JP2009070844A - Plasma processing equipment and method, and storage medium - Google Patents

Plasma processing equipment and method, and storage medium Download PDF

Info

Publication number
JP2009070844A
JP2009070844A JP2007234365A JP2007234365A JP2009070844A JP 2009070844 A JP2009070844 A JP 2009070844A JP 2007234365 A JP2007234365 A JP 2007234365A JP 2007234365 A JP2007234365 A JP 2007234365A JP 2009070844 A JP2009070844 A JP 2009070844A
Authority
JP
Japan
Prior art keywords
frequency power
power source
oscillator
output
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007234365A
Other languages
Japanese (ja)
Other versions
JP2009070844A5 (en
JP4905304B2 (en
Inventor
Seiji Tanaka
誠治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007234365A priority Critical patent/JP4905304B2/en
Priority to TW097134558A priority patent/TWI488545B/en
Priority to KR1020080088672A priority patent/KR101035248B1/en
Priority to CN2008101495379A priority patent/CN101389179B/en
Publication of JP2009070844A publication Critical patent/JP2009070844A/en
Publication of JP2009070844A5 publication Critical patent/JP2009070844A5/ja
Priority to KR1020100102484A priority patent/KR20100119851A/en
Application granted granted Critical
Publication of JP4905304B2 publication Critical patent/JP4905304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stop the output of at least one high-frequency power supply when an excessive reflected wave arises therein and to stop the outputs of other high-frequency power supplies instantaneously in plasma processing equipment which performs plasma processing by using a plurality of high-frequency power supplies. <P>SOLUTION: Each of a plurality of high-frequency power supplies comprises an oscillator, a communication section, and an output stop section for stopping output of the oscillator by receiving a stop signal at the communication section, wherein the output stop section of at least one of the plurality of high-frequency power supplies monitors the high-frequency outputted from the oscillator of that high-frequency power supply, and stops output from that oscillator when the high-frequency is abnormal and outputs a stop signal to the communication section. The communication section of the at least one high-frequency power supply and the communication sections of other high-frequency power supplies are connected in order to transmit the stop signal from the monitoring section directly to other high-frequency power supplies. Consequently, unstable state of plasma is prevented from being sustained and damage on a workpiece can be controlled. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高周波電力により処理ガスをプラズマ化し、そのプラズマにより被処理体に対してエッチング等の処理を施すプラズマ処理装置、プラズマ処理方法及び記憶媒体に関する。   The present invention relates to a plasma processing apparatus, a plasma processing method, and a storage medium for converting a processing gas into plasma with high-frequency power and performing processing such as etching on an object to be processed with the plasma.

半導体デバイスや液晶表示装置などのフラットパネルの製造工程においては、半導体ウエハやガラス基板といった被処理基板にエッチング処理や成膜処理等のプロセス処理を施すプラズマエッチング装置やプラズマCVD成膜装置等のプラズマ処理装置が用いられる。   In the manufacturing process of flat panels such as semiconductor devices and liquid crystal display devices, plasma such as a plasma etching apparatus or a plasma CVD film forming apparatus that performs a process such as an etching process or a film forming process on a substrate to be processed such as a semiconductor wafer or a glass substrate. A processing device is used.

プラズマ処理装置としては例えば平行平板型の容量結合プラズマ処理装置が用いられている。図8(a)はそのプラズマ処理装置を模式的に示した図であり、その処理容器内に上部電極11、被処理基板10が載置される下部電極12が設けられている。例えばいわゆる下部2周波タイプの装置では、下部電極12にはプラズマ形成用(ソース用)の高周波電源13とバイアス用の高周波電源14とが接続されている。   For example, a parallel plate type capacitively coupled plasma processing apparatus is used as the plasma processing apparatus. FIG. 8A schematically shows the plasma processing apparatus, in which an upper electrode 11 and a lower electrode 12 on which the substrate to be processed 10 is placed are provided in the processing container. For example, in a so-called lower two-frequency type device, the lower electrode 12 is connected to a high-frequency power source 13 for plasma formation (source) and a high-frequency power source 14 for bias.

このバイアス用の高周波電源14はプラズマ中のイオンを引き込んでエッチングの異方性を確保することの他に異常放電防止の役割もある。即ち大型基板のプラズマ処理においては、プラズマ形成用の高周波電源13単独では処理条件によってはプラズマPの状態が不安定になり、イオンシースの面内均一性が悪くなってアーキング(異常放電)が発生するおそれがある。そこで下部電極12にはプラズマ形成用の高周波に加えてバイアス用の高周波電源14からの高周波を重畳して印加し、被処理基板10上におけるイオンシースの面内均一性を上げて、前記異常放電の発生を回避している。図中h1が、前記イオンシースが形成される領域である。 The bias high-frequency power source 14 has the role of preventing abnormal discharge in addition to securing the anisotropy of etching by drawing ions in the plasma. That is, in the plasma processing of a large substrate, the plasma P state becomes unstable depending on processing conditions with the plasma forming high frequency power supply 13 alone, and the in-plane uniformity of the ion sheath is deteriorated and arcing (abnormal discharge) occurs. There is a risk. Therefore, in addition to the high frequency for plasma formation, a high frequency from a high frequency power supply 14 for bias is applied to the lower electrode 12 in a superimposed manner to increase the in-plane uniformity of the ion sheath on the substrate 10 to be processed, and the abnormal discharge. Is avoided. In the figure, h1 is a region where the ion sheath is formed.

ところで例えば上記のプラズマ処理装置1でエッチング処理するにあたり、エッチングの終点付近においてはそれまでと異なる性質を有する膜が現れる場合がある。具体的に、例えば絶縁膜である上層の膜のエッチングが進行し、下地の金属膜が露出してエッチングされると、プラズマPを構成する成分が変化し、プラズマインピーダンスが大きく変化することがある。このようにプラズマインピーダンスが大きく変化すると、マッチング回路によるマッチングがとれなくなって高周波電源14側に過大な反射波が生じる。   By the way, for example, when etching is performed by the plasma processing apparatus 1 described above, a film having different properties may appear near the end point of etching. Specifically, for example, when the etching of the upper film, which is an insulating film, progresses and the underlying metal film is exposed and etched, the components constituting the plasma P may change, and the plasma impedance may change significantly. . When the plasma impedance changes greatly as described above, matching by the matching circuit cannot be obtained, and an excessive reflected wave is generated on the high frequency power supply 14 side.

ここで特許文献1には、このように発生する反射波に基づいてプラズマ処理を停止させることができる平行平板型プラズマ処理装置について示されている。詳細は記載されていないが、このプラズマ処理装置において監視手段20により異常を検出すると、コントローラに異常検出信号が送られ、続いてそのコントローラから各高周波電源に停止信号が送られて、各高周波電源はこの指令に基づいて内部の停止部を動作させて停止させると考えられる。一方、瞬時に対応するために各高周波電源に検出機能を持たせ、検出時に瞬時に自らの電源の発振動作を停止させることが検討されており、この場合自らの電源の発振動作を停止させたら、特許文献1のように一つの電源の異常信号を装置コントローラに送り、この装置コントローラから他の高周波電源に信号を送信して、その高周波電源の発振を停止させることが考えられるが、そのような構成とした場合以下の問題がある。   Here, Patent Document 1 discloses a parallel plate type plasma processing apparatus capable of stopping the plasma processing based on the reflected wave thus generated. Although details are not described, when an abnormality is detected by the monitoring means 20 in this plasma processing apparatus, an abnormality detection signal is sent to the controller, and then a stop signal is sent from the controller to each high frequency power source. Is considered to operate and stop the internal stop based on this command. On the other hand, in order to respond instantaneously, it has been considered that each high-frequency power supply has a detection function, and the oscillation operation of its own power supply is stopped instantaneously at the time of detection. In this case, if the oscillation operation of its own power supply is stopped As in Patent Document 1, it is conceivable to send an abnormality signal of one power supply to the apparatus controller and transmit a signal from this apparatus controller to another high frequency power supply to stop the oscillation of the high frequency power supply. There are the following problems when using a simple configuration.

上記のようにバイアス印加用の高周波電源14側に過大な反射波が生じ、当該高周波電源14の発振が停止し、その後高周波電源14からの異常信号が前記装置コントローラに送信され、装置コントローラから高周波電源13に信号が送信され、高周波電源13の発振を停止させるとすると、高周波電源14の発振停止から高周波電源13の発振停止までは最短でも100ミリ秒かかる。そしてその間に上述したようにプラズマPの状態が不安定となり、図8(b)中h2で示すように被処理基板10の表面上のイオンシースが形成される領域が狭くなって、被処理基板10への異常放電が発生し、被処理基板10に電流が流れて被処理基板10が損傷してしまうおそれがある。   As described above, an excessive reflected wave is generated on the high-frequency power supply 14 side for bias application, the high-frequency power supply 14 stops oscillating, and then an abnormal signal from the high-frequency power supply 14 is transmitted to the device controller. If a signal is transmitted to the power supply 13 to stop the oscillation of the high-frequency power supply 13, it takes at least 100 milliseconds from the oscillation stop of the high-frequency power supply 14 to the oscillation stop of the high-frequency power supply 13. In the meantime, the state of the plasma P becomes unstable as described above, and the region where the ion sheath is formed on the surface of the substrate to be processed 10 becomes narrow as indicated by h2 in FIG. An abnormal discharge to the substrate 10 may occur, current may flow through the substrate 10 to be processed, and the substrate 10 to be processed may be damaged.

