WO2011125548A1 - 生分解性樹脂成型体の分解促進剤及びその使用 - Google Patents

生分解性樹脂成型体の分解促進剤及びその使用 Download PDF

Info

Publication number
WO2011125548A1
WO2011125548A1 PCT/JP2011/057381 JP2011057381W WO2011125548A1 WO 2011125548 A1 WO2011125548 A1 WO 2011125548A1 JP 2011057381 W JP2011057381 W JP 2011057381W WO 2011125548 A1 WO2011125548 A1 WO 2011125548A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable resin
resin molded
molded body
decomposition
agent
Prior art date
Application number
PCT/JP2011/057381
Other languages
English (en)
French (fr)
Inventor
篤士 松尾
Original Assignee
小林製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小林製薬株式会社 filed Critical 小林製薬株式会社
Priority to US13/634,424 priority Critical patent/US9056968B2/en
Priority to KR1020127028663A priority patent/KR20130087370A/ko
Priority to CN201180016796.4A priority patent/CN102822283B/zh
Priority to GB1216692.2A priority patent/GB2491527B/en
Publication of WO2011125548A1 publication Critical patent/WO2011125548A1/ja
Priority to HK13102876.0A priority patent/HK1175798A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/26Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing carboxylic acid groups, their anhydrides or esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/012Additives activating the degradation of the macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a biodegradable resin molded body decomposition accelerator capable of promoting the decomposition of a biodegradable resin molded body containing an oxidative degradation agent.
  • the present invention also relates to a biodegradable product having excellent biodegradability.
  • the present invention relates to a method for decomposing a biodegradable resin molding that can efficiently decompose a biodegradable resin molding containing an oxidative degradation agent.
  • Resin molded products molded from petroleum-based resins such as polyethylene, polypropylene, and polystyrene are used in various fields such as textile products, packaging films, electrical appliances, and industrial materials, and are indispensable for modern society. It has become. On the other hand, these resin molded products are used in large quantities and are disposed of in large quantities, and their disposal is a big problem. For example, there is a problem that toxic gas is generated when the resin molding is incinerated. In addition, since petroleum-based resins exhibit hydrolysis resistance, there is a problem that when the resin molded body is landfilled or disposed of in the mountains, it is not biodegraded in the soil and adversely affects the environment.
  • biodegradable resins such as polylactic acid have attracted attention as an alternative to petroleum resins.
  • a biodegradable resin is recognized as a material that is friendly to the global environment by being decomposed into microorganisms without destroying the natural environment when disposed in landfills or in the mountains.
  • the biodegradable resin is difficult to be molded as compared with petroleum resins.
  • the biodegradable resin is susceptible to hydrolysis and thus has a disadvantage of being inferior in terms of durability, strength, and heat resistance. For this reason, in the prior art, substitution of petroleum-based resins with the biodegradable resins is currently limited to some product fields.
  • Patent Document 1 an oxidative decomposition agent that lowers the molecular weight of a resin material by oxidative decomposition has been developed.
  • the degradation agent can also be applied to high-strength petroleum-based resins (hydrolysis-resistant materials), so that biodegradability is maintained while maintaining the advantages of petroleum resins such as moldability, durability, strength, and heat resistance. It has attracted a lot of attention because it can be prepared.
  • the object of the present invention is to provide a technique for improving the natural biodegradation rate of the biodegradable resin molding by accelerating the degradation of the biodegradable resin molding containing the oxidative degradation agent.
  • the present inventor has intensively studied to solve the above-mentioned problems, and at the time of disposal of the biodegradable resin molding containing the oxidative degradation agent, the biodegradable resin molding and the chloride salt coexist. It has been found that the degradation rate of the biodegradable resin molded product is significantly increased. The present invention has been completed by further studies based on this finding.
  • Item 1 A decomposition accelerator for a biodegradable resin molded article containing an oxidative decomposition agent, comprising a chloride salt as an active ingredient.
  • Item 2. Item 2. The decomposition accelerator according to Item 1, wherein the chloride salt is potassium chloride and / or sodium chloride.
  • Item 3. Item 3. The decomposition accelerator according to Item 1 or 2, wherein the resin forming the biodegradable resin molded body is polyolefin.
  • Item 4. Item 4.
  • Agent. Item 5. A decomposition agent for a resin molding, which is used by being blended in a resin molding, comprising an oxidative decomposition agent and a chloride salt as active ingredients.
  • Item 6. A biodegradable product comprising a biodegradable resin molded article containing an oxidative degradation agent and the degradation accelerator according to any one of Items 1 to 4.
  • Item 6. A biodegradation accelerating resin molded article comprising the degradation agent according to Item 5.
  • a biodegradable resin molded body containing an oxidative degradation agent and the biodegradable resin molded body are decomposed by allowing the biodegradable resin molded body to coexist with the degradation accelerator according to any one of Items 1 to 4. Of disassembling the resin molding.
  • Item 9. Use of a chloride salt for the production of a decomposition accelerator for a biodegradable resin molding containing an oxidative decomposition agent.
  • Item 10. Use of an oxidative degradation agent and a chloride salt for the production of a degradation agent for resin moldings.
  • a method for promoting the degradation of a biodegradable resin molded article containing an oxidative degradation agent comprising a step of treating the biodegradable resin molded article in the presence of a chloride salt.
  • Item 12 A method for decomposing a biodegradable resin molding containing an oxidative degradation agent, comprising a step of treating the biodegradable resin molding in the presence of a chloride salt.
  • Item 13 A method for decomposing a biodegradation-promoting resin molding comprising an oxidative degradation agent and a chloride salt, comprising the step of leaving the biodegradation-promoting resin molding in an outdoor environment.
  • the degradation of the biodegradable resin molded product containing the oxidative degradation agent can be specifically accelerated.
  • biodegradation can be accelerated without causing environmental pollution.
  • the decomposition agent of the present invention when blended with a resin molded body, the resin molded body is accelerated to be decomposed when discarded, and the resin molded body is rapidly reduced in molecular weight to the extent that it can be used by microorganisms. Therefore, rapid natural decomposition is possible without adversely affecting the environment.
  • Test example 1 the result of having measured the decomposition
  • Test Example 2 the results of measuring the degradation acceleration rate of the biodegradable resin molded bodies (inner bags) of the biodegradable products (non-pyrogenic composition-containing products) of Examples 3 and 4 are shown.
  • Comparative Test Example 1 the results of measuring the degradation acceleration rate of the biodegradable resin molded body (inner bag) of the biodegradable product (non-pyrogenic composition-containing product) of Comparative Example 1-5 are shown.
  • Biodegradable resin molded body decomposition accelerator The decomposition accelerator of the present invention is used to promote the decomposition of a biodegradable resin molded body containing an oxidative decomposition agent, and contains a chloride salt as an active ingredient. It is characterized by.
  • chloride salt used in the present invention include chloride salts of alkali metals such as potassium chloride, sodium chloride and lithium chloride; chloride salts of alkaline earth metals such as magnesium chloride and calcium chloride;
  • the metal chloride include aluminum chloride, copper chloride, iron chloride, zinc chloride, and thallium chloride.
  • an alkali metal chloride salt more preferably potassium chloride, sodium chloride, particularly preferably.
  • a potassium chloride is mentioned.
  • These chloride salts may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the degradation accelerator of the present invention is used for promoting the degradation of a biodegradable resin molded article containing an oxidative degradation agent.
  • the resin that forms the biodegradable resin molding to which the degradation accelerator of the present invention is applied is not particularly limited as long as it contains an oxidative degradation agent, and preferably includes a thermoplastic resin.
  • the thermoplastic resin include polyolefin (polyethylene, polypropylene, etc.), polystyrene, polyvinyl chloride, polyvinylidene chloride, polyamide, polyester, polyvinyl alcohol, polyurethane, ethylene-vinyl acetate copolymer, polycarbonate, and the like. Illustrated. These thermoplastic synthetic resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • thermoplastic resins preferably a resin having hydrolysis resistance such as polyolefin (polyethylene, polypropylene, etc.), polystyrene, polyvinyl chloride, polyvinylidene chloride, polyamide, etc .; more preferably polyolefin; more preferably polyethylene, polypropylene.
  • polyolefin polyethylene, polypropylene, etc.
  • polystyrene polyvinyl chloride
  • polyvinylidene chloride polyamide, etc .
  • polyamide polyamide
  • polyolefin more preferably polyethylene, polypropylene.
  • the shape of the biodegradable resin molding to which the degradation accelerator of the present invention is applied is not particularly limited, and may be any of a sheet shape, a film shape, a pellet shape, a block shape, a fiber shape, and the like.
  • the oxidative degradation agent is a substance that oxidizes and decomposes a polymer that forms a resin to reduce the molecular weight of the polymer to such an extent that microbial degradation is possible.
  • Oxidative degradation agents are known in the art (e.g., U.S. Pat.Nos.
  • the oxidative decomposition agent contained in the resin molding to which the decomposition accelerator of the present invention is applied is not particularly limited, and examples thereof include carboxylic acid metal salts, hydroxycarboxylic acids; transition metal compounds (US Pat. No. 5,308,906), rare earths Examples thereof include compounds and aromatic ketones.
  • oxidative decomposition agent a combination of a carboxylic acid metal salt and a hydroxycarboxylic acid (US Pat. No. 5,854,304), a combination of a carboxylic acid metal salt and a filler (US Pat. No. 5,565,503), or the like may be used.
  • these oxidative degradation agents may be used alone or in combination of two or more.
  • the carboxylic acid metal salt used as the oxidative decomposition agent include a metal salt of an aliphatic carboxylic acid having 10 to 20 carbon atoms, preferably a stearic acid metal salt.
  • the metal atom constituting the carboxylic acid metal salt include cobalt, cerium, iron, aluminum, antimony, barium, bismuth, cadmium, chromium, copper, gallium, lanthanum, lead, lithium, magnesium, mercury, molybdenum, nickel, Examples include calcium, rare earth, silver, sodium, strontium, tin, tungsten, vanadium, yttrium, zinc, zirconium and the like.
