WO2011125587A1 - 永久磁石及び永久磁石の製造方法 - Google Patents

永久磁石及び永久磁石の製造方法 Download PDF

Info

Publication number
WO2011125587A1
WO2011125587A1 PCT/JP2011/057568 JP2011057568W WO2011125587A1 WO 2011125587 A1 WO2011125587 A1 WO 2011125587A1 JP 2011057568 W JP2011057568 W JP 2011057568W WO 2011125587 A1 WO2011125587 A1 WO 2011125587A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
permanent magnet
sintering
organometallic compound
powder
Prior art date
Application number
PCT/JP2011/057568
Other languages
English (en)
French (fr)
Inventor
出光 尾関
克也 久米
平野 敬祐
智弘 大牟礼
啓介 太白
孝志 尾崎
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to EP11765487.1A priority Critical patent/EP2503568B1/en
Priority to US13/499,560 priority patent/US9005374B2/en
Priority to CN2011800039580A priority patent/CN102549684A/zh
Priority to KR1020127007165A priority patent/KR101189960B1/ko
Publication of WO2011125587A1 publication Critical patent/WO2011125587A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the present invention relates to a permanent magnet and a method for manufacturing the permanent magnet.
  • Permanent magnet motors used in hybrid cars, hard disk drives, and the like have been required to be smaller, lighter, higher in output, and more efficient.
  • the permanent magnet embedded in the permanent magnet motor is required to be thin and further improve the magnetic characteristics.
  • Permanent magnets include ferrite magnets, Sm—Co magnets, Nd—Fe—B magnets, Sm 2 Fe 17 N x magnets, and Nd—Fe—B magnets with particularly high residual magnetic flux density. Used as a permanent magnet for a permanent magnet motor.
  • a powder sintering method is generally used as a manufacturing method of the permanent magnet.
  • the powder sintering method first, raw materials are coarsely pulverized, and magnet powder is manufactured by fine pulverization by a jet mill (dry pulverization). Thereafter, the magnet powder is put into a mold and press-molded into a desired shape while applying a magnetic field from the outside. Then, it is manufactured by sintering the solid magnet powder formed into a desired shape at a predetermined temperature (for example, 800 ° C. to 1150 ° C. for Nd—Fe—B magnets).
  • a predetermined temperature for example, 800 ° C. to 1150 ° C. for Nd—Fe—B magnets.
  • Nd-based magnets such as Nd—Fe—B have a problem that the heat-resistant temperature is low. Therefore, when an Nd magnet is used for a permanent magnet motor, if the motor is continuously driven, the coercive force and residual magnetic flux density of the magnet are gradually reduced. Therefore, when using an Nd magnet for a permanent magnet motor, in order to improve the heat resistance of the Nd magnet, Dy (dysprosium) or Tb (terbium) having high magnetic anisotropy is added, and the coercive force of the magnet is added. It is intended to further improve the above.
  • the magnetic performance of a permanent magnet is basically improved by reducing the crystal grain size of the sintered body because the magnetic properties of the magnet are derived by the single domain fine particle theory.
  • the crystal grain size of the sintered body it is necessary to reduce the grain size of the magnet raw material before sintering.
  • a magnet raw material that has been finely pulverized into a fine particle size is molded and sintered, grain growth of the magnet particles occurs during sintering. It was larger than before sintering, and a fine crystal grain size could not be realized.
  • the crystal grain size increases, the coercive force is remarkably lowered because the domain wall generated in the grain easily moves.
  • a method of adding a material for suppressing the grain growth of the magnet particles to the magnet raw material before sintering can be considered.
  • the surface of magnet particles before sintering is coated with a particle growth inhibitor such as a metal compound having a melting point higher than the sintering temperature, thereby suppressing the particle growth of the magnet particles during sintering.
  • a particle growth inhibitor such as a metal compound having a melting point higher than the sintering temperature
  • Japanese Patent No. 3298219 pages 4 and 5) Japanese Patent Laid-Open No. 2004-250781 (pages 10 to 12, FIG. 2)
  • the grain growth inhibitor is added to the magnet powder in advance in the magnet raw material ingot as in Patent Document 2, the grain growth inhibitor is positioned on the surface of the magnet particles after sintering. Without diffusing into the magnet particles. As a result, the grain growth at the time of sintering cannot be sufficiently suppressed, and the residual magnetic flux density of the magnet is reduced. In addition, even if each sintered magnet particle can be made minute by suppressing grain growth, if each sintered magnet particle is in a dense state, the exchange interaction between each magnet particle May propagate. As a result, there is a problem that when a magnetic field is applied from the outside, the magnetization reversal of each magnet particle easily occurs and the coercive force decreases.
  • the grain growth inhibitor is distributed unevenly with respect to the grain boundaries of the magnet by adding the grain growth inhibitor to the Nd magnet in a state where it is dispersed in an organic solvent.
  • the C-containing material remains in the magnet even if the organic solvent is volatilized later by vacuum drying or the like.
  • carbide is formed.
  • the present invention has been made to solve the above-described conventional problems, and V, Mo, Zr, Ta, Ti, W, or Nb contained in the organometallic compound is effectively unevenly distributed with respect to the grain boundaries of the magnet. It is possible to reduce the activity of the calcined body activated by the calcining treatment, thereby preventing the magnet particles from subsequently binding with oxygen, and reducing the residual magnetic flux density and coercive force.
  • An object of the present invention is to provide a permanent magnet and a method for manufacturing the permanent magnet.
  • a permanent magnet according to the present invention includes a step of pulverizing a magnet raw material into magnet powder, and the pulverized magnet powder with the following structural formula M- (OR) x (wherein M is V, Mo, Zr, Ta, Ti, W or Nb, R is a hydrocarbon substituent, which may be linear or branched, and x is an arbitrary integer.)
  • a step of attaching the organometallic compound to the particle surface of the magnet powder and a step of obtaining a calcined body by calcining the magnet powder having the organometallic compound attached to the particle surface in a hydrogen atmosphere.
  • the permanent magnet according to the present invention is characterized in that the metal forming the organometallic compound is unevenly distributed at grain boundaries of the permanent magnet after sintering.
  • the permanent magnet according to the present invention is characterized in that R in the structural formula M- (OR) x is an alkyl group.
  • the permanent magnet according to the present invention is characterized in that R in the structural formula M- (OR) x is any one of an alkyl group having 2 to 6 carbon atoms.
  • the permanent magnet according to the present invention is characterized in that the amount of carbon remaining after sintering is 0.15 wt% or less.
  • the permanent magnet according to the present invention is characterized in that, in the step of calcining the molded body, the molded body is held in a temperature range of 200 ° C. to 900 ° C. for a predetermined time.
  • the permanent magnet according to the present invention is characterized in that the dehydrogenation step holds the magnet powder for a predetermined time in a temperature range of 200 ° C. to 600 ° C. in a vacuum atmosphere.
  • the method for producing a permanent magnet according to the present invention includes a step of pulverizing a magnet raw material into magnet powder, and the pulverized magnet powder with the following structural formula M- (OR) x (where M is V, Mo Zr, Ta, Ti, W, or Nb, R is an alkyl group, which may be linear or branched, and x is an arbitrary integer.)
  • a step of attaching the organometallic compound to the particle surface of the magnet powder a step of calcining the magnet powder having the organometallic compound attached to the particle surface in a hydrogen atmosphere to obtain a calcined body, and the calcined body.
  • the method for producing a permanent magnet according to the present invention is characterized in that R in the structural formula M- (OR) x is an alkyl group.
  • R in the structural formula M- (OR) x is any one of an alkyl group having 2 to 6 carbon atoms.
  • the method for producing a permanent magnet according to the present invention is characterized in that the step of calcining the magnet powder holds the magnet powder in a temperature range of 200 ° C. to 900 ° C. for a predetermined time.
  • the method of manufacturing a permanent magnet according to the present invention is characterized in that the step of performing the dehydrogenation treatment holds the magnet powder for a predetermined time in a temperature range of 200 ° C. to 600 ° C. in a vacuum atmosphere.
  • V, Mo, Zr, Ta, Ti, W, or Nb contained in the organometallic compound can be efficiently unevenly distributed with respect to the grain boundaries of the magnet.
  • the addition amount of V, Mo, Zr, Ta, Ti, W, or Nb can be made small compared with the past, the fall of a residual magnetic flux density can be suppressed.
  • the activity of the calcined body activated by the calcination treatment can be reduced.
  • the magnet particles are prevented from being combined with oxygen thereafter, and the residual magnetic flux density and coercive force are not reduced.
  • V, Mo, Zr, Ta, Ti, W or Nb which are high melting point metals, are unevenly distributed at the grain boundaries of the magnet after sintering.
  • Mo, Zr, Ta, Ti, W or Nb suppresses the grain growth of the magnet particles during sintering, and also breaks the exchange interaction between the magnet particles after sintering, thereby reversing the magnetization of each magnet particle It is possible to improve the magnetic performance.
  • the permanent magnet of the present invention since an organometallic compound composed of an alkyl group is used as the organometallic compound added to the magnet powder, when the magnet powder is calcined in a hydrogen atmosphere, the organometallic compound is used. It is possible to easily perform the thermal decomposition. As a result, the amount of carbon in the calcined body can be more reliably reduced.
  • the magnet powder is calcined in a hydrogen atmosphere.
  • the organometallic compound composed of an alkyl group having 2 to 6 carbon atoms
  • the magnet powder is calcined in a hydrogen atmosphere.
  • the pyrolysis of the organometallic compound can be more easily performed on the entire magnet powder. That is, the amount of carbon in the calcined body can be more reliably reduced by the calcining process.
  • the amount of carbon remaining after sintering is 0.15 wt% or less, so that no gap is generated between the main phase of the magnet and the grain boundary phase, and the magnet It becomes possible to make the whole into the state sintered precisely, and it can prevent that a residual magnetic flux density falls. Further, a large number of ⁇ Fe is not precipitated in the main phase of the magnet after sintering, and the magnet characteristics are not greatly deteriorated.
  • the step of calcining the molded body is performed by holding the molded body in a temperature range of 200 ° C. to 900 ° C. for a predetermined time, so that the organometallic compound is reliably pyrolyzed. It is possible to burn more than the necessary amount of carbon contained.
  • the dehydrogenation process is performed by holding the magnet powder in a temperature range of 200 ° C. to 600 ° C. for a predetermined time. Even when NdH 3 having high activity is generated in the system magnet, it is possible to shift to NdH 2 having low activity without leaving it.
  • a permanent magnet in which V, Mo, Zr, Ta, Ti, W or Nb contained in the organometallic compound is efficiently unevenly distributed with respect to the grain boundary of the magnet is obtained. It can be manufactured. As a result, in the manufactured permanent magnet, it is possible to suppress the grain growth of the magnet particles during sintering and to prevent the magnetization reversal of each magnet particle by breaking the exchange interaction between the magnet particles. The performance can be improved. Moreover, since the addition amount of V, Mo, Zr, Ta, Ti, W, or Nb can be made small compared with the past, the fall of a residual magnetic flux density can be suppressed.