なお特許文献2には高周波電源に反射された反射波の電力値に基づいて高周波電源の発振を停止させる回路について記載されているが、本発明の問題を解決できるものではない。   Although Patent Document 2 describes a circuit that stops oscillation of a high-frequency power source based on the power value of a reflected wave reflected by the high-frequency power source, the problem of the present invention cannot be solved.

特開2003−264180号公報:請求項6及び段落0026JP 2003-264180 A: Claim 6 and paragraph 0026 WO2003−037047号公報WO2003-037047

本発明は、このような事情の下になされたものであり、その目的は、複数の高周波電源を用いて被処理体に対してプラズマ処理を行うにあたって少なくとも一つの高周波電源に過大な反射波が生じたときに当該高周波電源の出力を停止すると共に、他の高周波電源の出力を瞬時に停止させ、これによりプラズマの異常による被処理体の損傷を抑えることのできるプラズマ処理装置、プラズマ処理方法及びこの方法を実施する記憶媒体を提供することにある。   The present invention has been made under such circumstances, and an object of the present invention is to generate an excessive reflected wave in at least one high-frequency power source when performing plasma processing on a target object using a plurality of high-frequency power sources. A plasma processing apparatus, a plasma processing method, and a plasma processing apparatus capable of stopping the output of the high-frequency power source when it occurs and instantaneously stopping the output of the other high-frequency power source, thereby suppressing damage to the object due to plasma abnormality It is to provide a storage medium for implementing this method.

本発明のプラズマ処理装置は、プラズマに関与する複数の高周波電源を備え、処理容器内の被処理体に対してプラズマにより処理するプラズマ処理装置において、
前記複数の高周波電源の各々は、高周波を発振する発振器と、外部と通信するための通信部と、この通信部により停止信号を受信したときに発振器の出力を停止する出力停止部と、を備え、
前記複数の高周波電源のうちの少なくとも一つの高周波電源の出力停止部は、当該高周波電源の発振器から出力される高周波の異常を検出したときに当該発振器の出力を停止すると共に前記通信部に停止信号を出力する監視部により構成され、
前記少なくとも一つの高周波電源の通信部と他の高周波電源の通信部とは、前記監視部からの停止信号を他の高周波電源に直接送信することを特徴とする。
The plasma processing apparatus of the present invention includes a plurality of high-frequency power sources involved in plasma, and in a plasma processing apparatus that processes a target object in a processing container with plasma,
Each of the plurality of high frequency power supplies includes an oscillator that oscillates a high frequency, a communication unit for communicating with the outside, and an output stop unit that stops the output of the oscillator when a stop signal is received by the communication unit. ,
An output stop unit of at least one high-frequency power source among the plurality of high-frequency power sources stops the output of the oscillator and detects a stop signal to the communication unit when detecting an abnormality in a high frequency output from the oscillator of the high-frequency power source Is composed of a monitoring unit that outputs
The communication unit of the at least one high frequency power supply and the communication unit of the other high frequency power supply directly transmit a stop signal from the monitoring unit to another high frequency power supply.

例えば、前記少なくとも一つの高周波電源の監視部により検出される高周波の異常は、反射波の異常であり、また前記少なくとも一つの高周波電源の通信部と他の高周波電源の通信部とは前記停止信号を直接送信するための通信路により互いに接続されていてもよい。   For example, the abnormality of the high frequency detected by the monitoring unit of the at least one high frequency power supply is an abnormality of a reflected wave, and the communication unit of the at least one high frequency power supply and the communication unit of another high frequency power supply may May be connected to each other by a communication path for transmitting directly.

前記処理容器内に基板が載置される下部電極と上部電極とが対向して設けられ、
前記下部電極及び上部電極のいずれか一方に接続されるプラズマ発生用の高周波電源と、前記下部電極に接続され、前記プラズマ発生用の高周波電源よりも周波数が低いバイアス印加用の高周波電源と、を含み、
前記少なくとも一つの高周波電源は、前記バイアス印加用の高周波電源であり、前記他の高周波電源は、前記プラズマ発生用の高周波電源を含み、
バイアス印加用の高周波電源の通信部からプラズマ発生用の高周波電源の通信部へ停止信号が直接送信されていてもよく、この場合例えば、前記出力停止部によりバイアス印加用の高周波電源の発振器及びプラズマ発生用の高周波電源の発振器の出力が停止した後、バイアス印加用の高周波電源の発振器、プラズマ発生用の高周波電源の発振器の順に、自動的にその出力が復帰する。前記プラズマ発生用の高周波電源の出力停止部は、当該高周波電源の発振器から出力される高周波の異常を検出したときに当該発振器の出力を停止する監視部により構成されていてもよく、またこの場合例えば前記プラズマ発生用の高周波電源の監視部により検出される高周波の異常は、反射波の異常である。さらに前記高周波の異常によるプラズマ発生用の高周波電源の発振器の出力が停止した場合、バイアス側の高周波電源の通信部に停止信号を送信する装置コントローラが設けられていてもよい。
A lower electrode and an upper electrode on which a substrate is placed in the processing container are provided facing each other,
A high-frequency power source for plasma generation connected to one of the lower electrode and the upper electrode; and a high-frequency power source for bias application connected to the lower electrode and having a frequency lower than that of the high-frequency power source for plasma generation Including
The at least one high-frequency power source is a high-frequency power source for bias application, and the other high-frequency power source includes the high-frequency power source for generating plasma,
The stop signal may be directly transmitted from the communication unit of the high-frequency power source for bias application to the communication unit of the high-frequency power source for plasma generation. In this case, for example, the oscillator and plasma of the high-frequency power source for bias application by the output stop unit After the output of the generator of the high frequency power source for generation is stopped, the output is automatically restored in the order of the oscillator of the high frequency power source for applying bias and the oscillator of the high frequency power source for generating plasma. The output stop unit of the high-frequency power source for generating plasma may be configured by a monitoring unit that stops the output of the oscillator when detecting an abnormality in a high frequency output from the oscillator of the high-frequency power source. For example, the high-frequency abnormality detected by the monitoring unit of the plasma-generating high-frequency power source is a reflected wave abnormality. Furthermore, a device controller may be provided that transmits a stop signal to the communication unit of the high frequency power supply on the bias side when the output of the oscillator of the high frequency power supply for generating plasma due to the abnormal high frequency is stopped.

前記他の高周波電源の出力停止部は、当該高周波電源の発振器から出力される高周波の異常を検出したときに当該発振器の出力を停止する監視部により構成されていてもよく、前記他の高周波電源の監視部により検出される高周波の異常は、反射波の異常である。また、例えば前記発振器の出力の停止は、発振器を停止することである。   The output stop unit of the other high-frequency power supply may be configured by a monitoring unit that stops the output of the oscillator when detecting an abnormality in the high frequency output from the oscillator of the high-frequency power supply. The high frequency abnormality detected by the monitoring unit is an abnormality of the reflected wave. Further, for example, the stop of the output of the oscillator is to stop the oscillator.

本発明のプラズマ処理方法は、プラズマに関与する複数の高周波電源を用い、処理容器内の被処理体に対してプラズマにより処理するプラズマ処理方法において、
前記複数の高周波電源のうちの少なくとも一つの高周波電源に設けられた監視部により当該高周波電源の発振器から出力される高周波の異常を検出したときに前記監視部により当該発振器の出力を停止すると共に他の高周波電源のための停止信号を当該高周波電源に含まれる通信部に出力する工程と、
前記停止信号を、前記一つの高周波電源の通信部から他の高周波電源の通信部に直接送信する工程と、
前記他の高周波電源の通信部が前記停止信号を受信したときに、当該高周波電源に設けられた出力停止部により当該高周波電源の発振器の出力を停止する工程と、を含むことを特徴とする。
The plasma processing method of the present invention uses a plurality of high-frequency power sources related to plasma, and in a plasma processing method of processing a target object in a processing container with plasma,
When the high frequency power output from the oscillator of the high frequency power source is detected by the monitoring unit provided in at least one high frequency power source among the plurality of high frequency power sources, the monitoring unit stops the output of the oscillator and others Outputting a stop signal for the high-frequency power source to a communication unit included in the high-frequency power source,
Directly transmitting the stop signal from the communication unit of the one high frequency power supply to the communication unit of the other high frequency power supply;
And a step of stopping output of an oscillator of the high frequency power supply by an output stop unit provided in the high frequency power supply when the communication unit of the other high frequency power supply receives the stop signal.

