WO2011125157A1 - 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法 - Google Patents

情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法 Download PDF

Info

Publication number
WO2011125157A1
WO2011125157A1 PCT/JP2010/056101 JP2010056101W WO2011125157A1 WO 2011125157 A1 WO2011125157 A1 WO 2011125157A1 JP 2010056101 W JP2010056101 W JP 2010056101W WO 2011125157 A1 WO2011125157 A1 WO 2011125157A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
signal
pattern
information
light
Prior art date
Application number
PCT/JP2010/056101
Other languages
English (en)
French (fr)
Inventor
吉田 昌義
小林 秀樹
琢也 白戸
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2010/056101 priority Critical patent/WO2011125157A1/ja
Priority to JP2012509206A priority patent/JPWO2011125157A1/ja
Publication of WO2011125157A1 publication Critical patent/WO2011125157A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24082Meandering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0938Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following servo format, e.g. guide tracks, pilot signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0956Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers

Definitions

  • the present invention relates to an information recording medium such as a multilayer type or multilayer recording type optical disc, a recording apparatus and method for recording information on the information recording medium, and an information reproducing apparatus and method for reproducing information from the information recording medium.
  • an information recording medium such as a multilayer type or multilayer recording type optical disc
  • a recording apparatus and method for recording information on the information recording medium and an information reproducing apparatus and method for reproducing information from the information recording medium.
  • a first light beam for tracking (for example, a guide light beam or a servo light beam made of a red laser as in the case of DVD) is irradiated and condensed on the guide layer through the recording layer. Is done. Thereby, tracking for each recording layer becomes possible. That is, the focus servo for the guide layer and the tracking servo using the track previously formed on the guide layer can be performed.
  • a second beam for information recording / reproduction having a fixed or known positional relationship with the first beam such as using the same optical pickup or via the same objective lens ( For example, a main light beam composed of a blue laser as in the case of Blu-ray) is typically irradiated in a form concentrically superimposed on the first beam, and focused on one recording layer to be recorded or reproduced.
  • a main light beam composed of a blue laser as in the case of Blu-ray is typically irradiated in a form concentrically superimposed on the first beam, and focused on one recording layer to be recorded or reproduced.
  • recording and reproduction of this type of information recording medium can be performed on the optical pickup by a so-called “tilt correction” by a correction mechanism that corrects the disc tilt or simply tilt (typically, the tilt of the optical disc surface). It is executed while being applied. More generally, in addition to tilt correction, various processes such as disc eccentricity correction, disc surface tilt correction, optical system aberration correction, light beam phase difference correction and distortion correction, light absorption correction, and strategy setting, etc. Recording and reproduction are executed while the above is performed.
  • the track pitch is reduced with respect to the diameter of the first light beam. Therefore, it is difficult to detect a disc tilt or a tilt error that is accurate enough to withstand practical use. Alternatively, even if a specific pattern for disc tilt detection or tilt error detection is written on such a track, it is difficult to read it as information by the first light beam. More generally, it is also difficult to detect any signal for performing specific processing other than tilt correction.
  • the track pitch and recording linear density (linear recording density, pit pitch, or information transfer speed) that can be recorded or reproduced in the recording layer can be said to be “high density recording” that is the original purpose in the multilayer information recording medium. It is actually difficult to increase the
  • the present invention has been made in view of, for example, the above-described problems, and is a multilayer information recording medium capable of performing a specific type of processing such as high-precision tilt detection while increasing the information recording density, It is an object of the present invention to provide a recording apparatus and method for recording information on such an information recording medium, and an information reproducing apparatus and method for reproducing information from such an information recording medium.
  • the information recording medium of the present invention includes a guide layer in which a track is formed in advance, and a plurality of recording layers laminated on the guide layer.
  • One of the plurality of track portions that are adjacent to each other in the radial direction intersecting the track is arranged across the plurality of track portions so that a specific type of pattern signal can be detected at least in the center track portion located near the center in the radial direction.
  • a plurality of signal detection areas each having a predetermined pattern of arrangement are arranged, and (ii) for each of the plurality of signal detection areas, in front of the center track portion in the track direction along the track
  • a mark area carrying mark information indicating that a corresponding one of the plurality of signal detection areas will follow is arranged.
  • an information recording apparatus of the present invention is an information recording apparatus for recording data on the above-described information recording medium of the present invention, and is a first for detecting the pattern signal on the guide layer.
  • Light irradiation means capable of irradiating and condensing a light beam and irradiating and condensing a second light beam for data recording to one of the plurality of recording layers And receiving the first light based on the irradiated and condensed first light beam from the guide layer, and indicating that the light comes after the mark information based on the received first light.
  • Signal detecting means for detecting the pattern signal in each of a plurality of signal detection areas, processing means for performing a specific type of processing on the light irradiation means based on the detected pattern signal, and the processing is performed. State In the by irradiating and focusing the second light beam in one recording layer, and a data recording control means for controlling the light irradiation device to record the data.
  • the information recording method of the present invention is configured to irradiate and collect the first light beam for detecting the pattern signal on the guide layer on the information recording medium of the present invention described above.
  • Information recording method for recording data using light irradiating means capable of irradiating and condensing a second light beam for data recording onto one of the plurality of recording layers And receiving the first light based on the irradiated and condensed first light beam from the guide layer, and indicating that the light comes after the mark information based on the received first light.
  • an information reproducing apparatus of the present invention is an information reproducing apparatus for reproducing data from the above-described information recording medium of the present invention, and is a first apparatus for detecting the pattern signal on the guide layer.
  • Light irradiation means capable of irradiating and condensing a light beam and irradiating and condensing a second light beam for data reproduction to one of the plurality of recording layers And receiving the first light based on the irradiated and condensed first light beam from the guide layer, and indicating that the light comes after the mark information based on the received first light.
  • Signal detecting means for detecting the pattern signal in each of a plurality of signal detection areas, processing means for performing a specific type of processing on the light irradiation means based on the detected pattern signal, and the processing is performed.
  • the A data acquisition means for receiving a second light based on the irradiated and condensed second light beam from the one recording layer and acquiring the data based on the received second light; Prepare.
  • the information reproducing method of the present invention is configured to irradiate and focus the first light beam for detecting the pattern signal on the guide layer from the information recording medium of the present invention described above.
  • a signal detection step of detecting the pattern signal in each of the plurality of signal detection regions, a processing step of performing a specific type of processing on the light irradiation means based on the detected pattern signal, and the processing Out A data acquisition step of receiving the second light based on the irradiated and condensed second light beam from the one recording layer and acquiring the data based on the received second light.
  • FIG. 3 is a schematic partial enlarged cross-sectional view showing an objective lens for focusing a first beam for guide and a second beam for recording (or reproduction) and an information recording medium in an example. It is a partially expanded perspective view of the guide layer in an Example. It is a partially expanded perspective view of the same meaning as FIG. 3 in the comparative example of an Example. FIG. 3 is a partially enlarged perspective view having the same concept as in FIG. 2 when an example of prepits is provided in the embodiment.
  • FIG. 10 is provided. 12 is a timing chart of various signals used in the tilt detection system of FIG. 11.
  • 5 is a flowchart of an information recording / reproducing method in the embodiment.
  • 6 is a flowchart of a recording method for a new disk in the embodiment.
  • 5 is a flowchart illustrating an example of a playback method for a new disc in the embodiment.
  • FIG. 10 is a schematic partially enlarged plan view showing a predetermined pattern for generating a tilt detection signal in another embodiment.
  • FIG. 17 is a schematic partial enlarged plan view showing a relationship between a predetermined pattern and a light spot with respect to two types of tilts in the embodiment of FIG. 16.
  • FIG. 17 is a circuit diagram showing a radial tilt error signal generation circuit together with a light receiving element in the embodiment of FIG. 16.
  • FIG. 19 is a signal waveform diagram showing waveforms of a radial push-pull signal and a radial tilt signal when the light spot is in one state in the circuit shown in FIG. 18.
  • FIG. 19 is a signal waveform diagram showing waveforms of a radial push-pull signal and a radial tilt signal when the light spot is in another state in the circuit shown in FIG. 18.
  • FIG. 19 is a signal waveform diagram showing waveforms of a radial push-pull signal and a radial tilt signal when the light spot is still in another state in the circuit shown in FIG. 18.
  • FIG. 23 is a signal waveform diagram showing waveforms of a tangential push-pull signal and a tangential tilt signal when the light spot is in one state in the circuit shown in FIG. 22.
  • FIG. 23 is a signal waveform diagram showing waveforms of a tangential push-pull signal and a tangential tilt signal when the light spot is in another state in the circuit shown in FIG. 22.
  • FIG. 23 is a signal waveform diagram illustrating waveforms of a tangential push-pull signal and a tangential tilt signal when the light spot is in another state in the circuit illustrated in FIG. 22.
  • FIG. 23 is a signal waveform diagram showing waveforms of a tangential push-pull signal and a tangential tilt signal when the light spot is in another state in the circuit illustrated in FIG. 22.
  • FIG. 17 is a circuit diagram showing an aberration error signal generation circuit together with a light receiving element in the embodiment of FIG. 16.
  • FIG. 27 is a signal waveform diagram showing waveforms of a SUM signal and an aberration error signal when the light spot is in one state in the circuit shown in FIG. 26.
  • FIG. 27 is a signal waveform diagram showing waveforms of a SUM signal and an aberration error signal when the light spot is in another state in the circuit shown in FIG. 26.
  • It is a typical partial enlarged plan view which shows the relationship between the predetermined pattern with respect to two types of tilts, and a light spot in another modification.
  • FIG. 10 is a schematic partial enlarged plan view showing a predetermined pattern for generating a tilt detection signal in another modified example.
  • FIG. 10 is a schematic partial enlarged plan view showing a predetermined pattern for generating a tilt detection signal in another modified example.
  • FIG. 10 is a schematic partial enlarged plan view showing a predetermined pattern for generating a tilt detection signal in another modified example.
  • FIG. 10 is a schematic partial enlarged plan view showing a predetermined pattern for generating a tilt detection signal in another modified example.
  • FIG. 10 is a schematic partial enlarged plan view showing a predetermined pattern for generating a tilt detection signal in another modified example.
  • FIG. 35 is a schematic partial enlarged plan view showing a predetermined pattern together with a light spot when tilt detection sampling is performed in the modification of FIG. 34.
  • FIG. 35 is a schematic partial enlarged plan view showing a predetermined pattern together with a light spot when tilt detection sampling is performed in the modification of FIG. 34.
  • FIG. 35 is a schematic partial enlarged plan view showing a predetermined pattern together with a light spot when track offset detection sampling is performed in the modification of FIG. 34.
  • FIG. 10 is a schematic partial enlarged plan view showing a predetermined pattern for generating a tilt detection signal in another modified example.
  • FIG. 10 is a schematic partial enlarged plan view showing a predetermined pattern for generating a tilt detection signal in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example.
  • FIG. 10 is a schematic partially enlarged plan view showing a physical configuration of three regions formed on a track TR of a guide layer in another modified example. It is a typical perspective view of the same meaning as FIG. 1 of the optical disk in another modification.
  • the information recording medium of the present embodiment includes a guide layer in which a track is formed in advance, and a plurality of recording layers stacked on the guide layer, and the track includes (i) The plurality of track portions straddle the plurality of track portions so that a specific type of pattern signal can be detected at least in the center track portion located near the center in the radial direction among the plurality of track portions adjacent to each other in the radial direction intersecting the track.
  • a plurality of signal detection areas each having a set of predetermined patterns are disposed, and (ii) for each of the plurality of signal detection areas, a front of the center track portion in the track direction along the track.
  • a mark area carrying mark information indicating that a corresponding one of the plurality of signal detection areas will follow is arranged.
  • the information recording medium of the present embodiment typically, a plurality of recording layers stacked on or below the guide layer by using a track provided on the guide layer for guiding or tracking.
  • information can be optically recorded along the track by a CLV (Constant-Linear-Velocity) method, a zone CAV (Constant-Angular-Velocity), or the like.
  • CLV Constant-Linear-Velocity
  • zone CAV Constant-Angular-Velocity
  • the “guide layer” is typically a position in the recording surface related to each recording layer (ie, a radial position along the recording surface) at least when recording or writing information to each recording layer. And a position in the track direction) means a layer for guiding or guiding a first light beam for guiding or tracking (hereinafter simply referred to as “first light beam”).
  • the “guide layer” is typically a layer in which a track configured to generate a tracking error signal (or a wobble signal or a prepit signal as a source thereof) is physically created in advance.
  • the “track” formed in the guide layer means a trajectory in which the first light beam is traced or followed at least during information recording, and typically, for example, wobbled, or in addition to or Instead, it is physically built in advance in the guide layer or on the guide layer as a groove track or land track in which pits are formed.
  • the information track formed after recording in the recording layer is constructed in advance here in that it is constructed as an array or arrangement of recorded information pits on the recording surface where no track was originally present. It is clearly distinguished from the “track”.
  • Information recording is typically performed at each position on the information track after recording in a desired recording layer corresponding to each position of the first light beam on the track in the guide layer guided in this manner.
  • Information recording is performed using a second light beam for writing or information writing (hereinafter simply referred to as “second light beam”).
  • a plurality of guide layers for example, two layers may be provided, and each may be appropriately used or assigned a role. Absent. In any case, the guide layer and the plurality of recording layers are provided as separate layers.
  • the plurality of recording layers can be configured to record information independently of each other and to be reproducible.
  • Each of the plurality of recording layers preferably has a structure as simple as possible, for example, a straight groove, a straight land, or a mirror surface in an unrecorded state. This is because it is preferable in manufacturing that alignment between a plurality of recording layers and alignment with the guide layer are hardly or practically unnecessary.
  • the structure of the recording layer is such that the transmittance and reflectance of each recording layer are within a predetermined range so that the light beam reaches the recording layer or guide layer on the back side as viewed from the light beam irradiation side. It is configured to be able to record with various recording methods set to fit.
  • a first light beam for example, a red laser that forms a light spot having a relatively large diameter
  • a tracking error signal (or a wobble signal as a source thereof and a pre-pit signal in addition thereto) can be detected.
  • tracking or tracking servo can be executed as a kind of guide operation. With this tracking being performed or the tracking servo being closed, a second light beam (for example, a blue laser that forms a relatively small-diameter light spot on the desired recording layer on the upper layer or lower layer side of the track) ) Is collected, information is recorded.
  • a second light beam for example, a blue laser that forms a relatively small-diameter light spot on the desired recording layer on the upper layer or lower layer side of the track
  • the position of the track formed in advance in the guide layer it is another layer in which no track or track exists in advance (for example, a mirror surface state or a simple straight groove or straight land).
  • In-plane positioning is performed when recording information on a desired recording layer.
  • the optical system for irradiating the first and second light beams in the optical pickup or the like is fixed, the positional relationship of the light spots formed by them is also fixed.
  • performing a guide operation such as a tracking servo on the position of the first light beam (ie, the position of the light spot on the track formed thereby) is formed by the second light beam (ie, formed thereby).
  • the guide operation is also performed with reproducibility on the position of the light spot in the recording surface.
  • the track when reproducing information, the track may be used for guiding as well, or when reproducing this information, the guide layer is changed by following the information already written on the recording layer.
  • Reproduction can also be performed by performing a tracking operation on the recorded information track without using it for the guide (typically for tracking).
  • the “guide information” is information for guiding or guiding or following the first light beam.
  • the “guide information” is optically a tracking error signal (or a wobble signal that is a source thereof and an addition thereto). Information for generating a pre-pit signal).
  • the guide information can be rephrased as “mark information” in the sense that it becomes a mark for positioning the tracking light beam.
  • such guide information can also serve as “marking information” according to the present invention described in detail later.
  • the physical structure carrying such guide information is typically wobble and prepit structures (ie, land prepits, groove prepits, etc.), wobbles, This is realized by an arrangement or a series of prepits on a partially cut-out structure, a surface (for example, a mirror surface) without a groove and a land.
  • the “physical structure” means a physically existing structure, unlike a logical structure or a conceptual or virtual structure constructed by simple data. The physical structure is already built on the guide when the information recording medium is completed.
  • a plurality of signal detection areas are arranged on the track provided in the guide layer having such a guide function.
  • Each of the plurality of signal detection regions has a set of predetermined patterns straddling a plurality of track portions adjacent to each other in the radial direction so that a specific type of pattern signal can be detected in the center track portion.
  • the “center track portion” is at least near the center in the radial direction, such as being located at the center, center, or center line in the radial direction among a plurality of track portions adjacent in the radial direction in each signal detection region.
  • the part of the track that is located For example, if the plurality of track portions are odd numbers such as 3, 5, 7,...,
  • the center track portion is preferably the center track portion.
  • track portions other than the center track portion are intentionally excluded from the detection target of the pattern signal even when the center of one light spot by the first light beam is directly on the track portion. That is, some signal or noise resulting from the predetermined pattern may be detected in the track portion other than the center track portion, but such signal or noise is not detected as noise from the beginning, or is discarded as noise after detection.
  • the plurality of signal detection regions are typically arranged discretely in the track direction and discretely in the radial direction. For this reason, even if the track density is increased until the spot of the light beam straddles two or more adjacent tracks or track portions (for example, up to 5 tracks, 7 tracks, etc.), the detected pattern signal A situation in which the pattern signal cannot be detected due to the crosstalk can be avoided.
  • a predetermined pattern is typically created in advance so that a tilt detection signal such as a tilt error signal can be generated as a pattern signal, or can be recorded at an arbitrary time after the start of use. For example, when a tilt occurs, a large signal change in the pattern signal can be obtained, which is extremely useful in practice.
  • a predetermined line-symmetric pattern with the center track as the center line is formed so as to have a surface spread in a direction across a plurality of tracks. In this case, it is possible to generate a tilt detection signal having excellent sensitivity with respect to the tilt in the radial direction.
  • a predetermined line-symmetric pattern with a line segment orthogonal to the track as a center line has a surface spread in a direction across a plurality of tracks. If formed, it is possible to generate a tilt detection signal with excellent sensitivity to the tilt in the track direction.
  • a predetermined line-symmetric pattern with a line segment obliquely intersecting the track as a center line may be formed so as to have a surface spread in a direction across a plurality of tracks. Therefore, it is possible to generate a tilt detection signal having excellent sensitivity with respect to tilt in an oblique direction.
  • the predetermined pattern may be configured such that various signals such as a signal, a distortion signal for correcting distortion, a light absorption signal for correcting light absorption, and a strategy signal for setting a strategy are detected as pattern signals.
  • the predetermined pattern is, for example, each part of a plurality of tracks in an annular (that is, a hollow type) or a solid (that is, a centering type) planar region in which the outer ring shape is a circle, a rectangle, or the like so as to span a plurality of tracks Further, it is formed of a plurality of pits or a plurality of spaces.
  • a specific type of processing based on a pattern signal such as tilt correction based on a tilt detection signal can be executed. It has been found that even though it is necessary to be able to detect the signal, it is possible to achieve it without forming pattern signals such as tilt detection signals continuously on all tracks. It is rather rare for a particular type of processing to be carried out continuously on an equal basis. That is, depending on the frequency or period of time when a specific type of processing is performed such that the tilt detection signal is detected once every time the tilt correction is held at a constant value (in other words, the period during which the tilt servo is locked). If the pattern signal such as the tilt detection signal is detected, it has been found that the specific purpose can be achieved.
  • predetermined processing based on the pattern signals is executed completely or almost completely. Is possible.
  • the pattern signal is detected at some interval or at any phase (for example, an angle on the disk), it is practically complete or almost complete. It is possible to carry out a predetermined process based on the pattern signal. After all, it is practically sufficient if the pattern signal is obtained intermittently at the center track portion representing each of a plurality of tracks, for example, every 5 or 7 tracks. Further, the phase position (for example, the angular position on the disk) where the pattern signal is detected may be aligned or may not be aligned.
  • an opportunity that the center of the light spot of the first light beam is on the center track portion is captured as a pattern signal detection opportunity.
  • the track portion other than the center track portion is intentionally excluded from the opportunity to detect the pattern signal even if the center of one light spot by the first light beam is on the track portion.
  • the first light beam for example, a red laser
  • the second light beam for example, a blue laser
  • a relatively small light spot of the second light beam is effectively used.
  • the recording density in recording information on the recording layer is increased to the limit (that is, depending on the size). That is, when a narrow-pitch track corresponding to a narrow-pitch recording area that becomes a track after recording in the recording layer is previously built in the guide layer, the first light inevitably increased with respect to such a track.
  • the light spot of the beam has a technical property that it is irradiated simultaneously over a plurality of tracks (for example, multiple tracks such as 5 tracks and 7 tracks).
  • the unique configuration of the present embodiment as described above has a corresponding effect.
  • the degree of freedom in arrangement of a specific type of pattern signal such as a tilt detection signal is remarkably increased.
  • a plurality of signal detection areas can be arranged independently of each other, that is, discretely, the information recording medium as a whole can be arranged with flexibility.
  • the area is arranged.
  • the mark information is, for example, information reproduced as the above-described guide information, or by a wobble signal or a prepit signal.
  • the pattern signal can be read easily and reliably based on the arrival of the landmark information.
  • the center track portion arrives only at every fifth or seventh (for example, every other position). There is no opportunity to detect the pattern signal). In other words, in many cases, only the track portion other than the center track portion arrives, and the signal generation region does not arrive.
  • the sampling timing for detecting the predetermined pattern can be easily specified from the mark information.
  • the sampling timing at which the predetermined pattern should be detected can be easily specified.
  • the track pitch and recording linear density (for example, linear recording density, pit pitch, or information transfer speed (that is, recording linear density ⁇ movement speed)) that can be recorded or reproduced in each recording layer are changed to a multilayer information recording medium.
  • high-accuracy tilting can be achieved by stable and efficient acquisition of pattern signals such as tilt detection signals in a guide layer different from the recording layer, while enhancing the original purpose of “high-density recording”
  • Specific types of processing such as detection and high-precision tilt correction can be performed.
  • the predetermined pattern includes the length in the track direction of the minimum structural unit of the pattern signal and the minimum structural unit of data recorded in the plurality of recording layers, respectively.
  • the length in the track direction is defined to be a predetermined integer ratio.
  • the length in the track direction of the minimum structural unit of the pattern signal in the guide layer and the minimum structural unit of data (for example, user data, content data) to be recorded in each recording layer is a predetermined integer ratio.
  • “minimum configuration unit” means a minimum configuration unit conforming to the data format, such as an error correction unit such as an ECC (Error Correction Code) block or an ADIP (Address In Pre-groove) unit. Typically, the unit is handled when a predetermined type of processing is performed during information recording or information reproduction.
  • the occurrence frequency of the pattern signal such as the tilt detection signal and the period of recording data on the recording layer at the recording surface position corresponding to the track are constant regardless of the radial position or the track position.
  • the relationship can be maintained.
  • the CLV method it is possible to execute a specific type of stable process based on the detected pattern signal at an arbitrary radial position, even though the angular velocity changes depending on the radial position.
  • the zone CAV method it is possible to execute a specific type of stable process based on the detected pattern signal without any problem for each zone.
  • the length of the predetermined pattern in the track direction may be defined in accordance with the length of the minimum structural unit of data when prefabricated.
  • the track is formed in a spiral shape from the inner periphery to the outer periphery or from the outer periphery to the inner periphery in the information recording medium, and the mark area is the track direction. It is arranged immediately before the center track portion in FIG. 2, and indicates that the corresponding one comes immediately after.
  • the mark information is detected in the mark area, and then the pattern signal arrives without delay. For this reason, it becomes possible to prepare the detection of the pattern signal in advance, and the pattern signal can be detected stably and reliably. Furthermore, according to the detection of the mark information, it is possible to prepare for execution of a specific type of processing based on the detected pattern signal, and the specific type of processing can be executed stably and reliably.
  • the track is formed in a spiral shape from the inner periphery to the outer periphery or from the outer periphery to the inner periphery in the information recording medium, and the mark information is (i) Indicates the timing to sample the corresponding one that comes later, or (ii) the corresponding one that comes later, the address position from the inner circumference to the outer circumference or from the outer circumference to the inner circumference along the track direction. This means that it will come after the above.
  • the mark information is first detected in the mark area, and then it is determined at which timing or at which address position the pattern signal arrives. For this reason, it becomes possible to prepare the detection of the pattern signal in advance, and the pattern signal can be detected or sampled stably and reliably. Furthermore, according to the detection of the mark information, it is possible to prepare for execution of a specific type of processing based on the detected pattern signal, and the specific type of processing can be executed stably and reliably.
  • the mark area carries the mark information by at least one of a wobble and pre-pit structure, and a wobble and a partially notched structure
  • the mark area in the track direction at least one of (i) a buffer area having a mirror surface or a straight groove or straight land structure and (ii) a mirror area having a mirror surface or a straight groove or straight land structure is further arranged. ing.
  • the mark area has a physical structure including wobble and pre-pit structure that carries the mark information.
  • the “wobble and prepit structure” means a structure in which a wobbled or wobbled groove or land track is formed, and a prepit is formed in the groove or land.
  • the “pre-pit” means a convex or concave pit or phase pit formed to be narrower than the groove width or land width in or on the groove or on the track on or in the land.
  • the prepit may be a land prepit or a groove prepit.
  • the landmark area has a physical structure including wobbles and partially cutout structures that carry landmark information.
  • wobble and partially cutout structure means that a wobbled or wobbled groove or land track is formed, and a notch equivalent to the groove width or land width is provided in the groove or land. Means the structure. A case where a part of a land existing between adjacent grooves is notched, a case where a part of a groove present between adjacent lands is notched, and a combination thereof are conceivable.
  • the physical structure may be configured to include a broad prepit having a partially cutout, and the broad prepit may be a land prepit in a broad sense or a groove prepit in a broad sense. Further, in addition to such a structure, the above-mentioned narrowly-defined prepits (that is, prepits not accompanied by a notch structure) can be formed together.
  • the track portion in the mark area is preliminarily constructed in the guide layer as a groove track or land track in which wobbling and pits are formed or a part of the land or groove is notched. Therefore, the construction is relatively easy, and finally, it is possible to provide mark information with high reliability and stability.
  • each of the buffer region and the mirror surface region is disposed on the track before the mark region in the track direction.
  • Each of the buffer region and the mirror surface region has a mirror surface or a straight groove or straight land structure.
  • the “mirror surface” means a plain raw surface in which information is not embedded, and is the surface having the highest light reflectance in the guide layer.
  • the “straight groove or straight land structure” means a simple straight groove (groove) in which no wobbles or pits are formed or a bank (land) between the grooves. Note that the groove and the land are relative irregularities, and any of them may be concave and convex as viewed from the direction in which the first and second light beams are irradiated.
  • the groove is concave with respect to the main body substrate constituting the information recording medium, and the land is convex.
  • the groove when viewed from the direction in which the first and second light beams are irradiated, the groove becomes convex and the land becomes concave.
  • the construction and detection of the landmark information can be performed with certainty by making the comparison easier.
  • the predetermined pattern is configured to detect a tilt detection signal for tilt detection as the pattern signal.
  • a tilt detection signal can be generated, or if it is recorded at an arbitrary time after the start of use, a tilt can be generated. Since a large signal change in a tilt detection signal such as a tilt error signal can be obtained, it is extremely useful in practice. Thereby, tilt correction can be performed with high accuracy.
  • the predetermined pattern includes a line-symmetric pattern having a symmetry line at least one of a center line along the center track portion and an intersection line intersecting the center line. Good.
  • a predetermined pattern is created after setting a symmetric axis for each tilt such as a tilt in the radial direction (ie, radial tilt), a tilt in the track direction (ie, tangential tilt), and a tilt in the oblique direction.
  • a tilt detection signal with excellent sensitivity for any tilt.
  • the line-symmetric pattern is formed on the plurality of track portions at a temporary point by a first light beam that is irradiated on and focused on the track with the center line as the axis of symmetry.
  • An annular pattern may be included that is intermittently connected on the plurality of track portions along the circumference of the light spot.
  • the predetermined pattern is created so as to correspond to the external shape of the light spot, it is possible to detect the tilt detection signal with high accuracy by merely creating the predetermined minimum pattern practically.
  • the predetermined pattern may be discretely provided only in the annular shape, or may be discretely provided in a plane including the annular shape (for example, in the entire area of the circular region).
  • the predetermined pattern is a first pattern located on one side of the symmetry axis of a line symmetry pattern having a center line along the center track portion as a symmetry axis.
  • One portion and the second portion on the other side may include a pair of patterns that are offset from each other along the track direction.
  • the length of one predetermined pattern in the track direction can be made substantially longer by the distance between the pair of patterns in the track direction, making it more sensitive to radial tilt.
  • An excellent tilt detection signal can be generated.
  • the width of the plurality of track portions in the radial direction required for forming the predetermined pattern is almost half, which is very advantageous from the viewpoint of space efficiency.
  • each of the pair of patterns is along the circumference of a light spot formed on the plurality of track portions at a temporary point by the first light beam irradiated and collected on the track.
  • An annular pattern of semicircles that are intermittently connected on a plurality of track portions may be included.
  • each pair of patterns is created so as to correspond to the external shape of the light spot. Therefore, the tilt detection signal can be obtained with high accuracy simply by creating the minimum required pattern in practice. Can be detected.
  • the predetermined pattern may be discretely provided only in the semi-annular shape, or may be discretely provided in a plane including the semi-annular shape (for example, in the entire area inside the semi-circular region).
  • a plurality of the predetermined patterns are provided adjacent to each other in at least one direction of the track direction and the radial direction.
  • a part constituting one predetermined pattern can be used as a part of another predetermined pattern adjacent thereto. Therefore, the amount of the predetermined pattern can be reduced, and it is very advantageous from the viewpoint of space efficiency.
  • the number of the plurality of track portions over which the predetermined pattern is straddled is determined on the track by a first light beam that is irradiated and condensed on the track and has aberration.
  • the number of the plurality of track portions is set so that the total width of the plurality of track portions is larger with a margin than the diameter of the light spot formed in the first.
  • the entire area of the light spot formed by the first light beam having aberration is sufficiently covered by the predetermined pattern, so that the sensitivity of the pattern signal such as the tilt detection signal to the first light beam is improved. It is done.
  • crosstalk between pattern signals generated by two predetermined patterns arranged in the vicinity can be reduced or prevented.
  • the wavelength of the first light beam is ⁇
  • the numerical aperture (Numerical Aperture) of the objective lens is NA
  • the track pitch is Tp
  • the proportionality constant inherent to the plurality of tracks and the light beam is 0.82.
  • the number of tracks necessary for one side is the number obtained by rounding up the value of (0.82 ⁇ ⁇ / NA) / Tp. Since this number is on both sides, the number of a plurality of track portions into which one predetermined pattern is formed may be set as a number obtained by doubling and adding one center track.
  • a plurality of guide regions each having a physical structure carrying guide information for guide are discretely arranged at an arrangement interval equal to or less than a predetermined distance in the track direction.
  • the plurality of tracks that are adjacent to each other in the radial direction are shifted and arranged between the plurality of tracks. This point will be described below.
  • the guide information arrangement interval that is, the arrangement pitch
  • the minimum distance necessary for enabling the guide operation for example, the tracking servo has a predetermined bandwidth
  • the plurality of guide regions have a predetermined distance or less than a predetermined distance in the track direction along the spiral or concentric track (in other words, the tangential direction of the track). These are arranged discretely as arrangement intervals (that is, arrangement pitch).
  • the “predetermined distance” is typically the longest distance at which the guide or the guide operation can function, which is a tracking or tracking operation in a predetermined band (for example, the tracking operation is stably executed in the predetermined band). This is a short distance with a slight margin (the longest distance at which the tracking signal can be generated continuously or continuously with a frequency of making it possible).
  • the “predetermined band” means a band specific to a data format or data standard in which a tracking operation is performed, which is determined in relation to a band used at the time of information recording.
