WO2011125514A1 - エッチング方法及び装置 - Google Patents

エッチング方法及び装置 Download PDF

Info

Publication number
WO2011125514A1
WO2011125514A1 PCT/JP2011/057138 JP2011057138W WO2011125514A1 WO 2011125514 A1 WO2011125514 A1 WO 2011125514A1 JP 2011057138 W JP2011057138 W JP 2011057138W WO 2011125514 A1 WO2011125514 A1 WO 2011125514A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
semiconductor film
film
fluorine
processed
Prior art date
Application number
PCT/JP2011/057138
Other languages
English (en)
French (fr)
Inventor
俊介 功刀
聡 真弓
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201180015715.9A priority Critical patent/CN102834902B/zh
Priority to KR1020127028427A priority patent/KR101283754B1/ko
Publication of WO2011125514A1 publication Critical patent/WO2011125514A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32825Working under atmospheric pressure or higher
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate

Definitions

  • the present invention relates to a method and apparatus for etching a film formed on a substrate when manufacturing a semiconductor device such as a flat panel display, and more particularly to an etching method suitable for channel etching of a switching element such as a TFT (Thin Film Transistor). And an apparatus.
  • This type of semiconductor device is manufactured by repeating processes such as film formation, masking, etching, and mask removal (see Patent Document 1). Usually, only one or the same kind of film is etched in one etching step. However, for example, in the TFT channel etching process, the semiconductor film doped with impurities is etched following the etching of the metal film. The metal film is wet-etched using an acidic etching solution such as hydrochloric acid. The semiconductor film is dry-etched using, for example, a fluorine-based etching gas.
  • an etching method includes a semiconductor film and a metal film sequentially stacked on a substrate, and the metal of the object to be processed in which a film portion on the metal film side of the semiconductor film is doped with impurities.
  • a method of etching a film and the semiconductor film A transporting process for continuously transporting the object to be processed along a transport path of pressure near atmospheric pressure;
  • a wet etching step of supplying an etching solution having solubility to a metal to the object to be processed at a position on the transport path;
  • a dry etching step of bringing an etching gas containing a fluorine-based reaction component and an oxidizing reaction component into contact with the surface of the object to be processed in a processing space downstream in the transport direction from the position on the transport path;
  • the raw material gas containing the fluorine-based raw material component is converted into plasma under a pressure close to atmospheric pressure to generate the fluorine-based reactive component, and according to the transfer speed of the workpiece, Setting the etching rate for the semiconductor film so that the etching depth during the period during which the workpiece passes through the processing space corresponds to the thickness of the film portion doped with the impurity (approximately equal).
  • the object to be processed passes through a position where the wet etching process is performed, that is, a position where the dry etching process is performed, that is, a processing space, by being continuously transported along the transport path.
  • the pressure in the transport path is near atmospheric pressure. Therefore, the position of the wet etching process on the transfer path and the pressure in the processing space are near atmospheric pressure.
  • the etching solution is brought into contact with the metal film of the unmasked part (non-masked part) of the object to be processed, and the metal film is wet etched. Is done. As a result, the non-masked portion of the semiconductor film is exposed.
  • an etching gas is brought into contact with the semiconductor film in the non-mask portion to cause an etching reaction.
  • silicon constituting the semiconductor film is oxidized by an oxidizing reaction component, and further converted into a volatile component such as SiF 4 by a fluorine-based reaction component.
  • the non-masked semiconductor film is dry etched.
  • the film portion on the metal film side doped with impurities in the semiconductor film can be etched.
  • the film portion on the substrate side that is not doped with impurities is left without being etched. Thereby, a channel part can be formed.
  • a semiconductor film and a metal film are sequentially stacked on a substrate, and the metal film and the semiconductor film of an object to be processed are doped with impurities in a film portion of the semiconductor film on the metal film side.
  • a device that performs A transport mechanism for continuously transporting the object to be processed along a transport path of pressure near atmospheric pressure;
  • a wet etching unit that has a supply nozzle disposed on a transfer path of the transfer mechanism, and supplies an etching solution having solubility to metal from the supply nozzle to the surface of the object to be processed;
  • Fluorine-based raw material having at least a pair of electrodes that form a discharge space near atmospheric pressure between each other and a defining section that defines a processing space at a position downstream of the supply nozzle on the transport path
  • a raw material gas containing a component is introduced into the discharge space to generate a fluorine-based reaction component, and an etching gas containing the fluorine-based reaction component and an oxidizing reaction component is brought into contact with the surface of the object to be processed in the processing space.
  • Atmospheric pressure plasma etching part And the etching depth by the atmospheric pressure plasma etching part during the period in which the object to be processed passes through the processing space corresponds to the thickness of the film part doped with the impurity (so as to be substantially equal).
  • An etching rate for the semiconductor film is set.
  • the object to be processed is continuously conveyed by a conveyance mechanism along a conveyance path having a pressure near atmospheric pressure. Then, first, the object to be processed passes through a position where the supply nozzle is arranged on the conveyance path. During this passage, the etching solution comes into contact with the metal film in the non-mask portion of the object to be processed to cause an etching reaction, and the metal film is wet etched under a pressure near atmospheric pressure. As a result, the non-masked portion of the semiconductor film is exposed.
  • the object to be processed continues to move along the transfer path and passes through the processing space of the atmospheric pressure plasma etching unit.
  • the pressure in the transport path is near atmospheric pressure. Accordingly, the pressure in the processing space included in the transfer path is near atmospheric pressure.
  • an etching gas is brought into contact with the non-mask portion of the semiconductor film to cause an etching reaction.
  • the film portion on the metal film side doped with impurities in the semiconductor film can be etched.
  • the film portion on the substrate side that is not doped with impurities is left without being etched. Thereby, a channel part can be formed.
  • the etching rate for the semiconductor film is set so that the etching depth during the period in which the object to be processed passes through the processing space is slightly greater than the thickness of the film portion doped with the impurity. . Therefore, when the dry etching process is completed, it is preferable that the film portion not doped with impurities is exposed in a partially etched state.
  • the dry etching of the semiconductor film is also performed on the transport path near the atmospheric pressure as in the case of the wet etching of the metal film.
  • the etching rate by adjusting the flow rate of the etching gas or the concentration of the fluorine-based reaction component or the oxidizing reaction component. Increasing the flow rate of the etching gas can increase the etching rate. If the flow rate of the etching gas is reduced, the etching rate can be lowered. The etching rate can be increased by increasing the fluorine-based reactive component concentration or the oxidizing reactive component concentration in the etching gas. The etching rate can be lowered by reducing the fluorine-based reactive component concentration or the oxidizing reactive component concentration.
  • the plasma is formed with at least a pair of electrodes, and the number of pairs of the electrodes is further adjusted so that the etching depth corresponds to the thickness of the film portion doped with the impurities (to be substantially equal).
  • the flow rate of the etching gas can be increased.
  • the length of the processing space along the transfer path can be increased to increase the time during which the workpiece is in contact with the etching gas (the reaction time of the dry etching process). Therefore, the etching depth can be increased. If the number of electrode pairs is reduced, the flow rate of the etching gas can be reduced. Alternatively, the reaction length of the dry etching process can be shortened by shortening the length of the processing space along the transfer path. Therefore, the etching depth can be reduced.
  • the atmospheric pressure plasma etching unit is preferably a so-called remote type plasma processing apparatus. That is, it is preferable that the discharge space is arranged away from the processing space, and the blow-out path extending from the discharge space reaches the surface of the defining unit facing the transport mechanism and continues to the processing space. Thereby, it can prevent that a to-be-processed object is damaged by the plasma electric field of discharge space.
  • Remote plasma processing near atmospheric pressure tends to be isotropically etched, but by adjusting the amount of hydrogen-containing condensable component to be described later added to the source gas, the etching profile of the semiconductor film can be adjusted. Can be controlled.
  • the atmospheric pressure plasma etching unit may be a so-called direct type plasma processing apparatus. That is, the discharge space formed between the electrodes may constitute the processing space, and the object to be processed may be passed through the discharge space (processing space).
  • fluorine-based raw material component in the raw material gas examples include PFC (perfluorocarbon) and HFC (hydrofluorocarbon).
  • PFC perfluorocarbon
  • HFC hydrofluorocarbon
  • examples of the PFC include CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 and the like.
  • Examples of HFC include CHF 3 , CH 2 F 2 , CH 3 F and the like.
  • fluorine-based raw material component fluorine-containing compounds other than PFC and HFC such as SF 6 , NF 3 , and XeF 2 may be used.
  • the source gas further contains a hydrogen-containing condensable component.
  • fluorine-type reaction components such as hydrogen fluoride (HF)
  • HF hydrogen fluoride
  • the etching gas includes a hydrogen-containing condensable component that has not been decomposed in the discharge space in the source gas.
  • the hydrogen-containing condensable component is a component containing hydrogen and having condensability under dry etching temperature conditions and pressure conditions (near atmospheric pressure).
  • Water (H 2 O) is preferably used as the hydrogen-containing condensable component.
  • water is vaporized using a humidifier or a vaporizer to form water vapor, and this water vapor is added to the raw material gas.
  • an OH-containing compound, hydrogen peroxide solution, or the like may be used instead of water. Examples of the OH-containing compound include alcohol.
  • oxidizing reaction component in the etching gas examples include ozone (O 3 ), oxygen (O 2 ), oxygen radicals, H 2 O 2 , NO 2 , and N 2 O. More preferably, ozone is used as the oxidizing reaction component.
  • ozone may be generated by an ozonizer, and this ozone-containing gas may be mixed with an etching gas.
  • ozone, oxygen radicals, and the like may be generated in the discharge space by including oxygen (O 2 ) in the source gas.
  • oxygen gas is converted into plasma in a discharge space different from the discharge space for the source gas to generate ozone, oxygen radicals, etc., and the oxidizing reaction component-containing gas containing ozone, oxygen radicals, etc. is etched. You may mix with gas.
  • the hydrogen-containing condensable component is water and the oxidizing reaction component is ozone.
  • Etching gas stays at the corner of the etched portion of the semiconductor film in the dry etching process. Therefore, if the etching gas contains a hydrogen-containing condensable component such as water, it tends to condense and accumulate in the corners. This condensed layer serves as a barrier to prevent an oxidative reaction component such as ozone from coming into contact with the edge of the etched portion of the semiconductor layer, thereby preventing the etching reaction at the edge. Therefore, the etching can be prevented from spreading in the side direction. Therefore, even in dry etching near atmospheric pressure, etching anisotropy can be secured and a good channel region can be formed.