本発明の記憶媒体は、基板に対してプラズマ処理を行うプラズマ処理装置に用いられ、コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、
前記コンピュータプログラムは、上述のプラズマ処理方法を実施するようにステップ群が組まれていることを特徴とする。
The storage medium of the present invention is a storage medium that stores a computer program that is used in a plasma processing apparatus that performs plasma processing on a substrate and that operates on a computer.
The computer program includes a group of steps so as to implement the above-described plasma processing method.

プラズマに関与する複数の高周波電源を用いて被処理体に対してプラズマ処理を行うにあたって、少なくとも一つの高周波電源については、当該高周波電源の発振器から出力される高周波の異常を検出したときに当該発振器の出力を停止すると共に、その異常信号(停止信号)を当該高周波電源から他の高周波電源に直接送信して他の高周波電源の発振器の出力を停止するようにしているため、前記高周波の異常が起こってから瞬時に他の高周波電源の高周波の出力を停止することができる。このためプラズマの不安定な状態が続くことによる異常放電の発生などを抑えることができるので、被処理体の損傷を防止あるいは低減できる。   When performing plasma processing on an object to be processed using a plurality of high-frequency power sources involved in plasma, when at least one high-frequency power source detects an abnormality in a high frequency output from the oscillator of the high-frequency power source, the oscillator And the abnormal signal (stop signal) is directly transmitted from the high-frequency power source to the other high-frequency power source to stop the output of the oscillator of the other high-frequency power source. The high frequency output of the other high frequency power supply can be stopped instantaneously after the occurrence. Therefore, the occurrence of abnormal discharge due to the continued unstable plasma state can be suppressed, and damage to the object to be processed can be prevented or reduced.

本発明のプラズマ処理装置を、液晶ディスプレイ用のガラス基板Bをエッチングする装置に適用した実施の形態について図1を参照しながら説明する。このプラズマエッチング装置2は例えば表面が陽極酸化処理されたアルミニウムからなる角筒形状の処理容器20を備えている。この処理容器20の中央下部には下部電極41が設けられており、下部電極41は図示しない搬送手段により処理容器20内に搬送された基板Bを載置する載置台を兼用している。この下部電極41の下部には絶縁体42が設けられており、この絶縁体42により下部電極41は、処理容器20から電気的に十分浮いた状態になっている。図中43は下部電極41の支持部である。また処理容器20の下部には開口部44が設けられ、この開口部44の外側には接地筐体であるマッチングボックス45が設けられている。   An embodiment in which the plasma processing apparatus of the present invention is applied to an apparatus for etching a glass substrate B for a liquid crystal display will be described with reference to FIG. The plasma etching apparatus 2 includes a square-tubular processing vessel 20 made of aluminum, for example, whose surface is anodized. A lower electrode 41 is provided at the center lower portion of the processing container 20, and the lower electrode 41 also serves as a mounting table on which the substrate B transferred into the processing container 20 by a transfer means (not shown) is mounted. An insulator 42 is provided below the lower electrode 41, and the lower electrode 41 is in an electrically floating state from the processing container 20 by the insulator 42. In the figure, reference numeral 43 denotes a support portion for the lower electrode 41. In addition, an opening 44 is provided in the lower part of the processing container 20, and a matching box 45 that is a grounded housing is provided outside the opening 44.

マッチングボックス45中には、夫々一端側がプラズマ形成用(ソース用)の高周波電源6A及びバイアス印加用の高周波電源6Bに接続された整合回路46、47が設けられており、これら整合回路46,47の他端側は下部電極41に接続されている。図中48A、48Bは同軸ケーブルである。整合回路46、47はプラズマのインピーダンスに合わせて下部電極41と高周波電源6A,6Bとの間におけるインピーダンスを調整する。   The matching box 45 is provided with matching circuits 46 and 47 whose one ends are connected to a plasma forming (source) high-frequency power source 6A and a bias applying high-frequency power source 6B, respectively. Is connected to the lower electrode 41. In the figure, 48A and 48B are coaxial cables. The matching circuits 46 and 47 adjust the impedance between the lower electrode 41 and the high frequency power supplies 6A and 6B in accordance with the plasma impedance.

また処理容器20の側壁には排気路32が接続され、この排気路32には真空排気手段をなす真空ポンプ33が接続されている。更に処理容器20の側壁には、被処理基板Bの搬送口34を開閉するためのゲートバルブ35が設けられている。   Further, an exhaust passage 32 is connected to the side wall of the processing container 20, and a vacuum pump 33 constituting vacuum exhaust means is connected to the exhaust passage 32. Further, a gate valve 35 for opening and closing the transfer port 34 of the substrate B to be processed is provided on the side wall of the processing container 20.

下部電極41の上方には、当該下部電極41と対向するようにガス供給部であるガスシャワーヘッドを兼用する上部電極51が設けられている。また上部電極51は、処理容器20の上側に設けられた開口部36の開口縁に沿って設けられた絶縁体52を介して処理容器20の天井部に接続されており、この絶縁体52により上部電極51は処理容器20から電気的に十分浮いた状態になっている。   Above the lower electrode 41, an upper electrode 51 that also serves as a gas shower head that is a gas supply unit is provided so as to face the lower electrode 41. The upper electrode 51 is connected to the ceiling portion of the processing container 20 via an insulator 52 provided along the opening edge of the opening 36 provided on the upper side of the processing container 20. The upper electrode 51 is in a state of being sufficiently electrically lifted from the processing container 20.

上部電極51は、ガス供給路53を介して処理ガス供給部54に接続されると共にガス供給路53から供給された処理ガスが、多数のガス孔55からこの処理空間Sに供給されるように構成されている。図中57は導電路である。   The upper electrode 51 is connected to the processing gas supply unit 54 via the gas supply path 53, and the processing gas supplied from the gas supply path 53 is supplied to the processing space S from a number of gas holes 55. It is configured. In the figure, 57 is a conductive path.

ソース用の高周波電源6Aは処理ガスに高周波電力を供給して処理ガスをプラズマ化(活性化)させるためのものであり、図2に示すように例えば13.56MHzの高周波を出力する発振器61Aと、反射波監視部であるアーク検出回路部65Aと、通信ボード62Aと、を備えている。またバイアス用の高周波電源部6Bは基板Bにバイアスを印加するためのものであり、例えば3.2MHzの高周波を出力する発振器61Bと、アーク検出回路部65Bと、通信ボード62Bと、を備えている。各通信ボード62A,62Bの第1のポート63A,63Bはコントローラ通信用の通信路であるケーブル66A,66Bにより夫々制御ボード71に接続され、制御ボード71はケーブル73により装置コントローラ72に接続されている。更に高周波電源6Aの第2のポート64Aは、専用の通信路であるケーブル67により高周波電源6Bの通信ボード62Bの第2のポート64Bに接続されている。   The source high-frequency power source 6A is for supplying high-frequency power to the processing gas to turn the processing gas into plasma (activation). As shown in FIG. 2, an oscillator 61A that outputs a high frequency of 13.56 MHz, for example, And an arc detection circuit unit 65A, which is a reflected wave monitoring unit, and a communication board 62A. The high frequency power supply unit 6B for bias is for applying a bias to the substrate B, and includes, for example, an oscillator 61B that outputs a high frequency of 3.2 MHz, an arc detection circuit unit 65B, and a communication board 62B. Yes. The first ports 63A and 63B of the communication boards 62A and 62B are respectively connected to the control board 71 by cables 66A and 66B which are communication paths for controller communication, and the control board 71 is connected to the apparatus controller 72 by a cable 73. Yes. Furthermore, the second port 64A of the high frequency power supply 6A is connected to the second port 64B of the communication board 62B of the high frequency power supply 6B by a cable 67 which is a dedicated communication path.

ここで高周波電源6A,6Bの各部及び高周波電源6A,6B及び装置コントローラ72間の通信機能について詳述する。高周波電源6Aのアーク検出回路部65Aは発振器61Aから出力される高周波(進行波)の電力値及び発振器61Aへ反射する反射波の電力(反射電力)値を検出し、検出された反射電力値が予め設定された許容値を越えているか否かを判断する機能を有している。高周波電源6Aからの高周波の出力は例えば10kWであり、この場合反射波の許容値は例えば200Wである。そしてこの許容値を越えていると判断した場合、アーク検出回路部65Aは発振器61Aの出力を停止させる。   Here, the communication function between each part of the high frequency power supplies 6A and 6B and the high frequency power supplies 6A and 6B and the device controller 72 will be described in detail. The arc detection circuit unit 65A of the high frequency power supply 6A detects the power value of the high frequency (traveling wave) output from the oscillator 61A and the power value (reflected power) of the reflected wave reflected to the oscillator 61A, and the detected reflected power value is It has a function of determining whether or not a preset allowable value is exceeded. The high frequency output from the high frequency power supply 6A is, for example, 10 kW, and in this case, the allowable value of the reflected wave is, for example, 200 W. If it is determined that the allowable value is exceeded, the arc detection circuit unit 65A stops the output of the oscillator 61A.