  • the activity of the calcined body activated by the calcining treatment can be reduced by performing the dehydrogenation treatment after the calcining treatment.
  • the magnet particles are prevented from being combined with oxygen thereafter, and the residual magnetic flux density and coercive force are not reduced.
  • the method for producing a permanent magnet according to the present invention since an organometallic compound composed of an alkyl group is used as the organometallic compound added to the magnet powder, when calcining the magnet powder in a hydrogen atmosphere, Thermal decomposition of the organometallic compound can be easily performed. As a result, the amount of carbon in the calcined body can be more reliably reduced.
  • an organometallic compound composed of an alkyl group having 2 to 6 carbon atoms is used as the organometallic compound added to the magnet powder.
  • the organometallic compound added to the magnet powder When calcination, it is possible to thermally decompose the organometallic compound at a low temperature. As a result, the pyrolysis of the organometallic compound can be more easily performed on the entire magnet powder. That is, the amount of carbon in the calcined body can be more reliably reduced by the calcining process.
  • the step of calcining the molded body is performed by holding the molded body for a predetermined time in a temperature range of 200 ° C. to 900 ° C. More than the necessary amount of carbon contained by pyrolysis can be burned off.
  • the dehydrogenation process is performed by holding the magnet powder for a predetermined time in a temperature range of 200 ° C. to 600 ° C. Even when NdH 3 having high activity is generated in the Nd-based magnet, it is possible to shift to NdH 2 having low activity without leaving it.
  • FIG. 1 is an overall view showing a permanent magnet according to the present invention.
  • FIG. 2 is an enlarged schematic view showing the vicinity of the grain boundary of the permanent magnet according to the present invention.
  • FIG. 3 is a schematic diagram showing a magnetic domain structure of a ferromagnetic material.
  • FIG. 4 is an enlarged schematic view showing the vicinity of the grain boundary of the permanent magnet according to the present invention.
  • FIG. 5 is an explanatory view showing a manufacturing process in the first method for manufacturing a permanent magnet according to the present invention.
  • FIG. 6 is an explanatory view showing a manufacturing process in the second method for manufacturing a permanent magnet according to the present invention.
  • FIG. 7 is a diagram showing a change in the amount of oxygen when the calcination treatment in hydrogen is performed and when it is not performed.
  • FIG. 1 is an overall view showing a permanent magnet according to the present invention.
  • FIG. 2 is an enlarged schematic view showing the vicinity of the grain boundary of the permanent magnet according to the present invention.
  • FIG. 3 is
  • FIG. 8 is a graph showing the amount of carbon remaining in the permanent magnets of the permanent magnets of Examples 1 to 4 and Comparative Examples 1 and 2.
  • FIG. 9 is a diagram showing an SEM photograph after sintering of the permanent magnet of Example 1 and the elemental analysis results of the grain boundary phase.
  • FIG. 10 is a diagram showing an SEM photograph after sintering of the permanent magnet of Example 2 and the elemental analysis result of the grain boundary phase.
  • FIG. 11 is a diagram in which the distribution state of the Nb element is mapped in the same field of view as the SEM photograph after sintering of the permanent magnet of Example 2 and the SEM photograph.
  • FIG. 12 is a view showing an SEM photograph after sintering of the permanent magnet of Example 3 and the elemental analysis result of the grain boundary phase.
  • FIG. 13 is a diagram in which the distribution state of the Nb element is mapped in the same field of view as the SEM photograph after sintering of the permanent magnet of Example 3 and the SEM photograph.
  • FIG. 14 is a diagram showing an SEM photograph after sintering of the permanent magnet of Example 4 and the elemental analysis results of the grain boundary phase.
  • FIG. 15 is a diagram in which the distribution state of the Nb element is mapped in the same field of view as the SEM photograph after sintering of the permanent magnet of Example 4 and the SEM photograph.
  • 16 is a view showing an SEM photograph after sintering of the permanent magnet of Comparative Example 1.
  • FIG. 17 is a view showing an SEM photograph after sintering of the permanent magnet of Comparative Example 2.
  • FIG. 18 is a graph showing the carbon content in a plurality of permanent magnets manufactured by changing the calcination temperature conditions for the permanent magnets of Example 5 and Comparative Examples 3 and 4.
  • FIG. 18 is a graph showing the carbon content in
  • FIG. 1 is an overall view showing a permanent magnet 1 according to the present invention.
  • 1 has a cylindrical shape, the shape of the permanent magnet 1 varies depending on the shape of the cavity used for molding.
  • an Nd—Fe—B magnet is used as the permanent magnet 1 according to the present invention.
  • Nb (niobium), V (vanadium), Mo (molybdenum), Zr (zirconium) for increasing the coercive force of the permanent magnet 1 are formed at the interfaces (grain boundaries) of the crystal grains forming the permanent magnet 1.
  • Ta tantalum
  • Ti titanium
  • W tungsten
  • each component is Nd: 25 to 37 wt%, Nb, V, Mo, Zr, Ta, Ti, W (hereinafter referred to as Nb etc.): 0.01 to 5 wt%, B: 1 to 2 wt%, Fe (electrolytic iron): 60 to 75 wt%. Further, in order to improve the magnetic characteristics, a small amount of other elements such as Co, Cu, Al and Si may be included.
  • a part of Nd is made of a refractory metal in the surface portion (outer shell) of the crystal grains of the Nd crystal particles 10 constituting the permanent magnet 1 as shown in FIG.
  • a layer 11 hereinafter referred to as a refractory metal layer 11
  • Nb or the like is unevenly distributed with respect to the grain boundaries of the Nd crystal particles 10.
  • FIG. 2 is an enlarged view of the Nd crystal particles 10 constituting the permanent magnet 1.
  • the refractory metal layer 11 is preferably nonmagnetic.
  • substitution of Nb or the like is performed by adding an organometallic compound containing Nb or the like before forming a pulverized magnet powder as described later.
  • Nd when sintering a magnet powder to which an organometallic compound containing Nb or the like is added, Nb or the like in the organometallic compound uniformly adhered to the particle surface of the Nd crystal particles 10 by wet dispersion is Nd.
  • Replacement is performed by diffusing and penetrating into the crystal growth region of the crystal grains 10 to form the refractory metal layer 11 shown in FIG.
  • the Nd crystal particles 10 are made of, for example, an Nd 2 Fe 14 B intermetallic compound, and the refractory metal layer 11 is made of, for example, an NbFeB intermetallic compound.
  • M- (OR) x (wherein, M is V, Mo, Zr, Ta, Ti, W, or Nb, as described later), R is a substituent composed of hydrocarbon, It may be linear or branched, x is an arbitrary integer.)
  • An organic metal compound containing Nb or the like (for example, niobium ethoxide, niobium n-propoxide, niobium n-butoxide, niobium n-hexoxide, etc.) ) Is added to the organic solvent and mixed with the magnet powder in a wet state.
  • an organometallic compound containing Nb or the like can be dispersed in an organic solvent, and the organometallic compound containing Nb or the like can be uniformly attached to the surface of the Nd crystal particles 10.
  • M- (OR) x (wherein M is V, Mo, Zr, Ta, Ti, W or Nb. R is a substituent composed of hydrocarbon, which may be linear or branched. And x is an arbitrary integer.)
  • a metal alkoxide is an organometallic compound that satisfies the structural formula.
  • the metal alkoxide is represented by a general formula M (OR) n (M: metal element, R: organic group, n: valence of metal or metalloid).
  • metal or semimetal forming the metal alkoxide W, Mo, V, Nb, Ta, Ti, Zr, Ir, Fe, Co, Ni, Cu, Zn, Cd, Al, Ga, In, Ge, Sb, Y, lanthanide, etc. are mentioned.
  • a refractory metal is particularly used.
  • V, Mo, Zr, Ta, Ti, W or Nb among refractory metals in order to prevent mutual diffusion with the main phase of the magnet during sintering as will be described later.
  • alkoxide is not particularly limited, and examples thereof include methoxide, ethoxide, propoxide, isopropoxide, butoxide, alkoxide having 4 or more carbon atoms, and the like.
  • those having a low molecular weight are used for the purpose of suppressing residual coal by low-temperature decomposition as described later.
  • methoxide having 1 carbon is easily decomposed and difficult to handle, ethoxide, methoxide, isopropoxide, propoxide, butoxide, etc., which are alkoxides having 2 to 6 carbon atoms contained in R, are used. It is preferable.
  • M- (OR) x (wherein, M is V, Mo, Zr, Ta, Ti, W, or Nb as an organometallic compound to be added to the magnet powder.
  • R is an alkyl group. May be linear or branched, x is an arbitrary integer), and more preferably M- (OR) x (wherein M is V, Mo, Zr, Ta, Ti).
  • W or Nb R is any alkyl group having 2 to 6 carbon atoms, which may be linear or branched, and x is an arbitrary integer. desirable.
  • the molded body formed by compacting is fired under appropriate firing conditions, it is possible to prevent Nb and the like from diffusing and penetrating (solid solution) into the Nd crystal particles 10.
  • Nb etc. can be unevenly distributed only to a grain boundary after sintering.
  • the core Nd 2 Fe 14 B intermetallic compound phase occupies a high volume ratio.
  • the sintered Nd crystal particles 10 are in a dense state, it is considered that exchange interaction propagates between the Nd crystal particles 10.
  • the non-magnetic refractory metal layer 11 coated on the surface of the Nd crystal particles 10 divides the exchange interaction between the Nd crystal particles 10, and each crystal even when a magnetic field is applied from the outside. Prevents magnetization reversal of particles.
  • the refractory metal layer 11 coated on the surface of the Nd crystal particles 10 also functions as a means for suppressing so-called grain growth in which the average particle diameter of the Nd crystal particles 10 increases during sintering of the permanent magnet 1. .
  • a mechanism for suppressing grain growth of the permanent magnet 1 by the refractory metal layer 11 will be described with reference to FIG.
  • FIG. 3 is a schematic diagram showing a magnetic domain structure of a ferromagnetic material.
  • a grain boundary which is a discontinuous boundary surface left between a crystal and another crystal, has excessive energy, grain boundary movement that attempts to reduce energy occurs at a high temperature. Therefore, when the magnet raw material is sintered at a high temperature (for example, 800 ° C. to 1150 ° C. for Nd—Fe—B magnets), the small magnet particles shrink and disappear, and the average particle size of the remaining magnet particles increases. So-called grain growth occurs.
  • M- (OR) x (wherein M is V, Mo, Zr, Ta, Ti, W, or Nb.
  • R is a substituent composed of hydrocarbon, which may be linear or branched.
  • x is an arbitrary integer, Nb or the like, which is a refractory metal, is unevenly distributed at the interface of the magnet particles as shown in FIG. And this unevenly distributed refractory metal prevents the movement of grain boundaries generated at high temperatures, and can suppress grain growth.
  • the particle diameter D of the Nd crystal particles 10 is 0.2 ⁇ m to 1.2 ⁇ m, preferably about 0.3 ⁇ m. Further, if the thickness d of the refractory metal layer 11 is about 2 nm, the growth of Nd magnet particles during sintering can be suppressed, and the exchange interaction between the Nd crystal particles 10 can be divided. However, if the thickness d of the refractory metal layer 11 becomes too large, the content of non-magnetic components that do not exhibit magnetism increases, so the residual magnetic flux density decreases.
  • the refractory metal layer 11 does not need to be a layer composed of only an Nb compound, a V compound, a Mo compound, a Zr compound, a Ta compound, a Ti compound or a W compound (hereinafter referred to as a compound such as Nb). It may be a layer composed of a mixture of a compound and an Nd compound. In that case, a layer made of a mixture of a compound such as Nb and the Nd compound is formed by adding the Nd compound. As a result, liquid phase sintering during the sintering of the Nd magnet powder can be promoted.
