイッチ部20に接続するように構成されていることで、アークカット部25の誤認識による交互にプラズマ形成が停止され続けることによる膜質の低下や成膜速度の低下を抑制することができる。 Thus, in the present embodiment, by providing the arc cut portion 25, damage to the shower plate 13 when arc discharge occurs can be reduced. In addition, since each arc cut unit 25 is configured to be connected to each switch unit 20, deterioration in film quality and film formation speed due to alternately stopping plasma formation due to erroneous recognition of the arc cut unit 25. The decrease can be suppressed.
 成膜装置1を用いた成膜方法について説明する。はじめに、真空チャンバ11内の載置部12に基板Sを載置する。次いで真空チャンバ11内を所望の真空状態とする。そして、ガス導入手段14から成膜ガスを導入すると共に、高周波電源15及び低周波電源16から電力供給を開始して、プラズマを発生させ、基板Sに対して膜を形成する。本実施形態においては、高周波電源15及び低周波電源16から電圧を印加しながらパッシベーション膜の成膜を行うことで、膜質のよい膜を短いタクトタイムで形成することができる。 A film forming method using the film forming apparatus 1 will be described. First, the substrate S is placed on the placement unit 12 in the vacuum chamber 11. Next, the vacuum chamber 11 is brought into a desired vacuum state. Then, a film forming gas is introduced from the gas introducing means 14, and power supply is started from the high frequency power supply 15 and the low frequency power supply 16 to generate plasma, and a film is formed on the substrate S. In the present embodiment, by forming a passivation film while applying a voltage from the high-frequency power supply 15 and the low-frequency power supply 16, a film with good film quality can be formed with a short tact time.
 成膜ガスとしては、例えば、パッシベーション膜としてシリコン窒化膜を形成する場合には、Si含有ガスとしてSiHを導入すると共に、N含有ガスとしてNH及びNから選ばれた1以上のガスを導入する。シリコン酸化膜を形成する場合には、Si含有ガスとしてSiHを導入すると共に、O(酸素)含有ガスとして、CO、NO及びOから選ばれた1以上のガスを導入する。また、シリコン酸化窒化膜を形成する場合には、Si含有ガスとしてSiHを導入すると共に、N含有ガスとしてN含有ガスとしてNH及びNから選ばれた1以上のガスを、O含有ガスとして、CO、NO及びOから選ばれた1以上のガスを導入する。さらにまた、成膜ガスにはキャリアガスとして、不活性ガス、例えばArガスを導入してもよい。例えば、SiN膜をパッシベーション膜として形成する場合には、各ガスの流量は、SiHが、1500~1600sccm、NHが、3000~6000sccm、Nが、4000~7000sccmである。 As a film forming gas, for example, when a silicon nitride film is formed as a passivation film, SiH 4 is introduced as a Si-containing gas, and at least one gas selected from NH 3 and N 2 is used as an N-containing gas. Introduce. When forming a silicon oxide film, SiH 4 is introduced as a Si-containing gas, and at least one gas selected from CO 2 , N 2 O, and O 2 is introduced as an O (oxygen) -containing gas. When forming a silicon oxynitride film, SiH 4 is introduced as the Si-containing gas, and at least one gas selected from NH 3 and N 2 as the N-containing gas is used as the N-containing gas. As described above, one or more gases selected from CO 2 , N 2 O and O 2 are introduced. Furthermore, an inert gas such as Ar gas may be introduced into the film forming gas as a carrier gas. For example, when a SiN film is formed as a passivation film, the flow rate of each gas is 1500 to 1600 sccm for SiH 4 , 3000 to 6000 sccm for NH 3 , and 4000 to 7000 sccm for N 2 .
 高周波電源15としては、13.56~27.12MHzの高周波数の電圧を印加することができればよく、低周波電源16としては、20~400kHzの低周波数の電圧を印加することができればよい。また、高周波電源15の投入電力は、1000~3500Wである。低周波電源16の投入電力は300~2000Wである。 The high frequency power source 15 only needs to be able to apply a high frequency voltage of 13.56 to 27.12 MHz, and the low frequency power source 16 only needs to be able to apply a low frequency voltage of 20 to 400 kHz. The input power of the high frequency power supply 15 is 1000 to 3500 W. The input power of the low frequency power supply 16 is 300 to 2000 W.
