WO2011125610A1 - エアロゾル粒子サンプリング装置 - Google Patents

エアロゾル粒子サンプリング装置 Download PDF

Info

Publication number
WO2011125610A1
WO2011125610A1 PCT/JP2011/057657 JP2011057657W WO2011125610A1 WO 2011125610 A1 WO2011125610 A1 WO 2011125610A1 JP 2011057657 W JP2011057657 W JP 2011057657W WO 2011125610 A1 WO2011125610 A1 WO 2011125610A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
gas
receiving space
main body
gas receiving
Prior art date
Application number
PCT/JP2011/057657
Other languages
English (en)
French (fr)
Inventor
宏和 一坪
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to JP2012509458A priority Critical patent/JP5640078B2/ja
Publication of WO2011125610A1 publication Critical patent/WO2011125610A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2252Sampling from a flowing stream of gas in a vehicle exhaust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N2001/2264Sampling from a flowing stream of gas with dilution

Definitions

  • the present invention relates to an aerosol particle sampling device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-28765
  • Patent Document 2 Japanese Patent Application Laid-Open No. 8-43275
  • Patent Document 3 Japanese Patent Application Laid-Open No. 63-298133
  • the outlet of the exhaust pipe 24 from the engine 23 is introduced into the center of the dilution pipe 25 through which the dilution air A flows. Then, the sampling gas in which the exhaust gas G from the exhaust pipe 24 diluted with the dilution air A in the dilution pipe 25 enters the center downstream of the outlet of the exhaust pipe 24 in the dilution pipe 25. It is sampled by the path 29.
  • the outlet of the extraction pipe 4 from the exhaust pipe 20 is introduced at the center of the dilution tunnel 5 through which dilution air flows.
  • An inlet of the exhaust gas sampling pipe 43 is arranged in the dilution tunnel 5 at the center downstream of the outlet of the extraction pipe 4.
  • an outlet of an exhaust gas introduction pipe 2 is led to the center of a dilution tunnel 1 through which diluted air containing particles flows.
  • a dilution tunnel 1 In the dilution tunnel 1, an inlet of the diluted exhaust gas conduit 4 is disposed at the center downstream of the outlet of the exhaust gas introduction pipe 2, and a constant volume sampler 8 is disposed at the outlet of the dilution tunnel 1.
  • exhaust gas discharged to the center of the dilution tunnel 5 through which dilution air flows from the outlet of the exhaust pipe 20 by the extraction pipe 4 Is diluted by the dilution air flowing through the dilution tunnel 5 until it is sampled by the exhaust gas sampling pipe 43 that enters the center downstream of the outlet of the extraction pipe 4 in the dilution tunnel 5.
  • the aerosol particles in the exhaust gas do not follow the air flow as the particle diameter increases and the mass increases, and the L-shaped portion of the sampling channel 29 and the exhaust gas sampling pipe 43 Particles are lost (retained) in the L-shaped part. This is because the difference between the moving speed and moving direction of the particles with respect to the air flow becomes large. Further, the particles are contained in the dilution pipe 25 (refer to Japanese Patent Laid-Open No. 2003-28765), the dilution tunnel 5 (refer to Japanese Patent Laid-Open No. 8-43275) or the dilution tunnel 1 (refer to Japanese Patent Laid-Open No. 63-298133). The moving speed is lowered due to the influence of the friction force generated between the inner peripheral surface and the inner peripheral surface.
  • sampling is performed by the sampling flow path 29 that enters the center downstream of the outlet of the exhaust pipe 24 in the dilution pipe 25.
  • the particle size distribution of the aerosol particles in the exhaust gas thus generated is the distribution of the particle size of the aerosol particles in the exhaust gas immediately after being discharged from the exhaust pipe 24 to the center of the dilution pipe 25 through which the dilution air A flows. Is different.
  • the sample was sampled by the exhaust gas sampling pipe 43 which entered the center downstream of the outlet of the extraction pipe 4 in the dilution tunnel 5.
  • the particle size distribution of the aerosol particles in the exhaust gas is the distribution of the particle size of the aerosol particles in the exhaust gas immediately after being discharged from the exhaust pipe 20 through the extraction pipe 4 to the center of the dilution tunnel 5. Is different.
  • the particle size distribution of the aerosol particles in the exhaust gas sampled by the constant volume sampler 8 at the outlet of the dilution tunnel 1 is: This is different from the particle size distribution of the aerosol particles in the exhaust gas immediately after being discharged from the outlet of the exhaust gas introduction pipe 2 to the center of the dilution tunnel 1 through which dilution air flows.
  • the present invention has been made under the above circumstances, and an object of the present invention is to provide a sampling tube for discharging a sampling gas, a main body including a sampling gas receiving space for receiving the sampling gas discharged from the sampling tube, and a sampling gas for the main body.
  • a replenishing gas supply for supplying a replenishing gas to the receiving space, and mixing a replenishing fluid with the sampling gas in the sampling gas receiving space; and a measuring gas containing at least the sampling gas in the sampling gas receiving space of the body.
  • an aerosol particle sampling apparatus includes: a sampling tube for discharging a sampling gas, and a sampling gas receiving space for receiving the sampling gas discharged from the sampling tube.
  • a main body a supplement gas supply for supplying a supplement gas to the sampling gas receiving space of the main body, and mixing a supplement fluid with the sampling gas in the sampling gas receiving space; and at least the sampling gas in the sampling gas receiving space of the main body
  • An aerosol particle sampling apparatus including a measurement gas discharge pipe for discharging a measurement gas to the outside of a sampling gas receiving space.
  • An end-corresponding region surrounds the outer peripheral surface of the other end portion with a predetermined gap between it and the outer peripheral surface of the other end portion of the sampling tube;
  • the replenishing gas supplier is connected to the first end of the sampling gas receiving space of the main body, and the outer peripheral surface of the other end of the sampling tube and the first end corresponding region of the inner surface of the sampling gas receiving space of the main body.
  • the measurement gas discharge pipe has one end portion, the other end portion, and a through passage that opens to one end portion and the other end portion and extends from one end portion to the other end portion.
  • One end is connected to the second end of the sampling gas receiving space of the main body, the other end protrudes outward from the second end of the sampling gas receiving space of the main body, and the main body passes through the opening at the end of the one end.
  • the measurement gas containing at least the sampling gas in the sampling gas receiving space is introduced into the through passage, and the measurement gas is discharged from the through passage through the opening at the other end to the outside of the sampling gas receiving space.
  • the outer peripheral surface is surrounded by a second end corresponding region corresponding to the second end on the inner surface defining the sampling gas receiving space via a predetermined gap; and
  • the gap between the outer peripheral surface of one end of the measurement gas discharge pipe and the second end corresponding region of the inner peripheral surface of the sampling gas receiving space of the main body is connected to the second end of the sampling gas receiving space of the main body.
  • a gas selective discharge pipe for selectively discharging the gas in the sampling gas receiving space through It is characterized by that.
  • the sampling gas in the sampling gas receiving space of the main body passes through the opening of one end of the measuring gas discharge pipe at the second end of the sampling gas receiving space as a measuring gas into the through-hole of the measuring gas discharge pipe. It is introduced and discharged from the through passage through the opening at the other end of the measurement gas discharge pipe.
  • the replenishing gas supplier receives the sampling gas through a gap between the outer peripheral surface of the other end of the sampling tube and the first end corresponding region of the inner surface of the sampling gas receiving space of the main body.
  • a replenishment gas is selectively supplied to the space, the replenishment gas is mixed with the sampling gas, and a through-hole of the measurement gas discharge pipe is passed through an opening at one end of the measurement gas discharge pipe at the second end of the sampling gas receiving space. Provide the same amount of measurement gas as is introduced into it.
  • the sampling gas receiving space in the sampling gas receiving space is interposed through a gap between the outer peripheral surface of one end of the measurement gas discharging pipe and the second end corresponding region of the inner peripheral surface of the sampling gas receiving space of the main body.
  • Sampling is performed at the first end of the sampling gas receiving space regardless of whether the replenishing gas is supplied to the sampling gas receiving space by the replenishing gas replenisher or the gas is discharged from the sampling gas receiving space by the gas selective discharge pipe. Since the replenishing gas is supplied and the gas in the sampling gas receiving space is discharged in the gap that takes in the outer peripheral surface of the tube and in the gap that surrounds one end of the measurement gas discharge pipe at the second end of the sampling gas receiving space, In the sampling gas receiving space, no significant change occurs in the particle distribution of the sampling gas between the first end and the second end, and the end of one end of the measurement gas discharge pipe at the second end of the sampling gas receiving space.
  • the measurement gas introduced into the through-hole of the measurement gas discharge pipe through the opening of Particle distribution takes sampling gas is stable.
  • FIG. 1 is a schematic longitudinal sectional view of an aerosol particle sampling apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic longitudinal sectional view of a first modification of the aerosol particle sampling apparatus of FIG.
  • FIG. 3 is a schematic longitudinal sectional view of a second modification of the aerosol particle sampling apparatus of FIG.
  • FIG. 4 is a schematic longitudinal sectional view of a third modification of the aerosol particle sampling apparatus of FIG.
  • FIG. 5 is a schematic longitudinal sectional view of a fourth modification of the aerosol particle sampling apparatus of FIG.
  • FIG. 6 is a schematic longitudinal sectional view of a fifth modification of the aerosol particle sampling apparatus of FIG.
  • FIG. 7 is a schematic longitudinal sectional view of a sixth modification of the aerosol particle sampling apparatus of FIG.
  • FIG. 1 is a schematic longitudinal sectional view of an aerosol particle sampling apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic longitudinal sectional view of a first modification of the aerosol particle sampling apparatus of FIG.
  • the aerosol particle sampling apparatus 10 opens to one end 12a, the other end 12b, the end of the one end 12a and the end of the other end 12b, and extends from the end of the one end 12a to the end of the other end 12b.
  • a sampling tube 12 having a through passage 12c.
  • sampling gas SK supply source sampling gas supply source 14 containing aerosol particles having various particle sizes.
  • the sampling gas supply source 14 can introduce a desired amount of the sampling gas SK from the desired position in the desired space into the through passage 12c through the opening at the end of the one end 12a of the sampling tube 12 at a desired time. .
  • a sampling gas supply source 14 is known.
  • sampling gas SK introduced into the through passage 12c of the sampling tube 12 is discharged from the through passage 12c of the sampling tube 12 through the opening at the end of the other end portion 12b of the sampling tube 12.
  • the aerosol particle sampling apparatus 10 also includes the other end of the sampling tube 12 in the extending direction of the first end 16a to which the other end 12b of the sampling tube 12 is connected via an airtight structure and the other end 12b of the sampling tube 12.
  • a body 18 is provided which includes a sampling gas receiving space 16 having a second end 16b located farther from the end of the portion 12b.
  • the sampling gas receiving space 16 has an intermediate portion 16c between the first end portion 16a and the second end portion 16b, and the sampling gas SK discharged from the opening at the end of the other end portion 12b of the sampling tube 12. Accept.
  • the inner surface defining the sampling gas receiving space 16 in the main body 18 has a first end corresponding region corresponding to the first end 16 a of the sampling gas receiving space 16 on the outer periphery of the other end 12 b of the sampling tube 12.
  • the outer peripheral surface of the other end portion 12b is surrounded by a predetermined gap G1 between the other surface and the surface.
  • the airtight structure includes an outer flange 12d formed between one end 12a and the other end 12b of the sampling tube 12, and the one end 12a of the sampling tube 12 is inserted.
  • a cap-shaped first flange fixing member 18b having a central opening is included.
  • the airtight structure further includes a first end member 18 a surrounding the first end 16 a of the sampling gas receiving space 16 in the main body 18, and the other end 12 b of the sampling tube 12 is the first end of the sampling gas receiving space 16.
  • a known sealing member SM such as an O-ring is disposed on the outer end surface where the opening connected to 16a is formed so as to surround the opening.
  • the aerosol particle sampling apparatus 10 also includes a supplemental gas supply pipe 20 connected to the first end 16 a of the sampling gas receiving space 16 of the main body 18.
  • the outer end of the supplementary gas supply pipe 20 is connected to a supply source (supplementary gas supply source) 22 of supplementary gas, in this embodiment, clean air.
  • the supplemental gas supply 22 is known.
  • the replenishment gas supply source 22 can be provided by connecting a mass flow controller to the outlet of the air pump and attaching a HEPA filter (High efficiency particulate air-filter) to the outlet of the mass flow controller.
  • the replenishing gas supply pipe 20 corresponds to the first end of the replenishing gas HK supplied from the replenishing gas supply source 22 on the outer peripheral surface of the other end 12 b of the sampling pipe 12 and the inner surface of the sampling gas receiving space 16 of the main body 18.
  • the sampling gas receiving space 16 is supplied via the gap G1 between the region.
  • the replenishing gas supply pipe 20 is formed of a material that does not alter or absorb the replenishing gas HK, for example, brass, stainless steel, or aluminum alloy.
  • the main body 18 is also formed of a material that does not alter or absorb the sampling gas SK and the supplementary gas HK introduced into the sampling gas receiving space 16, such as brass, stainless steel, or aluminum alloy.
  • the aerosol particle sampling apparatus 10 also opens at one end 24a, the other end 24b, the end of the one end 24a and the end of the other end 24b, and extends from the end of the one end 24a to the end of the other end 24b.
  • a measurement gas discharge pipe 24 having a penetrating passage 24c is provided.
  • One end 24 a of the measurement gas discharge pipe 24 is connected to the second end 16 b of the sampling gas receiving space 16 of the main body 18 through an airtight structure, and the other end 24 b is the second end of the sampling gas receiving space 16 of the main body 18. Projecting outward from the portion 16b.
  • the measurement gas discharge pipe 24 is diluted to a desired density by the sampling gas SK or the supplementary gas HK at the intermediate portion 16c between the first end portion 16a and the second end portion 12b of the sampling gas receiving space 16 of the main body 18.
  • the measurement gas MK including at least the sampling gas SK is introduced into the through-passage 24c through the opening at the end of the one end 24a, and is passed from the through-passage 24c to the outside of the sampling gas receiving space 16 through the opening at the end of the other end 24b. Discharge.
  • the other end portion 24b of the measurement gas discharge pipe 24 can measure the particle size and the number of aerosol particles having various particle sizes included in the measurement gas MK from the intermediate portion 16c of the sampling gas receiving space 16. It is connected to a known particle size measuring device 26.
  • the inner surface defining the sampling gas receiving space 16 in the main body 18 has a second end corresponding region corresponding to the second end 16 b of the sampling gas receiving space 16 of the one end 24 a of the measurement gas discharge pipe 24.
  • the outer peripheral surface of the one end 24a is surrounded by a predetermined gap G2 between the outer peripheral surface and the outer peripheral surface.