  • the Nd compounds to be added include NdH 2 , neodymium acetate hydrate, neodymium (III) acetylacetonate trihydrate, neodymium (III) 2-ethylhexanoate, neodymium (III) hexafluoroacetylacetonate Hydrates, neodymium isopropoxide, neodynium (III) phosphate n hydrate, neodymium trifluoroacetylacetonate, neodymium trifluoromethanesulfonate, and the like are desirable.
  • FIG. 5 is an explanatory view showing a manufacturing process in the first manufacturing method of the permanent magnet 1 according to the present invention.
  • an ingot made of a predetermined fraction of Nd—Fe—B (eg, Nd: 32.7 wt%, Fe (electrolytic iron): 65.96 wt%, B: 1.34 wt%) is manufactured. Thereafter, the ingot is roughly pulverized to a size of about 200 ⁇ m by a stamp mill or a crusher. Alternatively, the ingot is melted, flakes are produced by strip casting, and coarsely pulverized by hydrogen crushing.
  • the coarsely pulverized magnet powder is either (a) in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas having substantially 0% oxygen content, or (b) having an oxygen content of 0.0001.
  • the oxygen concentration of substantially 0% is not limited to the case where the oxygen concentration is completely 0%, but may contain oxygen in such an amount that a very small amount of oxide film is formed on the surface of the fine powder. Means good.
  • an organometallic compound solution to be added to the fine powder finely pulverized by the jet mill 41 is prepared.
  • an organometallic compound containing Nb or the like is added in advance to the organometallic compound solution and dissolved.
  • the organometallic compound to be dissolved is M- (OR) x (wherein M is V, Mo, Zr, Ta, Ti, W or Nb, and R is any alkyl group having 2 to 6 carbon atoms).
  • x is an arbitrary integer
  • niobium ethoxide, niobium n-propoxide, niobium n-butoxide, niobium n-hexoxide, etc. Is desirable.
  • the amount of the organometallic compound containing Nb or the like to be dissolved is not particularly limited, but the content of Nb or the like with respect to the magnet after sintering is 0.001 wt% to 10 wt%, preferably 0.01 wt% to 5 wt%. An amount is preferred.
  • the organometallic compound solution is added to the fine powder classified by the jet mill 41.
  • the slurry 42 in which the fine powder of the magnet raw material and the organometallic compound solution are mixed is generated.
  • the addition of the organometallic compound solution is performed in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas.
  • the produced slurry 42 is dried in advance by vacuum drying or the like before molding, and the dried magnet powder 43 is taken out. Thereafter, the dried magnet powder is compacted into a predetermined shape by the molding device 50.
  • a dry method in which the dried fine powder is filled into the cavity
  • a wet method in which the powder is filled into the cavity after slurrying with a solvent or the like.
  • the dry method is used. Illustrate.
  • the organometallic compound solution can be volatilized in the firing stage after molding.
  • the molding apparatus 50 includes a cylindrical mold 51, a lower punch 52 that slides up and down with respect to the mold 51, and an upper punch 53 that also slides up and down with respect to the mold 51. And a space surrounded by them constitutes the cavity 54.
  • the molding apparatus 50 has a pair of magnetic field generating coils 55 and 56 disposed above and below the cavity 54, and applies magnetic field lines to the magnet powder 43 filled in the cavity 54.
  • the applied magnetic field is, for example, 1 MA / m.
  • the dried magnet powder 43 is filled into the cavity 54. Thereafter, the lower punch 52 and the upper punch 53 are driven, and pressure is applied in the direction of the arrow 61 to the magnetic powder 43 filled in the cavity 54 to perform molding. Simultaneously with the pressurization, a pulse magnetic field is applied to the magnetic powder 43 filled in the cavity 54 by the magnetic field generating coils 55 and 56 in the direction of the arrow 62 parallel to the pressurization direction. Thereby orienting the magnetic field in the desired direction. Note that the direction in which the magnetic field is oriented needs to be determined in consideration of the magnetic field direction required for the permanent magnet 1 formed from the magnet powder 43.
  • the slurry when using the wet method, the slurry may be injected while applying a magnetic field to the cavity 54, and wet molding may be performed by applying a magnetic field stronger than the initial magnetic field during or after the injection. Further, the magnetic field generating coils 55 and 56 may be arranged so that the application direction is perpendicular to the pressing direction.
  • the compact 71 formed by compacting is held in hydrogen by holding it in a hydrogen atmosphere at 200 ° C. to 900 ° C., more preferably 400 ° C. to 900 ° C. (eg 600 ° C.) for several hours (eg 5 hours).
  • the amount of hydrogen supplied during calcination is 5 L / min.
  • decarbonization is performed in which the organometallic compound is thermally decomposed to reduce the amount of carbon in the calcined body.
  • the calcination treatment in hydrogen is performed under the condition that the carbon content in the calcined body is 0.15 wt% or less, more preferably 0.1 wt% or less. Accordingly, the entire permanent magnet 1 can be densely sintered by the subsequent sintering process, and the residual magnetic flux density and coercive force are not reduced.
  • the molded body 71 calcined by the above-described calcining treatment in hydrogen has a problem that NdH 3 exists and is easily combined with oxygen.
  • the molded body 71 is preliminarily hydrogenated. Since it moves to the below-mentioned baking without making it contact with external air after baking, a dehydrogenation process becomes unnecessary. During the firing, hydrogen in the molded body is released.
  • the sintering process which sinters the molded object 71 calcined by the calcination process in hydrogen is performed.
  • a sintering method of the molded body 71 it is also possible to use pressure sintering which sinters in a state where the molded body 71 is pressed in addition to general vacuum sintering.
  • the temperature is raised to about 800 ° C. to 1080 ° C. at a predetermined rate of temperature rise and held for about 2 hours. During this time, vacuum firing is performed, but the degree of vacuum is preferably 10 ⁇ 4 Torr or less. Thereafter, it is cooled and heat treated again at 600 ° C. to 1000 ° C. for 2 hours.
  • the permanent magnet 1 is manufactured as a result of sintering.
  • pressure sintering examples include hot press sintering, hot isostatic pressing (HIP) sintering, ultrahigh pressure synthetic sintering, gas pressure sintering, and discharge plasma (SPS) sintering.
  • HIP hot isostatic pressing
  • SPS discharge plasma
  • the SPS is uniaxial pressure sintering that pressurizes in a uniaxial direction and is sintered by current sintering. Sintering is preferably used.
  • FIG. 6 is an explanatory view showing a manufacturing process in the second manufacturing method of the permanent magnet 1 according to the present invention.
  • the process until the slurry 42 is generated is the same as the manufacturing process in the first manufacturing method already described with reference to FIG.
  • the produced slurry 42 is dried in advance by vacuum drying or the like before molding, and the dried magnet powder 43 is taken out. Thereafter, the dried magnet powder 43 is calcined in hydrogen by holding it in a hydrogen atmosphere at 200 ° C. to 900 ° C., more preferably 400 ° C. to 900 ° C. (eg 600 ° C.) for several hours (eg 5 hours).
  • the amount of hydrogen supplied during calcination is 5 L / min.
  • decarbonization is performed in which the remaining organometallic compound is thermally decomposed to reduce the amount of carbon in the calcined body.
  • the calcination treatment in hydrogen is performed under the condition that the carbon content in the calcined body is 0.15 wt% or less, more preferably 0.1 wt% or less. Accordingly, the entire permanent magnet 1 can be densely sintered by the subsequent sintering process, and the residual magnetic flux density and coercive force are not reduced.
  • dehydrogenation treatment is performed by holding the powder-like calcined body 82 calcined by calcination in hydrogen at 200 to 600 ° C., more preferably at 400 to 600 ° C. for 1 to 3 hours in a vacuum atmosphere. I do.
  • the degree of vacuum is preferably 0.1 Torr or less.
  • FIG. 7 shows the magnet powder with respect to the exposure time when the Nd magnet powder that has been calcined in hydrogen and the Nd magnet powder that has not been calcined in hydrogen are exposed to an atmosphere having an oxygen concentration of 7 ppm and an oxygen concentration of 66 ppm, respectively. It is the figure which showed the amount of oxygen in the inside.
  • the oxygen content in the magnet powder increases from 0.4% to 0.8% in about 1000 seconds.
  • the powder-like calcined body 82 subjected to the dehydrogenation treatment is compacted into a predetermined shape by the molding apparatus 50.
  • the details of the molding apparatus 50 are the same as the manufacturing steps in the first manufacturing method already described with reference to FIG.
  • a sintering process for sintering the formed calcined body 82 is performed.
  • the sintering process is performed by vacuum sintering, pressure sintering, or the like, as in the first manufacturing method described above. Since the details of the sintering conditions are the same as those in the manufacturing process in the first manufacturing method already described, description thereof will be omitted. And the permanent magnet 1 is manufactured as a result of sintering.
  • the first manufacturing method in which the magnet particles after molding are calcined in hydrogen are used.
  • the pyrolysis of the organometallic compound can be more easily performed on the entire magnet particle. That is, it becomes possible to more reliably reduce the amount of carbon in the calcined body as compared with the first manufacturing method.
  • the molded body 71 moves to firing without being exposed to the outside air after hydrogen calcination, so that a dehydrogenation step is unnecessary. Therefore, the manufacturing process can be simplified as compared with the second manufacturing method.
  • the dehydrogenation step is not necessary when the firing is performed without contact with the outside air after the hydrogen calcination.
  • Example 1 The alloy composition of the neodymium magnet powder of Example 1 is Nd more than the fraction based on the stoichiometric composition (Nd: 26.7 wt%, Fe (electrolytic iron): 72.3 wt%, B: 1.0 wt%).
  • Nd / Fe / B 32.7 / 65.96 / 1.34 at wt%.
  • 5 wt% of niobium ethoxide as an organometallic compound was added to the pulverized neodymium magnet powder.
  • the calcination treatment was performed by holding the magnet powder before molding at 600 ° C. for 5 hours in a hydrogen atmosphere. The supply amount of hydrogen during calcination is 5 L / min. Further, the sintered calcined body was sintered by SPS sintering. The other steps are the same as those in [Permanent magnet manufacturing method 2] described above.
  • Example 2 The organometallic compound to be added was niobium n-propoxide. Other conditions are the same as in the first embodiment.
  • Example 3 The organometallic compound to be added was niobium n-butoxide. Other conditions are the same as in the first embodiment.
  • Example 4 The organometallic compound to be added was niobium n-hexoxide. Other conditions are the same as in the first embodiment.
  • Example 5 The molded calcined body was sintered by vacuum sintering instead of SPS sintering. Other conditions are the same as in the first embodiment.
  • FIG. 8 is a graph showing the carbon content [wt%] in the permanent magnets of Examples 1 to 4 and Comparative Examples 1 and 2. As shown in FIG. 8, it can be seen that Examples 1 to 4 can greatly reduce the amount of carbon remaining in the magnet particles as compared with Comparative Examples 1 and 2. In particular, in Examples 1 to 4, the amount of carbon remaining in the magnet particles can be 0.15 wt% or less, and in Examples 2 to 4, the amount of carbon remaining in the magnet particles is 0.1 wt% or less. can do.
  • Example 1 and Comparative Example 1 when the same organometallic compound is added, when the calcination treatment in hydrogen is performed, the calcination treatment in hydrogen is not performed.