 このような条件でプラズマCVD方により成膜する場合に、本実施形態においては、結合配線26により、一方のアークカット部25から出力された停止信号が、他方のスイッチ部20にも入力されるように、構成されている。このように構成されていることで、どちらか一方の制御部17、18のアークカット部25から停止信号が出力されると、スイッチ部20に停止信号が入力されると同時に他方の制御部のスイッチ部20にも停止信号が入力されるので、同時に電力供給をストップすることができ、交互に電力供給をストップしてしまうことがない。従って、本実施形態によれば、成膜速度が低下せず、かつ、得られた膜の膜質が低下しない。 When the film is formed by plasma CVD under such conditions, in the present embodiment, the stop signal output from one arc cut unit 25 is also input to the other switch unit 20 by the coupling wiring 26. It is configured as such. By being configured in this way, when a stop signal is output from the arc cut unit 25 of one of the control units 17 and 18, the stop signal is input to the switch unit 20 and at the same time the other control unit Since the stop signal is also input to the switch unit 20, the power supply can be stopped at the same time, and the power supply is not stopped alternately. Therefore, according to the present embodiment, the deposition rate does not decrease and the quality of the obtained film does not decrease.
 以下、実施例により詳細に本発明を説明する。
(実施例1~5)
 本実施例では、成膜装置1を用いてSiN膜を形成した。実施例1では、成膜装置1に基板S(シリコン基板)を搬入し、基板温度:350℃、圧力:190Pa、SiH流量:1500sccm、NH流量:5000sccm、N流量:6000sccm、E/S:23mm、高周波電源15の周波数:13.56MHz、高周波電源15の投入電力:3500MHz、低周波電源16の周波数:250kHz、低周波電源16の投入電力:2000MHz、成膜時間:20秒としてシリコン窒化膜を形成した。また、実施例2~5として、表1に示す条件で実施例1と同様にシリコン窒化膜を形成した。
(比較例1~5)
 比較例1~5として、一方の制御部のアークカット部25からの停止信号が他方の制御部のスイッチ部20に入力されない、即ち結合配線がない成膜装置を用いた以外は、それぞれ対応する実施例1~5と同一の条件で同様に成膜を行った。
Hereinafter, the present invention will be described in detail by way of examples.
(Examples 1 to 5)
In this example, the SiN film was formed using the film forming apparatus 1. In Example 1, a substrate S (silicon substrate) is carried into the film forming apparatus 1, and the substrate temperature: 350 ° C., pressure: 190 Pa, SiH 4 flow rate: 1500 sccm, NH 3 flow rate: 5000 sccm, N 2 flow rate: 6000 sccm, E / S: 23 mm, frequency of the high frequency power supply 15: 13.56 MHz, input power of the high frequency power supply 15: 3500 MHz, frequency of the low frequency power supply 16: 250 kHz, input power of the low frequency power supply 16: 2000 MHz, film formation time: 20 seconds A nitride film was formed. In Examples 2 to 5, silicon nitride films were formed in the same manner as in Example 1 under the conditions shown in Table 1.
(Comparative Examples 1 to 5)
As Comparative Examples 1 to 5, the stop signal from the arc cut unit 25 of one control unit is not input to the switch unit 20 of the other control unit, that is, except that a film forming apparatus having no coupling wiring is used. Film formation was performed in the same manner under the same conditions as in Examples 1-5.
 実施例1~5及び比較例1~5おいて、スイッチ部20のオフ回数を測定すると共に、得られたSiN膜の膜厚をエリプソメータ(アルバック社製、ESM-3000AT)により測定した。結果を表1に示す。 In Examples 1 to 5 and Comparative Examples 1 to 5, the number of turn-offs of the switch unit 20 was measured, and the thickness of the obtained SiN film was measured with an ellipsometer (manufactured by ULVAC, ESM-3000AT). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~5では、比較例1~5の場合に比べて、結合配線26によりアーク放電の誤認識が抑制されていることからスイッチ部20のオフ回数は減少した。これに伴い、実施例1~5においては、比較例1~5の場合に比べて膜厚が上昇した。例えば、比較例1の場合においては、高周波電源15側のオフ回数が300回であり、低周波電源16側のオフ回数が295回であり、誤認識が多かった。これに対し、実施例1では、高周波電源15側のオフ回数が54回であり、低周波電源16側のオフ回数が53回であり、オフ回数が約1/6に減少した。また、膜厚は、実施例1の場合は605Åであり、比較例1の場合は527Åであり、膜厚が約10%以上上昇した。なお、高周波電源15側のオフ回数と低周波電源16側のオフ回数とが一致しない場合があるのは、停止信号の送受信にタイムラグが発生する場合もあるからである。 