  • a guide operation (typically, a tracking operation in a predetermined band) functions on a guide layer in a specific information recording medium in advance by experiment, experience, simulation, or the like. It may be set by obtaining the limit distance and determining an appropriate margin. If the guide areas are discretely arranged at an arrangement interval (that is, arrangement pitch) longer than a predetermined distance, tracking is performed at a frequency that enables stable tracking servo in a predetermined band, for example. A stable guide operation cannot be executed, for example, an error signal cannot be generated.
  • “discretely” refers to other planes such as a mirror surface, a buffer region, and a region other than the guide region between the recording layers of each recording layer as viewed in plan on the recording surface. It means that the region is interposed.
  • the plurality of guide regions are arranged so as to be shifted between the plurality of tracks in the radial direction (that is, the radial direction) intersecting the tracks over the plurality of adjacent tracks.
  • “across a plurality of tracks” includes two or more tracks adjacent to each other in a plan view on the recording surface of each recording layer and a region that occupies a gap between them. , Meaning across or across them.
  • shifted in a radial direction between a plurality of tracks means that a plurality of tracks in the radial direction (that is, the radial direction) have the same phase (for example, an angle on the disk) or a position corresponding to the same phase (for example, , Or an angular position on the disk) or not on the same radius.
  • the plurality of guide regions that are arranged relatively close to each other in the radial direction do not need to be completely separated (that is, with a gap between them).
  • the information is recorded or reproduced. It is sufficient that the phase in the radial direction is shifted to such an extent that the tracking servo light beam in (1) does not simultaneously reach the plurality of guide regions (for example, over five tracks). Alternatively, it is sufficient that signals and information that can be read from the plurality of guide regions are shifted to some extent by the light beam so that they can be distinguished from each other.
  • the guide region corresponds to the above.
  • the guide information is shifted as described above, the guide information is overlapped in both the track direction and the radial direction (or the signal information from other guide regions affects as noise), that is, the detected guide information. It is possible to avoid a situation in which the guide information cannot be detected due to the crosstalk.
  • the track density is increased, guiding or tracking is possible, and the original function of generating a tracking signal, typically as a guide layer, is guaranteed.
  • the track pitch is narrowed with respect to the diameter of the first light beam to such an extent that the first light beam is simultaneously irradiated to a plurality of adjacent tracks in the guide layer, for example, reflection caused by the first light beam.
  • control information for example, servo mark or address information
  • it can be reliably read as information based on reflected light or the like caused by the first light beam. Become. That is, the preformat information can be acquired stably.
  • the first light beam for example, a red laser
  • the second light beam for example, a blue laser
  • a relatively small light spot of the second light beam is effectively used.
  • the recording density in recording information on the recording layer is increased to the limit (that is, depending on the size). That is, when a narrow-pitch track corresponding to a narrow-pitch recording area that becomes a track after recording in the recording layer is previously built in the guide layer, the first light inevitably increased with respect to such a track.
  • the light spot of the beam has the technical property that it is simultaneously irradiated over a plurality of tracks (for example, a large number of tracks such as 5 tracks). For this reason, it is necessary to perform a guide operation such as a tracking operation corresponding to a recording layer with a narrow pitch by using the first light beam that forms a relatively large light spot.
  • the unique configuration in the present embodiment as described above has a corresponding effect.
  • the pitch (for example, in the recording layer) is maintained while maintaining a guide function such as enabling tracking servo in a predetermined band or reading preformat information.
  • An information track constructed by recording and having an information track commensurate with the beam diameter of the second light beam has a narrow pitch (to the same extent as the narrow pitch) (i.e., narrower than inappropriate for the first light beam). Pitch).
  • the angular velocity increases toward the inner peripheral side (in other words, the angular velocity decreases toward the outer peripheral side).
  • the arrangement relationship of the guide information recorded in advance is arbitrary according to the radial position.
  • the CAV (Constant-Angular-Velocity) method it is fundamentally impossible to arrange information of a specific length in a row in a radial direction over a plurality of tracks. Then, if no measures are taken in the CLV method, when the first light beam forms a light spot extending over a plurality of tracks, the track portion entering the light spot becomes arbitrary depending on the radial position. (In other words, any information of a specific length is shifted in the track direction according to the radial position), and the acquisition of the guide information has to be extremely unstable depending on the radial position.
  • the guide area is consciously or positively shifted between the plurality of tracks in the radial direction as described above. For this reason, regardless of the radial position (that is, near the inner periphery or the outer periphery), a predetermined band corresponding to the high-density track pitch and recording linear density for realizing high-density recording.
  • the guide operation such as tracking servo can be executed stably. In other words, assuming that the CLV method is used, there is no problem even if the CLV method is used if a predetermined distance and a shifting method are defined in advance according to the radial position.
  • the plurality of guide regions are not adjacent to each other in the track direction and are not adjacent to each other across the plurality of tracks in the radial direction among the plurality of slots. One by one.
  • the “slot” is a logical section or section obtained by dividing a track in the track direction, or a physical section or section.
  • the slots are typically arranged continuously without gaps in the track direction and arranged without gaps or adjacent to each other in the radial direction.
  • the slots may be arranged with a slight gap in at least one of the track direction and the radial direction.
  • a track is constructed from an arrangement or a series of slots in a plurality of slots that are preliminarily arranged in the track direction in the guide layer.
  • the guide areas are not adjacent to each other in the track direction and are arranged one by one in a plurality of slots that are not adjacent to each other across a plurality of tracks in the radial direction, so that they can be detected from a plurality of guide areas. It is possible to reliably reduce or eliminate crosstalk between various guide information.
  • grooves, lands, pre-pits, etc. need only be created in the slot where the guide area is arranged, and it is not necessary to create these continuously throughout the track.
  • the presence or absence of the slot (for example, the difference between the slot and the mirror surface) is easily and clearly distinguished physically, so that it is easy to detect, so that the guide information can be easily read and stably executed. This is very advantageous in practice.
  • any slot in the recording layer can correspond to the slot in which the guide area in the guide layer is arranged, tracking servo in a predetermined band can be executed indirectly on the recording layer.
  • information can be recorded in all slots at a high density up to the readable limit by the light spot formed by the second light beam.
  • the track pitch and recording linear density for example, linear recording density, pit pitch or It is possible to increase the information transfer speed (that is, recording linear density ⁇ movement speed) to such an extent that it can be said to be “high density recording”, which is the original purpose in a multilayer information recording medium.
  • the information recording apparatus of the present embodiment is an information recording apparatus that records data on the information recording medium of the above-described embodiment (including various aspects thereof), and the information recording apparatus includes: It is possible to irradiate and collect the first light beam for detecting the pattern signal, and to irradiate and collect one of the plurality of recording layers with the second light beam for data recording.
  • a light irradiating means capable of emitting light, and receiving first light based on the irradiated and condensed first light beam from the guide layer, and on the basis of the received first light, the mark Signal detection means for detecting the pattern signal in each of the plurality of signal detection areas indicated by the information to indicate that it will come later, and a specific type of processing for the light irradiation means based on the detected pattern signal Apply And data recording for controlling the light irradiating means to record the data by irradiating and condensing the second light beam on the one recording layer in a state where the processing is performed. Control means.
  • the first light beam is irradiated and condensed on the guide layer by, for example, light irradiation means that is an optical pickup including two types of semiconductor lasers.
  • the first light beam may be a light beam having a relatively large spot diameter such as a red laser light beam. That is, the light beam may be a light beam that is relatively large and has a large luminous flux that forms a large light spot that is irradiated over a plurality of tracks.
  • the light receiving means includes, for example, a photodetector or a light receiving element such as a two-part or four-part CCD (Charged Coupled Device) that is formed integrally with the light irradiating means and at least partially shares an optical system such as an objective lens. Is done.
  • the light receiving unit is configured to receive the first light through a prism, a dichroic mirror, a dichroic prism, or the like in an optical path different from the second light and the first and second light beams.
  • guide information that is, wobble signal, pre-pit signal, A pattern signal is detected in a signal detection area that is part of a tracking error signal and the like and is indicated by mark information.
  • the first light beam for detecting a pattern signal may also be used as a tracking light beam. That is, the first light beam is used not only for tracking in the guide layer but also for detecting a pattern signal.
  • a specific type of processing is performed on the light irradiation unit by a processing unit including, for example, a processor, an arithmetic circuit, a logic circuit, and the like.
  • the “specific type of processing” is, for example, tilt correction when the pattern signal is a tilt detection signal. That is, for example, according to the tilt detection signal, an actuator for tilt correction provided in a light irradiation means such as an optical pickup is driven by feedback control or feedforward control, and the irradiation angle of the first light beam is corrected. After the correction, it is fixed until the next tilt detection signal is detected (that is, the tilt servo is locked until the next opportunity).
  • processing includes disk decentration correction, disk surface tilt correction, optical system aberration correction, light beam phase difference correction and distortion correction, light absorption correction, and strategy setting. In either case, the processing is performed according to the type of pattern signal.
  • the optical system for irradiating the first and second light beams in the optical pickup or the like is fixed, the positional relationship of the light spots formed by them is also fixed. For this reason, performing a specific type of processing such as tilt correction using the first light beam means that the specific type of processing is also performed with reproducibility for the second light beam. .
  • the necessary or preferable specific type of processing can be indirectly performed on the second light beam in the recording surface where the track does not exist in advance. It is a translation.
  • the tracking servo in a predetermined band with respect to the track based on a tracking servo signal (for example, a tracking error signal or a wobble signal or a prepit signal as a source thereof) that can be detected from the first light.
  • a tracking servo signal for example, a tracking error signal or a wobble signal or a prepit signal as a source thereof
  • a light irradiation means such as an optical pickup is controlled by a tracking servo means such as a tracking servo circuit so that the tracking servo is closed or the tracking servo is closed.
  • an actuator for tracking control in the light irradiation means is controlled by feedback control or feedforward control, and the light beam formed by the first light beam follows the track.
  • a second light beam modulated in accordance with information to be emitted is irradiated and condensed on one recording layer by the light irradiation means.
  • the second light beam may be a light beam having a relatively small spot diameter such as a blue laser light beam as described above, aiming at high-density recording of information recording. From the viewpoint of increasing the recording information density, it is desirable that the second light beam is a thinner light beam.
  • data is sequentially recorded in an area to be an information track corresponding to the track in the guide layer.
  • the information to be recorded such as content information and user information
  • the information to be recorded is preferably recorded on the recording layer in the information recording medium of the above-described embodiment with high accuracy under the execution of a specific type of processing such as tilt correction. Recording is possible at high density.
  • the information recording method of the present embodiment includes the information recording medium of the above-described embodiment (including various aspects thereof), the information recording medium of the present invention described above, the guide layer, and the guide layer. It is possible to irradiate and condense a first light beam for detecting a pattern signal, and to irradiate and condense a second light beam for data recording to one of the plurality of recording layers.
  • the information recording method of the present embodiment operates in the same manner as the information recording apparatus of the above-described embodiment, and finally, for example, content is suitably applied to the recording layer in the information recording medium of the above-described embodiment.
  • Information to be recorded such as information and user information can be recorded with high accuracy and high density under the execution of a specific type of processing such as tilt correction.
  • the information reproducing apparatus of the present embodiment is an information reproducing apparatus for reproducing data from the information recording medium (including various aspects thereof) of the above-described embodiment, and the information reproducing apparatus It is possible to irradiate and collect the first light beam for detecting the pattern signal, and to irradiate and collect one of the plurality of recording layers with the second light beam for data reproduction.
  • a light irradiating means capable of emitting light, and receiving first light based on the irradiated and condensed first light beam from the guide layer, and on the basis of the received first light, the mark Signal detection means for detecting the pattern signal in each of the plurality of signal detection areas indicated by the information to indicate that it will come later, and a specific type of processing for the light irradiation means based on the detected pattern signal Out And receiving a second light based on the irradiated and condensed second light beam from the one recording layer in the processed state and on the basis of the received second light.
  • Data acquisition means for acquiring the data.
  • the first light beam is irradiated and condensed on the guide layer by the light irradiation means that is, for example, an optical pickup including two types of semiconductor lasers.
  • the first light beam may be a light beam having a relatively large spot diameter such as a red laser light beam. That is, the light beam may be a light beam that is relatively large and has a large luminous flux that forms a large light spot that is irradiated over a plurality of tracks.
  • the first light that is reflected light, scattered light, refracted light, transmitted light, etc. from the guide layer based on the first light beam is received by the light receiving means.
  • a pattern signal is detected by the signal detection means, for example, in a signal detection area consisting of a part of the guide information and indicated by the mark information.
  • the first light beam for detecting the pattern signal at the time of reproduction may also be used as a tracking light beam. That is, the first light beam may be used for pattern signal detection as well as for tracking in the guide layer.
  • the first light beam is used for detecting a pattern signal and may not be used for tracking.
  • the second The light beam is irradiated onto the desired recording layer and condensed by the light irradiation means.
  • the second light beam may be a light beam having a relatively small spot diameter such as a blue laser light beam as described above, aiming at high-density reproduction of information recording.
  • the recorded information in the information recording medium of the above-described embodiment is preferably paired with the recorded information such as content information and user information with high accuracy under the execution of a specific type of processing such as tilt correction. Reproduction is possible at high density.
  • the information reproducing method of the present embodiment uses a first light for detecting the pattern signal on the guide layer from the information recording medium of the above-described embodiment (including various aspects thereof).
  • a light irradiating means capable of irradiating and condensing a beam, and irradiating and condensing a second light beam for data reproduction to one of the plurality of recording layers;
  • An information reproducing method for reproducing data wherein the first light based on the irradiated and condensed first light beam from the guide layer is received, and based on the received first light, A signal detection step of detecting the pattern signal in each of the plurality of signal detection areas indicated to be followed by the mark information, and a specific type of the light irradiation means based on the detected pattern signal place And receiving the second light based on the irradiated and condensed second light beam from the one recording layer in the processed state, and receiving the received second light. And a data acquisition step of acquiring
  • the information reproducing method of the present embodiment operates in the same manner as in the information reproducing apparatus of the above-described embodiment, and finally, for example, content information is preferably selected from the recording layer in the information recording medium of the above-described embodiment.
  • recorded information such as user information can be reproduced with high accuracy and high density under the execution of a specific type of processing such as tilt correction.
  • the information recording medium includes a guide layer and a plurality of recording layers, and a plurality of signal detection areas and mark areas are arranged on the track.
  • High-precision recording becomes possible under the execution of a specific type of processing such as the above, and the track pitch and recording linear density that can be recorded or reproduced in the recording layer can be increased.
  • the information recording apparatus includes a light irradiation unit, a signal detection unit, a processing unit, and a data recording control unit.
  • a signal detection step and a processing step are provided.
  • a data recording control step so that information to be recorded such as content information and user information can be recorded with high accuracy and high density, preferably on the recording layer in the information recording medium of the above-described embodiment.
  • the information reproducing apparatus includes a light irradiation unit, a signal detecting unit, a processing unit, and a data acquiring unit.
  • a signal detecting step, a processing step, and data are included, recorded information can be preferably reproduced at high density from the recording layer in the information recording medium of the above-described embodiment.
  • an optical disk 11 is a multi-layer recording type, and includes a single guide layer 12 and a plurality of recording layers 13.
  • FIG. 1 shows a plurality of layers constituting one optical disk 11 shown on the left half surface in the drawing, and the right half surface in the drawing is spaced from each other in the stacking direction (vertical direction in FIG. 1). It is a typical perspective view made easy to see each layer by opening and disassembling.
  • the optical disk 11 At the time of recording, it is used for tracking servo and the first beam LB1 as an example of the “first light beam” according to the present invention, and “second light” for information recording and according to the present invention.
  • the second beam LB2 as an example of the “beam” is irradiated at the same time.
  • the first beam LB1 and the second beam LB2 for information reproduction are simultaneously irradiated.
  • the second beam LB2 can be used as a single light beam for tracking servo and information reproduction (that is, the first beam LB1 is not used). .
  • the optical disk 11 is a CLV system and is pre-recorded on a concentric or spiral track TR, and a tracking error signal (or a wobble signal that is a source thereof) detected at the time of information recording or reproduction, address information (or its) The original pre-pit signal) is arranged along the track in accordance with the CLV system.
  • the first beam LB1 is focused on the guide layer 12 and tracking-controlled so as to follow the track TR (that is, the guide track).
  • the second beam LB2 is focused on one desired recording layer 13 that is a recording target or a reproduction target among the plurality of recording layers 13 stacked on the guide layer 12.
  • the second beam LB2 is a blue laser beam having a relatively small diameter, for example, like a BR (Blu-ray) disc.
  • the first beam LB1 is a red laser beam having a relatively large diameter, for example, like DVD.
  • the diameter of the light spot formed by the first beam LB1 is, for example, about several times the diameter of the light spot formed by the second beam LB2.
  • each of the plurality of recording layers 13 is composed of, for example, a translucent thin film containing a two-photon absorption material.
  • a two-photon absorption material a fluorescent type using a fluorescent material in which the fluorescence intensity in a region where two-photon absorption occurs is changed, a refractive index changing type using a photorefractive material in which the refractive index is changed by electron localization, etc.
  • photochromic compounds, bis (aralkylidene) cycloalkanone compounds, etc. is promising as refractive index changing type two-photon absorption materials.
  • a bulk type in which the entire optical disk 11 is made of a two-photon absorption material and (ii) a recording layer of two-photon absorption material and a spacer layer of another transparent material are alternately arranged.
  • the layer structure type has an advantage that focus servo control can be performed using light reflected at the interface between the recording layer 13 and the spacer layer.
  • the bulk type has an advantage that the manufacturing cost can be suppressed because there are few multilayer film forming steps.
  • recording can be performed by changing the optical characteristics such as refractive index, transmittance, absorption rate, and reflectance in response to at least one of the wavelength and intensity of the second beam LB2.
  • any stable material may be used.
  • a light-transmitting or translucent photosensitive material such as a photopolymer that causes a photopolymerization reaction, a photo-anisotropic material, a photorefractive material, a hole burning material, a photochromic material that absorbs light and changes its absorption spectrum, Conceivable.
  • a phase change material that is sensitive to the second beam LB2 that is, blue laser light having a wavelength of 650 nm and that is not sensitive to the first beam LB1 having the wavelength ⁇ 1 ( ⁇ 2 ⁇ 1), a two-photon absorption material, and the like. Is used.
  • Each of the plurality of recording layers 13 may be, for example, a dye material in addition to the above-described two-photon absorption material and phase change material.
  • the track TR is not formed in advance in an unrecorded state.
  • the optical disc 11 With respect to the optical disc 11 in which such a plurality of recording layers 13 are laminated on the guide layer 12, at least at the time of information recording, these diameters and depths of focus are different through a common objective lens 102L included in the optical pickup.
  • the first beam LB1 and the second beam LB2 are irradiated almost or coaxially in practice.
  • the tracking operation for the second beam LB2 is performed by the tracking operation for the track TR of the guide layer 12 by the first beam LB1 (in particular, no track exists on the recording layer 13 during recording).
  • the first beam LB1 and the second beam LB2 are irradiated through a common optical system such as the objective lens 102L (in other words, an optical system in which the positional relationship between the irradiated light beams is fixed).
  • the positioning of the first beam LB1 in the plane of the optical disc 11 can be used as the positioning of the second beam LB2 in the plane of the optical disc 12 (that is, in the recording plane of each recording layer 13).
  • the track TR of the guide layer 12 also serves as a plurality of servo areas each having a physical structure carrying a tracking error signal (or a signal for generating a tracking error such as a wobble signal as a source thereof) and a prepit signal.
  • a mark area is arranged.
  • the tracking error signal and the pre-pit signal constitute an example of “marking information” and “guide information for guide” according to the present invention.
  • the mark area also serving as a plurality of servo areas constitutes one example of the “mark area” and the “plurality of guide areas” according to the present invention.
  • FIGS. 3 to 5 each show an enlarged view of the track portion of the guide layer 12 on which wobbling has been performed.
  • FIG. 3 shows a track portion where wobbling is simply performed in the embodiment
  • FIG. 4 shows a guide layer 12 in a comparative example in which grooves, lands, etc. are formed without gaps over the entire area of each track. Indicates the track part.
  • FIG. 5 shows a track portion having “wobble and partially cutout structure” and wobbling applied in the embodiment.
  • a groove track GT and a land part LP corresponding to a specific example of the track TR in FIG.
  • a reflective film 12a which is a thin film made of a light-reflective material, is formed on a transparent film 12c as a base material on which concave and convex grooves are formed, and further transparent as a protective film.
  • it is formed by being filled with an opaque film 12b.
  • the groove track GT or the groove is formed in a convex shape on the upper side in FIG.
  • the reflective film 12a is formed on the transparent or opaque film 12b as the base material on which the concave and convex grooves are formed, and is further filled with the film 12c as the protective film. Is formed.
  • Groove track GT and land part LP have wobble WB on the side wall.
  • the groove track GT and the land part LP are formed such that the side walls wobble (meander) along the track direction.
  • each groove track GT and land part LP indicated by a one-dotted line has recording information that the recording layer 13 (see FIG. 1) has after recording.
  • the recorded information tracks are arranged at a track pitch corresponding to the track pitch of the recorded information track.
  • the arrangement on the recording layer 13 of the recorded information along the track TR that has already been recorded along the track TR of the guide layer 12 will be simply referred to as “recorded information track” as appropriate.
  • the information-recorded track is physically formed on the recording surface of the recording layer 13 by irradiation of the second beam LB2 at the time of recording, the portion where the fluorescence intensity is changed, the portion where the refractive index is changed, the phase change portion, the dye It can be said that it is a series of ridges along the track TR of the guide layer 12, such as a changed portion. That is, in FIG. 3, the groove is formed at a frequency at which a tracking error can occur at a predetermined frequency even for the groove track GT in which no groove is formed. That is, at the radial position and the track direction position not shown in FIG. 3, grooves are appropriately formed on the groove track GT, and the groove track GT on which no groove is formed over the circumference is Basically does not exist.
  • the recording layer 13 in the comparative example, the recording layer 13 (see FIG. 1) after recording has a track pitch corresponding to the track pitch of the recorded information track formed by the recording information, and covers the entire track direction and radial direction. Thus, grooves and lands are formed.
  • the groove track GT is because the recording layer also serves as the guide layer or because the recorded information track of the recording layer and the guide track of the guide layer have a one-to-one correspondence.
  • the guide layer is also configured as in the comparative example of FIG.
  • the groove is not formed over the entire area along the track direction on the groove track GT.
  • the grooves are not formed on the groove tracks GT adjacent to each other in the radial direction.
  • the land part LP provided in the guide layer 12 may be formed with land prepits LPP11 having a partially cut structure (compare with FIG. 4).
  • the land pre-pit LPP1 is also built in the example).
  • a notch is a pit having the same width as the track pitch, which is cut out over one track width.
  • a land pre-pit LPP1 in a narrow sense may be formed in the land part LP.
  • the narrow land pre-pits are pits such as phase pits having a width narrower than the track width, unlike the notch structure shown in FIG.
  • the prepits may be appropriately formed for the land part LP in which no prepits are formed.
  • a “region 1” serves as a groove region 21, and a “region 2” serves as a “servo region” and a mark region 22 capable of generating mark information of a detection pattern.
  • a “region 3” a pattern region 23 having a predetermined pattern 23a capable of generating a tilt detection signal is arranged.
  • the mark area 22 and the pattern area 23 are arranged in succession on the center track 23TR.
  • the mark area 22 also functions as a guide area or a servo area for detecting a tracking error signal, and is therefore provided in a track TR other than the center track 23TR.
  • the pattern region 23 has a predetermined pattern 23a that spans seven adjacent tracks TR (that is, seven tracks TR constituting one group GR).
  • the groove region 21 is an example of the “buffer region” according to the present invention, and is a region having a straight groove.
  • the groove area 21 is arranged adjacent to each other in front of the head and behind the last in each of the plurality of mark areas 22 in the track direction.
  • the buffering action in the groove area 21 provides a preparation period for signal detection from the mark area 22 in the servo system during information recording or the like.
  • the first beam LB1 is allowed to enter the mark area 22 while tracking is on during information recording. That is, the groove area 21 arranged on the head side of the mark area 22 gives a very effective preparation period for stable operation of the tracking servo.
  • a mark area 22 is an area in which a wobble structure or a prepit structure is formed in advance as shown in FIGS. 3 to 5, that is, an area where a tracking error signal or a prepit signal can be detected.
  • the mark areas 22 are discretely arranged in the track direction (left-right direction in FIG. 6) as arrangement intervals (that is, arrangement pitches) with a predetermined distance set in advance or less than the predetermined distance.
  • the plurality of mark regions 22 are actively or actively left and right between the plurality of tracks TR in the radial direction (that is, in the vertical direction in FIG. 6) across the plurality of adjacent tracks TR ( That is, they are arranged shifted along the track direction.
  • the mark information is arranged immediately before the pattern area 23 on the center track 23TR, and indicates that the pattern area 23 comes immediately after. Therefore, when mark information is first detected in the mark area 22 during recording or reproduction, it is found that the pattern signal in the pattern area 23 arrives without delay thereafter.
  • the mark information indicates a timing at which the subsequent pattern area 23 should be sampled on the center track 23TR or an address position from the inner periphery to the outer periphery or from the outer periphery to the inner periphery along the track direction of the subsequent pattern area 23. . Therefore, when mark information is first detected in the mark area 22 at the time of recording or reproduction, it is subsequently determined at which timing or at which address position the pattern signal arrives.
  • the wobble signal detected by the push-pull signal is detected with an offset in the pattern area 23. Therefore, it can be recognized whether or not the first light beam is on the center track 23TR.
  • the pattern area 23 is an example of the “signal detection area” according to the present invention, and is a center track 23TR (a track indicated by an alternate long and short dash line in FIG. 6).
  • a set of predetermined patterns 23a extending over seven tracks adjacent in the radial direction (vertical direction in FIG. 6) are provided.
  • the track portion other than the center track 23TR is intentionally excluded from the pattern signal detection target even when the center of the first light spot LS1 by the first light beam is directly on the track portion.
  • the pattern areas 23 are discretely arranged in the track direction (left and right direction in FIG. 6), and are also discretely arranged in the radial direction (up and down direction in FIG. 6). For this reason, even if the track density is increased until the spot of the light beam straddles seven adjacent tracks, a situation in which the pattern signal cannot be detected due to the crosstalk of the detected pattern signal can be avoided. .
  • the predetermined pattern 23a is created in advance so that a tilt detection signal such as a tilt error signal can be generated as a pattern signal, a large signal change in the tilt detection signal can be obtained when a tilt occurs.
  • the predetermined pattern 23a is formed from a plurality of short pits, embosses or embossed pits formed on a groove or land having a short notch that forms local irregularities, or a groove track or land track. For example, when straddling seven tracks, it is composed of a set of ten embossed pits, etc., with five on one side and both sides.
  • the predetermined pattern 23a is formed so as to substantially match the outer ring shape of the light spot LS1, and has a shape that substantially follows the bright ring LS1a when it occurs. The wobble may be combined with the predetermined pattern 23a.
  • the predetermined pattern 23a in the pattern area 23 includes an eccentric signal for correcting the eccentricity of the disc, an inclination signal for correcting the tilt of the disc surface, an aberration signal for correcting the aberration of the optical system, and an optical beam.
  • Various signals such as phase difference signal for phase difference correction, distortion signal for distortion correction, light absorption signal for light absorption correction, strategy signal for strategy setting are configured to be detected as pattern signal It's okay.
  • the specific purpose of enabling the tilt correction based on the tilt detection signal is to detect the tilt detection signal in any track TR, but the tilt detection signal is applied to all the tracks TR. Even if it does not form continuously, it can be achieved. That is, if the tilt detection signal is detected according to the frequency or period of tilt correction such that the tilt detection signal is detected once every period during which the tilt servo is locked, the specific purpose is achieved. Is possible.
  • tilt correction can be executed if a tilt detection signal can be obtained for every seven tracks of one GR.
  • tilt correction can be executed if a tilt detection signal can be obtained with some interval or at any phase (for example, an angle on the disk). In the end, it is sufficient if the tilt detection signal is obtained intermittently at the center track 23TR representing them every seven tracks of one group GR.
  • the first beam LB1 (for example, a red laser) has a larger beam diameter than the second beam LB2 (for example, a blue laser), so that one group GR is configured using the first beam LB1. It is extremely convenient to detect a set of predetermined patterns 23a across the seven tracks TR.
  • the pattern region 23 having the tilt detection pattern can be arranged with a degree of freedom.
  • by providing pattern signals other than the tilt detection signal in correspondence with processes other than tilt correction it is possible to execute other processes in parallel or appropriately with tilt correction.
  • the mark area 22 carrying mark information indicating that the pattern area 23 comes after the center area 23TR in the track direction of the pattern area 23 is arranged.
  • the mark information is information reproduced by a wobble signal or a prepit signal corresponding to wobbles or prepits that are discretely formed in the mark area 22.
  • the tilt detection signal can be read easily and reliably based on the arrival of the landmark information. For example, after detection of the mark information, it is possible to start preparation for starting detection of a tilt detection signal and further start preparation for starting tilt correction based on the tilt detection signal. For example, by predefining the phase relationship and interval between the tilt detection signal and the mark information, the sampling timing for detecting the tilt detection signal can be easily specified from the mark information. Alternatively, if the mark information has an address position where the tilt detection signal is recorded, the sampling timing for detecting the tilt detection signal can be easily specified.
  • the length of the tilt detection signal on the track TR in the track direction and the format of the data to be recorded on the recording layer 13 are, for example, ECC block, RUB (Recording Unit Block), ADIP unit, etc.
  • the length of the structural unit in the track direction may be configured to have a predetermined integer ratio. In this way, the occurrence frequency of the tilt detection signal and the period for recording data on the recording layer 13 at the recording surface position corresponding to the track TR are constant regardless of the radial position or the track position. It is easy to maintain the relationship.
  • the CLV method stable tilt correction can be performed based on the detected tilt detection signal at an arbitrary radial position, even though the angular velocity changes depending on the radial position. Even when the zone CAV method is employed, stable tilt correction can be executed based on the detected tilt detection signal without any problem for each zone.
  • the signals recorded in the mark area 22 and the pattern area 23 are arranged in units of slots.
  • the “slot” is a logical section or section obtained by dividing the track TR in the track direction, or a physical section or section.
  • the slots are typically arranged continuously without gaps in the track direction and arranged without gaps or adjacent to each other in the radial direction.
  • control such as tracking servo and tilt servo is indirectly performed by the guide layer 12, the data format in the recording layer 13 can be controlled easily by having a certain relationship with the slot.
  • FIG. 8 shows a specific example of the preformat in the mark area 22 and the pattern area 23 in the guide layer 12.
  • one RUB is configured corresponding to the format of BD-R (Blue ray Disc-Recordable: Blu-ray disc that can be recorded once).
  • BD-R Bluetooth ray Disc-Recordable: Blu-ray disc that can be recorded once.
  • one RUB is physically configured from (248 ⁇ (2 ⁇ 28)) physical clusters (Physical Cluster), and logically three ADIP words (ADIP word NO. 1 to NO.3).
  • One ADIP word is composed of 83 ADIP units (ADIP units).
  • One ADIP unit is composed of 56 wbl (wobble), which corresponds to two recording frames (Recording frame).
  • Data to be recorded is a unit of 15 codewords (code word), that is, 9 nibbles (nibbles). Therefore, one RUB is a section corresponding to 13944 wobbles.
  • servo mark words included in one RUB are respectively 86 (ie, A1 to A86) servo mark subunits (servo mark subs). unit).
  • a zero unit is arranged at the head of each servo mark word.
  • Each servo mark subunit is composed of seven slots.
  • the first five slots (A Slot) are assigned to servo mark slots, and the subsequent two slots (B Slot) are for tilt detection.
  • a Slot is assigned to servo mark slots
  • B Slot is for tilt detection.
  • a Slot is assigned to a mark area 22 indicated as “area 2” in the figure and a pattern area 23 indicated as “area 3” in the figure.
  • the wobble period provided in the mark area 22 is the recording layer 13.
  • the unit of the data format is in a relationship of a predetermined integer ratio.
  • the section of the pattern area 23 and the position to be arranged are also arranged so as to have a predetermined relationship with the wobble cycle. Therefore, a predetermined position of the pattern area 23 can be specified from the wobble signal detected from the mark area of the mark area 22. Therefore, the recording / reproducing apparatus to be described later can easily create the timing for sampling the specific parameter detection error detection.