  • the amount of carbon in the magnet particles can be greatly reduced. That is, it can be seen that so-called decarbonization can be carried out by reducing the amount of carbon in the calcined body by thermally decomposing the organometallic compound by calcination in hydrogen. As a result, it is possible to prevent dense sintering of the entire magnet and a decrease in coercive force.
  • M- (OR) x (wherein M is V, Mo, Zr, Ta, Ti, W or Nb. R is a hydrocarbon) A substituent, which may be linear or branched. X is an arbitrary integer.)
  • an organometallic compound represented by (2) is added, the magnet is compared with the case where another organometallic compound is added. It can be seen that the amount of carbon in the particles can be greatly reduced. That is, the organometallic compound to be added is M- (OR) x (wherein M is V, Mo, Zr, Ta, Ti, W or Nb. R is a substituent composed of hydrocarbon, However, it may be branched.
  • organometallic compound represented by (2) it is understood that decarbonization can be easily performed in the calcination treatment in hydrogen. As a result, it is possible to prevent dense sintering of the entire magnet and a decrease in coercive force. Further, when an organometallic compound composed of an alkyl group, more preferably an organometallic compound composed of an alkyl group having 2 to 6 carbon atoms, is used as the organometallic compound to be added, the magnet powder is calcined in a hydrogen atmosphere. In this case, it becomes possible to perform thermal decomposition of the organometallic compound at a low temperature. Thereby, the thermal decomposition of the organometallic compound can be more easily performed on the entire magnet particle.
  • FIG. 9 is a diagram showing an SEM photograph after sintering of the permanent magnet of Example 1 and the elemental analysis results of the grain boundary phase.
  • FIG. 10 is a diagram showing an SEM photograph after sintering of the permanent magnet of Example 2 and the elemental analysis results of the grain boundary phase.
  • FIG. 11 is a diagram in which the distribution state of the Nb element is mapped in the same field of view as the SEM photograph after sintering of the permanent magnet of Example 2 and the SEM photograph.
  • FIG. 9 is a diagram showing an SEM photograph after sintering of the permanent magnet of Example 1 and the elemental analysis results of the grain boundary phase.
  • FIG. 10 is a diagram showing an SEM photograph after sintering of the permanent magnet of Example 2 and the elemental analysis results of the grain boundary phase.
  • FIG. 11 is a diagram in which the distribution state of the Nb element is mapped in the same field of view as the SEM photograph after sintering of the permanent magnet of Example 2 and the SEM photograph.
  • FIG. 12 is a view showing an SEM photograph after sintering of the permanent magnet of Example 3 and the elemental analysis results of the grain boundary phase.
  • FIG. 13 is a diagram in which the Nb element distribution state is mapped in the same field of view as the SEM photograph and the SEM photograph after sintering of the permanent magnet of Example 3.
  • FIG. 14 is an SEM photograph after sintering of the permanent magnet of Example 4 and the results of elemental analysis of the grain boundary phase.
  • FIG. 15 is a diagram in which the Nb element distribution state is mapped in the same field of view as the SEM photograph after sintering of the permanent magnet of Example 4 and the SEM photograph. As shown in FIGS.
  • Nb is detected from the grain boundary phase. That is, in the permanent magnets of Examples 1 to 4, it can be seen that in the grain boundary phase, a phase of NbFe-based intermetallic compound in which a part of Nd is substituted with Nb is generated on the surface of the main phase particle.
  • the white portion indicates the distribution of the Nb element.
  • the white portion of the mapping diagram (that is, the Nb element) is unevenly distributed around the main phase. That is, it can be seen that in the permanent magnet of Example 2, Nb is not diffused from the grain boundary phase to the main phase, and Nb is unevenly distributed at the grain boundaries of the magnet.
  • the white portion indicates the distribution of the Nb element. Referring to the SEM photograph and mapping diagram of FIG. 13, the white portion (that is, Nb element) of the mapping diagram is unevenly distributed around the main phase.
  • the white portion indicates the distribution of the Nb element. Referring to the SEM photograph and mapping diagram of FIG. 15, the white portion (that is, Nb element) of the mapping diagram is unevenly distributed around the main phase. That is, it can be seen that in the permanent magnet of Example 4, Nb is not diffused from the grain boundary phase to the main phase, and Nb is unevenly distributed at the grain boundaries of the magnet.
  • FIG. 16 is a view showing an SEM photograph after sintering of the permanent magnet of Comparative Example 1.
  • FIG. 17 is a view showing an SEM photograph after sintering of the permanent magnet of Comparative Example 2.
  • a sintered permanent magnet is formed from a main phase (Nd 2 Fe 14 B) 91 of a neodymium magnet and a grain boundary phase 92 that looks like white spots.
  • ⁇ Fe phase is also formed.
  • Comparative Example 2 where the amount of residual carbon is larger than in Examples 1 to 4 and Comparative Example 1, in addition to the main phase 91 and the grain boundary phase 92, a large number of ⁇ Fe phases 93 that appear as black bands are formed. .
  • ⁇ Fe is generated by carbide remaining during sintering. That is, since the reactivity between Nd and C is very high, if the C-containing material in the organometallic compound remains at a high temperature in the sintering process as in Comparative Example 2, carbide is formed. As a result, ⁇ Fe is precipitated in the main phase of the sintered magnet by the formed carbide, and the magnetic properties are greatly deteriorated.
  • Examples 1 to 4 by using an appropriate organometallic compound as described above and carrying out a calcination treatment in hydrogen, the organometallic compound is thermally decomposed, and the contained carbon is burnt out in advance (the amount of carbon is reduced). Reduced).
  • the contained carbon can be burned out more than necessary, and the carbon remaining in the magnet after sintering.
  • the amount can be 0.15 wt% or less, more preferably 0.1 wt% or less.
  • the organometallic compound to be added preferably has a low molecular weight (for example, one composed of an alkyl group having 2 to 6 carbon atoms). Used.
  • FIG. 18 is a graph showing the carbon amount [wt%] in a plurality of permanent magnets manufactured by changing the calcination temperature conditions for the permanent magnets of Example 5 and Comparative Examples 3 and 4.
  • FIG. 18 shows the result of maintaining the supply amounts of hydrogen and helium during calcination at 1 L / min for 3 hours. As shown in FIG. 18, it can be seen that the amount of carbon in the magnet particles can be greatly reduced when calcined in a hydrogen atmosphere as compared with calcining in a He atmosphere or a vacuum atmosphere. Also, from FIG.
  • the carbon content is greatly reduced if the calcining temperature at the time of calcining the magnet powder in a hydrogen atmosphere is increased, and in particular, the carbon content is 0.15 wt. It can be seen that it is possible to make the value less than or equal to%.
  • M- (OR) x (where M is V, Mo) with respect to the fine powder of the pulverized neodymium magnet.
  • the organometallic compound solution is added to uniformly adhere the organometallic compound to the surface of the neodymium magnet particles. Thereafter, the green compact is subjected to a calcining treatment in hydrogen by holding it in a hydrogen atmosphere at 200 ° C. to 900 ° C. for several hours.
  • the permanent magnet 1 is manufactured by performing vacuum sintering or pressure sintering.
  • the added Nb or the like can be efficiently distributed on the grain boundaries of the magnet.
  • the grain growth of magnet particles during sintering can be suppressed, and after sintering, the exchange interaction between the crystal particles is interrupted to prevent the magnetization reversal of each crystal particle and improve the magnetic performance. It becomes possible to make it.
  • decarbonization can be easily performed as compared with the case where other organometallic compounds are added, and there is no possibility that the coercive force is reduced by the carbon contained in the sintered magnet. The whole can be sintered precisely.
  • Nb or the like which is a high melting point metal
  • Nb or the like which is a high melting point metal
  • Nb or the like that is unevenly distributed at the grain boundaries suppresses the grain growth of the magnet particles during sintering, and the crystals after sintering By breaking the exchange interaction between particles, it is possible to prevent the magnetization reversal of each crystal particle and improve the magnetic performance.
  • the addition amount of Nb etc. is small compared with the past, the fall of a residual magnetic flux density can be suppressed.
  • a magnet to which an organometallic compound is added is calcined in a hydrogen atmosphere before sintering, so that the organometallic compound is thermally decomposed and carbon contained in the magnet particles is preliminarily burned out (the amount of carbon is reduced).
  • the carbide is hardly formed in the sintering process.
  • a large number of ⁇ Fe is not precipitated in the main phase of the magnet after sintering, and the magnet characteristics are not greatly deteriorated.
  • the magnet powder or molded body can be produced in a hydrogen atmosphere.
  • the thermal decomposition of the organometallic compound can be more easily performed on the entire magnet powder or the entire compact.
  • the step of calcining the magnet powder or the molded body is performed by holding the molded body for a predetermined time in a temperature range of 200 ° C. to 900 ° C., more preferably 400 ° C.
  • the amount of carbon remaining in the magnet after sintering is 0.15 wt% or less, more preferably 0.1 wt% or less, so that no voids are formed between the main phase of the magnet and the grain boundary phase, and It becomes possible to make the whole magnet into a densely sintered state, and it is possible to prevent the residual magnetic flux density from being lowered. Further, a large number of ⁇ Fe is not precipitated in the main phase of the magnet after sintering, and the magnet characteristics are not greatly deteriorated.
  • the pyrolysis of the organometallic compound is performed in comparison with the case of calcining the molded magnet particles. This can be done more easily for the whole particle. That is, the amount of carbon in the calcined body can be reduced more reliably. Further, by performing the dehydrogenation treatment after the calcination treatment, the activity of the calcined body activated by the calcination treatment can be reduced. As a result, the magnet particles are prevented from being combined with oxygen thereafter, and the residual magnetic flux density and coercive force are not reduced. In addition, since the step of performing the dehydrogenation process is performed by holding the magnet powder in a temperature range of 200 ° C.
  • NdH 3 having high activity is contained in the Nd-based magnet that has been subjected to the hydrogen calcining process. Even if is generated, it is possible to shift to NdH 2 having low activity without leaving any.
  • this invention is not limited to the said Example, Of course, various improvement and deformation
  • the pulverization conditions, kneading conditions, calcination conditions, dehydrogenation conditions, sintering conditions, etc. of the magnet powder are not limited to the conditions described in the above examples.
  • niobium ethoxide, niobium n-propoxide, niobium n-butoxide and niobium n-hexoxide are used as organometallic compounds containing Nb and the like added to the magnet powder, but M- ( OR) x (wherein M is V, Mo, Zr, Ta, Ti, W or Nb. R is a substituent composed of hydrocarbon, which may be linear or branched. X is an arbitrary integer.
  • organometallic compounds may be used as long as they are organometallic compounds represented by For example, an organometallic compound composed of an alkyl group having 7 or more carbon atoms or an organometallic compound composed of a substituent composed of a hydrocarbon other than an alkyl group may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 仮焼処理により活性化された仮焼体の活性度を低下させる永久磁石及び永久磁石の製造方法を提供する。 粉砕されたネオジウム磁石の微粉末に対して、M-(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥させた磁石粉末を水素雰囲気において200℃~900℃で数時間保持することにより水素中仮焼処理を行い、更に、水素中仮焼処理によって仮焼された粉末状の仮焼体を真空雰囲気で200℃~600℃で数時間保持することにより脱水素処理を行う。