  • a hydrogen-containing condensable component such as water
  • the source gas may further contain a hydrogen-containing condensable component
  • the etching profile of the semiconductor film may be controlled by adjusting the content of the hydrogen-containing condensable component in the source gas.
  • the atmospheric pressure plasma etching unit further includes an adding means for adding a hydrogen-containing condensable component to the source gas.
  • the etching profile of the semiconductor film may be controlled by adjusting the addition amount of the hydrogen-containing condensable component by the adding means. By adjusting the content rate (or addition rate) of the hydrogen-containing condensable component in the etching gas, the shape of the edge of the etched portion can be controlled.
  • the etching suppressing action is increased, and the edge of the etched portion can be made a gentle slope.
  • the content rate (or addition rate) is reduced, the amount of the condensed layer accumulated at the edge of the etched portion is reduced. Therefore, the etching suppressing action is reduced, and the edge of the etched portion can be a steep slope.
  • the fluorine-based raw material component is a hydrogen-free fluorine-based component that contains a fluorine atom and does not contain a hydrogen atom
  • the source gas includes the hydrogen-free fluorine-based component, oxygen (O 2 ), and nitrogen It contains (N 2 ) and may not contain condensable hydrogen-containing components such as water.
  • non-hydrogen-containing fluorine-based components include perfluorocarbons (PFC) such as CF 4 , C 2 F 6 , C 3 F 6 , and C 3 F 8 , as well as F 2 , SF 6 , NF 3 , and XeF 2. It is done.
  • an etching gas containing oxygen-containing fluorine-based reaction components and nitrogen oxide (NOx) and little or no HF can be generated by converting the raw material gas into plasma.
  • the oxygen-containing fluorine-based reaction component include carbonyl difluoride (COF 2 ) and oxygen fluoride (OF 2 , O 2 F 2 ).
  • Nitric oxide constitutes the oxidizing reaction component.
  • the semiconductor film can be oxidized with nitrogen oxide, and further converted into a volatile component (SiF 4 ) with an oxygen-containing fluorine-based reaction component and etched.
  • anhydrous hydrogen fluoride may be used as the etching gas component.
  • the vicinity of atmospheric pressure refers to a range of 1.013 ⁇ 10 4 Pa to 50.663 ⁇ 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 ⁇ 10 4. Pa to 10.664 ⁇ 10 4 Pa is preferable, and 9.331 ⁇ 10 4 Pa to 10.9797 ⁇ 10 4 Pa is more preferable.
  • the etching process is more preferably performed under atmospheric pressure.
  • a portion of a semiconductor film doped with impurities is dry-etched under the same pressure as that of the wet etching. It can. Etching of two different types of films can be performed sequentially along with the continuous conveyance of the workpiece. Therefore, the processing tact can be shortened.
  • FIG. 2 is a side sectional view of the atmospheric pressure plasma etching part of the etching apparatus, taken along line II-II in FIG. 1. It is sectional drawing which shows the manufacturing process of TFT of a semiconductor device in the state masked on the metal film. It is sectional drawing which shows the manufacturing process of TFT of a semiconductor device in the state which wet-etched the non-mask part of the said metal film. It is sectional drawing which shows the manufacturing process of TFT of a semiconductor device in the state which dry-etched the impurity doped semiconductor film. It is sectional drawing which shows an example of TFT of a semiconductor device. It is sectional drawing which expands and shows the corner part of the channel part at the time of the said dry etching. It is the photograph of the cross section of the channel part of TFT after a dry etching process.
  • a semiconductor device 90 made of, for example, a liquid crystal display panel includes a TFT as a switching element of each pixel.
  • the TFT is configured by sequentially laminating a gate wiring 92, a gate insulating film 93, a semiconductor film 94, a signal wiring 97, a passivation film 98, and an electrode 99 on the substrate 91 of the semiconductor device 90 from the substrate 91 side.
  • the thickness of each of the layers 92 to 99 is exaggerated.
  • the substrate 91 is glass. Although the magnitude
  • the gate wiring 92 is made of a metal such as Al, Cu, Cr, Ti, Mo, Ta, for example.
  • the gate insulating film 93 is made of, for example, SiN.
  • the semiconductor film 94 is made of, for example, amorphous silicon.
  • the thickness of the semiconductor film 94 is, for example, about 200 nm to 300 nm.
  • the semiconductor film 94 includes a film portion 95 on the substrate 91 side and a film portion 96 on the signal wiring 97 side.
  • the film portion 95 is undoped amorphous silicon that is not doped with impurities.
  • the film portion 96 is n-type amorphous silicon doped with an impurity such as P.
  • the film thickness of the n-type amorphous silicon 96 is, for example, about 60 nm to 100 nm.
  • the signal wiring 97 is made of a metal such as Al, Cu, Cr, Ti, Mo, or Ta.
  • the passivation film 98 is made of an insulator such as SiN.
  • the electrode 99 is made of, for example, ITO. The electrode 99 is electrically connected to the signal wiring 97 through a contact hole 99c integrated therewith.
  • FIG. 3A shows the workpiece 9 to be the semiconductor device 90 in a state after the metal film to be the signal wiring 97 is formed and before the channel portion is formed.
  • a mask made of a photoresist 8 is provided on the metal film 97.
  • the metal film 97 in the non-mask portion is wet etched.
  • the non-mask portion of the semiconductor film 94 is dry-etched.
  • the etching apparatus 1 includes a transport mechanism 10, a wet etching unit 20, and an atmospheric pressure plasma etching unit 30.
  • the transport mechanism 10 is configured by, for example, a roller conveyor or a roller conveyor (illustrated for simplicity in FIG. 1).
  • a plurality of objects to be processed 9 are continuously conveyed along the conveyance path 11 of the conveyance mechanism 10 at a constant interval.
  • the conveyance speed is, for example, about 1 m / min to 10 m / min, specifically about 4 to 5 m / min, but is not limited thereto.
  • the supply interval (tact) of the workpiece 9 to the transport mechanism 10 is, for example, about 15 sec to 120 sec, more preferably 30 sec to 60 sec, and specifically about 45 sec, but is not limited thereto. is not.
  • the transport path 11 of the transport mechanism 10 includes an outward path 11a, an intermediate path 11b, and a return path 11c, and is generally U-shaped in plan view.
  • the forward path 11a and the return path 11c extend in parallel to each other.
  • the intermediate path 11b connects the downstream end of the forward path 11 and the upstream end of the return path 11c.
  • the conveyance path 11 is not limited to the above, and the whole may extend linearly, may be L-shaped, or may be curved.
  • a wet etching position 12, a cleaning position 13, a liquid draining position 14, a dry etching position 15, a cleaning position 16, and a liquid draining position 17 are sequentially set from the upstream side along the transport path 11.
  • a wet etching position 12 is disposed in the forward path 11a.
  • a cleaning position 13 is disposed in the intermediate path 11b.
  • a liquid draining position 14, a dry etching position 15, a cleaning position 16, and a liquid draining position 17 are sequentially arranged.
  • the positions 12 to 17 need only be arranged in the above order, and it can be changed as appropriate to which of the transport path portions 11a, 11b, and 11c the positions 12 to 17 are arranged.
  • Etching apparatus 1 is disposed under a pressure near atmospheric pressure, and is preferably disposed under atmospheric pressure. Therefore, the pressure at the transport path 11 and the above positions 12 to 17 is close to atmospheric pressure, and preferably atmospheric pressure.
  • the entire etching apparatus 1 may be accommodated in a clean room (chamber), and the pressure in the clean room may be adjusted within a range near atmospheric pressure.
  • a wet etching portion 20 is provided at the wet etching position 12.
  • the wet etching unit 20 includes a supply nozzle 21.
  • the supply nozzle 21 is configured by, for example, a shower nozzle.
  • the supply nozzle 21 is disposed downward above the transport mechanism 10.
  • An etching solution from an etching solution supply source (not shown) is sent to the supply nozzle 21 and blown out from the supply nozzle 21 in a shower shape.
  • the etching solution is soluble in metals, and for example, chemical solutions such as hydrochloric acid, sulfuric acid, and nitric acid are used.
  • a cleaning nozzle 43 is provided at the cleaning position 13.
  • the cleaning nozzle 43 is constituted by, for example, a shower nozzle.
  • a cleaning nozzle 43 is disposed downward above the transport mechanism 10.
  • the cleaning liquid is supplied to the cleaning nozzle 43 and blown out from the cleaning nozzle 43 like a shower.
  • water is used as the cleaning liquid.
  • a liquid draining nozzle 54 is provided at the liquid draining position 14.
  • the liquid cutting nozzle 54 is constituted by, for example, an air knife nozzle.
  • the air knife nozzle 54 is disposed downward above the transport mechanism 10.
  • the air knife nozzle 54 is inclined in plan view with respect to the processing width direction orthogonal to the transport direction at the liquid draining position 14.
  • An air knife (high-pressure, high-speed strip-shaped air flow) is blown out from the nozzle 54.
  • an atmospheric pressure plasma etching unit 30 is provided at the dry etching position 15.
  • the atmospheric pressure plasma etching unit 30 includes a processing head 31 (defining unit).
  • the processing head 31 is supported above the transport mechanism 10 by a gantry (not shown).
  • a processing space 19 is defined between the bottom surface 31 a of the processing head 31 facing the transport mechanism 10 and the transport mechanism (roller conveyor) 10.
  • the processing space 19 is included in the dry etching position 15.
  • the pressure in the processing space 19 is near atmospheric pressure, and preferably atmospheric pressure.
  • the processing head 31 includes one or a plurality (two in the figure) of electrode units 32. When there are a plurality of electrode units 32, these electrode units 32 are arranged in the conveyance direction of the workpiece 9. Each electrode unit 32 has a pair of electrodes 33. Each electrode 33 extends in the processing width direction orthogonal to the transport direction at the dry etching position 15. The length of each electrode 33 in the processing width direction is substantially the same as or slightly larger than the dimension of the workpiece 9 in the same direction. A pair of electrodes 33 and 33 are arranged in parallel. A slit-shaped space 34 extending in the processing width direction is formed between the pair of electrodes 33 and 33.
  • a blowout path 35 that is continuous with the lower end of the interelectrode space 34 is formed.
  • the blow-out path 35 forms a slit extending in the processing width direction, reaches the bottom surface 31 a of the processing head 31, and continues to the processing space 19.
  • a solid dielectric layer (not shown) is provided on the opposing surface of at least one of the electrodes 33.
  • One of the pair of electrodes 33, 33 constituting each electrode unit 32 is connected to a power source (not shown), and the other is electrically grounded.
  • the power source supplies, for example, pulsed high frequency power to the electrode 33.
  • an atmospheric pressure glow discharge is generated between the pair of electrodes 33 and 33, and the inter-electrode space 34 becomes a discharge space.
  • the discharge space 34 is arranged away from the processing space 19 and continues to the processing space 19 through the blow-out path 35.
  • the source gas supply source 2 is connected to the upper end of the inter-electrode space 34 of each electrode unit 32.
  • the source gas contains a fluorine-based source component and a carrier component.
  • CF 4 is used as the fluorine-based raw material component.
  • other PFC perfluorocarbon
  • C 2 F 6 , C 3 F 6 , C 3 F 8 may be used as the fluorine-based raw material component
  • CHF 3 , CH 2 F 2 , CH HFC (hydrofluorocarbon) such as 3 F may be used, and fluorine-containing compounds other than PFC and HFC such as SF 6 , NF 3 , and XeF 2 may be used.
  • fluorine-containing compounds other than PFC and HFC such as SF 6 , NF 3 , and XeF 2 may be used.
  • the carrier gas has a function as a dilution gas for diluting a fluorine-based raw material gas containing a fluorine-based raw material component and a function as a discharge gas for generating a stable plasma discharge in addition to the function of conveying the fluorine-based raw material component.