  • the airtight structure includes an outer flange 24d formed between one end 24a and the other end 24b of the measurement gas discharge pipe 24 and the other end of the measurement gas discharge pipe 24.
  • a cap-shaped second flange fixing member 18d having a central opening through which 24b is inserted is included.
  • the one end portion 24 a of the measurement gas discharge pipe 24 is the sampling gas receiving space 16.
  • a known sealing member SM such as an O-ring is disposed on the outer end surface where the opening connected to the second end portion 16b is formed so as to surround the opening.
  • the second flange fixing member 18d is attached to a portion of the outer peripheral surface of the second end member 18c of the main body 18 adjacent to the outer end surface, whereby the outer flange 24d of the measurement gas discharge pipe 24 is connected to the second end of the main body 18.
  • an airtight connection between the other end 24b of the measurement gas discharge pipe 24 and the second end 16b of the sampling gas receiving space 16 of the main body 18 is pressed against the sealing member SM on the outer end surface of the portion 18c.
  • the aerosol particle sampling apparatus 10 also includes a gas selective discharge pipe 28 connected to the second end 16b of the sampling gas receiving space 16 of the main body 18.
  • the gas selective discharge pipe 28 is sampled via the gap G2 between the outer peripheral surface of the one end 24a of the measurement gas discharge pipe 24 and the second end corresponding region of the inner peripheral surface of the sampling gas receiving space 16 of the main body 18.
  • the gas in the gas receiving space 16 can be discharged.
  • the outer end of the gas selective discharge pipe 28 is connected to a known gas selective recovery device 30.
  • a known gas selective recovery unit 30 can be provided, for example, by connecting the inlet of an air pump to the outer end of the gas selective discharge pipe 28 via a HEPA filter and a mass flow controller.
  • the above-described 22 air pumps can be used in common.
  • the gas selective discharge pipe 28 is made of, for example, brass, stainless steel, or aluminum alloy that does not alter or absorb the gas passing therethrough.
  • the end 12 e of the other end 12 b of the sampling tube 12 is formed between the outer peripheral surface of the other end 12 b of the sampling tube 12 and the first end corresponding region on the inner surface of the sampling gas receiving space 16 of the main body 18.
  • the supplementary gas HK that has flowed in a layered manner to the end of the other end portion 12b in the predetermined gap G1 between them flows in a layered manner along the inner surface of the sampling gas receiving space 16 to the second end portion 16b of the sampling gas receiving space 16. It is shaped like this.
  • the portion of the through-passage 12c in the vicinity of the end 12e of the other end portion 12b of the sampling tube 12 gradually approaches the end 12e.
  • the end 12e is formed in a tapered shape that coincides with the outer peripheral surface of the other end 12b.
  • the replenishing gas HK that has flowed in layers from the first end portion 16 a to the second end portion 16 b of the sampling gas receiving space 16 along the inner surface of the sampling gas receiving space 16 is supplied to one end portion of the measurement gas discharge pipe 24.
  • a vortex is not generated in the through passage 24c of the end 24e of 24a, and the space between the outer peripheral surface of the one end 24a of the diluted sampling gas discharge pipe 24 and the second end corresponding region of the inner surface of the sampling gas receiving space 16 of the main body 18 is. It can be guided to the gap G2.
  • the first end portion 16a, the second end portion 16b, and the intermediate portion 16c of the sampling gas receiving space 16 of the main body 18 have the same inner diameter D1.
  • the end portion 12 b and the one end portion 24 a of the measurement gas discharge pipe 24 are disposed concentrically with each other.
  • the outer diameter D2 and the inner diameter D3 of the other end 12b of the sampling tube 12 and the outer diameter D2 and the inner diameter D3 of the one end 24a of the measurement gas discharge tube 24 are the same.
  • the end 12 b and the one end 24 a of the measurement gas discharge pipe 24 are arranged concentrically with each other at the first end 16 a and the second end 16 b of the sampling gas receiving space 16 of the main body 18.
  • Q1 is the flow rate of the sampling gas SK
  • Q3 is the flow rate of the supplementary gas HK
  • each unit of Q1, Q3 is cc / min when each unit of D1, D2, D3 is cm. To do.
  • a predetermined gap G ⁇ b> 1 between the first end corresponding region on the inner surface of the sampling gas receiving space 16 of the main body 18 and the outer peripheral surface of the other end 12 b of the sampling tube 12 is supplied from the replenishing gas supplier 22.
  • a replenishing gas density uniform structure is provided to help the replenishing gas HK flow in layers at an equal density over the entire circumference of the inner surface of the sampling gas receiving space 16.
  • the supplementary gas density uniform structure includes the connection position of the supplementary gas supply pipe 20 in the region corresponding to the first end of the inner surface of the sampling gas receiving space 16 of the main body 18, and the other end 12 b of the sampling pipe 12.
  • An annular portion 18e that extends annularly in the circumferential direction of the outer peripheral surface is provided by an annular recess that is further away from the outer peripheral surface in the radial direction of the other end portion 12b than other portions of the first end corresponding region.
  • the predetermined gap G2 between the second end corresponding region of the inner peripheral surface of the sampling gas receiving space 16 of the main body 18 and the outer peripheral surface of the one end 24a of the measurement gas discharge pipe 24 is a predetermined gap G2.
  • An additional gas density equalization structure is provided to help the gas in the sampling gas receiving space 16 flowing in from the sampling gas receiving space 16 to flow in layers at an equal density over the entire inner surface of the sampling gas receiving space 16. Yes.
  • This annular recess is supplied with the supplementary gas HK from the supplementary gas supply pipe 20 into the gap G1, and when the supplementary gas HK is discharged together with a part of the measurement gas SK through the measurement gas discharge pipe 24, the supplementary gas HK and the measurement gas are measured.
  • a part of the gas SK helps to flow from the intermediate part 16c of the sampling gas receiving space 16 into the gap G2 in a layered manner with equal density over the entire circumference of the intermediate part 16c and the gap G2.
  • sampling gas supply source 14 the replenishment gas supply device 22, the gas selective recovery device 30, and the particle size measuring device 26 are further connected to an integrated control device 32 that controls these operations.
  • the sampling gas supply source 14 whose operation start is controlled by the integrated control apparatus 32 is connected to the one end 12a of the sampling tube 12.
  • a sampling gas SK containing aerosol particles having various particle diameters is supplied from the end into the through passage 12 c of the sampling tube 12, and the sampling gas SK passes through the passage 12 c of the sampling tube 12 at the end of the other end portion 12 b of the sampling tube 12. Is introduced into the intermediate portion 16 c of the sampling gas receiving space 16 of the main body 18.
  • the integrated control device 32 starts the operation of the supplementary gas supplier 22 and is connected to the first end 16 a of the sampling gas receiving space 16 of the main body 18.
  • the sampling gas receiving space 16 has a gap G1 between the replenishing gas supply pipe 20 and the outer peripheral surface of the other end 12b of the sampling pipe 12 and the first end corresponding region of the inner surface of the sampling gas receiving space 16 of the main body 18.
  • the supplementary gas HK is supplied to the intermediate part 16c. Most of the supplementary gas HK supplied in this manner flows in a layered manner along the inner surface of the intermediate portion 16c of the sampling gas receiving space 16 through the intermediate portion 16c of the sampling gas receiving space 16 to the second end portion 16b.
  • the dilution rate of the sampling gas SK in the intermediate part 16c of the sampling gas receiving space 16 is determined based on the amount of the sampling gas SK introduced from the sampling pipe 12 into the intermediate part 16c of the sampling gas receiving space 16 and the sampling gas SK.
  • An amount of supplementary gas HK supplied to the intermediate portion 16c of the gas receiving space 16, and an amount of gas in the sampling gas receiving space 16 recovered by the gas selective recovery device 30 from the intermediate portion 16c of the sampling gas receiving space 16. Can be arbitrarily set by arbitrarily controlling the control by the integrated control device 32.
  • the sampling gas SK in the sampling gas receiving space 16 or the sampling gas SK diluted as described above is then used as the measuring gas MK in the measuring gas discharge pipe 24 at the second end 16b of the sampling gas receiving space 16 of the main body 18.
  • the gas is introduced into the through passage 24c of the measurement gas discharge pipe 24 through the opening at the end of the one end 24a.
  • the measurement gas MK introduced into the through-passage 24c is discharged from the through-passage 24c through the opening at the end of the other end 24b of the measurement gas discharge pipe 24, and the particle size whose operation start is controlled by the integrated control device 32.
  • the measuring device 26 measures the particle size and number (ie, particle size distribution) of aerosol particles having various particle sizes contained in the diluted sampling gas KSK.
  • the flow rate of the sampling gas SK supplied into the through passage 12c of the sampling pipe 12 at this time is 3500 cc / min, the number of Ray nozzles Re becomes 1077, and the sampling gas SK is laminar in the through passage 12c.
  • the Stokes number square root Stk 0.5 when the particle size is 5 ⁇ m is 0.36, and the Stokes when the particle size is 7 ⁇ m.
  • the square root Stk 0.5 of the (Stokes) number is 0.50, and the square root Stk 0.5 of the Stokes number when the particle diameter is 10 ⁇ m is 0.71.
  • the sampling tube 12 The distribution of aerosol particles having various particle sizes in the sampling gas SK immediately after being introduced into the intermediate portion 16c of the sampling gas receiving space 16 from the through passage 12 at the end of the other end portion 12b is different.
  • the Ray nozzle number Re of the sampling gas SK in the through passage 12c of the sampling tube 12 is set in the through passage 12c.
  • the sampling gas SK is ensured to be 2000 or less, and the square root Stk 0.5 of the Stokes number of aerosol particles of various particle sizes contained in the sampling gas SK is 0.47 or less.
  • the inner diameter D1 and the outer diameter D2 and inner diameter D3 of the sampling pipe 12 and the measurement gas discharge pipe 24 are set.
  • the replenishing gas Depending on the amount of the sampling gas SK supplied from the sampling gas supply source 14 to the sampling gas receiving space 16 of the main body 18 via the sampling pipe 12 and the amount of the measuring gas MK that can be measured by the particle size measuring device 26, the replenishing gas.
  • After the sampling gas SK supplied from the sampling gas supply source 14 to the sampling gas receiving space 16 of the main body 18 via the sampling pipe 12 is diluted at an arbitrary dilution rate by controlling the amount of the supplementary gas HK recovered from the The particle size measuring device 26 can be supplied.
  • the amount of the measurement gas MK that can be measured by the particle size measuring device 26 is 1000 cc / mim, and the sampling gas SK supplied from the sampling gas supply source 14 to the sampling gas receiving space 16 of the main body 18 through the sampling pipe 12.
  • the amount of the supplementary gas HK supplied from the supplementary gas supply unit 22 to the sampling gas receiving space 16 of the main body 18 through the supplementary gas supply pipe 20 is set to 0 cc / min, and the gas selective recovery unit 30 is used. Is set to 0 cc / min for recovering the gas in the sampling gas receiving space 16 through the gas selective recovery pipe 28.
  • the sampling pipe 12 is connected from the sampling gas supply source 14.
  • the supply of the sampling gas SK to the sampling gas receiving space 16 of the main body 18 is 0 cc / min.
  • the sampling gas supply source 14 through the sampling pipe 12 is used.
  • the sampling gas SK is supplied to the sampling gas receiving space 16 of the main body 18 at 500 cc / min.
  • the sampling gas SK is diluted by half with the supplementary gas HK.
  • the replenishing gas supply 22 is connected via the replenishing gas supply pipe 20.
  • the amount of supplementary gas HK supplied to the sampling gas receiving space 16 of the main body 18 is set to 0 cc / min, and the gas selected and recovered by the gas selective recovery device 30 from the sampling gas receiving space 16 of the main body 18 through the gas selective discharge pipe 28. Is 1000 cc / mim, the sampling gas SK can be supplied as a measurement gas from the sampling gas receiving space 16 to the particle size measuring device 26 through the measurement gas discharge pipe 24 at 1000 cc / mim.
  • a known spray-drying particle generator and a powder suction particle generator are used as the sampling gas supply source 14, and the spray-drying particle generator is a known standard suspension of a synthetic resin having a particle size of 2 ⁇ m or less. Liquid particles can be generated, and the powder suction type particle generator can generate known standard dry powder particles of synthetic resin having a particle size of 2 ⁇ m or more.
  • the standard particles generated by these particle generators are once introduced into the aerosol particle chamber, where the particle concentration (number / cc) is measured using a known particle size measuring device, and the standard particles are measured at this particle concentration N1.
  • the contained air was supplied into the sampling gas receiving space 16 of the main body 18 through the sampling pipe 12 as the sampling gas SK immediately before sampling.
  • the flow rate Q1 of the sampling gas SK supplied to the sampling tube 12 is the same as the flow rate Q2 of the measurement gas MK discharged from the sampling gas receiving space 16 via the measurement gas discharge tube 24.
  • the flow rate Q1 of the sampling gas SK supplied to the sampling tube 12 is larger than the flow rate Q2 of the measurement gas MK discharged from the sampling gas receiving space 16 via the measurement gas discharge tube 24 (Q1> Q2), and the flow rate Q1.
  • the surplus sampling gas SK obtained by subtracting the flow rate Q2 from the sampling gas receiving space 16 is discharged from the sampling gas receiving space 16 via the gas selective discharge pipe 28.
  • N1 N2
  • the through-passage 12c of the sampling tube 12 and the main body between the opening at the end of the one end 12a of the sampling tube 12 and the opening at the end of the other end 24b of the measurement gas discharge tube 24 This means that there is no loss due to the deposition of the standard particles in the sampling gas SK on the inner surfaces of the 18 sampling gas receiving spaces 16 and the through passage 24c of the measurement gas discharge pipe 24.
  • the particle size measuring device 26 connected to the opening at the end of the other end 24b of the measurement gas discharge pipe 24 measures the particle size distribution of the sampling gas SK immediately before sampling.
  • the flow rate Q1 of the sampling gas SK supplied to the sampling tube 12 is smaller than the flow rate Q2 of the measurement gas MK discharged from the sampling gas receiving space 16 via the measurement gas discharge tube 24 (Q1 ⁇ Q2), and from the flow rate Q2.
  • N2 N1 ⁇ Q1 / Q2 if there is no loss due to the deposition of the standard particles described above. .
  • the value of the experimental concentration ratio (N2 / N1) in Table 1 is an average value ⁇ standard deviation.
  • Test 1 supplies the sampling pipe 12 with a flow rate Q2 of the measurement gas MK discharged through the measurement gas discharge pipe 24 of 1000 cc / min and a flow rate Q4 of the gas discharged from the gas discharge pipe 28 of 650 cc / min. This is a case where the maximum value of the flow rate Q1 of the sampled gas SK is 1650 cc / min.
  • the aerosol particle sampling device 10 'of this modification is different from the aerosol particle sampling device 10 of FIG.
  • the end 12'e of the other end 12'b of the sampling tube 12 'and the end 24'e of the one end 24'a of the measurement gas discharge tube 24' are continuous; and At least one of the penetration path 12'c of the sampling pipe 12 'and the penetration path 24'c of the measurement gas discharge pipe 24' is one end of the other end portion 12'b of the sampling pipe 12 'and the measurement gas discharge pipe 24'.
  • the sampling gas receiving space 16 of the main body 18 and the first end portion 16 a and the second end portion 16 b of the sampling gas receiving space 16 communicate with each other.