また高周波電源6Bのアーク検出回路部65Bも発振器61Bから出力される進行波の電力値及び発振器61Bへ反射する反射電力値を検出し、検出された反射電力値が予め設定された許容値を越えているか否かを判断する機能を有している。高周波電源6Bからの高周波の出力は例えば5kWであり、この場合反射波の許容値は例えば200Wである。そしてこの許容値を越えていると判断した場合、アーク検出回路部65Bは発振器61Bの出力を停止させると共に通信用ボード62Bの第2のポート64Bに異常信号を出力する。   The arc detection circuit unit 65B of the high frequency power supply 6B also detects the traveling wave power value output from the oscillator 61B and the reflected power value reflected to the oscillator 61B, and the detected reflected power value exceeds a preset allowable value. It has a function to determine whether or not. The high frequency output from the high frequency power supply 6B is, for example, 5 kW, and in this case, the allowable value of the reflected wave is, for example, 200 W. If it is determined that the allowable value is exceeded, the arc detection circuit unit 65B stops the output of the oscillator 61B and outputs an abnormal signal to the second port 64B of the communication board 62B.

高周波電源6Aの通信ボード62Aは発振器61Aからの反射電力に関する信号、例えば反射電力値を含む信号を第1のポート63Aからケーブル66A、制御ボード71及びケーブル73を介して装置コントローラ72に送信すると共に、装置コントローラ72から制御ボード71を介して送られた停止指令を発振器61Aに出力する役割を有している。   The communication board 62A of the high frequency power supply 6A transmits a signal related to the reflected power from the oscillator 61A, for example, a signal including the reflected power value, from the first port 63A to the device controller 72 via the cable 66A, the control board 71, and the cable 73. The stop command sent from the device controller 72 via the control board 71 is output to the oscillator 61A.

一方、高周波電源6Bの通信ボード62Bは発振器61Bからの反射電力に関する信号、例えば反射電力値を含む信号を第1のポート63Bからケーブル66B、制御ボード71及びケーブル73を介して装置コントローラ72に送信すると共に、装置コントローラ72から制御ボード71を介して送られた停止指令を発振器61Bに出力する役割を有している。また通信ボード62Bは、アーク検出回路部65Bが発振器61Bに反射された反射波を異常と判断して出力された異常信号を第2のポート64Bから専用のケーブル67を介して高周波電源6Aの通信ボード62Aの第2のポート64Aに直接送信する機能を有している。   On the other hand, the communication board 62B of the high frequency power supply 6B transmits a signal related to the reflected power from the oscillator 61B, for example, a signal including the reflected power value, from the first port 63B to the device controller 72 via the cable 66B, the control board 71, and the cable 73. In addition, it has a role of outputting a stop command sent from the device controller 72 via the control board 71 to the oscillator 61B. Further, the communication board 62B communicates the abnormal signal output when the arc detection circuit unit 65B determines that the reflected wave reflected by the oscillator 61B is abnormal from the second port 64B via the dedicated cable 67 to the high frequency power supply 6A. It has a function of transmitting directly to the second port 64A of the board 62A.

装置コントローラ72は各高周波電源6A,6Bからの反射電力に関するデータを収集し、いずれか一方の反射電力値が許容値を超えた場合、各高周波電源6A、6Bに停止指令を出力する。   The device controller 72 collects data related to the reflected power from each of the high frequency power supplies 6A and 6B, and outputs a stop command to each of the high frequency power supplies 6A and 6B when one of the reflected power values exceeds an allowable value.

また、このプラズマエッチング装置2には例えばコンピュータからなる制御部20Aが設けられている。この制御部20Aはプログラム、メモリ、CPUからなるデータ処理部などを備えており、前記プログラムには制御部20Aからエッチング装置2の各部に制御信号を送り、後述の各ステップを進行させることで基板Bに対してプラズマ処理を施すように命令が組み込まれている。また、例えばメモリには処理圧力、処理時間、ガス流量、電力値などの処理パラメータの値が書き込まれる領域を備えており、CPUがプログラムの各命令を実行する際これらの処理パラメータが読み出され、そのパラメータ値に応じた制御信号がこのプラズマエッチング装置2の各部位に送られることになる。このプログラム(処理パラメータの入力操作や表示に関するプログラムも含む)は、コンピュータ記憶媒体例えばフレキシブルディスク、コンパクトディスク、MO(光磁気ディスク)などの記憶部20Bに格納されて制御部20Aにインストールされる。   Further, the plasma etching apparatus 2 is provided with a control unit 20A composed of, for example, a computer. The control unit 20A includes a program, a memory, a data processing unit including a CPU, and the like. The control unit 20A sends a control signal to each unit of the etching apparatus 2 from the control unit 20A to advance each step to be described later. An instruction is incorporated to perform plasma processing on B. In addition, for example, the memory has an area in which processing parameter values such as processing pressure, processing time, gas flow rate, and power value are written, and these processing parameters are read when the CPU executes each instruction of the program. A control signal corresponding to the parameter value is sent to each part of the plasma etching apparatus 2. This program (including programs related to processing parameter input operations and display) is stored in a storage unit 20B such as a computer storage medium such as a flexible disk, a compact disk, or an MO (magneto-optical disk) and installed in the control unit 20A.

続いてこのプラズマエッチング装置2の作用について図3、図4及び図5を参照しながら説明する。図3及び図4はエッチング装置2の各部における信号の流れを示しており、また図5はエッチングの終点付近における高周波電源6A、6Bの出力の波形データである。図5中鎖線はバイアス印加用の高周波電源6Bの出力、実線はプラズマ形成用の高周波電源6Aの出力を夫々示している。   Next, the operation of the plasma etching apparatus 2 will be described with reference to FIGS. 3 and 4 show the signal flow in each part of the etching apparatus 2, and FIG. 5 shows the waveform data of the outputs of the high-frequency power supplies 6A and 6B near the end point of the etching. In FIG. 5, the chain line indicates the output of the high-frequency power source 6B for bias application, and the solid line indicates the output of the high-frequency power source 6A for plasma formation.

先ずオペレータがガス種、処理容器20内の圧力、高周波電源6A,6Bの電力などの処理条件を不図示の入力画面から入力する。そしてゲートバルブ25を開き、例えば表面に絶縁膜が形成され、その下層に金属膜が形成された基板Bが処理容器20に搬入され、不図示の外部からの搬送アームと昇降ピンとの協働作用により、下部電極41に載置される。続いてゲートバルブが閉じられ、処理ガスが上部電極51を兼用するガス供給部から処理容器20内に供給されながら処理容器20内が真空引きされ、設定した圧力になる。   First, the operator inputs the processing conditions such as the gas type, the pressure in the processing container 20 and the power of the high frequency power supplies 6A and 6B from an input screen (not shown). Then, the gate valve 25 is opened, and for example, the substrate B having an insulating film formed on the surface and a metal film formed on the lower layer is loaded into the processing container 20, and the cooperative action of an unillustrated transfer arm and lift pins are provided. Thus, it is placed on the lower electrode 41. Subsequently, the gate valve is closed, and the inside of the processing container 20 is evacuated while the processing gas is being supplied into the processing container 20 from the gas supply unit that also serves as the upper electrode 51, so that the set pressure is reached.

然る後、装置コントローラ72から制御ボード71を介して通信ボード62Aの第1のポート63A、通信ボード62Bの第1のポート63Bに投入指令が送信される。この投入指令により、夫々発振器61A,61Bが動作して、高周波が出力される。   Thereafter, an input command is transmitted from the device controller 72 to the first port 63A of the communication board 62A and the first port 63B of the communication board 62B via the control board 71. In response to this input command, the oscillators 61A and 61B operate to output a high frequency.

発振器61A,61Bから出力された各高周波は、同軸ケーブル48A,48B→整合回路46,47→下部電極41→上部電極51→導電路57→処理容器20の壁部→マッチングボックス45の経路で流れる。このため発振器61Aからの高周波により処理ガスがプラズマ化されて、処理空間SにプラズマPが形成されると共に、発振器61Bの高周波により基板Bにバイアスが印加され、プラズマ中のイオンがこのバイアスにより基板B側に引き込まれて、基板B表面の絶縁膜が異方性をもってエッチングされる(図3(a))。また背景技術で述べたようにこのバイアスは基板B表面のシース層を面内で均一化する作用もある。   The high frequencies output from the oscillators 61A and 61B flow through the coaxial cables 48A and 48B → the matching circuits 46 and 47 → the lower electrode 41 → the upper electrode 51 → the conductive path 57 → the wall of the processing vessel 20 → the matching box 45. . For this reason, the processing gas is turned into plasma by the high frequency from the oscillator 61A, plasma P is formed in the processing space S, and a bias is applied to the substrate B by the high frequency of the oscillator 61B. The insulating film on the surface of the substrate B is etched with anisotropy by being drawn into the B side (FIG. 3A). Further, as described in the background art, this bias also has an effect of making the sheath layer on the surface of the substrate B uniform in the plane.