  • a rare gas such as helium, argon, neon, or xenon, or an inert gas such as nitrogen is used.
  • argon is used as the carrier gas.
  • a hydrogen-containing condensable component is added to the fluorine-based source gas.
  • the hydrogen-containing condensable component it is preferable to use water (H 2 O). Water is vaporized by the humidifier 3 (adding means) and added to the fluorine-based raw material gas.
  • the hydrogen-containing condensable component may be an OH group-containing compound, hydrogen peroxide solution, or a mixture thereof. Examples of the OH group-containing compound include alcohol.
  • each gas component is converted into plasma (including decomposition, excitation, activation, and ionization) under atmospheric pressure.
  • Fluorine reaction components such as HF and COF 2 are generated.
  • the fluorine-based reaction component include HF and COF 2 .
  • COF 2 can be further converted to HF by reacting with the raw material water.
  • an oxidizing reaction component supply source 4 is connected to the processing head 31.
  • An ozonizer is used as the oxidizing reaction component supply source 4.
  • the ozonizer 4 generates ozone (oxidative reaction component) using oxygen as a raw material.
  • the oxidizing reaction component-containing gas (O 2 + O 3 ) from the ozonizer 4 is merged with and mixed with the fluorine-based reaction component-containing gas from the discharge space 34. Thereby, an etching gas is generated.
  • the etching gas contains a fluorine-based reaction component (HF or the like) and an oxidizing reaction component (O 3 or the like).
  • the processing head 31 is provided with a suction portion that sucks and discharges the processed gas from the processing space 19.
  • the suction port of the suction part is opened in the head bottom surface 31a.
  • a cleaning nozzle 46 is provided at the cleaning position 16.
  • the cleaning nozzle 46 is constituted by, for example, a shower nozzle.
  • the cleaning liquid is supplied to the cleaning nozzle 46 and blown out from the cleaning nozzle 46 like a shower.
  • water is used as the cleaning liquid.
  • a liquid draining nozzle 57 is provided at the liquid draining position 17.
  • the liquid cutting nozzle 57 is composed of, for example, an air knife nozzle.
  • the air knife nozzle 57 is disposed downward above the transport mechanism 10.
  • the air knife nozzle 57 is inclined in plan view with respect to the processing width direction orthogonal to the transport direction at the liquid draining position 17. An air knife is blown out from the nozzle 57.
  • Each workpiece 9 is first introduced into the wet etching position 12.
  • the etching solution is blown out from the supply nozzle 21. This etching solution contacts the surface of the workpiece 9 passing through the wet etching position 12.
  • the metal film 97 in the non-mask portion is wet etched, and the semiconductor film 94 is exposed (FIG. 3B).
  • the wet etching is isotropic etching, the metal film 97 tends to be etched deeper in the side direction than the edge of the mask 8.
  • the workpiece 9 that has passed through the liquid draining position 14 is introduced into the dry etching position 15.
  • a fluorine-based source gas (CF 4 + Ar + H 2 O) is supplied to the interelectrode space 34 of each electrode unit 32, and plasma discharge is performed in the interelectrode space 34 under a pressure near atmospheric pressure by applying an electric field. Generate.
  • the fluorine-based source gas is turned into plasma, and a fluorine-based reaction component such as HF is generated.
  • An ozone-containing gas (O 2 + O 3 ) from the ozonizer 4 is mixed with this fluorine-based reactive component-containing gas to generate an etching gas containing reactive components such as HF and O 3 .
  • This etching gas is blown out from the blowing path 35 to the processing space 19.
  • the etching gas contacts the surface of the workpiece 9 passing through the processing space 19.
  • an etching reaction of the semiconductor film 94 occurs.
  • the amorphous silicon constituting the non-masked portion of the semiconductor film 94 is oxidized by O 3 in the etching gas, and further reacted with HF to be converted into volatile SiF 4 .
  • the dew point of the fluorine-based source gas (CF 4 + Ar + H 2 O) after the addition of water is preferably about 0 ° C. to 20 ° C.
  • the temperature of the workpiece 9 is preferably about 10 ° C. to 50 ° C.
  • the dry etching process is performed while the workpiece 9 is transported by the transport mechanism 10.
  • the etching depth of the semiconductor film 94 during the period in which the workpiece 9 passes through the processing space 19 corresponds to the thickness of the impurity-doped semiconductor film 96 (substantially equal) according to the conveyance speed of the workpiece 9.
  • the etching rate for the semiconductor film 94 is set.
  • the etching rate can be controlled by adjusting the flow rate of the etching gas or the concentration of reaction components (HF, O 3, etc.).
  • the etching with respect to the semiconductor film 94 is performed such that the etching depth of the semiconductor film 94 during the period in which the workpiece 9 passes through the processing space 19 is slightly greater than the thickness of the impurity-doped semiconductor film 96. Set the rate.
  • Increasing the flow rate of the etching gas can increase the etching rate, and decreasing the flow rate of the etching gas can decrease the etching rate.
  • Increasing the HF concentration or O 3 concentration of the etching gas can increase the etching rate, and decreasing the HF concentration or O 3 concentration can decrease the etching rate.
  • the HF concentration of the etching gas can be controlled by adjusting the CF 4 concentration of the fluorine-based source gas, the addition flow rate of H 2 O, and the like.
  • the O 3 concentration of the etching gas can be controlled by adjusting the mixing ratio of the ozone-containing gas (O 2 + O 3 ).
  • the CF 4 concentration, the H 2 O addition flow rate, the mixing ratio of the ozone-containing gas (O 2 + O 3 ) and the like are preferably adjusted within the above-described preferred ranges.
  • the etching depth of the semiconductor film 94 during the period in which the workpiece 9 passes through the processing space 19 corresponds to the thickness of the impurity-doped semiconductor film 96 (almost). May be equal).
  • the flow rate of the etching gas can be increased.
  • the size of the processing head 31 along the transfer path 11 can be increased, and the length of the processing space 19 along the transfer path 11 can be increased, thereby extending the dry etching reaction time.
  • the flow rate of the etching gas can be reduced.
  • the dimension along the transfer path 11 of the processing head 31 can be reduced, so that the length of the process space 19 along the transfer path 11 can be shortened, and the reaction time of dry etching can be shortened.
  • the dry etching process can be completed. Therefore, the impurity-doped semiconductor film 96 can be removed, and the undoped semiconductor film 95 can be left without being etched. Thereby, the channel portion of the TFT can be formed. Specifically, when the etching of the semiconductor film 94 slightly exceeds the boundary between the undoped semiconductor film 95 and the impurity-doped semiconductor film 96, the dry etching process can be completed. Therefore, the impurity-doped semiconductor film 96 can be completely removed, and the undoped semiconductor film 95 can be partially etched and exposed.
  • the etching gas diffuses even when the edge 97e of the metal film 97 is retracted from the resist 8 as shown by the solid line in FIG.
  • the edge 96 e of the semiconductor film 96 is continuous with the edge 97 e of the metal film 97 because it contacts the entire exposed surface of the semiconductor film 96.
  • the etching gas stays in the periphery (corner) of the edge 96e in the etched portion of the semiconductor film 96. Therefore, water in the etching gas is likely to condense. This condensed water w becomes a barrier and prevents ozone from coming into contact with the semiconductor layer 96. Therefore, etching of the semiconductor film 96 in the side direction can be suppressed, and the edge 96e can be prevented from being retracted deeper than the edge 97e of the metal film 97. Therefore, etching anisotropy can be secured and a good channel region can be formed. Furthermore, the etching profile of the semiconductor film 96 can be controlled by adjusting the amount of moisture in the etching gas.
  • the shape of the edge 96e can be controlled. That is, when the amount of water in the etching gas is increased, the amount of condensed water w is increased. Therefore, the effect of suppressing the etching of the edge portion 96e is increased. Therefore, as shown by a two-dot chain line in FIG. 5, the edge portion 96e can be a gentle slope. When the amount of water in the etching gas is reduced, the amount of condensed water w is reduced. For this reason, the etching suppressing action of the edge portion 96e is reduced. Therefore, as shown by a three-dot chain line in FIG. 5, the edge portion 96e can be a steep slope.
  • the edge portion 96e of the P (phosphorus) -doped n-type amorphous silicon film 96 as shown in FIG. Can be formed into a gentle slope continuous with the edge of the metal film 97.
  • Fluorine source gas CF 4 1 slm Ar: 16 slm Dew point after addition of H 2 O: 16 ° C
  • Oxidizing reaction component-containing gas O 2 + O 3 : 10 slm O 3 concentration: O 3 / (O 2 + O 3 ) 10 vol%
  • Input power: 4kW Applied voltage between electrodes: Vpp 13 kV Applied voltage frequency: 25 kHz Gap between electrodes: 3mm
  • Substrate size 600mm x 700mm Film thickness of non-doped amorphous silicon 95: 150 ⁇ m
  • the impurity-doped semiconductor film 96 can be dry-etched in the same pressure environment as the wet etching of the metal film 97. Accordingly, dry etching of the impurity-doped semiconductor film 96 can be performed on the transport path 11 following the wet etching of the metal film 97 while continuously transporting the workpiece 9.
  • dry etching of the impurity-doped semiconductor film 96 can be performed on the transport path 11 following the wet etching of the metal film 97 while continuously transporting the workpiece 9.
  • the equipment can be simplified.
  • the dry etching position 15 and the cleaning and draining positions 16 and 17 in the return path 11c of the transport mechanism 10 the empty space in the transport path 11 can be used effectively.
  • the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the application of the present invention is not limited to TFT channel etching as long as the metal film and the semiconductor film are continuously etched.
  • the electrode unit 32 may be disposed outside the processing head 31.
  • the fluorine-based source gas may be converted to plasma at a location away from the processing head 31 and then conveyed to the processing head 31.
  • the electrode structure of the electrode unit 32 is not limited to a parallel plate electrode, but may be a coaxial cylindrical electrode, a pair of roll electrodes, or a pair of roll electrodes and flat plate electrodes or cylindrical concave electrodes.
  • the pressure in the discharge space 34 may be different from the pressure in the processing space 19 within a pressure range near atmospheric pressure.
  • the etching gas may be increased by a pump and supplied to the processing space 19.
  • the source gas may not contain a condensable hydrogen-containing component such as water.
  • the fluorine-based raw material component may be a hydrogen-free fluorine-based component such as water PFC, F 2 , SF 6 , NF 3 , or XeF 2 . Further, the source gas may contain the hydrogen-free fluorine-based component, oxygen (O 2 ), and nitrogen (N 2 ).
  • reaction components such as NOx, COF 2 , OF 2 , and O 2 F 2 can be generated by converting the source gas into plasma in the discharge space 34.
  • the n-type amorphous silicon film 96 can be oxidized with NOx and further etched with a fluorine-based reaction component such as COF 2 , OF 2 , or O 2 F 2 .
  • the atmospheric pressure plasma etching unit 30 is a so-called remote type plasma processing apparatus in which the workpiece 9 is disposed outside the discharge space 34 between the electrodes 33 and 33. , 33, and a so-called direct type plasma processing apparatus that directly irradiates the workpiece 9 with plasma by arranging the workpiece 9 between them. In the direct plasma processing apparatus, the discharge space becomes the processing space.
  • the oxidizing reaction component supply source 4 may be an atmospheric pressure plasma apparatus that generates ozone by discharge using oxygen as a raw material, or may be an ozone gas cylinder that stores ozone generated in advance.
  • the substrate 91 is not limited to glass, and may be a semiconductor wafer, a resin film, or the like.
  • the transport mechanism is not limited to the roller conveyor, and may be a robot actuator, a moving stage, or the like.
  • the present invention is applicable to the manufacture of semiconductor devices such as flat panel displays and semiconductor wafers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)