  • Such communication is formed in at least one of the vicinity of the end 12'e of the other end 12'b of the sampling tube 12 'and the vicinity of the end 24'e of the one end 24'a of the measurement gas discharge tube 24'.
  • This can be achieved by the through-hole OP.
  • the shape and arrangement of such a through hole OP are such that the through hole OP is connected to the end 12e of the other end 12b of the sampling tube 12 and the end 24e of the one end 24a of the measurement gas discharge tube 24 in the aerosol particle sampling apparatus 10 of FIG. If the same function as the gap of the length L set between can be fulfilled, it can be set arbitrarily.
  • the operation of the sampling gas supply source 14 is controlled by the integrated control device 32.
  • the integrated control device 32 detects that the sampling gas supply source 14 has started to operate by a known detection means or manually, the integrated control device 32 is configured to start the various control operations described above. May be.
  • the aerosol particle sampling devices 50, 52, 54, 56 of these modified examples are different from the aerosol particle sampling device 10 of FIG. 1 in that they are arranged in the intermediate portion 16 c of the sampling gas receiving space 16 of the main body 18.
  • the end 12e of the other end 12b of the sampling tube 12 and the end 24e of the one end 24a of the measurement gas discharge tube 24 are respectively formed.
  • the end 12 e of the other end 12 b of the sampling tube 12 is a predetermined distance between the outer peripheral surface of the other end 12 b of the sampling tube 12 and the first end corresponding region of the inner surface of the sampling gas receiving space 16 of the main body 18.
  • the supplementary gas HK that has flowed in a layered manner in the gap G1 to the end of the other end 12b is shaped to flow in a layered manner along the inner surface of the sampling gas receiving space 16 to the second end 16b of the sampling gas receiving space 16. ing.
  • the portion of the through-passage 12c near the end 12e of the other end 12b of the sampling tube 12 gradually increases in diameter as it approaches the end 12e, and the outer peripheral surface of the other end 12b at the end 12e. It is formed in a taper shape that matches.
  • the sampling gas SK introduced into the sampling gas receiving space 16 from the through passage 12 at the end 12e of the other end 12b of the sampling tube 12 does not cause vortex at the end 12e.
  • the end 24 e of the one end 24 a of the measurement gas discharge pipe 24 does not cause vortex in the gas in the sampling gas receiving space 16 of the main body 18 and the outer peripheral surface of the one end 24 a of the diluted sampling gas discharge pipe 24 and the main body 18.
  • the sampling gas receiving space 16 is shaped so as to lead to a gap G2 between the inner surface of the sampling gas receiving space 16 and the second end corresponding region.
  • the supplementary gas HK that has flowed in layers from the first end portion 16a to the second end portion 16b of the sampling gas receiving space 16 along the inner surface of the sampling gas receiving space 16 is diluted without generating vortices. It is possible to guide the gap G2 between the outer peripheral surface of the one end 24a of the discharge pipe 24 and the second end corresponding region on the inner surface of the sampling gas receiving space 16 of the main body 18.
  • the portion of the through-passage 24c in the vicinity of the end 24e of the one end 24a of the measurement gas discharge pipe 24 gradually increases in diameter as it approaches the end 24e, and the outer peripheral surface of the one end 24a at the end 24e. Shaped into a matching taper.
  • the outer diameter D2 and inner diameter D3 of the sampling tube 12 and the measurement gas discharge tube 24 are D2-D3> 0.5 mm, respectively, and the end 12e of the other end 12b of the sampling tube 12 and the measurement gas discharge tube 24
  • the end 24e of the one end 24a performs the above-described function
  • at least one of the outer peripheral surface and the inner peripheral surface of the other end 12b of the sampling tube 12 and the measurement gas discharge tube 24 are D2-D3> 0.5 mm, respectively, and the end 12e of the other end 12b of the sampling tube 12 and the measurement gas discharge tube 24.
  • a tapered surface inclined with approaching the end 12e or 24e in the vicinity of the end 24e on at least one of the outer peripheral surface and the inner peripheral surface of the one end 24a of FIG. 4, 5 and 6 of the aerosol particle sampling devices 50, 52, 54 and 56 of the second, third, fourth and fifth modifications. Come, it is possible to use a combination of the tapered surface.
  • the portion of the through-passage 12c (that is, the inner peripheral surface) near the end 12e gradually increases in diameter as it approaches the end 12e, and the outer periphery of the other end portion 12b at the end 12e. Shaped into a taper that matches the surface; and The portion near the end 24e on the outer peripheral surface of the one end 24a of the measurement gas discharge pipe 24 is gradually reduced in diameter as it approaches the end 24e, and the inner peripheral surface of the one end 24a (that is, the through passage 24c) at the end 24e. ) Shaped like a taper.
  • the portion near the end 12e on the outer peripheral surface of the other end portion 12b of the sampling tube 12 is gradually reduced in diameter as it approaches the end 12e, and the inner peripheral surface of the other end portion 12b (that is, the through passage 12c) at the end 12e.
  • the portion near the end 24e on the outer peripheral surface of the one end 24a of the measurement gas discharge pipe 24 is gradually reduced in diameter as it approaches the end 24e, and the inner peripheral surface of the one end 24a (that is, the through passage 24c) at the end 24e.
  • the portion near the end 12e on the outer peripheral surface of the other end portion 12b of the sampling tube 12 is gradually reduced in diameter as it approaches the end 12e, and the inner peripheral surface of the other end portion 12b (that is, the through passage 12c) at the end 12e. )
  • the portion of the through-passage 24c (that is, the inner peripheral surface) near the end 24e of the one end 24a of the measurement gas discharge pipe 24 gradually increases in diameter as it approaches the end 24e, and the outer periphery of the one end 24a at the end 24e. It is shaped like a taper that matches the surface.
  • the portions near the end 12e on each of the outer peripheral surface and the inner peripheral surface of the other end portion 12b of the sampling tube 12 are gradually reduced in diameter and enlarged as they approach the end 12e, and the radius of the sampling tube 12 at the end 12e.
  • the portion near the end 24e on each of the outer peripheral surface and the inner peripheral surface of the end 24e of the one end 24a of the measurement gas discharge pipe 24 is gradually reduced in diameter and expanded as the end 24e approaches, and the measurement is performed at the end 24e.
  • the gas discharge pipe 24 is formed in a tapered shape that coincides at an intermediate position between the outer peripheral surface and the inner peripheral surface in the radial direction.
  • Each of the aerosol particle sampling devices 58, 60, 62, 64 of these variations differs from the aerosol particle sampling device 10 of FIG. It is provided in a predetermined gap G1 between the first end corresponding region of the inner surface of the sampling gas receiving space 16 of the main body 18 and the outer peripheral surface of the other end 12b of the sampling tube 12, and from the replenishing gas supplier 22
  • a supplementary gas density uniform structure that helps the supplied supplemental gas HK flow in layers at equal density over the entire inner surface of the sampling gas receiving space 16; and
  • a predetermined gap G2 is provided between the second end corresponding region on the inner peripheral surface of the sampling gas receiving space 16 of the main body 18 and the outer peripheral surface of the one end 24a of the measurement gas discharge pipe 24, and the predetermined gap G2 is provided.
  • This is an additional gas density equalization structure that helps the gas in the sampling gas receiving space 16 flowing from the sampling gas receiving space 16 to flow in layers at an equal density over the entire inner surface of the sampling gas receiving space 16.
  • the replenishing gas is supplied to a predetermined gap G1 between the first end corresponding region on the inner peripheral surface of the sampling gas receiving space 16 of the main body 18 and the outer peripheral surface of the other end portion 12b of the sampling tube 12.
  • the replenishing gas HK flowing in from the pipe 20 can flow in layers at the same density over the entire circumference of the inner surface of the sampling gas receiving space 16 even without a replenishing gas density uniform structure.
  • the supplementary gas density uniform structure of the sixth modified example shown in FIG. 7 is: In addition to the annular recess of the part corresponding to the annular part 18e of the first end corresponding region of the inner surface of the sampling gas receiving space 16 of the body 18; On the outer peripheral surface of the other end portion 12 b of the sampling tube 12, the other end portion of the sampling tube 12 is formed at a portion corresponding to the annular portion 18 e of the first end corresponding region on the inner surface of the sampling gas receiving space 16 of the main body 18.
  • 12b includes an annular recess 12f that annularly extends in the circumferential direction of the outer peripheral surface of 12b or a plurality of annularly arranged recesses that are annularly arranged at predetermined intervals in the circumferential direction.
  • the additional gas density equivalent structure of the sixth variant illustrated in FIG. 7 is: In addition to the annular recess of the part corresponding to the annular part 18f of the second end corresponding region of the inner peripheral surface of the sampling gas receiving space 16 of the main body 18; On the outer peripheral surface of the one end 24 a of the measurement gas discharge pipe 24, the measurement gas discharge pipe 24 is formed at a portion corresponding to the annular portion 18 f of the second end corresponding region of the inner peripheral surface of the sampling gas receiving space 16 of the main body 18.
  • annular recess 24f that annularly extends in the circumferential direction of the outer circumferential surface of the outer circumferential surface of the outer circumferential surface or a plurality of annularly arranged recesses that are annularly arranged at predetermined intervals in the circumferential direction.
  • the supplementary gas density uniform structure of the seventh modification shown in FIG. 8 is: In addition to the annular recess of the part corresponding to the annular part 18e of the first end corresponding region of the inner surface of the sampling gas receiving space 16 of the body 18; On the outer peripheral surface of the other end portion 12b of the sampling tube 12, it is formed at a position closer to the end 12e than a portion corresponding to the annular portion 18e of the first end corresponding region on the inner surface of the sampling gas receiving space 16 of the main body 18, It includes an annular protrusion 12g that annularly extends in the circumferential direction of the outer peripheral surface of the other end 12b of the sampling tube 12, or a plurality of annularly arranged protrusions that are annularly arranged at predetermined intervals in the circumferential direction.
  • annular protrusion 24g annularly extending in the circumferential direction of the outer peripheral surface of the measurement gas discharge pipe 24 or a plurality of annularly arranged protrusions annularly arranged at predetermined intervals in the circumferential direction.
  • the supplementary gas density uniform structure of the eighth modification shown in FIG. 9 is: In addition to the annular recess of the part corresponding to the annular part 18e of the first end corresponding region of the inner surface of the sampling gas receiving space 16 of the body 18; On the outer peripheral surface of the other end portion 12 b of the sampling tube 12, the other end portion of the sampling tube 12 is formed at a portion corresponding to the annular portion 18 e of the first end corresponding region on the inner surface of the sampling gas receiving space 16 of the main body 18.
  • annular recess 12f annularly extending in the circumferential direction of the outer peripheral surface of 12b or a plurality of annularly arranged recesses annularly arranged at predetermined intervals in the circumferential direction; and On the outer peripheral surface of the other end portion 12b of the sampling tube 12, it is formed at a position closer to the end 12e than a portion corresponding to the annular portion 18e of the first end corresponding region on the inner surface of the sampling gas receiving space 16 of the main body 18, An annular protrusion 12g that extends annularly in the circumferential direction of the outer peripheral surface of the other end 12b of the sampling tube 12 or a plurality of annularly arranged protrusions that are annularly arranged at predetermined intervals in the circumferential direction.
  • the additional gas density equivalent structure of the eighth variant illustrated in FIG. 9 is: In addition to the annular recess of the part corresponding to the annular part 18f of the second end corresponding region of the inner peripheral surface of the sampling gas receiving space 16 of the main body 18; On the outer peripheral surface of the one end 24 a of the measurement gas discharge pipe 24, the measurement gas discharge pipe 24 is formed at a portion corresponding to the annular portion 18 f of the second end corresponding region of the inner peripheral surface of the sampling gas receiving space 16 of the main body 18.
  • annular recess 24f extending annularly in the circumferential direction of the outer peripheral surface of the outer circumferential surface of the outer circumferential surface of the outer circumferential surface of the outer circumferential surface of the outer circumferential surface, or a plurality of annularly arranged recesses disposed annularly at predetermined intervals in the circumferential direction; On the outer peripheral surface of the one end portion 24a of the measurement gas discharge pipe 24, it is formed at a position closer to the end 24e than the portion corresponding to the annular portion 18f of the second end corresponding region of the inner peripheral surface of the sampling gas receiving space 16 of the main body 18.
  • annular protrusion 24g that annularly extends in the circumferential direction of the outer peripheral surface of the measurement gas discharge pipe 24 or a plurality of annularly arranged protrusions that are annularly arranged at predetermined intervals in the circumferential direction.
  • the supplementary gas density uniform structure of the ninth modification shown in FIG. 10 is: In addition to the annular recess of the part corresponding to the annular part 18e of the first end corresponding region of the inner surface of the sampling gas receiving space 16 of the body 18; In the region corresponding to the first end of the inner surface of the sampling gas receiving space 16 of the main body 18, it is formed at a position closer to the end 12 e of the other end portion 12 b of the sampling tube 12 than the annular recess of the annular portion 18 e. It includes an annular protrusion 18g that extends annularly in the circumferential direction of the surface or a plurality of annularly arranged protrusions that are annularly arranged at predetermined intervals in the circumferential direction.
  • the additional gas density equivalent structure of the ninth modification shown in FIG. 10 is: In addition to the annular recess of the part corresponding to the annular part 18f of the second end corresponding region of the inner surface of the sampling gas receiving space 16 of the body 18; In the region corresponding to the second end portion of the inner surface of the sampling gas receiving space 16 of the main body 18, it is formed at a position closer to the end 24e of the one end portion 24a of the measurement gas discharge pipe 24 than the annular recess of the annular portion 18f.
  • An annular protrusion 18h extending annularly in the circumferential direction of the inner surface or a plurality of annularly arranged protrusions disposed annularly at a predetermined interval in the circumferential direction is included.
  • SYMBOLS 10 Aerosol particle sampling apparatus, 12 ... Sampling tube, 12a ... One end part, 12b ... Other end part, 12c ... Through-passage, 12d ... Outer flange, 12e ... End, 14 ... Sampling gas supply source, SK ... Sampling gas, DESCRIPTION OF SYMBOLS 16 ... Sampling gas reception space, 16a ... 1st end part, 16b ... 2nd end part, 16c ... Intermediate
  • second flange fixing member 18e ... annular part (replenished gas density uniform structure), 18f ... annular part (additional gas density uniform structure), SM ... sealing member, 20 ... replenished gas Supply pipe, 22 ... Supplement gas supply device, HK ... Supplement gas, 24 ... Measurement gas discharge pipe, 24a ... One end, 24b ... Other end, 24c ... Through passage, 24d ... Outer flange 24e ... end, MK ... measured gas, 26 ... particle sizer, G2 ... predetermined clearance, 28 ... selective gas discharge pipe, 30 ... selective gas recovery unit, 32 ... integrated control device, 10 '... aerosol particle sampling device, 12' ... sampling tube, 12'a ...