そして発振器61A,61Bから、発振器61A,61Bへ反射される反射波の電力値及び発振器61A,61Bから出力される高周波の電力値に対応する信号が通信ボード62A,62Bの各第1のポート63A,63B及び制御ボード71を介して装置コントローラ72へ送信され、装置コントローラ72は反射電力値及び高周波電力値を監視する。またアーク検出回路部65A,65Bは、夫々前記反射電力が許容値例えば200Wを越えているか否かを判断する。   A signal corresponding to the power value of the reflected wave reflected from the oscillators 61A and 61B to the oscillators 61A and 61B and the high-frequency power value output from the oscillators 61A and 61B is sent to the first ports 63A of the communication boards 62A and 62B. 63B and the control board 71 to the device controller 72, and the device controller 72 monitors the reflected power value and the high frequency power value. Arc detection circuit units 65A and 65B each determine whether or not the reflected power exceeds an allowable value, for example, 200W.

基板Bの絶縁膜のエッチングが進行し、基板Bの表面に絶縁膜の下層の金属膜が露出し、当該金属膜がエッチングされ始めると、プラズマPのインピーダンスが変化する。このインピーダンスの変化が起きると、瞬間的な不整合状態となり、発振器61A,61Bに瞬時に大きな反射波が発生する。そしてバイアス側の高周波電源6Bのアーク検出回路部65Bが、発振器61Bへ反射した反射波の電力値が200Wを越えていると判断した場合には、当該アーク検出回路部65Bは発振器61Bの出力を停止する(図5中時刻t1)と共に異常信号を通信ボード62Bの第2のポート64Bに出力する。この異常信号、即ち高周波電源6Aの停止用の停止信号は通信ボード62Bから直接ソース用の高周波電源6Aの通信ボード62Aに送信され、アーク検出回路部65Aに入力される(図3(b))。この停止信号を受けたアーク検出回路部65Aは、発振器61Aの出力を停止させる(図5中時刻t2)。t1t2間は例えば数μ秒である。高周波電源6Bの発振器61Bが停止することにより図3(b)に示すようにイオンシースの形成領域が狭くなるが、その直後に(いわば略同時に)プラズマPの生成が停止する。   When the etching of the insulating film of the substrate B proceeds and the metal film under the insulating film is exposed on the surface of the substrate B, and the metal film starts to be etched, the impedance of the plasma P changes. When this impedance change occurs, an instantaneous mismatch occurs, and a large reflected wave is instantaneously generated in the oscillators 61A and 61B. When the arc detection circuit unit 65B of the high frequency power supply 6B on the bias side determines that the power value of the reflected wave reflected to the oscillator 61B exceeds 200 W, the arc detection circuit unit 65B outputs the output of the oscillator 61B. While stopping (time t1 in FIG. 5), an abnormal signal is output to the second port 64B of the communication board 62B. This abnormal signal, that is, a stop signal for stopping the high frequency power supply 6A is transmitted directly from the communication board 62B to the communication board 62A of the high frequency power supply 6A for source and input to the arc detection circuit unit 65A (FIG. 3B). . Receiving this stop signal, the arc detection circuit unit 65A stops the output of the oscillator 61A (time t2 in FIG. 5). The period between t1 and t2 is, for example, several microseconds. When the oscillator 61B of the high-frequency power source 6B is stopped, the ion sheath formation region is narrowed as shown in FIG. 3B, but immediately after that (so to speak, the generation of the plasma P is stopped).

各アーク検出回路部からの停止信号により出力が停止した発振器61A,61Bは予め定められた休止期間経過後、自動的に元の出力に、所定の立ち上がり時間にて復帰する。この休止時間は、反射波の影響を十分に抑える目的から、バイアス用の高周波電源6Bでは、時刻t1t3間は300ms〜500ms、例えば400msであり、ソース用の高周波電源6Aでは時刻t2t4間は400ms〜600ms、例えば500msである。   Oscillators 61A and 61B whose output has been stopped by a stop signal from each arc detection circuit unit automatically return to the original output at a predetermined rise time after a predetermined pause period has elapsed. For the purpose of sufficiently suppressing the influence of the reflected wave, the pause time is 300 ms to 500 ms, for example, 400 ms for the high frequency power source 6B for bias, and is 400 ms, for example, 400 ms for the high frequency power source 6A for the source. 600 ms, for example 500 ms.

高周波電源6Bの発振器61Bは時刻t5にてオフになった時刻t1以前と同じ出力になり、時刻t5以降はその出力が一定に維持される。また高周波電源6Aの発振器61Aは時刻t5の後の時刻t6にてオフになった時刻t2と同じ出力になり、プラズマPが再び形成され(図4(c))、基板Bにプラズマ処理が行われる。時刻t6以降は高周波電源61Aの出力は一定に維持される。このように各高周波電源6A、6Bの出力が回復する期間を再スタート期間とすると、高周波電源6Bについての再スタート期間である時刻t3t5間は0.1秒〜2.0秒例えば0.7秒であり、高周波電源6Aについての再スタート期間である時刻t4t6間は0.1秒〜2.0秒例えば0.7秒である。   The oscillator 61B of the high frequency power supply 6B has the same output as before the time t1 when it was turned off at the time t5, and the output is maintained constant after the time t5. Further, the oscillator 61A of the high frequency power supply 6A has the same output as the time t2 that was turned off at the time t6 after the time t5, the plasma P is formed again (FIG. 4C), and the plasma processing is performed on the substrate B. Is called. After time t6, the output of the high frequency power supply 61A is kept constant. Assuming that the period in which the outputs of the high-frequency power supplies 6A and 6B are recovered in this way is the restart period, the time t3t5 which is the restart period for the high-frequency power supply 6B is 0.1 second to 2.0 seconds, for example 0.7 seconds. The time t4t6, which is the restart period for the high frequency power supply 6A, is 0.1 second to 2.0 seconds, for example 0.7 seconds.

上述のプラズマエッチング装置2によればプラズマに関与する高周波電源であるソース用の高周波電源6A及びバイアス用の高周波電源6Bを用いて基板Bに対してプラズマエッチング処理を行うにあたって、高周波電源6Bの発振器61Bへ反射される反射波の異常が起こった場合には、内蔵のアーク検出回路部65Bにより当該高周波電源6Bの発振器61Bを停止させると共に、高周波電源6Bからソース用の高周波電源6Aに直接停止信号を送信し、高周波電源6Aのアーク検出回路部65Aが発振器61Aを停止するようにしているため、反射波の異常により高周波電源6Bの発振器61Bが停止した後、瞬時に例えばμsオーダで高周波電源6Aからの高周波の出力を停止することができる。このためプラズマの不安定な状態が続くことによる異常放電の発生などを抑えることができるので、基板Bの損傷を防止あるいは低減できる。例えば既述のように被エッチング膜の終点付近で下地の膜が露出することでプラズマの状態が変わり、マッチングがとれなくなってバイアス用の高周波が消失した状態のまま基板Bが処理されることが防止されるのでこの手法は極めて有効である。   According to the plasma etching apparatus 2 described above, when performing the plasma etching process on the substrate B using the source high-frequency power source 6A and the bias high-frequency power source 6B, which are high-frequency power sources involved in plasma, the oscillator of the high-frequency power source 6B is used. When abnormality of the reflected wave reflected to 61B occurs, the built-in arc detection circuit unit 65B stops the oscillator 61B of the high-frequency power supply 6B, and also directly stops the high-frequency power supply 6A for source from the high-frequency power supply 6B. Since the arc detection circuit unit 65A of the high frequency power supply 6A stops the oscillator 61A, after the oscillator 61B of the high frequency power supply 6B stops due to an abnormality in the reflected wave, the high frequency power supply 6A is instantaneously, for example, on the order of μs. The high frequency output from can be stopped. For this reason, it is possible to suppress the occurrence of abnormal discharge due to the continued unstable state of the plasma, so that damage to the substrate B can be prevented or reduced. For example, as described above, when the underlying film is exposed in the vicinity of the end point of the film to be etched, the plasma state changes, and the substrate B is processed in a state in which matching cannot be taken and the high frequency for bias disappears. This technique is extremely effective because it is prevented.