Abstract

 半導体装置のチャネル部分等のエッチングを効率化し処理タクトを短縮する。 被処理物9を大気圧近傍の圧力の搬送経路11に沿って連続的に搬送する。搬送経路11の上流側の位置において、供給ノズル21からエッチング液を被処理物9に供給し、金属膜97をウェットエッチングする。続いて、搬送経路11の下流側の処理空間19において、フッ素系反応成分及び酸化性反応成分を含むエッチングガスを被処理物9の表面に接触させ、半導体膜94をドライエッチングする。フッ素系反応成分は、大気圧プラズマにて生成する。被処理物9の搬送速度に応じて、被処理物9が処理空間19を通過する期間中のエッチング深さが、不純物がドープされた膜部分96の厚さと対応するよう、エッチングレートを設定する。

Description

エッチング方法及び装置
 本発明は、フラットパネルディスプレイ等の半導体装置を製造する際に、基板に形成された膜をエッチングする方法及び装置に関し、特にTFT(Thin Film Transistor)等のスイッチング素子のチャネルエッチングに適したエッチング方法及び装置に関する。
 この種の半導体装置は、成膜、マスキング、エッチング、マスク除去等の工程を反復することにより製造される(特許文献1等参照)。通常、1つのエッチング工程では1種又は同種の膜だけをエッチングする。しかし、例えばTFTのチャネルエッチング工程では、金属膜のエッチングに引き続いて、不純物がドープされた半導体膜をエッチングする。金属膜は、例えば塩酸系等の酸性エッチング液を用いてウェットエッチングする。半導体膜は、例えばフッ素系のエッチングガスを用いてドライエッチングする。
特開2008-033337号公報
 従来のチャネルエッチングにおける半導体膜のドライエッチングは、真空チャンバー内でのRIE(Reactive Ion Etching)や真空プラズマエッチングにて行なわれていた。したがって、金属膜のウェットエッチング後の被処理基板を真空チャンバーに収容し、かつ真空チャンバー内の圧力を真空にする作業を要し、更に半導体膜のエッチング終了後は、真空チャンバー内の圧力を大気圧に戻したうえで被処理基板を真空チャンバーから取り出す作業を要し、バッチ処理になっていた。そのため、処理タクトが長くなっていた。
 上記課題を解決するため、本発明に係るエッチング方法は、基板に半導体膜と金属膜が順次積層され、前記半導体膜の前記金属膜側の膜部分に不純物がドープされた被処理物の前記金属膜及び前記半導体膜をエッチングする方法であって、
 前記被処理物を大気圧近傍の圧力の搬送経路に沿って連続的に搬送する搬送工程と、
 前記搬送経路上の位置において、金属に対し溶解性を有するエッチング液を前記被処理物に供給するウェットエッチング工程と、
 前記搬送経路上の前記位置より搬送方向の下流の処理空間において、フッ素系反応成分及び酸化性反応成分を含むエッチングガスを前記被処理物の表面に接触させるドライエッチング工程と、
 を含み、前記ドライエッチング工程では、フッ素系原料成分を含む原料ガスを大気圧近傍の圧力下でプラズマ化して前記フッ素系反応成分を生成し、かつ前記被処理物の搬送速度に応じて、前記被処理物が前記処理空間を通過する期間中のエッチング深さが、前記不純物がドープされた膜部分の厚さと対応するよう(ほぼ等しくなるよう)、前記半導体膜に対するエッチングレートを設定することを特徴とする。
 被処理物は、搬送経路に沿って連続搬送されることにより、ウェットエッチング工程を行なう位置を通過し、続いてドライエッチング工程を行なう位置すなわち処理空間を通過する。前記搬送経路の圧力は大気圧近傍である。したがって、前記搬送経路上の前記ウェットエッチング工程を行なう位置及び前記処理空間の圧力は大気圧近傍である。
 被処理物が前記ウェットエッチング工程を行なう位置を通過する時、エッチング液が被処理物のマスクされていない部分(非マスク部分)の金属膜と接触してエッチング反応が起き、金属膜がウェットエッチングされる。これにより、非マスク部分の半導体膜が露出する。
 続いて、被処理物が前記処理空間を通過する時、エッチングガスが上記非マスク部分の半導体膜に接触してエッチング反応が起きる。詳細には、半導体膜を構成するシリコンが、酸化性反応成分によって酸化され、更にフッ素系反応成分によってSiF等の揮発性成分に変換される。これにより、非マスク部分の半導体膜がドライエッチングされる。前記エッチングレートの設定によって、被処理物が前記処理空間を1回通過すると、半導体膜のうち、不純物がドープされた金属膜側の膜部分がエッチングされるようにできる。不純物がドープされていない基板側の膜部分はエッチングされずに残置される。これにより、チャネル部分を形成できる。
 本発明に係るエッチング装置は、基板に半導体膜と金属膜が順次積層され、前記半導体膜の前記金属膜側の膜部分に不純物がドープされた被処理物の前記金属膜及び前記半導体膜をエッチングする装置であって、
 前記被処理物を大気圧近傍の圧力の搬送経路に沿って連続的に搬送する搬送機構と、
 前記搬送機構の搬送経路上に配置された供給ノズルを有し、金属に対し溶解性を有するエッチング液を前記供給ノズルから前記被処理物の表面に供給するウェットエッチング部と、
 互いの間に大気圧近傍の放電空間を形成する少なくとも一対の電極と、前記搬送経路上の前記供給ノズルより下流側の位置に処理空間を画成する画成部とを有し、フッ素系原料成分を含む原料ガスを前記放電空間に導入してフッ素系反応成分を生成し、かつ前記フッ素系反応成分及び酸化性反応成分を含むエッチングガスを前記処理空間において前記被処理物の表面に接触させる大気圧プラズマエッチング部と、
 を備え、前記被処理物が前記処理空間を通過する期間中の前記大気圧プラズマエッチング部によるエッチング深さが、前記不純物がドープされた膜部分の厚さと対応するよう(ほぼ等しくなるよう)、前記半導体膜に対するエッチングレートが設定されていることを特徴とする。
 搬送機構によって被処理物を大気圧近傍の圧力の搬送経路に沿って連続搬送する。
 すると、先ず、被処理物は、搬送経路上の供給ノズルが配置された位置を通過する。この通過時、エッチング液が被処理物の非マスク部分の金属膜と接触してエッチング反応が起き、金属膜が大気圧近傍の圧力下でウェットエッチングされる。これにより、非マスク部分の半導体膜が露出する。
 被処理物は、引き続き搬送経路に沿って移動し、大気圧プラズマエッチング部の処理空間を通過する。前記搬送経路の圧力は大気圧近傍である。したがって、前記搬送経路に含まれる前記処理空間の圧力は大気圧近傍である。前記処理空間では、エッチングガスが前記非マスク部分の半導体膜に接触してエッチング反応が起きる。前記エッチングレートの設定によって、被処理物が前記処理空間を1回通過すると、半導体膜のうち、不純物がドープされた金属膜側の膜部分がエッチングされるようにできる。不純物がドープされていない基板側の膜部分はエッチングされずに残置される。これにより、チャネル部分を形成できる。
 好ましくは、前記被処理物が前記処理空間を通過する期間中のエッチング深さが前記不純物がドープされた膜部分の厚さをわずかに超える深さとなるよう、前記半導体膜に対するエッチングレートを設定する。したがって、ドライエッチング工程が終了すると、不純物がドープされていない膜部分が一部エッチングされた状態で露出することが好ましい。
 本発明のエッチング方法及びエッチング装置においては、半導体膜のドライエッチングについても、金属膜のウェットエッチングと同じく、大気圧近傍の搬送経路上で実行される。被処理物をドライエッチングのために真空チャンバーに移載する必要がなく、移載作業及び真空チャンバーの圧力設定作業が不要であり、バッチ処理を回避できる。したがって、処理タクトを短縮できる。真空チャンバー等の真空装置及び移載機構が不要であるから、設備を簡素化できる。
 前記エッチングガスの流量又は前記フッ素系反応成分若しくは前記酸化性反応成分の濃度を調節することにより、前記エッチングレートの設定を行なうことが好ましい。
 前記エッチングガスの流量を増やすと、前記エッチングレートを高くできる。前記エッチングガスの流量を減らすと、前記エッチングレートを低くできる。前記エッチングガス中の前記フッ素系反応成分濃度又は前記酸化性反応成分濃度を増やすと、前記エッチングレートを高くできる。前記フッ素系反応成分濃度又は前記酸化性反応成分濃度を減らすと、前記エッチングレートを低くできる。
 少なくとも一対の電極にて前記プラズマ化を行ない、更に前記電極の対の数を調節することにより、前記エッチング深さを、前記不純物がドープされた膜部分の厚さと対応させ(ほぼ等しくなるようにし)てもよい。
 前記電極の対の数を増やすと、前記エッチングガスの流量を増やすことができる。或いは、処理空間の前記搬送経路に沿う路長を大きくして、被処理物がエッチングガスと接触する時間(ドライエッチング工程の反応時間)を長くできる。したがって、エッチング深さを大きくできる。
 前記電極の対の数を減らすと、前記エッチングガスの流量を減らすことができる。或いは、処理空間の前記搬送経路に沿う路長を短くして、前記ドライエッチング工程の反応時間を短くできる。したがって、エッチング深さを小さくできる。
 前記大気圧プラズマエッチング部は、所謂リモート式のプラズマ処理装置であることが好ましい。すなわち、前記放電空間が前記処理空間から離れて配置され、前記放電空間から延びる吹出し路が、前記画成部の前記搬送機構を向く面に達して前記処理空間に連なっていることが好ましい。これにより、被処理物が放電空間のプラズマ電界によって損傷するのを防止できる。大気圧近傍下でのリモート式プラズマ処理では、等方的にエッチングされる傾向があるが、後述する水素含有凝縮性成分の原料ガスへの添加量を調節することによって、半導体膜のエッチングプロファイルを制御できる。
 前記大気圧プラズマエッチング部が、所謂ダイレクト式のプラズマ処理装置であってもよい。すなわち、前記電極間に形成される放電空間が前記処理空間を構成し、放電空間(処理空間)に被処理物を通すようになっていてもよい。