  • a wobble is formed in slot units.
  • the sample servo marks 300S are also widely distributed in the left area of the mark area 22 (mark area 22 also serving as a servo area) in the mark area 22, and in each track TR (Track 1 to Track 7), the track direction (in FIG. 9, It is formed in slot units discretely in the left-right direction) and spaced by two tracks in the radial direction (up-down direction in the figure).
  • a tilt detection pattern is formed in slot units as a pattern signal.
  • one pattern is constructed as a tilt detection pattern so as to straddle seven tracks.
  • the upper half of the outer ring circumference (light ring LS1a) of the light spot LS1 is covered immediately after the mark area 22.
  • a pattern is formed, followed by a pattern that covers the lower half (light ring LS1a) of the outer ring circumference of the light spot LS1 with a slight distance.
  • One tilt detection pattern is constructed from these two patterns.
  • the wobble period in the mark area 22 is set to have a predetermined integer ratio with the structural unit of the data format recorded in the recording layer 13.
  • the relationship between the mark area 22 and the pattern area 23 is also set to a predetermined integer ratio.
  • the mark area 22: pattern area 23 1: 1.
  • the mark information is arranged in the mark area 22 immediately before the center track 23TR of the pattern area 23. If the mark information is configured to indicate the address position of the pattern area, the sampling timing, or the arrival timing, not only immediately before the center track 23TR of the pattern area 23, the sample servo mark 300S is arranged in FIG. It can be arranged at any position.
  • a predetermined specific parameter detection pattern of the pattern area 23 is formed so that a desired tilt error can be detected in the center track 23TR with 7 tracks as one group GR (see FIG. 9). . Therefore, when the center track 23TR of the pattern area 3 is followed, a predetermined specific parameter detection error at that position can be detected.
  • the mark area 22 is arranged immediately before the center track TR in which the specific parameter detection error can be detected by the specific parameter detection pattern among the seven tracks TR belonging to the pattern area 23. It can be recognized that the first beam LB1 is located on the center track TR capable of detecting the specific parameter detection error. Therefore, the sample timing for detecting the specific parameter detection error can be easily created.
  • the wobble signal detected by the push-pull signal is detected with an offset. Therefore, it can be recognized that the first beam LB1 is not on the center track TR.
  • the track TR of the guide layer 12 is followed by the first beam LB1.
  • a continuous tracking error signal is stably generated by sampling the push-pull signal or by sampling the phase difference signal by the phase difference method (DPD).
  • DPD phase difference method
  • a high frequency component of a push-pull signal that is a difference from the left and right divided detectors is removed by an LPF (Low Pass Filter)
  • LPF Low Pass Filter
  • a wobble component and an unnecessary high frequency noise component can be removed.
  • sampling the tracking error signal including the eccentric component from the inner periphery to the outer periphery, it becomes possible to obtain continuously, and it can be used as a tracking error signal when recording on the recording layer 13.
  • the recorded information track of the recording layer 13 is continuous from the inner periphery to the outer periphery.
  • the track TR of the guide layer 12 is formed by the sample servo marks 300S (see FIG. 9), for example, discretely arranged at positions corresponding to the recorded information tracks so as to be formed in a spiral shape.
  • the mark area 22 and the pattern area 23 are discretely formed at predetermined positions or intervals (see FIG. 7). For this reason, a specific parameter detection error can be detected anywhere on the entire surface of the optical disc 11 by a recording / reproducing apparatus described later.
  • the track pitch and recording linear density (for example, linear recording density, pit pitch, or information transfer speed (that is, recording linear density ⁇ movement speed)) that can be recorded or reproduced in each recording layer 13 are set in the multilayer optical disk 11.
  • the tilt correction can be performed.
  • a recording / reproducing apparatus 101 is configured as a disk drive as an example of an “information recording apparatus” and an “information reproducing apparatus” according to the present invention, and is connected to a host computer 201.
  • the recording / reproducing apparatus 101 includes an optical pickup 102, a signal recording / reproducing unit 103, a spindle motor 104, a bus 106, a CPU (drive control unit) 111, a memory 112, and a data input / output control unit 113.
  • the first beam LB1 and the second beam LB2 are irradiated through an objective lens 102L (see FIG. 2) of the optical pickup 102.
  • a tracking light beam is also transmitted through the objective lens 102L. Only the second beam LB2 serving as the same, or both the first beam LB1 and the second beam LB2 are irradiated.
  • the host computer 201 includes an operation / display control unit 202, an operation button 202, a display panel 204, a bus 206, a CPU 211, a memory 212, and a data input / output control unit 213.
  • data to be recorded is input from the data input / output control unit 213, and at the time of reproduction, the reproduced data is output from the data input / output control unit 213.
  • the optical pickup 102 includes a red semiconductor laser that emits the first beam LB1, a blue semiconductor laser that emits the second beam LB2, and a combining / separating optical system including a prism, a mirror, and the like including the objective lens 102L.
  • the optical pickup 102 is configured to irradiate the first beam LB1 and the second beam LB2 coaxially and with different focus (see FIGS. 1 and 2) via a common objective lens 102L.
  • the optical pickup 102 receives the reflected light from the optical disk 11 caused by the first beam LB1 via the objective lens 102L, and a light receiving element such as a two-divided or four-divided CCD, and the second beam LB2. And a light receiving element such as a two-part or four-part CCD that receives reflected light from the optical disk 11 through the objective lens 102L.
  • the optical pickup 102 is configured to be able to modulate the second beam LB2 with a relatively high recording intensity during recording and to be set to a relatively low reproducing intensity during reproduction.
  • the optical pickup 102 and the signal recording / reproducing unit 103 generate a tracking error signal by, for example, a push-pull method or a phase difference method (DPD) based on a light receiving signal from a light receiving element that receives reflected light from the guide layer 12 at least during recording.
  • a tracking error signal by, for example, a push-pull method or a phase difference method (DPD) based on a light receiving signal from a light receiving element that receives reflected light from the guide layer 12 at least during recording.
  • DPD phase difference method
  • the optical pickup 102 and the signal recording / reproducing unit 103 generate a tracking error signal by, for example, a push-pull method or a phase difference method based on a light receiving signal from a light receiving element that receives reflected light from the recording layer 13 during reproduction.
  • a data signal is generated as a signal corresponding to the amount of light.
  • the optical pickup 102 and the signal recording / reproducing unit 103 generate a tracking error signal based on a light receiving signal from a light receiving element that receives reflected light from the guide layer 12 during reproduction, and receive the reflected light from the recording layer 13.
  • a data signal is generated by a light reception signal from the light receiving element.
  • the memory 112 and the memory 212 are (i) a computer for controlling each element such as the CPU 111 in the recording / reproducing apparatus 101 and each element such as the CPU 211 in the host computer 201 so that the recording / reproducing operation described below is performed.
  • Program and (ii) various data such as control data, in-process data, processed data, etc. necessary for recording / reproduction operations are used appropriately to temporarily or permanently hold data via the bus 106, bus 206, etc. It is done.
  • the recording / reproducing apparatus 101 further includes a correction mechanism 105.
  • the correction mechanism 105 is an example of the “processing unit” according to the present invention, and is typically a tilt correction mechanism.
  • the correction mechanism 105 in addition to or in place of the tilt correction mechanism, is an eccentricity correction of the optical disk 11, a disk surface inclination correction mechanism, an optical system aberration correction mechanism, a light beam phase difference correction or distortion correction mechanism, and a light absorption correction.
  • Various correction mechanisms such as a mechanism and a strategy setting mechanism may be used.
  • a specific type of processing (typically tilt correction) is performed on the optical pickup 102 based on the pattern signal (typically tilt detection signal) detected from the guide layer 12 by the correction mechanism 105. For example, in the case of tilt correction, it is performed every time a tilt detection signal is detected, and the tilt servo is locked during the period until the next tilt detection signal is detected.
  • the correction mechanism includes an LPF (low-pass filter) 121, a sample & hold & smoothing circuit 122, an operation (subtraction) & integration & hold circuit 123, an LPF 131, a wobble detector (132), an oscillator 133, and a sample timing.
  • a generation circuit 134 is provided.
  • Push-pull signals from the light receiving elements of the optical pickup 102 are input to the LPF 121 and the LPF 131, respectively, and high frequency noise is cut.
  • the output signal from which the high frequency noise has been cut by the LPF 131 is subjected to wobble detection by the wobble detector (132), and the oscillator 133 oscillates at a frequency corresponding to the detected wobble.
  • a rectangular wave corresponding to the wobble in the disk track shape is output from the oscillator 133 here.
  • a sample timing signal is generated by the sample timing generation circuit 134 in accordance with this oscillation output.
  • the sampling timing signal is a rectangular pulse for closing the sampling switch located at the center of the output pulse of the oscillator 133.
  • the output signal from which the high frequency noise has been cut by the LPF 121 is sampled, held, and further smoothed by the sample & hold & smoothing circuit 122.
  • the sampling timing follows the sample timing signal generated by the sample timing generation circuit 134.
  • a pattern signal for example, a tilt detection signal
  • the output signals which are sample 1 and sample 2 from the sample & hold & smoothing circuit 122, are subtracted, integrated and further held by the operation (subtraction) & integration & hold circuit 123.
  • a specific parameter detection error signal is generated as a pattern signal forming one pattern across seven tracks or based on the pattern signal thus obtained.
  • the driving operation of the correction mechanism 105 is performed according to the value of the signal or the characteristics such as positive / negative or the degree of modulation. For example, in the case of tilt correction, driving is performed so as to reduce the tilt error by an actuator for tilt correction.
  • FIG. 13 shows the recording / reproducing operation in the information recording / reproducing apparatus 101
  • FIG. 14 shows the details of an example of the recording operation
  • FIG. 15 shows the details of the example of the reproducing operation.
  • the optical disc 11 having the format according to the above-described embodiment is mounted on the recording / reproducing apparatus 101 by manual or mechanical operation by the user (step S11).
  • an operation start command corresponding to an operation on the operation button 203 when the user looks at the display panel 204 is generated by the drive-side operation / display control unit 202 and the CPU 111, the host-side CPU 211, and the like.
  • rotation of the optical disk 11 by the spindle motor 104 is started under the control of the signal recording / reproducing unit 103.
  • light irradiation by the optical pickup 102 is started under the control of the signal recording / reproducing unit 103.
  • the reading servo system for the guide layer 12 is operated. That is, the first beam LB1 is irradiated and condensed on the guide layer 12, and the tracking operation is started (step S12).
  • the various commands including the operation start command and various data including user data and control data are transferred by the host side bus 206 and the data input / output control unit 213, and the drive side bus 106 and the data input / output control unit. 113.
  • irradiation of the track TR with the first beam LB1 is continued on the guide layer 12, and a wobble signal and a prepit signal (a tracking error signal obtained from the at least one of them by the push-pull method or the DPD method) are generated. , Detected from the mark area 22. Further, disk management information recorded in advance as at least one of these signals is acquired by the CPU 111 on the drive side or the CPU 211 on the host side.
  • the disc management information may be recorded and read together in a lead-in area, a TOC (Table Of Content) area, etc. located on the innermost circumference side in the guide layer 12.
  • the content may be compliant with the disc management information of an existing DVD, BR disc or the like.
  • the management information is separately recorded in advance or separately in advance in a lead-in area, a TOC area, or the like specially provided in the recording layer, and may be read at this time or at an arbitrary time.
  • step S14 determines whether the requested operation is data recording.
  • step S14 determines whether the requested operation is data recording.
  • step S14 determines whether the requested operation is data recording.
  • step S14 determines whether the requested operation is data recording.
  • step S14 determines whether the requested operation is data recording.
  • step S14 determines whether the requested operation is data recording.
  • step S15 a recording process for a new optical disc 11 is executed. This recording process will be described in detail later (see FIG. 14).
  • step S16 reproduction processing for the new optical disc 11 is executed (step S17). This reproduction process will be described later in detail (see FIG. 15).
  • step S16 If it is determined in step S16 that the data is not reproduced (step S16: No), or if the reproduction process for the new optical disc 11 is completed in step S17, the operation button 203 indicates that the eject, that is, the ejection of the tray is performed. It is determined whether or not the request is made through the process (step S18). Here, if the ejection is not requested (step S18: No), the process returns to step S14, and the subsequent steps are executed again.
  • step S18 determines whether the ejection is requested in the determination in step S18 (step S18: No). If the ejection is requested in the determination in step S18 (step S18: No), the ejection operation is executed (step S19), and a series of recording / reproducing processes on the optical disc 11 is completed.
  • step S15 in FIG. 15 an example of a recording process (step S15 in FIG. 15) for the new optical disc 11 will be described with reference to FIG.
  • the second beam LB2 having the optical system such as the objective lens 102L in the optical pickup 102 in common with the first beam LB1 is also recorded on the recording layer 13. It is moved to a planar position in the recording surface corresponding to the address (step S21).
  • the focus servo of the second beam LB2 is applied to the desired recording layer 13 on which data is to be recorded by the optical pickup 102 (step S22).
  • the tracking servo for the track TR by the first beam LB1 is continued in a state where the focus servo of the second beam LB2 is closed by the optical pickup 102. That is, the tracking servo for the desired recording layer 13 is indirectly performed by the tracking servo for the guide layer 12 (step S23a).
  • correction is performed by the correction mechanism 105 based on the specific parameter detection result (see FIGS. 11 and 12).
  • This correction is performed intermittently or periodically or irregularly according to detection of a pattern signal such as a tilt detection signal.
  • tilt correction is performed according to the tilt error signal, and after correction, the tilt servo is locked and the next opportunity for correction is waited (step S23b).
  • the correction in step S23b may be performed at least partially during the data recording process in the next step S23c.
  • step S23c data recording on the desired recording layer 13 is started by irradiating the second beam LB2 while modulating it in accordance with the data value to be recorded.
  • step S24 it is monitored by the CPU 111 or the like whether or not a predetermined amount of recording has been completed.
  • the data recording to the recording layer 13 is continued (step S24: No).
  • the management information is updated according to the recorded data (step S25).
  • the management information may be recorded together in a lead-in area, a TOC area, or the like provided in at least one of the plurality of recording layers 13.
  • the position may be on the inner peripheral side, but may be on the outer peripheral side or in the middle, or may be recorded in a somewhat dispersed form.
  • the management information provided in the memory 112, the memory 212, and the like and associated with the optical disc 11 may be updated.
  • the first beam LB is not used for tracking or the like during the reproduction process. That is, in this example, unlike the recording process, the second beam LB2 is also used for tracking.
  • the optical pickup 102 applies the focus servo of the second beam LB2 to the desired recording layer 13 from which data is to be reproduced.
  • tracking servo is applied to the recorded information track by the second beam LB2 (step S31).
  • recorded address information on the recorded information track is acquired by the CPU 111 or the like.
  • a desired reproduction address designated as an address at which reproduction of desired data is to be started is searched by the CPU 211 or the like. That is, the second beam LB2 is moved to the address position (step S32).
  • correction is performed by the correction mechanism 105 based on the specific parameter detection result (see FIGS. 11 and 12).
  • This correction is performed intermittently or periodically or irregularly according to detection of a pattern signal such as a tilt detection signal.
  • tilt correction is performed in accordance with the tilt error signal, and after correction, the tilt servo is locked and the next opportunity for correction is waited (step S33a).
  • the correction in step S33a may be performed at least partially during the process of reproducing data in the next step S33b.
  • step S33b the reflected light caused by the second beam LB2 is received through the objective lens 102L, whereby data from the desired recording layer 13 is received. Is started (step S33b).
  • step S34 it is monitored by the CPU 111 or the like whether or not the predetermined amount of reproduction has been completed.
  • the reproduction of data from the recording layer 13 is continued unless the reproduction ends (step 34: No).
  • step S34 Yes
  • step S17 in FIG. 13 a series of recording processes for the new optical disc 11
  • the pattern area is arranged with a plurality of tracks as one group GR, it is possible to freely arrange the tracks within the grouped track, and recording / playback
  • the degree of freedom of arrangement of specific parameter detection points such as tilt error detection points that can be detected by the apparatus 101 can be ensured.
  • one pattern area 23 and another adjacent pattern area 23 are independent, it is possible to arrange a specific parameter detection pattern such as a tilt detection pattern independently of each other. However, a flexible arrangement is possible.
  • the pattern region 3 is arranged with the plurality of tracks TR that are simultaneously read as one group GR.
  • the arrangement of is easy to read and can realize an extremely convenient arrangement.
  • the recording / reproducing apparatus 101 can grasp the exact position of the pattern area 23 from the wobble signal detected in the mark area 22 (FIG. 11). And the detected error signal sample timing can be easily generated. In particular, since the wobble period of the mark area 22 and the section of the pattern area 23 have a predetermined integer ratio (see FIG. 8), the sample timing can be easily generated.
  • the mark area 22 is realized by wobbling the track TR.
  • the mark information recorded in advance in the mark area 22 is also used as the sample servo mark.
  • tilt detection position information is recorded in advance as address data or other types of data together with address information. At the time of recording and reproduction, the recording position of the pattern signal or the tult detection signal is specified by this tilt detection position information.
  • the mark area 22 also as a sample servo mark, efficient arrangement is possible.
  • the sample servo mark is created by wobble, it is not necessary to provide the mark area 2 immediately before the pattern area 23 by generating the timing by PLL or the like.
  • the tilt detection position information is recorded together with the address information.
  • the arrangement position of the detected pattern can be provided by another means, and it is not always necessary to arrange the mark immediately before. Information can be acquired together with other address information.
  • FIGS. 16 and 17 The modification shown in FIGS. 16 and 17 relates to a specific example of the pattern region 23.
  • a tilt detection pattern is formed across a plurality of tracks TR, and the tilt detection pattern is located in the vicinity including the intersection of the plurality of tracks TR and the first light ring position of the first beam LB1 (however, the tilt position).
  • a tilt detection pattern is arranged except for the intersection of the detection target track and the first bright ring position).
  • a tilt detection pattern is arranged that includes the vicinity of a position that satisfies the following mathematical formula.
  • wavelength of the first beam LB1 NA: aperture of the first beam (numerical aperture)
  • Tp track pitch
  • n tilt detection target track
  • X_position (n + i) intersection of the first bright ring positions in the n + i track normalized by CBL.
  • “0.82” is a proportionality constant related to the intersection of the first light ring position unique to the plurality of tracks TR and the first beam LB1 of the optical disc 11.
  • the circles (white circles) placed on each track indicate the CBL timing position.
  • FIG. 17 shows a state 2001 of the light spot LS1 with respect to the predetermined pattern 23a in the pattern area 23 when the tilt occurs on the “peripheral side” of the optical disc 11 in the present modification example.
  • the state 2002 of the light spot LS1 with respect to the predetermined pattern 23a in the pattern area 23 when the tilt occurs on the “inner side” is shown in the right half of the drawing. In actual operation, the state 2001 or the state 2002 occurs according to the tilt.
  • the black minute portions on the track are individual components constituting a pattern extending over a plurality of tracks.
  • a radial push-pull signal (Radial Push-Pull signal, hereinafter referred to as “Rad.PP signal”) is obtained from the light amount difference of the light detected by the two-divided detector 102D.
  • Rad.PP signal a radial push-pull signal
  • the sampled at a predetermined timing is used as a radial tilt error signal (Radial Tilt Error signal, hereinafter referred to as “Rad.Tilt signal”), it may be integrated without sampling.
  • the PP signal is output as a value “0” or “ ⁇ (minus)”. Therefore, Rad. Rad. Obtained by sampling the PP signal at a predetermined timing.
  • the Tilt signal is output as a value of “ ⁇ ”. This Rad.
  • the tilt correction unit performs correction using the Tilt signal.
  • the PP signal is output as a value of “0” or “+ (plus)”. Therefore, Rad. Rad. Obtained by sampling the PP signal at a predetermined timing.
  • the Tilt signal is output as a “+” value. This Rad.
  • the tilt correction unit performs correction using the Tilt signal.
  • the tangential tilt detection can be performed with the same pattern as the radial tilt detection pattern described with reference to FIGS.
  • a tangential push-pull signal (tangential Push-Pull signal, hereinafter referred to as “Tan.PP signal”) is obtained from the light amount difference of the light detected by the two-divided detector 102D.
  • a sample sampled at a predetermined timing is used as a tangential tilt error signal (Tangential Tilt Error signal, hereinafter referred to as “Tan.Tilt signal”), but it may be integrated without sampling.
  • the PP signal causes not only a light amount difference due to a time difference but also a light amount difference due to a tilt. Tan.
  • the PP signal is output as a value “0” or “ ⁇ (minus)” at that time when the position of the bright ring coincides with the pattern position. Therefore, Tan. Tan., Obtained by sampling the PP signal at a predetermined timing.
  • the Tilt signal is output as a “ ⁇ ” value (note that, even after integration, the Tan.Tilt signal is output as a “ ⁇ ” value). This Tan.
  • the tilt correction unit performs correction using the Tilt signal.
  • the qualitative operation in the aberration detection pattern will be described with reference to FIGS.
  • the pattern capable of tilt detection shown in the modified example 2 can detect an aberration (more specifically, a spherical aberration) (that is, it can also be used).
  • a sum signal (SUM signal) of a two-divided detector is used for aberration detection. That is, an aberration error signal is generated by comparing a signal obtained by sampling the SUM signal with a reference level (for example, the reflection level of the mirror unit) at a predetermined timing.
  • a reference level for example, the reflection level of the mirror unit
  • a circular light spot LS1 is formed by the first beam to the guide layer.
  • the SUM signal decreases as the amount of reflected light decreases when the detection pattern is in the light spot LS1. Then, the results sampled at a predetermined timing are compared, and the aberration error signal is output as a value of “0”.
  • a tilt detection pattern is formed across a plurality of tracks TR, and the tilt detection pattern includes a vicinity including an intersection of the plurality of tracks TR and the first light ring position of the first beam LB1 (however, the tilt position detection is performed).
  • a tilt detection pattern is arranged at the intersection of the target track and the first bright ring position (except for the intersection of the target track and the vicinity of the outer peripheral portion of the Airy disk).
  • a tilt detection pattern is disposed that includes a position near a position that satisfies the following mathematical expression.
  • wavelength of the first beam LB1 NA: aperture of the first beam (numerical aperture)
  • Tp track pitch
  • n tilt detection target track
  • E_position (n + i) Airy disk boundary in n + i track normalized by CBL.
  • “0.61” is a proportionality constant related to the Airy disk boundary inherent in the plurality of tracks TR and the first beam LB1 of the optical disk 11.
  • FIG. 29 shows a state 3001 of the light spot LS1 with respect to the predetermined pattern 23a in the pattern area 23 when the tilt occurs on the “peripheral side” of the optical disc 11 in the present modification example.
  • the state 3002 of the light spot LS1 with respect to the predetermined pattern 23a in the pattern area 23 when the tilt occurs on the “inner side” is shown in the right half of the drawing. In actual operation, the state 3001 or the state 3002 occurs depending on the tilt.
  • a tilt detection pattern is formed in the pattern area 23 over a plurality of tracks TR.
  • the tilt detection pattern includes a plurality of tracks TR in the vicinity including the intersection of the disk outer periphery side and the first beam LB1 first bright ring position, the disk inner periphery side and the first beam LB1 first light ring LB1. It is arranged separately (ie, in the form of a pair separated from each other) in the vicinity including the intersection with the position (however, excluding the intersection of the tilt position detection target track and the first light ring position) ing.
  • FIG. 31 a plurality of tilt detection patterns in the second modification to the fourth modification described above are arranged.
  • a plurality of tilt detection patterns in Modification 2 are continuously arranged on the left and right.
  • a plurality of tilt detection patterns in the second modification to the fourth modification described above are arranged.
  • a plurality of tilt detection patterns in Modification 2 are arranged so as to be continuous in the left and right directions and vertically.
  • the upper and lower tilt detection patterns are shifted by left and right by half patterns, so that an oblique pattern portion positioned between the upper and lower sides is shared by the upper and lower tilt detection patterns.
  • a tilt detection pattern 6001 is formed over a plurality of odd-numbered m tracks.
  • the tilt detection pattern is arranged in the vicinity including the intersection of the first light ring position of the first beam LB1. Further, a plurality of such tilt detection patterns are arranged on the disk circumference and in the radial direction. For this reason, the tilt detection pattern is arranged so that the tilt can be detected even at a position separated by (m ⁇ 1) / 2 tracks.
  • FIG. 33 a plurality of tilt detection patterns in the second modification to the fourth modification described above are arranged.
  • a tilt detection pattern is formed in the tilt detection region over a plurality of tracks TR.
  • the tilt detection pattern is arranged in the tilt detection area from the vicinity including the intersection of the first bright ring position of the first beam LB1 to the vicinity including the intersection of the first bright ring position of the tilt detection area adjacent thereto.
  • the intersection of the tilt position detection target track and the first bright ring position may be excluded.
  • a tilt detection pattern is formed in the tilt detection region over a plurality of tracks TR.
  • the tilt detection pattern toward the outer periphery of the disk and the tilt detection pattern toward the inner periphery of the disk are arranged in different areas.
  • Each tilt detection pattern is arranged from the vicinity including the intersection of the first bright ring position of the first beam LB1 to the vicinity including the intersection of the first bright ring position of the tilt detection area adjacent thereto.
  • the intersection of the tilt position detection target track and the first bright ring position may be excluded.
  • tilt detection sampling is performed as shown in FIG. 35 and track offset detection sampling is performed as shown in FIG. 36, that is, by shifting the sampling position and tilt detection position.
  • off-track detection is possible. Therefore, it is possible to improve the SNR in off-track detection while using the same detection pattern for tilt detection and offset track detection.
  • FIG. 37 relates to a specific example of the pattern area 23.
  • a pattern complementary to the tilt detection pattern in the second modification to the eighth modification is arranged.
  • the complementary relationship means a relationship in which the space and the mark are reversed.
  • the tilt detection patterns from Modification 2 to Modification 8 are represented by marks, but in this modification, the detection pattern is represented by a space and the other area is represented by a mark (or straight groove). It is expressed.
  • Modification 10> The modification shown in FIG. 38 relates to a specific example of the pattern area 23.
  • the tilt detection pattern is not symmetrically arranged in the tangential direction of the optical disc 11, but is arranged only in the front of the beam traveling direction or only in the rear of the beam traveling direction. Alternatively, they are arranged point-symmetrically with respect to the beam center. Furthermore, in the same guide layer 12, a tilt detection pattern may be configured with a combination of these.
  • the various modifications shown in FIGS. 39 to 56 have three areas (that is, a groove area 21, a mark area 22, and a pattern area 23) provided in the guide layer 12 when the pattern area 23 of the modification 9 is adopted. It relates to various specific examples.
  • the groove area 21 on the left side, the mark area 22 (which may also serve as a servo area) on the left side, and the pattern area 23 on the right side are shown along the tracks extending left and right.
  • G means a groove track extending left and right
  • L means a land track extending left and right.
  • a darkly colored portion is formed as an unevenness with respect to the land as a groove or by notching or embossing.
  • the white portions are formed as irregularities with respect to the grooves as lands or by notches or embosses.
  • a wide straight groove is formed on the groove track G, that is, one for each of the two tracks.
  • the mark area 22 one groove track wobbled by the center track is formed.
  • the pattern area 23 a straight groove is locally cut out, so that one tilt detection pattern is constructed so as to extend over a plurality of tracks.
  • a wide straight groove is formed on the groove track G, that is, one for each of the two tracks.
  • two groove tracks wobbling so as to sandwich the center track therebetween are formed.
  • a straight land is cut out locally, so that one tilt detection pattern is constructed so as to extend over a plurality of tracks.
  • a narrow straight groove is formed on each of the groove track G and the land track L, that is, for each track.
  • one groove track wobbled on the center track is formed.
  • one tilt detection pattern is constructed so as to straddle a plurality of tracks by locally cutting the straight groove.
  • a straight groove having a narrow width is formed on each of the groove track G and the land track L, that is, for each track.
  • one groove track wobbled on the center track is formed.
  • one tilt detection pattern is constructed so as to straddle a plurality of tracks by locally cutting straight lands.
  • a wide straight groove is formed on the groove track G, that is, one for each of the two tracks.
  • a straight groove is formed extending from the groove area 21 in the center track.
  • a straight groove is locally cut out, so that one tilt detection pattern is constructed so as to extend over a plurality of tracks.
  • a wide straight groove is formed on the groove track G, that is, one for each of the two tracks.
  • a straight groove is formed on the land track T located in the center track.
  • a straight land is locally cut out, so that one tilt detection pattern is constructed so as to straddle a plurality of tracks.
  • a wide straight groove is formed on the groove track G, that is, one for each of the two tracks.
  • an array of divided grooves in other words, pits, embosses, etc. formed discretely in a line through a space
  • a straight groove is locally cut out, so that one tilt detection pattern is constructed so as to extend over a plurality of tracks.
  • a wide straight groove is formed on the groove track G, that is, one for each of the two tracks.
  • a straight groove is formed extending so as to sandwich the land track L located in the center track, and the land track located so as to sandwich the land track L located in the center track.
  • a straight groove is also formed on T.
  • a straight land is locally cut out, so that one tilt detection pattern is constructed so as to straddle a plurality of tracks.
  • a wide straight groove is formed on the groove track G, that is, one for each of the two tracks.
  • two rows of pits, embosses and the like are formed on the land track L so as to be discretely formed in a row through a space so as to sandwich the center track therebetween. Pits or embosses on different land tracks L are shifted in the track direction.
  • a straight groove is locally cut out, so that one tilt detection pattern is constructed so as to extend over a plurality of tracks.
  • a wide straight groove is formed on the groove track G, that is, one for each of the two tracks.
  • embosses in other words, shorter grooves
  • the pits or embosses on different groove tracks G are shifted in the track direction.
  • a straight land is locally cut out, so that one tilt detection pattern is constructed so as to straddle a plurality of tracks.
  • a wide straight groove is formed on the groove track G, that is, one for each of the two tracks.
  • two rows of pits, embosses and the like are formed on the land track L so as to be discretely formed in a row through a space so as to sandwich the center track therebetween.
  • a straight groove is formed to extend from the groove region 21 in the groove track G located in the center track. Pits or embosses on different land tracks L are shifted in the track direction.
  • a straight groove is locally cut out, so that one tilt detection pattern is constructed so as to extend over a plurality of tracks.
  • a wide straight groove is formed on the groove track G, that is, one for each of the two tracks.
  • two rows of pits and embosses (in other words, shorter grooves) formed in a row discretely through a space with a center track in between are arranged on the groove track G. Is formed.
  • a straight groove is formed extending from the groove region 21 in the groove track G located at both ends (upper and lower ends in FIG. 50) with the center track interposed therebetween. The pits or embosses on different groove tracks G are shifted in the track direction.
  • a straight land is locally cut out, so that one tilt detection pattern is constructed so as to straddle a plurality of tracks.
  • a straight groove having a narrow width is formed on the groove track G and the land track L, that is, for each track.
  • a straight groove similar to the groove area 21 is formed except for the groove track located in the center track.
  • one tilt detection pattern is constructed so as to straddle a plurality of tracks by locally cutting the straight groove.
  • narrow grooves are formed on the groove track G and the land track L, that is, for each track.
  • a straight groove similar to that in the groove area 21 is formed except for the land track located at the center track.
  • one tilt detection pattern is constructed so as to straddle a plurality of tracks by locally cutting straight lands.
  • straight grooves having a narrow width are formed on the groove track G and the land track L, that is, for each track.
  • a narrow straight groove is formed only on the groove track located in the center track.
  • one tilt detection pattern is constructed so as to straddle a plurality of tracks by locally cutting the straight groove.
  • narrow grooves are formed on the groove track G and the land track L, that is, for each track.
  • a narrow straight groove is formed only on the land track located at the center track.
  • one tilt detection pattern is constructed so as to straddle a plurality of tracks by locally cutting straight lands.
  • FIG. 56 are specific examples of the pattern area 23 in which the above-described various modifications can be adopted for the groove area 21 and the mark area 22.
  • one tilt detection pattern is constructed so that only two straight lands are locally cut out so as to straddle a plurality of tracks.
  • a single tilt detection pattern is constructed so as to straddle a plurality of tracks by locally cutting out only two straight grooves.
  • pits narrower than those widths can be formed instead of “notches” over the entire groove width or land width. is there. It is also possible to create a land pre-pit connected to the wobble. For example, if a land pre-pit is formed at each vertex of the wobble, the pre-pit signal and the wobble signal can be easily detected. be able to. Alternatively, instead of such a land pre-pit, a sharp curve portion in which the wobble amplitude (amount of shake) is locally increased may be provided at each vertex of the wobble. Further, a wobble may be formed by wobbling a continuous arrangement of a plurality of grooves dug into pieces along the track TR.
  • FIG. 57 shows a modification of the basic layer configuration (see FIGS. 1 and 2) of the optical disc 11 in the above-described embodiment.
  • FIG. 57 is a schematic perspective view having the same concept as in FIG. 1 of the optical disk of this modification.
  • the track TR-a of the guide layer 12a carries the first address information indicating the address position from the inner periphery toward the outer periphery.
  • the track TR-b of the guide layer 12b carries the second address information indicating the address position from the outer periphery toward the inner periphery.
  • the recording layer 13 is also divided into a first recording layer that is recorded in accordance with the first address information and a second recording layer that is recorded in accordance with the second address information.
  • the layer 12a is used to guide the second recording layer using the guide layer 12b.
  • the recording / reproduction is performed between these two layers. Since the time required for switching is substantially the time required for performing the interlayer jump, it is extremely advantageous when recording / reproducing is performed continuously over a plurality of recording layers. In other words, the same effect as the so-called “Opposite recording” or “Opposite reproduction” in the dual-layer disc can be obtained. That is, as data to be recorded, continuous data such as video data in real time is recorded using the optical disc 11 of the present modified example, and at the time of reproduction, particularly from the end of the first recording layer to the second recording layer.
  • the multi-layer recording type optical disc 11 can be recorded with high accuracy under the execution of a specific type of processing such as tilt correction. It is possible to increase the track pitch and recording linear density that can be recorded or reproduced.
  • the present invention can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and an information recording medium, an information recording apparatus and a method, and the like accompanying such a change, and An information reproducing apparatus and method are also included in the technical idea of the present invention.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