実際に上記のプラズマエッチング装置2を用いて図5の時刻t1、t2間の時間を測定したところ約1.7μs(マイクロ秒)であった。背景技術に示したように従来の装置構成では100ms(ミリ秒)以上であるため本発明の効果が示された。なお、バイアス印加用の高周波電源6Bにおいて許容値以上の反射電力が検出されてからその高周波電源6Bの発振器61Bがオフになるまでの時間は80nsであった。   When the time between times t1 and t2 in FIG. 5 was actually measured using the above-described plasma etching apparatus 2, it was about 1.7 μs (microseconds). As shown in the background art, the effect of the present invention was shown because the conventional apparatus configuration takes 100 ms (milliseconds) or more. Note that the time from when the reflected power exceeding the allowable value was detected in the high frequency power supply 6B for bias application to when the oscillator 61B of the high frequency power supply 6B was turned off was 80 ns.

なお、ソース側のアーク検出回路部65Aが許容値を越える反射波を検出した場合は、アーク検出回路部65Aは発振器61Aの出力を停止させると共に発振器61Aに許容値を越える反射波が生じたこと及び当該アーク検出回路部65Aにより発振器61Aが停止したことに対応する信号を装置コントローラ72に送信する。その信号を受けた装置コントローラ72は通信ボード62Bを介してアーク検出回路部65Bに停止信号を送信し、アーク検出回路部65Bがバイアス側の発振器61Bを停止させる。発振器61Aの出力が停止してからこのように装置コントローラ72から停止信号がアーク検出回路部65Bに到達するまでに要する時間は、例えば100ms程度である。   When the source-side arc detection circuit unit 65A detects a reflected wave exceeding the allowable value, the arc detection circuit unit 65A stops the output of the oscillator 61A and a reflected wave exceeding the allowable value is generated in the oscillator 61A. The arc detection circuit unit 65A transmits a signal corresponding to the stop of the oscillator 61A to the device controller 72. Upon receiving the signal, the device controller 72 transmits a stop signal to the arc detection circuit unit 65B via the communication board 62B, and the arc detection circuit unit 65B stops the bias-side oscillator 61B. The time required for the stop signal from the device controller 72 to reach the arc detection circuit unit 65B in this way after the output of the oscillator 61A stops is, for example, about 100 ms.

図6は高周波電源6Aをエッチング開始時に最初に立ち上げて所定の出力にするとき及び上記のように再スタートさせるときの出力の波形の一例とそのときに発生する反射波の波形の一例とを示したものであり、アーク検出回路部65Aの許容値は200Wに設定している。高周波電源6Aの発振器61Aの出力をエッチング開始時に所定の出力にするとき(図中S1〜S2までの期間)は再スタート期間(図中S4〜S5間での期間)よりも電力を早い時間で所定の値まで上昇させる。このようにすると再スタート期間に比べて反射波が発生しやすくなるので、例えばS1〜S2までの期間においては、反射電力が許容値を越えてもアーク検出回路部65Aが、発振器61Aの出力を停止させないように設定することが好ましい。高周波電源61Bのアーク検出回路部63Bについても同様に、エッチング開始時に当該高周波電源61Bを最初に立ち上げるときには、反射電力が許容値を超えても発振器61Bの出力を停止させないように設定することが好ましい。   FIG. 6 shows an example of an output waveform when the high-frequency power source 6A is first raised at the start of etching to obtain a predetermined output and restarted as described above, and an example of a waveform of a reflected wave generated at that time. The allowable value of the arc detection circuit unit 65A is set to 200W. When the output of the oscillator 61A of the high-frequency power supply 6A is set to a predetermined output at the start of etching (period from S1 to S2 in the figure), the power is consumed earlier than the restart period (period between S4 and S5 in the figure). Increase to a predetermined value. In this way, a reflected wave is more likely to be generated than in the restart period. For example, in the period from S1 to S2, the arc detection circuit unit 65A outputs the output of the oscillator 61A even if the reflected power exceeds the allowable value. It is preferable to set so as not to stop. Similarly, the arc detection circuit unit 63B of the high frequency power supply 61B is set so that the output of the oscillator 61B is not stopped even when the reflected power exceeds an allowable value when the high frequency power supply 61B is first started up at the start of etching. preferable.

図7は他のプラズマエッチング装置の構成を示した図であり、このプラズマエッチング装置9は高周波電源6Aと同様に構成された高周波電源6Cを備えている。高周波電源6Cの同軸ケーブル48Cはコンバイナボックス91を介して電源6Aの同軸ケーブル48Aに接続されており、高周波電源6A及び6Cがソース用の高周波電源として構成されている。バイアス用の高周波電源6Bに接続されたアーク検出回路部63Bがその許容値を越えた反射電力を検出すると、アーク検出回路部63Bは発振器61Bの出力を停止させると共に高周波電源6A、6Cの夫々の通信ボード62A,62Cを介してアーク検出回路部65A及び65Cに信号を送信し、これらアーク検出回路部65A及び65Cが発振器61A,61Cの出力を停止させる。このように一つの高周波電源のアーク検出回路部から複数の他の高周波電源のアーク検出回路部に信号が直接送信され、各アーク検出回路部に接続された高周波電源が停止するような構成となっていてもよい。   FIG. 7 is a diagram showing the configuration of another plasma etching apparatus, and this plasma etching apparatus 9 includes a high frequency power source 6C configured similarly to the high frequency power source 6A. The coaxial cable 48C of the high frequency power source 6C is connected to the coaxial cable 48A of the power source 6A via the combiner box 91, and the high frequency power sources 6A and 6C are configured as a high frequency power source for the source. When the arc detection circuit unit 63B connected to the biasing high-frequency power source 6B detects the reflected power exceeding the allowable value, the arc detection circuit unit 63B stops the output of the oscillator 61B and the high-frequency power sources 6A and 6C. A signal is transmitted to the arc detection circuit units 65A and 65C via the communication boards 62A and 62C, and the arc detection circuit units 65A and 65C stop the output of the oscillators 61A and 61C. In this way, the signal is directly transmitted from the arc detection circuit unit of one high frequency power supply to the arc detection circuit units of a plurality of other high frequency power supplies, and the high frequency power supply connected to each arc detection circuit unit is stopped. It may be.

上述の各実施形態ではバイアス用の高周波電源6Bの通信ボード62Bからソース用の高周波電源6Aの通信ボード62Aに停止信号が送られる例について示したが、このようにソース側からバイアス側に停止信号が送信されることに限られるものではない。例えば高周波電源5Aのアーク検出回路65Aが発振器61Aに過大な反射波を検出した場合に、ソース用の高周波電源6Aの通信ボード62Aからバイアス用の高周波電源6Bの通信ボード62Bに直接停止信号が送られ、アーク検出回路部65Bが発振器61Bを停止するようにしてもよい。また、停止信号の送信はこのように一方向のみに限られるものではなく、通信ボード62A,62B間で双方向に停止信号が送信されるようになっていてもよい。   In each of the above-described embodiments, an example in which a stop signal is sent from the communication board 62B of the bias high-frequency power supply 6B to the communication board 62A of the source high-frequency power supply 6A has been described. Is not limited to being transmitted. For example, when the arc detection circuit 65A of the high frequency power supply 5A detects an excessive reflected wave in the oscillator 61A, a stop signal is directly sent from the communication board 62A of the source high frequency power supply 6A to the communication board 62B of the bias high frequency power supply 6B. The arc detection circuit unit 65B may stop the oscillator 61B. Further, the transmission of the stop signal is not limited to one direction as described above, and the stop signal may be transmitted bidirectionally between the communication boards 62A and 62B.

また上記実施形態ではバイアス側の高周波電源のアーク検出回路が反射波の異常に基づいて停止信号を出力しているが、進行波の異常を検出したときに同様に停止信号を出力するようにしてもよい。また通信ボード62Bと通信ボード62Aとを専用のケーブル67で接続して停止信号の送受信を行う代わりに、これら通信ボード間で無線により停止信号が送受信されるようになっていてもよい。   In the above embodiment, the arc detection circuit of the high frequency power source on the bias side outputs a stop signal based on the abnormality of the reflected wave. However, when detecting the abnormality of the traveling wave, the stop signal is output in the same manner. Also good. Instead of connecting the communication board 62B and the communication board 62A with the dedicated cable 67 and transmitting and receiving the stop signal, the stop signal may be transmitted and received between these communication boards wirelessly.

本発明の実施形態であるプラズマエッチング装置の縦断側面図である。It is a vertical side view of the plasma etching apparatus which is embodiment of this invention. 前記プラズマエッチング装置の高周波電源の構成図である。It is a block diagram of the high frequency power supply of the said plasma etching apparatus. 前記プラズマエッチング装置における信号の流れを示した説明図である。It is explanatory drawing which showed the flow of the signal in the said plasma etching apparatus. 前記プラズマエッチング装置における信号の流れを示した説明図である。It is explanatory drawing which showed the flow of the signal in the said plasma etching apparatus. エッチングが停止したときの各高周波電源の出力を示した波形図である。It is the wave form diagram which showed the output of each high frequency power supply when an etching stopped. エッチング開始時及び再開時の高周波電源の出力と反射波の波形を示した説明図である。It is explanatory drawing which showed the output of the high frequency power supply at the time of an etching start and restart, and the waveform of a reflected wave. プラズマエッチング装置の高周波電源の他の構成を示した構成図である。It is the block diagram which showed the other structure of the high frequency power supply of the plasma etching apparatus. 異常なプラズマが発生する様子を示した説明図である。It is explanatory drawing which showed a mode that abnormal plasma generate | occur | produces.