  • stearates of metals such as cobalt, cerium, and iron are particularly preferable.
  • hydroxycarboxylic acid used as the oxidative decomposition agent examples include monohydroxytricarboxylic acids such as citric acid; polyhydroxydicarboxylic acids such as trihydroxyglutaric acid and saccharic acid; dihydroxydicarboxylic acids such as tartaric acid; tartronic acid and malic acid.
  • monohydroxy dicarboxylic acids such as erythric® acid, arabic acid, mannitic® acid and the like; dihydroxy monocarboxylic acids such as glyoxylic acid and glyceric acid, and the like. These hydroxycarboxylic acids can be used alone or in combination of two or more.
  • filler used as one component of the oxidative decomposition agent examples include inorganic carbonate, synthetic carbonate, nepheline syenite, talc, magnesium hydroxide, aluminum hydroxide, diatomaceous earth, natural or synthetic silica, and calcined clay. Illustrated. These fillers desirably have a particle size of less than 150 mesh. These fillers can be used alone or in combination of two or more.
  • transition metal compound used as the oxidative decomposition agent include cobalt or magnesium salts, preferably cobalt or magnesium aliphatic carboxylic acid (carbon number 12 to 20) salt, more preferably cobalt stearate, Examples include cobalt oleate, magnesium stearate, and magnesium oleate. These transition metal compounds can be used alone or in combination of two or more.
  • rare earth compound used as the oxidative decomposition agent examples include rare earths belonging to Group 3A of the periodic table, or oxides thereof, and more specifically, cerium (Ce), yttrium (Y), neodymium (Nd ), Rare earth oxides, hydroxides, rare earth sulfates, rare earth nitrates, rare earth acetates, rare earth chlorides, rare earth carboxylates, etc., specifically, cerium oxide, sulfuric acid Examples thereof include dicerium, ceric ammonium sulfate, ceric ammonium nitrate, cerium acetate, lanthanum nitrate, cerium chloride, cerium nitrate, cerium hydroxide, cerium octylate, lanthanum oxide, yttrium oxide, and scandium oxide. These rare earth compounds can be used individually by 1 type or in combination of 2 or more types.
  • aromatic ketone used as the oxidative decomposition agent examples include benzophenone, anthraquinone, anthrone, acetylbenzophenone, 4-octylbenzophenone and the like. These aromatic ketones can be used singly or in combination of two or more.
  • the biodegradable resin molding to be applied is a combination of a carboxylate and a rare earth compound as an oxidative degradation agent. It is suitable to include.
  • an oxidative decomposition agent trade name “P-life” (manufactured by P-Life Japan Inc.) can be mentioned.
  • the ratio thereof is, for example, 5 to 70 parts by weight, preferably 7 to 60 parts by weight of the rare earth compound per 100 parts by weight of the carboxylate. More preferably, 10 to 50 parts by mass are exemplified.
  • an oxidative degradation agent oxidizes and decomposes a polymer that forms a resin molded body under the action of light, heat, air, etc., and lowers the polymer to such an extent that microbial degradation is possible.
  • an oxidative degradation agent that exhibits the oxidative degradation action of the polymer by exposure to light (ultraviolet rays) (hereinafter, photorequired oxidative degradation agent) is preferably used.
  • a biodegradable resin molded product containing a light-requiring oxidative degradation agent is not decomposed under light-shielding conditions.
  • a light-shielding atmosphere (light-shielding space, light-shielding container, light-shielding bag, etc.) at the pre-use stage such as during production, distribution, or storage ), It is possible to maintain a desired function without causing deterioration in durability until use.
  • a photorequiring oxidative decomposition agent include an oxidative decomposition agent containing a rare earth compound, and more specifically, trade name “P-life” (manufactured by PLife Japan Inc.) is exemplified. Is done.
  • the blending ratio of the oxidative degradation agent in the biodegradable resin molding to which the present invention is applied is appropriately set according to the type of oxidative degradation agent used, the type of resin forming the biodegradable resin molding, and the like. For example, 0.05 to 5% by mass, preferably 0.1 to 3.5% by mass, and more preferably 0.1 to 2.4% by mass with respect to the total mass of the biodegradable resin molded body. Is exemplified.
  • the blending ratio of the oxidative degradation agent is 0 with respect to the total mass of the biodegradable resin molding. 0.08 to 0.8% by mass, preferably 0.12 to 0.6% by mass, and more preferably 0.16 to 0.4% by mass.
  • the blending ratio of the oxidative degradation agent is 0.4 to 3% by mass, preferably with respect to the total mass of the biodegradable resin molded body. Is 0.6 to 2.5% by mass, more preferably 0.8 to 2% by mass.
  • the biodegradable resin molded product to which the present invention is applied can be produced by a known method.
  • the following order of manufacturing method is exemplified: (1) A predetermined amount of an oxidative decomposition agent is added to a melt of a resin that forms a biodegradable resin molding, and the solution is molded into a pellet. (2) Next, if necessary, the pellet-shaped molded body is melted and molded into a desired shape.
  • the application method of the degradation accelerator of the present invention is not particularly limited as long as it is applied so as to come into contact with the biodegradable resin molded body during the disposal of the biodegradable resin molded body.
  • the active ingredient of the decomposition accelerator of the present invention is added to the biodegradable resin molding as it is or after dilution with water or the like as necessary.
  • embodiment 1 At the time of production of the product containing the biodegradable resin molding, by adding the active ingredient of the decomposition accelerator of the present invention to the product in advance, Examples thereof include a method in which the biodegradable resin molded product is brought into contact with the active ingredient (hereinafter also referred to as embodiment 2).
  • the application method of Embodiment 1 described above is biodegradable into a product in which the active ingredient of the degradation accelerator of the present invention cannot be blended in advance. This is suitable in the case where an adhesive resin molding is used.
  • the application method of the said Embodiment 2 is a product which can mix
  • the biodegradable resin molding is used for the product for which long-term durability is not requested
  • a product to which the embodiment 2 can be applied in this way for example, a product in which the functional composition is surrounded by a sheet-like or film-like biodegradable resin molded body or laminated on the biodegradable resin molded body.
  • the functional composition is a composition having specific actions such as cold-retaining action, cooling action, pharmacological action, and exothermic action. A person skilled in the art can appropriately set the composition of the functional composition according to the required action.
  • the active ingredient of the degradation accelerator of the present invention is added to the functional composition, and this is surrounded or biodegraded by a sheet-like or film-like biodegradable resin molding.
  • the product may be provided by laminating on the conductive resin molding.
  • a cryogen a product in which the cryogen composition is surrounded by a sheet or film-shaped biodegradable resin molding
  • a body coolant a coolant composition
  • the application amount of the degradation accelerator of the present invention varies depending on the shape and type of the biodegradable resin molded body, but for example, the present invention per 100 parts by mass of the biodegradable resin molded body to be applied.
  • a range in which the effective component of the decomposition accelerator is 1 to 100 parts by mass, preferably 2.5 to 50 parts by mass, more preferably 5 to 30 parts by mass is exemplified.
  • the biodegradable resin molded body is oxidized by leaving it in an outdoor environment in the state of coexisting with the degradation accelerator of the present invention (for example, landfill or disposal in the mountains). Microbial degradation occurs through degradation.
  • the period until the biodegradable resin molded body is finally decomposed in the presence of the decomposition accelerator of the present invention is the shape of the biodegradable resin molded body, the type of constituent resin, the discarded environment, etc.
  • a biodegradable resin molded body of about 1 g in film or sheet is decomposed to such a degree that the resin molded body can no longer be seen in about 0.5 to 3 years.
  • the decomposing agent of the present invention is used by blending with a resin molded body, and comprises an oxidative decomposition agent and a chloride salt as active ingredients. Decomposing agent. In this way, by combining the oxidative decomposition agent and the chloride salt and blending them in the resin molded body, the decomposition of the resin molded body is promoted, and the resin molded body can be rapidly used for microorganisms. It is possible to reduce the molecular weight.
  • the oxidative decomposition agent and chloride salt used in the decomposition agent of the present invention are as described in “1. Decomposition accelerator” above.
  • the ratio of the oxidative decomposition agent and the chloride salt is not particularly limited.
  • the total amount of chloride salt is 4 to 4 per 100 parts by mass of the oxidative decomposition agent.
  • the decomposing agent of the present invention is used by being blended with a resin molding.
  • the constituent resin, shape, and the like of the resin molded body are the same as those of the biodegradable resin molded body described in “1. Degradation accelerator” above.
  • the method of blending the decomposition agent of the present invention into a resin molding can also be performed according to a known method.
  • the following production method is exemplified: (1) A predetermined amount of the decomposition agent of the present invention is added to a resin melt forming a resin molding, and the solution is molded into a pellet. (2) Next, if necessary, the pellet-shaped molded body is melted and molded into a desired shape.
  • the total mass of the decomposing agent of the present invention is 0.1 to 7 parts by mass, preferably 0.15 to 5 parts by mass, and more preferably 0.2 to 3 parts by mass.
  • the resin molded body in which the decomposing agent of the present invention is blended is left in the outdoor environment and treated (for example, landfilled or discarded in the mountains), so that the resin molded body is rapidly reduced in molecular weight by oxidative decomposition, It is then microbially degraded.
  • the standard for the period until the resin molded body in which the decomposition agent of the present invention is blended is finally decomposed is the period until the biodegradable resin molded body described in “1. Decomposition accelerator” is decomposed. It is the same.
  • Biodegradable product of the present invention is characterized by containing the above-described degradation accelerator and a biodegradable resin molded article containing an oxidative degradation agent. That is, the biodegradable product of the present invention contains the above-described degradation accelerator in combination with a biodegradable resin molded article containing an oxidative degradation agent, and is disposed of in landfills or in the wild after use. The tree biodegradable fat molded product is rapidly decomposed without causing environmental pollution.