多層記録型の情報記録媒体において、情報の記録密度を高めつつ、例えば高精度のチルト検出などの特定種類の処理の施行を可能ならしめる。 情報記録媒体(11)は、予めトラック(TR)が形成されたガイド層(12)と、この上に積層された複数の記録層(13)とを備える。トラックには、(i)径方向に相隣接する複数のトラック部分のうち少なくともセンタートラック部分にて特定種類のパターン信号が検出可能なように、複数のトラック部分に跨る一まとまりの所定パターン(23a)を夫々有する複数の信号検出用領域(23)が、配置されていると共に、(ii)複数の信号検出用領域の各々について、トラック方向におけるセンタートラック部分の前に、複数の信号検出用領域のうち対応する一つが後に来る旨を示す目印情報を担持する目印領域(22)が、配置されている。

Description

情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法
 本発明は、例えば多層型或いは多層記録型の光ディスク等の情報記録媒体、該情報記録媒体に情報を記録する記録装置及び方法、並びに該情報記録媒体から情報を再生する情報再生装置及び方法の技術分野に関する。
 この種の情報記録媒体では、予めトラックが形成された単一のガイド層上に、複数或いは多数の記録層が重ねて形成されており、ガイド層を用いて記録層における記録や再生が行われる(例えば、特許文献1から3参照)。
 具体的には、その記録時や再生時には、トラッキング用の第1光ビーム(例えばDVDと同じく赤色レーザからなるガイド光ビーム或いはサーボ光ビーム)が照射され、記録層を介してガイド層に集光される。これにより、各記録層に対するトラッキングが可能となる。即ち、ガイド層に対するフォーカスサーボ及びガイド層に予め形成されたトラックを用いてのトラッキングサーボが可能となる。
 このようなトラッキング動作と並行して、同一の光ピックアップを用いる或いは同一の対物レンズを介するなど、第1ビームとの位置関係が固定されている若しくは既知である情報記録再生用の第2ビーム(例えば、ブルーレイと同じく青色レーザからなるメイン光ビーム)が、典型的には第1ビームに同心的に重ねられた形で照射され、記録又は再生対象となっている一の記録層に集光される。これにより、各記録層における情報の記録や再生が可能となる。即ち、各記録層に対するフォーカスサーボ及び情報の書込若しくは読取が可能となる。
 加えて、この種の情報記録媒体の記録及び再生は、ディスクチルト或いは単にチルト(典型的には、光ディスク面の傾きなど)を補正する補正機構によって、光ピックアップに対し、所謂“チルト補正”が施されつつ、実行される。より一般には、チルト補正以外にも、ディスクの偏心補正、ディスク面の傾き補正、光学系の収差補正、光ビームの位相差補正やゆがみの補正、光吸収補正、ストラテジーの設定など、各種の処理が施されつつ、記録や再生が実行される。
特開平4-301226号公報 特開2003-67939号公報 国際公開WO2009/037773号公報
 しかしながら、特許文献に開示された技術では、第1光ビームがガイド層における相隣接する複数のトラックに同時に照射される程度に、第1光ビームの径に対して、トラックピッチを狭めるようとすると、実用に耐える程度に正確なディスクチルトの検出或いはチルトエラーの検出を行うことは困難である。或いは、仮にそのようなトラックに、ディスクチルト検出用或いはチルトエラー検出用の特定パターンを書き込んだとしても、それを第1光ビームにより情報として読み取ることは困難である。より一般には、チルト補正以外の特定処理を施すための何らかの信号の検出を行うことも、同様に困難である。すると、記録層において記録若しくは再生できるトラックピッチや記録線密度(線記録密度、ピットピッチ或いは情報転送速度)を、多層型の情報記録媒体における本来の目的である「高密度記録」と言える程度にまで高めることは実際には困難となる。
 特に、多層型の光ディスク等の場合、多層であるが故に、各記録層に対しチルト補正等の特定種類の処理を適宜に施すことは、極めて重要となり更に高密度化を図る上ではより一層重要となる。
 本発明は、例えば上述した問題点に鑑みなされたものであり、情報の記録密度を高めつつ、例えば高精度のチルト検出などの特定種類の処理の施行を可能ならしめる多層型の情報記録媒体、そのような情報記録媒体に情報を記録する記録装置及び方法、並びにそのような情報記録媒体から情報を再生する情報再生装置及び方法を提供することを課題とする。
 本発明の情報記録媒体は上記課題を解決するために、予めトラックが形成されたガイド層と、該ガイド層上に積層された複数の記録層とを備え、前記トラックには、(i)前記トラックに交わる径方向に相隣接する複数のトラック部分のうち少なくとも前記径方向の中央寄りに位置するセンタートラック部分にて特定種類のパターン信号が検出可能なように、前記複数のトラック部分に跨る一まとまりの所定パターンを夫々有する複数の信号検出用領域が、配置されていると共に、(ii)前記複数の信号検出用領域の各々について、前記トラックに沿ったトラック方向における前記センタートラック部分の前に、前記複数の信号検出用領域のうち対応する一つが後に来る旨を示す目印情報を担持する目印領域が、配置されている。
 本発明の情報記録装置は上記課題を解決するために、上述した本発明の情報記録媒体に、データを記録する情報記録装置であって、前記ガイド層に前記パターン信号を検出するための第1光ビームを照射し且つ集光することが可能であると共に前記複数の記録層のうち一の記録層にデータ記録用の第2光ビームを照射し且つ集光することが可能である光照射手段と、前記ガイド層からの前記照射され且つ集光された第1光ビームに基づく第1光を受光し、該受光された第1光に基づき、前記目印情報により前記後に来る旨が示される前記複数の信号検出用領域の各々にて前記パターン信号を検出する信号検出手段と、前記検出されたパターン信号に基づいて前記光照射手段について特定種類の処理を施す処理手段と、前記処理が施された状態で、前記一の記録層に前記第2光ビームを照射し且つ集光することで、前記データを記録するように前記光照射手段を制御するデータ記録制御手段とを備える。
 本発明の情報記録方法は上記課題を解決するために、上述した本発明の情報記録媒体に、前記ガイド層に前記パターン信号を検出するための第1光ビームを照射し且つ集光することが可能であると共に前記複数の記録層のうち一の記録層にデータ記録用の第2光ビームを照射し且つ集光することが可能である光照射手段を用いて、データを記録する情報記録方法であって、前記ガイド層からの前記照射され且つ集光された第1光ビームに基づく第1光を受光し、該受光された第1光に基づき、前記目印情報により前記後に来る旨が示される前記複数の信号検出用領域の各々にて前記パターン信号を検出する信号検出工程と、
 前記検出されたパターン信号に基づいて前記光照射手段について特定種類の処理を施す処理工程と、前記処理が施された状態で、前記一の記録層に前記第2光ビームを照射し且つ集光することで、前記データを記録するように前記光照射手段を制御するデータ記録制御工程とを備える。
 本発明の情報再生装置は上記課題を解決するために、上述した本発明の情報記録媒体から、データを再生する情報再生装置であって、前記ガイド層に前記パターン信号を検出するための第1光ビームを照射し且つ集光することが可能であると共に前記複数の記録層のうち一の記録層にデータ再生用の第2光ビームを照射し且つ集光することが可能である光照射手段と、前記ガイド層からの前記照射され且つ集光された第1光ビームに基づく第1光を受光し、該受光された第1光に基づき、前記目印情報により前記後に来る旨が示される前記複数の信号検出用領域の各々にて前記パターン信号を検出する信号検出手段と、前記検出されたパターン信号に基づいて前記光照射手段について特定種類の処理を施す処理手段と、前記処理が施された状態で、前記一の記録層からの前記照射され且つ集光された第2光ビームに基づく第2光を受光し、該受光された第2光に基づき前記データを取得するデータ取得手段とを備える。
 本発明の情報再生方法は上記課題を解決するために、上述した本発明の情報記録媒体から、前記ガイド層に前記パターン信号を検出するための第1光ビームを照射し且つ集光することが可能であると共に前記複数の記録層のうち一の記録層にデータ再生用の第2光ビームを照射し且つ集光することが可能である光照射手段を用いて、データを再生する情報再生方法であって、前記ガイド層からの前記照射され且つ集光された第1光ビームに基づく第1光を受光し、該受光された第1光に基づき、前記目印情報により前記後に来る旨が示される前記複数の信号検出用領域の各々にて前記パターン信号を検出する信号検出工程と、前記検出されたパターン信号に基づいて前記光照射手段について特定種類の処理を施す処理工程と、前記処理が施された状態で、前記一の記録層からの前記照射され且つ集光された第2光ビームに基づく第2光を受光し、該受光された第2光に基づき前記データを取得するデータ取得工程とを備える。
 本発明のこのような作用及び利得は次に説明する実施の形態から明らかにされる。
本発明の実施例に係る、情報記録媒体の基本構成を示す模式的な斜視図である。 実施例における、ガイド用の第1ビーム及び記録(若しくは再生)用の第2ビームを集光する対物レンズと、情報記録媒体とを示す、模式的な部分拡大断面図である。 実施例における、ガイド層の一部拡大斜視図である。 実施例の比較例における、図3と同趣旨の一部拡大斜視図である。 実施例における、プリピットの一例を有する場合の、図2と同趣旨の一部拡大斜視図である。 実施例における、ガイド層に設けられる、三つの領域が配置されているトラックの構成、及び三つの領域の各々内の構造を示す概念図である。 実施例におけるガイド層の、三つの領域が配置されているトラックの構成を示す、模式的な平面図である。 実施例における、ガイド領域にトラッキング信号及びチルト信号を発生可能なように、プリフォーマットされたデータの構成例を示す概念図である。 実施例における、各スロット内に記録される各種データの構成例を示す概念図である。 実施例における、情報記録再生装置のブロック図である。 図10の情報記録再生装置が備える、チルト検出系の構成を示すブロック図である。 図11のチルト検出系で用いられる、各種信号のタイミングチャートである。 実施例における、情報記録再生方法のフローチャートである。 実施例における、新規ディスクに対する記録方法のフローチャートである。 実施例における、新規ディスクに対する再生方法の一例を示すフローチャートである。 他の実施例における、チルト検出信号を発生させるための所定パターンを示す模式的な部分拡大平面図である。 図16の実施例における、二種類のチルトに対する所定パターンと光スポットとの関係を示す、模式的な部分拡大平面図である。 図16の実施例における、ラジアルチルトエラー信号発生回路を、受光素子と共に示す回路図である。 図18に示した回路における、光スポットが一の状態にある場合のラジアルプッシュプル信号及びラジアルチルト信号の波形を示す信号波形図である。 図18に示した回路における、光スポットが他の状態にある場合のラジアルプッシュプル信号及びラジアルチルト信号の波形を示す信号波形図である。 図18に示した回路における、光スポットが更に他の状態にある場合のラジアルプッシュプル信号及びラジアルチルト信号の波形を示す信号波形図である。 図16の実施例における、タンジェンシャルチルトエラー信号発生回路を、受光素子と共に示す回路図である。 図22に示した回路における、光スポットが一の状態にある場合のタンジェンシャルプッシュプル信号及びタンジェンシャルチルト信号の波形を示す信号波形図である。 図22に示した回路における、光スポットが他の状態にある場合のタンジェンシャルプッシュプル信号及びタンジェンシャルチルト信号の波形を示す信号波形図である。 図22に示した回路における、光スポットが更に他の状態にある場合のタンジェンシャルプッシュプル信号及びタンジェンシャルチルト信号の波形を示す信号波形図である。 図16の実施例における、収差エラー信号発生回路を、受光素子と共に示す回路図である。 図26に示した回路における、光スポットが一の状態にある場合のSUM信号及び収差エラー信号の波形を示す信号波形図である。 図26に示した回路における、光スポットが他の状態にある場合のSUM信号及び収差エラー信号の波形を示す信号波形図である。 他の変形例における、二種類のチルトに対する所定パターンと光スポットとの関係を示す、模式的な部分拡大平面図である。 他の変形例における、チルト検出信号を発生させるための所定パターンを示す模式的な部分拡大平面図である。 他の変形例における、チルト検出信号を発生させるための所定パターンを示す模式的な部分拡大平面図である。 他の変形例における、チルト検出信号を発生させるための所定パターンを示す模式的な部分拡大平面図である。 他の変形例における、チルト検出信号を発生させるための所定パターンを示す模式的な部分拡大平面図である。 他の変形例における、チルト検出信号を発生させるための所定パターンを示す模式的な部分拡大平面図である。 図34の変形例における、チルト検出サンプリングを行っている場合の光スポットと共に、所定パターンを示す模式的な部分拡大平面図である。 図34の変形例における、トラックオフセット検出サンプリングを行っている場合の光スポットと共に、所定パターンを示す模式的な部分拡大平面図である。 他の変形例における、チルト検出信号を発生させるための所定パターンを示す模式的な部分拡大平面図である。 他の変形例における、チルト検出信号を発生させるための所定パターンを示す模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、ガイド層のトラックTRに形成された三つの領域の物理的な構成を示す、模式的な部分拡大平面図である。 他の変形例における、光ディスクの図1と同趣旨の模式的な斜視図である。
 以下、発明を実施するための最良の形態として、駆動装置に係る実施形態について順に説明する。
(情報記録媒体)
<1>
 本実施形態の情報記録媒体は上記課題を解決するために、予めトラックが形成されたガイド層と、該ガイド層上に積層された複数の記録層とを備え、前記トラックには、(i)前記トラックに交わる径方向に相隣接する複数のトラック部分のうち少なくとも前記径方向の中央寄りに位置するセンタートラック部分にて特定種類のパターン信号が検出可能なように、前記複数のトラック部分に跨る一まとまりの所定パターンを夫々有する複数の信号検出用領域が、配置されていると共に、(ii)前記複数の信号検出用領域の各々について、前記トラックに沿ったトラック方向における前記センタートラック部分の前に、前記複数の信号検出用領域のうち対応する一つが後に来る旨を示す目印情報を担持する目印領域が、配置されている。
 本実施形態の情報記録媒体によれば、典型的には、ガイド層に設けられたトラックをガイド用或いはトラッキング用に利用することで、該ガイド層上又は下に積層されている複数の記録層のうちの所望の記録層に対し、該トラックに沿って、CLV(Constant Linear Velocity)方式、ゾーンCAV(Constant Angular Velocity)等にて光学的に情報を記録することが可能とされる。更に、同じくトラックをガイド用に利用することで又は利用することなく、記録済とされた所望の記録層から光学的に情報を再生することが可能とされる。
 ここに「ガイド層」とは、典型的には少なくとも各記録層への情報記録時或いは書込時に、各記録層に係る記録面内の位置(即ち、記録面に沿った、径方向の位置及びトラック方向の位置)を、ガイド用或いはトラッキング用の第1光ビーム(以下単に「第1光ビーム」と呼ぶ)により、ガイドする又は案内するための層を意味する。「ガイド層」は、典型的には、トラッキングエラー信号(或いはその元となるウォブル信号やプリピット信号など)が発生可能に構成されたトラックが予め物理的に作り込まれている層である。
 またガイド層に形成される「トラック」とは、少なくとも情報記録時に、第1光ビームがなぞられる或いは追従される軌道を意味し、典型的には、例えば、ウォブリングされたり、これに加えて又は代えてピットが形成されたグルーブトラック又はランドトラックとして、ガイド層内或いはガイド層上に予め物理的に作り込まれている。なお、記録層において記録後に形成される情報トラックは、当初はトラックが何も無かった記録面内にて、記録された情報ピットの並び或いは配列として構築される点で、ここにいう予め作りこまれた「トラック」とは、明確に区別される。
 このようにガイドされる、ガイド層内のトラック上の第1光ビームの各位置に対応する、所望の記録層における、記録後に情報トラック上をなす各位置にて、典型的には、情報記録用或いは情報書込用の第2光ビーム(以下単に「第2光ビーム」と呼ぶ)による情報記録が行われる。
 なお、ガイド層は、典型的には、全記録層に対して一層だけ設けられていれば足りるが、例えば二層など複数備えられて、各々が適宜に用いられる或いは役割分担される構成でもかまわない。いずれにせよ、ガイド層と複数の記録層とは、相互に別層として設けられる。
 複数の記録層は、例えば16層など、各々に独立して情報を記録可能更に再生可能となるように構成される。複数の記録層は夫々、未記録状態では、例えばストレートグルーブ若しくはストレートランド又は鏡面など、なるべく単純な構造を持つのが好ましい。複数の記録層の相互間の位置合わせや、ガイド層との間での位置あわせが殆ど又は実践上全く不要であるのが、製造上好ましいからである。記録層の構造は、光ビームの照射側から見て、奥側の記録層或いはガイド層に対しても、光ビームが到達するように、各々の記録層における透過率及び反射率が所定範囲に収まるよう設定された各種記録方式で記録可能に構成されている。
 より具体的には、情報記録時には、例えば、ガイド層に存在するトラックに対し、第1光ビーム(例えば、比較的大径の光スポットを形成する赤色レーザ)が集光された場合に得られる反射光から、トラッキングエラー信号(或いはその元となるウォブル信号及びこれに加えてプリピット信号)が検出可能とされる。このトラッキングエラー信号に従って、ガイド動作の一種としてトラッキング或いはトラッキングサーボが実行可能とされる。このトラッキングが行われている或いはトラッキングサーボが閉じられている状態で、トラックの上層又は下層側における所望の記録層に対し、第2光ビーム(例えば、比較的小径の光スポットを形成する青色レーザ)が集光されることで、情報の記録が行われる。言い換えれば、ガイド層に予め形成されたトラックの位置を基準として、予めトラック或いはトラックの如きが何ら存在していない(例えば、鏡面状態又は、単なるストレートグルーブ若しくはストレートランドなどの)他の層である所望の記録層における情報を記録する際の面内位置決めが行われる。(なお、フォーカスについては集光する際に別途行われている。)
 ここで、光ピックアップ等における、第1及び第2光ビームを照射する光学系が固定されていれば、それらにより形成される光スポットの位置関係も固定されている。このため、第1光ビームの位置(即ち、それにより形成されるトラック上の光スポットの位置)についてトラッキングサーボ等のガイド動作を実行することは、第2光ビーム(即ち、それにより形成される記録面内における光スポットの位置)についても、再現性を持ってガイド動作を行っていることになる。言い換えれば、予め存在するトラック上における第1光ビームを利用して、予めトラックが存在しない記録面内における第2光ビームを、トラッキング或いはガイド可能となる。
 このような記録方式を採用すれば、相互に積層形成される、ガイド層及び各記録層間で、或いは複数の記録層の相互間で、トラック相互間の記録面に沿った方向についての位置合わせを行う必要が元より殆ど又は実践上全くない。これは、製造上極めて有利である。
 他方、情報再生の際には、同様にトラックはガイド用に利用されてもよいし、或いは、この情報再生の際には、既に記録層に書き込まれた情報を追従することで、ガイド層をガイド用に(典型的にはトラッキング用に)利用することなく、記録後の情報トラックに対してトラッキング動作を行うことで再生することも可能である。
 ガイド層に形成されたトラックには、ガイド情報を担持する物理構造を夫々有する複数のガイド領域が、配置されている。ここに「ガイド情報」とは、第1光ビームをガイド若しくは案内する又は追従させるための情報であり、典型的には、光学的にトラッキングエラー信号(或いはその元となるウォブル信号及びこれに加えてプリピット信号)を発生させるための情報である。更に、ガイド情報は、トラッキング用の光ビームを位置決めするためのマークとなるという意味から「マーク情報」と言い換えることも出来る。
 或いは、このようなガイド情報は、後に詳述する本発明に係る「目印情報」を兼ねることも可能である。
 このようなガイド情報を担持する物理構造は、典型的には、グルーブトラック又はランドトラックの側壁又は内部若しくは外部に造作されたウォブル及びプリピット構造(即ちランドプリピット、グルーブプリピットなど)、ウォブル及び一部切欠き構造、グルーブ及びランドがない面(例えば、鏡面)上におけるプリピットの配列や連なりなどによって、実現される。ここに「物理構造」とは、論理構造、単なるデータにより構築される概念的な或いは仮想的な構造とは異なり、物理的に実在する構造を意味する。物理構造は、当該情報記録媒体の完成時に既にガイド上に造り込まれている。
 本実施形態では特に、このようなガイド機能を有するガイド層に設けられたトラックには、複数の信号検出用領域が、配置されている。複数の信号検出用領域は、センタートラック部分にて、特定種類のパターン信号が検出可能なように、径方向に相隣接する複数のトラック部分に跨る一まとまりの所定パターンを、夫々有する。ここに「センタートラック部分」とは、各信号検出用領域において径方向に相隣接する複数のトラック部分のうち、径方向の中央若しくは中心又は中心線上に位置するなど、少なくとも径方向の中央寄りに位置するトラック部分である。例えば、複数のトラック部分が、3本、5本、7本、…といった奇数本であれば、好ましくは、その丁度真ん中のトラック部分が、センタートラック部分とされる。
 逆に、センタートラック部分以外のトラック部分については、その直上に第1光ビームによる1光スポットの中心が乗っている機会にも、敢えて、パターン信号の検出対象から除外されている。即ち、センタートラック部分以外のトラック部分でも所定パターンに起因する何らか信号或いはノイズが検出可能であろうが、そのような信号或いはノイズは、ノイズとして元より検出されないか、検出後にノイズとして破棄される。
 複数の信号検出用領域は、典型的には、トラック方向に離散的に配置されており、径方向にも離散的に配置されている。このため、光ビームのスポットが相隣接する二つの或いは二つ以上のトラック或いはトラック部分に跨るまで(例えば5トラック、7トラックなどに渡るまで)トラック密度を高めても、検出されるパターン信号のクロストークにより、パターン信号が検出不能となってしまう事態が回避可能となる。
 例えば、パターン信号として、チルトエラー信号などのチルト検出信号が発生可能なように、所定パターンを典型的には予め作り込んでおけば、或いは、使用開始後の任意の時点にて記録しておけば、チルト発生時に、パターン信号における大きな信号変化が得られるので、実践上極めて有益である。
 具体的には、例えば、径方向(即ち、ラジアル方向)のチルトならば、センタートラックを中心線として線対称の所定パターンを、複数のトラックに跨る方向に面的に広がりを持つように形成しておけば、径方向のチルトに対して、感応性に優れたチルト検出信号を発生可能となる。或いは、トラック方向(即ち、タンジェンシャル方向)のチルトならば、トラックに対して直交する線分を中心線として線対称の所定パターンを、複数のトラックに跨る方向に面的に広がりを持つように形成しておけば、トラック方向のチルトに対して、感応性に優れたチルト検出信号を発生可能となる。或いは、斜め方向のチルトならば、トラックに対して斜めに交差する線分を中心線として線対称の所定パターンを、複数のトラックに跨る方向に面的に広がりを持つように形成しておけば、斜め方向のチルトに対して、感応性に優れたチルト検出信号を発生可能となる。
 チルト補正用のチルト検出信号以外にも、ディスクの偏心補正用の偏心信号、ディスク面の傾き補正用の傾き信号、光学系の収差補正用の収差信号、光ビームの位相差補正用の位相差信号、ゆがみの補正用のゆがみ信号、光吸収補正用の光吸収信号、ストラテジーの設定用のストラテジー信号など、各種の信号が、パターン信号として検出されるように、所定パターンは構成されてよい。
 所定パターンは、例えば、複数のトラックに跨る形で外輪形状が円形、矩形等である、環状(即ち、中抜き型)又はベタ状(即ち、中詰め型)の平面領域内における複数トラックの各部に、複数のピット、または、複数のスペースで形成されている。
 ここで本願発明者による研究の結果、例えばチルト検出信号に基づくチルト補正などのパターン信号に基づく特定種類の処理を実行可能とするといった特定目的は、いずれかのトラックにてチルト検出信号等のパターン信号を検出可能とする必要があるにせよ、チルト検出信号等のパターン信号を全てのトラックに連続して形成しなくても、達成可能であることが判明している。特定種類の処理が、恒等的に連続して行われることの方がむしろ稀である。即ち、チルト補正を一定値に保持する時間(言い換えれば、チルトサーボをロックしておく期間)毎に一度ずつ、チルト検出信号が検出されるといったように、特定種類の処理を行う頻度或いは期間に応じて、チルト検出信号等のパターン信号が検出されれば、上記特定目的は達成可能であることが判明している。
 よって、一方で、相隣接する複数のトラックについて言えば、複数本おきに、パターン信号の検出が行われれば、実践上は、完全若しくはほぼ完全に又は相応に、パターン信号に基づく所定処理を実行することが可能である。他方、トラックに沿った領域については、多少の間隔を空けて或いはいずれかの位相(例えば、ディスク上の角度)をおいて、パターン信号の検出が行われれば、実践上は、完全若しくはほぼ完全に又は相応に、パターン信号に基づく所定処理を実行することが可能である。結局、例えば5本、7本おきといった複数のトラック毎に、それらを代表するセンタートラック部分にて、パターン信号が断続的に得られれば、実践上は十分ということになる。更に、パターン信号が検出される位相位置(例えば、ディスク上の角度位置)については、揃えられていてもよいし、揃えられていなくてもよい。
 そこで本実施形態では、信号検出用領域に対しては、第1光ビームの光スポットの中心がセンタートラック部分に乗っている機会を、パターン信号の検出機会として捕らえる。センタートラック部分以外のトラック部分については、その直上に第1光ビームによる1光スポットの中心が乗っていたとしても、敢えて、パターン信号を検出する機会から除外しているのである。
 これは特に、第1光ビーム(例えば、赤色レーザ)が、第2光ビーム(例えば青色レーザ)に比べてビーム径が大きい場合において、第2光ビームの相対的に小さい光スポットを有効活用して(即ち、その小ささに応じて)記録層に情報記録する際における記録密度を限界付近まで高める場合に、極めて有利に働く。即ち、記録層における記録後にトラックとなる狭ピッチの記録領域に対応する狭ピッチのトラックを、ガイド層に予め造り込んだ場合に、必然的に、そのようなトラックに対して大きくなる第1光ビームの光スポットは、複数のトラック(例えば5トラック、7トラックなど、多数のトラック)に渡って同時に照射されるという技術的性質を有する。
 このため、相対的に大きな光スポットを形成する第1光ビームを用いて、径方向に相隣接する複数のトラック部分に跨る一まとまりの所定パターンを検出するのは極めて好都合だからである。デメリットを齎し易い、トラックピッチに対して大きな光スポットを、逆に有効活用しているとも言える。
 なお、第1光ビームが、第2光ビームに比べてビーム径が小さい場合においても、或いは、これらの径が殆ど又は全く同じ場合においても、トラックのピッチに対して光ビームの径が大きい場合に所定パターンを検出しようとする限りにおいて、やはり、上述の如き本実施形態における独自の構成は、相応の作用効果を齎すものである。
 このように所定パターンを夫々有する複数の信号検出用領域がトラックに配置されているので、チルト検出信号等の特定種類のパターン信号の配置についての自由度が格段に増す。また、複数の信号検出用領域を相互から独立して、即ち、離散的に配置することも可能であるので、情報記録媒体全体としても、自由度のある配置が可能となる。パターン信号を、特定の複数種類の処理に対応させて複数種類設けることで、複数種類の処理を適宜に実行することも可能となる。
 しかも本実施形態では特に、複数の信号検出用領域の各々について、トラック方向におけるセンタートラック部分の前に、複数の信号検出用領域のうち対応する一つが後に来る旨を示す目印情報を担持する目印領域が、配置されている。目印情報は、例えば、上述したガイド情報の兼用として、或いは、ウォブル信号やプリピット信号などにより再生される情報である。
 このため、パターン信号の読み込みを、目印情報の到来を元に、簡単にして確実に実行可能となる。特に、同一位相位置(例えば、ディスク上の同一角度位置)について言えば、信号発生領域の存在する位相位置でさえも、例えば5本おきや7本おきにしかセンタートラック部分が到来すること(即ち、パターン信号を検出する機会)はない。逆に言えば、多くの場合には、センタートラック部分以外のトラック部分が到来するだけで、信号発生領域の到来はない。
 従って、目印情報の検出によってセンタートラック部分の近未来における到来事実が判明することは、パターン信号の検出等を簡単且つ安定的に実行可能となるので、極めて有利である。例えば目印情報の検出後にパターン信号の検出開始準備や、更にパターン信号に基づく特定種類の処理の開始準備を始めることを可能とする。例えば、パターン信号と目印情報との位相関係や間隔を予め規定しておくことで、目印情報から、所定パターンを検出するべきサンプリングタイミングを容易にして特定可能となる。或いは、目印情報にパターン信号が記録されているアドレス位置を持たせておけば、所定パターンを検出すべきサンプリングタイミングを容易にして特定可能となる。
 以上の結果、各記録層において記録若しくは再生できるトラックピッチや記録線密度(例えば、線記録密度、ピットピッチ或いは情報転送速度(即ち、記録線密度×移動速度))を、多層型の情報記録媒体における本来の目的である「高密度記録」と言える程度にまで高めつつ、記録層とは別のガイド層におけるチルト検出信号等のパターン信号の安定的且つ効率的な取得により、例えば高精度のチルト検出、高精度のチルト補正などの特定種類の処理の施行が可能となる。
<2>
 本実施形態の情報記録媒体の一の態様では、前記所定パターンは、前記パターン信号の最小構成単位の前記トラック方向の長さと、前記複数の記録層に夫々記録されるデータの最小構成単位の前記トラック方向の長さとが、所定の整数比となるように、規定されている。
 このように構成すれば、ガイド層におけるパターン信号の最小構成単位のトラック方向の長さと、各記録層における、記録されることになるデータ(例えば、ユーザデータ、コンテンツデータなど)の最小構成単位のトラック方向の長さとが、所定の整数比となる。ここに「最小構成単位」とは、例えば、ECC(Error Correction Code)ブロック、ADIP(Address In Pre-groove)単位等のエラー訂正の単位など、データフォーマットに準拠しての最小構成単位を意味し、典型的には、情報記録時又は情報再生時に、所定種類の処理を行う際に扱われる単位となる。
 このため、チルト検出信号等のパターン信号の発生頻度と、トラックに対応する記録面内位置における記録層にデータを記録する周期とを、半径位置に寄らずに或いはトラック位置に寄らずに、一定の関係に維持することが出来る。特にCLV方式を採用する場合、径位置によって、角速度が変化するにも拘らず、任意の径位置にて、検出されたパターン信号に基づき安定した特定種類の処理が実行可能となる。また、ゾーンCAV方式を採用する場合にも、ゾーン毎に問題なく、検出されたパターン信号に基づき安定した特定種類の処理が実行可能となる。しかも、そのためには、予め作り込む際に、所定パターンのトラック方向の長さを、データの最小構成単位の長さに応じて規定すればよい。
<3>
 本実施形態の情報記録媒体の他の態様では、前記トラックは、当該情報記録媒体における内周から外周又は外周から内周に向って螺旋状に形成されており、前記目印領域は、前記トラック方向における前記センタートラック部分の直前に配置されており、前記対応する一つが直後に来る旨を示す。
 この態様によれば、記録時又は再生時に、先ず目印領域にて目印情報が検出され、その後遅延無くパターン信号が到来することが判明する。このため、パターン信号の検出を予め準備することが可能となり、パターン信号を安定して且つ確実に検出できる。更に、目印情報の検出に応じて、検出されたパターン信号に基づく特定種類の処理の施行を準備することが可能となり、当該特定種類の処理を安定して且つ確実に施行できる。
<4>
 本実施形態の情報記録媒体の他の態様では、前記トラックは、当該情報記録媒体における内周から外周又は外周から内周に向って螺旋状に形成されており、前記目印情報は、(i)後に来る前記対応する一つをサンプリングするべきタイミング又は(ii)後に来る前記対応する一つの、前記トラック方向に沿って前記内周から前記外周又は前記外周から前記内周へ向うアドレス位置を、示すことで、前記後に来る旨を示す。
 この態様によれば、記録時又は再生時に、先ず目印領域にて目印情報が検出され、その後、どのタイミングで又はどのアドレス位置にて、パターン信号が到来するかが判明する。このため、パターン信号の検出を予め準備することが可能となり、パターン信号を安定して且つ確実に検出或いはサンプリングできる。更に、目印情報の検出に応じて、検出されたパターン信号に基づく特定種類の処理の施行を準備することが可能となり、当該特定種類の処理を安定して且つ確実に施行できる。
<5>
 本実施形態の情報記録媒体の他の態様では、前記目印領域は、前記目印情報を、ウォブル及びプリピット構造、並びにウォブル及び一部切欠き構造のうち少なくとも一方により担持し、前記トラックには、前記トラック方向における前記目印領域の前に、(i)鏡面又はストレートグルーブ若しくはストレートランド構造を有する緩衝領域並びに(ii)鏡面又はストレートグルーブ若しくはストレートランド構造を有する鏡面領域のうち少なくとも一方が、更に配置されている。
 この態様によれば、目印領域は、目印情報を担持する、ウォブル及びプリピット構造を含む物理構造を有する。ここに「ウォブル及びプリピット構造」とは、ウォブル或いはウォブリングされたグルーブ又はランドトラックが形成されていると共に、そのグルーブ内又はランド内にプリピットが形成されている構造を意味する。更に「プリピット」とは、グルーブ内若しくは上、又はランド上若しくは内におけるトラック上に、グルーブ幅又はランド幅よりも狭くなるように形成された凸状又は凹状のピット或いは位相ピットを意味する。言い換えれば、プリピットは、ランドプリピットでも、グルーブプリピットであってもよい。
 或いは、これに代えて又は加えて、目印領域は、目印情報を担持する、ウォブル及び一部切欠き構造を含む物理構造を有する。ここに「ウォブル及び一部切欠き構造」とは、ウォブル或いはウォブリングされたグルーブ又はランドトラックが形成されていると共に、そのグルーブ内又はランド内にグルーブ幅又はランド幅と同等の切欠きが施されている構造を意味する。相隣接するグルーブ間に存在するランドの一部が切欠きされている場合、相隣接するランド間に存在するグルーブの一部が切欠きされている場合、及びそれらを組み合わせた場合が考えられる。言い換えれば、物理構造は、一部切欠きという広義のプリピットを含んで構成されてもよく、更に、この広義のプリピットは、広義のランドプリピットでも、広義のグルーブプリピットであってもよい。更に、そのような構造に加えて、前述した狭義のプリピット(即ち、一部切欠き構造を伴わないプリピット)を併せて形成することも可能である。
 このように、目印領域におけるトラック部分は、ウォブリングされ且つピットが形成された或いはランド又はグルーブの一部が切欠きされた、グルーブトラック又はランドトラックとして、ガイド層に予め構築される。よって、その構築は、比較的容易であり、最終的には、信頼性及び安定性の高い目印情報の提供が可能とされる。