In Examples 1 to 5, compared to Comparative Examples 1 to 5, since the erroneous recognition of arc discharge was suppressed by the coupling wiring 26, the number of times the switch unit 20 was turned off decreased. Along with this, in Examples 1 to 5, the film thickness increased as compared with Comparative Examples 1 to 5. For example, in the case of the comparative example 1, the number of times of off on the high frequency power supply 15 side is 300 times, and the number of times of off on the low frequency power supply 16 side is 295 times, which is often erroneously recognized. On the other hand, in Example 1, the number of off times on the high frequency power supply 15 side was 54 times, the number of off times on the low frequency power supply 16 side was 53 times, and the number of off times decreased to about 1/6. Further, the film thickness was 605 mm in the case of Example 1 and 527 mm in the case of Comparative Example 1, and the film thickness increased by about 10% or more. Note that the number of off times on the high frequency power supply 15 side and the number of off times on the low frequency power supply 16 side may not match because a time lag may occur in transmission / reception of the stop signal.
 実施例1~5により、本実施形態の成膜装置1においては、アーク放電発生の誤認識が抑制されていることが分かった。また、これにより、誤認識による不要な電力供給の停止が生じないので、所望の膜厚を得ることができることが分かった。 From Examples 1 to 5, it was found that the erroneous recognition of the occurrence of arc discharge was suppressed in the film forming apparatus 1 of the present embodiment. Further, it has been found that an unnecessary power supply stop due to erroneous recognition does not occur, so that a desired film thickness can be obtained.
 上述した実施形態においては、一つの結合配線26により停止信号が高周波電源側制御部17にも低周波電源側制御部18にも入力されるように構成したが、これに限定されない。例えば、別の結合配線を設けてもよい。また、スイッチ部20は、スイッチとして機能するものであれば、限定されない。例えば、NAND回路を用いてもよい。 In the above-described embodiment, the stop signal is input to both the high frequency power supply side control unit 17 and the low frequency power supply side control unit 18 by one coupling wiring 26, but the present invention is not limited to this. For example, another coupling wiring may be provided. Moreover, the switch part 20 will not be limited if it functions as a switch. For example, a NAND circuit may be used.
 また、本実施形態では実施例としてSiN膜の形成を行ったが、プラズマCVD装置としてはこの用途に限定されるものではない。例えば、有機EL素子のバリア膜の形成に用いてもよい。 In this embodiment, the SiN film is formed as an example, but the plasma CVD apparatus is not limited to this application. For example, you may use for formation of the barrier film | membrane of an organic EL element.
 上述した実施形態においては、高周波電源15及び低周波電源16をそれぞれ一つずつシャワープレート13に設けたが、これに限定されない。高周波電源15及び低周波電源16は少なくとも一つ設けてあればよく、例えば高周波電源15を二つ、低周波電源16を一つ設けてもよい。また、載置部12とシャワープレート13とにそれぞれ一つずつ設けても良い。 In the above-described embodiment, one high-frequency power source 15 and one low-frequency power source 16 are provided on the shower plate 13, but the present invention is not limited to this. It is sufficient that at least one high frequency power supply 15 and low frequency power supply 16 are provided. For example, two high frequency power supplies 15 and one low frequency power supply 16 may be provided. Moreover, you may provide one each in the mounting part 12 and the shower plate 13. FIG.
 本発明は、膜質よく、かつ十分な成膜スピードで成膜することができるので、例えば太陽電池素子の製造分野において利用可能である。 Since the present invention can form a film with good film quality and a sufficient film formation speed, it can be used, for example, in the field of manufacturing solar cell elements.
1     成膜装置
11   真空チャンバ
12   載置部
13   シャワープレート
14   ガス導入手段
15   高周波電源
16   低周波電源
17   高周波電源側制御部
18   低周波電源側制御部
20   スイッチ部
26   結合配線
DESCRIPTION OF SYMBOLS 1 Film-forming apparatus 11 Vacuum chamber 12 Mounting part 13 Shower plate 14 Gas introduction means 15 High frequency power supply 16 Low frequency power supply 17 High frequency power supply side control part 18 Low frequency power supply side control part 20 Switch part 26 Connection wiring