Description

永久磁石及び永久磁石の製造方法
 本発明は、永久磁石及び永久磁石の製造方法に関する。
 近年、ハイブリッドカーやハードディスクドライブ等に使用される永久磁石モータでは、小型軽量化、高出力化、高効率化が要求されている。そして、上記永久磁石モータにおいて小型軽量化、高出力化、高効率化を実現するに当たって、永久磁石モータに埋設される永久磁石について、薄膜化と更なる磁気特性の向上が求められている。尚、永久磁石としてはフェライト磁石、Sm-Co系磁石、Nd-Fe-B系磁石、SmFe17系磁石等があるが、特に残留磁束密度の高いNd-Fe-B系磁石が永久磁石モータ用の永久磁石として用いられる。
 ここで、永久磁石の製造方法としては、一般的に粉末焼結法が用いられる。ここで、粉末焼結法は、先ず原材料を粗粉砕し、ジェットミル(乾式粉砕)により微粉砕した磁石粉末を製造する。その後、その磁石粉末を型に入れて、外部から磁場を印加しながら所望の形状にプレス成形する。そして、所望形状に成形された固形状の磁石粉末を所定温度(例えばNd-Fe-B系磁石では800℃~1150℃)で焼結することにより製造する。
 一方、Nd-Fe-B等のNd系磁石は、耐熱温度が低いことが問題であった。従って、Nd系磁石を永久磁石モータに用いる場合には、該モータを連続駆動させると磁石の保磁力や残留磁束密度が徐々に低下することとなっていた。そこで、Nd系磁石を永久磁石モータに用いる場合には、Nd系磁石の耐熱性を向上させるために、磁気異方性の高いDy(ジスプロシウム)やTb(テルビウム)を添加し、磁石の保磁力を更に向上させることが図られている。
 その一方で、DyやTbを使用することなく、磁石の保磁力を向上させることも考えられる。例えば、永久磁石の磁気特性は、磁石の磁気特性が単磁区微粒子理論により導かれるために、焼結体の結晶粒径を微小にすれば磁気性能が基本的に向上することが知られている。ここで、焼結体の結晶粒径を微小にするためには、焼結前の磁石原料の粒径も微小にする必要がある。しかし、微小な粒径に微粉砕された磁石原料を成形し、焼結したとしても、焼結する際に磁石粒子の粒成長が発生するので、焼結後の焼結体の結晶粒径が焼結前よりも大きくなり、微小な結晶粒径を実現することができなかった。そして、結晶粒径が大きくなると、粒内において発生した磁壁が容易に移動するために保磁力が著しく低下する。
 そこで、磁石粒子の粒成長を抑える手段として、磁石粒子の粒成長を抑える材料(以下、粒成長抑制剤という)を焼結前の磁石原料に添加する方法が考えられる。この方法によれば、焼結前の磁石粒子の表面を、例えば焼結温度より高い融点を備える金属化合物等の粒成長抑制剤で被覆することによって、焼結時の磁石粒子の粒成長を抑えることが可能となる。例えば、特開2004-250781号公報ではリンを粒成長抑制剤として磁石粉末に添加している。
特許第3298219号公報(第4頁、第5頁) 特開2004-250781号公報(第10~12頁、図2)
 しかし、前記特許文献2のように予め粒成長抑制剤を磁石原料のインゴット内に含有させることによって磁石粉末に添加することとすると、焼結後において粒成長抑制剤は磁石粒子の表面に位置せずに、磁石粒子内に拡散する。その結果、焼結時における粒成長の抑制を十分に図ることができず、また、磁石の残留磁束密度が低下する原因にもなっていた。また、粒成長を抑制することによって焼結後の各磁石粒子を微小にすることができたとしても、焼結後の各磁石粒子が密な状態にあると、各磁石粒子間で交換相互作用が伝搬することが考えられる。その結果、外部から磁場が加わった場合に各磁石粒子の磁化反転が容易に生じ、保磁力が低下する問題があった。
 また、粒成長抑制剤を有機溶媒中に分散させた状態でNd系磁石に添加することにより、粒成長抑制剤を磁石の粒界に対して偏在配置することも考えられる。しかしながら、一般的に有機溶媒を磁石に添加すると、後に真空乾燥等を行うことによって有機溶媒を揮発させたとしてもC含有物が磁石内に残留することとなる。ここで、従来よりNd系磁石中にC含有物が残留していると、焼結時において磁石に悪影響を及ぼすことが知られている。これは、Ndと炭素との反応性が非常に高いためであり、焼結工程において高温までC含有物が残ると、カーバイドを形成する。その結果、形成されたカーバイドによって焼結後の磁石の主相と粒界相との間に空隙が生じ、磁石全体を緻密に焼結できずに磁気性能が著しく低下する問題があった。また、空隙が生じなかった場合でも、形成されたカーバイドによって焼結後の磁石の主相内にαFeが析出し、磁石特性を大きく低下させる問題があった。そこで、磁石を焼結前する前に、水素雰囲気下で仮焼処理することにより、C含有物を熱分解させて含有する炭素を焼失させる技術が考えられる。しかしながら、上述した仮焼処理によって仮焼されたNd系磁石には、活性度の高いNdH3が生成され、酸素と結び付きやすくなる問題がある。
 本発明は前記従来における問題点を解消するためになされたものであり、有機金属化合物に含まれるV、Mo、Zr、Ta、Ti、W又はNbを磁石の粒界に対して効率よく偏在配置することが可能となるとともに、仮焼処理により活性化された仮焼体の活性度を低下させることにより、その後に磁石粒子が酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い永久磁石及び永久磁石の製造方法を提供することを目的とする。
 前記目的を達成するため本発明に係る永久磁石は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末に以下の構造式M-(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、前記有機金属化合物が粒子表面に付着された前記磁石粉末を水素雰囲気で仮焼して仮焼体を得る工程と、前記仮焼体を真空雰囲気で加熱することにより脱水素処理を行う工程と、前記脱水素処理された前記仮焼体を成形することにより成形体を形成する工程と、前記成形体を焼結する工程と、により製造されることを特徴とする。
 また、本発明に係る永久磁石は、前記有機金属化合物を形成する金属が、焼結後に前記永久磁石の粒界に偏在していることを特徴とする。
 また、本発明に係る永久磁石は、前記構造式M-(OR)のRが、アルキル基であることを特徴とする。
 また、本発明に係る永久磁石は、前記構造式M-(OR)のRが、炭素数2~6のアルキル基のいずれかであることを特徴とする。
 また、本発明に係る永久磁石は、焼結後に残存する炭素量が0.15wt%以下であることを特徴とする。
 また、本発明に係る永久磁石は、前記成形体を仮焼する工程は、200℃~900℃の温度範囲で前記成形体を所定時間保持することを特徴とする。
 また、本発明に係る永久磁石は、前記脱水素処理を行う工程は、真空雰囲気において200℃~600℃の温度範囲で前記磁石粉末を所定時間保持することを特徴とする。
 また、本発明に係る永久磁石の製造方法は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末に以下の構造式M-(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rはアルキル基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、前記有機金属化合物が粒子表面に付着された前記磁石粉末を水素雰囲気で仮焼して仮焼体を得る工程と、前記仮焼体を減圧雰囲気で加熱することにより脱水素処理を行う工程と、前記脱水素処理された前記仮焼体を成形することにより成形体を形成する工程と、前記成形体を焼結する工程と、を有することを特徴とする。
 また、本発明に係る永久磁石の製造方法は、前記構造式M-(OR)のRが、アルキル基であることを特徴とする。
 また、本発明に係る永久磁石の製造方法は、前記構造式M-(OR)のRが、炭素数2~6のアルキル基のいずれかであることを特徴とする。
 また、本発明に係る永久磁石の製造方法は、前記磁石粉末を仮焼する工程は、200℃~900℃の温度範囲で前記磁石粉末を所定時間保持することを特徴とする。
 更に、本発明に係る永久磁石の製造方法は、前記脱水素処理を行う工程は、真空雰囲気において200℃~600℃の温度範囲で前記磁石粉末を所定時間保持することを特徴とする。
 前記構成を有する本発明に係る永久磁石によれば、有機金属化合物に含まれるV、Mo、Zr、Ta、Ti、W又はNbを磁石の粒界に対して効率よく偏在させることができる。その結果、焼結時の磁石粒子の粒成長を抑制することができるとともに、磁石粒子間での交換相互作用を分断することによって各磁石粒子の磁化反転を妨げ、磁気性能を向上させることが可能となる。また、V、Mo、Zr、Ta、Ti、W又はNbの添加量を従来に比べて少量にできるので、残留磁束密度の低下を抑制することができる。また、仮焼処理後に脱水素処理を行うことによって、仮焼処理により活性化された仮焼体の活性度を低下させることができる。それにより、その後に磁石粒子が酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。
 また、本発明に係る永久磁石によれば、高融点金属であるV、Mo、Zr、Ta、Ti、W又はNbが焼結後に磁石の粒界に偏在するので、粒界に偏在されたV、Mo、Zr、Ta、Ti、W又はNbが焼結時の磁石粒子の粒成長を抑制するとともに、焼結後における磁石粒子間での交換相互作用を分断することによって各磁石粒子の磁化反転を妨げ、磁気性能を向上させることが可能となる。
 また、本発明に係る永久磁石によれば、磁石粉末に添加する有機金属化合物として、アルキル基から構成される有機金属化合物を用いるので、水素雰囲気で磁石粉末を仮焼する際に、有機金属化合物の熱分解を容易に行うことが可能となる。その結果、仮焼体中の炭素量をより確実に低減させることが可能となる。
 また、本発明に係る永久磁石によれば、磁石粉末に添加する有機金属化合物として、炭素数2~6のアルキル基から構成される有機金属化合物を用いるので、水素雰囲気で磁石粉末を仮焼する際に、低温で有機金属化合物の熱分解を行うことが可能となる。その結果、有機金属化合物の熱分解を磁石粉末全体に対してより容易に行うことができる。即ち、仮焼処理によって、仮焼体中の炭素量をより確実に低減させることが可能となる。
 また、本発明に係る永久磁石によれば、焼結後に残存する炭素量が0.15wt%以下であるので、磁石の主相と粒界相との間に空隙が生じることなく、また、磁石全体を緻密に焼結した状態とすることが可能となり、残留磁束密度が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
 また、本発明に係る永久磁石によれば、成形体を仮焼する工程は、200℃~900℃の温度範囲で成形体を所定時間保持することにより行うので、有機金属化合物を確実に熱分解させて含有する炭素を必要量以上焼失させることができる。
 また、本発明に係る永久磁石によれば、脱水素処理を行う工程は、200℃~600℃の温度範囲で磁石粉末を所定時間保持することにより行うので、水素仮焼中処理を行ったNd系磁石中に活性度の高いNdH3が生成された場合であっても、残さずに活性度の低いNdH2へと移行させることが可能となる。
 また、本発明に係る永久磁石の製造方法によれば、有機金属化合物に含まれるV、Mo、Zr、Ta、Ti、W又はNbを磁石の粒界に対して効率よく偏在させた永久磁石を製造することが可能となる。その結果、製造された永久磁石において、焼結時の磁石粒子の粒成長を抑制することができるとともに、磁石粒子間での交換相互作用を分断することによって各磁石粒子の磁化反転を妨げ、磁気性能を向上させることが可能となる。また、V、Mo、Zr、Ta、Ti、W又はNbの添加量を従来に比べて少量にできるので、残留磁束密度の低下を抑制することができる。また、仮焼処理後に脱水素処理を行うことによって仮焼処理により活性化された仮焼体の活性度を低下させることができる。それにより、その後に磁石粒子が酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。
 また、本発明に係る永久磁石の製造方法によれば、磁石粉末に添加する有機金属化合物として、アルキル基から構成される有機金属化合物を用いるので、水素雰囲気で磁石粉末を仮焼する際に、有機金属化合物の熱分解を容易に行うことが可能となる。その結果、仮焼体中の炭素量をより確実に低減させることが可能となる。
 また、本発明に係る永久磁石の製造方法によれば、磁石粉末に添加する有機金属化合物として、炭素数2~6のアルキル基から構成される有機金属化合物を用いるので、水素雰囲気で磁石粉末を仮焼する際に、低温で有機金属化合物の熱分解を行うことが可能となる。その結果、有機金属化合物の熱分解を磁石粉末全体に対してより容易に行うことができる。即ち、仮焼処理によって、仮焼体中の炭素量をより確実に低減させることが可能となる。
 また、本発明に係る永久磁石の製造方法によれば、成形体を仮焼する工程は、200℃~900℃の温度範囲で成形体を所定時間保持することにより行うので、有機金属化合物を確実に熱分解させて含有する炭素を必要量以上焼失させることができる。
 更に、本発明に係る永久磁石の製造方法によれば、脱水素処理を行う工程は、200℃~600℃の温度範囲で磁石粉末を所定時間保持することにより行うので、水素仮焼中処理を行ったNd系磁石中に活性度の高いNdH3が生成された場合であっても、残さずに活性度の低いNdHへと移行させることが可能となる。
図1は、本発明に係る永久磁石を示した全体図である。 図2は、本発明に係る永久磁石の粒界付近を拡大して示した模式図である。 図3は、強磁性体の磁区構造を示した模式図である。 図4は、本発明に係る永久磁石の粒界付近を拡大して示した模式図である。 図5は、本発明に係る永久磁石の第1の製造方法における製造工程を示した説明図である。 図6は、本発明に係る永久磁石の第2の製造方法における製造工程を示した説明図である。 図7は、水素中仮焼処理を行った場合と行わなかった場合の酸素量の変化を示した図である。 図8は、実施例1~4と比較例1、2の永久磁石の永久磁石中の残存炭素量を示した図である。 図9は、実施例1の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。 図10は、実施例2の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。 図11は、実施例2の永久磁石の焼結後のSEM写真及びSEM写真と同一視野でNb元素の分布状態をマッピングした図である。 図12は、実施例3の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。 図13は、実施例3の永久磁石の焼結後のSEM写真及びSEM写真と同一視野でNb元素の分布状態をマッピングした図である。 図14は、実施例4の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。 図15は、実施例4の永久磁石の焼結後のSEM写真及びSEM写真と同一視野でNb元素の分布状態をマッピングした図である。 図16は、比較例1の永久磁石の焼結後のSEM写真を示した図である。 図17は、比較例2の永久磁石の焼結後のSEM写真を示した図である。 図18は、実施例5と比較例3、4の永久磁石について、仮焼温度の条件を変更して製造した複数の永久磁石中の炭素量を示した図である。
 以下、本発明に係る永久磁石及び永久磁石の製造方法について具体化した実施形態について以下に図面を参照しつつ詳細に説明する。
[永久磁石の構成]
 先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示す永久磁石1は円柱形状を備えるが、永久磁石1の形状は成形に用いるキャビティの形状によって変化する。
 本発明に係る永久磁石1としては例えばNd-Fe-B系磁石を用いる。また、永久磁石1を形成する各結晶粒子の界面(粒界)には、永久磁石1の保磁力を高める為のNb(ニオブ)、V(バナジウム)、Mo(モリブデン)、Zr(ジルコニウム)、Ta(タンタル)、Ti(チタン)又はW(タングステン)が偏在する。尚、各成分の含有量はNd:25~37wt%、Nb、V、Mo、Zr、Ta、Ti、Wのいずれか(以下、Nb等という):0.01~5wt%、B:1~2wt%、Fe(電解鉄):60~75wt%とする。また、磁気特性向上の為、Co、Cu、Al、Si等の他元素を少量含んでも良い。