  • the degradation accelerator contained in the biodegradable product of the present invention is as described in “1. Degradation accelerator” above.
  • the type of resin forming the biodegradable resin molded body contained in the biodegradable product of the present invention the shape of the resin molded body, the type and blending ratio of the oxidative degradation agent contained in the biodegradable resin molded body And the like are the same as those of the biodegradable resin molded product to which the above “1. degradation accelerator” is applied.
  • the ratio of the degradation accelerator and the biodegradable resin molded body contained in the biodegradable product of the present invention is appropriately set according to the shape and type of the biodegradable resin molded body.
  • the active ingredient (chloride salt) of the above-mentioned decomposition accelerator are 5 to 55 parts by weight, preferably 10 to 50 parts by weight, and more preferably 15 to 45 parts by weight per 100 parts by weight of the biodegradable resin molded body. .
  • the product of the present invention contains the decomposition accelerator and the biodegradable resin molded body, and the decomposition accelerator and the biodegradable resin molded body are in contact with each other during disposal, the product The form is not particularly limited.
  • a product that is surrounded or laminated on a biodegradable resin molded body in the form of a sheet or film is exemplified.
  • the biodegradable product of the present invention include a cryogen (a product in which a cryogen composition containing the above-described degradation accelerator is surrounded by a sheet-like or film-like biodegradable resin molding), a body coolant ( Products obtained by enclosing or laminating a cooling agent composition containing the above-described decomposition accelerator in a sheet-like or film-like biodegradable resin molded article, or a medical compress (for compresses containing the above-described decomposition accelerator) Products obtained by laminating a gel-like composition on a sheet-like or film-like biodegradable resin molded article), a body heat-retaining agent (an exothermic composition containing the above-mentioned degradation accelerator is a sheet-like or film-like biodegradable) A product surrounded by a resin molded body) is exemplified.
  • a cryogen a product in which a cryogen composition containing the above-described degradation accelerator is surrounded by a sheet-like or film
  • the biodegradable resin molded product of the present invention When the biodegradable product of the present invention is left in an outdoor environment and treated (for example, landfilled or disposed of in the mountain), the biodegradable resin molded product is rapidly reduced in molecular weight by oxidative degradation, and then microorganisms Disassembled.
  • the standard for the period until the biodegradable resin molded product in the biodegradable product of the present invention is finally decomposed is determined by decomposing the biodegradable resin molded product described in “1. Degradation accelerator” above. It is the same as the period until.
  • Biodegradation accelerating resin molding The biodegradation accelerating resin molding of the present invention is characterized in that the resin molding contains a chloride salt and an oxidative degradation agent. That is, the biodegradation promoting resin molded body of the present invention is a resin molded body in which the decomposing agent described in “2. Decomposing agent” is blended.
  • the decomposition method of the present invention is characterized in that the biodegradable resin molded body containing an oxidative degradation agent and the above-mentioned decomposition accelerator coexist to decompose the biodegradable resin molded body.
  • the decomposition method of the present invention is a method for decomposing a biodegradable resin molded article containing an oxidative decomposition agent using the above decomposition accelerator.
  • Decomposition accelerator used in the decomposition method of the present invention biodegradable resin molding to be decomposed, oxidative degradation agent contained in the biodegradable resin molding, the decomposition accelerator and the biodegradable resin molding
  • the ratio, the method of coexisting them, and the like are as described in “1. Decomposition accelerator” above.
  • the decomposition treatment of the biodegradable resin molded body is performed by leaving it indoors or outdoors in a state where the decomposition accelerator and the biodegradable resin molded body coexist, Preferably, it is carried out by leaving it in an outdoor environment where microorganisms exist (for example, reclamation or disposal in the mountains).
  • the period during which the resin molded body is decomposed by the decomposition method of the present invention is the same as the period until the biodegradable resin molded body described in “1.
  • Decomposition accelerator” is decomposed.
  • the oxidative degradation agent-containing material (containing 80 to 90% oxidative degradation agent) used in the following Examples and Comparative Examples is a trade name “P-life” (manufactured by P-Life Japan Inc .; aliphatic Monocarboxylic acid 50 to 70% by weight, rare earth compound 10 to 20% by weight, and lubricant 10 to 20%).
  • Example 1 Biodegradable product (disposable body warmer) 1.
  • functional composition 1% by mass of potassium chloride, 55% by mass of iron powder having an average particle size of 50 ⁇ m, 13% by mass of activated carbon having an average particle size of 200 ⁇ m, 26% by mass of water, and leechite having a particle size of 100 ⁇ m
  • An exothermic composition was prepared by mixing 3% by mass and 2% by mass of a crosslinked sodium salt of an acrylic acid polymer having a particle size of 380 ⁇ m.
  • resin molded body inner bag material of disposable body warmer
  • a resin sheet containing 98% by mass of polyethylene and 2% by mass of oxidative degradation agent-containing material was arranged with rotating blades provided with blades on the circumference of a disk-shaped tool net.
  • JIS P through the roll Breathable biodegradable resin film (thickness) with pores with a value measured according to 8117-1998 "Paper and board-Air permeability test method-Gurley test machine method" of 13.5 to 14.5 seconds / 100cc 40 ⁇ m) was prepared.
  • a biodegradable nonwoven fabric (weight per unit area: 25 g / m 2 ) was prepared by a spunbond method using synthetic fibers containing 99.75% by mass of polypropylene and 0.25% by mass of an oxidative degradation agent-containing material.
  • the exothermic composition was accommodated in an inner bag to prepare a biodegradable product (disposable body warmer).
  • a biodegradable product (disposable body warmer)
  • the prepared biodegradable product was quickly put in an outer bag (air-impermeable and light-shielding) made of a polyvinylidene chloride coated film, and the outer bag was sealed.
  • the disposable body warmers were taken out from the outer bag and used at the start of the test.
  • Example 2 Biodegradable product (disposable body warmer) A disposable body warmer was prepared under the same conditions as in Example 1 except that 1% by mass of sodium chloride was used instead of 1% by mass of potassium chloride.
  • Test Example 1 Evaluation of degradability of biodegradable product (disposable body warmer)
  • the disposable body warmers of Examples 1 and 2 were taken out from the outer bag and allowed to stand at room temperature for 24 hours until heat generation was completed. Thereafter, the disposable body warmer that had generated heat was placed in a thermostatic bath at 50 ° C. and stored for 12 days.
  • the disposable body warmer is disassembled, the exothermic composition is taken out, the inner bag part that is not perforated is cut into 2 ⁇ 7 cm, and is pulled.
  • the tensile strength was measured by pulling in the MD direction with a testing machine (AGS-H, manufactured by Shimadzu Corporation). As a control, the tensile strength was measured after storing under the same conditions as above using only the inner bag containing no exothermic composition. Subsequently, according to the following calculation formula, the decomposition acceleration rate of the inner bag used in Examples 1 and 2 was measured.
  • tensile strength falls, so that the decomposition
  • FIG. 1 shows the results of measuring the decomposition acceleration rate for the inner bags of the disposable body warmers of Examples 1 and 2.
  • the decomposition rate of the inner bag is much higher than that of the inner bag evaluated as a control. It was early.
  • the disposable body warmer (Example 1) containing potassium chloride in the exothermic composition (functional composition) has a significantly higher rate of decomposition of the inner bag than the case of containing sodium chloride (Example 2). It was confirmed that it was high and had excellent biodegradability.
  • the inner bag of the disposable body warmers of Examples 1 and 2 is provided with a body warmer without any reduction in strength causing problems in use such as brittleness and leakage of the exothermic composition even after the end of heat generation.
  • Example 3-4 Biodegradable product (product containing non-pyrogenic composition) 2.2% by mass of potassium chloride, 28.9% by mass of activated carbon having an average particle size of 200 ⁇ m, 57.8% by mass of water, 6.7% by mass of leechite having a particle size of 100 ⁇ m, and partial sodium of an acrylic acid polymer having a particle size of 380 ⁇ m
  • a non-pyrogenic composition (functional composition) was prepared by mixing 4.4% by mass of the salt cross-linked product.
  • a non-exothermic composition-containing product Example 3 was prepared.
  • Example 4 a non-pyrogenic composition-containing product was used under the same conditions as in Example 3 except that 2.2% by mass of sodium chloride was used instead of 2.2% by mass of potassium chloride. Prepared.
  • Test Example 2 Evaluation of degradability of biodegradable product (non-pyrogenic composition-containing product)
  • Non-pyrogenic composition-containing products of Examples 3 and 4 were stored in a thermostat at 50 ° C. for 3 days, and Storage 1 After 3 days and after storage, the decomposition acceleration rate of the inner bag was measured by the same method as in Test Example 1 above.
  • Comparative Test Example 1 Evaluation of degradability of non-pyrogenic composition-containing product-2 Instead of 2.2% by mass of potassium chloride, 2.2% by mass of potassium dihydrogen phosphate (Comparative Example 1), 2.2% by mass of magnesium sulfate (Comparative Example 2), 2.2% by mass of manganese sulfate (Comparative Example) 3) Non-pyrogenic composition under the same conditions as in Example 3 except that 2.2% by mass of potassium sulfate (Comparative Example 4) or 2.2% by mass of sodium sulfate (Comparative Example 5) is used. A containing product was prepared.
  • chloride salts have the effect of promoting the degradation of biodegradable resin moldings containing oxidative degradation agents, and are used as degradation accelerators for biodegradable resin moldings containing oxidative degradation agents. It became clear that we could do it. Furthermore, it was confirmed that the combination of a chloride salt and an oxidative decomposition agent is also effective as a decomposition agent for imparting decomposition characteristics to the resin molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

