WO2011124126A1 - 基于螺旋型结构的光纤传感器 - Google Patents

基于螺旋型结构的光纤传感器 Download PDF

Info

Publication number
WO2011124126A1
WO2011124126A1 PCT/CN2011/072457 CN2011072457W WO2011124126A1 WO 2011124126 A1 WO2011124126 A1 WO 2011124126A1 CN 2011072457 W CN2011072457 W CN 2011072457W WO 2011124126 A1 WO2011124126 A1 WO 2011124126A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
spring wire
tooth
spiral
sensor based
Prior art date
Application number
PCT/CN2011/072457
Other languages
English (en)
French (fr)
Inventor
杜兵
杜蔚
杜迎涛
Original Assignee
西安金和光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安金和光学科技有限公司 filed Critical 西安金和光学科技有限公司
Priority to BR112012015240A priority Critical patent/BR112012015240A2/pt
Priority to RU2012125660/28A priority patent/RU2512136C2/ru
Priority to JP2012545076A priority patent/JP5562435B2/ja
Priority to EP11765044A priority patent/EP2557404A1/en
Publication of WO2011124126A1 publication Critical patent/WO2011124126A1/zh
Priority to US13/529,780 priority patent/US8616069B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35341Sensor working in transmission
    • G01D5/35345Sensor working in transmission using Amplitude variations to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35377Means for amplifying or modifying the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/04Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs
    • G01L1/042Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs of helical springs