 具体的に、本発明に係る永久磁石1は、図2に示すように永久磁石1を構成するNd結晶粒子10の結晶粒の表面部分(外殻)において、Ndの一部を高融点金属であるNb等で置換した層11(以下、高融点金属層11という)を生成することにより、Nb等をNd結晶粒子10の粒界に対して偏在させる。図2は永久磁石1を構成するNd結晶粒子10を拡大して示した図である。尚、高融点金属層11は、非磁性となることが好ましい。
 ここで、本発明ではNb等の置換は、後述のように粉砕された磁石粉末を成形する前にNb等を含む有機金属化合物が添加されることにより行われる。具体的には、Nb等を含む有機金属化合物を添加した磁石粉末を焼結する際に、湿式分散によりNd結晶粒子10の粒子表面に均一付着された該有機金属化合物中のNb等が、Nd結晶粒子10の結晶成長領域へと拡散侵入して置換が行われ、図2に示す高融点金属層11を形成する。尚、Nd結晶粒子10は、例えばNd2Fe14B金属間化合物から構成され、高融点金属層11は例えばNbFeB金属間化合物から構成される。
 また、本発明では、特に後述のようにM-(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされるNb等を含む有機金属化合物(例えば、ニオブエトキシド、ニオブn-プロポキシド、ニオブn-ブトキシド、ニオブn-ヘキソキシドなど)を有機溶媒に添加し、湿式状態で磁石粉末に混合する。それにより、Nb等を含む有機金属化合物を有機溶媒中で分散させ、Nd結晶粒子10の粒子表面にNb等を含む有機金属化合物を均一付着することが可能となる。
 ここで、上記M-(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)の構造式を満たす有機金属化合物として金属アルコキシドがある。金属アルコキシドとは、一般式M(OR)(M:金属元素、R:有機基、n:金属又は半金属の価数)で表される。また、金属アルコキシドを形成する金属又は半金属としては、W、Mo、V、Nb、Ta、Ti、Zr、Ir、Fe、Co、Ni、Cu、Zn、Cd、Al、Ga、In、Ge、Sb、Y、lanthanideなどが挙げられる。但し、本発明では特に、高融点金属を用いる。更に、後述のように焼結時における磁石の主相との相互拡散防止する目的から、高融点金属の内でも特にV、Mo、Zr、Ta、Ti、W又はNbを用いることが好ましい。
 また、アルコキシドの種類は特に限定されることなく、例えば、メトキシド、エトキシド、プロポキシド、イソプロポキシド、ブトキシド、炭素数4以上のアルコキシド等が挙げられる。但し、本発明では後述のように低温分解で残炭を抑制する目的から、低分子量のものを用いる。また、炭素数1のメトキシドについては分解し易く、取扱いが困難であるので、特にRに含まれる炭素数が2~6のアルコキシドであるエトキシド、メトキシド、イソプロポキシド、プロポキシド、ブトキシドなどを用いることが好ましい。即ち、本発明では、特に磁石粉末に添加する有機金属化合物としてM-(OR)x(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rはアルキル基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物、より好ましくは、M-(OR)x(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭素数2~6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を用いることが望ましい。
 また、圧粉成形により成形された成形体を適切な焼成条件で焼成すれば、Nb等がNd結晶粒子10内へと拡散浸透(固溶化)することを防止できる。それにより、本発明では、Nb等を添加したとしても焼結後に粒界のみにNb等を偏在させることができる。その結果、結晶粒全体としては(すなわち、焼結磁石全体としては)、コアのNd2Fe14B金属間化合物相が高い体積割合を占めた状態となる。それにより、その磁石の残留磁束密度(外部磁場の強さを0にしたときの磁束密度)の低下を抑制することができる。
 また、一般的に、焼結後の各Nd結晶粒子10が密な状態にあると、各Nd結晶粒子10間で交換相互作用が伝搬することが考えられる。その結果、外部から磁場が加わった場合に各結晶粒子の磁化反転が容易に生じ、仮に焼結後の結晶粒子をそれぞれ単磁区構造とすることができたとしても、保磁力は低下する。しかしながら、本発明では、Nd結晶粒子10の表面にコーティングされた非磁性の高融点金属層11によって、Nd結晶粒子10間での交換相互作用を分断され、外部から磁場が加わった場合でも各結晶粒子の磁化反転を妨げる。
 また、Nd結晶粒子10の表面にコーティングされた高融点金属層11は、永久磁石1の焼結時においてはNd結晶粒子10の平均粒径が増加する所謂粒成長を抑制する手段としても機能する。以下に、高融点金属層11による永久磁石1の粒成長抑制の機構について図3を用いて説明する。図3は強磁性体の磁区構造を示した模式図である。
 一般的に、結晶と別の結晶との間に残された不連続な境界面である粒界は過剰なエネルギをもつため、高温ではエネルギを低下させようとする粒界移動が起こる。従って、高温(例えばNd-Fe-B系磁石では800℃~1150℃)で磁石原料の焼結を行うと、小さな磁石粒子は収縮して消失し、残った磁石粒子の平均粒径が増加する所謂粒成長が発生する。
 ここで、本発明では、M-(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を添加することにより、図3に示すように磁石粒子の界面に高融点金属であるNb等が偏在化される。そして、この偏在化された高融点金属により、高温時に発生する粒界の移動が妨げられ、粒成長を抑制することができる。
 また、Nd結晶粒子10の粒径Dは0.2μm~1.2μm、好ましくは0.3μm程度とすることが望ましい。また、高融点金属層11の厚さdが2nm程度あれば、焼結時のNd磁石粒子の粒成長を抑制でき、また、Nd結晶粒子10間での交換相互作用を分断することができる。但し、高融点金属層11の厚さdが大きくなりすぎると、磁性を発現しない非磁性成分の含有率が大きくなるので、残留磁束密度が低下することとなる。
 尚、高融点金属をNd結晶粒子10の粒界に対して偏在させる構成としては、図4に示すようにNd結晶粒子10の粒界に対して高融点金属からなる粒12を点在させる構成としても良い。図4に示す構成であっても、同様の効果(粒成長抑制、交換相互作用の分断)を得ることが可能となる。尚、高融点金属がNd結晶粒子10の粒界に対してどのように偏在しているかは、例えばSEMやTEMや3次元アトムプローブ法により確認することができる。
 また、高融点金属層11はNb化合物、V化合物、Mo化合物、Zr化合物、Ta化合物、Ti化合物又はW化合物(以下、Nb等化合物という)のみから構成される層である必要はなく、Nb等化合物とNd化合物との混合体からなる層であっても良い。その場合には、Nd化合物を添加することによって、Nb等化合物とNd化合物との混合体からなる層を形成する。その結果、Nd磁石粉末の焼結時の液相焼結を助長することができる。尚、添加するNd化合物としては、NdH、酢酸ネオジム水和物、ネオジム(III)アセチルアセトナート三水和物、2-エチルヘキサン酸ネオジム(III)、ネオジム(III)ヘキサフルオロアセチルアセトナート二水和物、ネオジムイソプロポキシド、リン酸ネオジニウム(III)n水和物、ネオジムトリフルオロアセチルアセトナート、トリフルオロメタンスルホン酸ネオジム等が望ましい。
[永久磁石の製造方法1]
 次に、本発明に係る永久磁石1の第1の製造方法について図5を用いて説明する。図5は本発明に係る永久磁石1の第1の製造方法における製造工程を示した説明図である。
 先ず、所定分率のNd-Fe-B(例えばNd:32.7wt%、Fe(電解鉄):65.96wt%、B:1.34wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。
 次いで、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001~0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミル41により微粉砕し、所定サイズ以下(例えば0.1μm~5.0μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。
 一方で、ジェットミル41で微粉砕された微粉末に添加する有機金属化合物溶液を作製する。ここで、有機金属化合物溶液には予めNb等を含む有機金属化合物を添加し、溶解させる。尚、溶解させる有機金属化合物としては、M-(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2~6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物(例えば、ニオブエトキシド、ニオブn-プロポキシド、ニオブn-ブトキシド、ニオブn-ヘキソキシドなど)を用いることが望ましい。また、溶解させるNb等を含む有機金属化合物の量は特に制限されないが、焼結後の磁石に対するNb等の含有量が0.001wt%~10wt%、好ましくは0.01wt%~5wt%となる量とするのが好ましい。
 続いて、ジェットミル41にて分級された微粉末に対して上記有機金属化合物溶液を添加する。それによって、磁石原料の微粉末と有機金属化合物溶液とが混合されたスラリー42を生成する。尚、有機金属化合物溶液の添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。
 その後、生成したスラリー42を成形前に真空乾燥などで事前に乾燥させ、乾燥した磁石粉末43を取り出す。その後、乾燥した磁石粉末を成形装置50により所定形状に圧粉成形する。尚、圧粉成形には、上記の乾燥した微粉末をキャビティに充填する乾式法と、溶媒などでスラリー状にしてからキャビティに充填する湿式法があるが、本発明では乾式法を用いる場合を例示する。また、有機金属化合物溶液は成形後の焼成段階で揮発させることも可能である。
 図5に示すように、成形装置50は、円筒状のモールド51と、モールド51に対して上下方向に摺動する下パンチ52と、同じくモールド51に対して上下方向に摺動する上パンチ53とを有し、これらに囲まれた空間がキャビティ54を構成する。
 また、成形装置50には一対の磁界発生コイル55、56がキャビティ54の上下位置に配置されており、磁力線をキャビティ54に充填された磁石粉末43に印加する。印加させる磁場は例えば1MA/mとする。
 そして、圧粉成形を行う際には、先ず乾燥した磁石粉末43をキャビティ54に充填する。その後、下パンチ52及び上パンチ53を駆動し、キャビティ54に充填された磁石粉末43に対して矢印61方向に圧力を加え、成形する。また、加圧と同時にキャビティ54に充填された磁石粉末43に対して、加圧方向と平行な矢印62方向に磁界発生コイル55、56によってパルス磁場を印加する。それによって、所望の方向に磁場を配向させる。尚、磁場を配向させる方向は、磁石粉末43から成形される永久磁石1に求められる磁場方向を考慮して決定する必要がある。
 また、湿式法を用いる場合には、キャビティ54に磁場を印加しながらスラリーを注入し、注入途中又は注入終了後に、当初の磁場より強い磁場を印加して湿式成形しても良い。また、加圧方向に対して印加方向が垂直となるように磁界発生コイル55、56を配置しても良い。
 次に、圧粉成形により成形された成形体71を水素雰囲気において200℃~900℃、より好ましくは400℃~900℃(例えば600℃)で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。仮焼中の水素の供給量は5L/minとする。この水素中仮焼処理では、有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンが行われる。また、水素中仮焼処理は、仮焼体中の炭素量が0.15wt%以下、より好ましくは0.1wt%以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。
 ここで、上述した水素中仮焼処理によって仮焼された成形体71には、NdH3が存在し、酸素と結び付きやすくなる問題があるが、第1の製造方法では、成形体71は水素仮焼後に外気と触れさせることなく後述の焼成に移るため、脱水素工程は不要となる。焼成中に成形体中の水素は抜けることとなる。
 続いて、水素中仮焼処理によって仮焼された成形体71を焼結する焼結処理を行う。尚、成形体71の焼結方法としては、一般的な真空焼結以外に成形体71を加圧した状態で焼結する加圧焼結等も用いることが可能である。例えば、真空焼結で焼結を行う場合には、所定の昇温速度で800℃~1080℃程度まで昇温し、2時間程度保持する。この間は真空焼成となるが真空度としては10-4Torr以下とすることが好ましい。その後冷却し、再び600℃~1000℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。
 一方、加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、焼結時の磁石粒子の粒成長を抑制するとともに焼結後の磁石に生じる反りを抑える為に、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが好ましい。尚、SPS焼結で焼結を行う場合には、加圧値を30MPaとし、数Pa以下の真空雰囲気で940℃まで10℃/分で上昇させ、その後5分保持することが好ましい。その後冷却し、再び600℃~1000℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。
[永久磁石の製造方法2]
 次に、本発明に係る永久磁石1の他の製造方法である第2の製造方法について図6を用いて説明する。図6は本発明に係る永久磁石1の第2の製造方法における製造工程を示した説明図である。
 尚、スラリー42を生成するまでの工程は、図5を用いて既に説明した第1の製造方法における製造工程と同様であるので説明は省略する。
 先ず、生成したスラリー42を成形前に真空乾燥などで事前に乾燥させ、乾燥した磁石粉末43を取り出す。その後、乾燥した磁石粉末43を水素雰囲気において200℃~900℃、より好ましくは400℃~900℃(例えば600℃)で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。仮焼中の水素の供給量は5L/minとする。この水素中仮焼処理では、残存する有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンが行われる。また、水素中仮焼処理は、仮焼体中の炭素量が0.15wt%以下、より好ましくは0.1wt%以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。
 次に、水素中仮焼処理によって仮焼された粉末状の仮焼体82を真空雰囲気で200℃~600℃、より好ましくは400℃~600℃で1~3時間保持することにより脱水素処理を行う。尚、真空度としては0.1Torr以下とすることが好ましい。
 ここで、上述した水素中仮焼処理によって仮焼された仮焼体82には、NdH3が存在し、酸素と結び付きやすくなる問題がある。
 図7は水素中仮焼処理をしたNd磁石粉末と水素中仮焼処理をしていないNd磁石粉末とを、酸素濃度7ppm及び酸素濃度66ppmの雰囲気にそれぞれ暴露した際に、暴露時間に対する磁石粉末内の酸素量を示した図である。図7に示すように水素中仮焼処理した磁石粉末は、高酸素濃度66ppm雰囲気におかれると、約1000secで磁石粉末内の酸素量が0.4%から0.8%まで上昇する。また、低酸素濃度7ppm雰囲気におかれても、約5000secで磁石粉末内の酸素量が0.4%から同じく0.8%まで上昇する。そして、Nd磁石粒子が酸素と結び付くと、残留磁束密度や保磁力の低下の原因となる。