【課題】本発明の目的は、酸化分解剤を含む生分解性樹脂成型体の分解を促進することにより、当該生分解性樹脂成型体の自然界での生分解速度を向上させる技術を提供することである。 【解決手段】酸化分解剤を含む生分解性樹脂成型体の廃棄処理時に、当該生分解性樹脂成型体と塩化物塩と共存させた状態にすることにより、当該生分解性樹脂成型体の分解速度が顕著に高めることができる。

Description

生分解性樹脂成型体の分解促進剤及びその使用
 本発明は、酸化分解剤を含む生分解性樹脂成型体の分解を促進できる、生分解性樹脂成型体の分解促進剤に関する。また、本発明は、優れた生分解性を備えている生分解性製品に関する。更に、本発明は、酸化分解剤を含む生分解性樹脂成型体を効率的に分解できる、生分解性樹脂成型体の分解方法に関する。
 ポリエチレン、ポリプロピレン、ポリスチレン等の石油系樹脂から成型された樹脂成型体は、繊維製品、包装用フィルム、電化製品、工業資材等の様々な分野で使用されており、現代社会には不可欠なものになっている。一方、これらの樹脂成型品は、大量に使用され、大量に廃棄処分されており、その廃棄処理が大きな問題となっている。例えば、上記樹脂成型体を焼却処理すると有毒ガスが発生するという問題点がある。また、石油系樹脂は耐加水分解性を示すため、上記樹脂成型体を埋め立てや山野に廃棄処理した場合では、土中で生分解されず、環境に悪影響を及ぼすという問題点がある。
 そこで、近年、石油系樹脂の代替として、ポリ乳酸等の加水分解型生分解性樹脂が注目されている。このような生分解性樹脂は、埋め立てや山野に廃棄処理すると、自然環境を破壊することなく、微生物に分解され、地球環境に優しい材料として認知されている。しかしながら、上記生分解性樹脂は、石油系樹脂に比べて、成型加工が困難であることが知られている。また、上記生分解性樹脂は、加水分解を受けて低分子化され易いため、耐久性、強度、耐熱性の点でも劣るという欠点がある。このため、従来技術では、上記生分解性樹脂による石油系樹脂の代替は、一部の製品分野に限定されているのが現状である。
 一方、近年、樹脂素材を酸化分解によって低分子化させる酸化分解剤が開発されている(特許文献1)。当該分解剤を配合した生分解性樹脂成型体は、埋め立て処理等に供されると、酸化分解によって低分子化され、その後、微生物分解を経て自然分解される。当該分解剤は、強度が高い石油系樹脂(耐加水分解性素材)にも適用できるため、成型性、耐久性、強度、耐熱性等の石油性樹脂の長所を維持しつつ、生分解性を備えさせることができるため、大きな注目を集めている。但し、埋め立て等で処理される廃棄物は、分解速度を高めて、環境に対する負荷を極力低下することが重要であるが、上記分解剤を配合した生分解性樹脂成型体の分解速度を向上させる技術については十分に検討されていない。
特表2002-542313号公報
 本発明は、酸化分解剤を含む生分解性樹脂成型体の分解を促進することにより、当該生分解性樹脂成型体の自然界での生分解速度を向上させる技術を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意検討を行ったところ、酸化分解剤を含む生分解性樹脂成型体の廃棄処理時に、当該生分解性樹脂成型体と塩化物塩と共存させた状態にすることにより、当該生分解性樹脂成型体の分解速度が顕著に高まることを見出した。本発明は、かかる知見に基づいて、更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる技術を提供する。
項1. 塩化物塩を有効成分とすることを特徴とする、酸化分解剤を含む生分解性樹脂成型体の分解促進剤。
項2. 塩化物塩が、塩化カリウム及び/又は塩化ナトリウムである、項1に記載の分解促進剤。
項3. 生分解性樹脂成型体を形成する樹脂が、ポリオレフィンである、項1又は2に記載の分解促進剤。
項4. 酸化分解剤が、カルボン酸金属塩、ヒドロキシカルボン酸、遷移金属化合物、希土類化合物、及び芳香族ケトンよりなる群から選択される少なくとも1種である、項1乃至3のいずれかに記載の分解促進剤。
項5. 樹脂成型体に配合して使用されるものであって、酸化分解剤及び塩化物塩を有効成分とすることを特徴とする、樹脂成型体の分解剤。
項6. 酸化分解剤を含む生分解性樹脂成型体と、項1乃至4のいずれかに記載の分解促進剤を含有することを特徴とする、生分解性製品。
項7. 項5に記載の分解剤を含有することを特徴とする、生分解促進型樹脂成型体。
項8. 酸化分解剤を含む生分解性樹脂成型体と、項1乃至4のいずれかに記載の分解促進剤を共存させることによって当該生分解性樹脂成型体を分解処理することを特徴とする、生分解性樹脂成型体の分解方法。
項9. 塩化物塩の、酸化分解剤を含む生分解性樹脂成型体の分解促進剤の製造のための使用。
項10. 酸化分解剤及び塩化物塩の、樹脂成型体の分解剤の製造のための使用。
項11. 酸化分解剤を含む生分解性樹脂成型体の分解を促進する方法であって、当該生分解性樹脂成型体を塩化物塩の存在下で処理する工程を含む、分解促進方法。
項12. 酸化分解剤を含む生分解性樹脂成型体を分解する方法であって、当該生分解性樹脂成型体を塩化物塩の存在下で処理する工程を含む、分解方法。
項13. 酸化分解剤及び塩化物塩を含む生分解促進型樹脂成型体の分解方法であって、当該生分解促進型樹脂成型体を屋外環境に放置する工程を含む、分解方法。
 本発明の分解促進剤によれば、酸化分解剤を含む生分解性樹脂成型体の分解を特異的に促進することができるので、当該生分解性樹脂成型体の使用後に埋め立てや山野への廃棄処理等に供する場合に、環境汚染を生じさせることなく、生分解を加速させることができる。
 また、本発明の分解剤を樹脂成型体に配合すると、当該樹脂成型体は、廃棄処理した際の分解が促進され、迅速に当該樹脂成型体が微生物に利用可能な程度まで低分子化されるので、環境に悪影響を及ぼすことなく、迅速な自然分解が可能になる。
試験例1において、実施例1及び2の生分解性製品(使い捨てカイロ)の生分解性樹脂成型体(内袋)について、分解促進率を測定した結果を示す。 試験例2において、実施例3及び4の生分解性製品(非発熱性組成物収容製品)の生分解性樹脂成型体(内袋)について、分解促進率を測定した結果を示す。 比較試験例1において、比較例1-5の生分解性製品(非発熱性組成物収容製品)の生分解性樹脂成型体(内袋)について、分解促進率を測定した結果を示す。
1.生分解性樹脂成型体の分解促進剤
 本発明の分解促進剤は、酸化分解剤を含む生分解性樹脂成型体の分解を促進するために使用されるものであって、塩化物塩を有効成分とすることを特徴とする。
 本発明に使用される塩化物塩としては、具体的には、塩化カリウム、塩化ナトリウム、塩化リチウム等のアルカリ金属の塩化物塩;塩化マグネシウム、塩化カルシウム等のアルカリ土類金属の塩化物塩;塩化アルミニウム、塩化銅、塩化鉄、塩化亜鉛、塩化タリウム等の金属塩化物が例示される。これらの塩化物塩の中でも、酸化分解剤を含む生分解性樹脂成型体の分解を一層促進させるという観点から、好ましくはアルカリ金属の塩化物塩、更に好ましくは塩化カリウム、塩化ナトリウム、特に好ましくは塩化カリウムが挙げられる。これらの塩化物塩は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 本発明の分解促進剤は、酸化分解剤を含む生分解性樹脂成型体の分解を促進するために使用される。
 本発明の分解促進剤が適用される生分解性樹脂成型体を形成する樹脂については、酸化分解剤を含む限り特に制限されないが、好適には熱可塑性樹脂が挙げられる。当該熱可塑性樹脂としては、具体的には、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアミド、ポリエステル、ポリビニルアルコール、ポリウレタン、エチレン-酢酸ビニル共重合体、ポリカーボネート等が例示される。これらの熱可塑性合成樹脂は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 これらの熱可塑性樹脂の中でも、好ましくはポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアミド等の加水分解耐性を備える樹脂;更に好ましくはポリオレフィン;より好ましくはポリエチレン、ポリプロピレンが挙げられる。これらの熱可塑性樹脂は、単独では自然界で分解されないが、酸化分解剤と本発明の分解促進剤との共存下で、一層効率的に酸化分解され、微生物分解が可能な程度にまで低分子化される。
 また、本発明の分解促進剤が適用される生分解性樹脂成型体の形状についても特に制限されず、シート状、フィルム状、ペレット状、ブロック状、繊維状等のいずれであってもよい。
 また、本発明において、酸化分解剤とは、樹脂を形成するポリマーを酸化分解して、微生物分解が可能な程度に当該ポリマーを低分子化する物質である。
酸化分解剤は、当該技術分野で公知である(例えば、米国特許第3,840,512号、第3,994,855号、第4,101,720号、第4,156,666号、第4,256,851号、第4,360,60号、第4,461,853号、4,476,255号、第4,517,318号、第4,931,488号、第4,983,645号、第5,096,939号、第5,308,906号、第5,565,503号、第5,854,304号;WO88/09354号、WO92/11298号、WO94/13735号、WO00/59996号等)。本発明の分解促進剤が適用される樹脂成型体に含まれる酸化分解剤については、特に制限されないが、例えば、カルボン酸金属塩、ヒドロキシカルボン酸;遷移金属化合物(米国特許第5,308,906号)、希土類化合物、芳香族ケトン等が例示される。また、酸化分解剤として、カルボン酸金属塩とヒドロキシカルボン酸の組合せ(米国特許第5,854,304号)、カルボン酸金属塩と充填剤の組合せ(米国特許第5,565,503号)等を使用してもよい。本発明では、これらの酸化分解剤を1種単独で使用してもよく、又は2種以上組み合わせて使用してもよい。
 酸化分解剤として使用されるカルボン酸金属塩の好適な例としては、例えば、炭素数10~20の脂肪族カルボン酸の金属塩、好ましくはステアリン酸金属塩が例示される。カルボン酸金属塩を構成する金属原子としては、例えば、コバルト、セリウム、鉄、アルミニウム、アンチモン、バリウム、ビスマス、カドミウム、クロミウム、銅、ガリウム、ランタン、鉛、リチウム、マグネシウム、水銀、モリブデン、ニッケル、カルシウム、希土類、銀、ナトリウム、ストロンチウム、錫、タングステン、バナジウム、イットリウム、亜鉛、ジルコニウム等が例示される。酸化分解剤として使用されるカルボン酸金属塩として、特に好ましくは、コバルト、セリウム、及び鉄等の金属のステアリン酸塩が挙げられる。