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 一端部(12a)からサンプリング気体(SK)が導入されるサンプリング管(12)の他端部(12b)が、本体(18)のサンプリング気体受け入れ空間(16)の第1端部(16a)に相互間に隙間(G1)を介し接続され、上記隙間には補充気体供給器(22)から補充気体(HK)が選択的に導入される。第1端部から上記他端部の延出方向に離れた上記空間の第2端部(16b)には少なくともサンプリング気体を含む測定気体(MK)の為の測定気体排出管(24)の一端部(24a)が相互間に隙間(G2)を介し接続され、上記第2端部には上記隙間(G2)を介し上記空間中の気体を選択的に排出する気体選択排出管(28)が接続されている。

Description

エアロゾル粒子サンプリング装置
 本発明は、エアロゾル粒子サンプリング装置に関係している。
 エアロゾル粒子の粒径分布を測定するときには、エアロゾル粒子が流れる管からエアロゾル粒子をサンプリングし粒子径測定装置に送る必要がある。
 従来のエアロゾル粒子サンプリング装置は、例えば特開2003-28765号公報(特許文献1),特開平8-43275号公報(引用文献2),そして特開昭63-298133号公報(特許文献3)により知られている。
 特開2003-28765号公報のエアロゾル粒子サンプリング装置においては、エンジン23からの排気管24の出口が希釈用空気Aの流れる希釈用管路25の中心に導入されている。そして、希釈用管路25において希釈用空気Aにより希釈された排気管24からの排気ガスGが、希釈用管路25中において排気管24の出口よりも下流の中心に突入されているサンプリング流路29によりサンプリングされている。
 特開平8-43275号公報のエアロゾル粒子サンプリング装置においては、希釈空気が流れる希釈トンネル5の中心に排気管20からの抽気管4の出口が導入されている。そして、希釈トンネル5中において抽気管4の出口よりも下流の中心に排気ガスサンプリング管43の入口が配置されている。
 特開昭63-298133号公報のエアロゾル粒子サンプリング装置においては、粒子を含む希釈空気が流れる希釈トンネル1の中心に排気ガス導入管2の出口が導かれている。そして、希釈トンネル1において排気ガス導入管2の出口よりも下流の中心に希釈排気ガス導管4の入口が配置されていて、さらに希釈トンネル1の出口に定容量サンプラ8が配置されている。
特開2003-28765号公報 特開平8-43275号公報 特開昭63-298133号公報
 上述した如く構成されている特開2003-28765号公報に記載されているエアロゾル粒子サンプリング装置において、排気管24の出口から希釈用空気Aの流れる希釈用管路25の中心に排出された排気ガスは、希釈用管路25中において排気管24の出口よりも下流の中心に突入されているサンプリング流路29によりサンプリングされるまでの間に、希釈用管路25を流れる希釈用空気Aにより希釈される。
 上述した如く構成されている特開平8-43275号公報に記載されているエアロゾル粒子サンプリング装置において、抽出管4により排気管20の出口から希釈空気が流れる希釈トンネル5の中心に排出された排気ガスは、希釈トンネル5中において抽出管4の出口よりも下流の中心に突入されている排気ガスサンプリング管43によりサンプリングされるまでの間に、希釈トンネル5を流れる希釈空気により希釈される。
 上述した如く構成されている特開昭63-298133号公報に記載されているエアロゾル粒子サンプリング装置において、排気ガス導入管2の出口から希釈空気が流れる希釈トンネル1の中心に排出された排気ガスは、希釈トンネル1の出口の定容量サンプラ8によりサンプリングされるまでの間に、希釈トンネル1を流れる希釈空気により希釈される。
 これら3つの従来のエアロゾル粒子サンプリング装置の夫々において、排気ガス中のエアロゾル粒子はその粒子径が大きく質量が大きいほど空気の流れに従わず、サンプリング流路29のL字部や排気ガスサンプリング管43のL字部において粒子が損失(滞留)する。これは、空気流に対する粒子の移動速度と移動方向の差異が大きくなるためである。また、粒子は希釈用管路25(特開2003-28765号公報参照)又は希釈トンネル5(特開平8-43275号公報参照)又は希釈トンネル1(特開昭63-298133号公報参照)の内周面に向かい押しやられこの内周面との間に生じる摩擦力の影響を受け移動速度が低下する。
 このため、特開2003-28765号公報に記載されているエアロゾル粒子サンプリング装置においては、希釈用管路25中において排気管24の出口よりも下流の中心に突入されているサンプリング流路29によりサンプリングされた排気ガス中のエアロゾル粒子の粒子径の分布は、排気管24から希釈用空気Aの流れる希釈用管路25の中心に排出された直後の排気ガス中のエアロゾル粒子の粒子径の分布とは異なっている。
 また、特開平8-43275号公報に記載されているエアロゾル粒子サンプリング装置においても、希釈トンネル5中において抽出管4の出口よりも下流の中心に突入されている排気ガスサンプリング管43によりサンプリングされた排気ガス中のエアロゾル粒子の粒子径の分布は、排気管20から抽出管4を介して希釈空気が流れる希釈トンネル5の中心に排出された直後の排気ガス中のエアロゾル粒子の粒子径の分布とは異なっている。
 さらにまた、特開昭63-298133号公報に記載されているエアロゾル粒子サンプリング装置においても、希釈トンネル1の出口の定容量サンプラ8によりサンプリングされた排気ガス中のエアロゾル粒子の粒子径の分布は、排気ガス導入管2の出口から希釈空気が流れる希釈トンネル1の中心に排出された直後の排気ガス中のエアロゾル粒子の粒子径の分布とは異なっている。
 この発明は上記事情の下でなされ、この発明の目的は、サンプリング気体を排出するサンプリング管と、サンプリング管から排出されたサンプリング気体を受け入れるサンプリング気体受け入れ空間を含んでいる本体と、本体のサンプリング気体受け入れ空間に補充気体を供給し、サンプリング気体受け入れ空間においてサンプリング気体に補充流体を混合する補充気体供給器と、そして、本体のサンプリング気体受け入れ空間中の少なくともサンプリング気体を含む測定気体をサンプリング気体受け入れ空間の外部に排出する測定気体排出管と、を備えているエアロゾル粒子サンプリング装置において、サンプリング管を介してサンプリング気体受け入れ空間中に導入されるサンプリング気体における種々の粒径のエアロゾル粒子の分布を、サンプリング管によりサンプリングされる直前のサンプリング気体中の種々の粒径のエアロゾル粒子の分布と同じにすることが出来るエアロゾル粒子サンプリング装置を提供することである。
 上述したこの発明の目的を達成する為に、この発明に従ったエアロゾル粒子サンプリング装置は:サンプリング気体を排出するサンプリング管と、サンプリング管から排出されたサンプリング気体を受け入れるサンプリング気体受け入れ空間を含んでいる本体と、本体のサンプリング気体受け入れ空間に補充気体を供給し、サンプリング気体受け入れ空間においてサンプリング気体に補充流体を混合する補充気体供給器と、そして、本体のサンプリング気体受け入れ空間中の少なくともサンプリング気体を含む測定気体をサンプリング気体受け入れ空間の外部に排出する測定気体排出管と、を備えているエアロゾル粒子サンプリング装置である。
 そして、このエアロゾル粒子サンプリング装置は:
 前記サンプリング管が、一端部と、他端部と、一端部の端及び他端部の端の夫々に開口し一端部の端から他端部の端まで延出した貫通路とを有し、一端部の端の開口を介して種々の粒径のエアロゾル粒子を含むサンプリング気体が貫通路中に導入され他端部の端の開口を介して貫通路からサンプリング気体を排出し;
 前記本体の前記サンプリング気体受け入れ空間が、サンプリング管の他端部が接続された第1端部とサンプリング管の他端部の延出方向においてサンプリング管の他端部の端よりも遠くに位置する第2端部とを有しサンプリング管の他端部の端の開口から排出されたサンプリング気体を受け入れ、サンプリング気体受け入れ空間を規定している内表面において第1端部に対応している第1端部対応領域がサンプリング管の他端部の外周面との間に所定の隙間を介して上記他端部の外周面を取り囲んでおり;
 前記補充気体供給器が、本体のサンプリング気体受け入れ空間の第1端部に接続され、サンプリング管の他端部の外周面と本体のサンプリング気体受け入れ空間の内表面の第1端部対応領域との間の上記隙間を介しサンプリング気体受け入れ空間に補充気体を選択的に供給し、サンプリング気体受け入れ空間において第1端部と第2端部との間でサンプリング気体に補充流体を選択的に混合し;
 前記測定気体排出管が、一端部と、他端部と、一端部の端及び他端部の端の夫々に開口し一端部の端から他端部の端まで延出した貫通路とを有し、一端部が本体のサンプリング気体受け入れ空間の第2端部に接続され他端部が本体のサンプリング気体受け入れ空間の第2端部から外方に突出し、一端部の端の開口を介して本体のサンプリング気体受け入れ空間中の少なくともサンプリング気体を含む測定気体を貫通路中に導入し他端部の端の開口を介して貫通路から測定気体をサンプリング気体受け入れ空間の外部に排出し、一端部の外周面がサンプリング気体受け入れ空間を規定している内表面において第2端部に対応している第2端部対応領域によって所定の隙間を介して取り囲まれており;そして、
 本体のサンプリング気体受け入れ空間の第2端部に接続され、測定気体排出管の一端部の外周面と本体のサンプリング気体受け入れ空間の内周面の第2端部対応領域との間の上記隙間を介しサンプリング気体受け入れ空間中の気体を選択的に排出する気体選択排出管をさらに備えている、
 ことを特徴としている。
 このように構成されたことを特徴とするこの発明に従ったエアロゾル粒子サンプリング装置によれば、サンプリング管の他端部の端においてサンプリング管の貫通路を介して種々の粒径のエアロゾル粒子を含むサンプリング気体が本体のサンプリング気体受け入れ空間に導入される。サンプリング管の貫通路を移動中のサンプリング気体中の種々の粒径のエアロゾル粒子は、粒径の差異により生じる慣性力の差異により粒子の移動速度と移動方向が空気の移動速度と移動方向に対し差異が生じサンプリング直前のサンプリング気体とはサンプリング気体中に含まれている種々の粒径のエアロゾル粒子の分布が異なっている。しかしサンプリング管の内径よりも大きな内径のサンプリング気体受け入れ空間に導入されることにより、サンプリング気体中の種々の粒径のエアロゾル粒子は空気の流れに対する移動速度や移動方向の差異が実質的に無くされ、種々の粒径のエアロゾル粒子の分布がサンプリング直前のサンプリング気体における粒子分布と実質的に等しくされる。
 次に、本体のサンプリング気体受け入れ空間中のサンプリング気体はサンプリング気体受け入れ空間の第2端部において測定気体排出管の一端部の端の開口を介して測定気体として測定気体排出管の貫通路中に導入され、測定気体排出管の他端部の端の開口を介して上記貫通路から排出される。
 サンプリング気体受け入れ空間の第2端部における測定気体排出管の一端部への測定気体としてのサンプリング気体の導入量に比べ、サンプリング気体受け入れ空間の第1端部におけるサンプリング管の他端部からのサンプリング気体の排出量のほうが少ない場合、補充気体供給器がサンプリング管の他端部の外周面と本体のサンプリング気体受け入れ空間の内表面の第1端部対応領域との間の隙間を介しサンプリング気体受け入れ空間に補充気体を選択的に供給しサンプリング気体に補充気体を混合し、サンプリング気体受け入れ空間の第2端部において測定気体排出管の一端部の端の開口を介して測定気体排出管の貫通路中に導入されるのと同じ量の測定気体を提供する。
 サンプリング気体受け入れ空間の第2端部における測定気体排出管の一端部への測定気体としてのサンプリング気体の導入量に比べ、サンプリング気体受け入れ空間の第1端部におけるサンプリング管の他端部からのサンプリング気体の排出量のほうが多い場合、測定気体排出管の一端部の外周面と本体のサンプリング気体受け入れ空間の内周面の第2端部対応領域との間の隙間を介しサンプリング気体受け入れ空間中の気体を気体選択排出管により選択的に排出させることにより、サンプリング気体受け入れ空間の第2端部において測定気体排出管の一端部の端の開口を介して測定気体排出管の貫通路中に導入されるのと同じ量の測定気体を提供することが出来る。
 サンプリング気体受け入れ空間中へ補充気体補充器により補充気体が供給される場合でも、サンプリング気体受け入れ空間中から気体選択排出管により気体が排出される場合でも、サンプリング気体受け入れ空間の第1端部においてサンプリング管の外周面を取り込む隙間やサンプリング気体受け入れ空間の第2端部において測定気体排出管の一端部を取り囲む隙間において上記補充気体の供給やサンプリング気体受け入れ空間中の上記気体の排出が行なわれるので、サンプリング気体受け入れ空間において第1端部と第2端部との間のサンプリング気体の粒子分布には大きな変化が生ぜず、サンプリング気体受け入れ空間の第2端部において測定気体排出管の一端部の端の開口を介して測定気体排出管の貫通路中に導入される測定気体におけるサンプリング気体の粒子分布は安定している。
 従って、この発明に従ったエアロゾル粒子サンプリング装置では、サンプリング管を介してサンプリング気体受け入れ空間中に導入されるサンプリング気体における種々の粒径のエアロゾル粒子の分布を、サンプリング管によりサンプリングされる直前のサンプリング気体中の種々の粒径のエアロゾル粒子の分布と同じにすることが出来る。
図1は、この発明の一実施形態に従ったエアロゾル粒子サンプリング装置の概略的な縦断面図である。 図2は、図1のエアロゾル粒子サンプリング装置の第1変形例の概略的な縦断面図である。 図3は、図1のエアロゾル粒子サンプリング装置の第2変形例の概略的な縦断面図である。 図4は、図1のエアロゾル粒子サンプリング装置の第3変形例の概略的な縦断面図である。 図5は、図1のエアロゾル粒子サンプリング装置の第4変形例の概略的な縦断面図である。 図6は、図1のエアロゾル粒子サンプリング装置の第5変形例の概略的な縦断面図である。 図7は、図1のエアロゾル粒子サンプリング装置の第6変形例の概略的な縦断面図である。 図8は、図1のエアロゾル粒子サンプリング装置の第7変形例の概略的な縦断面図である。 図9は、図1のエアロゾル粒子サンプリング装置の第8変形例の概略的な縦断面図である。 図10は、図1のエアロゾル粒子サンプリング装置の第9変形例の概略的な縦断面図である。
 以下、図1を参照しながら、この発明の一実施形態に従ったエアロゾル粒子サンプリング装置10を説明する。