 そこで、上記脱水素処理では、水素中仮焼処理によって生成された仮焼体82中のNdH3(活性度大)を、NdH3(活性度大)→NdH2(活性度小)へと段階的に変化させることによって、水素仮焼中処理により活性化された仮焼体82の活性度を低下させる。それによって、水素中仮焼処理によって仮焼された仮焼体82をその後に大気中へと移動させた場合であっても、Nd磁石粒子が酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。
 その後、脱水素処理が行われた粉末状の仮焼体82を成形装置50により所定形状に圧粉成形する。成形装置50の詳細については図5を用いて既に説明した第1の製造方法における製造工程と同様であるので説明は省略する。
 その後、成形された仮焼体82を焼結する焼結処理を行う。尚、焼結処理は、上述した第1の製造方法と同様に、真空焼結や加圧焼結等により行う。焼結条件の詳細については既に説明した第1の製造方法における製造工程と同様であるので説明は省略する。そして、焼結の結果、永久磁石1が製造される。
 尚、上述した第2の製造方法では、粉末状の磁石粒子に対して水素中仮焼処理を行うので、成形後の磁石粒子に対して水素中仮焼処理を行う前記第1の製造方法と比較して、有機金属化合物の熱分解を磁石粒子全体に対してより容易に行うことができる利点がある。即ち、前記第1の製造方法と比較して仮焼体中の炭素量をより確実に低減させることが可能となる。
 一方、第1の製造方法では、成形体71は水素仮焼後に外気と触れさせることなく焼成に移るため、脱水素工程は不要となる。従って、前記第2の製造方法と比較して製造工程を簡略化することが可能となる。但し、前記第2の製造方法においても、水素仮焼後に外気と触れさせることがなく焼成を行う場合には、脱水素工程は不要となる。
 以下に、本発明の実施例について比較例と比較しつつ説明する。
(実施例1)
 実施例1のネオジム磁石粉末の合金組成は、化学量論組成に基づく分率(Nd:26.7wt%、Fe(電解鉄):72.3wt%、B:1.0wt%)よりもNdの比率を高くし、例えばwt%でNd/Fe/B=32.7/65.96/1.34とする。また、粉砕したネオジム磁石粉末に有機金属化合物としてニオブエトキシドを5wt%添加した。また、仮焼処理は、成形前の磁石粉末を水素雰囲気において600℃で5時間保持することにより行った。そして、仮焼中の水素の供給量は5L/minとする。また、成形された仮焼体の焼結はSPS焼結により行った。尚、他の工程は上述した[永久磁石の製造方法2]と同様の工程とする。
(実施例2)
 添加する有機金属化合物をニオブn-プロポキシドとした。他の条件は実施例1と同様である。
(実施例3)
 添加する有機金属化合物をニオブn-ブトキシドとした。他の条件は実施例1と同様である。
(実施例4)
 添加する有機金属化合物をニオブn-ヘキソキシドとした。他の条件は実施例1と同様である。
(実施例5)
 成形された仮焼体の焼結をSPS焼結の代わりに真空焼結により行った。他の条件は実施例1と同様である。
(比較例1)
 添加する有機金属化合物をニオブエトキシドとし、水素中仮焼処理を行わずに焼結した。他の条件は実施例1と同様である。
(比較例2)
 添加する有機金属化合物をジルコニウムヘキサフルオロアセチルアセトナートとした。他の条件は実施例1と同様である。
(比較例3)
 仮焼処理を水素雰囲気ではなくHe雰囲気で行った。また、成形された仮焼体の焼結をSPS焼結の代わりに真空焼結により行った。他の条件は実施例1と同様である。
(比較例4)
 仮焼処理を水素雰囲気ではなく真空雰囲気で行った。また、成形された仮焼体の焼結をSPS焼結の代わりに真空焼結により行った。他の条件は実施例1と同様である。
(実施例と比較例の残炭素量の比較検討)
 図8は実施例1~4と比較例1、2の永久磁石の永久磁石中の残存炭素量[wt%]をそれぞれ示した図である。
 図8に示すように、実施例1~4は比較例1、2と比較して磁石粒子中に残存する炭素量を大きく低減させることができることが分かる。特に、実施例1~4では、磁石粒子中に残存する炭素量を0.15wt%以下にでき、更に、実施例2~4では、磁石粒子中に残存する炭素量を0.1wt%以下とすることができる。
 また、実施例1と比較例1とを比較すると、同一の有機金属化合物を添加しているにもかかわらず、水素中仮焼処理を行った場合は、水素中仮焼処理を行わない場合と比較して、磁石粒子中の炭素量を大きく低減させることができることが分かる。即ち、水素中仮焼処理によって有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンを行うことが可能となることが分かる。その結果として、磁石全体の緻密焼結や保磁力の低下を防止することが可能となる。
 また、実施例1~4と比較例2とを比較すると、M-(OR)x(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を添加した場合には、その他の有機金属化合物を添加した場合と比較して、磁石粒子中の炭素量を大きく低減させることができることが分かる。即ち、添加する有機金属化合物を、M-(OR)x(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物とすることにより、水素中仮焼処理において脱カーボンを容易に行うことが可能となることが分かる。その結果として、磁石全体の緻密焼結や保磁力の低下を防止することが可能となる。また、特に添加する有機金属化合物としてアルキル基から構成される有機金属化合物、より好ましくは炭素数2~6のアルキル基から構成される有機金属化合物を用いれば、水素雰囲気で磁石粉末を仮焼する際に、低温で有機金属化合物の熱分解を行うことが可能となる。それによって、有機金属化合物の熱分解を磁石粒子全体に対してより容易に行うことができる。
(実施例の永久磁石におけるXMAによる表面分析結果検討)
 実施例1~4の永久磁石についてXMAによる表面分析を行った。図9は実施例1の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。図10は実施例2の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。図11は実施例2の永久磁石の焼結後のSEM写真及びSEM写真と同一視野でNb元素の分布状態をマッピングした図である。図12は実施例3の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。図13は実施例3の永久磁石の焼結後のSEM写真及びSEM写真と同一視野でNb元素の分布状態をマッピングした図である。図14は実施例4の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。図15は実施例4の永久磁石の焼結後のSEM写真及びSEM写真と同一視野でNb元素の分布状態をマッピングした図である。
 図9、図10、図12、図14に示すように実施例1~4の各永久磁石では、粒界相からNbが検出されている。即ち、実施例1~4の永久磁石では、粒界相において、Ndの一部をNbで置換したNbFe系金属間化合物の相が主相粒子の表面に生成されていることが分かる。
 また、図11のマッピング図は、白い部分がNb元素の分布を示している。図11のSEM写真とマッピング図を参照すると、マッピング図の白い部分(即ち、Nb元素)は主相の周囲辺りに偏在化して分布している。即ち、実施例2の永久磁石は、粒界相から主相へとNbが拡散しておらず、磁石の粒界にNbが偏在化していることが分かる。一方、図13のマッピング図は、白い部分がNb元素の分布を示している。図13のSEM写真とマッピング図を参照すると、マッピング図の白い部分(即ち、Nb元素)は主相の周囲辺りに偏在化して分布している。即ち、実施例3の永久磁石は、粒界相から主相へとNbが拡散しておらず、磁石の粒界にNbが偏在化していることが分かる。更に、図15のマッピング図は、白い部分がNb元素の分布を示している。図15のSEM写真とマッピング図を参照すると、マッピング図の白い部分(即ち、Nb元素)は主相の周囲辺りに偏在化して分布している。即ち、実施例4の永久磁石は、粒界相から主相へとNbが拡散しておらず、磁石の粒界にNbが偏在化していることが分かる。
 以上の結果から、実施例1~4では、粒界相から主相へとNbが拡散しておらず、また、磁石の粒界にNbを偏在させることができていることが分かる。そして、焼結の際にNbが主相に固溶しないので、固相焼結により粒成長を抑制することが可能となる。
(実施例と比較例のSEM写真の比較検討)
 図16は比較例1の永久磁石の焼結後のSEM写真を示した図である。図17は比較例2の永久磁石の焼結後のSEM写真を示した図である。
 また、実施例1~4と比較例1、2の各SEM写真を比較すると、残留炭素量が一定量以下(例えば0.2wt%以下)である実施例1~4や比較例1では、基本的にネオジム磁石の主相(Nd2Fe14B)91と白い斑点状に見える粒界相92から焼結後の永久磁石が形成されている。また、少量ではあるがαFe相についても形成されている。それに対して、実施例1~4や比較例1に比べて残留炭素量が多い比較例2は、主相91や粒界相92に加えて黒色帯状に見えるαFe相93が多数形成されている。ここで、αFeは焼結時において残留しているカーバイドによって生じるものである。即ち、NdとCとの反応性が非常に高いため、比較例2のように焼結工程において高温まで有機金属化合物中のC含有物が残ると、カーバイドを形成する。その結果、形成されたカーバイドによって焼結後の磁石の主相内にαFeが析出し、磁石特性を大きく低下させることとなる。
 一方、実施例1~4では、上述したように適切な有機金属化合物を用い、且つ水素中仮焼処理を行うことによって、有機金属化合物を熱分解させ、含有する炭素を予め焼失(炭素量を低減)させることができる。特に、仮焼する際の温度を200℃~900℃、より好ましくは400℃~900℃とすることによって、含有する炭素を必要量以上焼失させることができ、焼結後に磁石内に残存する炭素量を0.15wt%以下、より好ましくは0.1wt%以下とすることが可能となる。そして、磁石内に残存する炭素量が0.15wt%以下である実施例1~4では、焼結工程でカーバイドがほとんど形成されることがなく、比較例2のようにαFe相93が多数形成される虞がない。その結果、図9~図15に示すように、焼結処理で永久磁石1全体を緻密に焼結させることが可能となる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。更に、保磁力向上に寄与するNb等のみを選択的に主相粒界に偏在させることも可能となる。尚、本発明はこのように低温分解で残炭を抑制するという観点から、添加する有機金属化合物としては低分子量のもの(例えば、炭素数2~6のアルキル基から構成されるもの)が好ましく用いられる。
(水素中仮焼処理の条件に基づく実施例と比較例との比較検討)
 図18は実施例5と比較例3、4の永久磁石について、仮焼温度の条件を変更して製造した複数の永久磁石中の炭素量[wt%]を示した図である。尚、図18では仮焼中の水素及びヘリウムの供給量を1L/minとし、3時間保持した結果を示す。
 図18に示すように、He雰囲気や真空雰囲気で仮焼した場合と比較して、水素雰囲気で仮焼した場合には磁石粒子中の炭素量をより大きく低減させることができることが分かる。また、図18からは、磁石粉末を水素雰囲気で仮焼する際の仮焼温度を高温にすれば炭素量がより大きく低減し、特に400℃~900℃とすることによって炭素量を0.15wt%以下とすることが可能であることが分かる。
 尚、上記実施例1~5及び比較例1~4は、[永久磁石の製造方法2]の工程で製造された永久磁石を用いたが、[永久磁石の製造方法1]の工程で製造された永久磁石を用いた場合でも同様の結果を得られる。
 以上説明したように、本実施形態に係る永久磁石1及び永久磁石1の製造方法では、粉砕されたネオジム磁石の微粉末に対して、M-(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃~900℃で数時間保持することにより水素中仮焼処理を行う。その後、真空焼結や加圧焼結を行うことによって永久磁石1を製造する。それにより、従来に比べてNb等の添加する量を少量としたとしても、添加されたNb等を磁石の粒界に効率よく偏在させることができる。その結果、焼結時の磁石粒子の粒成長を抑制することができるとともに、焼結後は結晶粒子間での交換相互作用を分断することによって各結晶粒子の磁化反転を妨げ、磁気性能を向上させることが可能となる。また、他の有機金属化合物を添加する場合と比較して脱カーボンを容易に行うことが可能であり、焼結後の磁石内に含まれる炭素によって保磁力が低下する虞が無く、また、磁石全体を緻密に焼結することが可能となる。
 更に、高融点金属であるNb等が焼結後に磁石の粒界に偏在するので、粒界に偏在されたNb等が焼結時の磁石粒子の粒成長を抑制するとともに、焼結後は結晶粒子間での交換相互作用を分断することによって各結晶粒子の磁化反転を妨げ、磁気性能を向上させることが可能となる。また、Nb等の添加量が従来に比べて少ないので、残留磁束密度の低下を抑制することができる。
 また、有機金属化合物が添加された磁石を、焼結前に水素雰囲気で仮焼することにより、有機金属化合物を熱分解させて磁石粒子中に含有する炭素を予め焼失(炭素量を低減)させることができ、焼結工程でカーバイドがほとんど形成されることがない。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
 また、特に添加する有機金属化合物としてアルキル基から構成される有機金属化合物、より好ましくは炭素数2~6のアルキル基から構成される有機金属化合物を用いれば、水素雰囲気で磁石粉末や成形体を仮焼する際に、低温で有機金属化合物の熱分解を行うことが可能となる。それによって、有機金属化合物の熱分解を磁石粉末全体や成形体全体に対してより容易に行うことができる。
 更に、磁石粉末や成形体を仮焼する工程は、特に200℃~900℃、より好ましくは400℃~900℃の温度範囲で成形体を所定時間保持することにより行うので、磁石粒子中に含有する炭素を必要量以上焼失させることができる。
 その結果、焼結後に磁石に残存する炭素量が0.15wt%以下、より好ましくは0.1wt%以下となるので、磁石の主相と粒界相との間に空隙が生じることなく、また、磁石全体を緻密に焼結した状態とすることが可能となり、残留磁束密度が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
 また、特に第2の製造方法では、粉末状の磁石粒子に対して仮焼を行うので、成形後の磁石粒子に対して仮焼を行う場合と比較して、有機金属化合物の熱分解を磁石粒子全体に対してより容易に行うことができる。即ち、仮焼体中の炭素量をより確実に低減させることが可能となる。また、仮焼処理後に脱水素処理を行うことによって、仮焼処理により活性化された仮焼体の活性度を低下させることができる。それにより、その後に磁石粒子が酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。
 また、脱水素処理を行う工程は、200℃~600℃の温度範囲で磁石粉末を所定時間保持することにより行うので、水素仮焼中処理を行ったNd系磁石中に活性度の高いNdH3が生成された場合であっても、残さずに活性度の低いNdH2へと移行させることが可能となる。
 尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
 また、磁石粉末の粉砕条件、混練条件、仮焼条件、脱水素条件、焼結条件などは上記実施例に記載した条件に限られるものではない。
 また、上記実施例1~5では磁石粉末に添加するNb等を含む有機金属化合物としてニオブエトキシド、ニオブn-プロポキシド、ニオブn-ブトキシド、ニオブn-ヘキソキシドを用いているが、M-(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物であれば、他の有機金属化合物であっても良い。例えば、炭素数が7以上のアルキル基から構成される有機金属化合物や、アルキル基以外の炭化水素からなる置換基から構成される有機金属化合物を用いても良い。
  1        永久磁石
  10       Nd結晶粒子
  11       高融点金属層
  12       高融点金属粒
  91       主相
  92       粒界相
  93       αFe相