 酸化分解剤として使用されるヒドロキシカルボン酸としては、例えば、クエン酸等のモノヒドロキシトリカルボン酸;トリヒドロキシグルタル酸、サッカリン酸等のポリヒドロキシジカルボン酸;酒石酸等のジヒドロキシジカルボン酸;タルトロン酸、リンゴ酸等のモノヒドロキシジカルボン酸;erythric acid、アラビン酸、mannitic acid等のポリヒドロキシモノカルボン酸;グリオキシル酸、グリセリン酸等のジヒドロキシモノカルボン酸等が例示される。これらのヒドロキシカルボン酸は、1種単独で、又は2種以上組み合わせて使用することができる。
 酸化分解剤の一成分として使用される充填剤としては、例えば、無機炭酸塩、合成カーボネート、霞石閃長岩、タルク、水酸化マグネシウム、水酸化アルミニウム、珪藻土、天然又は合成シリカ、焼成クレー等が例示される。これらの充填剤は、150メッシュ未満の粒径を備えていることが望ましい。これらの充填剤は、1種単独で、又は2種以上組み合わせて使用することができる。
 酸化分解剤として使用される遷移金属化合物としては、具体的には、コバルト又はマグネシウムの塩、好ましくはコバルト又はマグネシウムの脂肪族カルボン酸(炭素数12~20)塩、更に好ましくはステアリン酸コバルト、オレイン酸コバルト、ステアリン酸マグネシウム、オレイン酸マグネシウムが挙げられる。これらの遷移金属化合物は、1種単独で、又は2種以上組み合わせて使用することができる。
 酸化分解剤として使用される希土類化合物としては、例えば、周期率表3A族に属する希土類、又はその酸化物が挙げられ、より具体的には、セリウム(Ce)、イットリウム(Y)、ネオジム(Nd)、希土類の酸化物、水酸化物、希土類の硫酸塩、希土類の硝酸塩、希土類の酢酸塩、希土類の塩化物、希土類のカルボン酸塩等が例示され、具体的には、酸化セリウム、硫酸第二セリウム、硫酸第二セリウムアンモニウム、硝酸第二セリウムアンモニウム、酢酸セリウム、硝酸ランタン、塩化セリウム、硝酸セリウム、水酸化セリウム、オクチル酸セリウム、酸化ランタン、酸化イットリウム、酸化スカンジウム等が挙げられる。これらの希土類化合物は、1種単独で、又は2種以上組み合わせて使用することができる。
 酸化分解剤として使用される芳香族ケトンとしては、例えば、ベンゾフェノン、アントラキノン、アントロン、アセチルベンゾフェノン、4-オクチルベンゾフェノン等が例示される。これらの芳香族ケトンは、1種単独で、又は2種以上組み合わせて使用することができる。
 本発明の分解促進剤によって生分解性樹脂成型体の分解をより一層促進させるとの観点から、適用対象となる生分解性樹脂成型体は、酸化分解剤としてカルボン酸塩及び希土類化合物を組合せて含むのもが好適である。このような酸化分解剤の好適な一例として、商品名「P-life」(ピーライフ・ジャパン・インク株式会社製)が挙げられる。
 酸化分解剤として、カルボン酸塩及び希土類化合物を組み合わせて使用する場合、これらの比率としては、例えば、カルボン酸塩100質量部当たり、希土類化合物が5~70量部、好ましくは7~60質量部、更に好ましくは10~50質量部が例示される。
 酸化分解剤は、一般的に、光、熱、空気等の作用下で、樹脂成型体を形成するポリマーを酸化分解して、微生物分解が可能な程度に当該ポリマーを低分子化するが、本発明では、酸化分解剤の中でも、光(紫外線)曝露によってポリマーの酸化分解作用を発揮する酸化分解剤(以下、光要求性酸化分解剤)が好適に使用される。光要求性酸化分解剤を含む生分解性樹脂成型体は、遮光条件下では分解されないため、製造時、流通値、保存時等の使用前段階では遮光雰囲気(遮光空間、遮光容器、遮光袋等)で保管することにより、使用時まで耐久性の劣化を招くことなく、所望の機能を保持させることが可能になる。このような光要求性酸化分解剤としては、例えば、希土類化合物を含む酸化分解剤が挙げられ、より具体的には商品名「P-life」(ピーライフ・ジャパン・インク株式会社製)が例示される。
 本発明の適用対象となる生分解性樹脂成型体における酸化分解剤の配合割合については、使用する酸化分解剤の種類、生分解性樹脂成型体を形成する樹脂の種類等に応じて適宜設定されるが、例えば、生分解性樹脂成型体の総質量に対して、0.05~5質量%、好ましくは0.1~3.5質量%、更に好ましくは0.1~2.4質量%が例示される。
 より具体的には、生分解性樹脂成型体が、織布や不織布等の繊維状である場合には、酸化分解剤の配合割合は、生分解性樹脂成型体の総質量に対して、0.08~0.8質量%、好ましくは0.12~0.6質量%、更に好ましくは0.16~0.4質量%が例示される。また、生分解性樹脂成型体が、フィルム又はシート状である場合には、酸化分解剤の配合割合は、生分解性樹脂成型体の総質量に対して、0.4~3質量%、好ましくは0.6~2.5質量%、更に好ましくは0.8~2質量%が例示される。
 本発明の適用対象となる生分解性樹脂成型体は、公知の方法で製造できる。例えば、以下の点順の製造方法が例示される:(1)生分解性樹脂成型体を形成する樹脂の溶融液に所定量の酸化分解剤を添加し、当該溶解液をペレット状に成型する、(2)次いで、必要に応じて、ペレット状成型体を溶融して、所望の形状に成型する。
 本発明の分解促進剤は、上記生分解性樹脂成型体の廃棄処理時に、上記生分解性樹脂成型体と接触するように適用される限り、その適用方法については特に制限されない。例えば、上記生分解性樹脂成型体の廃棄処理時に、本発明の分解促進剤の有効成分をそのまま、又は必要に応じて水等に希釈媒体で希釈して、上記生分解性樹脂成型体に添加する方法(以下、実施態様1と表記することもある);上記生分解性樹脂成型体を含む製品の製造時に、本発明の分解促進剤の有効成分を予め当該製品に添加することにより、当該生分解性樹脂成型体と当該有効成分とを接触させておく方法(以下、実施態様2と表記することもある)等が例示される。
 上記実施態様1の適用方法は、長期間の耐久性が要求される製品に生分解性樹脂成型体を使用している場合、本発明の分解促進剤の有効成分を予め配合できない製品に生分解性樹脂成型体を使用している場合等において、好適である。
 また、上記実施態様2の適用方法は、本発明の分解促進剤の有効成分を予め配合できる製品であって、長期間の耐久性が要求されない製品に生分解性樹脂成型体を使用している場合において、好適である。このように実施態様2を適用できる製品としては、例えば、機能性組成物を、シート状又はフィルム状の生分解性樹脂成型体で包囲又は生分解性樹脂成型体上に積層させている製品が挙げられる。本明細書において、機能性組成物とは、保冷作用、冷却作用、薬理作用、発熱作用等の特定の作用を有している組成物である。機能性組成物の組成は、当業者であれば、求められる作用等に応じて適宜設定できる。
 上記実施態様2では、具体的には、機能性組成物に対して本発明の分解促進剤の有効成分を添加し、これをシート状又はフィルム状の生分解性樹脂成型体で包囲又は生分解性樹脂成型体上に積層させることにより、製品を提供すればよい。実施態様2を適用できる製品として、具体的には、保冷剤(保冷剤組成物をシート状又はフィルム状の生分解性樹脂成型体で包囲した製品)、身体用冷却剤(冷却剤組成物をシート状又はフィルム状の生分解性樹脂成型体で包囲又は生分解性樹脂成型体上に積層させた製品)、医療用湿布剤(湿布用ゲル状組成物をシート状又はフィルム状の生分解性樹脂成型体上に積層させた製品)、身体用保温剤(発熱性組成物をシート状又はフィルム状の生分解性樹脂成型体で包囲した製品)、等が例示される。
 また、本発明の分解促進剤の適用量については、生分解性樹脂成型体の形状や種類等に応じて異なるが、例えば、適用対象となる生分解性樹脂成型体100質量部当たり、本発明の分解促進剤の有効成分が1~100質量部、好ましくは2.5~50質量部、更に好ましくは5~30質量部を充足する範囲が例示される。
 上記生分解性樹脂成型体を本発明の分解促進剤と共存させた状態で屋外環境に放置して処理(例えば、埋め立てや山野に廃棄処理)することにより、上記生分解性樹脂成型体が酸化分解を経て微生物分解される。本発明の分解促進剤との共存下で上記生分解性樹脂成型体が最終的に分解されるまでの期間は、上記生分解性樹脂成型体の形状や構成樹脂の種類、廃棄された環境等によって異なるが、1g程度のフィルム又はシート状の生分解性樹脂成型体であれば、通常0.5~3年程度で、樹脂成型体が視認できなくなる程度にまで分解される。
 2.樹脂成型体の分解剤
 本発明の分解剤は、樹脂成型体に配合して使用されるものであって、酸化分解剤及び塩化物塩を有効成分とすることを特徴とする、樹脂成型体の分解剤である。このように酸化分解剤と塩化物塩を併用して、樹脂成型体中に配合しておくことにより、当該樹脂成型体の分解を促進して、迅速に樹脂成型体を微生物に利用可能な程度まで低分子化することが可能になる。
 本発明の分解剤に使用される酸化分解剤及び塩化物塩は、上記「1.分解促進剤」に記載の通りである。
 また、本発明の分解剤において、酸化分解剤と塩化物塩の比率については、特に制限されるものではないが、例えば、酸化分解剤の総量100質量部当たり、塩化物塩が総量で4~2800質量部程度、好ましくは10~2600質量部程度、更に好ましくは50~24000質量部程度が挙げられる。
 本発明の分解剤は、樹脂成型体に配合して使用される。樹脂成型体の構成樹脂や形状等については、上記「1.分解促進剤」に記載の生分解性樹脂成型体の場合と同様である。
 本発明の分解剤を樹脂成型体に配合する方法についても、公知の方法に従って行うことができる。例えば、以下の点順の製造方法が例示される:(1)樹脂成型体を形成する樹脂の溶融液に所定量の本発明の分解剤を添加し、当該溶解液をペレット状に成型する、(2)次いで、必要に応じて、ペレット状成型体を溶融して、所望の形状に成型する。
 本発明の分解剤を樹脂成型体に配合する量については、分解剤中の酸化分解剤や塩化物塩の種類、樹脂成型体の種類等に応じて適宜設定されるが、例えば、樹脂成型体の総質量100質量部当たり、本発明の分解剤の総質量が0.1~7質量部、好ましくは0.15~5質量部、更に好ましくは0.2~3質量部が例示される。
 本発明の分解剤が配合された樹脂成型体は、屋外環境に放置して処理(例えば、埋め立てや山野に廃棄処理)することにより、当該樹脂成型体は酸化分解により迅速に低分子化され、その後微生物分解される。本発明の分解剤が配合された樹脂成型体が最終的に分解されるまでの期間の目安は、上記「1.分解促進剤」に記載の生分解性樹脂成型体が分解されるまでの期間と同様である。
 3.生分解性製品
 本発明の生分解性製品は、上記分解促進剤と、酸化分解剤を含む生分解性樹脂成型体とを含有することを特徴とする。即ち、本発明の生分解性製品は、上記分解促進剤が、酸化分解剤を含む生分解性樹脂成型体と組み合わされて含まれており、使用後にそのまま埋め立てや山野に廃棄処理することにより、環境汚染を生じさせることなく、当該樹生分解性脂成型体が迅速に分解される。
 本発明の生分解性製品に含まれる分解促進剤は、上記「1.分解促進剤」に記載の通りである。