Claims (3)

  1.  真空チャンバ内に設けられ、成膜対象が載置される載置部と、該載置部に載置された成膜対象に対向するように設けられ、成膜ガスを導入するシャワープレートと、前記シャワープレート及び前記載置部の少なくとも一方に接続された複数の交流電源とを備え、
     複数の前記交流電源は、少なくとも、高周波電力を供給する一つの高周波電源と、前記高周波電源よりも低い低周波電力を供給する一つの低周波電源とからなり、それぞれ前記真空チャンバ内の異常放電を検出する異常放電検出手段を具備し、
     各異常放電検出手段は、異常放電を検出すると、全ての前記交流電源の電力供給を停止させるように構成されていることを特徴とする成膜装置。
    A placement unit provided in a vacuum chamber, on which a deposition target is placed, a shower plate that is provided to face the deposition target placed on the placement unit, and introduces a deposition gas; A plurality of AC power supplies connected to at least one of the shower plate and the mounting portion,
    The plurality of AC power sources include at least one high-frequency power source that supplies high-frequency power and one low-frequency power source that supplies low-frequency power lower than the high-frequency power source, and each performs abnormal discharge in the vacuum chamber. Comprising an abnormal discharge detecting means for detecting,
    Each of the abnormal discharge detection means is configured to stop the power supply of all the AC power supplies when the abnormal discharge is detected.
  2.  前記シャワープレートに、前記高周波電源及び前記低周波電源がそれぞれ一つ設けられていることを特徴とする請求項1記載の成膜装置。 2. The film forming apparatus according to claim 1, wherein each of the high frequency power source and the low frequency power source is provided on the shower plate.
  3.  前記各異常放電検出手段は、
     前記各交流電源からの電力を前記シャワープレートへ供給し又は停止させるスイッチ部と、前記各交流電源からの出力信号の反射波成分を検出する検出部と、該検出部で検出された反射波成分が閾値を越えたかどうかを判断し、閾値を越えた場合には前記スイッチ部をオフとする停止信号を送出する異常放電判断部とを備え、
     前記各異常放電検出手段の前記異常放電判断部からの停止信号が、全ての各異常放電検出手段のスイッチ部に入力されるように構成されていることを特徴とする請求項1又は2記載の成膜装置。
    Each of the abnormal discharge detection means,
    A switch unit that supplies or stops power from each AC power source to the shower plate, a detection unit that detects a reflected wave component of an output signal from each AC power source, and a reflected wave component detected by the detection unit An abnormal discharge determination unit that sends a stop signal to turn off the switch unit when the threshold value is exceeded,
    The stop signal from the abnormal discharge determination unit of each abnormal discharge detection unit is configured to be input to the switch units of all the abnormal discharge detection units. Deposition device.
PCT/JP2011/058001 2010-04-02 2011-03-30 Film-forming apparatus WO2011125733A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509512A JP5691081B2 (en) 2010-04-02 2011-03-30 Deposition equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010086490 2010-04-02
JP2010-086490 2010-04-02