Definitions

  • the invention relates to a fiber-optic sensor in the field of sensing technology, in particular to a spiral-type fiber-optic sensor for high-precision stress parameter testing.
  • fiber-optic sensors including light intensity-adjusting fiber-optic sensors, fiber-optic grating sensors, and fiber-optic interference sensors.
  • the latter two are characterized by high sensing sensitivity, but in actual application, there are complicated devices.
  • the use of high operating costs and other deficiencies, resulting in the application of fiber optic sensors is greatly limited.
  • fiber optic sensors which respond to changes in various environmental conditions during use, such as fiber optic interference sensors, because of their high sensitivity, but when applied to actual conditions, they find temperature, air pressure, Environmental factors such as vibration will affect its working parameters. Therefore, in actual use, various measures have to be taken to prevent and eliminate the influence of the above environmental factors, so that the structure of the monitoring equipment becomes more and more complicated, and the operation is used. The cost has increased dramatically.
  • the fiber microbend sensor is a light intensity modulation sensor with low cost, high sensitivity and certain environmental anti-interference ability.
  • the implementation scheme is realized based on the bending or microbending loss of the fiber. By changing the degree of bending of the fiber, a change in the output optical power is caused.
  • optical power loss when the fiber is subjected to bending disturbance, bending loss will occur, mainly microbending loss and macrobend loss. Both bending losses are caused by the partial coupling of the guided modes in the core to the cladding when the fiber is bent.
  • the loss of both can be calculated according to Marcuse's theoretical formula. The formula is as follows:
  • P OUT and P IN are the output and input optical power
  • is the bending loss coefficient
  • S is the bending arc length.
  • the scheme provided by Chinese Patent 87,710,210 is to realize the microbend fiber stress meter mainly based on the microbend loss of the optical fiber, but since it is realized by two flat plates, the size of the flat plate cannot be too large, so that the length of the optical fiber can be bent. Restricted, hindering the dynamic range and accuracy of such fiber attenuators.
  • the adjustable distance of the other two plates is only a few hundred microns at most, and the two plates must be kept substantially parallel during the movement, so such attenuators have higher requirements on the adjusted mechanical structure, which not only increases the implementation cost, It also limits the dynamic range and accuracy of such fiber attenuators.
  • the present invention provides a spiral type high precision optical fiber sensor based on fiber bending loss, the sensor
  • the utility model has the advantages of simple structure, reasonable design, convenient operation method, flexible use mode, certain environmental anti-interference ability, high sensitivity, and the optical fiber.
  • the sensor has a wide range of use; and because the fiber sensor is based on fiber bending loss, the loss test is the basis for all other types of interferometry, frequency and other tests in fiber testing, and is the most mature, stable, and lowest cost.
  • the technology makes the fiber optic sensor of the present invention quite advantageous in terms of cost. Time division technology, optical time domain reflectometry (OTDR) and coherent frequency modulated continuous wave technology (FMCW) Quasi-distributed or distributed measurement can be realized, which further provides a very broad application prospect for the application of the optical fiber sensor of the invention.
  • OTDR optical time domain reflectometry
  • FMCW coherent frequency modulated continuous wave technology
  • the technical solution adopted by the present invention is: a fiber optic sensor based on a spiral structure
  • the utility model is characterized in that: a multi-circular spiral type member composed of a spring wire, wherein a plurality of first deformation teeth are continuously arranged along the longitudinal direction of the spring wire on the upper surface and the lower surface of the spring wire, and the two adjacent spring coils are arranged
  • the first deforming tooth on the lower surface of the upper spring wire is alternately corresponding to the first deforming tooth on the upper surface of the lower spring wire, and the first deforming tooth on the lower surface of the upper spring wire and the first surface on the upper surface of the lower spring wire a first signal fiber is interposed between the deformed teeth, and the positions of both ends of the spiral member are changed when the two ends of the spiral member are subjected to stress, and the distance between adjacent two coil spring wires in the spiral member is changed, thereby Changing a position between the first deforming tooth on the lower surface of the upper spring wire and the first deforming tooth on the upper surface
  • the spiral member When the position of both ends of the spiral member changes, for example, the spiral member is elongated under tensile stress and shortened under compressive stress, the distance between the plurality of adjacent two coil spring wires constituting the spiral member is enlarged. Or narrowing so that the position between the first deformed tooth on the lower surface of the upper spring wire and the first deformed tooth on the upper surface of the lower spring wire in the plurality of sets of adjacent two turns of the spring wire is increased or decreased, thereby causing the pinching
  • the bending curvature of the first signal fiber between the deformed teeth is reduced or increased to cause the power of the optical signal transmitted in the first signal fiber to increase or decrease, and the first signal fiber is connected to the test unit through the transmission fiber, thereby
  • the test unit detects a change in the power of the optical signal, and the test unit can be a light source and an optical power meter.
  • Optical time domain reflectometry (OTDR) and coherent frequency modulated continuous wave (FMCW) can also be used to achieve quasi-dis
  • the optical fiber sensor of the present invention solves the further technical problem in that the spiral member is a spiral or a flat coil spring.
  • the optical fiber sensor of the present invention solves the further technical problem in that: the elastic material layer is disposed between the upper surface and the lower surface of the spring wire constituting the spiral type member.
  • the elastic material layer may be composed of a polymer material, a wave spring or the like, and the elastic material layer has a larger deformation when an external force acts, so when the position of the spiral member changes at both ends, The relative position between the deformed teeth on the lower surface of the upper spring wire and the deformed teeth on the upper surface of the lower spring wire in the adjacent two turns of the spring wire may be finely changed.
  • the optical fiber sensor of the present invention solves the further technical problem: the tooth height of the first deformation tooth disposed on the surface of the spring wire, or the first between the first deformation teeth disposed on the upper surface of the upper surface of the spring wire or the lower surface The distance between the deformed teeth is varied.
  • the optical fiber sensor of the present invention solves the further technical problem in that: two adjacent spring coils, and the first deformation tooth on the lower surface of the upper spring wire and the first deformation tooth on the upper surface of the lower spring wire A second signal fiber is interposed between the first signal fiber and the first signal fiber.
  • the optical fiber sensor of the present invention solves the further technical problem: there are second deformation teeth on the upper surface and the lower surface of the spring wire, and a second deformation on the lower surface of the upper spring wire in the adjacent two spring coils A second signal fiber is interposed between the deformed tooth and the second deformed tooth on the upper surface of the lower spring wire.
  • the optical fiber sensor of the present invention solves the further technical problem in that the cross-sectional shape of the spring wire is circular, elliptical, rectangular or circular.
  • the optical fiber sensor of the present invention solves the further technical problem in that the test unit is followed by a processing unit.
  • the solution for solving the further technical problem of the optical fiber sensor of the present invention is:
  • the signal fiber is an external fiber with multiple layers of protective layer, such as a tight-fitting fiber, a carbon coated fiber, a metal coated fiber, or a polyimide coating.
  • the solution for solving the further technical problem of the optical fiber sensor of the present invention is:
  • the signal fiber is a multi-core fiber, a polymer fiber or a photonic crystal fiber.
  • the invention has the following advantages:
  • the spiral member is spiral or flat coil spring as a whole, so that the deformation teeth on the adjacent two coil springs on the entire spiral member exert a force on the signal fiber under the external stress F such as tensile, compression or torsion.
  • the signal fiber is subjected to a microbend loss due to the force, thereby greatly increasing the effective length of the microbend fiber, thereby improving the test sensitivity.
  • the processing unit is The data detected by the fiber bending loss test unit can accurately estimate the overall bending radius of the spiral member.
  • the torque or torsion angle of the rotating or torque force can be derived according to the magnitude of the signal fiber loss under the action of rotation or torque.
  • the present invention has the advantages of simple structure, reasonable design, convenient processing and convenient use, flexible use mode, high sensitivity and good use effect, and can simultaneously detect the macrobend loss and microbend loss of the optical fiber, so that the dynamic range of the test is larger, thereby making the test result more sensitive and Accurate, and inherited the original compression stress parameters through the fiber bending loss, but also extended to test other physical quantities, including tensile stress, bending curvature, bending direction, torsion angle and torque test, and can be further extended Application range.
  • Figure 1 is a schematic view showing the structure of a first embodiment of the present invention.
  • Figure 2 is a top plan view of the spiral member of Figure 1.
  • Fig. 3 is a partial cross-sectional view showing the A-A' direction of the spiral member of Fig. 2.
  • Figure 4 is a schematic view showing the structure of a second embodiment of the present invention.
  • Fig. 5 is a partial cross-sectional view showing a multi-turn spring wire in which a spring wire is a composite structure.
  • Figure 6 is a schematic view showing the structure of a third embodiment of the present invention.
  • Figure 7 is a schematic view showing the structure of a fourth embodiment of the present invention.
  • Figure 8 is a partial cross-sectional view taken along line B-B' of Figure 7.
  • Figure 9 is a schematic view showing the structure of a fifth embodiment of the present invention.
  • Figure 10 is a schematic view showing the structure of a sixth embodiment of the present invention.
  • the invention includes a multi-turn spiral member 4 composed of a spring wire, on the upper surface and the lower surface of the spring wire, a plurality of deformation teeth are continuously arranged along the longitudinal direction of the spring wire, and the lower surface of the upper spring wire in the adjacent two spring coils
  • the upper first deforming tooth 4-1 is alternately corresponding to the first deforming tooth 4-2 on the upper surface of the lower spring wire, and is on the upper surface of the first deforming tooth 4-1 and the lower spring wire on the lower surface of the upper spring wire.
  • the first signal fiber 6 is sandwiched between the first deforming teeth 4-2, and the positions of both ends of the spiral member 4 are changed when the two ends of the spiral member 4 are stressed, and the adjacent two of the spiral members 4 are caused.
  • the distance between the coil spring wires is changed such that the position between the first deforming tooth 4-1 on the lower surface of the upper spring wire and the first deforming tooth 4-2 on the upper surface of the lower spring wire in the two coil spring wires Changing, thereby changing the bending curvature of the first signal fiber 6 sandwiched between the deformed teeth of the two to cause a change in the power of the optical signal transmitted in the first signal fiber 6, the first signal fiber 6 passing through the transmission fiber 1 and the test unit 5 is connected, and the processing unit 7 is connected behind the test unit 5.
  • the spiral member 4 has a spiral structure as a whole, and when the positions of both ends of the spiral member 4 are changed, such as the spiral member 4 is elongated under tensile stress or shortened under compressive stress, the spiral type is formed.
  • the distance between the plurality of sets of adjacent two coil spring wires in the member 4 is enlarged or reduced, so that the first deforming teeth 4-1 and the lower surface on the lower surface of the upper spring wire of the plurality of adjacent two coil spring wires
  • the position between the first deforming teeth 4-2 on the upper surface of the spring wire is increased or decreased, so that the bending curvature of the first signal fiber 6 sandwiched between the deformed teeth of the two is reduced or increased to cause the first signal
  • the power of the optical signal transmitted in the optical fiber 6 is increased or decreased, and the first signal fiber 6 is connected to the test unit 5 through the transmission fiber 1, so that the test unit 5 detects the change of the optical signal power, and the test unit 5 can be the light source and the light.
  • dynamometer It can also be a test device using techniques such as Optical Time Domain Reflectometry (OTDR) to achieve quasi-distributed or distributed measurements.
  • OTDR Optical Time Domain Reflectometry
  • the first The signal fiber 6 is an optical fiber having a plurality of protective layers on the outside, such as a tight-fitting fiber, a carbon-coated fiber, a polyimide-coated fiber, etc.; the first signal fiber 6 may also be a plastic fiber or a photonic crystal fiber.
  • the biasing direction of the external stress F applied by the spiral member 4 is a twisting direction, that is, the spiral type is from the upper end portion or the lower end portion.
  • the member is twisted.
  • the structure, connection relationship and working principle of the remaining portions are the same as those of the first embodiment.
  • the biasing direction of the applied external stress F is the rotational direction, that is, the spiral member 4 is rotated from the upper end portion or the lower end portion.
  • the structure, connection relationship and working principle of the remaining portions are the same as those of the first embodiment.
  • the whole of the spiral member 4 is in the form of a flat coil spring, and the adjacent two coil spring wires are adjacent inner ring spring wires and outer ring spring wires, and the first deformation teeth 4-5 on the outer surface of the inner ring spring wire, The first deforming tooth 4-6 on the inner surface of the outer ring spring wire, the deformed teeth are alternately arranged and sandwiched with the first signal fiber 6, and when the inner end of the spiral member changes relative to the outer end position, two adjacent turns The position of the spring wire is changed to change the position between the deformed teeth respectively disposed on the surface of the inner and outer ring spring wires, so that the bending curvature of the first signal fiber 6 deformed by the two is changed.
  • the power of the optical signal transmitted in the signal fiber 6 is changed.
  • the first signal fiber 6 is connected to the test unit 5 through the transmission fiber 1, and the processing unit 7 is connected to the test unit 5.
  • the structure, connection relationship and working principle of the remaining portions are the same as those of the first embodiment.
  • the spring wire constituting the spiral type member has three layers of composite, including the upper surface layer 10 of the spring wire and the upper surface of the spring wire.
  • the structure, connection relationship and working principle of the remaining portions are the same as those of the first embodiment.
  • the second signal fiber 8 is disposed side by side with the first signal fiber 6.
  • the change in optical signal power in the second signal fiber 8 can be detected by other test units (not shown).
  • the structure, connection relationship and working principle of the remaining portions are the same as those of the first embodiment.
  • the difference from the embodiment 6 is that the spring wire has the second deformation tooth 4-3 of the lower surface of the spring wire and the second deformation tooth 4-4 of the upper surface of the spring wire, and between the two deformation teeth The second signal fiber 8 is sandwiched.
  • the structure, connection relationship and working principle of the remaining portions are the same as those of the embodiment 6.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

基于螺旋型结构的光纤传感器 技术领域
本发明涉及一种传感技术领域的光纤传感器,具体是一种高精度应力参数测试用、螺旋型的光纤传感器。
背景技术
现有光纤传感器的种类非常多,主要包括光强度调整型光纤传感器、光纤光栅传感器、光纤干涉传感器等多种类型,后两者的特点是传感灵敏度高,但是实际应用过程中,存在设备复杂、使用运行成本高等缺陷和不足,从而使得光纤传感器的应用推广受到很大限制。尤其是对较高灵敏度的光纤传感器,其会响应使用过程中各种环境条件的改变情形,如光纤干涉传感器,由于其灵敏度很高,但当其应用于实际条件下后,发现温度、气压、振动等环境因素均会对其工作参数造成影响,因而实际使用时,不得不采取多种措施来防止和剔除上述环境因素的影响,从而使得其监测设备的结构越来越趋于复杂,运行使用成本大幅提高。
而光纤微弯传感器是一种光强度调制的传感器,具有成本低、灵敏度高、具有一定的环境抗干扰能力的特点,其实现方案是基于光纤的弯曲或微弯损耗来实现的。通过改变光纤的弯曲程度,从而导致输出光功率的变化。
光功率损耗的原理是:当光纤受到弯曲扰动的时候,将会产生弯曲损耗,主要是微弯损耗和宏弯损耗。两者弯曲损耗均是由于光纤弯曲时导致纤芯中的部分导模耦合至包层引起的,两者损耗可以根据Marcuse的理论公式计算弯曲损耗大小,其公式如下:
POUT = PIN exp(-γS)
其中,POUT和PIN分别为输出和输入光功率,γ是弯曲损耗系数,S为弯曲弧长。可以看出光纤的弯曲损耗系数γ越大,即光纤弯曲半径越小,则损耗越大,但弯曲半径过小会导致光纤寿命大幅度减少,影响传感器的使用寿命,所以实际应用中光纤的弯曲半径是受限制的;另一方面,在相同的弯曲损耗系数γ下,若增加弯曲弧长S,则可增大衰减,可以通过大幅度增加弯曲弧长S,达到大幅度提高光纤衰减器的动态范围和精度的目的。
中国专利87107210提供的方案是以光纤的微弯损耗为主的来实现微弯光纤应力计,但由于其是通过两块平板来实现的,平板的尺寸不可能太大,使可以弯曲的光纤长度受到限制,妨碍了该类光纤衰减器的动态范围和精度的提高。另外两块板相对运动的可调节距离最大只有数百微米,且运动时两块板须保持基本的平行,所以此类衰减器对调节的机械结构有较高的要求,不仅增加了实施成本,同样也限制了该类光纤衰减器的动态范围和精度的提高。
技术问题
为了克服上述现有技术的不足,本发明提供一种基于光纤弯曲损耗的螺旋型高精度光纤传感器 ,该传感器 结构简单、设计合理、操作方法方便且使用方式灵活、 具有一定的环境抗干扰能力 、灵敏度高,使该光纤 传感器具有广阔的使用范围;又由于本光纤传感器是基于光纤弯曲损耗基础上测定,而损耗测试是光纤测试中所有干涉法、频率法等其他类测试的基础,也是最成熟、最稳定、成本最低的技术,使本发明的光纤传感器在成本上具有相当大的优势。并可利用时分技术、光时域反射技术(OTDR)及相干频率调制连续波技术(FMCW) 可实现准分布式或分布式测量,为本发明的光纤传感器的应用进一步提供了非常广阔的应用前景。
技术解决方案
为解决上述技术问题,本发明采用的技术方案是: 一种基于螺旋型结构的 光纤传感器 ,其特征在于:一个由弹簧丝构成的多圈形螺旋型构件,在弹簧丝的上表面和下表面上沿弹簧丝纵向连续布设有多个第一变形齿,相邻两圈弹簧丝中的上弹簧丝的下表面上的第一变形齿与下弹簧丝上表面上的第一变形齿交错对应,并在上弹簧丝下表面上的第一变形齿与下弹簧丝上表面上的第一变形齿之间夹有第一信号光纤,螺旋型构件的两端受应力作用时螺旋型构件两端的位置改变,并导致螺旋型构件中有相邻的两圈弹簧丝之间的距离改变,从而使这两圈弹簧丝中的上弹簧丝下表面上的第一变形齿与下弹簧丝上表面上的第一变形齿之间位置改变,从而使夹在两者变形齿间的第一信号光纤的弯曲曲率改变而导致第一信号光纤中传输的光信号的功率变化,第一信号光纤通过传输光纤与测试单元连接。
当螺旋型构件的两端位置变化时,如螺旋型构件在拉应力下伸长、在压应力下缩短,则构成螺旋型构件中的多组相邻的两圈弹簧丝之间的距离拉大或缩小,从而使多组相邻两圈弹簧丝中的上弹簧丝下表面上的第一变形齿与下弹簧丝上表面上的第一变形齿间位置增大或减小,从而使夹在两者变形齿间的第一信号光纤的弯曲曲率减小或增大而导致第一信号光纤中传输的光信号的功率增大或减少,第一信号光纤通过传输光纤与测试单元连接,从而使测试单元探测到光信号功率的变化,测试单元可以是光源和光功率计, 也可以选用光时域反射技术(OTDR)及相干频率调制连续波技术(FMCW) 来实现准分布式或分布式测量 。
本发明的光纤传感器解决进一步技术问题的方案是:所述的 螺旋型构件是螺旋状或平面卷簧状 。
本发明的光纤传感器解决进一步技术问题的方案是:所述的构成螺旋型构件的弹簧丝的上表面与下表面之间有弹性材料层 ,弹性材料层可以是高分子材料、波簧等材料构成,弹性材料层在有外力作用时有更大的变形,所以当螺旋型构件两端位置变化时,使 相邻两圈弹簧丝中的上弹簧丝下表面上的变形齿与下弹簧丝上表面上的变形齿之间的 相对位置会有精细的变化。
本发明的光纤传感器解决进一步技术问题的方案是:所述的布设于弹簧丝表面的第一变形齿的齿高,或者布设于弹簧丝上表面的第一变形齿之间或下表面上的第一变形齿之间的距离是变化的。
本发明的光纤传感器解决进一步技术问题的方案是:相邻两圈弹簧丝中,与所述的在上弹簧丝下表面上的第一变形齿与下弹簧丝上表面上的第一变形齿之间、与第一信号光纤并排夹有第二信号光纤。
本发明的光纤传感器解决进一步技术问题的方案是:在所述的弹簧丝上表面和下表面上分别有第二变形齿,相邻两圈弹簧丝中,在上弹簧丝下表面上的第二变形齿与下弹簧丝上表面上的第二变形齿之间夹有第二信号光纤。
本发明的光纤传感器解决进一步技术问题的方案是:所述的弹簧丝的截面形状是圆形、椭圆形、长方形或圆环型。
本发明的光纤传感器解决进一步技术问题的方案是:测试单元后面接处理单元。
本发明的光纤传感器解决进一步技术问题的方案是: 所述 信号光纤为外部具有多层保护层的光纤,如紧套光纤、碳涂覆光纤、金属涂覆光纤或聚酰亚胺涂覆。
本发明的光纤传感器解决进一步技术问题的方案是: 所述 信号光纤是多芯光纤、高分子聚合物光纤或光子晶体光纤。
有益效果
本发明与现有技术相比具有以下优点 :
1 、结构简单、加工制作方便且结构形式多样,使用方式灵活。
2 、使用操作简便且各组件间连接关系设计合理,通过螺旋型构件和光纤弯曲损耗测试单元 配合使用,实现对较大范围作用力进行实时准确、可靠且快速测试的目的。
3 、制作及运行成本低、使用效果好、实用价值高且经济效益显著,在简化现有测试装置结构、减少制作及运行成本的同时,也能减少环境因素对测试结果的影响,因而测试效果准确,简单易行,并且可以同时利用光纤宏弯损耗和微弯损耗进行准确检测。