 また、本発明の生分解性製品に含まれる生分解性樹脂成型体を形成する樹脂の種類、当該樹脂成型体の形状、当該生分解性樹脂成型体に含まれる酸化分解剤の種類や配合割合等については、上記「1.分解促進剤」の適用対象となる生分解性樹脂成型体と同様である。
 本発明の生分解性製品に含まれる上記分解促進剤と上記生分解性樹脂成型体の比率については、生分解性樹脂成型体の形状や種類等に応じて適宜設定されるが、例えば、上記生分解性樹脂成型体100質量部当たり、上記分解促進剤の有効成分(塩化物塩)が5~55質量部、好ましくは10~50質量部、更に好ましくは15~45質量部が例示される。
 本発明の生分解性製品は、上記分解促進剤と上記生分解性樹脂成型体を含有し、廃棄処理時に当該分解促進剤と当該生分解性樹脂成型体が接触する形態である限り、その製品形態については、特に制限されない。本発明の生分解性製品として、具体的には、上記分解促進剤を含む組成物と、上記生分解性樹脂成型体とを含有する製品;好ましくは、上記分解促進剤を含む機能性組成物が、シート状又はフィルム状の生分解性樹脂成型体で包囲又は生分解性樹脂成型体上に積層させている製品が例示される。本発明の生分解性製品の具体例としては、保冷剤(上記分解促進剤を含む保冷剤組成物をシート状又はフィルム状の生分解性樹脂成型体で包囲した製品)、身体用冷却剤(上記分解促進剤を含む冷却剤組成物をシート状又はフィルム状の生分解性樹脂成型体で包囲又は樹脂成型体上に積層させた製品)、医療用湿布剤(上記分解促進剤を含む湿布用ゲル状組成物をシート状又はフィルム状の生分解性樹脂成型体上に積層させた製品)、身体用保温剤(上記分解促進剤を含む発熱性組成物をシート状又はフィルム状の生分解性樹脂成型体で包囲した製品)等が例示される。
 本発明の生分解性製品は、屋外環境に放置して処理(例えば、埋め立てや山野に廃棄処理)することにより、上記生分解性樹脂成型体は酸化分解により迅速に低分子化され、その後微生物分解される。本発明の生分解性製品中の生分解性樹脂成型体が最終的に分解されるまでの期間の目安は、上記「1.分解促進剤」に記載の生分解性樹脂成型体が分解されるまでの期間と同様である。
 4.生分解促進型樹脂成型体
 本発明の生分解促進型樹脂成型体は、樹脂成型体中に塩化物塩及び酸化分解剤を含有することを特徴とする。即ち、本発明の生分解促進型樹脂成型体は、上記「2.分解剤」に記載の分解剤が配合されている樹脂成型体である。
 5.樹脂成型体の分解方法
 本発明の分解方法は、酸化分解剤を含む生分解性樹脂成型体と、上記分解促進剤を共存させて、当該生分解性樹脂成型体を分解処理することを特徴とする。即ち、本発明の分解方法は、上記分解促進剤を用いた、酸化分解剤を含む生分解性樹脂成型体の分解方法である。
 本発明の分解方法に使用される分解促進剤、分解対象となる生分解性樹脂成型体、当該生分解性樹脂成型体に含まれる酸化分解剤、当該分解促進剤と当該生分解性樹脂成型体の比率、これらを共存させる方法等については、上記「1.分解促進剤」に記載の通りである。
 また、本発明の分解方法において、上記生分解性樹脂成型体の分解処理は、上記分解促進剤と上記生分解性樹脂成型体が共存した状態で、屋内又は屋外に放置することによって行われ、好ましくは微生物が存在する屋外環境に放置(例えば、埋め立て、山野への廃棄)することによって行われる。本発明の分解方法によって、上記樹脂成型体が分解される期間についても、上記「1.分解促進剤」に記載の生分解性樹脂成型体が分解されるまでの期間と同様である。
 以下、実施例を挙げて本発明を説明するが、本発明は本実施例に限定されるものではない。なお、以下の実施例及び比較例において使用した酸化分解剤含有物(酸化分解剤を80~90%含有)は、商品名「P-life」(ピーライフ・ジャパン・インク株式会社製;脂肪族モノカルボン酸50~70重量%、希土類化合物10~20重量%、潤滑剤10~20%含有)である。
 実施例1:生分解性製品(使い捨てカイロ)
1.機能性組成物(発熱性組成物)の調製
 塩化カリウム1質量%、平均粒径50μmの鉄粉55質量%、平均粒径200μmの活性炭13質量%、水26質量%、粒径100μmのヒル石3質量%、及び粒径380μmのアクリル酸重合体部分ナトリウム塩架橋物2質量%を混合することにより発熱性組成物を調製した。
2.樹脂成型体(使い捨てカイロの内袋素材)の調製
 ポリエチレン98質量%及び酸化分解剤含有物2質量%を含む樹脂シートを円盤状の工具網の円周上に刃を設けた回転刃を並べたロールに通し、JIS P
8117-1998「紙及び板紙-透気度試験方法-ガーレー試験機法」に従って測定された値が13.5~14.5秒/100ccとなる程度の細孔が形成された通気性生分解性樹脂フィルム(厚み40μm)を調製した。また、別途、ポリプロピレン99.75質量%及び酸化分解剤含有物0.25質量%を含む合成繊維を用いて、スパンボンド法にて生分解性不織布(目付け25g/m2)を調製した。
 上記通気性生分解性樹脂フィルムに、上記生分解性不織布をラミネートすることにより、縦9.5cm、横120cmの積層体(内袋;通気性生分解性樹脂フィルム0.7gと生分解性不織布0.3gの積層体)1gを調製した。
3.生分解性製品(使い捨てカイロ)の調製
 上記で調製した積層体に上記で調製した発熱性組成物を3方シールにて封入した。具体的には、上記で調製した積層体を2枚に折り、その外側から約7mmの部分を130℃で熱圧着して接着させた。また、上下開いている1端を同様に外側から約7mmの部分を130℃で熱圧着して接着させた。次いで、接着されていない1辺の内袋部分から、上記で調製した発熱性組成物20gを入れた後、接着されていない1辺を外側から約7mmの部分で130℃で熱圧着して接着することにより、発熱性組成物を内袋に収容し、生分解性製品(使い捨てカイロ)を調製した。次いで、調製された生分解性製品を素早く、ポリ塩化ビニリデンコートフィルムからなる外袋(空気非透過性且つ遮光性)に入れて、外袋を密封した。以下の試験例では、試験開始時に、外袋から使い捨てカイロを取り出して使用した。
 実施例2:生分解性製品(使い捨てカイロ)
 塩化カリウム1質量%の代わりに塩化ナトリウム1質量%を使用すること以外は、上記実施例1と同じ条件で、使い捨てカイロを調製した。
 試験例1:生分解性製品(使い捨てカイロ)の分解性の評価
 実施例1及び2の使い捨てカイロを外袋から取り出し、発熱が終了するまで、室温で24時間放置した。その後、発熱が終了した使い捨てカイロを50℃の恒温槽に入れて、12日間保存した。
 発熱終了直後、50℃で3日後、6日後、及び12日保存後に、使い捨てカイロを解体して、発熱性組成物を取り出し、穿孔していない内袋部分を2×7cmにカットして、引張試験機(AGS-H、島津製作所製)にてMD方向に引っ張り、引張強度を測定した。また、コントロールとして、発熱性組成物を収容していない内袋のみを用いて、上記と同条件で保存を行った後に、引張強度の測定を行った。次いで、下記の算出式に従って、実施例1及び2で使用された内袋の分解促進率を測定した。なお、内袋の分解率が高くなる程、引張強度が低下するため、当該技術分野で引張強度は、内袋の分解の程度を評価するために一般的に用いられている指標である。
Figure JPOXMLDOC01-appb-M000001
 実施例1及び2の使い捨てカイロの内袋について、分解促進率を測定した結果を図1に示す。図1から明らかなように、実施例1及び2の使い捨てカイロ(生分解性製品)では、内袋(生分解性樹脂成型体)の分解速度が、コントロールとして評価した内袋に比べて、格段に早まっていた。更に、発熱性組成物(機能性組成物)中に塩化カリウムを含む使い捨てカイロ(実施例1)は、塩化ナトリウムを含む場合(実施例2)に比べて、内袋の分解促進率が顕著に高く、優れた生分解性を備えていることが確認された。なお、実施例1及び2の使い捨てカイロの内袋は、発熱終了後でも、脆さ、発熱性組成物の漏出等、使用上の問題を来す強度の低下は認められず、カイロに備えられるべき物理的特性は維持できていた。
 実施例3-4:生分解性製品(非発熱性組成物収容製品)
 塩化カリウム2.2質量%、平均粒径200μmの活性炭28.9質量%、水57.8質量%、粒径100μmのヒル石6.7質量%、及び粒径380μmのアクリル酸重合体部分ナトリウム塩架橋物4.4質量%を混合することにより非発熱性組成物(機能性組成物)を調製した。得られた非発熱性組成物20gを、上記実施例1で使用した内袋(生分解性樹脂成型体)に収容することにより、非発熱性組成物収容製品(実施例3)を調製した。
 また、別途、塩化カリウム2.2質量%の代わりに塩化ナトリウム2.2質量%を使用すること以外は、上記実施例3と同じ条件で、非発熱性組成物収容製品(実施例4)を調製した。
 試験例2:生分解性製品(非発熱性組成物収容製品)の分解性の評価
 実施例3及び4の非発熱性組成物収容製品を50℃の恒温槽内で3日間保存し、保存1日後と保存3日後に、上記試験例1と同じ方法で、内袋の分解促進率を測定した。
 得られた結果を図2に示す。この結果から、上記試験例1と同様に、塩化カリウム又は塩化ナトリウムを含む製品(実施例3及び4)では、内袋(生分解性樹脂成型体)の分解速度が格段に早まっていた。特に、塩化カリウムを含む製品(実施例3)では、塩化ナトリウムを含む場合(実施例4)に比べて、内袋の分解促進率が顕著に高い値を示した。本試験に供した非発熱性組成物収容製品は、鉄粉を含んでいないため、空気と接触しても発熱することはないことを考慮すると、酸化分解剤を含む内袋の分解が、塩化カリウム又は塩化ナトリウムとの共存によって促進される事象は、温度には大きく影響されないことが確認された。
 比較試験例1:非発熱性組成物収容製品の分解性の評価-2
 塩化カリウム2.2質量%の代わりに、リン酸二水素カリウム2.2質量%(比較例1)、硫酸マグネシウム2.2質量%(比較例2)、硫酸マンガン2.2質量%(比較例3)、硫酸カリウム2.2質量%(比較例4)、又は硫酸ナトリウム2.2質量%(比較例5)を使用すること以外は、上記実施例3と同じ条件で、非発熱性組成物収容製品を調製した。
 上記比較例1-5の非発熱性組成物収容製品を50℃の恒温槽内で1日間保存した後に、上記試験例1と同じ方法で、内袋(樹脂成型体)の分解促進率を測定した。
 得られた結果を図3に示す。この結果から、リン酸二水素カリウム、硫酸マグネシウム、硫酸マンガン、硫酸カリウム、又は硫酸ナトリウムを含む製品(比較例1-5)では、内袋(樹脂成型体)の分解は全く促進できていなかった。この結果から、上記実施例1-4で認められた生分解性樹脂成型体の分解促進効果は、金属塩の中でも、塩化物塩を配合し、これを酸化分解剤と組み合わせた場合に認められる特有のものであることが明らかとなった。
 総合考察
 以上の結果から、塩化物塩には、酸化分解剤を含む生分解性樹脂成型体の分解を促進させる作用があり、酸化分解剤を含む生分解性樹脂成型体の分解促進剤として使用できることが明らかとなった。更に、塩化物塩と酸化分解剤の組合せは、樹脂成型体に対して分解特性を付与するための分解剤としても有効であることが確認された。