Publications (1)

Publication Number Publication Date
WO2011125733A1 true WO2011125733A1 (en) 2011-10-13

Family

ID=44762675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058001 WO2011125733A1 (en) 2010-04-02 2011-03-30 Film-forming apparatus

Country Status (3)

Country Link
JP (1) JP5691081B2 (en)
TW (1) TW201221686A (en)
WO (1) WO2011125733A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190987A1 (en) * 2012-06-18 2013-12-27 株式会社京三製作所 High-frequency power supply device and reflected wave power control method
CN103943451A (en) * 2013-01-17 2014-07-23 东京毅力科创株式会社 Plasma processing device and method of operating the same
CN108878258A (en) * 2017-05-11 2018-11-23 Asm Ip控股有限公司 Method for being formed selectively silicon nitride film on the side wall or flat surfaces of groove
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273935A (en) * 2006-03-08 2007-10-18 Harada Sangyo Kk Vacuum processor, ac power supply unit used for the same, method of controlling ac power supply
JP2008187181A (en) * 2007-01-30 2008-08-14 Applied Materials Inc Method for processing workpiece in plasma reactor with grounded return path of variable height for controlling uniformity of plasma ion density
JP2009070844A (en) * 2007-09-10 2009-04-02 Tokyo Electron Ltd Plasma processing equipment and method, and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273935A (en) * 2006-03-08 2007-10-18 Harada Sangyo Kk Vacuum processor, ac power supply unit used for the same, method of controlling ac power supply
JP2008187181A (en) * 2007-01-30 2008-08-14 Applied Materials Inc Method for processing workpiece in plasma reactor with grounded return path of variable height for controlling uniformity of plasma ion density
JP2009070844A (en) * 2007-09-10 2009-04-02 Tokyo Electron Ltd Plasma processing equipment and method, and storage medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190987A1 (en) * 2012-06-18 2013-12-27 株式会社京三製作所 High-frequency power supply device and reflected wave power control method
JP2014002898A (en) * 2012-06-18 2014-01-09 Kyosan Electric Mfg Co Ltd High-frequency power supplying device, and reflection wave power control method
CN104322154A (en) * 2012-06-18 2015-01-28 株式会社京三制作所 High-frequency power supply device and reflected wave power control method
US9070537B2 (en) 2012-06-18 2015-06-30 Kyosan Electric Mfg. Co., Ltd. High-frequency power supply device and reflected wave power control method
CN103943451A (en) * 2013-01-17 2014-07-23 东京毅力科创株式会社 Plasma processing device and method of operating the same
JP2014137911A (en) * 2013-01-17 2014-07-28 Tokyo Electron Ltd Plasma processing apparatus, and method of operating the same
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
CN108878258A (en) * 2017-05-11 2018-11-23 Asm Ip控股有限公司 Method for being formed selectively silicon nitride film on the side wall or flat surfaces of groove
JP2018190986A (en) * 2017-05-11 2018-11-29 エーエスエム アイピー ホールディング ビー.ブイ. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
JP7233173B2 (en) 2017-05-11 2023-03-06 エーエスエム アイピー ホールディング ビー.ブイ. A method for selectively forming a silicon nitride film on trench sidewalls or planar surfaces

Also Published As

Publication number Publication date
JP5691081B2 (en) 2015-04-01
TW201221686A (en) 2012-06-01
JPWO2011125733A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
KR102478222B1 (en) Systems and methods for decreasing carbon-hydrogen content of amorphous carbon hardmask films
TWI660420B (en) Enhanced etching processes using remote plasma sources
KR102539151B1 (en) Substrate processing method
US8889023B2 (en) Plasma processing apparatus and plasma processing method
KR101962317B1 (en) Process chamber for etching low k and other dielectric films
KR20190012097A (en) Method of depositing film by peald using negative bias
TWI552223B (en) Plasma processing device
TWI541893B (en) Process apparatus and method for plasma etching process
US20150096684A1 (en) Plasma processing apparatus
JP4714166B2 (en) Substrate plasma processing apparatus and plasma processing method
JP6277004B2 (en) Dry etching method
KR20180005756A (en) Electrostatic chucking for boron-doped carbon films and graded in-situ charge trapping layers to enable good particle performance
JP5691081B2 (en) Deposition equipment
US9418863B2 (en) Method for etching etching target layer
TW201828779A (en) Plasma light up suppression
CN104282519A (en) Cleaning method for plasma treatment device
US10204795B2 (en) Flow distribution plate for surface fluorine reduction
JP2021506126A (en) Oxidation resistant protective layer in chamber adjustment
KR20220008776A (en) Plasma processing apparatus and plasma processing method
JP3816080B2 (en) Plasma processing method and plasma processing apparatus
JP2011109141A (en) Plasma cvd device, and method of manufacturing silicon-based film using the same
JP2021192414A (en) Substrate processing method and substrate processing apparatus
JP5896419B2 (en) Plasma processing apparatus and cleaning method thereof
US11631583B2 (en) RF power source operation in plasma enhanced processes
Yoon et al. Optimizing antenna voltage balancing for remote helical ICP plasma discharge using Oxygen, Hydrogen, Nitrogen, Ammonia and their mixtures: AEPM: Advanced Equipment Processes and Materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765633

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509512

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765633

Country of ref document: EP

Kind code of ref document: A1