 更に、この態様によれば、トラックには、トラック方向における目印領域の前に、緩衝領域と鏡面領域とのうち少なくとも一方が、配置されている。緩衝領域及び鏡面領域は夫々、鏡面又はストレートグルーブ若しくはストレートランド構造を有する。ここに「鏡面」とは、特に情報が埋め込まれてないプレーンな素面を意味し、ガイド層にて光反射率が最も高い面となる。「ストレートグルーブ若しくはストレートランド構造」とは、ウォブルやピットなどが形成されていない単なる真っ直ぐな溝(グルーブ)又は溝と溝との間にある土手(ランド)を意味する。なお、グルーブとランドとは、相対的な凹凸であり、第1及び第2光ビームが照射される方向から見て、どちらが凹でありどちらが凸であっても構わない。例えば、情報記録媒体を構成する本体基板を基準に凹となるのがグルーブであり、凸となるのがランドである。この場合、第1及び第2光ビームが照射される方向から見て、グルーブが凸となり且つランドが凹となったりする。
 以上より本態様によれば、目印情報の構築及び検出を、比較手簡単にして確実に実行可能となる。
<6>
 本実施形態の情報記録媒体の他の態様では、前記所定パターンは、前記パターン信号として、チルト検出用のチルト検出信号を検出可能なように構成されている。
 この態様によれば、チルト検出信号が発生可能なように、所定パターンを典型的には予め作り込んでおけば、或いは、使用開始後の任意の時点にて記録しておけば、チルト発生時に、チルトエラー信号などのチルト検出信号における大きな信号変化が得られるので、実践上極めて有益である。これにより、チルト補正を高精度で施行可能となる。
<7>
 このチルト検出信号を検出可能な態様では、前記所定パターンは、前記センタートラック部分に沿った中心線及び前記中心線に交差する交差線のうち少なくとも一方を対称軸とする線対称のパターンを含んでよい。
 このように構成すれば、径方向のチルト(即ち、ラジアルチルト)、トラック方向のチルト(即ち、タンジェンシャルチルト)、斜め方向のチルトなどのチルト別に対称軸を設定した上で、所定パターンを作り込むことで、いずれのチルトに対しても、感応性に優れたチルト検出信号を発生可能となる。
<8>
 この態様では更に、前記線対称のパターンは、前記中心線を対称軸とし、前記トラックに照射され且つ集光される第1光ビームによって、一時点にて前記複数のトラック部分上に形成される光スポットの円周に沿って、前記複数のトラック部分上を断続的に連なってなる環状パターンを含んでよい。
 この場合、光スポットの外観形状に対応するように、所定パターンが作り込まれるので、実践的に必要最低限の所定パターンを作り込むだけで、チルト検出信号を高精度で検出可能となる。なお、所定パターンは、環状のみに離散的に設けられていても、環状を含む面的に(例えば、円形領域の内部全域に)離散的に設けられていてもよい。
<9>
 或いは、上述したチルト検出信号を検出可能な態様では、前記所定パターンは、前記センタートラック部分に沿った中心線を対称軸とする、線対称のパターンのうち前記対称軸の一方の側にある第1部分と他方の側にある第2部分とが、前記トラック方向に沿って相互にずらされてなるパターンの対を含んでよい。
 このように構成すれば、一つの所定パターンのトラック方向の長さを、パターンの対がトラック方向に離間している分だけ、実質的に長く出来るので、ラジアルチルトに対して、より感応性に優れたチルト検出信号を発生可能となる。更に、パターンの対の片方についてみれば、所定パターンを作り込むために必要となる径方向の複数のトラック部分の幅は、ほぼ半分で済むので、スペース効率の観点からも大変有利である。
<10>
 この場合、前記パターンの対は夫々、前記トラックに照射され且つ集光される第1光ビームによって、一時点にて前記複数のトラック部分上に形成される光スポットの円周に沿って、前記複数のトラック部分上を断続的に連なってなる半円分ずつの環状パターンを含んでよい。
 このように構成すれば、光スポットの外観形状に対応するように、夫々のパターンの対が作り込まれるので、実践的に必要最低限の所定パターンを作り込むだけで、チルト検出信号を高精度で検出可能となる。なお、所定パターンは、半環状のみに離散的に設けられていても、半環状を含む面的に(例えば、半円形領域の内部全域に)離散的に設けられていてもよい。
<11>
 本実施形態の情報記録媒体の他の態様では、前記所定パターンは、前記トラック方向及び前記径方向の少なくとも一方向に相隣接して複数設けられている。
 このように構成すれば、一つの所定パターンを構成する一部を、これに隣接する他の所定パターンの一部として兼用できる。よって、所定パターンを作り込む分量を低減できると共に、スペース効率の観点からも大変有利である。
<12>
 本実施形態の情報記録媒体の他の態様では、前記所定パターンが跨る前記複数のトラック部分の本数は、前記トラックに照射され且つ集光されると共に収差を持つ第1光ビームによって、前記トラック上に形成される光スポットの直径よりも、マージンを持って前記複数のトラック部分の合計幅が大きくなるように、前記複数のトラック部分の本数が、設定されている。
 このように構成すれば、収差を持つ第1光ビームにより形成される光スポットの全域が所定パターンにより十分にカバーされるので、チルト検出信号等のパターン信号における第1光ビームに対する感応性を高められる。しかも、近隣配置された二つの所定パターンにより発生するパターン信号相互間におけるクロストークを低減或いは阻止できる。
 より具体的には、例えば、複数のトラックが奇数であり且つセンタートラック部分が、中心のトラック部分であるとして、第1光ビームの波長をλ、対物レンズの開口数(Numerical Aperture)をNAとし、トラックピッチをTpとし、当該複数のトラック及び光ビームに固有の比例定数を0.82とする。このとき、片側について必要なトラック数は、(0.82×λ/NA)/Tpの値を、小数点繰上げとして得た本数である。この本数が両側にあるので2倍し、更に中心のトラック1本分を加えた数として、一つの所定パターンが作り込まれる複数のトラック部分の本数は、設定されればよい。
 因みに上述した各種実施形態では、ガイド層におけるトラックには、ガイド用のガイド情報を担持する物理構造を夫々有する複数のガイド領域が、トラック方向に予め設定された所定距離以下の配置間隔にて離散的に、且つ径方向に相隣接する複数のトラックに渡って該複数のトラック間でずらされて、配置されているのが好ましい。以下、この点について、説明を加える。
 本願発明者による研究の結果、例えば所定の帯域でトラッキングを行うなどの、ガイド動作を実行可能とするといった特定目的は、いずれかのトラックにてガイド情報を検出可能とする必要があるにせよ、従前の或いは既存の光ディスクにおけるトラックの如く、当該ガイド情報を検出するための特殊な仕掛けを、トラック方向に連続して形成しなくても、達成可能であることが判明している。即ち、ガイド情報が検出される時間間隔に相当するガイド情報の配置間隔(即ち、配置ピッチ)を、ガイド動作を可能ならしめるのに最低限必要な距離よりも小さく(例えばトラッキングサーボが所定の帯域で動作可能な最長距離以下などに)設定しておく限りにおいて、トラックに沿った全域にこのような特殊な仕掛けを施しておかなくても、上記目的は達成可能であることが判明している。同時に、相隣接する複数のトラックについて言えば、径方向に揃った複数の位置或いは領域の各々に、このような特殊な仕掛けを並べておかなくても、即ち、径方向に一列に規則正しくこのような特殊な仕掛けを並べて(或いは整列させて)おかなくても、上記目的は達成可能であることが判明している。
 そこで本発明では、複数のガイド領域は、螺旋状又は同心円状であるトラックに沿ったトラック方向(言い換えれば、トラックの接線方向)に、相互に、予め設定された所定距離又はそれ未満の距離を、配置間隔(即ち、配置ピッチ)として離散的に配置されている。ここに「所定距離」とは、典型的には、所定の帯域でトラッキング或いはトラッキング動作である、ガイド或いはガイド動作が機能し得る最長の距離(例えば、トラッキング動作を所定の帯域で安定的に実行可能ならしめる頻度にてトラッキング信号を連続的或いは継続的に発生し得る最長の距離)よりも若干のマージンを持って短い距離である。また「所定の帯域」とは、情報記録時に用いられる帯域との関係で定まる、トラッキング動作が行われる、データフォーマット或いはデータ規格に対して固有の帯域を意味する。
 このような所定距離は、予め実験的、経験的に又はシミュレーション等により、固有の情報記録媒体におけるガイド層に対して、ガイド動作(典型的には、所定の帯域でのトラッキング動作)が機能する限界の距離を求めることと、適当なマージンを決定することで、設定されればよい。仮に、ガイド領域が、所定距離よりも長い配置間隔(即ち、配置ピッチ)で、離散的に配置されていたとすれば、例えば所定の帯域で安定したトラッキングサーボを可能ならしめるだけの頻度にてトラッキングエラー信号を生成できないなど、安定したガイド動作を実行できない。
 なお「離散的に」とは、各記録層に係る記録面上で平面的に見て、相互に連続しておらず、相互間に、鏡面、緩衝領域、ガイド領域以外の領域など他の平面領域が介在している意味である。
 複数のガイド領域は、トラックに交わる径方向(即ち、半径方向)に、相隣接する複数のトラックに渡って、該複数のトラック間でずらされて、配置されている。ここに「複数のトラックに渡って」とは、各記録層に係る記録面上で平面的に見て、相互に隣接する二本又は二本以上のトラック及びそれらの間隙を占める領域を含めて、それらに渡って或いは跨ってという意味である。また「径方向に、複数のトラック間でずらされて」とは、径方向(即ち半径方向)について複数のトラック間が同一位相(例えば、ディスク上の角度)或いは同一位相に相当する位置(例えば、ディスク上の角度位置)にない、或いは同一半径上にないという意味である。この際、相対的に径方向について近接して並ぶ複数のガイド領域は、完全に(即ち、間に間隙を隔てて)離間している必要は無く、典型的には、情報記録時又は再生時におけるトラッキングサーボ用の光ビームが、該複数のガイド領域に同時にかからない程度に(例えば5トラックに渡って)、径方向の位相がずらされていれば足りる。或いは、光ビームにより、該複数のガイド領域から読み取り可能な信号や情報が相互から識別可能である程度にずらされていれば足りる。
 このため、光ビームのスポットが相隣接する二つの或いは二つ以上のトラック或いはトラック部分に跨るまで(例えば5トラックに渡るまで)トラック密度を高めても、これに対応してガイド領域が上述の如くずらされている限りにおいて、トラック方向及び径方向の双方についてガイド情報が重なること(或いは他のガイド領域からの信号成分がノイズとして影響を及ぼすこと)に起因して、即ち検出されるガイド情報のクロストークにより、ガイド情報が検出不能となってしまう事態が回避可能となる。このようにトラック密度を高めても、ガイド或いはトラッキングが可能となり、ガイド層としての、典型的にはトラッキング信号を発生する本来の機能は保証される。
 従って、第1光ビームがガイド層における相隣接する複数のトラックに同時に照射される程度に、第1光ビームの径に対して、トラックピッチを狭めつつも、例えば第1光ビームに起因する反射光等から得られるプッシュプル信号をサンプリングするなどして、トラッキングエラー信号或いはその元となるウォブル信号及びこれに加えてプリピット信号等のガイド情報を、安定して連続的に発生させることが可能となる。即ち、所定の帯域での安定したトラッキング動作等のガイド動作が実行可能となる。或いは、ガイド情報に、制御用の情報(例えば、サーボマークやアドレス情報など)を含めた場合に、これを第1光ビームに起因する反射光等に基づく情報として、確実に読み取ることが可能となる。即ち、安定的にプリフォーマット情報を取得可能となる。
 これは特に、第1光ビーム(例えば、赤色レーザ)が、第2光ビーム(例えば青色レーザ)に比べてビーム径が大きい場合において、第2光ビームの相対的に小さい光スポットを有効活用して(即ち、その小ささに応じて)記録層に情報記録する際における記録密度を限界付近まで高める場合に、極めて有利に働く。即ち、記録層における記録後にトラックとなる狭ピッチの記録領域に対応する狭ピッチのトラックを、ガイド層に予め造り込んだ場合に、必然的に、そのようなトラックに対して大きくなる第1光ビームの光スポットは、複数のトラック(例えば5トラックなど多数のトラック)に渡って同時に照射されるという技術的性質を有する。このため、相対的に大きな光スポットを形成する第1光ビームを用いて、狭ピッチの記録層に対応したトラッキング動作等のガイド動作を行う必要があるからである。
 なお、第1光ビームが、第2光ビームに比べてビーム径が小さい場合においても、或いは、これらの径が殆ど又は全く同じ場合においても、トラックのピッチに対して光ビームの径が大きい場合に適切にガイド動作を行おうとする限りにおいて、やはり、上述の如き本実施形態における独自の構成は、相応の作用効果を齎すものである。
 このように、ガイド用のトラックについては、所定の帯域でトラッキングサーボを可能ならしめること或いはプリフォーマット情報を読み取らせることなどのガイド機能を損なわないようにしつつ、そのピッチを(例えば、記録層における記録により構築されると共に第2光ビームのビーム径に相応しい情報トラックが有することになる、狭ピッチと同程度にまで)狭ピッチにする(即ち、第1光ビームに対して不相応なまでに狭ピッチにする)ことが可能となる。
 加えて特に、CLV方式を採用する場合には、内周側になる程、角速度が増大するが故に(言い換えれば、外周側になる程、角速度が減少するが故に)、例えばガイド層のトラックに予め記録されたガイド情報の配置関係が、半径位置に応じて任意となる。例えばCAV(Constant Angular Velocity)方式であれば可能なように、特定長の情報を複数のトラックに渡って径方向に一列に整列させるといった配置をとることは、根本的に不可能である。すると、CLV方式にて仮に何らの対策も施さないとすれば、第1光ビームが複数トラックに渡る光スポットを形成する場合に、その光スポット内部に入るトラック部分が半径位置に応じて任意となり(即ち、いずれにせよ特定長の情報であっても径方向位置に応じてトラック方向にずれ)、ガイド情報の取得が半径位置に応じて、極めて不安定とならざるを得ない。
 しかしながら、ガイド領域は、上述の如く意識的に或いは積極的に、径方向に複数のトラック間でずらされて配置されている。このため、径方向位置によらずに(即ち内周寄りや外周寄りを問わずに)、高密度記録を実現するための高密度のトラックピッチや記録線密度に対応して、所定の帯域でのトラッキングサーボ等のガイド動作を安定して実行可能となる。逆に言えば、CLV方式であることを前提として、径位置に応じて、予め所定距離やずらし方を規定しておけば、CLV方式であっても何ら問題は生じない。
 しかも本実施形態によれば、複数のガイド領域は、複数のスロットのうち、トラック方向に相隣接しておらず且つ径方向に複数のトラックに渡って相隣接していない複数のスロット内に、一つずつ配置されている。
 ここに、「スロット」とは、トラックがトラック方向に区分されてなる論理的な区画若しくは区分、又は物理的な区画若しくは区分である。スロットは、典型的には、トラック方向に隙間無く連続して配列されており且つ径方向にも隙間なく或いは相隣接して配列されている。但し、スロットは、トラック方向及び径方向の少なくとも一方については、若干の隙間をあけて配列されてもよい。言い換えれば、ガイド層にて、予めトラック方向に並べられるように作り込まれた複数のスロットにおける、配列、或いは連なりから、トラックが構築される。
 ガイド領域は、トラック方向に相隣接しておらず且つ径方向に複数のトラックに渡って相隣接していない複数のスロット内に、一つずつ配置されているので、複数のガイド領域から検出可能なガイド情報間におけるクロストークを確実に低減或いは無くすことが可能となる。加えて、ガイド層においては、グルーブ、ランド、プリピット等を、ガイド領域が配置されるスロット内にだけ作り込めばよく、これらをトラック全域に連続して作り込む必要は無い。しかも、スロットの存否(例えば、スロットと鏡面との相違)が物理的に明確に区別し易く、よって検出しやすいため、ガイド情報の読み取りが容易にして安定的に実行可能となる。これは、実践上大変有利である。
 他方で、記録層における複数のスロットについては、ガイド層の場合と異なり、トラック方向及び径方向の両方についての連続する全てのスロット内に、コンテンツデータ、ユーザデータなどを記録するための個々の記録領域が配置されてよい。記録層におけるいずれのスロットについても、ガイド層におけるガイド領域が配置されたスロットと対応がとれるので、記録層に対して間接的に、所定の帯域におけるトラッキングサーボを実行可能となる。言い換えれば、記録層については、第2光ビームにより形成される光スポットによって、読み取り可能な限界までの高密度にて、全てのスロット内に情報を記録可能となる。
 以上の結果、複数のガイド領域を離散的に且つずらして配置すれば、特にCLV方式を採用しつつ、記録層において記録若しくは再生できるトラックピッチや記録線密度(例えば、線記録密度、ピットピッチ或いは情報転送速度(即ち、記録線密度×移動速度))を、多層型の情報記録媒体における本来の目的である「高密度記録」と言える程度にまで高めることが可能となる。
(情報記録装置)
<13>
 本実施形態の情報記録装置は上記課題を解決するために、上述した実施形態の情報記録媒体(但し、その各種態様を含む)に、データを記録する情報記録装置であって、前記ガイド層に前記パターン信号を検出するための第1光ビームを照射し且つ集光することが可能であると共に前記複数の記録層のうち一の記録層にデータ記録用の第2光ビームを照射し且つ集光することが可能である光照射手段と、前記ガイド層からの前記照射され且つ集光された第1光ビームに基づく第1光を受光し、該受光された第1光に基づき、前記目印情報により前記後に来る旨が示される前記複数の信号検出用領域の各々にて前記パターン信号を検出する信号検出手段と、前記検出されたパターン信号に基づいて前記光照射手段について特定種類の処理を施す処理手段と、前記処理が施された状態で、前記一の記録層に前記第2光ビームを照射し且つ集光することで、前記データを記録するように前記光照射手段を制御するデータ記録制御手段とを備える。
 本実施形態の情報記録装置によれば、例えば二種類の半導体レーザを含む光ピックアップである光照射手段により、ガイド層に対して、第1光ビームが照射され且つ集光される。第1光ビームは、前述の如く、例えば赤色レーザ光ビームの如くスポット径が相対的に大きい光ビームであってよい。即ち、相対的に大きく、複数トラックに渡って照射されるような大きな光スポットを形成するような太い光束の光ビームであっても構わない。
 すると、第1光ビームに基づく、ガイド層からの反射光、散乱光、屈折光、透過光等である第1光が、受光手段により、受光される。ここに受光手段は例えば、光照射手段と一体形成され対物レンズ等の光学系を少なくとも部分的に共有する、二分割或いは四分割のCCD(Charged Coupled Device)等のフォトディテクタ或いは受光素子を含んで構成される。受光手段は例えば、プリズムやダイクロイックミラー、ダイクロイックプリズム等を経由して、第1光を、第2光並びに第1及び第2光ビームと途中から異なる光路にて、受光するように構成される。
 続いて、この受光された第1光に基づき、例えば、上述の受光手段、プロセッサ、演算回路、論理回路等を含んでなる、信号検出手段により、例えばガイド情報(即ち、ウォブル信号、プリピット信号、トラッキングエラー信号等)の一部からなる、目印情報により後に来る旨が示される信号検出用領域にて、パターン信号が検出される。
 なお、パターン信号(例えば、チルト検出信号)を検出するための第1光ビームは、トラッキング用の光ビームと兼用でよい。即ち、第1光ビームは、ガイド層におけるトラッキング用と共に、パターン信号の検出用に用いられる。
 続いて、この検出されたパターン信号に基づいて、光照射手段について特定種類の処理が、例えば、プロセッサ、演算回路、論理回路等を含んでなる、処理手段により施される。ここに「特定種類の処理」とは、例えば、パターン信号がチルト検出信号である場合におけるチルト補正である。即ち、例えば、チルト検出信号に応じて、光ピックアップ等の光照射手段に設けられたチルト補正用のアクチュエータがフィードバック制御或いはフィードフォーワード制御により駆動され、第1光ビームの照射角度等が補正され、補正後には、次のチルト検出信号が検出されるまで固定される(即ち、次の機会まで、チルトサーボがロックされる)。
 特定種類の処理としては、その他に、ディスクの偏心補正、ディスク面の傾き補正、光学系の収差補正、光ビームの位相差補正やゆがみの補正、光吸収補正、ストラテジーの設定などの処理があり、いずれも、パターン信号の種類に応じた処理とされる。
 ここで、光ピックアップ等における、第1及び第2光ビームを照射する光学系が固定されていれば、それらにより形成される光スポットの位置関係も固定されている。このため、第1光ビームを利用して、チルト補正等の特定種類の処理を施行することは、第2光ビームについても、再現性を持って特定種類の処理を施行していることになる。言い換えれば、予め存在するトラック上における第1光ビームを利用して、予めトラックが存在しない記録面内における第2光ビームについても必要な或いは好ましい特定種類の処理を、間接的に施行可能となる訳である。
 なお、トラッキングサーボについても、第1光から検出可能なトラッキングサーボ用の信号(例えば、トラッキングエラー信号或いはその元となるウォブル信号やプリピット信号など)に基づき、トラックに対して所定の帯域でトラッキングサーボをかけるように或いはトラッキングサーボを閉じるように、例えばトラッキングサーボ回路等のトラッキングサーボ手段によって、例えば光ピックアップ等の光照射手段が制御される。例えば、光照射手段における、トラッキング制御用のアクチュエータが、フィードバック制御或いはフィードフォーワード制御により制御され、第1光ビームにより形成される光ビームが、トラック上に追従される。
 このように特定種類の処理が施された状態で(例えば、チルトサーボがロックされた状態や、チルト補正が施されている最中に)、例えばプロセッサ等のデータ記録制御手段による制御下で、記録すべき情報に対応して変調される第2光ビームが、光照射手段により、一の記録層に対して、照射され且つ集光される。第2光ビームは、情報記録の高密度記録を狙って、前述したように例えば青色レーザ光ビームの如くスポット径が相対的に小さい光ビームであってよい。記録情報の高密度化を図るという観点からは、第2光ビームは、より細い光束であることが望ましい。
 すると、一の記録層において、ガイド層におけるトラックに対応する情報トラックとなる領域に、データが順次記録されることになる。
 このように、上述した実施形態の情報記録媒体における記録層に対し好適に、例えばコンテンツ情報、ユーザ情報等の記録すべき情報を、チルト補正等の特定種類の処理の施行下で高精度に且つ高密度にて記録可能となる。
(情報記録方法)
<14>
 本実施形態の情報記録方法は上記課題を解決するために、上述した実施形態の情報記録媒体(但し、その各種態様を含む)に、上述した本発明の情報記録媒体に、前記ガイド層に前記パターン信号を検出するための第1光ビームを照射し且つ集光することが可能であると共に前記複数の記録層のうち一の記録層にデータ記録用の第2光ビームを照射し且つ集光することが可能である光照射手段を用いて、データを記録する情報記録方法であって、前記ガイド層からの前記照射され且つ集光された第1光ビームに基づく第1光を受光し、該受光された第1光に基づき、前記目印情報により前記後に来る旨が示される前記複数の信号検出用領域の各々にて前記パターン信号を検出する信号検出工程と、
 前記検出されたパターン信号に基づいて前記光照射手段について特定種類の処理を施す処理工程と、前記処理が施された状態で、前記一の記録層に前記第2光ビームを照射し且つ集光することで、前記データを記録するように前記光照射手段を制御するデータ記録制御工程とを備える。
 本実施形態の情報記録方法によれば、上述した実施形態の情報記録装置の場合と同様に作用し、最終的には、上述した実施形態の情報記録媒体における記録層に対し好適に、例えばコンテンツ情報、ユーザ情報等の記録すべき情報を、チルト補正等の特定種類の処理の施行下で高精度に且つ高密度にて記録可能となる。
(情報再生装置)
<15>
 本実施形態の情報再生装置は上記課題を解決するために、上述した実施形態の情報記録媒体(但し、その各種態様を含む)から、データを再生する情報再生装置であって、前記ガイド層に前記パターン信号を検出するための第1光ビームを照射し且つ集光することが可能であると共に前記複数の記録層のうち一の記録層にデータ再生用の第2光ビームを照射し且つ集光することが可能である光照射手段と、前記ガイド層からの前記照射され且つ集光された第1光ビームに基づく第1光を受光し、該受光された第1光に基づき、前記目印情報により前記後に来る旨が示される前記複数の信号検出用領域の各々にて前記パターン信号を検出する信号検出手段と、前記検出されたパターン信号に基づいて前記光照射手段について特定種類の処理を施す処理手段と、前記処理が施された状態で、前記一の記録層からの前記照射され且つ集光された第2光ビームに基づく第2光を受光し、該受光された第2光に基づき前記データを取得するデータ取得手段とを備える。
 本実施形態の情報再生装置によれば、例えば二種類の半導体レーザを含む光ピックアップである光照射手段により、ガイド層に対して、第1光ビームが照射され且つ集光される。第1光ビームは、前述の如く、例えば赤色レーザ光ビームの如くスポット径が相対的に大きい光ビームであってよい。即ち、相対的に大きく、複数トラックに渡って照射されるような大きな光スポットを形成するような太い光束の光ビームであっても構わない。
 すると、第1光ビームに基づく、ガイド層からの反射光、散乱光、屈折光、透過光等である第1光が、受光手段により、受光される。
 続いて、この受光された第1光に基づき、信号検出手段により、例えばガイド情報の一部からなる、目印情報により後に来る旨が示される信号検出用領域にて、パターン信号が検出される。
 なお、再生時に、パターン信号を検出するための第1光ビームは、トラッキング用の光ビームと兼用でよい。即ち、第1光ビームは、ガイド層におけるトラッキング用と共に、パターン信号の検出用に用いられてもよい。
 或いは、再生時には、記録時とは異なり、第1光ビームは、パターン信号を検出するために利用され、トラッキング用には、利用されないでもよい。この場合、第2光ビームにより、記録層における記録済の記録情報の配列或いは連なりからなる情報トラックに対してトラッキングが行われればよい。即ち、再生時には、第1光ビームをパターン信号検出用に利用すると共にトラッキング用には、第2光ビームを利用し、記録時には、第1光ビームをトラッキング用にも利用するという、記録及び再生の別に応じて、光ビームを使い分けるように情報再生装置を構築することも可能である。
 続いて、この検出されたパターン信号に基づいて、光照射手段について特定種類の処理が、処理手段により施される。
 このように特定種類の処理が施された状態で(例えば、チルトサーボがロックされた状態や、チルト補正が施されている最中に)、例えばプロセッサ等のデータ取得手段による制御下で、第2光ビームが、光照射手段により、所望の記録層に照射され且つ集光される。第2光ビームは、情報記録の高密度再生を狙って、前述したように例えば青色レーザ光ビームの如くスポット径が相対的に小さい光ビームであってよい。
 すると、一の記録層において、記録済情報が再生されることになる。
 このように、上述した実施形態の情報記録媒体における記録層に対から好適に、例えばコンテンツ情報、ユーザ情報等の記録済情報を、チルト補正等の特定種類の処理の施行下で高精度に且つ高密度にて再生可能となる。
(情報再生方法)
<16>
 本実施形態の情報再生方法は上記課題を解決するために、上述した実施形態の情報記録媒体(但し、その各種態様を含む)から、前記ガイド層に前記パターン信号を検出するための第1光ビームを照射し且つ集光することが可能であると共に前記複数の記録層のうち一の記録層にデータ再生用の第2光ビームを照射し且つ集光することが可能である光照射手段を用いて、データを再生する情報再生方法であって、前記ガイド層からの前記照射され且つ集光された第1光ビームに基づく第1光を受光し、該受光された第1光に基づき、前記目印情報により前記後に来る旨が示される前記複数の信号検出用領域の各々にて前記パターン信号を検出する信号検出工程と、前記検出されたパターン信号に基づいて前記光照射手段について特定種類の処理を施す処理工程と、前記処理が施された状態で、前記一の記録層からの前記照射され且つ集光された第2光ビームに基づく第2光を受光し、該受光された第2光に基づき前記データを取得するデータ取得工程とを備える。
 本実施形態の情報再生方法によれば、上述した実施形態の情報再生装置の場合と同様に作用し、最終的には、上述した実施形態の情報記録媒体における記録層から好適に、例えばコンテンツ情報、ユーザ情報等の記録済情報を、チルト補正等の特定種類の処理の施行下で高精度に且つ高密度にて再生可能となる。
 本実施形態のこのような作用及び他の利得は次に説明する実施例から明らかにされる。
 以上説明したように、本実施形態に係る情報記録媒体によれば、ガイド層と複数の記録層とを備え、トラックには複数の信号検出用領域及び目印領域が配置されているので、チルト補正等の特定種類の処理の施行下で高精度の記録が可能となり、記録層において記録若しくは再生できるトラックピッチや記録線密度を高めることが可能となる。
 本実施形態に係る情報記録装置によれば、光照射手段と信号検出手段と処理手段とデータ記録制御手段とを備え、本実施形態に係る情報記録方法によれば、信号検出工程と処理工程とデータ記録制御工程とを備えるので、上述した実施形態の情報記録媒体における記録層に対し好適に、例えばコンテンツ情報、ユーザ情報等の記録すべき情報を、高精度に且つ高密度にて記録可能となる。
 本実施形態に係る情報再生装置によれば、光照射手段と信号検出手段と処理手段とデータ取得手段とを備え、本実施形態に係る情報再生方法によれば、信号検出工程と処理工程とデータ取得工程とを備えるので、上述した実施形態の情報記録媒体における記録層から好適に記録済情報を高密度にて再生可能となる。
 以下、図面を参照しながら、本発明の各種実施例について説明する。尚、以下では、本発明に係る情報記録媒体を、多層記録型の光ディスクに適用した例について説明する。
<情報記録媒体の実施例>
 初めに、図1から図13を参照して、本発明に係る情報記録媒体の一例である多層記録型の光ディスクの実施例について説明する。
 先ず、図1~図5を参照して、本実施例に係る光ディスク11の基本構成(主に物理的な構造)及び基本原理について説明する。
 図1において、光ディスク11は、多層記録型であり、単一のガイド層12と複数の記録層13とを備える。ここに図1は、図中左半面に図示された一枚の光ディスク11を構成する複数の層を、図中右半面にて、その積層方向(図1中、上下方向)について相互に間隔をあけて分解することで、各層を見易くしてなる模式的な斜視図である。
 光ディスク11に対しては、その記録時に、トラッキングサーボ用であると共に本発明に係る「第1光ビーム」の一例たる第1ビームLB1と、情報記録用であると共に本発明に係る「第2光ビーム」の一例たる第2ビームLB2とが同時に照射される。その再生時に、第1ビームLB1と、情報再生用である第2ビームLB2とが同時に照射される。なお、情報再生時には、第2ビームLB2を、トラッキングサーボ用であり且つ情報再生用である、単一の光ビームとして利用すること(即ち、第1ビームLB1を使用しないこと)も、可能である。
 光ディスク11はCLV方式であり、同心円状又は螺旋状のトラックTRに予め記録されており、情報記録時又は再生時に検出されるトラッキングエラー信号(或いはその元となるウォブル信号)、アドレス情報(或いはその元となるプリピット信号)等は、CLV方式に準拠してトラックに沿って配列されている。図1中、右半面に示されているように、第1ビームLB1は、ガイド層12に集光され、トラックTR(即ち、ガイドトラック)を追従するように、トラッキング制御される。
 図2に示すように、第2ビームLB2は、ガイド層12上に積層された複数の記録層13のうち記録対象又は再生対象たる、所望の一つの記録層13に集光される。第2ビームLB2は、例えばBR(ブルーレイ)ディスクと同じく比較的小径の青色レーザビームである。これに対して、第1ビームLB1は、例えばDVDと同じく比較的大径の赤色レーザビームである。第1ビームLB1により形成される光スポットの径は、第2ビームLB2により形成される光スポットの径と比べて、例えば数倍程度となる。
 複数の記録層は、例えば16層など、各々に独立して情報を光学的に記録可能、更に再生可能となるように構成される。より具体的には、複数の記録層13は夫々、例えば、2光子吸収材料を含む半透明の薄膜から構成される。例えば、2光子吸収材料としては、2光子吸収が起こった領域の蛍光強度が変化する蛍光物質を用いる蛍光タイプ、電子の局在化によって屈折率が変化するフォトリフラクティブ物質を用いる屈折率変化タイプなどが、採用可能である。屈折率変化タイプの2光子吸収材料としては、フォトクロミック化合物やビス(アラルキリデン)シクロアルカノン化合物などの利用が有望視されている。
 2光子吸収材料を利用した光ディスク構造としては、(i)光ディスク11の全体が2光子吸収材料からなるバルク型と(ii)2光子吸収材料の記録層及び別の透明材料のスペーサ層を交互に積層した層構造型とがある。層構造型は、記録層13及びスペーサ層間の界面で反射される光を利用してフォーカスサーボ制御が可能となる利点がある。バルク型は、多層成膜工程が少なく、製造コストを抑えられる利点がある。
 記録層13の材料としては、第2ビームLB2の波長及び強度の少なくとも一方に応じて感応し、屈折率、透過率、吸収率、反射率などの光学特性が変化することで、記録可能であると共に、安定な材料であればよい。例えば、光重合反応を生じるフォトポリマー、光異方性材料、フォトリフラクティブ材料、ホールバーニング材料、光を吸収して吸収スペクトルが変化するフォトクロミック材料など、透光性或いは半透明の光感応材料が、考えられる。例えば、記録層13としては、波長650nmの第2ビームLB2(即ち、青色レーザ光)に感応すると共に波長λ1(λ2<λ1)の第1ビームLB1に感応しない相変化材料、2光子吸収材料などが用いられる。
 複数の記録層13は夫々、上述の2光子吸収材料、相変化材料以外にも、例えば色素材料等であってもよい。複数の記録層13は夫々、未記録状態では、トラックTRは予め形成されておらず、例えば全域が鏡面或いは凹凸のない平面とである。
 このような複数の記録層13がガイド層12上に積層された光ディスク11に対し、少なくとも情報記録時には、光ピックアップが有する共通の対物レンズ102Lを介して、これらの径及び焦点深度が相異なる第1ビームLB1及び第2ビームLB2が、ほぼ又は実践上完全に同軸的に照射される。
 図1及び図2において、第2ビームLB2についてのトラッキング動作は、(特に記録時には記録層13上に何らのトラックも存在しないので)第1ビームLB1によるガイド層12のトラックTRに対するトラッキング動作により、間接的になされる。即ち、第1ビームLB1と第2ビームLB2とは、対物レンズ102L等の共通の光学系(言い換えれば、照射される光ビーム間の位置関係が固定された光学系)を介して、照射される。このため、第1ビームLB1の光ディスク11の面内における位置決めが、そのまま第2ビームLB2の光ディスク12の面内(即ち、各記録層13の記録面内)における位置決めとして、利用できる訳である。
 ガイド層12のトラックTRには、トラッキングエラー信号(或いはその元となるウォブル信号などのトラッキングエラーを発生させるための信号)及びプリピット信号を担持する物理構造を夫々有する、複数のサーボ用領域を兼ねる目印領域が、配置されている。ここに、トラッキングエラー信号及びプリピット信号は、本発明に係る「目印情報」及び「ガイド用のガイド情報」の一例を構成する。複数のサーボ用領域を兼ねる目印領域は、本発明に係る「目印領域」及び「複数のガイド領域」の一例を構成している。