 エアロゾル粒子サンプリング装置10は、一端部12aと、他端部12bと、一端部12aの端及び他端部12bの端の夫々に開口し一端部12aの端から他端部12bの端まで延出した貫通路12cとを有したサンプリング管12を備えている。
 サンプリング管12の一端部12aの端の開口が、種々の粒径のエアロゾル粒子を含むサンプリング気体SKの供給源(サンプリング気体供給源)14に接続されている。
 サンプリング気体供給源14は、所望の空間の所望の位置から所望の時間で所望量のサンプリング気体SKをサンプリング管12の一端部12aの端の開口を介して貫通路12c中に導入することが出来る。この様なサンプリング気体供給源14は、公知である。
 サンプリング管12は、貫通路12c中に導入されたサンプリング気体SKを変質させたり吸収したりすることがない材料、例えば真鍮或いはステンレス或いはアルミ合金、により形成されている。
 サンプリング管12の貫通路12c中に導入されたサンプリング気体SKは、サンプリング管12の貫通路12cからサンプリング管12の他端部12bの端の開口を介して排出される。
 エアロゾル粒子サンプリング装置10はまた、サンプリング管12の他端部12bが気密構造を介して接続された第1端部16aとサンプリング管12の他端部12bの延出方向においてサンプリング管12の他端部12bの端よりも遠くに位置する第2端部16bとを有しているサンプリング気体受け入れ空間16を含んでいる本体18を備えている。サンプリング気体受け入れ空間16は、第1端部16aと第2端部16bとの間に中間部16cを有しており、サンプリング管12の他端部12bの端の開口から排出されたサンプリング気体SKを受け入れる。
 本体18においてサンプリング気体受け入れ空間16を規定している内表面は、サンプリング気体受け入れ空間16の第1端部16aに対応している第1端部対応領域がサンプリング管12の他端部12bの外周面との間に所定の隙間G1を介して上記他端部12bの外周面を取り囲んでいる。
 この実施形態において上記気密構造は、サンプリング管12の一端部12aと他端部12bとの間に形成されている外方フランジ12dを含んでいるとともに、サンプリング管12の一端部12aが挿通された中央開口を有したキャップ状の第1フランジ固定部材18bを含んでいる。
 上記気密構造はさらに、本体18においてサンプリング気体受け入れ空間16の第1端部16aを取り囲んでいる第1端部材18aにおいて、サンプリング管12の他端部12bがサンプリング気体受け入れ空間16の第1端部16aに接続される開口が形成されている外端面に、上記開口を取り囲むよう配置された例えばO-リングの如き公知の密封部材SMを含む。
 第1フランジ固定部材18bは、本体18の第1端部材18aの外周面において上記外端面に隣接した部位に取り付けられることにより、サンプリング管12の外方フランジ12dを本体18の第1端部18aの外端面の密封部材SMに押圧し、その結果としてサンプリング管12の他端部12bと本体18のサンプリング気体受け入れ空間16の第1端部16aとの間の気密状態の接続を提供している。
 エアロゾル粒子サンプリング装置10はまた、本体18のサンプリング気体受け入れ空間16の第1端部16aに接続された補充気体供給管20を備えている。補充気体供給管20の外端は、補充気体、この実施形態では清浄空気、の供給源(補充気体供給源)22に接続されている。補充気体供給源22は公知である。例えば、空気ポンプの出口にマスフローコントローラーを接続し、マスフローコントローラーの出口にHEPAフィルター(High efficiency particulate air-filter)を取り付けることで、補充気体供給源22を提供することが出来る。補充気体供給管20は、補充気体供給源22から供給された補充気体HKを、サンプリング管12の他端部12bの外周面と本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域との間の上記隙間G1を介しサンプリング気体受け入れ空間16に供給する。
 補充気体供給管20は、補充気体HKを変質させたり吸収したりすることがない材料、例えば真鍮或いはステンレス或いはアルミ合金、により形成されている。
 本体18も、サンプリング気体受け入れ空間16中に導入されたサンプリング気体SK及び補充気体HKを変質させたり吸収したりすることがない材料、例えば真鍮或いはステンレス或いはアルミ合金、により形成されている。
 サンプリング気体受け入れ空間16に供給された補充気体HKは、サンプリング気体受け入れ空間16の第1端部16aにサンプリング管12の貫通路12cから他端部12bの端の開口を介し供給されたサンプリング気体SKを、サンプリング気体受け入れ空間16において第1端部16aと第2端部12bとの間の中間部16cで希釈することが出来る。
 エアロゾル粒子サンプリング装置10はまた、一端部24aと、他端部24bと、一端部24aの端及び他端部24bの端の夫々に開口し一端部24aの端から他端部24bの端まで延出した貫通路24cとを有した測定気体排出管24を備えている。測定気体排出管24の一端部24aは本体18のサンプリング気体受け入れ空間16の第2端部16bに気密構造を介して接続され、他端部24bは本体18のサンプリング気体受け入れ空間16の第2端部16bから外方に突出している。
 測定気体排出管24は、本体18のサンプリング気体受け入れ空間16の第1端部16aと第2端部12bとの間の中間部16cのサンプリング気体SK又は補充気体HKにより所望の密度に希釈されたサンプリング気体SKを少なくとも含む測定気体MKを一端部24aの端の開口を介して貫通路24c中に導入し他端部24bの端の開口を介して貫通路24cからサンプリング気体受け入れ空間16の外部に排出する。
 測定気体排出管24の他端部24bは、サンプリング気体受け入れ空間16の中間部16cからの測定気体MK中に含まれている種々の粒径のエアロゾル粒子の粒径や個数を計測することが出来る公知の粒径測定器26に接続されている。
 本体18においてサンプリング気体受け入れ空間16を規定している内表面は、サンプリング気体受け入れ空間16の第2端部16bに対応している第2端部対応領域が測定気体排出管24の一端部24aの外周面との間に所定の隙間G2を介して上記一端部24aの外周面を取り囲んでいる。
 この実施形態において上記気密構造は、測定気体排出管24の一端部24aと他端部24bとの間に形成されている外方フランジ24dを含んでいるとともに、測定気体排出管24の他端部24bが挿通された中央開口を有したキャップ状の第2フランジ固定部材18dを含んでいる。
 上記気密構造はさらに、本体18においてサンプリング気体受け入れ空間16の中間部16c及び第2端部16bを取り囲んでいる第2端部材18cにおいて、測定気体排出管24の一端部24aがサンプリング気体受け入れ空間16の第2端部16bに接続される開口が形成されている外端面に、上記開口を取り囲むよう配置された例えばO-リングの如き公知の密封部材SMを含む。
 第2フランジ固定部材18dは、本体18の第2端部材18cの外周面において上記外端面に隣接した部位に取り付けられることにより、測定気体排出管24の外方フランジ24dを本体18の第2端部18cの外端面の密封部材SMに押圧し、その結果として測定気体排出管24の他端部24bと本体18のサンプリング気体受け入れ空間16の第2端部16bとの間の気密状態の接続を提供している。
 エアロゾル粒子サンプリング装置10はまた、本体18のサンプリング気体受け入れ空間16の第2端部16bに接続されている気体選択排出管28を備えている。気体選択排出管28は、測定気体排出管24の一端部24aの外周面と本体18のサンプリング気体受け入れ空間16の内周面の第2端部対応領域との間の上記隙間G2を介し、サンプリング気体受け入れ空間16中の気体を排出することが出来る。気体選択排出管28の外端は、公知の気体選択回収器30に接続されている。公知の気体選択回収器30は例えば、気体選択排出管28の外端にHEPAフィルター及びマスフローコントローラーを介して空気ポンプの入口を接続することにより提供することが出来、この空気ポンプは補充気体供給源22の前述した空気ポンプと共通とすることが出来る。
 気体選択排出管28は、そこを通過する気体を変質させたり吸収したりしない例えば真鍮或いはステンレス或いはアルミ合金、により形成されている。
 この実施形態において、サンプリング管12の他端部12bの端12eは、サンプリング管12の他端部12bの外周面と本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域との間の所定の隙間G1を上記他端部12bの端まで層状に流れてきた補充気体HKがサンプリング気体受け入れ空間16の第2端部16bまでサンプリング気体受け入れ空間16の内表面に沿い層状に流れるよう形作られている。
 この為に、この実施形態においては、図1中に示されている如く、サンプリング管12の他端部12bの端12eの近傍の貫通路12cの部位が、端12eに接近するのに伴い徐々に拡径し端12eにおいて他端部12bの外周面と一致するテーパ状に形作られている。この結果として、サンプリング管12の他端部12bの端12eにおいて貫通路12からサンプリング気体受け入れ空間16中に導入されるサンプリング気体SKが、端12eにおいて渦を生じさせない。
 この実施形態において、測定気体排出管24の一端部24aの端24eは、本体18のサンプリング気体受け入れ空間16中の気体に渦を生じさせず希釈サンプリング気体排出管24の一端部24aの外周面と本体18のサンプリング気体受け入れ空間16の内表面の第2端部対応領域との間の隙間G2に導くよう形作られている。
 この為に、この実施形態においては、図1中に示されている如く、測定気体排出管24の一端部24aの端24eの近傍の貫通路24cの部位が、端24eに接近するのに伴い徐々に拡径し端24eにおいて一端部24aの外周面と一致するテーパ状に形作られている。
 この結果、第1端部16aからサンプリング気体受け入れ空間16の内表面に沿いサンプリング気体受け入れ空間16の第2端部16bに向かい層状に流れてきた補充気体HKを、測定気体排出管24の一端部24aの端24eの貫通路24cにおいて渦を生じさせず希釈サンプリング気体排出管24の一端部24aの外周面と本体18のサンプリング気体受け入れ空間16の内表面の第2端部対応領域との間の隙間G2に導くことが出来る。
 この実施形態においては、本体18のサンプリング気体受け入れ空間16の第1端部16a,第2端部16b,そして中間部16cの夫々は相互に同じ内径D1を有していて、サンプリング管12の他端部12bと測定気体排出管24の一端部24aと相互に同心的に配置されている。
 また、この実施形態では、サンプリング管12の他端部12bの外径D2及び内径D3と測定気体排出管24の一端部24aの外径D2及び内径D3とは同じであり、サンプリング管12の他端部12bと測定気体排出管24の一端部24aとは本体18のサンプリング気体受け入れ空間16の第1端部16a及び第2端部16bにおいて相互に同心的に配置されている。
 そして、サンプリング気体受け入れ空間16の内径D1と、サンプリング管12及び測定気体排出管24の夫々の外径D2及び内径D3とは、サンプリング気体受け入れ空間16の断面積S1と、サンプリング管12及び測定気体排出管24の夫々において夫々の外周面で囲まれた断面積S2と、サンプリング管12及び測定気体排出管24の夫々において夫々の貫通路12c又は24cの内周面で囲まれた断面積S3との間でS1-S2=Q1/Q3・S3の関係が成り立つよう規定されている。
 ここで、Q1はサンプリング気体SKの流量であり、Q3は補充気体HKの流量であり、D1,D2,D3の夫々の単位をcmとした場合、Q1,Q3の夫々の単位はcc/minとする。そして、Q1=Q3の場合は、S1-S2=S3となる。
 本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域とサンプリング管12の他端部12bの外周面との間の所定の隙間G1には、補充気体供給器22から供給される補充気体HKがサンプリング気体受け入れ空間16の内表面の全周に渡り等しい密度で層状に流れる手助けをする補充気体密度均等構造が設けられている。
 この実施形態では、補充気体密度均等構造は、本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域において補充気体供給管20の接続位置を含みサンプリング管12の他端部12bの外周面の周方向に環状に延出する環状部位18eが、第1端部対応領域の他の部位よりも上記他端部12bの径方向において上記外周面から遠ざかる環状凹所により提供されている。
 この環状凹所は、補充気体供給管20から補充気体HKが隙間G1中に供給された時に、隙間G1の全周において補充気体HKが等しい密度になる手助けをする。即ち、隙間G1からサンプリング気体受け入れ空間16の中間部16c中に層状に流れてきた補充気体HKが中間部16cの全周に渡り等しい密度で層状に流れる手助けをする。
 同様に、本体18のサンプリング気体受け入れ空間16の内周面の第2端部対応領域と測定気体排出管24の一端部24aの外周面との間の所定の隙間G2には、所定の隙間G2にサンプリング気体受け入れ空間16から流入するサンプリング気体受け入れ空間16中の気体がサンプリング気体受け入れ空間16の内表面の全周に渡り等しい密度で層状に流れる手助けをする追加の気体密度均等構造が設けられている。
 この実施形態においては、追加の気体密度均等構造は、本体18のサンプリング気体受け入れ空間16の内表面の第2端部対応領域において気体選択排出管28の接続位置を含み測定気体排出管24の一端部24aの外周面の周方向に環状に延出する環状部位18fは、第2端部対応領域の他の部位よりも上記一端部24aの径方向において上記外周面から遠ざかる環状凹所により提供されている。
 この環状凹所は、補充気体供給管20から補充気体HKが隙間G1中に供給され、測定気体排出管24により補充気体HKが測定気体SKの一部とともに排出される時に、補充気体HK及び測定気体SKの一部がサンプリング気体受け入れ空間16の中間部16cから隙間G2中へと中間部16c及び隙間G2の夫々の全周に渡り等しい密度で層状に流れる手助けをする。
 この実施形態においてはさらに、サンプリング気体供給源14,補充気体供給器22,気体選択回収器30,そして粒径測定器26が、これらの動作を制御する統合制御装置32に接続されている。
 このように構成されたこの発明の一実施形態に従ったエアロゾル粒子サンプリング装置10によれば、統合制御装置32により動作開始を制御されたサンプリング気体供給源14が、サンプリング管12の一端部12aの端からサンプリング管12の貫通路12c中に種々の粒径のエアロゾル粒子を含むサンプリング気体SKを供給し、このサンプリング気体SKはサンプリング管12の他端部12bの端においてサンプリング管12の貫通路12cを介して本体18のサンプリング気体受け入れ空間16の中間部16c中に導入される。
 サンプリング管12の貫通路12cを通過中のサンプリング気体SK中の種々の粒径のエアロゾル粒子の粒径分布は、粒径の差異による慣性力の差異から生じていた空気流に対する粒子の移動速度と移動方向の2つの差異を原因として、サンプリング管12の一端部12aの端の開口からサンプリングされる直前のサンプリング気体SK中の種々の粒径のエアロゾル粒子の粒径分布とは異なっている。しかしながらサンプリング管12の他端部12bの端の開口からサンプリング気体受け入れ空間16に受け入れられたサンプリング気体SKは、サンプリング管12の貫通路12cにおいて生じていた上記移動速度及び移動方向の差異による粒径分布の異なりが実質的に無くされる。
 サンプリング気体受け入れ空間16中のサンプリング気体SKを希釈したい場合、統合制御装置32は、補充気体供給器22の動作を開始させ、本体18のサンプリング気体受け入れ空間16の第1端部16aに接続された補充気体供給管20からサンプリング管12の他端部12bの外周面と本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域との間の隙間G1を介しサンプリング気体受け入れ空間16の中間部16cに補充気体HKを供給する。このように供給された補充気体HKの大部分は、サンプリング気体受け入れ空間16の中間部16c中を第2端部16bまでサンプリング気体受け入れ空間16の中間部16cの内表面に沿い層状に流れる。
 サンプリング気体受け入れ空間16の中間部16c中に導入されたサンプリング気体SKは、サンプリング気体受け入れ空間16の中間部16cにおいて第1端部16aから第2端部16bまでの内表面に沿う補充気体HKの大部分の層状の流れによりサンプリング気体受け入れ空間16の中間部16cの内表面への接近が阻まれる。この間に、上記内表面から離れた補充気体HKの残りにより、上記導入直後のサンプリング気体SKが希釈される。
 サンプリング気体受け入れ空間16の中間部16cにおけるサンプリング気体SKの希釈率は、サンプリング管12からサンプリング気体受け入れ空間16の中間部16c中に導入されるサンプリング気体SKの量と、補充気体供給管20からサンプリング気体受け入れ空間16の中間部16cに供給される補充気体HKの量と、サンプリング気体受け入れ空間16の中間部16cから気体選択回収器30により回収されるサンプリング気体受け入れ空間16中の気体の量と、を統合制御装置32により任意に制御することによって任意に設定することが出来る。
 サンプリング気体受け入れ空間16中のサンプリング気体SK又は上述したように希釈されたサンプリング気体SKは次に、測定気体MKとして本体18のサンプリング気体受け入れ空間16の第2端部16bにおいて測定気体排出管24の一端部24aの端の開口を介して測定気体排出管24の貫通路24c中に導入される。貫通路24c中に導入された測定気体MKは、測定気体排出管24の他端部24bの端の開口を介して貫通路24cから排出され、統合制御装置32により動作開始を制御された粒径測定器26により希釈サンプリング気体KSK中に含まれている種々の粒径のエアロゾル粒子の粒径や個数(即ち、粒径分布)が測定される。
 次に、本願の発明者がこの発明の実施形態に従ったエアロゾル粒子サンプリング装置10について実際に作成した例を説明する。
 この実施例では、本体18のサンプリング気体受け入れ空間16の内径D1が7.822mmに設定され、サンプリング管12及び測定気体排出管24の夫々の外径D2及び内径D3が6.35mm及び4.57mmに設定された。そして、サンプリング気体受け入れ空間16において、サンプリング気体受け入れ空間16の第1端部16aのサンプリング管12の他端部12bの端からサンプリング気体受け入れ空間16の第2端部16bの測定気体排出管24の一端部24aの端までの中間部16cの長さLが10mmに設定されている。
 この時のサンプリング管12の貫通路12c中に供給されるサンプリング気体SKの流量を3500cc/minとするとレイノズル数Reは1077となり、上記サンプリング気体SKは貫通路12c中で層流である。この時、サンプリング気体SKに含まれる種々の粒径のエアロゾル粒子において粒径が5μmの場合のストークス(Stokes)数の平方根Stk0.5は0.36であり、粒径が7μmの場合のストークス(Stokes)数の平方根Stk0.5は、0.50であり、そして粒径が10μmの場合のストークス(Stokes)数の平方根Stk0.5は、0.71である。このことから、粒径が7μm以上のエアロゾル粒子の場合、粒子自体の慣性力(impaction force)が大きくなり、粒径が7μm以下のエアロゾル粒子に比べ、空気流に対する粒子の移動速度と移動方向の差異が大きくなる。
 従って、サンプリング管12の一端部12aの端において貫通路12c中に供給される(即ち、サンプリングされる)直前のサンプリング気体SK中の種々の粒径のエアロゾル粒子の分布に対し、サンプリング管12の他端部12bの端において貫通路12からサンプリング気体受け入れ空間16の中間部16c中に導入された直後のサンプリング気体SK中の種々の粒径のエアロゾル粒子の分布が異なる。
 なお、サンプリング管12の貫通路12c中に供給されるサンプリング気体SKの流量を3500cc/min以上にする場合は、サンプリング管12の貫通路12c中のサンプリング気体SKのレイノズル数Reを貫通路12c中のサンプリング気体SKが層流になるのを保障する2000以下にするとともに、サンプリング気体SKに含まれる種々の粒径のエアロゾル粒子のストークス(Stokes)数の平方根Stk0.5が0.47以下となるよう、サンプリング管12の内径D3を選択する。そして、これにあわせて前述した3つの断面積S1,S2,そしてS3が前述したS1-S2=S3の関係、若しくはS1-S2=Q1/Q3・S3の関係、となるようサンプリング気体受け入れ空間16の内径D1と、サンプリング管12及び測定気体排出管24の夫々の外径D2及び内径D3を設定する。
 サンプリング気体供給源14がサンプリング管12を介して本体18のサンプリング気体受け入れ空間16に供給するサンプリング気体SKの量と粒径測定器26が測定可能な測定気体MKの量とに応じて、補充気体供給器22が補充気体供給管20を介して本体18のサンプリング気体受け入れ空間16に供給する補充気体HKの量及び気体選択回収器30が気体選択排出管28を介して本体18のサンプリング気体受け入れ空間16から回収する補充気体HKの量を制御することにより、サンプリング気体供給源14がサンプリング管12を介して本体18のサンプリング気体受け入れ空間16に供給したサンプリング気体SKを任意の希釈率で希釈した後に粒径測定器26に供給することが出来る。
 例えば、粒径測定器26により測定可能な測定気体MKの量が1000cc/mimであり、サンプリング気体供給源14がサンプリング管12を介して本体18のサンプリング気体受け入れ空間16に供給するサンプリング気体SKの量が1000cc/mimの場合、補充気体供給器22が補充気体供給管20を介して本体18のサンプリング気体受け入れ空間16に供給する補充気体HKの量を0cc/minとするとともに気体選択回収器30が気体選択回収管28を介してサンプリング気体受け入れ空間16中の気体を回収する量を0cc/minとする。
 ここにおいて、補充気体供給器22が補充気体供給管20を介して本体18のサンプリング気体受け入れ空間16に供給する補充気体HKの量を1000cc/minとすると、サンプリング気体供給源14からサンプリング管12を介して本体18のサンプリング気体受け入れ空間16へのサンプリング気体SKの供給は0cc/minとなる。
 また、補充気体供給器22が補充気体供給管20を介して本体18のサンプリング気体受け入れ空間16に供給する補充気体HKの量を500cc/minとすると、サンプリング気体供給源14からサンプリング管12を介しての本体18のサンプリング気体受け入れ空間16へのサンプリング気体SKの供給は500cc/minとなり、サンプリング気体受け入れ空間16中においてサンプリング気体SKは補充気体HKにより1/2に希釈される。
 さらに、サンプリング気体供給源14がサンプリング管12を介して本体18のサンプリング気体受け入れ空間16に供給するサンプリング気体SKの量が2000cc/mimの場合、補充気体供給器22が補充気体供給管20を介して本体18のサンプリング気体受け入れ空間16に供給する補充気体HKの量を0cc/minとするとともに気体選択回収器30が気体選択排出管28を介して本体18のサンプリング気体受け入れ空間16から回収する気体の量を1000cc/mimとすれば、サンプリング気体受け入れ空間16からサンプリング気体SKを測定気体として測定気体排出管24を介し粒径測定器26に1000cc/mimで供給することが出来る。
 そして、本願の発明者は以下の性能評価試験を行なった。
 性能評価は、サンプリング気体供給源14として公知の噴霧乾燥式粒子発生器と粉末吸引式粒子発生器とを使用し、噴霧乾燥式粒子発生器は粒径2μm以下の合成樹脂の公知の標準懸濁液粒子を発生させることが出来、粉末吸引式粒子発生器は粒径2μm以上の合成樹脂の公知の標準乾燥粉末粒子を発生させることが出来る。
 これらの粒子発生器により発生させた標準粒子をエアロゾル粒子チャンバーに一旦導入し、そこで公知の粒子径測定器を使用して粒子濃度(個/cc)を測定し、標準粒子をこの粒子濃度N1で含む空気をサンプリング直前のサンプリング気体SKとしてサンプリング管12を介し本体18のサンプリング気体受け入れ空間16中に供給した。
 ここで、サンプリング管12に供給されたサンプリング気体SKの流量Q1がサンプリング気体受け入れ空間16から測定気体排出管24を介し排出される測定気体MKの流量Q2と同じ第1の場合(Q1=Q2)、及び、サンプリング管12に供給されたサンプリング気体SKの流量Q1がサンプリング気体受け入れ空間16から測定気体排出管24を介し排出される測定気体MKの流量Q2よりも多く(Q1>Q2)、流量Q1から流量Q2を引いた余剰のサンプリング気体SKは気体選択回収器30によりサンプリング気体受け入れ空間16から気体選択排出管28を介し排出される第2の場合、を考える。これら第1及び第2の場合の夫々において、測定気体排出管24の他端部24bの端の開口から排出され粒径測定器26において測定した測定気体MK中の粒子濃度(個/cc)N2をサンプリング直前のサンプリング気体SKの粒子濃度N1と比較する。その結果、N1=N2であれば、サンプリング管12の一端部12aの端の開口から測定気体排出管24の他端部24bの端の開口までの間で、サンプリング管12の貫通路12c,本体18のサンプリング気体受け入れ空間16,そして測定気体排出管24の貫通路24cの夫々の内表面に対するサンプリング気体SK中の標準粒子の沈着による損失がないことを意味している。さらに、測定気体排出管24の他端部24bの端の開口に接続されている粒径測定器26は、サンプリング直前のサンプリング気体SKの粒径分布を測定していることになる。
 また、サンプリング管12に供給されたサンプリング気体SKの流量Q1がサンプリング気体受け入れ空間16から測定気体排出管24を介し排出される測定気体MKの流量Q2よりも少なく(Q1<Q2)、流量Q2から流量Q1を引いた不足分の流量が補充気体供給器22からの補充気体により補充される第3の場合には、上述した標準粒子の沈着による損失がなければN2=N1・Q1/Q2となる。
 この性能評価試験の結果を以下の表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1の実験濃度比(N2/N1)の値は、平均値±標準偏差である。
 そして、Test1は、測定気体排出管24を介し排出される測定気体MKの流量Q2を1000cc/minとし、気体排出管28から排出される気体の流量Q4を650cc/minとし、サンプリング管12に供給されたサンプリング気体SKの流量Q1の最大値を1650cc/minとした場合である。
 また、Test2は、測定気体排出管24を介し排出される測定気体MKの流量Q2を1000cc/minとし、気体排出管28から排出される気体の流量Q4を1592cc/minとし、サンプリング管12に供給されたサンプリング気体SKの流量Q1の最大値を2592cc/minとした場合である。
 Test1,Test2のいずれにおいても、粒径が0.7μmと1.5μmとの間でサンプリング管12に供給されたサンプリング気体SKの流量Q1を変化させても、実験濃度比/理想濃度比の値が1に近くなっているので、前述した粒子沈着損失は実質的にないことがわかる。即ち、サンプリング管12に供給されたサンプリング気体SKにおける粒子径分布と測定気体排出管24から排出される測定気体MKにおける粒子径分布とが実質的に一致している。
 [第1変形例]
 次に図2を参照しながら、図1のエアロゾル粒子サンプリング装置10の第1変形例について概略的に説明する。
 この変形例のエアロゾル粒子サンプリング装置10´の構成部材の大部分は図1のエアロゾル粒子サンプリング装置10の構成部材の大部分と同じである。変形例のエアロゾル粒子サンプリング装置10´において、図1のエアロゾル粒子サンプリング装置10の構成部材と同じ構成部材には図1のエアロゾル粒子サンプリング装置10の同じ構成部材に付されていた参照符号と同じ参照符号を記し、上記同じ構成部材についての説明は省略する。
 この変形例のエアロゾル粒子サンプリング装置10´が図1のエアロゾル粒子サンプリング装置10と異なっているのは:
  サンプリング管12´の他端部12´bの端12´eと測定気体排出管24´の一端部24´aの端24´eとが連続しており;そして、
  サンプリング管12´の貫通路12´c及び測定気体排出管24´の貫通路24´cの少なくともいずれか一方が、サンプリング管12´の他端部12´b及び測定気体排出管24´の一端部24´aの少なくともいずれか一方において、本体18のサンプリング気体受け入れ空間16とサンプリング気体受け入れ空間16の第1端部16aと第2端部16bとの間で連通していることである。
 このような連通は、サンプリング管12´の他端部12´bの端12´eの近傍と測定気体排出管24´の一端部24´aの端24´eの近傍の少なくとも一方に形成された貫通孔OPにより達成することが出来る。このような貫通孔OPの形状や配置は、貫通孔OPが図1のエアロゾル粒子サンプリング装置10におけるサンプリング管12の他端部12bの端12eと測定気体排出管24の一端部24aの端24eとの間に設定されている長さLの隙間と同じ機能を果たすことが出来れば、任意に設定することが出来る。