 前記原料ガス中のフッ素系原料成分としては、PFC(パーフルオロカーボン)、HFC(ハイドロフルオロカーボン)が挙げられる。PFCとしては、CF、C、C、C等が挙げられる。HFCとしては、CHF、CH、CHF等が挙げられる。フッ素系原料成分として、SF、NF、XeF等のPFC及びHFC以外のフッ素含有化合物を用いてもよい。
 前記原料ガスが、水素含有凝縮性成分を更に含むことが好ましい。これにより、放電空間においてフッ化水素(HF)等のフッ素系反応成分を確実に形成できる。前記エッチングガスは、前記原料ガスのうち前記放電空間で分解されなかった水素含有凝縮性成分を含む。
 水素含有凝縮性成分は、水素を含み、かつドライエッチングの温度条件及び圧力条件(大気圧近傍)では凝縮性を有する成分である。水素含有凝縮性成分として、水(HO)を用いることが好ましい。例えば加湿器又は気化器を用いて水を気化させて水蒸気とし、この水蒸気を前記原料ガスに添加する。水素含有凝縮性成分として、水に代えて、OH含有化合物、過酸化水素水等を用いてもよい。OH含有化合物としては、アルコールが挙げられる。
 前記エッチングガス中の酸化性反応成分としては、オゾン(O)、酸素(O)、酸素ラジカル、H、NO、NO等が挙げられる。前記酸化性反応成分として、オゾンを用いることがより好ましい。例えば、オゾナイザーにてオゾンを生成し、このオゾン含有ガスをエッチングガスに混合してもよい。或いは、前記原料ガスに酸素(O)を含ませることにより、前記放電空間においてオゾン、酸素ラジカル等を生成してもよい。或いは、前記原料ガス用の放電空間とは別の放電空間にて酸素ガスをプラズマ化して、オゾン、酸素ラジカル等を生成し、このオゾン、酸素ラジカル等を含む酸化性反応成分含有ガスを前記エッチングガスに混合してもよい。
 前記水素含有凝縮性成分が水であり、前記酸化性反応成分がオゾンであることが好ましい。
 ドライエッチング工程における、半導体膜の被エッチング部分の隅部では、エッチングガスが滞留する。そのため、エッチングガス中に水等の水素含有凝縮性成分が含まれていると、それが凝縮して上記隅部に溜まり易い。この凝縮層がバリアになって、オゾン等の酸化性反応成分が半導体層の被エッチング部分の縁部に接触するのを妨げ、ひいては上記縁部のエッチング反応を妨げる。したがって、エッチングがサイド方向に拡がるのを防止できる。よって、大気圧近傍下のドライエッチングであっても、エッチングの異方性を確保でき、良好なチャネル領域を形成できる。
 前記原料ガスが水素含有凝縮性成分を更に含み、かつ前記原料ガス中の前記水素含有凝縮性成分の含有率を調節することにより、前記半導体膜のエッチングプロファイルを制御することにしてもよい。前記大気圧プラズマエッチング部が、前記原料ガスに水素含有凝縮性成分を添加する添加手段を更に備えていることが好ましい。前記添加手段によって水素含有凝縮性成分の添加量を調節することにより、前記半導体膜のエッチングプロファイルを制御してもよい。
 前記原料ガスひいてはエッチングガス中の水素含有凝縮性成分の含有率(又は添加率)を調節することによって、上記被エッチング部分の縁部の形状を制御できる。すなわち、上記含有率(又は添加率)を増やすと上記被エッチング部分の縁部に溜まる凝縮層の量が増える。よって、エッチング抑制作用が大きくなり、上記被エッチング部分の縁部をなだらかな斜面にすることができる。上記含有率(又は添加率)を減らすと上記被エッチング部分の縁部に溜まる凝縮層の量が減る。よって、エッチング抑制作用が小さくなり、上記被エッチング部分の縁部を急傾斜の斜面にすることができる。
 前記フッ素系原料成分が、フッ素原子を含有し、かつ水素原子を含有しない水素非含有フッ素系成分であり、前記原料ガスが、前記水素非含有フッ素系成分と、酸素(O)と、窒素(N)を含み、かつ水等の凝縮性水素含有成分を含んでいなくてもよい。水素非含有フッ素系成分としては、CF、C、C、C等のパーフルオロカーボン(PFC)の他、F、SF、NF、XeF等が挙げられる。
 この場合、前記原料ガスのプラズマ化によって、酸素含有フッ素系反応成分と酸化窒素(NOx)を含み、かつHFを殆ど又はまったく含まないエッチングガスを生成できる。酸素含有フッ素系反応成分として、2フッ化カルボニル(COF)、フッ化酸素(OF、O)等が挙げられる。酸化窒素は、前記酸化性反応成分を構成する。前記半導体膜を酸化窒素によって酸化でき、更に酸素含有フッ素系反応成分によって揮発成分(SiF)に変換してエッチングできる。
 前記エッチングガス成分として、例えば無水フッ化水素を用いてもよい。
 ここで、大気圧近傍とは、1.013×10Pa~50.663×10Paの範囲を言い、圧力調整の容易化や装置構成の簡便化を考慮すると、1.333×10Pa~10.664×10Paが好ましく、9.331×10Pa~10.397×10Paがより好ましい。前記エッチング処理は大気圧下で行なうことがより好ましい。
 本発明によれば、半導体装置の例えばチャネルエッチングにおいて、金属膜のウェットエッチングに引き続いて、半導体膜のうち不純物がドープされた膜部分を、上記ウェットエッチングと同じ大気圧近傍の圧力下においてドライエッチングできる。互いに異なる二種類の膜のエッチングを、被処理物の連続搬送と併行して順次行なうことができる。よって、処理タクトを短縮できる。
本発明の一実施形態に係るエッチング装置の平面図である。 図1のII-II線に沿う、上記エッチング装置の大気圧プラズマエッチング部の側面断面図である。 半導体装置のTFTの製造工程を、金属膜上にマスキングした状態で示す断面図である。 半導体装置のTFTの製造工程を、上記金属膜の非マスク部分をウェットエッチングした状態で示す断面図である。 半導体装置のTFTの製造工程を、不純物ドープ半導体膜をドライエッチングした状態で示す断面図である。 半導体装置のTFTの一例を示す断面図である。 上記ドライエッチング時のチャネル部分の隅部を拡大して示す断面図である。 ドライエッチング工程後のTFTのチャネル部分の断面の写真である。
 以下、本発明の一実施形態を図面にしたがって説明する。
 図4に示すように、例えば液晶表示パネルからなる半導体装置90は、各画素のスイッチング素子としてTFTを備えている。TFTは、半導体装置90の基板91にゲート配線92、ゲート絶縁膜93、半導体膜94、信号配線97、パッシペーション膜98、電極99を、順次基板91の側から積層することによって構成されている。図において、各層92~99の膜厚は誇張されている。
 基板91は、ガラスである。ガラス基板91の大きさは、例えば2200mm×2500mm程度であるが、これに限定されるものではない。
 ゲート配線92は、例えばAl、Cu、Cr、Ti、Mo、Ta等の金属にて構成されている。
 ゲート絶縁膜93は、例えばSiNにて構成されている。
 半導体膜94は、例えばアモルファスシリコンにて構成されている。半導体膜94の厚さは、例えば200nm~300nm程度である。半導体膜94は、基板91側の膜部分95と、信号配線97側の膜部分96とを含む。膜部分95は、不純物がドープされていない非ドープアモルファスシリコンである。膜部分96は、P等の不純物がドープされたn型アモルファスシリコンである。n型アモルファスシリコン96の膜厚は、例えば60nm~100nm程度である。
 信号配線97は、例えばAl、Cu、Cr、Ti、Mo、Ta等の金属にて構成されている。
 パッシペーション膜98は、例えばSiN等の絶縁体にて構成されている。
 電極99は、例えばITOにて構成されている。電極99が、それと一体をなすコンタクトホール部99cを介して信号配線97と導通している。
 図3(a)は、半導体装置90となるべき被処理物9を、上記信号配線97となる金属膜の成膜後、チャネル部分を形成する前の状態で示したものである。金属膜97上にフォトレジスト8からなるマスクが設けられている。図3(b)に示すように、非マスク部分の金属膜97をウェットエッチングする。引き続いて、図3(c)に示すように、非マスク部分の半導体膜94をドライエッチングする。
 図1に示すように、上記のウェットエッチング及びドライエッチングは、1つのエッチング装置1によって連続的に行なわれる。
 エッチング装置1は、搬送機構10と、ウェットエッチング部20と、大気圧プラズマエッチング部30を備えている。搬送機構10は、例えばコロコンベアやローラーコンベア(図1では簡略して図示)にて構成されている。複数の被処理物9が、搬送機構10の搬送経路11に沿って一定の間隔を置いて連続搬送される。搬送速度は、例えば1m/min~10m/min程度であり、具体的には4~5m/min程度であるが、これに限定されるものではない。被処理物9の搬送機構10への供給間隔(タクト)は、例えば15sec~120sec程度であり、さらに好ましくは30sec~60secであり、具体的には45sec程度であるが、これに限定されるものではない。
 搬送機構10の搬送経路11は、往路11aと、中間路11bと、復路11cを有し、平面視で大略コ字状になっている。往路11a及び復路11cが互いに平行に延びている。中間路11bが往路11の下流端と復路11cの上流端を繋いでいる。搬送経路11は、上記に限定されるものではなく、全体が直線状に延びていてもよく、L字状になっていてもよく、曲線状になっていてもよい。
 エッチング装置1には、搬送経路11に沿って上流側から、ウェットエッチング位置12、洗浄位置13、液切位置14、ドライエッチング位置15、洗浄位置16、液切位置17が順次設定されている。往路11aにウェットエッチング位置12が配置されている。中間路11bに洗浄位置13が配置されている。復路11cには、液切位置14、ドライエッチング位置15、洗浄位置16、液切位置17が順次配置されている。
 位置12~17は上記順番に並んでいればよく、各位置12~17をどの搬送経路部分11a,11b,11cに配置するかは適宜変更できる。
 エッチング装置1は、大気圧近傍の圧力下に配置されており、好ましくは大気圧下に配置されている。したがって、搬送経路11ひいては上記各位置12~17の圧力は、大気圧近傍であり、好ましくは大気圧である。エッチング装置1全体をクリーンルーム(チャンバー)に収容し、クリーンルーム内の圧力を大気圧近傍の範囲内で調節してもよい。