 ここで図3~図5を参照して、ガイド層12の物理的な構造について詳述する。図3~図5は夫々、ガイド層12におけるウォブリングが施されたトラック部分を抜粋して拡大表示している。特に、図3は、実施例における単にウォブリングが施されたトラック部分を示し、図4は、各トラックの全域に渡って隙間無くグルーブ及びランド等が作り込まれた比較例における、ガイド層12のトラック部分を示す。図5は、実施例における「ウォブル及び一部切欠き構造」を有すると共にウォブリングが施されたトラック部分を示す。
 図3に示すように、ガイド層12には、図1におけるトラックTRの具体例に相当する、グルーブトラックGT及びランドパートLPが形成されている。グルーブトラックGT及びランドパートLPは、例えば光反射性の材料からなる薄膜である反射膜12aが、凹凸溝が形成された基材としての透明膜12c上に成膜され、更に保護膜としての透明又は不透明な膜12bで埋められることで形成される。図3中で上側に位置する基材としての透明膜12cに掘られた溝という意味で、グルーブトラックGT或いはグルーブは、図2中で、上側に凸状に形成されている。或いは逆に、グルーブトラックGT及びランドパートLPは、反射膜12aが、凹凸溝が形成された基材としての透明又は不透明な膜12b上に成膜され、更に保護膜としての膜12cで埋められることで形成される。
 グルーブトラックGT及びランドパートLPは、ウォブルWBを側壁に有する。言い換えれば、グルーブトラックGT及びランドパートLPは、側壁がトラック方向に沿ってウォブリング(蛇行)するように形成されている。
 図3において、グルーブは局所的にのみ設けられているが、一点差線で示した各グルーブトラックGT及びランドパートLPは、記録後に記録層13(図1参照)が有することになる記録情報がなす記録済情報トラックのトラックピッチに対応するトラックピッチで配置されている。ここで、既にガイド層12のトラックTRに沿って記録済である、トラックTRに沿った記録情報の記録層13上における配列を、以下適宜、単に「記録済情報トラック」と呼ぶ。情報記録済トラックは、物理的には、記録時に第2ビームLB2の照射により記録層13の記録面に形成された、蛍光強度が変化した部分、屈折率が変化した部分、相変化部分、色素変化部分などの、ガイド層12のトラックTRに沿った一連のつらなりと言える。即ち図3中では、グルーブが何ら形成されていないグルーブトラックGTについても、所定頻度でトラッキングエラーを発生可能な頻度にてグルーブが形成されている。即ち、図3に図示されていない径方向位置及びトラック方向位置においては、グルーブトラックGT上にグルーブが適宜に形成されており、周回に渡って何らのグルーブが形成されていないグルーブトラックGTは、基本的に存在しない。
 図4において、比較例では、記録後に記録層13(図1参照)が有することになる記録情報がなす記録済情報トラックのトラックピッチに対応するトラックピッチで、トラック方向及び径方向の全域に渡って、グルーブ及びランドが形成されている。伝統的なDVD、BRディスク等では、グルーブトラックGTは、記録層がガイド層を兼ねているために又は記録層の記録済情報トラックとガイド層のガイドトラックとが一対一対応しているために、ガイド層についても、図4の比較例の如く構成されている。
 これに対して、図3の具体例では、グルーブは、グルーブトラックGT上において、トラック方向に沿っての全域に渡って形成されていない。グルーブは、径方向についても、相互に隣接するグルーブトラックGT上に形成されていない。
 なお図5に示すように、ガイド層12(図1参照)に設けられるランドパートLPには、一部切欠き構造からなるランドプリピットLPP11が作り込まれてもよい(なお、図4の比較例にも、ランドプリピットLPP1が作り込まれている)。切欠きとは、一つのトラック幅に渡って切り欠かれてなる、トラックピッチと同じ幅を有するピットである。
 或いは、ランドパートLPには、狭義のランドプリピットLPP1が作り込まれてもよい。狭義のランドプリピットとは、図5で示した切欠き構造とは異なり、トラック幅よりも狭い幅を有する、位相ピットなどのピットである。
 加えて、図5中では、プリピットが何ら形成されていないランドパートLPについても、適宜に、プリピットが形成されてもよい。
 次に図6及び図7を参照して、ガイド層12における、グルーブ領域、目印領域、及びパターン領域という三つの領域の物理的な構成について詳細に説明する。
 図6に示すように、ガイド層12には、「領域1」として、グルーブ領域21と、「領域2」として、「サーボ用領域」を兼ねると共に検出パターンの目印情報を発生可能な目印領域22と、「領域3」として、チルト検出信号を発生可能な所定パターン23aを持つパターン領域23とが配置されている。
 図7に示すように、ガイド層12上では、7本の隣接するトラックTRが一つのグループGRとされ、それらの中央のトラックが、チルト検出用のセンタートラック23TRとされている。目印領域22及びパターン領域23は、センタートラック23TR上に相前後して配列されている。なお、目印領域22は、トラッキングエラー信号を検出するためのガイド領域或いはサーボ用領域としても機能するので、センタートラック23TR以外のトラックTRにも設けられている。パターン領域23は、7本の隣接トラックTR(即ち、1つのグループGRを構成する7本のトラックTR)に跨る所定パターン23aを有する。
 図6において、グルーブ領域21は、本発明に係る「緩衝領域」の一例であり、ストレートグルーブを有する領域である。グルーブ領域21は、トラック方向に、複数の目印領域22の各々における先頭部の前と最後部の後ろに夫々隣接配置されている。
 グルーブ領域21における緩衝作用によって、情報記録時等にサーボ系において、目印領域22からの信号検出に対する準備期間が与えられる。特に、情報記録時においてトラッキングオンの状態で、第1ビームLB1を目印領域22に突入させられる。即ち、目印領域22の先頭側に配置されるグルーブ領域21が、トラッキングサーボを安定動作させるために極めて効果的な準備期間を与えてくれる。
 図6及び図7において、目印領域22は、図3~図5に示した如き、ウォブル構造やプリピット構造が予め作り込まれる領域、即ちトラッキングエラー信号やプリピット信号を検出可能な領域である。目印領域22は、トラック方向(図6中、左右方向)に、相互に、予め設定された所定距離又はそれ未満の距離を、配置間隔(即ち配置ピッチ)として離散的に配置されている。しかも、複数の目印領域22は、径方向(即ち図6中、上下方向)に、相隣接する複数のトラックTRに渡って、該複数のトラックTR間で積極的に或いは能動的に左右に(即ちトラック方向に沿って)ずらされて配置されている。
 目印情報は、センタートラック23TR上にて、パターン領域23の直前に配置されており、そのパターン領域23が直後に来る旨を示す。よって、記録時又は再生時に、先ず目印領域22にて目印情報が検出されると、その後遅延無くパターン領域23のパターン信号が到来することが判明する。或いは、目印情報は、センタートラック23TR上にて、後に来るパターン領域23をサンプリングするべきタイミング又は後に来るパターン領域23のトラック方向に沿って内周から外周又は外周から内周へ向うアドレス位置を示す。よって、記録時又は再生時に、先ず目印領域22にて目印情報が検出されると、その後、どのタイミングで又はどのアドレス位置にて、パターン信号が到来するかが判明する。
 仮に、第1光ビームが、複数のトラックからなる1つのまとまったセンタートラック上にいない場合は、パターン領域23内では、プッシュプル信号で検出されたウォブル信号がオフセットを持って検出される。よって、第1光ビームがセンタートラック23TR上にあるか否かが認識できる。
 図6及び図7において、パターン領域23は、本発明に係る「信号検出用領域」の一例であり、センタートラック23TR(図6中、左右に延在する一点鎖線で示されたトラック)にて、特定種類のパターン信号が検出可能なように、径方向(図6中、上下方向)に相隣接する7本のトラックに跨る一まとまりの所定パターン23aを有する。
 逆に、センタートラック23TR以外のトラック部分については、その直上に第1光ビームによる第1光スポットLS1の中心が乗っている機会にも、敢えて、パターン信号の検出対象から除外されている。
 パターン領域23は、トラック方向(図6中、左右方向)に離散的に配置されており、径方向(図6中、上下方向)にも離散的に配置されている。このため、光ビームのスポットが相隣接する7本のトラックに跨るまでトラック密度を高めても、検出されるパターン信号のクロストークにより、パターン信号が検出不能となってしまう事態が回避可能となる。
 パターン信号として、チルトエラー信号などのチルト検出信号が発生可能なように、所定パターン23aを予め作り込んであるので、チルト発生時に、チルト検出信号における大きな信号変化が得られる。
 所定パターン23aは、局所的な凹凸をなす短く切り欠かれたグルーブやランド、或いはグルーブトラック又はランドトラックに形成された短いピットやエンボス或いはエンボスピットの複数片から形成されている。例えば、7本のトラックに跨る場合には、片側に5個ずつで両側あわせて10個のエンボスピット等の集合などから構成される。所定パターン23aは、光スポットLS1の外輪形状に概ね適合するように形成されており、明環LS1aが発生した場合に、概ねそれに沿うことになる形状を有する。所定パターン23aにウォブルが組み合わされていてもよい。
 なお、パターン領域23における所定パターン23aは、チルト検出信号以外にも、ディスクの偏心補正用の偏心信号、ディスク面の傾き補正用の傾き信号、光学系の収差補正用の収差信号、光ビームの位相差補正用の位相差信号、ゆがみの補正用のゆがみ信号、光吸収補正用の光吸収信号、ストラテジーの設定用のストラテジー信号など、各種の信号が、パターン信号として検出されるように構成されてよい。
 ここで、チルト検出信号に基づくチルト補正を実行可能とするといった特定目的は、いずれかのトラックTRにてチルト検出信号を検出可能とする必要があるにせよ、チルト検出信号を全てのトラックTRに連続して形成しなくても、達成可能である。即ち、チルトサーボをロックしておく期間毎に一度ずつ、チルト検出信号が検出されるといったように、チルト補正を行う頻度或いは期間に応じて、チルト検出信号が検出されれば、上記特定目的は達成可能である。
 よって、一方で、1つのGRのトラック7本おきに、チルト検出信号が取得できれば、チルト補正を実行可能である。他方、トラックTRに沿った領域については、多少の間隔を空けて或いはいずれかの位相(例えば、ディスク上の角度)をおいて、チルト検出信号が取得できれば、チルト補正を実行可能である。結局、1つのグループGRの7本おきに、それらを代表するセンタートラック23TRにて、チルト検出信号が断続的に得られれば、十分ということになる。
 本実施例では、第1ビームLB1(例えば、赤色レーザ)が、第2ビームLB2(例えば青色レーザ)に比べてビーム径が大きいことが、第1ビームLB1を用いて、1つのグループGRを構成する7本のトラックTRに跨る一まとまりの所定パターン23aを検出するのに、極めて好都合となっている。
 このようにチルト検出パターンを有するパターン領域23については、自由度のある配置が可能である。加えて、チルト検出信号以外のパターン信号を、チルト補正以外の処理に対応させて設けることで、チルト補正と共に他の処理を並行して或いは適宜に実行することも可能となる。
 しかも本実施例では特に、パターン領域23の、トラック方向におけるセンタートラック23TRの前に、パターン領域23が後に来る旨を示す目印情報を担持する目印領域22が、配置されている。目印情報は、目印領域22内に離散的に作り込まれたウォブルやプリピットなどに応じたウォブル信号やプリピット信号などにより再生される情報である。
 このため、チルト検出信号の読み込みを、目印情報の到来を元に、簡単にして確実に実行可能となる。例えば目印情報の検出後にチルト検出信号の検出開始準備や、更にチルト検出信号に基づくチルト補正の開始準備を始めることが可能となる。例えば、チルト検出信号と目印情報との位相関係や間隔を予め規定しておくことで、目印情報から、チルト検出信号を検出するべきサンプリングタイミングを容易にして特定可能となる。或いは、目印情報にチルト検出信号が記録されているアドレス位置を持たせておけば、チルト検出信号を検出すべきサンプリングタイミングを容易にして特定可能となる。
 本実施例では、トラックTR上におけるチルト検出信号のトラック方向の長さと、記録層13に夫々記録されることになるデータのフォーマットにおける、例えばECCブロック、RUB(Recording Unit Block)、ADIP単位の如き、構成単位のトラック方向の長さとが、所定の整数比となるように構成するとよい。このようにすると、チルト検出信号の発生頻度と、トラックTRに対応する記録面内位置における記録層13にデータを記録する周期とを、半径位置に寄らずに或いはトラック位置に寄らずに、一定の関係に維持することが容易となる。特にCLV方式を採用する場合、径位置によって、角速度が変化するにも拘らず、任意の径位置にて、検出されたチルト検出信号に基づき安定したチルト補正が実行可能となる。また、ゾーンCAV方式を採用する場合にも、ゾーン毎に問題なく、検出されたチルト検出信号に基づき安定したチルト補正が実行可能となる。
 次に図8及び図9を参照して、ガイド層12における、目印領域22及びパターン領域23の具体的なデータ構成について詳細に説明する。
 なお、この例では、目印領域22及びパターン領域23に記録されている信号は、スロットの単位で配置されている。ここに「スロット(Slot)」とは、トラックTRがトラック方向に区分されてなる論理的な区画若しくは区分、又は物理的な区画若しくは区分である。スロットは、典型的には、トラック方向に隙間無く連続して配列されており且つ径方向にも隙間なく或いは相隣接して配列されている。この場合、トラッキングサーボ、チルトサーボ等の制御をガイド層12にて間接的に行うことから、記録層13におけるデータフォーマットも、スロットと一定の関係をもつようにすると制御が容易となる。
 図8は、ガイド層12における、目印領域22及びパターン領域23におけるプリフォーマットの一具体例を示す。
 図8において、1つのRUBは、BD-R(Blue ray Disc-Recordable:一回記録可能なブルーレイディスク)のフォーマットに相当して構成されている。
 具体的には、1つのRUBは、物理的には、(248×(2×28))個の物理クラスター(Physical Cluster)から構成され、論理的には、三つのADIPワード(ADIP word NO.1~NO.3)から構成される。
 1つのADIPワードは、83個のADIP単位(ADIP units)から構成される。1つのADIP単位は、56wbl(ウォブル)から構成され、これは2つの記録フレーム(Recording frame)に相当する。記録されるデータは、15個のコードワード(code word)、即ち9nibbles(ニブル)の単位となる。従って、1つのRUBは、13944ウォブルに相当する区間となる。
 1RUBに含まれる、6個の(即ち、No.1~No.6の)サーボマークワード(サーボマークWord)は夫々、86個の(即ち、A1~A86の)サーボマークサブユニット(サーボマークsub unit)を含む。各サーボマークワードの先頭には、ゼロユニット(Zero unit)が配置されている。
 更に各サーボマークサブユニットは、7つのスロットから構成されており、最初の5つのスロット(A Slot)が、サーボマーク用スロットに割り当てられ、これに続く2つのスロット(B Slot)がチルト検出用に、図中「領域2」として示される目印領域22と、図中「領域3」として示されるパターン領域23とに、割り当てられる。
1つのサーボマークサブユニットは、5個のA Slotと2個のB Slotの合計7スロットに相当するので、合計で、9×7=63wblから構成されている。
 よって、本例では、1つのRUBの長さは、2{(63×73)×3+(49×3)}=13944より、13944wblに相当している。また、本例では、各スロットの先頭に位置する1つのウォブルの長さDは、D=1wbl>1.2μm(光スポットの最大径)とされている。
 このように1RUB単位での構成例によれば、他の記録層13への記録データフォーマットが、例えばBD-Rフォーマット準拠であるとした場合、目印領域22に設けるウォブルの周期は、記録層13のデータフォーマットの構成単位と所定の整数比の関係にある。パターン領域23の区間及び配置する位置も、ウォブルの周期と所定の関係になるように配置されている。このため、目印領域22の目印領域から検出したウォブル信号から、パターン領域23の所定の位置を特定できる。よって、後述の記録再生装置が、特定パラメータ検出エラー検出をサンプルするタイミングを容易に作成することができる
 図9において、図8の「領域2」に相当する目印領域22には、目印情報として、スロット単位でウォブルが形成されている。サンプルサーボマーク300Sも、目印領域22における図中左側の領域(サーボ用領域を兼ねる目印領域22)に広く分散される形で、各トラックTR(Track1~Track7)に、トラック方向(図9中、左右方向)に離散的に且つ径方向(図中、上下方向)に2トラック分の間隔を隔てて、スロット単位で形成されている。
 図9において、図8の「領域3」に相当するパターン領域23には、パターン信号として、チルト検出用パターンがスロット単位で形成されている。パターン領域23内では、チルト検出用パターンとして、7本のトラックに跨る形で一つのパターンが構築されている。図中、右下に矩形内に示されたパターン領域23として示されるように、本例では、目印領域22の直ぐ後に、光スポットLS1の外輪円周の上半分(明環LS1a)をカバーするパターンが形成され、それに続いて若干の距離を隔てて、光スポットLS1の外輪円周の下半分(明環LS1a)をカバーするパターンが形成されている。これらの二つのパターンから、一つのチルト検出パターンが構築されている。
 図8及び図9において、目印領域22におけるウォブルの周期は、記録層13に記録されるデータフォーマットの構成単位と所定の整数比の関係にする。本実施例では、目印領域22:1RUB=9:13944×2に設定される。目印領域22とパターン領域23の関係も所定の整数比とする。本実施例では、目印領域22:パターン領域23=1:1とされている。
 目印情報は、パターン領域23のセンタートラック23TRの直前の目印領域22に配置される。なお、目印情報を、パターン領域のアドレス位置やサンプリングタイミング或いは到来タイミングを示すように構成すれば、パターン領域23のセンタートラック23TRの直前に限らず、図9中、サンプルサーボマーク300Sが配置されているいずれの位置に配置されることも可能である。
 パターン領域23は、7トラックを一つのグループGRとして、センタートラック23TRにおいて、所望のチルトエラーが検出可能なように、パターン領域23の所定の特定パラメータ検出パターンが形成されている(図9参照)。このため、パターン領域3のセンタートラック23TRを追従すると、その位置での所定の特定パラメータ検出エラーが検出可能となる。
 図9において、複数トラックを1つのグループGRとする際に、そのトラック数は、トラックピッチ及び第1ビームLB1のビーム径及びピックアップに対してディスクが傾いた場合の第1ビームLB1のガイド層面上における拡がり等を考慮して決定された結果として、本実施例では7トラックとなっている。パターン領域23に作り込まれるチルト検出用パターンは、トラックTRに対して左右対称の検出となるので、一般的には、トラック数は奇数となる。
 このように目印領域22は、パターン領域23に属する7本のトラックTRのうち、特定パラメータ検出パターンによって、特定パラメータ検出エラーが検出可能なセンタートラックTRの、直前に配置されるので、読込みビームとしての第1ビームLB1が、特定パラメータ検出エラー検出可能なセンタートラックTRに位置していることが認識できる。よって、特定パラメータ検出エラー検出のサンプルタイミングを容易に作成することができる。
 他方、第1ビームLB1が、複数のトラックから成る1つのまとまったパターン領域23のセンタートラックTRにいない場合は、プッシュプル(Push-Pull)信号で検出されたウォブル信号がオフセットを持って検出されるので、第1ビームLB1が、センタートラックTRにいないことを認識できる。
 加えて、本実施例では、トラック方向及び径方向の双方について、離間したスロット内に、サンプルサーボマーク300Sを配置したので(図9参照)、第1ビームLB1でガイド層12のトラックTRを追従させながら、記録層13へデータを記録させる際、プッシュプル信号をサンプリングすることによって又は位相差法(DPD)により位相差信号をサンプリングすることによって、安定的に、連続したトラッキングエラー信号を生成することができる。例えば、左右の分割ディテクターからの差分であるプッシュプル信号の高域成分をLPF(Low Pass Filter)によって除去すれば、ウォブル成分及び不要な高域ノイズ成分を除去することが可能となる。ここで、偏心成分を含むトラッキングエラー信号を内周から外周に亘ってサンプルすることにより、連続して取得することが可能となり、記録層13へ記録する際のトラッキングエラー信号として利用できる。
 以上図1~図9にて詳細に説明したように、本実施例のトラック形成方法(図6参照)によれば、記録層13の記録済情報トラックが、内周から外周に向かって連続的に、螺旋状に形成されるように、記録済情報トラックに相当する位置に、例えば離散的に配置されたサンプルサーボマーク300S(図9参照)によりガイド層12のトラックTRが形成される場合に、目印領域22とパターン領域23とが、所定の位置又は間隔で、離散的に形成される(図7参照)。このため、後述の記録再生装置による特定パラメータ検出エラーの検出が、光ディスク11の全面のどこにおいても可能となる。この結果、各記録層13において記録若しくは再生できるトラックピッチや記録線密度(例えば、線記録密度、ピットピッチ或いは情報転送速度(即ち、記録線密度×移動速度))を、多層型の光ディスク11における本来の目的である「高密度記録」と言える程度にまで高めつつ、記録層13とは別のガイド層12におけるチルト検出信号の安定的且つ効率的な取得により、高精度のチルト検出、高精度のチルト補正の施行が可能となる。
<情報記録再生装置及び方法の実施例>
 次に、図10から図15を参照して、本発明に係る情報記録再生装置及び方法の実施例について説明する。
 図10において、記録再生装置101は、本発明に係る「情報記録装置」及び「情報再生装置」の一例たるディスクドライブとして構成されており、ホストコンピュータ201と接続されている。
 記録再生装置101は、光ピックアップ102、信号記録再生部103、スピンドルモータ104、バス106、CPU(ドライブ制御部)111、メモリ112、及びデータ入出力制御部113を備える。記録時には、光ピックアップ102が有する対物レンズ102L(図2参照)を介して、第1ビームLB1及び第2ビームLB2が照射され、再生時には、同じく対物レンズ102Lを介して、トラッキング用の光ビームを兼ねる第2ビームLB2のみ、又は、第1ビームLB1及び第2ビームLB2の両方が照射されるように構成されている。
 ホストコンピュータ201は、操作/表示制御部202、操作ボタン202、表示パネル204、バス206、CPU211、メモリ212、及びデータ入出力制御部213を備えて構成される。記録時には、記録すべきデータが、データ入出力制御部213から入力され、再生時には、再生されたデータが、データ入出力制御部213から出力されるように構成されている。
 光ピックアップ102は、第1ビームLB1を発する赤色半導体レーザと、第2ビームLB2を発する青色半導体レーザと、対物レンズ102Lを含む、プリズム、ミラー等から構成される合成分離光学系とを備える。光ピックアップ102は、共通の対物レンズ102Lを介して、第1ビームLB1及び第2ビームLB2を同軸的に且つ異なるフォーカスにて(図1及び図2参照)照射するように構成されている。
 更に、光ピックアップ102は、第1ビームLB1に起因する光ディスク11からの反射光を、対物レンズ102Lを介して受光する、二分割或いは四分割のCCD等の受光素子と、第2ビームLB2に起因する光ディスク11からの反射光を、対物レンズ102Lを介して受光する、二分割或いは四分割のCCD等の受光素子とを含んで構成される。光ピックアップ102は、第2ビームLB2を、記録時に相対的に高強度の記録用強度で変調可能であり、再生時に相対的に低強度の再生用強度に設定可能に構成されている。
 光ピックアップ102及び信号記録再生部103は、少なくとも記録時に、ガイド層12からの反射光を受光する受光素子からの受光信号により、例えばプッシュプル法又は位相差法(DPD)で、トラッキングエラー信号を生成し、更に、プリピット信号或いはアドレス情報を再生可能に構成されている。
 光ピックアップ102及び信号記録再生部103は、再生時に、記録層13からの反射光を受光する受光素子からの受光信号により、例えばプッシュプル法又は位相差法でトラッキングエラー信号を生成し、例えば全光量に対応する信号としてデータ信号を生成するように構成されている。
 或いは、光ピックアップ102及び信号記録再生部103は、再生時に、ガイド層12からの反射光を受光する受光素子からの受光信号により、トラッキングエラー信号を生成し、記録層13からの反射光を受光する受光素子からの受光信号により、データ信号を生成するように構成されている。
 メモリ112及びメモリ212は、(i)記録再生装置101におけるCPU111等の各要素、及びホストコンピュータ201におけるCPU211等の各要素を、次に説明する記録再生動作が行われるように制御するためのコンピュータプログラム、並びに(ii)記録再生動作に必要な、制御データ、処理中データ、処理済みデータなどの各種データを、バス106、バス206等を介して一時的又は恒久的に保持するのに適宜用いられる。
 本実施例では特に、記録再生装置101は、補正機構105を更に備える。補正機構105は、本発明に係る「処理手段」の一例であり、典型的には、チルト補正機構である。補正機構105は、チルト補正機構に加えて又は代えて、光ディスク11の偏心補正、ディスク面の傾き補正機構、光学系の収差補正機構、光ビームの位相差補正やゆがみの補正機構、光吸収補正機構、ストラテジーの設定機構など各種の補正機構であってよい。補正機構105により、ガイド層12から検出されたパターン信号(典型的にはチルト検出信号)に基づいて、光ピックアップ102について特定種類の処理(典型的にはチルト補正)が、施行される。例えば、チルト補正であれば、チルト検出信号が検出される都度に行われ、次にチルト検出信号が検出されるまでの期間は、チルトサーボがロックされる。
 ここで図11及び図12を参照して、記録再生装置101のうち、補正機構105で実施される補正に係る部分の詳細について説明を加える。
 図11において、補正機構は、LPF(ローパスフィルター)121、サンプル&ホールド&平滑化回路122、演算(減算)&積分&ホールド回路123、LPF131、ウォブル検出器(132)、発振器133、及びサンプルタイミング生成回路134を備える。
 先ず、LPF121及びLPF131には、光ピックアップ102の受光素子からのプッシュプル信号(Push‐pull信号)が夫々入力され、高域ノイズがカットされる。
 続いて、一方で、LPF131で高域ノイズがカットされた出力信号は、ウォブル検出器(132)により、ウォブル検出が行われ、検出されたウォブルに対応する周波数で発振器133における発振が行われる。
 図12に示した如く、ここでは、ディスクトラック形状におけるウォブルに対応する矩形波が、発振器133から出力される。
 図11において、この発振出力に応じて、サンプルタイミング生成回路134により、サンプルタイミング信号が生成される。図12に示した如く、サンプリングタイミング信号は、発振器133の出力パルスの中央に位置するサンプリングスイッチを閉じさせるための矩形パルスである。
 他方で、LPF121で高域ノイズがカットされた出力信号は、サンプル&ホールド&平滑化回路122によって、サンプリングされ、ホールドされ、更に平滑化される。この際、サンプリングのタイミングは、サンプルタイミング生成回路134により生成されたサンプルタイミング信号に従う。図12に示した如く、サンプルタイミング信号に従えば、パターン領域23から、パターン信号(例えば、チルト検出信号)をタイミングよく検出できる。
 サンプル&ホールド&平滑化回路122からのサンプル1及びサンプル2である、出力信号は、演算(減算)&積分&ホールド回路123により、減算され、積分され、更にホールドされる。この結果、例えば7本のトラックに跨って一つのパターンをなすパターン信号として又はこのように得られたパターン信号に基づいて、特定パラメータ検出エラー信号が生成される。
 特定パラメータ検出エラー信号が補正機構105に入力されると、その信号の値若しくは正負又は変調度合いなどの特性に応じて、補正機構105における駆動動作が行われる。例えば、チルト補正であれば、チルト補正用のアクチュエータにより、チルトエラーを小さくするように駆動が行われる。
 以下、図10に加えて、図13から図15を参照して、本実施例の記録再生装置101の各構成要素における構成及び動作を、記録再生装置101の全体動作と共に説明する。ここに図13は、情報記録再生装置101における、記録再生動作を示し、図14は、記録動作の一例の詳細を示し、図15は、再生動作の一例の詳細を示す。
 図13において、先ず、記録再生装置101に対し、ユーザによる手動又は機械動作により、上述した本実施例に係るフォーマットの光ディスク11が装着される(ステップS11)。
 すると、ユーザによる表示パネル204を見ての操作ボタン203上での操作などに応じた動作開始コマンドが、ドライブ側の操作/表示制御部202及びCPU111、並びにホスト側のCPU211等により発生される。この動作開始コマンドを受けて、信号記録再生部103による制御下で、スピンドルモータ104による光ディスク11の回転が開始される。これと相前後して、信号記録再生部103による制御下で、光ピックアップ102による光照射が開始される。更に、ガイド層12に対する読取用サーボ系が動作される。即ち、第1ビームLB1が照射され、ガイド層12に集光されて、トラッキング動作が開始される(ステップS12)。
 なお、この動作開始コマンドを含めた各種コマンド、ユーザデータや制御データを含む各種データの受け渡しは、ホスト側のバス206及びデータ入出力制御部213、並びにドライブ側のバス106及びデータ入出力制御部113を介して行われる。
 続いて、ガイド層12上で、第1ビームLB1によるトラックTRへの照射が続けられ、ウォブル信号及びプリピット信号(更に、これらの少なくとも一方からプッシュプル法又はDPD法で得られるトラッキングエラー信号)が、目印領域22から検出される。更に、これらの信号の少なくとも一方として予め記録されたディスク管理情報が、ドライブ側のCPU111又はホスト側のCPU211等により取得される。
 なお、ディスク管理情報は、ガイド層12における、最内周側に位置するリードイン領域、TOC(Table Of Content)領域などにまとめて、記録され読み出されてもよい。その内容は、既存のDVD、BRディスク等におけるディスク管理情報に準拠したものでよい。管理情報については別途、記録層に特別に設けられたリードイン領域、TOC領域などに予め若しくは別途先行して記録されており、これが本時点で又は任意の時点で読み出されてもよい。
 次に、ドライブ側のCPU111又はホスト側のCPU211等により、要求されている動作が、データ記録であるか否かが判定される(ステップS14)。ここで、データ記録である場合(ステップS14:Yes)、新規なる光ディスク11に対する記録処理が実行される(ステップS15)。この記録処理については、後に詳述する(図14参照)
 他方、ステップS14の判定にてデータ記録でない場合(ステップS14:No)、又はステップS15にて新規なる光ディスク11に対する記録処理が完了された場合、ドライブ側のCPU111又はホスト側のCPU211等により、要求されている動作が、データ再生であるか否かが判定される(ステップS16)。ここで、データ再生である場合(ステップS16:Yes)、新規なる光ディスク11に対する再生処理が実行される(ステップS17)。この再生処理については、後に詳述する(図15参照)。
 ステップS16の判定にてデータ再生でない場合(ステップS16:No)、又はステップS17にて新規なる光ディスク11に対する再生処理が完了された場合、イジェクト(Eject)、即ちトレイの排出などが、操作ボタン203等を介して要求されているか否かが判定される(ステップS18)。ここで、イジェクトが要求されていなければ(ステップS18:No)、ステップS14に戻って、再び、それ以降のステップが実行される。
 他方、ステップS18の判定にてイジェクトが要求されている場合に(ステップS18:No)、イジェクト動作が実行され(ステップS19)、光ディスク11に対する一連の記録再生処理が完了する。
 次に図14を参照して、新規の光ディスク11に対する記録処理(図15のステップS15)の一例について、説明する。
 図14において、記録処理が開始されると、先ず、CPU111及び信号記録再生部103による制御下で、ガイド層12上において、第1ビームLB1によるトラックTRへの照射が続けられたまま(即ち、トラッキング動作が実行されたまま)、ウォブル信号及びプリピット信号が、目印領域22から検出される。これにより、CPU111等により、トラックTR上におけるアドレス情報が取得される。このアドレス情報を参照することで、CPU211等により、データの記録を開始すべきアドレスとして指定された、所望の記録アドレスがサーチされる。即ち、第1ビームLB1がそのアドレス位置へと移動される。このサーチ動作により、光ピックアップ102内にて対物レンズ102L等の光学系を第1ビームLB1と共通する第2ビームLB2も(図1及び図2参照)、記録層13上でそのサーチされた記録アドレスに対応する記録面内における平面位置へと移動される(ステップS21)。
 続いて、CPU111及び信号記録再生部103による制御下で、光ピックアップ102によって、データを記録すべき所望の記録層13へと、第2ビームLB2のフォーカスサーボがかけられる(ステップS22)。
 続いて、光ピックアップ102によって、第2ビームLB2のフォーカスサーボが閉じられた状態で、第1ビームLB1によるトラックTRに対するトラッキングサーボが継続される。即ち、ガイド層12に対するトラッキングサーボにより、所望の記録層13に対するトラッキングサーボが間接的に行われる(ステップS23a)。
 続いて、特定パラメータ検出結果に基づいて補正機構105にて、補正が行われる(図11及び図12参照)。この補正は、チルト検出信号などのパターン信号の検出に応じて断続的に又は定期的若しくは不定期的に行われる。例えば、チルト補正であれば、チルトエラー信号に応じてチルト補正が行われ、補正後にチルトサーボがロックされ次の補正の機会が待たれる(ステップS23b)。
 このステップS23bにおける補正は、少なくとも部分的に、次のステップS23cにおける、データを記録する工程中に実行されてもよい。
 続いて、第2ビームLB2を、記録すべきデータ値に応じて変調しながら照射することで、所望の記録層13へのデータの記録が開始される(ステップS23c)。
 続いて、CPU111等により、所定量の記録が終了したか否かがモニタリングされる(ステップS24)。ここで、記録が終了しない限り、記録層13へのデータの記録が継続される(ステップS24:No)。