4 、由于 螺旋型构件整体呈螺旋形或平面卷簧状,因而在拉伸、压缩或扭转等外应力F作用下整个螺旋型构件上的相邻两圈弹簧丝上的变形齿对信号光纤进行施力,信号光纤受力而出现微弯损耗,因而大大增加了产生微弯光纤的有效长度,从而提高了测试灵敏度。
5 、可以作为光纤可调衰减器使用。
6 、当在螺旋型构件的一端或两端施加外应力F,且使得螺旋型构件整体呈弯曲状态时,通过处理单元根据 光纤弯曲损耗测试单元所检测的数据 能准确推算得出螺旋型构件的整体弯曲半径。
7 、对于螺旋状 螺旋型构件,在每一个近似360° 圆周上,由于相邻两圈弹簧丝上的相对变形齿的齿高或变形齿之间的齿距 呈现均匀递增或均匀递减的情形时,则可推出螺旋型构件任一位置上外应力F的作用方向。
8 、由于螺旋型构件整体呈螺旋形或平面卷簧状,在旋转或扭矩力作用下,可根据信号光纤损耗大小推算出旋转或扭矩力的扭矩大小或扭转角度。
综上所述,本发明 结构简单、设计合理、加工制作方便且使用方式灵活、灵敏度高、使用效果好,能够同时利用光纤宏弯损耗和微弯损耗进行检测,使测试的动态范围更大,从而使测试结果更灵敏和准确,并且在继承原有的通过光纤弯曲损耗可以测试压应力参数外,还扩展到可以测试其他的物理量,包括拉应力、弯曲曲率、弯曲方向、扭转角度和扭矩的测试,并仍可进一步扩展应用范围。
附图说明
图1为本发明第一具体实施方式 的结构示意图。
图2为图1中 螺旋型构件的俯视示意图。
图3为图2中 螺旋型构件的A-A ' 方向的局部截面示意图。
图4为本发明第二具体实施方式 的结构示意图。
图5为弹簧丝为复合结构 的多圈弹簧丝局部截面示意图。
图6为本发明第三具体实施方式的 结构示意图。
图7为本发明第四具体实施方式的 结构示意图。
图8为图7中B-B ' 方向的局部截面示意图。
图9为本发明第五具体实施方式的 的结构示意图。
图10为本发明第六具体实施方式的 的结构示意图。
附图标记说明:
1 -传输光纤 ;
4 - 螺旋型构件 ;
5 - 测试单元 ;
6 -第一信号光纤;
7 -处理单元 ;
8 -第二信号光纤;
10 -弹簧丝的上表面层 ;
11 -弹性材料层 ;
12 -弹簧丝的下表面层 ;
4-1 -弹簧丝下表面上的第一变形齿;
4-2 -弹簧丝上表面上的第一变形齿;
4-3 -弹簧丝下表面上的第二变形齿;
4-4 -弹簧丝上表面上的第二变形齿;
4-5 -内圈弹簧丝外表面上的第一变形齿;
4-6 -外圈弹簧丝内表面上的第一变形齿;
本发明的最佳实施方式
实施例1
如图1、图2和图3所示,本发明 包括 一个由弹簧丝构成的多圈形螺旋型构件4,在弹簧丝的上表面和下表面上沿弹簧丝纵向连续布设有多个变形齿,相邻两圈弹簧丝中的上弹簧丝的下表面上的第一变形齿4-1与下弹簧丝上表面上的第一变形齿4-2交错对应,并在上弹簧丝下表面上的第一变形齿4-1与下弹簧丝上表面上的第一变形齿4-2之间夹有第一信号光纤6,螺旋型构件4的两端受应力作用时螺旋型构件4两端的位置改变,并导致螺旋型构件4中有相邻的两圈弹簧丝之间的距离改变,从而使这两圈弹簧丝中的上弹簧丝下表面上的第一变形齿4-1与下弹簧丝上表面上的第一变形齿4-2之间位置改变,从而使夹在两者变形齿间的第一信号光纤6的弯曲曲率改变而导致第一信号光纤6中传输的光信号的功率变化,第一信号光纤6的通过传输光纤1与测试单元5连接,测试单元5后面连接的是处理单元7。
本实施例中,螺旋型构件4整体呈螺旋状结构,当螺旋型构件4的两端位置变化时,如螺旋型构件4在拉应力下伸长、或在压应力下缩短,则构成螺旋型构件4中的多组相邻的两圈弹簧丝之间的距离拉大或缩小,从而使多组相邻两圈弹簧丝中的上弹簧丝下表面上的第一变形齿4-1与下弹簧丝上表面上的第一变形齿4-2之间位置增大或减小,从而使夹在两者变形齿间的第一信号光纤6的弯曲曲率减小或增大而导致第一信号光纤6中传输的光信号的功率增大或减少,第一信号光纤6的通过传输光纤1与测试单元5连接,从而使测试单元5探测到光信号功率的变化,测试单元5可以是光源和光功率计, 也可以是采用光时域反射技术(OTDR)等技术的测试设备 来实现准分布式或分布式测量 。
所述第一 信号光纤6为外部具有多层保护层的光纤,如紧套光纤、碳涂覆光纤、聚酰亚胺涂覆光纤等;所述第一信号光纤6也可以是塑料光纤或光子晶体光纤。
实施例2
如图4所示,本实施例中,与实施例1不同的是:所述螺旋型构件4所施加外应力F的施力方向为扭转方向,即从上端部或下端部对所述螺旋型构件进行扭转。本实施例中,其余部分的结构、连接关系和工作原理均与实施例1相同。
实施例3
如图6所示, 本实施例中,与实施例1不同的是:所施加外应力F的施力方向为旋转方向,即从上端部或下端部对所述螺旋型构件4进行旋转。本实施例中,其余部分的结构、连接关系和工作原理均与实施例1相同。
实施例4
如图7、图8所示,本实施例中,与实施例1不同的是:所述的 螺旋型构件4的整体呈现为平面卷簧状,相邻两圈弹簧丝是相邻的内圈弹簧丝和外圈弹簧丝,内圈弹簧丝的外表面上的第一变形齿4-5,外圈弹簧丝的内表面上的第一变形齿4-6,两者变形齿交错布设并夹有第一信号光纤6,当螺旋型构件内端相对于外端位置变化时,相邻两圈弹簧丝的位置就变化,从而使分别布设于内外圈弹簧丝表面上的变形齿之间的位置变化,从而使被两者变形齿夹的第一信号光纤6的弯曲曲率变化 而导致信号光纤6中传输的光信号的功率变化,第一信号光纤6的通过传输光纤1与测试单元5连接,测试单元5后面连接的是处理单元7。本实施例中,其余部分的结构、连接关系和工作原理均与实施例1相同。
实施例5
如图5所示,本实施例中,与实施例1不同的是:所述的构成螺旋型构件的弹簧丝是有三层复合的,包括弹簧丝的上表面层10及弹簧丝上表面上的第一变形齿4-2、中间层的弹性材料层11,以及弹簧丝的下表面层12及弹簧丝下表面上的第一变形齿4-1。本实施例中,其余部分的结构、连接关系和工作原理均与实施例1相同。
实施例6
如图9所示,本实施例中,与实施例1不同的是:与所述的第一信号光纤6并排安置有第二信号光纤8。第二信号光纤8中的光信号功率的变化可以通过其他的测试单元(图中未画出)进行检测。本实施例中,其余部分的结构、连接关系和工作原理均与实施例1相同。
实施例7
如图10所示, 本实施例中,与实施例6不同的是:弹簧丝上有弹簧丝下表面的第二变形齿4-3和弹簧丝上表面的第二变形齿4-4,并在这两变形齿间夹有第二信号光纤8,本实施例中,其余部分的结构、连接关系和工作原理均与实施例6相同。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (10)