Claims (8)

  1.  塩化物塩を有効成分とすることを特徴とする、酸化分解剤を含む生分解性樹脂成型体の分解促進剤。
  2.  塩化物塩が、塩化カリウム及び/又は塩化ナトリウムである、請求項1に記載の分解促進剤。
  3.  生分解性樹脂成型体を形成する樹脂が、ポリオレフィンである、請求項1又は2に記載の分解促進剤。
  4.  酸化分解剤が、カルボン酸金属塩、ヒドロキシカルボン酸、遷移金属化合物、希土類化合物、及び芳香族ケトンよりなる群から選択される少なくとも1種である、請求項1乃至3のいずれかに記載の分解促進剤。
  5.  樹脂成型体に配合して使用されるものであって、酸化分解剤及び塩化物塩を有効成分とすることを特徴とする、樹脂成型体の分解剤。
  6.  酸化分解剤を含む生分解性樹脂成型体と、請求項1乃至4のいずれかに記載の分解促進剤を含有することを特徴とする、生分解性製品。
  7.  請求項5に記載の分解剤を含有することを特徴とする、生分解促進型樹脂成型体。
  8.  酸化分解剤を含む生分解性樹脂成型体と、請求項1乃至4のいずれかに記載の分解促進剤を共存させることによって当該生分解性樹脂成型体を分解処理することを特徴とする、生分解性樹脂成型体の分解方法。
PCT/JP2011/057381 2010-03-31 2011-03-25 生分解性樹脂成型体の分解促進剤及びその使用 WO2011125548A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/634,424 US9056968B2 (en) 2010-03-31 2011-03-25 Degradation promoter of biodegradable resin molded body, and use thereof
KR1020127028663A KR20130087370A (ko) 2010-03-31 2011-03-25 생분해성 수지 성형체의 분해 촉진제 및 그 사용
CN201180016796.4A CN102822283B (zh) 2010-03-31 2011-03-25 生物可降解树脂成型体的降解促进剂及其用途
GB1216692.2A GB2491527B (en) 2010-03-31 2011-03-25 Degradation promoter of biodegradable resin molded body, and use thereof
HK13102876.0A HK1175798A1 (zh) 2010-03-31 2013-03-07 生物可降解樹脂成型體的降解促進劑及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-082451 2010-03-31
JP2010082451A JP5733904B2 (ja) 2010-03-31 2010-03-31 生分解性樹脂成型体の分解促進剤及びその使用