 ここで、記録が終了すると(ステップS24:Yes)、記録したデータに応じて、管理情報が更新される(ステップS25)。管理情報は、複数の記録層13の少なくとも一つに設けられたリードイン領域、TOC領域などにまとめて記録されてよい。その位置は内周側であってもよいが外周側や途中であってもよいし、多少分散された形で記録されてもよい。これに加えて又は代えて、メモリ112、メモリ212等内に設けられており、光ディスク11に紐付けられた管理情報が更新されてもよい。
 以上により、新規の光ディスク11に対する一連の記録処理(図13のステップS15)が完了する。
 次に図15を参照して、新規の光ディスク11に対する再生処理(図13のステップS17)の一例について、説明する。この例は、再生処理時に第1ビームLBがトラッキング等のために、用いられない例である。即ち、この例では、記録処理時と異なり、第2ビームLB2がトラッキング用にも用いられる。
 図17において、CPU111及び信号記録再生部103による制御下で、光ピックアップ102によって、データを再生すべき所望の記録層13へと、第2ビームLB2のフォーカスサーボがかけられ、これと相前後して或いは並行して、第2ビームLB2による記録済情報トラックへのトラッキングサーボがかけられる(ステップS31)。
 続いて、CPU111等により、記録済情報トラック上における記録済のアドレス情報が取得される。このアドレス情報を参照することで、CPU211等により、所望のデータの再生を開始すべきアドレスとして指定された、所望の再生アドレスがサーチされる。即ち、第2ビームLB2がそのアドレス位置へと移動される(ステップS32)。
 続いて、特定パラメータ検出結果に基づいて補正機構105にて、補正が行われる(図11及び図12参照)。この補正は、チルト検出信号などのパターン信号の検出に応じて断続的に又は定期的若しくは不定期的に行われる。例えば、チルト補正であれば、チルトエラー信号に応じてチルト補正が行われ、補正後にチルトサーボがロックされ次の補正の機会が待たれる(ステップS33a)。
 このステップS33aにおける補正は、少なくとも部分的に、次のステップS33bにおける、データを再生する工程中に実行されてもよい。
 続いて、光ピックアップ102によって、トラッキングサーボ及びフォーカスサーボが閉じられた状態で、第2ビームLB2に起因する反射光を、対物レンズ102Lを介して受光することで、所望の記録層13からのデータの再生が開始される(ステップS33b)。
 続いて、CPU111等により、所定量の再生が終了したか否かがモニタリングされる(ステップS34)。ここで、再生が終了しない限り、記録層13からのデータの再生が継続される(ステップ34:No)。
 ここで、再生が終了すると(ステップS34:Yes)、新規の光ディスク11に対する一連の記録処理(図13のステップS17)が完了する。
 以上図10~図15を参照して、詳細に説明したように、複数トラックを1つのグループGRとして、パターン領域を配置したので、そのまとまったトラック内で、自由な配置が可能となり、記録再生装置101にて検出可能な、チルトエラー検出点等の特定パラメータ検出点の配置の自由度が確保できる。一つのパターン領域23と隣接する他のパターン領域23とは、独立しているので、相互に無関係にチルト検出パターン等の特定パラメータ検出パターンの配置が可能で、光ディスク11の全面に亘って、全体としても、自由度のある配置が可能となる。
 ガイド層12として、高密度化された複数のトラックTRを同時に読込む記録再生装置101にとって、同時に読込む複数のトラックTRを1つのグループGRとしてパターン領域3が配置されているので、この形式での配置は、読込みが簡単で、極めて好都合な配置を実現できる。
 更に、ガイド層12においてグルーブをウォブルすることにより、目印領域22としたので、記録再生装置101によって、目印領域22にて検出したウォブル信号により、パターン領域23の正確な位置が把握でき(図11及び図12参照)、検出したエラー信号サンプルタイミングを容易に生成することができる。この際特に、目印領域22のウォブルの周期と、パターン領域23の区間とを、所定の整数比の関係にしたので(図8参照)、サンプルタイミングを容易に生成することができる。
 以下、実施例の各種変形例について図16から図57を参照して説明する。
<変形例その1>
 上述の実施例では、目印領域22を、トラックTRをウォブルすることにより実現しているが、変形例では、目印領域22に予め記録しておく目印情報を、サンプルサーボマークと兼用する。又は、アドレス情報等のデータをプリフォーマットデータとして配置しておくことが一般的である場合、変形例では、チルト検出位置情報が、アドレスデータ或いは他の形式のデータとして、アドレス情報と共に予め記録されており、記録時や再生時に、パターン信号或いはチュルト検出信号の記録位置が、このチルト検出位置情報により特定される。
 目印領域22をサンプルサーボマークと兼用することによって、効率的な配置が可能となる。特に、サンプルサーボマークをウォブルによって作成する場合には、PLL等によりタイミング生成をすることで、目印領域2をパターン領域23の直前に設ける必要はなくなる
 他方、アドレス情報と共に、チルト検出位置情報を記録しておけば、目印領域22を、パターン領域23の直前に設ける必要はなくなる 
 このように本変形例では、検出されるパターンの配置位置は、別の手段で提供でき、必ずしも、直前に目印を配置する必要がない。また、他のアドレス情報と共に情報取得ができる。
<変形例その2>
 図16及び図17に示す変形例は、パターン領域23の具体例に関する。
 図16において、複数のトラックTRに渡りチルト検出パターンが構成されており、チルト検出パターンは、複数のトラックTRと第1ビームLB1の第1明環位置の交点を含む近傍に(但し、チルト位置検出目標トラックと第1明環位置との交点は除いて)、チルト検出パターンが配置されている。
 より具体的には、以下の数式を満足する位置近傍を含んだ配置とするチルト検出パターンが配置されている。
X_position(n+i)
={(0.82×λ/NA)-(i×Tp)1/2/CBL、i=±1、±2、…
 ここで
λ  :第1ビームLB1の波長
NA :第1ビームの開口(開口数)
Tp :トラックピッチ
CBL:チャネルビット長
n  :チルト検出目標トラック
X_position(n+i):CBLで正規化したn+iトラックにおける第1明環位置の交点
である。また「0.82」は、光ディスク11の複数のトラックTR及び第1ビームLB1に、固有の第1明環位置の交点に係る比例定数である。なお、図16中、各トラック上に配置された○(白丸)は、CBLタイミング位置を示しております。
 図17は、本変形例において、光ディスク11の「外周側」にチルトが発生した場合における、パターン領域23内の所定パターン23aに対する光スポットLS1の状態2001を図中左半面に示し、光ディスク11の「内周側」にチルトが発生した場合における、パターン領域23内の所定パターン23aに対する光スポットLS1の状態2002を図中右半面に示している。実際の動作時には、チルトに応じて、状態2001又は状態2002が発生する。
 なお、図17中、トラック上の黒い微小部分が、複数のトラックに跨るパターンを構成する個々の構成要素である。図17中、左右のセンターが、X_position(n+i)=0となる位置に合わせられている。
 このように、パターン領域23内に、複数(即ち、本例では7本)のトラックTRに跨ってパターンを配置することにより、ディスクチルト検出が、確実に実行可能となる。
 ここで、本変形例(変形例その2)を前提として、図18~図21を参照して、ラジアルチルト検出パターンでの定性的な動作の説明を行う。なお、チルト検出パターンはマークまたは、ピットで形成されているものとする。
 図18に示すように、2分割ディテクター102Dで検出された光の光量差からラジアルプッシュプル信号(Radial Push-Pull信号、以下「Rad.PP信号」と呼ぶ)を得る。なお、ここでは、所定タイミングでサンプリングしたものをラジアルチルトエラー信号(Radial Tilt Error信号、以下「Rad.Tilt信号」と呼ぶ)としているが、サンプリングせずに積分するのでもよい。
 図18のディテクターにおいて、(A)チルトが無い場合、(B)内周側にチルト、(C)外周側にチルトの三つの状態について、センタートラック23TRをトレースしたときの夫々の模式図並びにこれらの状態に対応するRad.PP信号及びRad.Tilt信号を図19から図21に示す。
 図19に示すように、(A)チルトが無い場合には、センタートラックをトレースした時の2分割ディテクターでは、同等な光量が検出される。よって、Rad.PP信号は値“0”として出力される。よって、Rad.PP信号を所定タイミングでサンプリングするRad.Tilt信号も値“0”として出力される。
 図20に示すように、(B)内周側にチルトが発生した場合には、ガイド層への第1ビームにより、図中下側の半円領域にて明環LS1aが発生する。よって、第1ビームにてチルト検出パターン上のセンタートラックをトレースした時のRad.PP信号は、値“0”又は“-(マイナス)”の値として出力される。よって、Rad.PP信号を所定タイミングでサンプリングして得られるRad.Tilt信号は“-”の値として出力される。このRad.Tilt信号を用いて、チルト補正部にて補正が行われる。
 図21に示すように、(C)外周側にチルトが発生した場合には、ガイド層への第1ビームにより、図中上側の半円領域にて明環LS1aが発生する。よって、第1ビームにてチルト検出パターン上のセンタートラックをトレースした時のRad.PP信号は、値“0”又は“+(プラス)”の値として出力される。よって、Rad.PP信号を所定タイミングでサンプリングして得られるRad.Tilt信号は“+”の値として出力される。このRad.Tilt信号を用いて、チルト補正部にて補正が行われる。
 続いて、本変形例(変形例その2)を前提として、図22~図25を参照して、タンジェンシャルチルト検出パターンでの定性的な動作の説明を行う。なお、チルト検出パターンはマークまたは、ピットで形成されているものとする。
 特に、タンジェンシャルチルト検出は、図18~図21を参照して説明したラジアルチルト検出パターンと同じパターンで検出可能である。
 図22に示すように、2分割ディテクター102Dで検出された光の光量差からタンジェンシャルプッシュプル信号(tangential Push-Pull信号、以下「Tan.PP信号」と呼ぶ)を得る。なお、ここでは、所定タイミングでサンプリングしたものをタンジェンシャルチルトエラー信号(Tangential Tilt Error信号、以下「Tan.Tilt信号」と呼ぶ)としているが、サンプリングせずに積分するのでもよい。
 図22のディテクターにおいて、(A)チルトが無い場合、(B)進行前方側にチルト、(C)進行後方側にチルトの三つの状態について、センタートラック23TRをトレースしたときの夫々の模式図並びにこれらの状態に対応するTan.PP信号及びTan.Tilt信号を図23から図25に示す。
 図23に示すように、(A)チルトが無い場合には、センタートラックをトレースした時の2分割ディテクターでは、一定時間差を持って同等な光量が検出される。ビーム中心がパターン中心にあるときには、Tan.PP信号は値“0”として出力される。よって、Tan.PP信号を所定タイミングでサンプリングするTan.Tilt信号も値“0”として出力される(なお、積分してもTan.Tilt信号は値“0”として出力される)。
 図24に示すように、(B)進行前方側にチルトが発生した場合には、ガイド層への第1ビームにより、図中右側の半円領域にて明環LS1aが発生する。よって、第1ビームにてチルト検出パターン上のセンタートラックをトレースした時のTan.PP信号は、時間差による光量差だけでなく、チルトによる光量差も生じる。Tan.PP信号は、ビーム中心がパターン中心にある時、明環位置とパターン位置が一致し、その時点では値“0”又は“-(マイナス)”の値として出力される。よって、Tan.PP信号を所定タイミングでサンプリングして得られるTan.Tilt信号は“-”の値として出力される(なお、積分しても、Tan.Tilt信号は“-”の値として出力される)。このTan.Tilt信号を用いて、チルト補正部にて補正が行われる。
 図25に示すように、(C)進行後方側にチルトが発生した場合には、ガイド層への第1ビームにより、図中左側の半円領域にて明環LS1aが発生する。よって、Tan.PP信号は、図24に示した(B)の場合と逆の出力となり、Tan.Tilt信号は“+”の値として出力される。このTan.Tilt信号を用いて、チルト補正部にて補正が行われる。
 更に続いて、本変形例(変形例その2)を前提として、図26~図28を参照して、収差検出パターンでの定性的な動作の説明を行う。ここで特に、変形例その2で示したチルト検出が可能となるパターンは、収差(より具体的には球面収差)を検出することが可能である(即ち、兼用できる)。
 図26に示すように、収差検出のためには、2分割ディテクターの和信号(SUM信号)が用いられる。即ち、所定タイミングにより、SUM信号がサンプリングされてなる信号が、基準レベル(例えば、ミラー部の反射レベル)と比較されることで、収差エラー信号が生成される。
 図27に示すように収差が無い場合、ガイド層への第1ビームにより、円形の光スポットLS1が形成される。SUM信号は、検出パターンが、光スポットLS1内にあるときに、反射光量が低下するのに応じて、低下する。そして、所定タイミングにてサンプリングされた結果が比較され、収差エラー信号は“0”の値として出力される。
 図28に示すように収差がある場合、光スポットLS1には環状のエアリーパターンをなす明環LS1aが出現する。その結果、SUM信号は、図に示すように所定タイミング近傍エアリーパターンが特定検出パターン部上に合致し、SUM信号の低下となって観測される。よって、収差エラー信号は、基準レベルと比較されて“-”の値として出力される。
 以上、図16~図28を参照して、説明したように、特定パラメータ検出パターンにより、各種のエラー信号を生成することが可能となる。
<変形例その3>
 図29に示す変形例は、パターン領域23の具体例に関する。
 図29において、複数のトラックTRに渡りチルト検出パターンが構成されており、チルト検出パターンは、複数のトラックTRと第1ビームLB1の第1明環位置の交点を含む近傍(但し、チルト位置検出目標トラックと第1明環位置との交点は除いく)と、エアリーディスク外周部近傍との交点に、チルト検出パターンが配置されている。
 より具体的には、先の<変形例その1>で示した数式に加えて、以下の数式を満足する位置近傍を含んだ配置とするチルト検出パターンが配置されている。
E_position(n+i)
={(0.61×λ/NA)-(i×Tp)1/2/CBL、i=±1、±2、…
 ここで
λ:第1ビームLB1の波長
NA:第1ビームの開口(開口数)
Tp:トラックピッチ
CBL:チャネルビット長
n:チルト検出目標トラック
E_position(n+i):CBLで正規化したn+iトラックにおけるエアリーディスク境界
である。また「0.61」は、光ディスク11の複数のトラックTR及び第1ビームLB1に、固有のエアリーディスク境界に係る比例定数である。
 図29は、本変形例において、光ディスク11の「外周側」にチルトが発生した場合における、パターン領域23内の所定パターン23aに対する光スポットLS1の状態3001を図中左半面に示し、光ディスク11の「内周側」にチルトが発生した場合における、パターン領域23内の所定パターン23aに対する光スポットLS1の状態3002を図中右半面に示している。実際の動作時には、チルトに応じて、状態3001又は状態3002が発生する。
 このように、パターン領域23内に、複数(即ち、本例では7本)のトラックTRに跨ってパターンを配置することにより、ディスクチルト検出が、確実に実行可能となる。
<変形例その4>
 図30に示す変形例は、パターン領域23の具体例に関する。
 図30において、パターン領域23には、複数のトラックTRに亘りチルト検出パターンが構成されている。しかも、チルト検出パターンは、複数のトラックTRのうち、ディスク外周側と第1ビームLB1の第1明環位置との交点を含む近傍と、ディスク内周側と第1ビームLB1の第1明環位置との交点を含む近傍とに(但し、チルト位置検出目標トラックと第1明環位置との交点は除く箇所に)、別々に(即ち、相互に分断された一対をなす形式で)配置されている。
 このように構成しても、ディスクチルト検出が可能であり、しかも、サンプリング位置をチルト検出位置とずらすことで、オフトラック検出も可能となる。
<変形例その5>
 図31に示す変形例は、パターン領域23の具体例に関する。
 図31において、上述の変形例その2~変形例その4における、チルト検出パターンが、複数配置されている。特に、本変形例では、変形例その2における、チルト検出パターンが左右に連続して複数配置されている。
 このように構成すれば、SNR(Signal to Noise Ratio)に優れたディスクチルト検出が可能となる。
<変形例その6>
 図32に示す変形例は、パターン領域23の具体例に関する。
 図32において、上述の変形例その2~変形例その4における、チルト検出パターンが、複数配置されている。特に本変形例では、変形例その2における、チルト検出パターンが左右に連続して且つ上下に重ねられて複数配置されている。しかも、上下のチルト検出パターンは、左右に半パターンずつずらされることで、上下間に位置する斜めのパターン部分が上下のチルト検出パターンにより共用されている。
 より詳細には、複数の奇数mトラックに亘りチルト検出パターン6001が、構成されており、先ず、第1ビームLB1の第1明環位置の交点を含む近傍にチルト検出パターンが配置されている。更に、このようなチルト検出パターンがディスク円周上及び半径方向に複数配置されている。このため、チルト検出パターンは、(m-1)/2トラック離れた位置においても、チルト検出可能となるように共用できる配置とされている。
 このように構成すれば、SNRに、より優れたディスクチルト検出が可能となる。しかも、(m-1)/2毎にチルト検出することが可能となり、より一層のSNR向上に寄与する。
<変形例その7>
 図33に示す変形例は、パターン領域23の具体例に関する。
 図33において、上述の変形例その2~変形例その4における、チルト検出パターンが、複数配置されている。
 特に本変形例では、複数のトラックTRに亘り、チルト検出領域には、チルト検出パターンが構成されている。しかも、チルト検出領域には、第1ビームLB1の第1明環位置の交点を含む近傍から、これに隣接するチルト検出領域の第1明環位置の交点を含む近傍まで、チルト検出パターンが配置されている。但し、チルト位置検出目標トラックと第1明環位置との交点は除いてもよい。
 このように構成すれば、SNRに優れたディスクチルト検出が可能となる。
<変形例その8>
 図34~図36に示す変形例は、パターン領域23の具体例に関する。
 図34において、上述の変形例その2~変形例その4における、チルト検出パターンが、複数配置されている。
 特に本変形例では、複数のトラックTRに亘り、チルト検出領域には、チルト検出パターンが構成されている。チルト検出領域には、ディスク外周側へのチルト検出パターンとディスク内周側へのチルト検出パターンとが、別の領域に配置されている。各々のチルト検出パターンは、第1ビームLB1の第1明環位置の交点を含む近傍から、これに隣接するチルト検出領域の第1明環位置の交点を含む近傍まで、配置されている。但し、チルト位置検出目標トラックと第1明環位置との交点は除いてもよい。
 このように構成すれば、SNRに優れたディスクチルト検出が可能となる。
 しかも、図35に示したときに、チルト検出サンプリングが行われると共に、図36に示したときにトラックオフセット検出サンプリングが行われるようにすれば、即ち、サンプリング位置とチルト検出位置とをずらすことにより、オフトラック検出も可能となる。よって、チルト検出とオフセットトラック検出とを同一の検出パターンを兼用しつつ、オフトラック検出におけるSNRを向上させることが可能である。
<変形例その9>
 図37に示す変形例は、パターン領域23の具体例に関する。
 図37において、パターン領域23には、上述の変形例その2~変形例その8における、チルト検出パターンと相補関係にあるパターンが配置されている。ここに相補関係とは、スペースとマークとが、逆転している関係をいう。
 即ち変形例その2~変形例その8までのチルト検出パターンは、マークで表現されているが、本変形例では、検出パターンがスペースで表現され且つそれ以外の領域がマーク(またはストレートグルーブ)で表現されている。
 この結果、本変形例によれば、変形例その2~変形例その8までのスペースとマークの形成を逆にしただけであるので、夫々の効果と概ね同様の効果が得られる。
<変形例その10>
 図38に示す変形例は、パターン領域23の具体例に関する。
 図38において、本変形例では、チルト検出パターンは、光ディスク11の接線方向において対称配置でなくビーム進行方向前方のみ、または、ビーム進行方向後方のみに配置されている。或いは、ビーム中心に対して点対称に配置されている。更に、同一ガイド層12において、これらの組み合わせをもって、チルト検出パターンが構成されてもよい。
<変形例その11>
 図39~図56に示す各種変形例は、変形例その9のパターン領域23を採用した場合における、ガイド層12に設けられる三つの領域(即ち、グルーブ領域21、目印領域22及びパターン領域23)の各種具体例に関する。
 図39~図56では夫々、左寄りにグルーブ領域21、中央に目印領域22(サーボ用領域を兼ねてもよい)、右寄りにパターン領域23を、左右に延びるトラックに沿って図示している。また、各図中、Gは、左右に延びるグルーブトラックを意味し、Lは、左右に延びるランドトラックを意味している。図中、色濃く示された部分が、グルーブとして又は切り欠き若しくはエンボスにより、ランドに対して凹凸に形成されている。逆に、図中、白く示された部分が、ランドとして又は切り欠き若しくはエンボスにより、グルーブに対して凹凸に形成されている。
 図39の変形例では、グルーブ領域21には、グルーブトラックG上に、即ち、2本のトラックに一本ずつ幅広のストレートグルーブが形成されている。目印領域22には、センタートラックにウォブリングされたグルーブトラックが一本形成されている。パターン領域23には、ストレートグルーブが局所的に切り欠かれることで、複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図40の変形例では、グルーブ領域21には、グルーブトラックG上に、即ち、2本のトラックに一本ずつ幅広のストレートグルーブが形成されている。目印領域22には、センタートラックを間に挟むようにウォブリングされたグルーブトラックが二本形成されている。パターン領域23には、ストレートランドが局所的に切り欠かれることとで、複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図41の変形例では、グルーブ領域21には、グルーブトラックG及びランドトラックL上に夫々、即ち、トラック毎に幅狭のストレートグルーブが形成されている。目印領域22には、センタートラック上にウォブリングされたグルーブトラックが一本形成されている。パターン領域23には、ストレートグルーブが局所的に切り欠かれることで複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図42の変形例では、グルーブ領域21には、グルーブトラックG及びランドトラックL上に夫々、即ち、トラック毎に幅狭のストレートグルーブが形成されている。目印領域22には、センタートラック上にウォブリングされたグルーブトラックが一本形成されている。パターン領域23には、ストレートランドが局所的に切り欠かれることで複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図43の変形例では、グルーブ領域21には、グルーブトラックG上に、即ち、2本のトラックに一本ずつ幅広のストレートグルーブが形成されている。目印領域22には、センタートラックにストレートグルーブが、グルーブ領域21から延在して形成されている。パターン領域23には、ストレートグルーブが局所的に切り欠かれることで、複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図44の変形例では、グルーブ領域21には、グルーブトラックG上に、即ち、2本のトラックに一本ずつ幅広のストレートグルーブが形成されている。目印領域22には、ストレートグルーブが、センタートラックに位置するランドトラックT上に形成されている。パターン領域23には、ストレートランドが局所的に切り欠かれることで、複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図45の変形例では、グルーブ領域21には、グルーブトラックG上に、即ち、2本のトラックに一本ずつ幅広のストレートグルーブが形成されている。目印領域22には、分断されたグルーブ(言い換えれば、スペースを介して離散的に一列に形成されたピット、エンボスなど)の配列が、センタートラックに位置するグルーブトラックT上に形成されている。パターン領域23には、ストレートグルーブが局所的に切り欠かれることで、複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図46の変形例では、グルーブ領域21には、グルーブトラックG上に、即ち、2本のトラックに一本ずつ幅広のストレートグルーブが形成されている。目印領域22には、ストレートグルーブが、センタートラックに位置するランドトラックLを間に挟むように延在して形成されていると共に、センタートラックに位置するランドトラックLを間に挟むようにランドトラックTにもストレートグルーブが形成されている。パターン領域23には、ストレートランドが局所的に切り欠かれることで、複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図47の変形例では、グルーブ領域21には、グルーブトラックG上に、即ち、2本のトラックに一本ずつ幅広のストレートグルーブが形成されている。目印領域22には、センタートラックを間に挟むように、スペースを介して離散的に一列に形成されたピット、エンボスなどの配列が二列、ランドトラックL上に形成されている。異なるランドトラックL上におけるピット或いはエンボスは、トラック方向にずらされている。パターン領域23には、ストレートグルーブが局所的に切り欠かれることで、複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図48の変形例では、グルーブ領域21には、グルーブトラックG上に、即ち、2本のトラックに一本ずつ幅広のストレートグルーブが形成されている。目印領域22には、センタートラックを間に挟むように、スペースを介して離散的に一列に形成されたピット、エンボス(言い換えれば、短めのグルーブ)などの配列が二列、グルーブトラックG上に形成されている。異なるグルーブトラックG上におけるピット或いはエンボスは、トラック方向にずらされている。パターン領域23には、ストレートランドが局所的に切り欠かれることで、複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図49の変形例では、グルーブ領域21には、グルーブトラックG上に、即ち、2本のトラックに一本ずつ幅広のストレートグルーブが形成されている。目印領域22には、センタートラックを間に挟むように、スペースを介して離散的に一列に形成されたピット、エンボスなどの配列が二列、ランドトラックL上に形成されている。更に、センタートラックに位置するグルーブトラックGにはストレートグルーブがグルーブ領域21から延在して形成されている。異なるランドトラックL上におけるピット或いはエンボスは、トラック方向にずらされている。パターン領域23には、ストレートグルーブが局所的に切り欠かれることで、複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図50の変形例では、グルーブ領域21には、グルーブトラックG上に、即ち、2本のトラックに一本ずつ幅広のストレートグルーブが形成されている。目印領域22には、センタートラックを間に挟むように、スペースを介して離散的に一列に形成されたピット、エンボス(言い換えれば、短めのグルーブ)などの配列が二列、グルーブトラックG上に形成されている。更に、センタートラックを間に挟むように両端(図50中、上下端)に位置するグルーブトラックGには、ストレートグルーブがグルーブ領域21から延在して形成されている。異なるグルーブトラックG上におけるピット或いはエンボスは、トラック方向にずらされている。パターン領域23には、ストレートランドが局所的に切り欠かれることで、複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図51の変形例では、グルーブ領域21には、グルーブトラックG及びランドトラックL上に夫々、即ち、トラック毎に幅狭のストレートグルーブが形成されている。目印領域22には、センタートラックに位置するグルーブトラックを除き、グルーブ領域21の場合と同様のストレートグルーブが形成されている。パターン領域23には、ストレートグルーブが局所的に切り欠かれることで複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図52の変形例では、グルーブ領域21には、グルーブトラックG及びランドトラックL上に夫々、即ち、トラック毎に幅狭のストレートグルーブが形成されている。目印領域22には、センタートラックに位置するランドトラックを除き、グルーブ領域21の場合と同様のストレートグルーブが形成されている。パターン領域23には、ストレートランドが局所的に切り欠かれることで複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図53の変形例では、グルーブ領域21には、グルーブトラックG及びランドトラックL上に夫々、即ち、トラック毎に幅狭のストレートグルーブが形成されている。目印領域22には、センタートラックに位置するグルーブトラックにのみ、幅狭のストレートグルーブが形成されている。パターン領域23には、ストレートグルーブが局所的に切り欠かれることで複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図54の変形例では、グルーブ領域21には、グルーブトラックG及びランドトラックL上に夫々、即ち、トラック毎に幅狭のストレートグルーブが形成されている。目印領域22には、センタートラックに位置するランドトラックにのみ、幅狭のストレートグルーブが形成されている。パターン領域23には、ストレートランドが局所的に切り欠かれることで複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図55及び図56の変形例では、グルーブ領域21及び目印領域22については上述の各種変形例のものが採用可能であるところの、パターン領域23についての具体例である。
 図55の変形例では、2本のストレートランドのみが、局所的に切り欠かれることで複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 図56の変形例では、2本のストレートグルーブのみが、局所的に切り欠かれることで複数のトラックに跨るように一つのチルト検出パターンが構築されている。
 以上図39~図56に示したように、本実施例では、三つの領域(即ち、グルーブ領域21、目印領域22及びパターン領域23)について各種の変形が可能である。 特に、図47~図50に示した変形例では、目印領域22にて、センタートラックから径方向に等距離にピット又はスペースが設けられているので、サンプルサーボトラッキングを兼用できる。
 加えて、上述の各種変形例において適宜、グルーブ幅又はランド幅の全域に渡る「切り欠き」に代えて、それらの幅よりも狭いピット(即ち「狭義のプリピット」)を形成することも可能である。また、ウォブルに連結するランドプリピットを作り込むことも可能であり、例えば、ウォブルの各頂点に、ランドプリピットが形成されるように構成すれば、プリピット信号及びウォブル信号の検出を容易にすることができる。或いは、このようなランドプリピットに代えて、ウォブルの各頂点にウォブル振幅(振れ量)が局所的に高められた急カーブ部分が設けられてもよい。更に、短く分断して掘られた複数のグルーブの、トラックTRに沿った連続的な配列自体がウォブリングされることで、ウォブルが形成されてもよい。
 次に図57は、上述した本実施例における光ディスク11の基本的な層構成(図1及び図2参照)の変形例を示す。ここに図57は、本変形例の光ディスクの図1と同趣旨の模式的な斜視図である。
 図57において、光ディスク11の変形例では、二層のガイド層12a及び12bが設けられる。例えば、ガイド層12aのトラックTR-aに、内周から外周へ向うアドレス位置を示す第1アドレス情報を担持させる。ガイド層12bのトラックTR-bに、外周から内周へ向うアドレス位置を示す第2アドレス情報を担持させる。この場合更に、記録層13についても、第1アドレス情報に従って記録される第1記録層と第2アドレス情報に従って記録される第2記録層とに使い分けをし、第1記録層に対するガイドは、ガイド層12aを用いて行い、第2記録層に対するガイドは、ガイド層12bを用いて行う。このように構成すれば、一又は複数の第1記録層にて、内周から外周へ向って情報を記録し、一又は複数の第2記録層にて、外周から内周へ向って情報を記録する動作が、効率良くなる或いは容易となる。しかも、記録動作の信頼性及び安定性についても、二種類のアドレス情報を使い分けることによって、顕著に高められる。よって、連続して双方向に又は任意若しくは独立にて双方向に記録可能な光ディスク11を実現可能となる。
 例えば、記録層の1層目を内周から外周に向かって記録再生し、記録層の2層目を外周から内周に向って記録再生をすることにすれば、これら二層間で記録再生を切り替える時間は、ほぼ層間ジャンプを行うだけの時間で済むので、複数の記録層に跨るように連続して、記録再生を行う際に、極めて有利となる。言い換えれば、2層ディスクにおける所謂「Opposite 記録」或いは「Opposite再生」と同様の効果が得られる。即ち、記録するデータとして、ビデオデータ等のリアルタイムに連続したデータを本変形例の光ディスク11を用いて、記録しておくと、再生時において、特に第1記録層の終わりから第2記録層の始まりにかけては、殆ど層間ジャンプの時間のみで到達できる。これは、図1に示した実施例の場合に、層間ジャンプと、光ピックアップ102の位置を、外周から内周に戻す時間が更に加算されることを考えると非常に有利である。図1に示した実施例の場合に、データを途切れなく再生するためには、多量のメモリーを記録再生装置101に備えればよい。
 このように図57の変形例を併用することで、安価に、容易に、再生装置において連続再生が可能となる。
 以上詳細に説明したように、本実施例及び変形例によれば、多層記録型の光ディスク11において、チルト補正等の特定種類の処理の施行下で高精度の記録が可能となり、記録層13において記録若しくは再生できるトラックピッチや記録線密度を高めることが可能となる。
 また、本発明は、請求の範囲及び明細書全体から読み取るこのできる発明の要旨又は思想に反しない範囲で適宜変更可能であり、そのような変更を伴う情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法もまた本発明の技術思想に含まれる。
 11 光ディスク
 12 ガイド層
 13 記録層
 21 グルーブ領域
 22 目印領域
 23 パターン領域 
 TR トラック 
 WB ウォブル
 LLP1 ランドプリピット
 LB1 第1ビーム
 LB2 第2ビーム
 102 光ピックアップ
 102L 対物レンズ
 101 記録再生装置
 201 ホストコンピュータ