符号の説明Explanation of symbols

2 プラズマエッチング装置
20 処理容器
41 上部電極
51 下部電極
6A ソース用高周波電源
6B バイアス用高周波電源
61A,61B 発振器
62A,62B 通信ボード
65A,65B アーク検出回路部
72 装置コントローラ
2 Plasma etching apparatus 20 Processing vessel 41 Upper electrode 51 Lower electrode 6A High-frequency power supply 6B for source High-frequency power supply 61A, 61B Oscillators 62A, 62B Communication boards 65A, 65B Arc detection circuit unit 72 Device controller

Claims (13)

プラズマに関与する複数の高周波電源を備え、処理容器内の被処理体に対してプラズマにより処理するプラズマ処理装置において、
前記複数の高周波電源の各々は、高周波を発振する発振器と、外部と通信するための通信部と、この通信部により停止信号を受信したときに発振器の出力を停止する出力停止部と、を備え、
前記複数の高周波電源のうちの少なくとも一つの高周波電源の出力停止部は、当該高周波電源の発振器から出力される高周波の異常を検出したときに当該発振器の出力を停止すると共に前記通信部に停止信号を出力する監視部により構成され、
前記少なくとも一つの高周波電源の通信部と他の高周波電源の通信部とは、前記監視部からの停止信号を他の高周波電源に直接送信することを特徴とするプラズマ処理装置。
In a plasma processing apparatus that includes a plurality of high-frequency power sources related to plasma and processes a target object in a processing container with plasma,
Each of the plurality of high frequency power supplies includes an oscillator that oscillates a high frequency, a communication unit for communicating with the outside, and an output stop unit that stops the output of the oscillator when a stop signal is received by the communication unit. ,
An output stop unit of at least one high-frequency power source among the plurality of high-frequency power sources stops the output of the oscillator and detects a stop signal to the communication unit when detecting an abnormality in a high frequency output from the oscillator of the high-frequency power source Is composed of a monitoring unit that outputs
The plasma processing apparatus, wherein the communication unit of the at least one high frequency power supply and the communication unit of the other high frequency power supply directly transmit a stop signal from the monitoring unit to another high frequency power supply.
前記少なくとも一つの高周波電源の監視部により検出される高周波の異常は、反射波の異常であることを特徴とする請求項1記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the high frequency abnormality detected by the monitoring unit of the at least one high frequency power supply is an abnormality of a reflected wave. 前記少なくとも一つの高周波電源の通信部と他の高周波電源の通信部とは前記停止信号を直接送信するための通信路により互いに接続されていることを特徴とする請求項1または2記載のプラズマ処理装置。   3. The plasma processing according to claim 1, wherein the communication unit of the at least one high-frequency power source and the communication unit of the other high-frequency power source are connected to each other through a communication path for directly transmitting the stop signal. apparatus. 前記処理容器内に基板が載置される下部電極と上部電極とが対向して設けられ、
前記下部電極及び上部電極のいずれか一方に接続されるプラズマ発生用の高周波電源と、 前記下部電極に接続され、前記プラズマ発生用の高周波電源よりも周波数が低いバイアス印加用の高周波電源と、を含み、
前記少なくとも一つの高周波電源は、前記バイアス印加用の高周波電源であり、前記他の高周波電源は、前記プラズマ発生用の高周波電源を含み、
バイアス印加用の高周波電源の通信部からプラズマ発生用の高周波電源の通信部へ停止信号が直接送信されることを特徴とする請求項1ないし3のいずれか一に記載のプラズマ処理装置。
A lower electrode and an upper electrode on which a substrate is placed in the processing container are provided facing each other,
A high-frequency power source for plasma generation connected to one of the lower electrode and the upper electrode; and a high-frequency power source for bias application connected to the lower electrode and having a lower frequency than the high-frequency power source for plasma generation Including
The at least one high-frequency power source is a high-frequency power source for bias application, and the other high-frequency power source includes the high-frequency power source for generating plasma,
4. The plasma processing apparatus according to claim 1, wherein a stop signal is directly transmitted from the communication unit of the high-frequency power source for bias application to the communication unit of the high-frequency power source for plasma generation.
前記出力停止部によりバイアス印加用の高周波電源の発振器及びプラズマ発生用の高周波電源の発振器の出力が停止した後、バイアス印加用の高周波電源の発振器、プラズマ発生用の高周波電源の発振器の順に、自動的にその出力が復帰することを特徴とする請求項4記載のプラズマ処理装置。   After the output of the high frequency power source oscillator for bias application and the high frequency power source oscillator for plasma generation is stopped by the output stop unit, the high frequency power source oscillator for bias application and the high frequency power source oscillator for plasma generation are automatically 5. The plasma processing apparatus according to claim 4, wherein the output is restored. 前記プラズマ発生用の高周波電源の出力停止部は、当該高周波電源の発振器から出力される高周波の異常を検出したときに当該発振器の出力を停止する監視部により構成されていることを特徴とする請求項4または5記載のプラズマ処理装置。   The output stop unit of the high-frequency power source for generating plasma is configured by a monitoring unit that stops the output of the oscillator when an abnormality in a high frequency output from the oscillator of the high-frequency power source is detected. Item 6. The plasma processing apparatus according to Item 4 or 5. 前記プラズマ発生用の高周波電源の監視部により検出される高周波の異常は、反射波の異常であることを特徴とする請求項6記載のプラズマ処理装置。   7. The plasma processing apparatus according to claim 6, wherein the high-frequency abnormality detected by the monitoring unit of the high-frequency power source for generating plasma is an abnormality of a reflected wave. 前記高周波の異常によるプラズマ発生用の高周波電源の発振器の出力の停止が停止した場合、バイアス側の高周波電源の通信部に停止信号を送信する装置コントローラが設けられていることを特徴とする請求項6または7記載のプラズマ処理装置。   The apparatus controller is provided for transmitting a stop signal to a communication unit of the high frequency power supply on the bias side when the output of the oscillator of the high frequency power supply for generating plasma is stopped due to the abnormality of the high frequency. 8. The plasma processing apparatus according to 6 or 7. 前記他の高周波電源の出力停止部は、当該高周波電源の発振器から出力される高周波の異常を検出したときに当該発振器の出力を停止する監視部により構成されていることを特徴とする請求項1ないし3のいずれか一に記載のプラズマ処理装置。   2. The output stop unit of the other high-frequency power source is configured by a monitoring unit that stops the output of the oscillator when an abnormality in a high frequency output from the oscillator of the high-frequency power source is detected. The plasma processing apparatus as described in any one of thru | or 3. 前記他の高周波電源の監視部により検出される高周波の異常は、反射波の異常であることを特徴とする請求項9記載のプラズマ処理装置。   The plasma processing apparatus according to claim 9, wherein the high-frequency abnormality detected by the monitoring unit of the other high-frequency power source is a reflected wave abnormality. 前記発振器の出力の停止は、発振器を停止することであることを特徴とする請求項1ないし10のいずれか一つに記載のプラズマ処理装置。   11. The plasma processing apparatus according to claim 1, wherein the stop of the output of the oscillator is to stop the oscillator. プラズマに関与する複数の高周波電源を用い、処理容器内の被処理体に対してプラズマにより処理するプラズマ処理方法において、
前記複数の高周波電源のうちの少なくとも一つの高周波電源に設けられた監視部により当該高周波電源の発振器から出力される高周波の異常を検出したときに前記監視部により当該発振器の出力を停止すると共に他の高周波電源のための停止信号を当該高周波電源に含まれる通信部に出力する工程と、
前記停止信号を、前記一つの高周波電源の通信部から他の高周波電源の通信部に直接送信する工程と、
前記他の高周波電源の通信部が前記停止信号を受信したときに、当該高周波電源に設けられた出力停止部により当該高周波電源の発振器の出力を停止する工程と、を含むことを特徴とするプラズマ処理方法。
In a plasma processing method in which a plurality of high-frequency power sources related to plasma are used and a target object in a processing container is processed with plasma,
When the high frequency power output from the oscillator of the high frequency power source is detected by the monitoring unit provided in at least one high frequency power source among the plurality of high frequency power sources, the monitoring unit stops the output of the oscillator and others Outputting a stop signal for the high-frequency power source to a communication unit included in the high-frequency power source,
Directly transmitting the stop signal from the communication unit of the one high frequency power supply to the communication unit of the other high frequency power supply;
And a step of stopping the output of the oscillator of the high-frequency power source by an output stop unit provided in the high-frequency power source when the communication unit of the other high-frequency power source receives the stop signal. Processing method.
基板に対してプラズマ処理を行うプラズマ処理装置に用いられ、コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、
前記コンピュータプログラムは、請求項12に記載のプラズマ処理方法を実施するようにステップ群が組まれていることを特徴とする記憶媒体。
A storage medium that stores a computer program that is used in a plasma processing apparatus that performs plasma processing on a substrate and operates on a computer,
A storage medium characterized in that the computer program includes a set of steps so as to implement the plasma processing method according to claim 12.
JP2007234365A 2007-09-10 2007-09-10 Plasma processing apparatus, plasma processing method, and storage medium Active JP4905304B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007234365A JP4905304B2 (en) 2007-09-10 2007-09-10 Plasma processing apparatus, plasma processing method, and storage medium
TW097134558A TWI488545B (en) 2007-09-10 2008-09-09 Plasma processing device and plasma processing method and memory medium
KR1020080088672A KR101035248B1 (en) 2007-09-10 2008-09-09 Plasma processing apparatus, plasma processing method and storage medium
CN2008101495379A CN101389179B (en) 2007-09-10 2008-09-10 Plasma processing device, plasma processing method
KR1020100102484A KR20100119851A (en) 2007-09-10 2010-10-20 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234365A JP4905304B2 (en) 2007-09-10 2007-09-10 Plasma processing apparatus, plasma processing method, and storage medium