1. 一种基于螺旋型结构的光纤传感器 ,其特征在于:一个由弹簧丝构成的多圈形螺旋型构件,在弹簧丝的上表面和下表面上沿弹簧丝纵向连续布设有多个第一变形齿,相邻两圈弹簧丝中的上弹簧丝的下表面上的第一变形齿与下弹簧丝上表面上的第一变形齿交错对应,并在上弹簧丝下表面上的变形齿与下弹簧丝上表面上的第一变形齿之间夹有第一信号光纤,螺旋型构件的两端受应力作用时螺旋型构件两端的位置改变,并导致螺旋型构件中有相邻的两圈弹簧丝之间的距离改变,从而使这相邻的两圈弹簧丝中的上弹簧丝下表面上的第一变形齿与下弹簧丝上表面上的第一变形齿之间位置改变,从而使夹在两者变形齿间的第一信号光纤的弯曲曲率改变,第一信号光纤通过传输光纤与测试单元连接。
2. 按照权利要求1所述的基于螺旋型结构的光纤传感器 ,其特征在于:所述的弹簧丝构成的 螺旋型构件是螺旋状或平面卷簧状 。
3. 按照权利要求1所述的基于螺旋型结构的光纤传感器 ,其特征在于:所述的构成螺旋型构件的弹簧丝的上表面与下表面之间有弹性材料层 。
4. 按照权利要求1所述的基于螺旋型结构的光纤传感器 ,其特征在于:所述的布设于弹簧丝表面的第一变形齿的齿高、或者布设于弹簧丝上表面上的第一变形齿之间或布设于弹簧丝下表面上的第一变形齿之间的距离是变化的。
5. 按照权利要求1所述的基于螺旋型结构的光纤传感器 ,其特征在于:相邻两圈弹簧丝中,与所述的在上弹簧丝下表面上的第一变形齿与下弹簧丝上表面上的第一变形齿之间、与第一信号光纤并排夹有第二信号光纤。
6. 按照权利要求1所述 的 基于螺旋型结构的光纤传感器 ,其特征在于:在所述的弹簧丝上表面和下表面上分别有第二变形齿,相邻两圈弹簧丝中,在上弹簧丝下表面上的第二变形齿与下弹簧丝上表面上的第二变形齿之间夹有第二信号光纤。
7. 按照权利要求1所述 的 基于螺旋型结构的光纤传感器 ,其特征在于:所述的弹簧丝的截面形状是圆形、椭圆形、长方形或圆环型。
8. 按照权利要求1至7任意一项所述的基于螺旋型结构的光纤传感器 ,其特征在于:测试单元后面接处理单元。
9. 按照权利要求1至7任意一项所述的基于螺旋型结构的光纤传感器 ,其特征在于: 所述的 信号光纤为具有保护层的光纤。
10. 按照权利要求1至7任意一项所述的基于螺旋型结构的光纤传感器 ,其特征在于: 所述 信号光纤是多芯光纤、高分子聚合物光纤或光子晶体光纤。
PCT/CN2011/072457 2010-04-06 2011-04-06 基于螺旋型结构的光纤传感器 WO2011124126A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112012015240A BR112012015240A2 (pt) 2010-04-06 2011-04-06 sensor de fibra ótica com base na estrutura em espiral
RU2012125660/28A RU2512136C2 (ru) 2010-04-06 2011-04-06 Волоконно-оптический датчик спиральной структуры
JP2012545076A JP5562435B2 (ja) 2010-04-06 2011-04-06 螺旋型構成に基づく光ファイバーセンサ
EP11765044A EP2557404A1 (en) 2010-04-06 2011-04-06 Fiber optic sensor based on spiral structure
US13/529,780 US8616069B2 (en) 2010-04-06 2012-06-21 Fiber optic sensor based on spiral structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010140077 2010-04-06
CN201010140077.0 2010-04-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/529,780 Continuation US8616069B2 (en) 2010-04-06 2012-06-21 Fiber optic sensor based on spiral structure