Claims (16)

  1.  予めトラックが形成されたガイド層と、
     該ガイド層上に積層された複数の記録層と
     を備え、
     前記トラックには、(i)前記トラックに交わる径方向に相隣接する複数のトラック部分のうち少なくとも前記径方向の中央寄りに位置するセンタートラック部分にて特定種類のパターン信号が検出可能なように、前記複数のトラック部分に跨る一まとまりの所定パターンを夫々有する複数の信号検出用領域が、配置されていると共に、(ii)前記複数の信号検出用領域の各々について、前記トラックに沿ったトラック方向における前記センタートラック部分の前に、前記複数の信号検出用領域のうち対応する一つが後に来る旨を示す目印情報を担持する目印領域が、配置されている
     ことを特徴とする情報記録媒体。
  2.  前記所定パターンは、前記パターン信号の最小構成単位の前記トラック方向の長さと、前記複数の記録層に夫々記録されるデータの最小構成単位の前記トラック方向の長さとが、所定の整数比となるように、規定されていることを特徴とする請求項1に記載の情報記録媒体。
  3.  前記トラックは、当該情報記録媒体における内周から外周又は外周から内周に向って螺旋状に形成されており、
     前記目印領域は、前記トラック方向における前記センタートラック部分の直前に配置されており、前記対応する一つが直後に来る旨を示す
     ことを特徴とする請求項1に記載の情報記録媒体。
  4.  前記トラックは、当該情報記録媒体における内周から外周又は外周から内周に向って螺旋状に形成されており、
     前記目印情報は、(i)後に来る前記対応する一つをサンプリングするべきタイミング又は(ii)後に来る前記対応する一つの、前記トラック方向に沿って前記内周から前記外周又は前記外周から前記内周へ向うアドレス位置を、示すことで、前記後に来る旨を示す
     ことを特徴とする請求項1に記載の情報記録媒体。
  5.  前記目印領域は、前記目印情報を、ウォブル及びプリピット構造、並びにウォブル及び一部切欠き構造のうち少なくとも一方により担持し、
     前記トラックには、前記トラック方向における前記目印領域の前に、(i)鏡面又はストレートグルーブ若しくはストレートランド構造を有する緩衝領域並びに(ii)鏡面又はストレートグルーブ若しくはストレートランド構造を有する鏡面領域のうち少なくとも一方が、更に配置されている
     ことを特徴とする請求項1に記載の情報記録媒体。
  6.  前記所定パターンは、前記パターン信号として、チルト検出用のチルト検出信号を検出可能なように構成されていることを特徴とする請求項1に記載の情報記録媒体。
  7.  前記所定パターンは、前記センタートラック部分に沿った中心線及び前記中心線に交差する交差線のうち少なくとも一方を対称軸とする線対称のパターンを含むことを特徴とする請求項6に記載の情報記録媒体。
  8.  前記線対称のパターンは、前記中心線を対称軸とし、前記トラックに照射され且つ集光される第1光ビームによって、一時点にて前記複数のトラック部分上に形成される光スポットの円周に沿って、前記複数のトラック部分上を断続的に連なってなる環状パターンを含むことを特徴とする請求項7に記載の情報記録媒体。
  9.  前記所定パターンは、前記センタートラック部分に沿った中心線を対称軸とする、線対称のパターンのうち前記対称軸の一方の側にある第1部分と他方の側にある第2部分とが、前記トラック方向に沿って相互にずらされてなるパターンの対を含むことを特徴とする請求項6に記載の情報記録媒体。
  10.  前記パターンの対は夫々、前記トラックに照射され且つ集光される第1光ビームによって、一時点にて前記複数のトラック部分上に形成される光スポットの円周に沿って、前記複数のトラック部分上を断続的に連なってなる半円分ずつの環状パターンを含むことを特徴とする請求項9に記載の情報記録媒体。
  11.  前記所定パターンは、前記トラック方向及び前記径方向の少なくとも一方向に相隣接して複数設けられていることを特徴とする請求項1に記載の情報記録媒体。
  12.  前記所定パターンが跨る前記複数のトラック部分の本数は、前記トラックに照射され且つ集光されると共に収差を持つ第1光ビームによって、前記トラック上に形成される光スポットの直径よりも、マージンを持って前記複数のトラック部分の合計幅が大きくなるように、前記複数のトラック部分の本数が、設定されていることを特徴とする請求項1に記載の情報記録媒体。
  13.  予めトラックが形成されたガイド層と、該ガイド層上に積層された複数の記録層とを備え、前記トラックには、(i)前記トラックに交わる径方向に相隣接する複数のトラック部分のうち少なくとも前記径方向の中央寄りに位置するセンタートラック部分にて特定種類のパターン信号が検出可能なように、前記複数のトラック部分に跨る一まとまりの所定パターンを夫々有する複数の信号検出用領域が、配置されていると共に、(ii)前記複数の信号検出用領域の各々について、前記トラックに沿ったトラック方向における前記センタートラック部分の前に、前記複数の信号検出用領域のうち対応する一つが後に来る旨を示す目印情報を担持する目印領域が、配置されている情報記録媒体に、データを記録する情報記録装置であって、
     前記ガイド層に前記パターン信号を検出するための第1光ビームを照射し且つ集光することが可能であると共に前記複数の記録層のうち一の記録層にデータ記録用の第2光ビームを照射し且つ集光することが可能である光照射手段と、
     前記ガイド層からの前記照射され且つ集光された第1光ビームに基づく第1光を受光し、該受光された第1光に基づき、前記目印情報により前記後に来る旨が示される前記複数の信号検出用領域の各々にて前記パターン信号を検出する信号検出手段と、
     前記検出されたパターン信号に基づいて前記光照射手段について特定種類の処理を施す処理手段と、
     前記処理が施された状態で、前記一の記録層に前記第2光ビームを照射し且つ集光することで、前記データを記録するように前記光照射手段を制御するデータ記録制御手段と
     を備えることを特徴とする情報記録装置。
  14.  予めトラックが形成されたガイド層と、該ガイド層上に積層された複数の記録層とを備え、前記トラックには、(i)前記トラックに交わる径方向に相隣接する複数のトラック部分のうち少なくとも前記径方向の中央寄りに位置するセンタートラック部分にて特定種類のパターン信号が検出可能なように、前記複数のトラック部分に跨る一まとまりの所定パターンを夫々有する複数の信号検出用領域が、配置されていると共に、(ii)前記複数の信号検出用領域の各々について、前記トラックに沿ったトラック方向における前記センタートラック部分の前に、前記複数の信号検出用領域のうち対応する一つが後に来る旨を示す目印情報を担持する目印領域が、配置されている情報記録媒体に、前記ガイド層に前記パターン信号を検出するための第1光ビームを照射し且つ集光することが可能であると共に前記複数の記録層のうち一の記録層にデータ記録用の第2光ビームを照射し且つ集光することが可能である光照射手段を用いて、データを記録する情報記録方法であって、
     前記ガイド層からの前記照射され且つ集光された第1光ビームに基づく第1光を受光し、該受光された第1光に基づき、前記目印情報により前記後に来る旨が示される前記複数の信号検出用領域の各々にて前記パターン信号を検出する信号検出工程と、
     前記検出されたパターン信号に基づいて前記光照射手段について特定種類の処理を施す処理工程と、
     前記処理が施された状態で、前記一の記録層に前記第2光ビームを照射し且つ集光することで、前記データを記録するように前記光照射手段を制御するデータ記録制御工程と
     を備えることを特徴とする情報記録方法。
  15.  予めトラックが形成されたガイド層と、該ガイド層上に積層された複数の記録層とを備え、前記トラックには、(i)前記トラックに交わる径方向に相隣接する複数のトラック部分のうち少なくとも前記径方向の中央寄りに位置するセンタートラック部分にて特定種類のパターン信号が検出可能なように、前記複数のトラック部分に跨る一まとまりの所定パターンを夫々有する複数の信号検出用領域が、配置されていると共に、(ii)前記複数の信号検出用領域の各々について、前記トラックに沿ったトラック方向における前記センタートラック部分の前に、前記複数の信号検出用領域のうち対応する一つが後に来る旨を示す目印情報を担持する目印領域が、配置されている情報記録媒体から、データを再生する情報再生装置であって、
     前記ガイド層に前記パターン信号を検出するための第1光ビームを照射し且つ集光することが可能であると共に前記複数の記録層のうち一の記録層にデータ再生用の第2光ビームを照射し且つ集光することが可能である光照射手段と、
     前記ガイド層からの前記照射され且つ集光された第1光ビームに基づく第1光を受光し、該受光された第1光に基づき、前記目印情報により前記後に来る旨が示される前記複数の信号検出用領域の各々にて前記パターン信号を検出する信号検出手段と、
     前記検出されたパターン信号に基づいて前記光照射手段について特定種類の処理を施す処理手段と、
     前記処理が施された状態で、前記一の記録層からの前記照射され且つ集光された第2光ビームに基づく第2光を受光し、該受光された第2光に基づき前記データを取得するデータ取得手段と
     を備えることを特徴とする情報再生装置。
  16.  予めトラックが形成されたガイド層と、該ガイド層上に積層された複数の記録層とを備え、前記トラックには、(i)前記トラックに交わる径方向に相隣接する複数のトラック部分のうち少なくとも前記径方向の中央寄りに位置するセンタートラック部分にて特定種類のパターン信号が検出可能なように、前記複数のトラック部分に跨る一まとまりの所定パターンを夫々有する複数の信号検出用領域が、配置されていると共に、(ii)前記複数の信号検出用領域の各々について、前記トラックに沿ったトラック方向における前記センタートラック部分の前に、前記複数の信号検出用領域のうち対応する一つが後に来る旨を示す目印情報を担持する目印領域が、配置されている情報記録媒体から、前記ガイド層に前記パターン信号を検出するための第1光ビームを照射し且つ集光することが可能であると共に前記複数の記録層のうち一の記録層にデータ再生用の第2光ビームを照射し且つ集光することが可能である光照射手段を用いて、データを再生する情報再生方法であって、
     前記ガイド層からの前記照射され且つ集光された第1光ビームに基づく第1光を受光し、該受光された第1光に基づき、前記目印情報により前記後に来る旨が示される前記複数の信号検出用領域の各々にて前記パターン信号を検出する信号検出工程と、
     前記検出されたパターン信号に基づいて前記光照射手段について特定種類の処理を施す処理工程と、
     前記処理が施された状態で、前記一の記録層からの前記照射され且つ集光された第2光ビームに基づく第2光を受光し、該受光された第2光に基づき前記データを取得するデータ取得工程と
     を備えることを特徴とする情報再生方法。
PCT/JP2010/056101 2010-04-02 2010-04-02 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法 WO2011125157A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/056101 WO2011125157A1 (ja) 2010-04-02 2010-04-02 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法
JP2012509206A JPWO2011125157A1 (ja) 2010-04-02 2010-04-02 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056101 WO2011125157A1 (ja) 2010-04-02 2010-04-02 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法

Publications (1)

Publication Number Publication Date
WO2011125157A1 true WO2011125157A1 (ja) 2011-10-13

Family

ID=44762144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056101 WO2011125157A1 (ja) 2010-04-02 2010-04-02 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法

Country Status (2)

Country Link
JP (1) JPWO2011125157A1 (ja)
WO (1) WO2011125157A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149325A (ja) * 2012-01-20 2013-08-01 Pioneer Electronic Corp 記録媒体
JP2013246861A (ja) * 2012-05-29 2013-12-09 Pioneer Electronic Corp 記録媒体
WO2014128866A1 (ja) * 2013-02-20 2014-08-28 パイオニア株式会社 記録媒体、記録装置及び方法、並びに記録再生装置及び方法
WO2015037062A1 (ja) * 2013-09-10 2015-03-19 株式会社 東芝 記録再生装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845080A (ja) * 1994-07-27 1996-02-16 Sony Corp 光ディスク及びクロストーク検出装置
JPH08249665A (ja) * 1995-03-06 1996-09-27 Pioneer Electron Corp 光ディスクプレーヤ及び光ディスク
JPH08279160A (ja) * 1995-03-31 1996-10-22 Sony Corp 光学記録媒体及び光学デイスク装置
JP2004046916A (ja) * 2002-07-08 2004-02-12 Sony Corp 光記録媒体再生装置、および光記録媒体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048404A (ja) * 2005-08-12 2007-02-22 Pioneer Electronic Corp 情報記録媒体、情報処理装置及び方法、並びに、記録又は再生を行う処理制御用のコンピュータプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845080A (ja) * 1994-07-27 1996-02-16 Sony Corp 光ディスク及びクロストーク検出装置
JPH08249665A (ja) * 1995-03-06 1996-09-27 Pioneer Electron Corp 光ディスクプレーヤ及び光ディスク
JPH08279160A (ja) * 1995-03-31 1996-10-22 Sony Corp 光学記録媒体及び光学デイスク装置
JP2004046916A (ja) * 2002-07-08 2004-02-12 Sony Corp 光記録媒体再生装置、および光記録媒体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149325A (ja) * 2012-01-20 2013-08-01 Pioneer Electronic Corp 記録媒体
JP2013246861A (ja) * 2012-05-29 2013-12-09 Pioneer Electronic Corp 記録媒体
WO2014128866A1 (ja) * 2013-02-20 2014-08-28 パイオニア株式会社 記録媒体、記録装置及び方法、並びに記録再生装置及び方法
WO2015037062A1 (ja) * 2013-09-10 2015-03-19 株式会社 東芝 記録再生装置
JPWO2015037062A1 (ja) * 2013-09-10 2017-03-02 株式会社東芝 記録再生装置
US9672860B2 (en) 2013-09-10 2017-06-06 Kabushiki Kaisha Toshiba Recording/reproducing apparatus

Also Published As

Publication number Publication date
JPWO2011125157A1 (ja) 2013-07-08

Similar Documents

Publication Publication Date Title
JPWO2002086873A1 (ja) 光ディスクおよびそれを用いた情報記録/再生方法および情報記録/再生装置
KR20020090350A (ko) 다층정보기록매체 및 정보기록재생장치
WO2007055107A1 (ja) 多層ディスク及びその情報記録再生装置
US7911907B2 (en) Optical disc judgment method and optical disc device
WO2011125157A1 (ja) 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法
JP4200335B2 (ja) 情報記録媒体、並びに情報記録装置及び方法
JP2007048404A (ja) 情報記録媒体、情報処理装置及び方法、並びに、記録又は再生を行う処理制御用のコンピュータプログラム
JP5342067B2 (ja) 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法
JP2004288227A (ja) 光ピックアップ装置および光ディスクドライブ装置
WO2011128985A1 (ja) 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法
JP4411312B2 (ja) 光ディスクへの記録方法及び光ディスクの記録再生装置並びに記録済み光ディスク
JP2006019019A (ja) 光記録再生装置
WO2011125159A1 (ja) 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法
WO2011125160A1 (ja) 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法
WO2011158376A1 (ja) 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法
WO2014049710A1 (ja) 記録媒体、記録再生装置及び方法
WO2011158379A1 (ja) 情報記録媒体及びその製造方法、情報記録装置及び方法、並びに情報再生装置及び方法
JP2005116176A (ja) 多層情報記録媒体及び情報再生装置
JP2002260239A (ja) 光ディスク及び光ディスク原盤露光装置
JP4641189B2 (ja) 情報再生装置
WO2013051088A1 (ja) 情報記録媒体、情報記録装置及び方法、並びに情報再生装置及び方法
WO2013054493A1 (ja) 光記録媒体およびそのフォーマット装置、そのフォーマット方法
JP2011159378A (ja) 光学ドライブ装置
WO2013108400A1 (ja) 記録再生装置及び方法
JP2005116177A (ja) 多層情報記録媒体及び情報再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849401

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1201002555

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2012509206

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849401

Country of ref document: EP

Kind code of ref document: A1