 前述した実施形態及び第1変形例においては、サンプリング気体供給源14が統合制御装置32により動作を制御されている。しかし、サンプリング気体供給源14が動作を開始したことを公知の検知手段により統合制御装置32が検知することにより、或いは手動により、統合制御装置32が前述した種々の制御動作を開始するよう構成されていても良い。
 さらに、サンプリング気体供給源14は、エアロゾル粒子が気体とともに流れる流管であっても良い。

 [第2,第3,第4,そして第5変形例]
 次に図3,図4,図5,そして図6を参照しながら、図1のエアロゾル粒子サンプリング装置10の第2,第3,第4,そして第5変形例について概略的に説明する。
 これら変形例のエアロゾル粒子サンプリング装置50,52,54,56の夫々の構成部材の大部分は図1のエアロゾル粒子サンプリング装置10の構成部材の大部分と同じである。これらの変形例のエアロゾル粒子サンプリング装置50,52,54,56の夫々において、図1のエアロゾル粒子サンプリング装置10の構成部材と同じ構成部材には図1のエアロゾル粒子サンプリング装置10の同じ構成部材に付されていた参照符号と同じ参照符号を記し、上記同じ構成部材についての説明は省略する。
 これらの変形例のエアロゾル粒子サンプリング装置50,52,54,56の夫々が図1のエアロゾル粒子サンプリング装置10と異なっているのは、本体18のサンプリング気体受け入れ空間16の中間部16cに配置されている、サンプリング管12の他端部12bの端12e及び測定気体排出管24の一端部24aの端24eの夫々の形状である。
 図1を参照したこの発明の一実施形態に従ったエアロゾル粒子サンプリング装置10の構成についての説明において、サンプリング管12の他端部12bの端12e及び測定気体排出管24の一端部24aの端24eの夫々は以下のように形作られていると記載されている。
  I.即ち、サンプリング管12の他端部12bの端12eは、サンプリング管12の他端部12bの外周面と本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域との間の所定の隙間G1中を上記他端部12bの端まで層状に流れてきた補充気体HKがサンプリング気体受け入れ空間16の第2端部16bまでサンプリング気体受け入れ空間16の内表面に沿い層状に流れるよう形作られている。
   そして図1中では、サンプリング管12の他端部12bの端12eの近傍の貫通路12cの部位が、端12eに接近するのに伴い徐々に拡径し端12eにおいて他端部12bの外周面と一致するテーパ状に形作られている。この結果として、サンプリング管12の他端部12bの端12eにおいて貫通路12からサンプリング気体受け入れ空間16中に導入されるサンプリング気体SKが、端12eにおいて渦を生じさせない。
  II.また、測定気体排出管24の一端部24aの端24eは、本体18のサンプリング気体受け入れ空間16中の気体に渦を生じさせず希釈サンプリング気体排出管24の一端部24aの外周面と本体18のサンプリング気体受け入れ空間16の内表面の第2端部対応領域との間の隙間G2に導くよう形作られている。
   この結果、第1端部16aからサンプリング気体受け入れ空間16の内表面に沿いサンプリング気体受け入れ空間16の第2端部16bに向かい層状に流れてきた補充気体HKを、渦を生じさせず希釈サンプリング気体排出管24の一端部24aの外周面と本体18のサンプリング気体受け入れ空間16の内表面の第2端部対応領域との間の隙間G2に導くことが出来る。
   図1中では、測定気体排出管24の一端部24aの端24eの近傍の貫通路24cの部位が、端24eに接近するのに伴い徐々に拡径し端24eにおいて一端部24aの外周面と一致するテーパ状に形作られている。
 発明者の知見によれば、サンプリング管12及び測定気体排出管24の夫々の外径D2と内径D3がD2-D3=0.5mm又は<0.5mmの場合には、サンプリング管12の他端部12bの外周面及び内周面において端12eの近傍部位、及び測定気体排出管24の一端部24aの外周面及び内周面において端24eの近傍部位に、端12e又は24eに接近するのに伴い傾斜したテーパ面を形成しなくとも前述した機能を果たすことが出来ることが分かっている。
 しかしながら、サンプリング管12及び測定気体排出管24の夫々の外径D2と内径D3がD2-D3>0.5mmであって、サンプリング管12の他端部12bの端12e及び測定気体排出管24の一端部24aの端24eに前述した機能を果たさせる為に、サンプリング管12の他端部12bの外周面及び内周面の少なくともいずれか一方において端12eの近傍部位、及び測定気体排出管24の一端部24aの外周面及び内周面の少なくともいずれか一方において端24eの近傍部位に、端12e又は24eに接近するのに伴い傾斜したテーパ面を形成する必要がある場合には、図3,図4,図5,そして図6中に図示されている、第2,第3,第4,そして第5変形例のエアロゾル粒子サンプリング装置50,52,54,56の如き、テーパ面の組み合わせを使用することが出来る。
 図3中に図示されている第2変形例のエアロゾル粒子サンプリング装置50においては:
  サンプリング管12の他端部12bにおいて端12eの近傍の貫通路12c(即ち、内周面)の部位が、端12eに接近するのに伴い徐々に拡径し端12eにおいて他端部12bの外周面と一致するテーパ状に形作られており;そして、
  測定気体排出管24の一端部24aの外周面において端24eの近傍の部位が、端24eに接近するのに伴い徐々に縮径し端24eにおいて一端部24aの内周面(即ち、貫通路24c)と一致するテーパ状に形作られている。
 図4中に図示されている第3変形例のエアロゾル粒子サンプリング装置52においては:
  サンプリング管12の他端部12bの外周面において端12eの近傍の部位が、端12eに接近するのに伴い徐々に縮径し端12eにおいて他端部12bの内周面(即ち、貫通路12c)と一致するテーパ状に形作られており;そして、
  測定気体排出管24の一端部24aの外周面において端24eの近傍の部位が、端24eに接近するのに伴い徐々に縮径し端24eにおいて一端部24aの内周面(即ち、貫通路24c)と一致するテーパ状に形作られている。
 図5中に図示されている第4変形例のエアロゾル粒子サンプリング装置54においては:
  サンプリング管12の他端部12bの外周面において端12eの近傍の部位が、端12eに接近するのに伴い徐々に縮径し端12eにおいて他端部12bの内周面(即ち、貫通路12c)と一致するテーパ状に形作られており;そして、
  測定気体排出管24の一端部24aの端24eの近傍の貫通路24c(即ち、内周面)の部位が、端24eに接近するのに伴い徐々に拡径し端24eにおいて一端部24aの外周面と一致するテーパ状に形作られている。
 そして、図6中に図示されている第5変形例のエアロゾル粒子サンプリング装置56においては:
  サンプリング管12の他端部12bの外周面及び内周面の夫々において端12eの近傍の部位が、端12eに接近するのに伴い徐々に縮径及び拡径し端12eにおいてサンプリング管12の半径方向における上記外周面と内周面との間の中間位置で一致するテーパ状に形作られており;そして、
  測定気体排出管24の一端部24aの端24eの外周面及び内周面の夫々において端24eの近傍の部位が、端24eに接近するのに伴い徐々に縮径及び拡径し端24eにおいて測定気体排出管24の半径方向における上記外周面と内周面との間の中間位置で一致するテーパ状に形作られている。
 [第6,第7,第8,そして第9変形例]
 次に図7,図8,図9,そして図10を参照しながら、図1のエアロゾル粒子サンプリング装置10の第6,第7,第8,そして第9変形例について概略的に説明する。
 これら変形例のエアロゾル粒子サンプリング装置58,60,62,64の夫々の構成部材の大部分は図1のエアロゾル粒子サンプリング装置10の構成部材の大部分と同じである。これらの変形例のエアロゾル粒子サンプリング装置58,60,62,64の夫々において、図1のエアロゾル粒子サンプリング装置10の構成部材と同じ構成部材には図1のエアロゾル粒子サンプリング装置10の同じ構成部材に付されていた参照符号と同じ参照符号を記し、上記同じ構成部材についての説明は省略する。
 これらの変形例のエアロゾル粒子サンプリング装置58,60,62,64の夫々が図1のエアロゾル粒子サンプリング装置10と異なっているのは:
 本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域とサンプリング管12の他端部12bの外周面との間の所定の隙間G1に設けられていて、補充気体供給器22から供給される補充気体HKがサンプリング気体受け入れ空間16の内表面の全周に渡り等しい密度で層状に流れる手助けをする補充気体密度均等構造であり;そして、
 本体18のサンプリング気体受け入れ空間16の内周面の第2端部対応領域と測定気体排出管24の一端部24aの外周面との間の所定の隙間G2に設けられていて、所定の隙間G2にサンプリング気体受け入れ空間16から流入するサンプリング気体受け入れ空間16中の気体がサンプリング気体受け入れ空間16の内表面の全周に渡り等しい密度で層状に流れる手助けをする追加の気体密度均等構造である。
 図1のエアロゾル粒子サンプリング装置10では、前述した如く、補充気体密度均等構造は、本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域において補充気体供給管20の接続位置を含みサンプリング管12の他端部12bの外周面の周方向に環状に延出する環状部位18eが、第1端部対応領域の他の部位よりも上記他端部12bの径方向において上記外周面から遠ざかる環状凹所により提供されている。
 図1のエアロゾル粒子サンプリング装置10ではさらに、前述した如く、追加の気体密度均等構造は、本体18のサンプリング気体受け入れ空間16の内表面の第2端部対応領域において気体選択排出管28の接続位置を含み測定気体排出管24の一端部24aの外周面の周方向に環状に延出する環状部位18fは、第2端部対応領域の他の部位よりも上記一端部24aの径方向において上記外周面から遠ざかる環状凹所により提供されている。
 補充気体密度均等構造は、本体18のサンプリング気体受け入れ空間16の内周面の第1端部対応領域とサンプリング管12の他端部12bの外周面との間の所定の隙間G1に補充気体供給管20から流入する補充気体HKが、補充気体密度均等構造無しでもサンプリング気体受け入れ空間16の内表面の全周に渡り等しい密度で層状に流れることが出来るのであれば、もちろん不要である。
 追加の気体密度均等構造も、本体18のサンプリング気体受け入れ空間16の内周面の第2端部対応領域と測定気体排出管24の一端部24aの外周面との間の所定の隙間G2にサンプリング気体受け入れ空間16から流入するサンプリング気体受け入れ空間16中の気体が、追加の気体密度均等構造無しでもサンプリング気体受け入れ空間16の内表面の全周に渡り等しい密度で層状に流れることが出来るのであれば、もちろん不要である。
 しかしながら、補充気体密度均等構造及び追加の気体密度均等構造が必要な場合には、前述した如き環状凹所に加え、図7,図8,図9,そして図10中に図示されている如き第6,第7,第8,そして第9変形例の補充気体密度均等構造及び追加の気体密度均等構造を使用することが可能である。
 図7中に図示されている第6変形例の補充気体密度均等構造は:
  本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域の環状部位18eに対応した部位の環状凹所に加えて;
  サンプリング管12の他端部12bの外周面において、本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域の環状部位18eに対応した部位に形成され、サンプリング管12の他端部12bの外周面の周方向に環状に延出した環状凹所12f又は上記周方向に所定間隔で環状に配置された複数の環状配置凹所を含む。
 図7中に図示されている第6変形例の追加の気体密度均等構造は:
  本体18のサンプリング気体受け入れ空間16の内周面の第2端部対応領域の環状部位18fに対応した部位の環状凹所に加えて;
  測定気体排出管24の一端部24aの外周面において、本体18のサンプリング気体受け入れ空間16の内周面の第2端部対応領域の環状部位18fに対応した部位に形成され、測定気体排出管24の外周面の周方向に環状に延出した環状凹所24f又は上記周方向に所定間隔で環状に配置された複数の環状配置凹所を含む。
 図8中に図示されている第7変形例の補充気体密度均等構造は:
  本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域の環状部位18eに対応した部位の環状凹所に加えて;
  サンプリング管12の他端部12bの外周面において、本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域の環状部位18eに対応した部位よりも端12eに近い位置に形成され、サンプリング管12の他端部12bの外周面の周方向に環状に延出した環状突起12g又は上記周方向に所定間隔で環状に配置された複数の環状配置突起を含む。
 図8中に図示されている第7変形例の追加の気体密度均等構造は:
  本体18のサンプリング気体受け入れ空間16の内周面の第2端部対応領域の環状部位18fに対応した部位の環状凹所に加えて;
  測定気体排出管24の一端部24aの外周面において、本体18のサンプリング気体受け入れ空間16の内周面の第2端部対応領域の環状部位18fに対応した部位よりも端24eに近い位置に形成され、測定気体排出管24の外周面の周方向に環状に延出した環状突起24g又は上記周方向に所定間隔で環状に配置された複数の環状配置突起を含む。
 図9中に図示されている第8変形例の補充気体密度均等構造は:
  本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域の環状部位18eに対応した部位の環状凹所に加えて;
  サンプリング管12の他端部12bの外周面において、本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域の環状部位18eに対応した部位に形成され、サンプリング管12の他端部12bの外周面の周方向に環状に延出した環状凹所12f又は上記周方向に所定間隔で環状に配置された複数の環状配置凹所と;そして、
  サンプリング管12の他端部12bの外周面において、本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域の環状部位18eに対応した部位よりも端12eに近い位置に形成され、サンプリング管12の他端部12bの外周面の周方向に環状に延出した環状突起12g又は上記周方向に所定間隔で環状に配置された複数の環状配置突起と、を含む。
 図9中に図示されている第8変形例の追加の気体密度均等構造は:
  本体18のサンプリング気体受け入れ空間16の内周面の第2端部対応領域の環状部位18fに対応した部位の環状凹所に加えて;
  測定気体排出管24の一端部24aの外周面において、本体18のサンプリング気体受け入れ空間16の内周面の第2端部対応領域の環状部位18fに対応した部位に形成され、測定気体排出管24の外周面の周方向に環状に延出した環状凹所24f又は上記周方向に所定間隔で環状に配置された複数の環状配置凹所と;そして、
  測定気体排出管24の一端部24aの外周面において、本体18のサンプリング気体受け入れ空間16の内周面の第2端部対応領域の環状部位18fに対応した部位よりも端24eに近い位置に形成され、測定気体排出管24の外周面の周方向に環状に延出した環状突起24g又は上記周方向に所定間隔で環状に配置された複数の環状配置突起と、を含む。
 図10中に図示されている第9変形例の補充気体密度均等構造は:
  本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域の環状部位18eに対応した部位の環状凹所に加えて;
  本体18のサンプリング気体受け入れ空間16の内表面の第1端部対応領域において上記環状部位18eの上記環状凹所よりもサンプリング管12の他端部12bの端12eに近い位置に形成され、上記内表面の周方向に環状に延出した環状突起18g又は上記周方向に所定間隔で環状に配置された複数の環状配置突起を含む。
 図10中に図示されている第9変形例の追加の気体密度均等構造は:
  本体18のサンプリング気体受け入れ空間16の内表面の第2端部対応領域の環状部位18fに対応した部位の環状凹所に加えて;
  本体18のサンプリング気体受け入れ空間16の内表面の第2端部対応領域において上記環状部位18fの上記環状凹所よりも測定気体排出管24の一端部24aの端24eに近い位置に形成され、上記内表面の周方向に環状に延出した環状突起18h又は上記周方向に所定間隔で環状に配置された複数の環状配置突起を含む。

  なお、図9中に示されている第8変形例の補充気体密度均等構造の環状突起12g又は複数の環状配置突起の代わりに図10中に示されている第9変形例の補充気体密度均等構造の環状突起18g又は複数の環状配置突起を使用することが出来るし、図9中に示されている第8変形例の追加の気体密度均等構造の環状突起24g又は複数の環状配置突起の代わりに図10中に示されている第9変形例の補充気体密度均等構造の環状突起18h又は複数の環状配置突起を使用することが出来る。
 10…エアロゾル粒子サンプリング装置、12…サンプリング管、12a…一端部、12b…他端部、12c…貫通路、12d…外方フランジ、12e…端、14…サンプリング気体供給源、SK…サンプリング気体、16…サンプリング気体受け入れ空間、16a…第1端部、16b…第2端部、16c…中間部、G1…所定の隙間、18…本体、18a…第1端部材、18b…第1フランジ固定部材、18c…第2端部材、18d…第2フランジ固定部材、18e…環状部位(補充気体密度均等構造)、18f…環状部位(追加の気体密度均等構造)、SM…密封部材、20…補充気体供給管、22…補充気体供給器、HK…補充気体、24…測定気体排出管、24a…一端部、24b…他端部、24c…貫通路、24d…外方フランジ、24e…端、MK…測定気体、26…粒径測定器、G2…所定の隙間、28…気体選択排出管、30…気体選択回収器、32…統合制御装置、
 10´…エアロゾル粒子サンプリング装置、12´…サンプリング管、12´a…一端部、12´b…他端部、12´c…貫通路、12´d…外方フランジ、12´e…端、24´…測定気体排出管、24´a…一端部、24´b…他端部、24´c…貫通路、24´d…外方フランジ、24´e…端、OP…開口、
 50,52,54,56,58,60,62,64…エアロゾル粒子サンプリング装置、12f…環状凹所(補充気体密度均等構造)、12g…環状突起(補充気体密度均等構造)、18g…環状突起(補充気体密度均等構造)、18h…環状突起(追加の気体密度均等構造)、24f…環状凹所(追加の気体密度均等構造)、24g…環状突起(追加の気体密度均等構造)。