Publications (1)

Publication Number Publication Date
WO2011125548A1 true WO2011125548A1 (ja) 2011-10-13

Family

ID=44762502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057381 WO2011125548A1 (ja) 2010-03-31 2011-03-25 生分解性樹脂成型体の分解促進剤及びその使用

Country Status (7)

Country Link
US (1) US9056968B2 (ja)
JP (1) JP5733904B2 (ja)
KR (1) KR20130087370A (ja)
CN (1) CN102822283B (ja)
GB (1) GB2491527B (ja)
HK (1) HK1175798A1 (ja)
WO (1) WO2011125548A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175276A1 (ja) * 2019-02-25 2020-09-03 モアディバイス株式会社 生分解性鮮度保持フィルム及び生分解性鮮度保持容器

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304958A (zh) * 2013-05-14 2013-09-18 泉州特米斯高环保科技有限公司 一种可降解树脂的生产方法
CN105849191A (zh) * 2013-08-08 2016-08-10 阿斯彭研究公司 促进和控制聚合物的降解的方法和系统
KR101365615B1 (ko) * 2013-09-06 2014-02-26 유재균 초기 기계적 강도가 우수한 산화생분해성 필름용 수지 조성물 및 이의 제조방법과 이로부터 제조되는 산화생분해성 필름
CN106032422A (zh) * 2015-03-13 2016-10-19 香港纺织及成衣研发中心有限公司 一种可降解合成纤维组合物及其制备方法和制品
US11046840B2 (en) 2015-06-30 2021-06-29 BiologiQ, Inc. Methods for lending biodegradability to non-biodegradable plastic materials
US11111363B2 (en) 2015-06-30 2021-09-07 BiologiQ, Inc. Articles formed with renewable and/or sustainable green plastic material and carbohydrate-based polymeric materials lending increased strength and/or biodegradability
US11674014B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Blending of small particle starch powder with synthetic polymers for increased strength and other properties
US20170002185A1 (en) * 2015-06-30 2017-01-05 BiologiQ, Inc. Articles Formed with Biodegradable Materials
US11926929B2 (en) 2015-06-30 2024-03-12 Biologiq, Inc Melt blown nonwoven materials and fibers including starch-based polymeric materials
US11149144B2 (en) 2015-06-30 2021-10-19 BiologiQ, Inc. Marine biodegradable plastics comprising a blend of polyester and a carbohydrate-based polymeric material
US11926940B2 (en) 2015-06-30 2024-03-12 BiologiQ, Inc. Spunbond nonwoven materials and fibers including starch-based polymeric materials
US10920044B2 (en) 2015-06-30 2021-02-16 BiologiQ, Inc. Carbohydrate-based plastic materials with reduced odor
US10995201B2 (en) 2015-06-30 2021-05-04 BiologiQ, Inc. Articles formed with biodegradable materials and strength characteristics of the same
US10919203B2 (en) 2015-06-30 2021-02-16 BiologiQ, Inc. Articles formed with biodegradable materials and biodegradability characteristics thereof
US10752759B2 (en) 2015-06-30 2020-08-25 BiologiQ, Inc. Methods for forming blended films including renewable carbohydrate-based polymeric materials with high blow up ratios and/or narrow die gaps for increased strength
US11359088B2 (en) 2015-06-30 2022-06-14 BiologiQ, Inc. Polymeric articles comprising blends of PBAT, PLA and a carbohydrate-based polymeric material
US11879058B2 (en) 2015-06-30 2024-01-23 Biologiq, Inc Yarn materials and fibers including starch-based polymeric materials
US11674018B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Polymer and carbohydrate-based polymeric material blends with particular particle size characteristics
US11111355B2 (en) 2015-06-30 2021-09-07 BiologiQ, Inc. Addition of biodegradability lending additives to plastic materials
US20220386720A1 (en) * 2021-06-03 2022-12-08 Shen Wei (Usa) Inc. Eco-friendly wearable dipped article and method of manufacturing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119972A (ja) * 1973-03-19 1974-11-15
JPH0565420A (ja) * 1991-09-06 1993-03-19 Hagiwara Kogyo Kk 生物分解性樹脂組成物およびその成形体
JPH07502221A (ja) * 1991-12-12 1995-03-09 ミネソタ マイニング アンド マニュファクチャリング カンパニー 分解性の多層構造体
JP2009542871A (ja) * 2006-07-11 2009-12-03 ディーエスエム アイピー アセッツ ビー.ブイ. ポリマーおよび酸化触媒を有する組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482872B2 (en) 1999-04-01 2002-11-19 Programmable Materials, Inc. Process for manufacturing a biodegradable polymeric composition
US6946506B2 (en) * 2001-05-10 2005-09-20 The Procter & Gamble Company Fibers comprising starch and biodegradable polymers
EP1878762A1 (en) * 2006-07-11 2008-01-16 DSMIP Assets B.V. Oxidisable polymer
JP5484161B2 (ja) * 2010-03-31 2014-05-07 小林製薬株式会社 生分解性使い捨てカイロ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119972A (ja) * 1973-03-19 1974-11-15
JPH0565420A (ja) * 1991-09-06 1993-03-19 Hagiwara Kogyo Kk 生物分解性樹脂組成物およびその成形体
JPH07502221A (ja) * 1991-12-12 1995-03-09 ミネソタ マイニング アンド マニュファクチャリング カンパニー 分解性の多層構造体
JP2009542871A (ja) * 2006-07-11 2009-12-03 ディーエスエム アイピー アセッツ ビー.ブイ. ポリマーおよび酸化触媒を有する組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175276A1 (ja) * 2019-02-25 2020-09-03 モアディバイス株式会社 生分解性鮮度保持フィルム及び生分解性鮮度保持容器
JPWO2020175276A1 (ja) * 2019-02-25 2020-09-03
CN113474261A (zh) * 2019-02-25 2021-10-01 摩尔装置有限公司 生物分解性保鲜膜及生物分解性保鲜容器

Also Published As

Publication number Publication date
HK1175798A1 (zh) 2013-07-12
KR20130087370A (ko) 2013-08-06
US20130018125A1 (en) 2013-01-17
JP2011213836A (ja) 2011-10-27
GB201216692D0 (en) 2012-10-31
CN102822283B (zh) 2016-02-24
GB2491527B (en) 2016-06-15
GB2491527A (en) 2012-12-05
JP5733904B2 (ja) 2015-06-10
CN102822283A (zh) 2012-12-12
US9056968B2 (en) 2015-06-16

Similar Documents

Publication Publication Date Title
JP5733904B2 (ja) 生分解性樹脂成型体の分解促進剤及びその使用
JP5484161B2 (ja) 生分解性使い捨てカイロ
EP0366802B1 (en) Multi-layer structure and artificial anus bag
WO1999045067A1 (fr) Composition a base d'acide polylactique et son film
WO2001039807A2 (en) Degradable disposable diaper
SK147793A3 (en) Disposable absorptive objects with biodegradable backlayers
JPH083333A (ja) 生分解性脂肪族ポリエステルの溶融押出フィルムおよびそれからなる袋
WO1998029506A1 (en) Water-responsive polymer compositions and method of making the same
KR20030036777A (ko) 지방족 폴리에스테르수지조성물 및 그것을 함유해서이루어진 필름
JP2013124424A (ja) 生分解性脂肪族ポリエステル繊維から形成される抗菌性不織布、及び抗菌方法
KR20150134470A (ko) 산화생분해성을 갖는 열접착형 복합섬유 및 그 제조방법
JPH04136067A (ja) 包装材
CN106032422A (zh) 一种可降解合成纤维组合物及其制备方法和制品
CN111073236A (zh) 一种环保塑料袋的制备方法
JP2002035037A (ja) 生分解性衛生用品
KR20160017761A (ko) 산화생분해성을 갖는 열접착형 복합섬유 및 그 제조방법
JP2005036088A (ja) 食品包装用樹脂組成物及び食品用包装体
JPH10251492A (ja) 自然分解性樹脂組成物及びその成形物
JP2002051939A (ja) 携帯用汚物処理袋
JP7513993B2 (ja) フィラー、環境適合性プラスチック、環境適合性プラスチック繊維、およびpgaイオンコンプレックスの使用
JP2007254738A (ja) 環境保護に好適な樹脂ペレット原料の製造方法
JP2001032130A (ja) 生分解性再生糸および生分解性再生フィルム
JP3791122B2 (ja) ごみ袋
JP2024039153A (ja) 生分解性ポリオレフィンシート
US20170000198A1 (en) Degradable emergency diaper liner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016796.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13634424

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1216692

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110325

WWE Wipo information: entry into national phase

Ref document number: 1216692.2

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127028663

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11765449

Country of ref document: EP

Kind code of ref document: A1