 ウェットエッチング位置12にウェットエッチング部20が設けられている。ウェットエッチング部20は、供給ノズル21を備えている。供給ノズル21は、例えばシャワーノズルにて構成されている。供給ノズル21が、搬送機構10の上方に下向きに配置されている。エッチング液供給源(図示省略)からのエッチング液が供給ノズル21に送られ、供給ノズル21からシャワー状に吹き出される。エッチング液は、金属に対し溶解性を有するものであり、例えば塩酸系、硫酸系、硝酸系等の薬液が用いられている。
 洗浄位置13には洗浄ノズル43が設けられている。洗浄ノズル43は、例えばシャワーノズルにて構成されている。洗浄ノズル43が、搬送機構10の上方に下向きに配置されている。洗浄液が洗浄ノズル43に供給され、洗浄ノズル43からシャワー状に吹き出される。洗浄液として、例えば水が用いられている。
 液切位置14には、液切ノズル54が設けられている。液切ノズル54は、例えばエアナイフノズルにて構成されている。エアナイフノズル54は、搬送機構10の上方に下向きに配置されている。エアナイフノズル54は、液切位置14における搬送方向と直交する処理幅方向に対し平面視で斜めになっている。ノズル54からエアナイフ(高圧、高速の帯状気流)が吹き出される。
 図1及び図2に示すように、ドライエッチング位置15には、大気圧プラズマエッチング部30が設けられている。大気圧プラズマエッチング部30は、処理ヘッド31(画成部)を備えている。処理ヘッド31は、搬送機構10の上方に架台(図示せず)にて支持されている。処理ヘッド31の搬送機構10を向く底面31aと搬送機構(コロコンベア)10との間に処理空間19が画成されている。処理空間19は、ドライエッチング位置15に含まれる。処理空間19の圧力は、大気圧近傍であり、好ましくは大気圧である。
 処理ヘッド31は、1又は複数(図では2つ)の電極ユニット32を含む。電極ユニット32が複数の場合、これら電極ユニット32は、被処理物9の搬送方向に並べられる。各電極ユニット32は、一対の電極33,33を有している。各電極33は、ドライエッチング位置15における搬送方向と直交する処理幅方向に延びている。各電極33の処理幅方向の長さは、被処理物9の同方向の寸法とほぼ同じかそれより若干大きい。一対の電極33,33どうしが、平行に並んでいる。一対の電極33,33間に、上記処理幅方向に延びるスリット状の空間34が形成されている。処理ヘッド31の底部には、電極間空間34の下端に連なる吹出し路35が形成されている。吹出し路35は、処理幅方向に延びるスリットをなし、かつ処理ヘッド31の底面31aに達して処理空間19に連なっている。少なくとも片方の電極33の対向面には固体誘電体層(図示省略)が設けられている。各電極ユニット32を構成する一対の電極33,33のうち一方が電源(図示省略)に接続され、他方が電気的に接地されている。電源は、例えばパルス波状の高周波電力を電極33に供給する。これにより、一対の電極33,33間に大気圧グロー放電が生成され、電極間空間34が放電空間になる。放電空間34は、処理空間19から離れて配置され、かつ吹出し路35を介して処理空間19に連なっている。
 各電極ユニット32の電極間空間34の上端部に原料ガスの供給源2が接続されている。原料ガスは、フッ素系原料成分とキャリア成分を含んでいる。
 ここでは、フッ素系原料成分として、CFが用いられている。
 フッ素系原料成分として、CFに代えて、C、C、C等の他のPFC(パーフルオロカーボン)を用いてもよく、CHF、CH、CHF等のHFC(ハイドロフルオロカーボン)を用いてもよく、SF、NF、XeF等のPFC及びHFC以外のフッ素含有化合物を用いてもよい。
 キャリアガスは、フッ素系原料成分を搬送する機能の他、フッ素系原料成分を含有するフッ素系原料ガスを希釈する希釈ガスとしての機能、安定したプラズマ放電を生成する放電ガスとしての機能を有している。キャリアガスとしては、例えばヘリウム、アルゴン、ネオン、キセノン等の希ガスや窒素等の不活性ガスが用いられる。ここでは、キャリアガスとして、アルゴンが用いられている。
 フッ素系原料ガスには、水素含有凝縮性成分が添加されている。水素含有凝縮性成分としては、水(HO)を用いることが好ましい。水は、加湿器3(添加手段)にて気化されて、フッ素系原料ガスに添加される。
 水素含有凝縮性成分は、水の他、OH基含有化合物や過酸化水素水であってもよく、これらの混合物でもよい。OH基含有化合物として、アルコールが挙げられる。
 フッ素系原料ガス(CF+Ar+HO)が電極間の大気圧放電空間34に導入されることにより、各ガス成分が大気圧下においてプラズマ化(分解、励起、活性化、イオン化を含む)され、HF、COF等のフッ素系反応成分が生成される。フッ素系反応成分として、HF、COF等が挙げられる。COFは、更に原料ガスの水と反応してHFに変換され得る。
 更に、処理ヘッド31には、酸化性反応成分供給源4が接続されている。酸化性反応成分供給源4としてオゾナイザーが用いられている。オゾナイザー4は、酸素を原料にしてオゾン(酸化性反応成分)を生成する。吹出し路35において、オゾナイザー4からの酸化性反応成分含有ガス(O+O)が、放電空間34からのフッ素系反応成分含有ガスと合流して混合される。これにより、エッチングガスが生成される。エッチングガスは、フッ素系反応成分(HF等)及び酸化性反応成分(O等)を含む。
 図示は省略するが、処理ヘッド31には、処理済みのガスを処理空間19から吸引して排出する吸引部が設けられている。吸引部の吸引口が、ヘッド底面31aに開口されている。
 図1に示すように、洗浄位置16には洗浄ノズル46が設けられている。洗浄ノズル46は、例えばシャワーノズルにて構成されている。洗浄液が洗浄ノズル46に供給され、洗浄ノズル46からシャワー状に吹き出される。洗浄液として、例えば水が用いられている。
 液切位置17には、液切ノズル57が設けられている。液切ノズル57は、例えばエアナイフノズルにて構成されている。エアナイフノズル57は、搬送機構10の上方に下向きに配置されている。エアナイフノズル57は、液切位置17における搬送方向と直交する処理幅方向に対し平面視で斜めになっている。ノズル57からエアナイフが吹き出される。
 上記構成のエッチング装置1によるエッチング方法を説明する。
[搬送工程]
 金属膜97上にフォトレジスト8を形成した被処理物9(図3(a))を、1つずつ一定の間隔を置いて搬送経路11の上流端に順次供給する。各被処理物9を、搬送機構10によって搬送経路11に沿って一定の搬送速度で連続搬送する。
[ウェットエッチング工程]
 各被処理物9は、先ずウェットエッチング位置12に導入される。ウェットエッチング位置12では、エッチング液を供給ノズル21から吹き出す。このエッチング液が、ウェットエッチング位置12を通過中の被処理物9の表面に接触する。これにより、非マスク部分の金属膜97がウェットエッチングされ、半導体膜94が露出する(図3(b))。なお、図5に誇張して示すように、ウェットエッチングは等方性エッチングであるため、金属膜97がマスク8の縁よりもサイド方向に深くエッチングされる傾向がある。
[第1洗浄工程]
 ウェットエッチング位置12を通過した被処理物9は、洗浄位置13に送られる。洗浄位置13では、洗浄ノズル43から洗浄水を吹き出す。洗浄水によって、洗浄位置13を通過中の被処理物9を洗浄し、該被処理物9の表面から上記エッチング液及びエッチング残渣を洗い落とす。
[第1液切工程]
 洗浄位置13を通過した被処理物9は、液切位置14に送られる。液切位置14では、ノズル54からエアナイフを吹き出す。これにより、被処理物9の表面から洗浄水を除去する。
[ドライエッチング工程]
 液切位置14を通過した被処理物9は、ドライエッチング位置15に導入される。ドライエッチング位置15では、各電極ユニット32の電極間空間34にフッ素系原料ガス(CF+Ar+HO)を供給するとともに、電界印加によって電極間空間34に大気圧近傍の圧力下でプラズマ放電を生成する。これにより、フッ素系原料ガスをプラズマ化し、HF等のフッ素系反応成分を生成する。このフッ素系反応成分含有ガスにオゾナイザー4からのオゾン含有ガス(O+O)を混合し、HF、O等の反応成分を含むエッチングガスを生成する。このエッチングガスを吹出し路35から処理空間19へ吹き出す。エッチングガスは、処理空間19を通過中の被処理物9の表面に接触する。これにより、半導体膜94のエッチング反応が起きる。具体的には、非マスク部分の半導体膜94を構成するアモルファスシリコンが、エッチングガス中のOにて酸化され、更にHFと反応して、揮発性のSiFに変換される。
 上記ドライエッチング工程において、フッ素系原料成分(CF)とキャリア(Ar)の体積流量比は、CF:Ar=5:95~20:80程度が好ましい。水添加後のフッ素系原料ガス(CF+Ar+HO)の露点は、0℃~20℃程度であることが好ましい。フッ素系原料ガス(CF+Ar+HO)とオゾン含有ガス(O+O)の体積流量比は、(CF+Ar+HO):(O+O)=3:1~1:3程度が好ましい。被処理物9の温度は、10℃~50℃程度にするのが好ましい。これらの条件設定によって、アモルファスシリコンのエッチングレートを比較的高くできる。更には、アモルファスシリコンのSiNに対する選択比を大きくできる。したがって、チャネルエッチング時にSiN膜93がエッチングされるのを抑制できる。
 上記のドライエッチング工程は、被処理物9を搬送機構10によって搬送しながら実行する。この被処理物9の搬送速度に応じて、被処理物9が処理空間19を通過する期間中の半導体膜94のエッチング深さが、不純物ドープ半導体膜96の厚さと対応する(ほぼ等しくなる)よう、半導体膜94に対するエッチングレートを設定する。例えば、エッチングガスの流量又は反応成分(HF、O等)の濃度を調節することにより、上記エッチングレートを制御できる。具体的には、被処理物9が処理空間19を通過する期間中の半導体膜94のエッチング深さが、不純物ドープ半導体膜96の厚さを僅かに超える深さとなるよう、半導体膜94に対するエッチングレートを設定する。
 エッチングガスの流量を増やすとエッチングレートを高くでき、エッチングガスの流量を減らすとエッチングレートを低くできる。
 エッチングガスのHF濃度又はO濃度を増やすとエッチングレートを高くでき、HF濃度又はO濃度を減らすとエッチングレートを低くできる。エッチングガスのHF濃度は、フッ素系原料ガスのCF濃度、HOの添加流量等を調節することにより制御できる。エッチングガスのO濃度は、オゾン含有ガス(O+O)の混合比等を調節することにより制御できる。CF濃度、HOの添加流量、オゾン含有ガス(O+O)の混合比等は、好ましくは上述した好適範囲内で調節する。
 更に、電極ユニット32の並設数を増減させることによって、被処理物9が処理空間19を通過する期間中の半導体膜94のエッチング深さが、不純物ドープ半導体膜96の厚さと対応する(ほぼ等しくなる)ようしてもよい。
 電極ユニット32の数を増やすと、エッチングガスの流量を増やすことができる。或いは、処理ヘッド31の搬送経路11に沿う寸法を大きくすることもでき、そうすると、処理空間19の搬送経路11に沿う路長を大きくでき、ドライエッチングの反応時間を延長できる。
 電極ユニット32の数を減らすと、エッチングガスの流量を減らすことができる。或いは、処理ヘッド31の搬送経路11に沿う寸法を小さくすることもでき、そうすると、処理空間19の搬送経路11に沿う路長を短くでき、ドライエッチングの反応時間を短縮できる。
 これにより、半導体膜94のエッチングが非ドープ半導体膜95と不純物ドープ半導体膜96の境付近まで達したとき、ドライエッチング工程が終了するようにできる。したがって、不純物ドープ半導体膜96を除去でき、かつ非ドープ半導体膜95をエッチングせずに残すことができる。これにより、TFTのチャネル部分を形成できる。
 具体的には、半導体膜94のエッチングが、非ドープ半導体膜95と不純物ドープ半導体膜96の境を僅かに越えたとき、ドライエッチング工程が終了するようにできる。したがって、不純物ドープ半導体膜96を完全に除去でき、非ドープ半導体膜95が一部エッチングされて露出した状態にすることができる。
 なお、図5において一点鎖線にて示すように、真空プラズマによってドライエッチングした場合、反応性イオンが電界に沿って照射されるため、半導体膜96の被エッチング部分の縁部96eが、レジスト8の縁の直下に位置する。したがって、金属膜97の縁部97eと半導体膜96の縁部96eとの間に段差が形成される。
 これに対し、本発明装置1による大気圧近傍のドライエッチングによれば、図5において実線にて示すように、金属膜97の縁部97eがレジスト8より引っ込んでいても、エッチングガスが拡散して半導体膜96の露出面の全体に接触するため、半導体膜96の縁部96eが、金属膜97の縁部97eに連続する。
 更に、半導体膜96の被エッチング部分における縁部96eの周辺(隅部)では、エッチングガスが滞留する。そのため、エッチングガス中の水が凝縮し易い。この凝縮水wがバリアになってオゾンが半導体層96に接触するのを妨げる。したがって、半導体膜96がサイド方向にエッチングされるのを抑制でき、縁部96eが金属膜97の縁部97eより奥に引っ込むのを防止できる。よって、エッチングの異方性を確保でき、良好なチャネル領域を形成できる。さらに、エッチングガス中の水分量を調節することによって、半導体膜96のエッチングプロファイルを制御できる。具体的には、縁部96eの形状を制御できる。すなわち、エッチングガス中の水分量を増やすと、凝縮水wの量が増える。そのため、縁部96eのエッチング抑制作用が大きくなる。よって、図5において二点鎖線に示すように、縁部96eをなだらかな斜面にすることができる。エッチングガス中の水分量を減らすと、凝縮水wの量が減る。そのため、縁部96eのエッチング抑制作用が小さくなる。よって、図5において三点鎖線に示すように、縁部96eを急峻な斜面にすることができる。
 発明者が、大気圧プラズマエッチング部30を用い、下記の条件によってTFTのアモルファスシリコン膜をドライエッチングしたところ、図6に示すように、P(リン)ドープn型アモルファスシリコン膜96の縁部96eを、金属膜97の縁に連続する緩やかなスロープ状にすることができた。
 フッ素系原料ガス
  CF: 1slm
  Ar : 16slm
  HO添加後の露点: 16℃
 酸化性反応成分含有ガス
  O+O: 10slm
  O濃度: O/(O+O)=10vol%
 プラズマ条件
  投入電力: 4kW
  電極間印加電圧: Vpp=13kV
  印加電圧周波数: 25kHz
  電極間ギャップ: 3mm
 基板温度: 25℃
 基板サイズ: 600mm×700mm
 ノンドープアモルファスシリコン95の膜厚: 150μm
 P(リン)ドープn型アモルファスシリコン96の膜厚: 50μm
 搬送速度: 4m/min.
 搬送回数: 1回
[第2洗浄工程]
 ドライエッチング位置15を通過した被処理物9は、洗浄位置16に送られる。洗浄位置16では、洗浄ノズル46から洗浄水を吹き出す。洗浄水によって、ドライエッチング位置15を通過中の被処理物9を洗浄し、該被処理物9の表面からドライエッチング工程で生じたエッチング残渣を洗い落とす。
[第2液切工程]
 洗浄位置16を通過した被処理物9は、液切位置17に送られる。液切位置17では、ノズル57からエアナイフを吹き出す。このエアナイフによって被処理物9の表面から洗浄水を除去する。
 エッチング装置1によれば、不純物ドープ半導体膜96のドライエッチングを、金属膜97のウェットエッチングと同じ大気圧近傍の圧力環境で行なうことができる。したがって、被処理物9を連続搬送しながら、金属膜97のウェットエッチングに引き続いて、不純物ドープ半導体膜96のドライエッチングを搬送経路11上で行なうことができる。ドライエッチング工程を行なう際に、被処理物9を真空チャンバーへ移載して真空チャンバーの内圧を真空にする作業は不要であり、かつドライエッチング工程の終了後に真空チャンバー内の圧力を大気圧に戻して被処理物9を真空チャンバーから取り出す作業は不要であり、バッチ処理を回避できる。したがって、処理タクトを短縮できる。真空チャンバー等の真空装置及び移載機構が不要であるから、設備を簡素化できる。
 搬送機構10の復路11cにドライエッチング位置15並びに洗浄及び液切位置16,17を設けることで、搬送経路11の空きスペースを有効に利用できる。
 本発明は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において種々の改変をなすことができる。
 例えば、本発明の適用は、金属膜及び半導体膜を連続してエッチングするものであればよく、TFTのチャネルエッチングに限られない。
 電極ユニット32を処理ヘッド31の外部に配置してもよい。フッ素系原料ガスを処理ヘッド31から離れた場所でプラズマ化したうえで処理ヘッド31まで搬送してもよい。
 電極ユニット32の電極構造は、平行平板電極に限られず、同軸円筒電極でもよく、ロール電極の対でもよく、ロール電極と平板電極又は円筒凹面電極の対でもよい。
 放電空間34の圧力が、大気圧近傍の圧力範囲内において、処理空間19の圧力と異なっていてもよい。放電空間34の圧力が処理空間19の圧力より低いときは、ポンプにてエッチングガスを昇圧して処理空間19に供給するとよい。
 原料ガスが水等の凝縮性水素含有成分を含んでいなくてもよい。フッ素系原料成分が、水PFC、F、SF、NF、XeF等の水素非含有フッ素系成分であってもよい。更に、原料ガスが、上記水素非含有フッ素系成分と、酸素(O)と、窒素(N)を含んでいてもよい。この場合、原料ガスを放電空間34においてプラズマ化することによって、NOx、COF、OF、O等の反応成分を生成できる。n型アモルファスシリコン膜96をNOxにて酸化でき、更にCOF、OF、O等のフッ素系反応成分にてエッチングできる。
 大気圧プラズマエッチング部30は、電極33,33間の放電空間34の外部に被処理物9が配置される所謂リモート式のプラズマ処理装置であったが、大気圧プラズマエッチング部30が、電極33,33間に被処理物9を配置してプラズマを被処理物9に直接照射する所謂ダイレクト式のプラズマ処理装置であってもよい。ダイレクト式のプラズマ処理装置では、放電空間が処理空間になる。
 複数対の電極を設置しておき、稼働する電極対の数を不純物ドープ半導体膜96の厚さに応じて調節してもよい。
 酸化性反応成分供給源4は、酸素を原料にして放電によりオゾンを生成する大気圧プラズマ装置であってもよいし、予め生成したオゾンを蓄えたオゾンガスボンベであってもよい。
 基板91は、ガラスに限られず、半導体ウェハ、樹脂フィルム等でもよい。
 搬送機構は、コロコンベアに限られず、ロボットアクチュエータ、移動ステージ等でもよい。
 本発明は、例えばフラットパネルディスプレイや半導体ウェハ等の半導体装置の製造に適用可能である。
1   エッチング装置
2   フッ素系原料ガス供給源
3   加湿器(水素含有凝縮性成分添加手段)
4   オゾナイザー(酸化性反応ガス供給源)
8   フォトレジスト(マスク)
9   被処理物
90  半導体装置
91  基板
92  ゲート配線
93  ゲート絶縁膜
94  半導体膜
95  非ドープ半導体膜(基板側の膜部分)
96  不純物ドープ半導体膜(金属膜側の膜部分)
96e 被エッチング部分の縁部
97  信号配線(金属膜)
98  パッシペーション膜
99  ITO電極
99c コンタクトホール部
w   凝縮水
10  搬送機構
11  搬送経路
11a 往路
11b 中間路
11c 復路
12  ウェットエッチング位置
13  洗浄位置
14  液切位置
15  ドライエッチング位置
16  洗浄位置
17  液切位置
19  処理空間
20  ウェットエッチング部
21  供給ノズル
30  大気圧プラズマエッチング部
31  処理ヘッド(画成部)
31a 処理ヘッド底面(搬送機構を向く面)
32  電極ユニット(電極の対)
33  電極
34  放電空間
35  吹出し路
43,46 洗浄ノズル
54,57 エアナイフノズル
 

Claims (8)

  1.  基板に半導体膜と金属膜が順次積層され、前記半導体膜の前記金属膜側の膜部分に不純物がドープされた被処理物の前記金属膜及び前記半導体膜をエッチングする方法であって、
     前記被処理物を大気圧近傍の圧力の搬送経路に沿って連続的に搬送する搬送工程と、
     前記搬送経路上の位置において、金属に対し溶解性を有するエッチング液を前記被処理物に供給するウェットエッチング工程と、
     前記搬送経路上の前記位置より搬送方向の下流の処理空間において、フッ素系反応成分及び酸化性反応成分を含むエッチングガスを前記被処理物の表面に接触させるドライエッチング工程と、
     を含み、前記ドライエッチング工程では、フッ素系原料成分を含む原料ガスを大気圧近傍の圧力下でプラズマ化して前記フッ素系反応成分を生成し、かつ前記被処理物の搬送速度に応じて、前記被処理物が前記処理空間を通過する期間中のエッチング深さが、前記不純物がドープされた膜部分の厚さと対応するよう、前記半導体膜に対するエッチングレートを設定することを特徴とするエッチング方法。
  2.  前記エッチングガスの流量又は前記フッ素系反応成分若しくは前記酸化性反応成分の濃度を調節することにより、前記エッチングレートの設定を行なうことを特徴とする請求項1に記載のエッチング方法。
  3.  少なくとも一対の電極にて前記プラズマ化を行ない、更に前記電極の対の数を調節することにより、前記エッチング深さを、前記不純物がドープされた膜部分の厚さと対応させることを特徴とする請求項1又は2に記載のエッチング方法。
  4.  前記原料ガスが水素含有凝縮性成分を更に含み、かつ前記原料ガス中の前記水素含有凝縮性成分の含有率を調節することにより、前記半導体膜のエッチングプロファイルを制御することを特徴とする請求項1~3の何れか1項に記載のエッチング方法。
  5.  前記水素含有凝縮性成分が水であり、前記酸化性反応成分がオゾンであることを特徴とする請求項4に記載のエッチング方法。
  6.  基板に半導体膜と金属膜が順次積層され、前記半導体膜の前記金属膜側の膜部分に不純物がドープされた被処理物の前記金属膜及び前記半導体膜をエッチングする装置であって、
     前記被処理物を大気圧近傍の圧力の搬送経路に沿って連続的に搬送する搬送機構と、
     前記搬送機構の搬送経路上に配置された供給ノズルを有し、金属に対し溶解性を有するエッチング液を前記供給ノズルから前記被処理物の表面に供給するウェットエッチング部と、
     互いの間に大気圧近傍の放電空間を形成する少なくとも一対の電極と、前記搬送経路上の前記供給ノズルより下流側の位置に処理空間を画成する画成部とを有し、フッ素系原料成分を含む原料ガスを前記放電空間に導入してフッ素系反応成分を生成し、かつ前記フッ素系反応成分及び酸化性反応成分を含むエッチングガスを前記処理空間において前記被処理物の表面に接触させる大気圧プラズマエッチング部と、
     を備え、前記被処理物が前記処理空間を通過する期間中の前記大気圧プラズマエッチング部によるエッチング深さが、前記不純物がドープされた膜部分の厚さと対応するよう、前記半導体膜に対するエッチングレートが設定されていることを特徴とするエッチング装置。
  7.  前記大気圧プラズマエッチング部において、前記放電空間が前記処理空間から離れて配置され、前記放電空間から延びる吹出し路が、前記画成部の前記搬送機構を向く面に達して前記処理空間に連なっていることを特徴とする請求項6に記載のエッチング装置。
  8.  前記大気圧プラズマエッチング部が、前記原料ガスに水素含有凝縮性成分を添加する添加手段を更に備え、前記添加手段によって水素含有凝縮性成分の添加量を調節することにより、前記半導体膜のエッチングプロファイルを制御することを特徴とする請求項6又は7に記載のエッチング装置。
     
PCT/JP2011/057138 2010-03-31 2011-03-24 エッチング方法及び装置 WO2011125514A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180015715.9A CN102834902B (zh) 2010-03-31 2011-03-24 蚀刻方法及装置
KR1020127028427A KR101283754B1 (ko) 2010-03-31 2011-03-24 에칭 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-081063 2010-03-31
JP2010081063A JP4977230B2 (ja) 2010-03-31 2010-03-31 エッチング方法及び装置

Publications (1)

Publication Number Publication Date
WO2011125514A1 true WO2011125514A1 (ja) 2011-10-13

Family

ID=44762468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057138 WO2011125514A1 (ja) 2010-03-31 2011-03-24 エッチング方法及び装置

Country Status (5)

Country Link
JP (1) JP4977230B2 (ja)
KR (1) KR101283754B1 (ja)
CN (1) CN102834902B (ja)
TW (1) TWI494986B (ja)
WO (1) WO2011125514A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534622A (zh) * 2012-03-20 2012-07-04 常州比太科技有限公司 用等离子激发形成太阳能干法制绒黑硅的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938379B (zh) * 2012-11-21 2015-06-17 深圳市华星光电技术有限公司 开关管的制作方法及开关管的蚀刻设备
CN103745904B (zh) * 2013-12-31 2016-08-17 深圳市华星光电技术有限公司 一种干法刻蚀机及其刻蚀方法
JP6531422B2 (ja) * 2014-03-11 2019-06-19 東京エレクトロン株式会社 プラズマ処理装置、基板処理システム、薄膜トランジスターの製造方法及び記憶媒体
CN113050564B (zh) * 2021-03-12 2022-04-26 中国科学院近代物理研究所 核孔膜蚀刻线自反馈联动生产控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296729A (ja) * 2003-03-26 2004-10-21 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2008033337A (ja) * 2002-11-15 2008-02-14 Nec Lcd Technologies Ltd 液晶表示装置の製造方法
JP2009260181A (ja) * 2008-04-21 2009-11-05 Sekisui Chem Co Ltd エッチング装置及びその製造方法並びに該装置を用いたエッチング方法及び被処理物
JP2010062433A (ja) * 2008-09-05 2010-03-18 Sekisui Chem Co Ltd シリコン含有膜のエッチング方法および装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423565B1 (en) * 2000-05-30 2002-07-23 Kurt L. Barth Apparatus and processes for the massproduction of photovotaic modules
JPWO2003071594A1 (ja) * 2002-02-25 2005-06-16 住友精密工業株式会社 搬送式基板処理装置
TWI232991B (en) * 2002-11-15 2005-05-21 Nec Lcd Technologies Ltd Method for manufacturing an LCD device
JP2004304085A (ja) * 2003-04-01 2004-10-28 Renesas Technology Corp 半導体装置の製造方法
JP2006120739A (ja) * 2004-10-19 2006-05-11 Sekisui Chem Co Ltd 透明電極を形成した基板の表面処理方法および表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008033337A (ja) * 2002-11-15 2008-02-14 Nec Lcd Technologies Ltd 液晶表示装置の製造方法
JP2004296729A (ja) * 2003-03-26 2004-10-21 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2009260181A (ja) * 2008-04-21 2009-11-05 Sekisui Chem Co Ltd エッチング装置及びその製造方法並びに該装置を用いたエッチング方法及び被処理物
JP2010062433A (ja) * 2008-09-05 2010-03-18 Sekisui Chem Co Ltd シリコン含有膜のエッチング方法および装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534622A (zh) * 2012-03-20 2012-07-04 常州比太科技有限公司 用等离子激发形成太阳能干法制绒黑硅的方法

Also Published As

Publication number Publication date
KR20120127750A (ko) 2012-11-23
JP4977230B2 (ja) 2012-07-18
TW201142937A (en) 2011-12-01
CN102834902A (zh) 2012-12-19
CN102834902B (zh) 2014-03-12
JP2011216550A (ja) 2011-10-27
TWI494986B (zh) 2015-08-01
KR101283754B1 (ko) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5002073B2 (ja) シリコン含有膜のエッチング方法
JP5476152B2 (ja) 窒化シリコンのエッチング方法及び装置
JP4977230B2 (ja) エッチング方法及び装置
US8129281B1 (en) Plasma based photoresist removal system for cleaning post ash residue
KR100638159B1 (ko) 반도체 장치 및 그 제조 방법
JP2009033202A (ja) 蒸着チェンバーから誘電率が大きな材料を除去する方法
KR102355875B1 (ko) 표면 처리 방법 및 장치
JP4540729B2 (ja) シリコン含有膜のエッチング方法および装置
JP5547878B2 (ja) 半導体加工方法
WO2010035522A1 (ja) シリコン含有膜のエッチング方法および装置
JP5670229B2 (ja) 表面処理方法及び装置
KR20210136102A (ko) 드라이 에칭 방법 및 반도체 디바이스의 제조 방법
JP2009094209A (ja) シリコンのエッチング方法
JP2010062433A (ja) シリコン含有膜のエッチング方法および装置
JP5276223B2 (ja) エッチング方法及び装置
JP5743649B2 (ja) エッチング装置及び方法
EP4207251A1 (en) Plasma etching method and method for manufacturing semiconductor element
JP2012216582A (ja) シリコン含有物のエッチング方法
JP2008091723A (ja) プラズマ処理装置
JP2014131086A (ja) プラズマ処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015715.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127028427

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11765415

Country of ref document: EP

Kind code of ref document: A1