Publications (3)

Publication Number Publication Date
JP2009070844A true JP2009070844A (en) 2009-04-02
JP2009070844A5 JP2009070844A5 (en) 2010-06-17
JP4905304B2 JP4905304B2 (en) 2012-03-28

Family

ID=40478273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234365A Active JP4905304B2 (en) 2007-09-10 2007-09-10 Plasma processing apparatus, plasma processing method, and storage medium

Country Status (4)

Country Link
JP (1) JP4905304B2 (en)
KR (2) KR101035248B1 (en)
CN (1) CN101389179B (en)
TW (1) TWI488545B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135422A (en) * 2008-12-02 2010-06-17 Tokyo Electron Ltd Plasma processing apparatus and method of operating the same
WO2011125733A1 (en) * 2010-04-02 2011-10-13 株式会社アルバック Film-forming apparatus
JP2013206784A (en) * 2012-03-29 2013-10-07 Daihen Corp Microwave power supply device
JP2014137911A (en) * 2013-01-17 2014-07-28 Tokyo Electron Ltd Plasma processing apparatus, and method of operating the same
KR20220106688A (en) 2021-01-22 2022-07-29 도쿄엘렉트론가부시키가이샤 Abnormality detection method of plasma processing apparatus and plasma processing apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4891384B2 (en) * 2009-12-10 2012-03-07 株式会社新川 Plasma generator
KR20140066483A (en) * 2012-11-23 2014-06-02 엘아이지에이디피 주식회사 Inductively coupled plasma processing apparatus and control method thereof
JP5704772B1 (en) * 2014-02-04 2015-04-22 株式会社京三製作所 High frequency power supply device and plasma ignition method
JP2016225439A (en) * 2015-05-29 2016-12-28 東京エレクトロン株式会社 Plasma processing device and substrate peeling detection method
US9947514B2 (en) * 2015-09-01 2018-04-17 Mks Instruments, Inc. Plasma RF bias cancellation system
JP6667343B2 (en) * 2016-03-30 2020-03-18 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
KR102450733B1 (en) * 2022-05-04 2022-10-06 (주)알에프티에스아이 RF Generator with Carbonization Prevention System

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274099A (en) * 2000-03-24 2001-10-05 Mitsubishi Heavy Ind Ltd Power supply method to discharge electrode, high- frequency plasma generation method, and semiconductor- manufacturing method
JP2002530856A (en) * 1998-11-12 2002-09-17 ラム リサーチ コーポレーション Integrated power supply module for plasma processing system
JP2005236138A (en) * 2004-02-20 2005-09-02 Tokyo Electron Ltd Plasma treating apparatus and its control method
JP2006140440A (en) * 2004-09-04 2006-06-01 Applied Materials Inc Detection and suppression of electric arc
JP2006237009A (en) * 2005-02-24 2006-09-07 En Technology Inc Arc energy control circuit for plasma power supply device
JP2007180358A (en) * 2005-12-28 2007-07-12 Tokyo Electron Ltd Plasma etching method and computer-readable recording medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3829233B2 (en) 1999-05-24 2006-10-04 富士電機ホールディングス株式会社 Control method of high frequency power supply
JP2003064477A (en) * 2001-08-20 2003-03-05 Sony Corp Device and method for controlling power source
WO2003037047A1 (en) * 2001-10-22 2003-05-01 Shibaura Mechatronics Corporation Method for judging arc of glow discharger and high-frequency arc discharge suppressor
JP4493896B2 (en) * 2002-03-12 2010-06-30 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing stop method
JP4024636B2 (en) * 2002-09-20 2007-12-19 富士通株式会社 Organic insulating film etching method and semiconductor device manufacturing method
JP2004220923A (en) 2003-01-15 2004-08-05 Ulvac Japan Ltd Abnormal discharge detection device and method, and plasma treatment device comprising the abnormal discharge detection device
JP3905870B2 (en) * 2003-08-01 2007-04-18 東京エレクトロン株式会社 Plasma processing equipment
CN100543944C (en) * 2004-04-30 2009-09-23 东京毅力科创株式会社 Plasma processing apparatus and method of plasma processing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530856A (en) * 1998-11-12 2002-09-17 ラム リサーチ コーポレーション Integrated power supply module for plasma processing system
JP2001274099A (en) * 2000-03-24 2001-10-05 Mitsubishi Heavy Ind Ltd Power supply method to discharge electrode, high- frequency plasma generation method, and semiconductor- manufacturing method
JP2005236138A (en) * 2004-02-20 2005-09-02 Tokyo Electron Ltd Plasma treating apparatus and its control method
JP2006140440A (en) * 2004-09-04 2006-06-01 Applied Materials Inc Detection and suppression of electric arc
JP2006237009A (en) * 2005-02-24 2006-09-07 En Technology Inc Arc energy control circuit for plasma power supply device
JP2007180358A (en) * 2005-12-28 2007-07-12 Tokyo Electron Ltd Plasma etching method and computer-readable recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135422A (en) * 2008-12-02 2010-06-17 Tokyo Electron Ltd Plasma processing apparatus and method of operating the same
WO2011125733A1 (en) * 2010-04-02 2011-10-13 株式会社アルバック Film-forming apparatus
JP5691081B2 (en) * 2010-04-02 2015-04-01 株式会社アルバック Deposition equipment
JP2013206784A (en) * 2012-03-29 2013-10-07 Daihen Corp Microwave power supply device
JP2014137911A (en) * 2013-01-17 2014-07-28 Tokyo Electron Ltd Plasma processing apparatus, and method of operating the same
KR20220106688A (en) 2021-01-22 2022-07-29 도쿄엘렉트론가부시키가이샤 Abnormality detection method of plasma processing apparatus and plasma processing apparatus

Also Published As

Publication number Publication date
KR20100119851A (en) 2010-11-11
KR20090026735A (en) 2009-03-13
KR101035248B1 (en) 2011-05-18
TW200932067A (en) 2009-07-16
TWI488545B (en) 2015-06-11
JP4905304B2 (en) 2012-03-28
CN101389179B (en) 2011-11-30
CN101389179A (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4905304B2 (en) Plasma processing apparatus, plasma processing method, and storage medium
JP5141519B2 (en) Plasma processing apparatus and method of operating plasma processing apparatus
KR101997330B1 (en) Plasma processing apparatus and operation method of the same
US10978274B2 (en) Plasma processing apparatus and method for generating plasma
TWI605513B (en) Vacuum device, pressure control method, and etching method
JP4256064B2 (en) Control method of plasma processing apparatus
TWI619166B (en) Vacuum device and valve control method
JP2020177959A (en) Cleaning treatment method and plasma processing device
KR101792310B1 (en) Plasma processing apparatus
JP7511501B2 (en) Plasma processing apparatus and monitoring device
US20220336197A1 (en) Plasma processing system and plasma processing method
US20230420223A1 (en) Plasma Processing Method and Plasma Processing Apparatus
TWI416998B (en) Plasma processing device
US10679826B2 (en) Microwave control method
JP2023070771A (en) Plasma processing device and plasma processing method
JP2022122425A (en) Plasma processing device and monitoring device
JP2022065968A (en) Substrate processing system, control method, and control program
JP2008066319A (en) Plasma treatment apparatus and plasma treatment method
JP2009088126A (en) Semiconductor device manufacturing method
KR20050109726A (en) Equipment for monitering radio frequency power of semiconductor product device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250