Publications (1)

Publication Number Publication Date
WO2011124126A1 true WO2011124126A1 (zh) 2011-10-13

Family

ID=43053705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072457 WO2011124126A1 (zh) 2010-04-06 2011-04-06 基于螺旋型结构的光纤传感器

Country Status (7)

Country Link
US (1) US8616069B2 (zh)
EP (1) EP2557404A1 (zh)
JP (1) JP5562435B2 (zh)
CN (1) CN101881633B (zh)
BR (1) BR112012015240A2 (zh)
RU (1) RU2512136C2 (zh)
WO (1) WO2011124126A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467108B (zh) * 2012-07-12 2015-01-01 Univ Southern Taiwan Flexible flat panel storage lamps
CN104536091A (zh) * 2014-12-12 2015-04-22 中国电子科技集团公司第二十三研究所 一种无损伤可调谐光纤功率衰减器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881633B (zh) * 2010-04-06 2012-11-28 西安金和光学科技有限公司 基于光纤弯曲损耗的弹簧型高精度光纤传感器
CN102818531B (zh) * 2012-09-11 2014-07-23 北京航空航天大学 一种基于重叠多光栅的动态应变测量仪
CN103076122A (zh) * 2013-01-14 2013-05-01 温州大学 螺旋弹簧表面主应力测量方法与装置
CN104483736A (zh) * 2014-11-18 2015-04-01 国网河南省电力公司南阳供电公司 简易微光纤衰减方法
CN105157676A (zh) * 2015-08-27 2015-12-16 东北大学 一种基于全光子晶体光纤干涉仪的新型倾斜角测量装置
CN109238534A (zh) * 2018-08-15 2019-01-18 南京邮电大学 一种多芯光纤微弯传感器
WO2020117457A1 (en) 2018-12-04 2020-06-11 Ofs Fitel, Llc High resolution distributed sensor utilizing offset core optical fiber
CN111486880A (zh) * 2020-04-07 2020-08-04 南京航空航天大学 一种成型自监测智能复合材料及其监测方法
CN112781632A (zh) * 2020-12-11 2021-05-11 北京信息科技大学 一种用于超弹性软体材料的螺旋型光纤传感方法
CN114112133A (zh) * 2021-11-23 2022-03-01 厦门大学 一种柔性光子压力传感器、制备方法及其应用
CN115266044B (zh) * 2022-09-23 2022-12-23 国网湖北省电力有限公司 一种光电测试治具及其预警方法
CN117949031A (zh) * 2022-10-28 2024-04-30 华为技术有限公司 一种检测方法和相关设备

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120981A (ja) * 1984-11-19 1986-06-09 Nec Corp 光フアイバ・ハイドロホン
JPS61170623A (ja) * 1985-01-25 1986-08-01 Nec Corp 光フアイバセンサ
CN87107210A (zh) 1986-10-30 1988-08-03 巴布科克和威尔科斯公司 微弯光纤应力计
GB2204679A (en) * 1987-04-30 1988-11-16 Univ Manchester Fibre optic sensor
JPH01176618A (ja) * 1987-12-29 1989-07-13 Fujitsu Ltd 圧力検知マット
SU1509794A1 (ru) * 1988-01-28 1989-09-23 Институт электроники АН БССР Волоконно-оптический преобразователь усилий и перемещений
CN101840027A (zh) * 2010-05-04 2010-09-22 西安金和光学科技有限公司 弹簧型全光纤精密可调光衰减器
CN101881633A (zh) * 2010-04-06 2010-11-10 西安金和光学科技有限公司 基于光纤弯曲损耗的弹簧型高精度光纤传感器
CN101922989A (zh) * 2010-07-13 2010-12-22 西安金和光学科技有限公司 基于c型弹簧管的光纤压力传感装置
CN101930014A (zh) * 2010-07-19 2010-12-29 西安金和光学科技有限公司 基于弹簧型光纤微弯损耗的惯量参数感测装置
CN201697734U (zh) * 2010-04-06 2011-01-05 西安金和光学科技有限公司 基于光纤弯曲损耗的弹簧型高精度光纤传感器
CN201772966U (zh) * 2010-07-13 2011-03-23 西安金和光学科技有限公司 基于c型弹簧管的光纤压力传感装置
CN201802966U (zh) * 2010-08-23 2011-04-20 西安金和光学科技有限公司 新型光纤阀位回讯器
CN201859151U (zh) * 2010-07-19 2011-06-08 西安金和光学科技有限公司 基于弹簧型光纤微弯损耗的惯量参数感测装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653163Y2 (zh) * 1977-07-07 1981-12-11
FR2399042A1 (fr) * 1977-07-25 1979-02-23 Comp Generale Electricite Dispositif de couplage pour fibre optique
US4294513A (en) * 1979-09-11 1981-10-13 Hydroacoustics Inc. Optical sensor system
DE3027476A1 (de) * 1980-07-19 1982-02-18 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Faseroptische anordnung zur polarisationserhaltenden uebertragung von licht definierten, linearen polarisationszustandes
US4421979A (en) * 1981-08-27 1983-12-20 Trw Inc. Microbending of optical fibers for remote force measurement
US4463254A (en) * 1981-08-27 1984-07-31 Trw Inc. Microbending of optical fibers for remote force measurement
US4449210A (en) * 1981-12-21 1984-05-15 Hughes Aircraft Company Fiber optic hydrophone transducers
EP0082820A3 (fr) * 1981-12-21 1984-03-21 Battelle Memorial Institute Dispositif de détection de pression à fibre optique
US4560016A (en) * 1983-12-14 1985-12-24 Anco Engineers, Incorporated Method and apparatus for measuring the weight of a vehicle while the vehicle is in motion
US4552026A (en) * 1984-10-22 1985-11-12 The Babcock & Wilcox Company Sensor for a vortex shedding flowmeter
US4725124A (en) * 1985-09-26 1988-02-16 The United States Of America As Represented By The Secretary Of The Navy Fiber optic microbend phase shifter and modulator
JPH02309267A (ja) * 1989-05-24 1990-12-25 Hitachi Cable Ltd 地中送電線路の故障区間検知装置
US5164605A (en) * 1991-08-14 1992-11-17 The Babcock & Wilcox Company Fiber optic displacement sensor using fiber optic coil
JP2959888B2 (ja) * 1991-09-12 1999-10-06 古河電気工業株式会社 線状外圧センサー
FR2689234B1 (fr) * 1992-03-26 1994-07-01 Opto Ind Detecteur de pression a fibre optique perfectionne.
US5271675A (en) * 1992-10-22 1993-12-21 Gas Research Institute System for characterizing pressure, movement, temperature and flow pattern of fluids
US6563967B2 (en) * 2000-01-27 2003-05-13 Northrop Grumman Corporation Fiber optic displacement sensor
AU2003267024A1 (en) * 2002-09-25 2004-05-04 Acts - Advanced Car Technology Systems Gmbh And Co. Kg Sensor device and method for detecting an external impact load on a vehicle
JP2004258452A (ja) * 2003-02-27 2004-09-16 Asahi Glass Co Ltd 光伝送ユニット
US7098445B2 (en) * 2003-06-17 2006-08-29 Asmo Co., Ltd. Load detecting device
JP2005037800A (ja) * 2003-07-18 2005-02-10 Furukawa Electric Co Ltd:The 光ケーブル接続部、これによって形成された長尺光ケーブル、光ケーブル接続部の製造方法及び電力・光複合光ケーブル

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120981A (ja) * 1984-11-19 1986-06-09 Nec Corp 光フアイバ・ハイドロホン
JPS61170623A (ja) * 1985-01-25 1986-08-01 Nec Corp 光フアイバセンサ
CN87107210A (zh) 1986-10-30 1988-08-03 巴布科克和威尔科斯公司 微弯光纤应力计
GB2204679A (en) * 1987-04-30 1988-11-16 Univ Manchester Fibre optic sensor
JPH01176618A (ja) * 1987-12-29 1989-07-13 Fujitsu Ltd 圧力検知マット
SU1509794A1 (ru) * 1988-01-28 1989-09-23 Институт электроники АН БССР Волоконно-оптический преобразователь усилий и перемещений
CN201697734U (zh) * 2010-04-06 2011-01-05 西安金和光学科技有限公司 基于光纤弯曲损耗的弹簧型高精度光纤传感器
CN101881633A (zh) * 2010-04-06 2010-11-10 西安金和光学科技有限公司 基于光纤弯曲损耗的弹簧型高精度光纤传感器
CN101840027A (zh) * 2010-05-04 2010-09-22 西安金和光学科技有限公司 弹簧型全光纤精密可调光衰减器
CN101922989A (zh) * 2010-07-13 2010-12-22 西安金和光学科技有限公司 基于c型弹簧管的光纤压力传感装置
CN201772966U (zh) * 2010-07-13 2011-03-23 西安金和光学科技有限公司 基于c型弹簧管的光纤压力传感装置
CN101930014A (zh) * 2010-07-19 2010-12-29 西安金和光学科技有限公司 基于弹簧型光纤微弯损耗的惯量参数感测装置
CN201859151U (zh) * 2010-07-19 2011-06-08 西安金和光学科技有限公司 基于弹簧型光纤微弯损耗的惯量参数感测装置
CN201802966U (zh) * 2010-08-23 2011-04-20 西安金和光学科技有限公司 新型光纤阀位回讯器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XING, XUENING ET AL.: "Optical fiber's bend loss and microbend loss and its application.", CHINA CABLE TELEVISION., 2004, pages 26, XP008168483 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467108B (zh) * 2012-07-12 2015-01-01 Univ Southern Taiwan Flexible flat panel storage lamps
CN104536091A (zh) * 2014-12-12 2015-04-22 中国电子科技集团公司第二十三研究所 一种无损伤可调谐光纤功率衰减器

Also Published As

Publication number Publication date
US20120272744A1 (en) 2012-11-01
CN101881633A (zh) 2010-11-10
JP5562435B2 (ja) 2014-07-30
JP2013515947A (ja) 2013-05-09
RU2512136C2 (ru) 2014-04-10
US8616069B2 (en) 2013-12-31
BR112012015240A2 (pt) 2016-04-26
EP2557404A1 (en) 2013-02-13
RU2012125660A (ru) 2013-12-27
CN101881633B (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
WO2011124126A1 (zh) 基于螺旋型结构的光纤传感器
CN201697734U (zh) 基于光纤弯曲损耗的弹簧型高精度光纤传感器
WO2015032364A1 (zh) 一种长标距碳纤维应变传感器件及其测试方法
CN109900199B (zh) 一种用于管道形变检测的弯曲传感器结构及方法
WO2011076148A1 (zh) 曲线型高灵敏度光纤弯曲损耗检测装置
CN111317481A (zh) 柔性可穿戴光纤传感器及人动态全形体分布式监测方法
CN101922948A (zh) 基于微弯损耗的多层型高精度光纤检测装置
CN102374913A (zh) 基于光纤微弯损耗的通用型压力感测装置
CN102645184A (zh) 一种差分光纤型扭转角度检测装置
CN101900617A (zh) 光纤型非侵入式管道压力感测装置
CN102374872A (zh) 基于功能材料的光纤传感装置
CN201772993U (zh) 基于微弯损耗的多层型高精度光纤检测装置
CN201772967U (zh) 基于波纹管的光纤应力传感装置
CN101881632A (zh) 具有缓冲结构的弹簧型高精度光纤传感器
CN112567219B (zh) 利用光纤光栅传感器的温度测定装置
CN102384805A (zh) 基于光纤弯曲损耗的弹簧应力监测装置
CN2664005Y (zh) 栅网式光纤微弯传感器
CN209961239U (zh) 一种分布式光纤光栅振动传感器的内部结构
CN105823496A (zh) 一种线形光纤感测装置
CN201772966U (zh) 基于c型弹簧管的光纤压力传感装置
Zhao et al. Multiparameter Measurements for Bending, Torsion and Temperature by Long-Period Gratings in Three-Core Fiber
CN201955379U (zh) 光纤型高电压监测装置
CN2819172Y (zh) 一种光纤光栅位移传感器
CN201903356U (zh) 光纤型旋转参量测试装置
CN201903352U (zh) 基于功能材料的光纤传感装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765044

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011765044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012125660

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2012545076

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012015240

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012015240

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120620