Claims (13)

  1.  サンプリング気体(SK)を排出するサンプリング管(12,12´)と、サンプリング管から排出されたサンプリング気体を受け入れるサンプリング気体受け入れ空間(16)を含んでいる本体(18)と、本体のサンプリング気体受け入れ空間に補充気体(HK)を供給し、サンプリング気体受け入れ空間においてサンプリング気体に補充流体を混合する補充気体供給器(22)と、そして、本体のサンプリング気体受け入れ空間中の少なくともサンプリング気体を含む測定気体(MK)をサンプリング気体受け入れ空間の外部に排出する測定気体排出管(24,24´)と、を備えているエアロゾル粒子サンプリング装置(10,10´,50,52,54,56,58,60,62,64)であって:
     前記サンプリング管(12,12´)が、一端部(12a,12a´)と、他端部(12b,12b´)と、一端部の端及び他端部の端(12e)の夫々に開口し一端部の端から他端部の端まで延出した貫通路(12c,12c´)とを有し、一端部の端の開口を介して種々の粒径のエアロゾル粒子を含むサンプリング気体(SK)が貫通路中に導入され他端部の端の開口を介して貫通路からサンプリング気体を排出し;
     前記本体(18)の前記サンプリング気体受け入れ空間(16)が、サンプリング管(12,12´)の他端部(12b,12b´)が接続された第1端部(16a)とサンプリング管の他端部の延出方向においてサンプリング管の他端部の端よりも遠くに位置する第2端部(16b)とを有しサンプリング管の他端部の端の開口から排出されたサンプリング気体を受け入れ、サンプリング気体受け入れ空間を規定している内表面において第1端部に対応している第1端部対応領域がサンプリング管の他端部の外周面との間に所定の隙間(G1)を介して上記他端部の外周面を取り囲んでおり;
     前記補充気体供給器(22)が、本体(18)のサンプリング気体受け入れ空間(16)の第1端部(16a)に接続され、サンプリング管(12,12´)の他端部(12b,12b´)の外周面と本体のサンプリング気体受け入れ空間の内表面の第1端部対応領域との間の上記隙間(G1)を介しサンプリング気体受け入れ空間に補充気体(HK)を選択的に供給し、サンプリング気体受け入れ空間において第1端部と第2端部との間でサンプリング気体(SK)に補充流体を選択的に混合し;
     前記測定気体排出管(24,24´)が、一端部(24a,24a´)と、他端部(24b,24b´)と、一端部の端及び他端部の端の夫々に開口し一端部の端から他端部の端まで延出した貫通路(24c,24c´)とを有し、一端部が本体(18)のサンプリング気体受け入れ空間(16)の第2端部(16b)に接続され他端部が本体のサンプリング気体受け入れ空間の第2端部から外方に突出し、一端部の端の開口を介して本体のサンプリング気体受け入れ空間中の少なくともサンプリング気体を含む測定気体(MK)を貫通路中に導入し他端部の端の開口を介して貫通路から測定気体をサンプリング気体受け入れ空間の外部に排出し、一端部の外周面がサンプリング気体受け入れ空間を規定している内表面において第2端部に対応している第2端部対応領域によって所定の隙間(G2)を介して取り囲まれており;そして、
     本体(18)のサンプリング気体受け入れ空間(16)の第2端部(16b)に接続され、測定気体排出管(24,24´)の一端部(24a,24a´)の外周面と本体のサンプリング気体受け入れ空間の内表面の第2端部対応領域との間の上記隙間を介しサンプリング気体受け入れ空間中の気体を選択的に排出する気体選択排出管(28)をさらに備えている、
     ことを特徴とするエアロゾル粒子サンプリング装置。
  2.  サンプリング管(12)の他端部(12b)の端(12e)は、サンプリング管の他端部の外周面と本体(18)のサンプリング気体受け入れ空間(16)の内表面の第1端部対応領域との間の隙間(G1)を上記他端部の端まで層状に流れてきた補充気体(HK)がサンプリング気体受け入れ空間の第2端部(16b)までサンプリング気体受け入れ空間の内表面に沿い流れるよう形作られ、
     測定気体排出管(24)の一端部(24a)の端(24e)は、本体(18)のサンプリング気体受け入れ空間(16)中の気体を渦を生じさせず測定気体排出管の一端部の外周面と本体のサンプリング気体受け入れ空間の内表面の第2端部対応領域との間の隙間(G2)に導くよう形作られている、
     ことを特徴とする請求項1に記載のエアロゾル粒子サンプリング装置。
  3.  サンプリング管(12)の他端部(12b)の内径及び外径と測定気体排出管(24)の一端部(24a)の内径及び外径とは同じであり、
     サンプリング管(12)の他端部(12b)と測定気体排出管(24)の一端部(24a)とは、本体(18)のサンプリング気体受け入れ空間(16)の第1端部(16a)及び第2端部(16b)において相互に同心的に配置されている、
     ことを特徴とする請求項2に記載のエアロゾル粒子サンプリング装置。
  4.  サンプリング管(12)の他端部(12b)の内径及び外径と測定気体排出管(24)の一端部(24a)の内径及び外径とは同じであり、
     サンプリング管(12)の他端部(12b)と測定気体排出管(24)の一端部(24a)とは本体(18)のサンプリング気体受け入れ空間(16)の第1端部(16a)及び第2端部(16b)において相互に同心的に配置されている、
     ことを特徴とする請求項1に記載のエアロゾル粒子サンプリング装置。
  5.  本体(18)のサンプリング気体受け入れ空間(16)の内表面の第1端部対応領域とサンプリング管(12)の他端部(12b)の外周面との間の所定の隙間(G1)には、補充気体供給器(22)から供給される補充気体(HK)がサンプリング気体受け入れ空間(16)の内表面の全周に渡り等しい密度で層状に流れる手助けをする補充気体密度均等構造が設けられている、
     ことを特徴とする請求項1乃至4のいずれか1項に記載のエアロゾル粒子サンプリング装置。
  6.  前記補充気体密度均等構造が、本体(18)のサンプリング気体受け入れ空間(16)の内表面の第1端部対応領域において補充気体供給器(22)の接続位置を含みサンプリング管(12)の他端部(12b)の外周面の周方向に環状に延出する環状部位(18e)に設けられ、第1端部対応領域の他の部位よりも上記他端部(12b)の径方向において上記外周面から遠ざかる環状凹所を含む、
     ことを特徴とする請求項5に記載のエアロゾル粒子サンプリング装置。
  7.  本体(18)のサンプリング気体受け入れ空間(16)の内周面の第2端部対応領域と測定気体排出管(24)の一端部(24a)の外周面との間の所定の隙間(G2)には、所定の隙間(G2)にサンプリング気体受け入れ空間(16)から流入するサンプリング気体受け入れ空間中の気体がサンプリング気体受け入れ空間の内表面の全周に渡り等しい密度で層状に流れる手助けをする追加の気体密度均等構造が設けられている、
     ことを特徴とする請求項5に記載のエアロゾル粒子サンプリング装置。
  8.  前記気体密度均等構造が、本体(18)のサンプリング気体受け入れ空間(16)の内表面の第2端部対応領域において気体選択排出管(28)の接続位置を含み測定気体排出管(24)の一端部(24a)の外周面の周方向に環状に延出する環状部位(18f)に設けられ、第2端部対応領域の他の部位よりも上記一端部(24a)の径方向において上記外周面から遠ざかる環状凹所を含む、
     ことを特徴とする請求項7に記載のエアロゾル粒子サンプリング装置。
  9.  サンプリング管(12´)の他端部(12b´)の端(12e´)と測定気体排出管(24´)の一端部(24a´)の端(24e´)とが連続しており、
     サンプリング管の貫通路(12c´)及び測定気体排出管の貫通路(24c´)の少なくともいずれか一方が、サンプリング管の他端部及び測定気体排出管の一端部の少なくともいずれか一方において本体(18)のサンプリング気体受け入れ空間(16)とサンプリング気体受け入れ空間の第1端部(16a)と第2端部(16b)との間で連通している、
     ことを特徴とする請求項1に記載のエアロゾル粒子サンプリング装置。
  10.  本体(18)のサンプリング気体受け入れ空間(16)の内表面の第1端部対応領域とサンプリング管(12´)の他端部(12b´)の外周面との間の所定の隙間(G1)には、補充気体供給器(22)から供給される補充気体(HK)がサンプリング気体受け入れ空間の内表面の全周に渡り等しい密度で層状に流れる手助けをする補充気体密度均等構造が設けられている、
     ことを特徴とする請求項9に記載のエアロゾル粒子サンプリング装置。
  11.  前記補充気体密度均等構造が、本体(18)のサンプリング気体受け入れ空間(16)の内表面の第1端部対応領域において補充気体供給器(22)の接続位置を含みサンプリング管(12´)の他端部(12b´)の外周面の周方向に環状に延出する環状部位(18e)に設けられ、第1端部対応領域の他の部位よりも上記他端部(12b´)の径方向において上記外周面から遠ざかる環状凹所を含む、
     ことを特徴とする請求項10に記載のエアロゾル粒子サンプリング装置。
  12.  本体(18)のサンプリング気体受け入れ空間(16)の内周面の第2端部対応領域と測定気体排出管(24´)の一端部(24a´)の外周面との間の所定の隙間(G2)には、所定の隙間(G2)にサンプリング気体受け入れ空間から流入するサンプリング気体受け入れ空間中の気体がサンプリング気体受け入れ空間の内表面の全周に渡り等しい密度で層状に流れる手助けをする追加の気体密度均等構造が設けられている、
     ことを特徴とする請求項10に記載のエアロゾル粒子サンプリング装置。
  13.  前記気体密度均等構造が、本体(18)のサンプリング気体受け入れ空間(16)の内表面の第2端部対応領域において気体選択排出管(28)の接続位置を含み測定気体排出管(24´)の一端部(24a´)の外周面の周方向に環状に延出する環状部位(18f)に設けられ、第2端部対応領域の他の部位よりも上記一端部の径方向において上記外周面から遠ざかる環状凹所を含む、
     ことを特徴とする請求項12に記載のエアロゾル粒子サンプリング装置。
PCT/JP2011/057657 2010-03-31 2011-03-28 エアロゾル粒子サンプリング装置 WO2011125610A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509458A JP5640078B2 (ja) 2010-03-31 2011-03-28 エアロゾル粒子サンプリング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010083073 2010-03-31
JP2010-083073 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125610A1 true WO2011125610A1 (ja) 2011-10-13

Family

ID=44762557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057657 WO2011125610A1 (ja) 2010-03-31 2011-03-28 エアロゾル粒子サンプリング装置

Country Status (3)

Country Link
JP (1) JP5640078B2 (ja)
TW (1) TW201142266A (ja)
WO (1) WO2011125610A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108801671A (zh) * 2018-05-19 2018-11-13 南京申友生物技术有限公司 一种取样器
CN113219521A (zh) * 2021-06-11 2021-08-06 浙江希谱检测技术有限公司 一种测氡仪及其校准方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716333A (en) * 1980-07-03 1982-01-27 Mitsubishi Heavy Ind Ltd Sampling device for solid-gas mixture phase fluid
JP2003344238A (ja) * 2002-05-20 2003-12-03 Caterpillar Inc 希釈トンネル
JP2006517665A (ja) * 2003-02-14 2006-07-27 マルバーン インストゥルメンツ リミテッド 希釈システム及び方法
WO2007129513A1 (ja) * 2006-05-09 2007-11-15 Sumitomo Seika Chemicals Co., Ltd. 試料導入システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665618A (en) * 1979-10-31 1981-06-03 Nippon Kokan Kk <Nkk> Heating furnace for waste gas denox operation
JP4421076B2 (ja) * 2000-05-18 2010-02-24 株式会社東芝 流体混合装置
GB0113735D0 (en) * 2001-06-05 2001-07-25 Holset Engineering Co Mixing fluid streams
JP4845752B2 (ja) * 2007-01-25 2011-12-28 日立造船株式会社 カーボンナノチューブの製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716333A (en) * 1980-07-03 1982-01-27 Mitsubishi Heavy Ind Ltd Sampling device for solid-gas mixture phase fluid
JP2003344238A (ja) * 2002-05-20 2003-12-03 Caterpillar Inc 希釈トンネル
JP2006517665A (ja) * 2003-02-14 2006-07-27 マルバーン インストゥルメンツ リミテッド 希釈システム及び方法
WO2007129513A1 (ja) * 2006-05-09 2007-11-15 Sumitomo Seika Chemicals Co., Ltd. 試料導入システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108801671A (zh) * 2018-05-19 2018-11-13 南京申友生物技术有限公司 一种取样器
CN108801671B (zh) * 2018-05-19 2023-09-08 南京申友生物技术有限公司 一种取样器
CN113219521A (zh) * 2021-06-11 2021-08-06 浙江希谱检测技术有限公司 一种测氡仪及其校准方法
CN113219521B (zh) * 2021-06-11 2022-11-08 浙江希谱检测技术有限公司 一种测氡仪及其校准方法

Also Published As

Publication number Publication date
TW201142266A (en) 2011-12-01
JP5640078B2 (ja) 2014-12-10
JPWO2011125610A1 (ja) 2013-07-08

Similar Documents

Publication Publication Date Title
CN107107080B (zh) 雾化器喷嘴
JP2012508107A5 (ja)
US20100108776A1 (en) Adjustable cold spray nozzle
US10870119B2 (en) Apparatus and a method for generating droplets
JPH02192699A (ja) プラズマトーチ用ノズルとプラズマトーチのプラズマ柱の内部に紛末流を導入する方法
KR20190063082A (ko) 먼지 측정장치
JP5640078B2 (ja) エアロゾル粒子サンプリング装置
US6712968B2 (en) Apparatus for treating fluids
JP6072086B2 (ja) 内燃機関の排ガス試料を採取する装置
US20160023306A1 (en) Nozzle for laser powder build-up welding
US9845206B1 (en) Method and apparatus for direct injection of powder material into a powder hose
JPH0582269B2 (ja)
JP2010085412A (ja) 分析すべきガスを希釈ガスで希釈する装置
US10996144B2 (en) Process and device for diluting an aerosol
TWI670752B (zh) 噴霧腔室、試料霧化導入裝置、分析裝置及試料中的成份分析方法
US11014054B2 (en) Fluid-gas mixer
KR101793982B1 (ko) 가스 희석장치
US20190168955A1 (en) Device and process for diluting an aerosol
US20130089825A1 (en) Swirl combustion air fuel torch
KR20210010766A (ko) 배기가스 희석장치
JP2006242769A (ja) 全量導入型ネブライザー対応シースガス導入型スプレーチャンバー
KR102223149B1 (ko) 배기가스 희석장치
JP5489324B2 (ja) 粒子数計測システム
JP6081112B2 (ja) 粉体分級装置
JP7184794B2 (ja) 気化装置及び気化装置用分離器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765510

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509458

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765510

Country of ref document: EP

Kind code of ref document: A1