Claims (12)

  1.  磁石原料を磁石粉末に粉砕する工程と、
     前記粉砕された磁石粉末に以下の構造式
     M-(OR)
    (式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)
    で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、
     前記有機金属化合物が粒子表面に付着された前記磁石粉末を水素雰囲気で仮焼して仮焼体を得る工程と、
     前記仮焼体を真空雰囲気で加熱することにより脱水素処理を行う工程と、
     前記脱水素処理された前記仮焼体を成形することにより成形体を形成する工程と、
     前記成形体を焼結する工程と、
    により製造されることを特徴とする永久磁石。
  2.  前記有機金属化合物を形成する金属が、焼結後に前記永久磁石の粒界に偏在していることを特徴とする請求項1に記載の永久磁石。
  3.  前記構造式中のRは、アルキル基であることを特徴とする請求項1又は請求項2に記載の永久磁石。
  4.  前記構造式中のRは、炭素数2~6のアルキル基のいずれかであることを特徴とする請求項3に記載の永久磁石。
  5.  焼結後に残存する炭素量が0.15wt%以下であることを特徴とする請求項1乃至請求項4のいずれかに記載の永久磁石。
  6.  前記磁石粉末を仮焼する工程は、200℃~900℃の温度範囲で前記磁石粉末を所定時間保持することを特徴とする請求項1乃至請求項5のいずれかに記載の永久磁石。
  7.  前記脱水素処理を行う工程は、真空雰囲気において200℃~600℃の温度範囲で前記磁石粉末を所定時間保持することを特徴とする請求項1乃至請求項6のいずれかに記載の永久磁石。
  8.  磁石原料を磁石粉末に粉砕する工程と、
     前記粉砕された磁石粉末に以下の構造式
     M-(OR)
    (式中、MはV、Mo、Zr、Ta、Ti、W又はNbである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)
    で表わされる有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、
     前記有機金属化合物が粒子表面に付着された前記磁石粉末を水素雰囲気で仮焼して仮焼体を得る工程と、
     前記仮焼体を減圧雰囲気で加熱することにより脱水素処理を行う工程と、
     前記脱水素処理された前記仮焼体を成形することにより成形体を形成する工程と、
     前記成形体を焼結する工程と、
    を有することを特徴とする永久磁石の製造方法。
  9.  前記構造式中のRは、アルキル基であることを特徴とする請求項8に記載の永久磁石の製造方法。
  10.  前記構造式中のRは、炭素数2~6のアルキル基のいずれかであることを特徴とする請求項9に記載の永久磁石の製造方法。
  11.  前記磁石粉末を仮焼する工程は、200℃~900℃の温度範囲で前記磁石粉末を所定時間保持することを特徴とする請求項8乃至請求項10のいずれかに記載の永久磁石の製造方法。
  12.  前記脱水素処理を行う工程は、真空雰囲気において200℃~600℃の温度範囲で前記磁石粉末を所定時間保持することを特徴とする請求項8乃至請求項11のいずれかに記載の永久磁石の製造方法。
PCT/JP2011/057568 2010-03-31 2011-03-28 永久磁石及び永久磁石の製造方法 WO2011125587A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11765487.1A EP2503568B1 (en) 2010-03-31 2011-03-28 Manufacturing method for permanent magnet
US13/499,560 US9005374B2 (en) 2010-03-31 2011-03-28 Permanent magnet and manufacturing method thereof
CN2011800039580A CN102549684A (zh) 2010-03-31 2011-03-28 永久磁铁及永久磁铁的制造方法
KR1020127007165A KR101189960B1 (ko) 2010-03-31 2011-03-28 영구 자석 및 영구 자석의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010084474 2010-03-31
JP2010-084474 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125587A1 true WO2011125587A1 (ja) 2011-10-13

Family

ID=44762536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057568 WO2011125587A1 (ja) 2010-03-31 2011-03-28 永久磁石及び永久磁石の製造方法

Country Status (7)

Country Link
US (1) US9005374B2 (ja)
EP (1) EP2503568B1 (ja)
JP (1) JP4865100B2 (ja)
KR (1) KR101189960B1 (ja)
CN (1) CN102549684A (ja)
TW (1) TW201212064A (ja)
WO (1) WO2011125587A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110643989A (zh) * 2019-09-30 2020-01-03 烟台正海磁性材料股份有限公司 一种钕铁硼磁体表面防腐处理方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576603B (zh) * 2010-03-31 2014-04-16 日东电工株式会社 永久磁铁及永久磁铁的制造方法
US8500921B2 (en) * 2010-03-31 2013-08-06 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
EP2503570B1 (en) * 2010-03-31 2015-01-21 Nitto Denko Corporation Manufacturing method for permanent magnet
EP2503566B1 (en) * 2010-03-31 2015-01-21 Nitto Denko Corporation Manufacturing method for permanent magnet
JP5011420B2 (ja) * 2010-05-14 2012-08-29 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP5908247B2 (ja) * 2011-09-30 2016-04-26 日東電工株式会社 永久磁石の製造方法
JP6147505B2 (ja) * 2012-03-12 2017-06-14 日東電工株式会社 希土類永久磁石の製造方法
JP2015135935A (ja) * 2013-03-28 2015-07-27 Tdk株式会社 希土類磁石
CN103215467B (zh) * 2013-05-05 2015-07-08 沈阳中北真空磁电科技有限公司 一种高性能钕铁硼稀土永磁材料的制造方法
JP6914617B2 (ja) * 2016-05-11 2021-08-04 Tdk株式会社 積層コイル部品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211570A (ja) * 1994-01-25 1995-08-11 Tokin Corp 希土類永久磁石の製造方法
JPH1064746A (ja) * 1996-08-23 1998-03-06 Sumitomo Special Metals Co Ltd 薄肉R−Fe−B系焼結磁石の製造方法
JPH10214711A (ja) * 1997-01-31 1998-08-11 Isuzu Motors Ltd 希土類系永久磁石の固化方法
JP3298219B2 (ja) 1993-03-17 2002-07-02 日立金属株式会社 希土類―Fe−Co−Al−V−Ga−B系焼結磁石
JP2004250781A (ja) 2002-10-08 2004-09-09 Neomax Co Ltd 焼結型永久磁石およびその製造方法
JP2009259956A (ja) * 2008-04-15 2009-11-05 Nitto Denko Corp 永久磁石及び永久磁石の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0304054B1 (en) * 1987-08-19 1994-06-08 Mitsubishi Materials Corporation Rare earth-iron-boron magnet powder and process of producing same
JP4525072B2 (ja) * 2003-12-22 2010-08-18 日産自動車株式会社 希土類磁石およびその製造方法
EP2506274B1 (en) * 2010-03-31 2014-07-02 Nitto Denko Corporation Manufacturing method for permanent magnet
JP5011420B2 (ja) * 2010-05-14 2012-08-29 日東電工株式会社 永久磁石及び永久磁石の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3298219B2 (ja) 1993-03-17 2002-07-02 日立金属株式会社 希土類―Fe−Co−Al−V−Ga−B系焼結磁石
JPH07211570A (ja) * 1994-01-25 1995-08-11 Tokin Corp 希土類永久磁石の製造方法
JPH1064746A (ja) * 1996-08-23 1998-03-06 Sumitomo Special Metals Co Ltd 薄肉R−Fe−B系焼結磁石の製造方法
JPH10214711A (ja) * 1997-01-31 1998-08-11 Isuzu Motors Ltd 希土類系永久磁石の固化方法
JP2004250781A (ja) 2002-10-08 2004-09-09 Neomax Co Ltd 焼結型永久磁石およびその製造方法
JP2009259956A (ja) * 2008-04-15 2009-11-05 Nitto Denko Corp 永久磁石及び永久磁石の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2503568A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110643989A (zh) * 2019-09-30 2020-01-03 烟台正海磁性材料股份有限公司 一种钕铁硼磁体表面防腐处理方法
CN110643989B (zh) * 2019-09-30 2023-01-10 烟台正海磁性材料股份有限公司 一种钕铁硼磁体表面防腐处理方法

Also Published As

Publication number Publication date
TWI369701B (ja) 2012-08-01
TW201212064A (en) 2012-03-16
EP2503568A4 (en) 2013-04-03
US9005374B2 (en) 2015-04-14
KR101189960B1 (ko) 2012-10-15
KR20120048687A (ko) 2012-05-15
JP2011228668A (ja) 2011-11-10
EP2503568A1 (en) 2012-09-26
EP2503568B1 (en) 2014-06-11
JP4865100B2 (ja) 2012-02-01
CN102549684A (zh) 2012-07-04
US20120187327A1 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP4865100B2 (ja) 永久磁石及び永久磁石の製造方法
JP4923148B2 (ja) 永久磁石及び永久磁石の製造方法
JP4865098B2 (ja) 永久磁石及び永久磁石の製造方法
JP4923153B2 (ja) 永久磁石及び永久磁石の製造方法
JP4923152B2 (ja) 永久磁石及び永久磁石の製造方法
JP4865920B2 (ja) 永久磁石及び永久磁石の製造方法
JP4923151B2 (ja) 永久磁石及び永久磁石の製造方法
JP4923147B2 (ja) 永久磁石及び永久磁石の製造方法
JP4865097B2 (ja) 永久磁石及び永久磁石の製造方法
JP4865099B2 (ja) 永久磁石及び永久磁石の製造方法
JP5908247B2 (ja) 永久磁石の製造方法
JP4923149B2 (ja) 永久磁石及び永久磁石の製造方法
JP4923150B2 (ja) 永久磁石及び永久磁石の製造方法
JP5501830B2 (ja) 永久磁石及び永久磁石の製造方法
JP5453154B2 (ja) 永久磁石及び永久磁石の製造方法
JP2011216732A (ja) 永久磁石及び永久磁石の製造方法
JP2011216724A (ja) 永久磁石及び永久磁石の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003958.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127007165

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2861/CHENP/2012

Country of ref document: IN

Ref document number: 2011765487

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13499560

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE