WO2011123988A1 - 光源及其提供稳定出射光的方法 - Google Patents

光源及其提供稳定出射光的方法 Download PDF

Info

Publication number
WO2011123988A1
WO2011123988A1 PCT/CN2010/000467 CN2010000467W WO2011123988A1 WO 2011123988 A1 WO2011123988 A1 WO 2011123988A1 CN 2010000467 W CN2010000467 W CN 2010000467W WO 2011123988 A1 WO2011123988 A1 WO 2011123988A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source
color grading
intensity
Prior art date
Application number
PCT/CN2010/000467
Other languages
English (en)
French (fr)
Inventor
李屹
杨毅
Original Assignee
绎立锐光科技开发(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 绎立锐光科技开发(深圳)有限公司 filed Critical 绎立锐光科技开发(深圳)有限公司
Priority to PCT/CN2010/000467 priority Critical patent/WO2011123988A1/zh
Publication of WO2011123988A1 publication Critical patent/WO2011123988A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/04Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light by periodically varying the intensity of light, e.g. using choppers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source

Definitions

  • the present invention relates to light sources, and more particularly to a light source structure and method for controlling a light source to provide stable exiting light.
  • a light source for a projector or a special illumination uses a UHP (Ultra High Performance) lamp.
  • UHP Ultra High Performance
  • the disadvantage is that the life is low, generally 2000 - 3000 hours; can not be turned on or off, control real-time poor; mercury, not environmentally friendly; ⁇ ⁇ .
  • the light source can use red, blue, and green LEDs as illumination sources; or use a single color LED, such as a blue LED as a light source to illuminate the color wheel, thereby generating red, Blue, green sequence beam.
  • the former has the advantage of good color rendering, while the latter has lower cost.
  • From the viewpoint of improving the brightness of the emitted light on the basis of the above prior art, there has been a scheme in which a color wheel with a phosphor is used to generate a multi-color sequential light beam under a single-color LED illumination source.
  • the above-mentioned scheme of using red, blue and green LEDs has a brightness that is 30% lower than that of the scheme. However, in contrast, the scheme still has the insufficiency of the intensity of the emitted light.
  • the analysis is as follows:
  • the ordinary color wheel only plays the role of filtering the light, and the direction of the light is not changed, so the color wheel only needs to be in the illumination range of the light from the illumination source (such as the dotted line).
  • the color wheel position caused by the color wheel vibration changes back and forth (for example, from the normal A position to the B position) has little effect on the intensity of the emitted light.
  • the optical filters used in conventional color wheels are sufficient for uniform color wheel filter filtering.
  • the color wheel with phosphor is completely different: First, the phosphor may be unevenly distributed on the color wheel, including uneven density and uneven thickness; secondly, in order to increase the brightness of the light emitted by the light source, the outgoing beam of the light source is required. Focusing and focusing on the phosphor (as indicated by the solid beam 3), so that when the color wheel is shaken by high-speed rotation, it will cause the specific position of the color wheel (and the phosphor carried by it) to defocus the excitation beam 3. , and then
  • the technical problem to be solved by the present invention is to address the deficiencies of the prior art described above, and to provide a light source and a method thereof, which can provide light-stable and stable outgoing light to meet high stability in the field of image projection or special illumination. Sexual requirements.
  • the basic idea of the present invention is as follows: Taking an LED illumination source as an example, using LEDs to control the advantages of real-time performance, it is possible to provide different LED illumination intensity compensation according to the position of the color wheel, thereby causing the distribution of the phosphors.
  • Unevenness and color wheel rotation deviation and other factors caused by the superposition of the light source output intensity instability problem can be corrected at one time; specifically, the LED light source can be kept stable and output, and the change of the light intensity of the light source can be recorded.
  • the change information is stored and utilized to inverse modulate the light output of the LED such that fluctuations in the light output of the source over time can meet predetermined requirements.
  • At least one compensation data of a length of the period is set in a driving module of the illumination source according to a period of movement of the predetermined area;
  • the compensation data is used to synchronously adjust the power supply provided to the illumination source, so that the light output intensity fluctuation amplitude of the light source is less than or equal to a predetermined value by changing the light output intensity of the illumination source in real time.
  • the color grading device comprises a rotating disk, a moving disk/tape or a rotating roller.
  • the predetermined area includes two or more sub-areas having different light transmission characteristics or different light wavelength conversion characteristics; the different light wavelength conversion characteristics by carrying or not carrying light wavelengths on each sub-area Conversion materials, or carrying different optical wavelength conversion materials to achieve.
  • the predetermined area includes only one of the sub-areas.
  • the step of implementing the synchronization includes: acquiring a periodic electrical signal related to the predetermined regional motion position and having the same period, and providing the driving module as a synchronization signal to the illumination source; a signal, the driving module determines a current location of the predetermined area in real time, and determines a current current or voltage output value of the power supply according to the current position and the compensation data to drive the illumination source.
  • the periodic electrical signal is an angle or position related signal taken from the servo device of the color grading device.
  • the compensation data is solidified in a driving module of the illumination source.
  • the light source monitors the light output fluctuation amplitude of the light source; once the fluctuation amplitude exceeds the predetermined value, the light source will enter a self-compensation mode to recalculate and update the compensation data.
  • the obtaining of the compensation data includes the steps of: changing a driving current or a driving voltage supplied to the light emitting source, and testing and sampling the light source intensity of the light source within a predetermined time length in the working state of the light source (0) And having a periodicity; according to the P(0, synchronously adjusting the driving current or the driving voltage as a corresponding periodic signal to cancel the fluctuation of the intensity of the light emitted by the light source; the driving current or the driving voltage corresponding to at least The data of one cycle length is the compensation data.
  • the synchronization adjustment is performed by using a predetermined algorithm after several iterations, including the steps of: 1 obtaining the P (0) light source according to the sum The emitted light intensity (0 or the driving current or the driving voltage, the new light source output light intensity E (o or the driving current or driving voltage is generated by the predetermined algorithm, synchronously tested and sampled for a predetermined length of time) The intensity of the light emitted by the new light source (0; 2 judges whether the fluctuation amplitude of 0 exceeds the predetermined value, and if it exceeds, the test is repeated (0 to repeat 1) Otherwise, ending the iteration.
  • a light source comprising a light source and a driving module thereof, a color grading device with one or more light wavelength converting materials
  • the driving module includes a light source power supply module that outputs a driving current or a driving voltage to the light emitting source; light from the light emitting source is projected onto the coloring device through a first light guiding system, the coloring device having a moving surface on which a predetermined area of the moving surface is attached to the coloring device
  • the periodic motion sequentially travels through the projection range of the light;
  • the predetermined region includes at least one sub-region distributed with the optical wavelength conversion material;
  • the driving module further includes a length stored for at least one period a data storage module for compensating data, the data storage module outputs the compensation data to the light source power supply module;
  • the color grading device provides a periodic electrical signal related to the predetermined region moving position and having the same period
  • the data storage module is used as a synchronization signal for controlling the output of the compensation data.
  • the edge of the moving surface of the color grading device includes a protrusion which periodically triggers the generation of an optical or electromechanical detection signal as the synchronization signal.
  • the driving module further includes a self-compensation control module;
  • the light source further includes a photoelectric detecting device, monitoring light output from the color grading device, and outputting a feedback signal to the self-compensating control module
  • the color grading device further provides the periodic electrical signal to the self-compensation control module for use as a synchronization signal for data processing; the self-compensation module is further connected to the data storage module to read or write the compensation data.
  • the light output from the color grading device is guided to the photodetecting device via the second light guiding system.
  • the light source is an LED.
  • the optical wavelength converting material comprises a phosphor, a dye or a nanoluminescent material.
  • the light intensity of the light source can be stabilized, and the implementation cost is low.
  • FIG. 1 is a schematic view showing the position of a color wheel in a conventional light source structure
  • FIG. 2 is a schematic block diagram of a light source structure of the present invention.
  • Figure 3 is a schematic flow chart of an embodiment of the method of the present invention.
  • FIG. 4 is a schematic view showing an improved structure of a light source based on the structure of FIG. 2;
  • Figure 5 is a schematic view showing an alternative embodiment of the color grading device of the present invention.
  • Figure 6 is a second schematic view showing an alternative embodiment of the color grading device of the present invention.
  • Figure 7 is a schematic view showing an example of compensation of the method of the present invention.
  • the reference numerals are: 1 - 1 illumination source, 2 - 1 color adjustment device, 22 - - photoelectric probe, 23 - - photoelectric detection device; 3, 3' light projection range of one illumination source, 41 one from The light source/excitation light of the light source, 42—the light beam/excited light from the color grading device.
  • a light source of a color grading device with one or more light wavelength conversion materials generally further includes a light source and a driving module thereof.
  • the driving module includes a light source power supply module, and the light source power supply module outputs a driving current or a driving voltage to The illuminating device; the grading device has a moving surface having a predetermined area that can be "swept" by the light; the predetermined area includes at least one sub-distribution of the optical wavelength converting material region.
  • the light wavelength converting material comprises a phosphor, a dye or a nano luminescent material.
  • the method of providing light to be emitted by such a light source generally includes: a step of directing light from the light source to be projected onto the color grading device; and controlling movement of the color grading device to cause the predetermined region to periodically travel through the sequence The step of projecting the range of light.
  • the guiding can be achieved by a light guiding system, such as an optical fiber or a focusing lens, which is not described herein because of known techniques.
  • the method of the invention further comprises the steps of: setting at least one compensation data of the length of the period in the driving module according to a period of the movement of the predetermined area; using the compensation data
  • the power supply to the illumination source is synchronously adjusted to change the light output intensity of the illumination source by a real-time change in the light output intensity of the illumination source to be less than or equal to a predetermined value.
  • the compensation data may be solidified in the driving module in a hardware manner.
  • the compensation data may be determined by adjusting the light source before it leaves the factory. Therefore, the color grading device takes the color wheel as an example.
  • the present invention further provides a method for implementing the synchronization, comprising the steps of: acquiring a periodic electrical signal related to the predetermined regional motion position and having the same period, and providing the same as a synchronization signal to the driving module;
  • the synchronization signal, the driving module determines the current position of the predetermined area in real time, and determines a current current or voltage output value of the power supply according to the current position and the compensation data to drive the illumination source.
  • the light source structure can be designed according to the method of the present invention as shown in FIG.
  • the light source includes a light source (1) and a driving module thereof, and a coloring device (2); the light source power supply module of the driving module outputs a driving current or a driving voltage to the light source (1); Light of the illuminating source is projected onto the grading device (2) through the first light guiding system.
  • the driving module further includes a data storage module for storing compensation data of a length of the at least one period, and the data storage module outputs the compensation data to the light source power supply module.
  • the color grading device (2) provides a periodic electrical signal to the data storage module for use as a control input. The synchronization signal of the compensation data is output.
  • the synchronization signal will control the data storage module to output data related to the current predetermined region position in the compensation data in real time.
  • the light source structure of FIG. 2 is adjusted, for example, but not limited to, providing the periodic electrical signal to the light source power supply module, and setting one in the light source power supply module according to the periodic electricity
  • the unit for selecting and controlling the output of the compensation data can also achieve the object of the present invention. These should all fall within the scope of protection of the method of the invention.
  • the periodic electrical signal can be implemented by a plurality of methods and corresponding acquisition means, which are exemplified by the invention as follows:
  • One of the implementations is the use of a servo device which is necessary for the color grading device (2). While the servo device drives the moving portion (e.g., color wheel) of the color grading device (2) to move, a periodic electrical signal related to the rotation angle or position can be easily provided as the synchronization signal.
  • the second implementation manner may be: providing or mounting a protrusion on the edge of the color grading device (2), the protrusion periodically triggering a light or electromechanical detection signal generated by the movement of the color grading device as the cycle Electrical signal.
  • the third implementation manner may be that, as shown in FIG. 2, a photodetector (22) is mounted outside the color grading device, and a linear or circular grating ruler is disposed or mounted on the moving surface of the color grading device.
  • the photodetector (22) thus directly gives the periodic electrical signal by "reading" the scale.
  • the fourth implementation manner may be that a reflection or absorption device is installed in the color grading device (2), and a photoelectric emitting and receiving device is statically mounted outside the color grading device, and the movement of the color grading device causes the photoelectric emission and The receiving device is turned on or off to generate the periodic electrical signal.
  • the fifth implementation manner may be that when there are two or more sub-regions in the color grading device, a photodetector is mounted on the edge of the exiting optical path outside the color grading device, and the detection sensitivity of the probe It varies with the wavelength of the light, so that the change signal output by the probe is the periodic electrical signal as the motion device moves.
  • the compensation data can be quickly obtained or confirmed according to the following steps: First, the emission light intensity and the driving current or driving voltage of the light source are determined or obtained by the specification of the light source. a table of relationship between changes;
  • the intensity of the emitted light of the illuminating source is kept unchanged, and the light source is tested and sampled for a predetermined length of time.
  • the intensity of the emitted light source within the light source (there is periodicity and reflects the influence exerted by various factors on the light output stability of the light source, including factors such as uneven distribution of the light wavelength conversion material and movement of the moving surface Deviation from the position caused;
  • the emitted light intensity E(t) of the illumination source is synchronously adjusted to a corresponding periodic signal to cancel the fluctuation of the intensity of the light emitted by the light source due to the plurality of factors;
  • the change relationship table is used to query or interpolate to generate the drive current or drive voltage data of at least one cycle length.
  • the compensation data Since the exiting light intensity E(t) of the illuminating source is determined by the driving current or driving voltage supplied to the illuminating source, the above process can be further simplified to include only the steps:
  • the driving current or the driving voltage supplied to the light source is not changed, and the light source output intensity (t) is tested and sampled for a predetermined length of time under the operating state of the light source, and likewise, the P(t) has a periodicity;
  • the driving current or the driving voltage can also be replaced by other physical quantities and their parameters, for example, an adjustable resistor for driving current or driving voltage adjustment, or for modulating a driving current or a driving voltage to achieve a size change.
  • the modulation signal or instead of using a digital-to-analog converter, converts the compensation data from a digital signal to a control analog signal by controlling a conversion factor. All of these should fall within the scope of protection of the present invention.
  • the intensity output change of E(t) can be controlled by the input current I(t) of the excitation source. It is anticipated that due to the nonlinear optical wavelength conversion characteristics of the wavelength converting material and other non-linear factors present in the light source system, the above-described synchronization adjustment may not achieve the cancellation effect in one attempt. To this end, the present invention also proposes a method of performing the synchronization adjustment after a number of iterations according to a predetermined algorithm, including the steps of:
  • the light source module is first operated under the condition that the illumination source provides a constant output light intensity, and the light output of the light source (t) is measured for a period of time (indicated by the period A t , the same below); the period A t is not shorter than the The current period of the predetermined area is set; the current source is 1. 5A current constant current, to obtain the light source output light as an example of the above curve of FIG. 7 (the light intensity is in milliwatts) Unit);
  • the light source is in a light output condition in the next period At, to synchronously measure the light source output of the light source during the period (0 and its variation with time) (0';
  • the light source output light intensity E (o corresponding to the sample data stored in the time period is stored as compensation data, or the change relationship table is checked according to the sampled data of the output light intensity, and the drive current is represented by query or interpolation.
  • Compensation data such as the following curve in Figure 7 is the drive current (in amps) shown in the example, the direction of the current will be opposite to the above curve;
  • the light source E is used to output the light intensity E (0 and the light source output ⁇ (0) to perform the iteration.
  • the predetermined algorithm may be differently selected according to individual differences of the light source.
  • one of the alternative embodiments is
  • E (t) and P (t) are the illumination source output and the source output in the previous period A t
  • Max (P (t) ) is the maximum value of P (t)
  • E'(t) is the correction
  • the subsequent illumination source output that is, the light output to be provided by the illumination source during the current period A t .
  • the maximum light intensity output of the light source in the above period is taken as a reference, and the current light source light output corresponding to the other positions in the predetermined area is enlarged to perform the cancellation.
  • the second embodiment can be selected as Corpse (t) / M" (P (t))
  • Min (P (t) ) is the minimum value of P (t).
  • the predetermined algorithm in each time period may be fixed to the same type, or may be adjusted to use different algorithms; as long as the light source color grading device and the light source can work normally, the algorithm in the above embodiment It can always converge, so that the light output of the adjusted source remains stable.
  • the one or more optical wavelength conversion materials may cause instability of the light source output again due to aging or the like, and the present invention also proposes to set a self-compensation work for the light source. mode.
  • the present invention improves the light source structure shown in FIG. 2 as shown in FIG. 4: the driving module further includes a self-compensation control module; the light source further includes a photoelectric detecting device (23), and the monitoring is from the Depicting the light output of the color grading device (2) and outputting a feedback signal to the self-compensation control module; the color grading device (2) further providing the periodic electrical signal to the self-compensation control module for performing a synchronization signal for data processing; the self-compensation module is further connected to the data storage module to read and write the compensation data.
  • the step of monitoring the light output fluctuation amplitude of the light source by the light source is further included.
  • the light source will be forced into the self-compensation mode to recalculate and update the compensation data.
  • the light source will use the above iterative process to obtain the compensation data, write the compensation data to the data storage module, and then exit the self-compensation mode.
  • the light output from the tinting device (2) can also be directed to the photodetecting device (23) via a second light guiding system.
  • the second light guiding system can include a lens or other light guiding device.
  • the color grading device may include a rotating disk (for example, a color wheel), or include a rotating roller as shown in FIG.
  • the excited light 42 can be emitted from the source by transmission or reflection.
  • the illustrated direction arrows indicate the direction of rotation of the rotating drum or the direction of movement of the moving disk.
  • the predetermined region may include two or more sub-regions having different light transmission characteristics or different light wavelength conversion characteristics; the different light wavelength conversion characteristics are passed through each of the sub-regions
  • the region carries or does not carry light wavelength conversion materials, or carries different optical wavelength conversion materials to achieve.
  • the predetermined area is also allowed to include only one of the sub-areas, i.e., the tinting device carries only one optical wavelength converting material.
  • the light source in the present invention preferably uses an LED, but it is not excluded to use other semiconductor light-emitting devices that control real-time properties, such as a laser diode. The invention has been experimentally verified to greatly improve the stability of the light emitted by the light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

说 明 书 光源及其提供稳定出射光的方法 技术领域 本发明涉及光源, 尤其涉及控制光源以提供稳定出射光的光源结构及方法。
背景技术 传统用于投影机或特种照明的光源采用 UHP (超高性能)灯。 其缺点在于寿 命低, 一般为 2000 - 3000小时; 不能即开即关, 控制实时性差; 含汞, 不环保; ··· ··.等等。
LED的出现及发展克服了上述缺点。
现已有采用蓝光 LED及黄色荧光粉来产生白光的光源方案。 其不足在于缺乏红色的光 谱部分。
为了更适合于投影显示领域的应用要求, 光源可以釆用红、 蓝、 绿三色 LED作为发光 源; 或釆用一单色 LED, 例如蓝光 LED作为发光源来照射色轮, 从而产生红、 蓝、 绿序列 光束。 这两种方案前者具有显色性好的优点, 后者则成本更低。 从提高出射光亮度角度出发, 在上述现有技术基础上, 又出现了釆用带荧光粉的色轮 在单色 LED发光源下产生多色序列光束的方案。 上述釆用红、 蓝、 绿三色 LED的方案出射 光亮度与该方案相比, 亮度要低 30% 以上。 但相较之下, 该方案还是存在有出射光强度不 稳定之不足, 分析如下:
如图 1原理示意图所示, 光源采用普通色轮时, 普通色轮只起到光线的过滤作用, 光 线的方向不被改变, 因此色轮只要处于来自发光源的光的照射范围 (如虛线光束 3' ) 内, 色轮振动造成的色轮位置前后变化(例如由正常 A位置偏离到 B位置)对出射光强度影响 不大。 此外, 基于成熟的光学镀膜技术, 普通色轮所使用的光学滤光片足以使色轮滤光具 有合乎要求的均匀性。 但对于带荧光粉的色轮则情况完全不同: 首先, 荧光粉在色轮上可 能分布不均匀, 包括浓度不均匀和厚度不均匀; 其次, 为了提高光源出射光亮度, 要求发 光源的出射光束聚焦并集中照射到荧光粉上(如实线光束 3所示意), 这样当色轮因高速旋 转发生抖动时, 将造成色轮特定位置(及其所承载的荧光粉)对激发光束 3的离焦, 进而
1
确 认 本 降低此刻的光源出射光亮度。 所以这种光源的发光强度将随时间快速而微小地抖动。 将这 种光源用于投影仪, 可使投影在屏幕上的图像因出现灰阶不连续而严重影响显示效果。 尤其当投影仪釆用 TI公司的 DLP技术方案时, 根据 DLP工作原理, 图像若想产生准 确的 256级灰阶的话, 光源光强的抖动幅度不能超过 0.2%。 这是非常高的要求。 目前釆用 带荧光粉的色轮的光源尚不能达到该要求。
发明内容 本发明要解决的技术问题是针对上述现有技术的不足之处, 而提出一种光源 及其方法, 能提供光强稳定的出射光, 以满足图像投影领域或特种照明领域的高稳定性要 求。 为解决上述技术问题, 本发明的基本构思为: 以 LED发光源为例, 利用 LED控制实时 性好的优点, 设法根据色轮的位置来提供不同的 LED发光强度补偿, 从而使因荧光粉分布 不均及色轮转动偏离等多种因素叠加造成的光源出射光强度不稳定问题一次性得到矫正解 决; 具体地说, 可以先使 LED保持稳定输出的条件下, 记录光源出射光光强的变化; 存储 并利用该变化信息来反向调制 LED 的光输出, 使得光源光输出随时间的波动可以满足预定 要求。 作为实现本发明构思的技术方案是, 提供一种提供稳定出射光的方法, 用于包括发光 源和带一种或一种以上光波长转换材料的调色装置的光源, 包括步骤:
引导来自所述发光源的光投射到所述调色装置上;
控制所述调色装置运动, 来带动运动面上的预定区域周期性地依序行进经过所述 光的投射范围; 所述预定区域至少包括一个分布有所述光波长转换材料的子区域; 尤其是, 还包括步骤:
根据所述预定区域运动的周期, 在所述发光源的驱动模块中设置至少一个所述周 期之长度的补偿数据;
利用所述补偿数据来同步调整提供给所述发光源的供电源, 从而通过实时改变所 述发光源的光输出强度, 来使所述光源的光输出强度波动幅度小于或等于一预定值。 上述方案中, 所述调色装置包括转动盘、 移动盘 /带或转动滚简。 上述方案中, 所述预定区域包括具有不同透光特性或不同光波长转换特性的两个或两 个以上的子区域; 所述不同光波长转换特性通过在各子区域上承载或不承载光波长转换材 料, 或承载不同的光波长转换材料来实现。 上述方案中, 所述预定区域仅包括一个所述子区域。 上述方案中, 所述同步的实现步骤包括: 获取一与所述预定区域运动位置相关且具有 相同周期的周期性电信号, 用作为同步信号提供给所述发光源的驱动模块; 根据所述同步 信号, 该驱动模块实时确定所述预定区域的当前位置, 并根据该当前位置和所述补偿数据 来确定所述供电源的当前电流或电压输出值, 来驱动所述发光源。 上述方案中, 所述周期性电信号为取自于所述调色装置的伺服装置的一个角度或位置 相关信号。 上述方案中, 所述补偿数据是以硬件方式被固化在所述发光源的驱动模块中。 上述方案中, 所述光源监测该光源光输出波动幅度; 一旦该波动幅度超出所述预定值, 该光源将进入自补偿模式来重新计算并更新所述补偿数据。 上述方案中, 所述补偿数据的获得包括步骤: 使提供给所述发光源的驱动电流或驱动 电压不变,在光源工作状态下测试并釆样预定时间长度内的光源出射光强度尸 (0,该 具 有周期性;根据所述 P(0 , 同步调整所述驱动电流或驱动电压为对应的周期性信号来抵消所 述光源出射光强度的波动; 所述驱动电流或驱动电压所对应的至少一个周期长度的数据为 所述补偿数据。 上述步骤中, 所述同步调整是按预定算法经过若干次迭代来完成的, 包括步骤: ① 根 据所述 和获得该 P(0时的所述发光源出射光强度 (0或所述驱动电流或驱动电压,由所 述预定算法来产生新的所述发光源出射光强度 E(o或所述驱动电流或驱动电压, 同步测试 并釆样预定时间长度内新的光源出射光强度 (0 ; ② 判断该次测试的 (0的波动幅度是 否超过所述预定值, 若超过则以该次测试的 (0来重复①步骤; 否则, 结束所述迭代。 作为实现本发明构思的技术方案还是, 提供一种光源, 包括发光源及其驱动模块, 带 一种或一种以上光波长转换材料的调色装置; 所述驱动模块包括一光源供电模块, 该光源 供电模块输出驱动电流或驱动电压往所述发光源; 来自所述发光源的光经过第一光导系统 投射到所述调色装置上, 该调色装置具有一运动面, 该运动面上的预定区域随调色装置的 周期性运动依序行进经过所述光的投射范围; 所述预定区域至少包括一个分布有所述光波 长转换材料的子区域; 尤其是, 所述驱动模块还包括一个存放有至少一个周期之长度的补 偿数据的数据存储模块, 该数据存储模块输出所述补偿数据往所述光源供电模块; 所述调 色装置提供一个与所述预定区域运动位置相关且具有相同周期的周期性电信号给所述数据 存储模块, 用作为控制输出所述补偿数据的同步信号。 上述方案中, 所述调色装置运动面的边缘包括一突起, 该突起随调色装置的运动周期 性地触发产生一个光或机电的检测信号, 用作为所述同步信号。 上述方案中, 所述驱动模块还包括一个自补偿控制模块; 所述光源还包括一个光电探 测装置, 监测来自于所述调色装置的光输出, 并输出一个反馈信号给所述自补偿控制模块; 所述调色装置还提供所述周期性电信号给所述自补偿控制模块用作为进行数据处理的同步 信号; 所述自补偿模块还连接所述数据存储模块, 以读或写所述补偿数据。 上述方案中, 所述来自于调色装置的光输出经由第二光导系统导往所述光电探测装 置。
上述方案中, 所述发光源为 LED。 所述光波长转换材料包括荧光粉、 染料或纳米发光 材料。
釆用上述各技术方案, 可使光源出射光光强稳定, 且实施成本较低。
附图说明 图 1是现有光源结构中色轮位置示意图;
图 2是本发明光源结构示意框图;
图 3是本发明方法的实施例流程示意图;
图 4是基于图 2结构的光源改进结构示意图;
图 5是本发明调色装置的替换实施例之一示意图;
图 6是本发明调色装置的替换实施例之二示意图;
图 7是本发明方法补偿实例示意图;
其中, 各附图标记为: 1一一发光源, 2—一调色装置, 22- - 光电探头, 23_ - 光电探测 装置; 3、 3' 一一发光源的光投射范围, 41一一来自发光源的光束 /激发光, 42—一出自调 色装置的光束 /受激发光。 具体实施方式 下面, 结合附图所示之最佳实施例进一步阐述本发明。
现已知带一种或一种以上光波长转换材料的调色装置的光源一般还包括发光源及其驱 动模块, 该驱动模块包括一光源供电模块, 该光源供电模块输出驱动电流或驱动电压往所 述发光源; 所述调色装置具有一运动面, 该运动面上有一可随运动被光 "扫射" 过的预定 区域; 所述预定区域至少包括一个分布有所述光波长转换材料的子区域。 所述光波长转换 材料包括荧光粉、 染料或纳米发光材料。 这种光源提供出射光的方法一般包括: 引导来自发光源的光投射到所述调色装置上的 步骤; 以及控制所述调色装置运动, 来带动所述预定区域周期性地依序行进经过所述光的 投射范围的步骤。 所述引导可以通过光导系统(例如光纤或聚焦透镜)来实现, 这些因为 已知技术, 不在此赘述。 为使这种光源出射光保持稳定, 本发明方法还包括了步骤: 根据 所述预定区域运动的周期, 在所述驱动模块中设置至少一个所述周期之长度的补偿数据; 利用所述补偿数据来同步调整提供给所述发光源的供电源, 从而通过实时改变所述发光源 的光输出强度, 来使所述光源的光输出强度波动幅度小于或等于一预定值。 本发明方法中, 所述补偿数据可以以硬件方式被固化在所述驱动模块中。 该补偿数据 可以是在所述光源出厂前经过调较而确定的。 因此调色装置以色轮为例, 所述光源工作过 程中色轮按设定的转速运动时, 如何使该补偿数据与所述预定区域上的特定位置进行同步 非常关键。 为此, 本发明进一步提出实现所述同步的方法, 包括步骤: 获取一与所述预定 区域运动位置相关且具有相同周期的周期性电信号, 用作为同步信号提供给所述驱动模块; 根据所述同步信号, 该驱动模块实时确定所述预定区域的当前位置, 并根据该当前位置和 所述补偿数据来确定所述供电源的当前电流或电压输出值, 来驱动所述发光源。 具体来说, 可以根据本发明方法, 设计光源结构如图 2 所示。 如前所述, 该光源包括 发光源(1 )及其驱动模块, 调色装置(2 ); 所述驱动模块的光源供电模块输出驱动电流或 驱动电压往所述发光源 (1 ); 来自所述发光源的光经过第一光导系统投射到所述调色装置 ( 2 )上。 尤其是, 所述驱动模块还包括一个数据存储模块, 用来存放所述至少一个周期之 长度的补偿数据, 该数据存储模块输出所述补偿数据往所述光源供电模块。 为了实现所述 同步, 所述调色装置(2 )提供一个所述周期性电信号给所述数据存储模块, 用作为控制输 出所述补偿数据的同步信号。 在所述调色装置运动周期确定的情况下, 该同步信号将控制 所述数据存储模块实时输出所述补偿数据中与当前预定区域位置相关的数据。 根据本方法精神, 若对图 2的光源结构进行调整, 例如但不限于将所述周期性电信号 提供给所述光源供电模块, 并在该光源供电模块中设置一个可根据所述周期性电信号对所. 述补偿数据进行选择控制和输出的单元, 也能达到本发明目的。 这些均应落入本发明方法 保护范围。 所述周期性电信号可以釆用多种方法和相应的获取装置来实现,本发明对此举例如下: 实现方式之一是利用所述调色装置(2 )所必具有的伺服装置。 所述伺服装置驱动所 述调色装置(2 ) 的运动部分(例如色轮)进行运动的同时, 可以轻易地提供一个与转动角 度或位置相关的周期性电信号用作为所述同步信号。
实现方式之二可以是: 在所述调色装置(2 ) 的边缘设置或安装一突起, 该突起随调 色装置的运动周期性地触发产生的一个光或机电的检测信号用作为所述周期性电信号。
实现方式之三可以是, 如图 2 所示, 在所述调色装置外安装一光电探头(22 ), 另外 在所述调色装置的运动面上设置或安装一线形或圆形光栅尺, 从而该光电探头 (22 )通过 "读取" 所述光栅尺来直接给出所述周期性电信号。
实现方式之四可以是, 在所述调色装置(2 ) 中安装一反射或吸收装置, 同时在调色 装置外静止安装一光电发射及接收装置, 该调色装置的运动使该光电发射及接收装置接通 或阻断, 以产生所述周期性电信号。
实现方式之五可以是, 当所述调色装置存在两个或两个以上的所述子区域时, 在所述 调色装置外的出射光路的边缘安装一光电探头, 该探头的探测灵敏度随光波长的不同而变 化, 从而随所述运动装置的运动该探头输出的变化信号为所述周期性电信号。
... ...可以理解的是, 上述示例并非对所有方式的穷举。 更进一步的是, 本发明方法中, 可以依下述步骤来快速获得或确认所述补偿数据: 首先, 制定或由发光源的规格来获取所述发光源的出射光强度与驱动电流或驱动电压 之间的变化关系表;
接着, 使所述发光源的出射光强度不变, 在光源工作状态下测试并釆样预定时间长度 内的光源出射光强度 该 (ο具有周期性,并反映了各种因素对光源光输出稳定性所施 加的影响, 这些因素包括了所述光波长转换材料分布不均匀及所述运动面因运动造成的位 置前后偏离;
接着,根据所述 P(t), 同步调整所述发光源的出射光强度 E(t)为对应的周期性信号来抵 消所述光源出射光强度因上述多种因素所造成的波动;
最后, 在所述波动得到抵消的前提下, 根据所述发光源的出射光强度 E(t) , 利用所述 变化关系表来查询或插值产生至少一个周期长度的所述驱动电流或驱动电压数据, 作为所 述补偿数据。 因为所述发光源的出射光强度 E(t)是由提供给该发光源的驱动电流或驱动电压来决定 的, 实际上上述过程可以进一步被简化为仅包括步骤:
使提供给所述发光源的驱动电流或驱动电压不变, 在光源工作状态下测试并釆样预定 时间长度内的光源出射光强度 (t), 同样, 该 P(t)具有周期性;
根据所述尸 (t),同步调整所述驱动电流或驱动电压为对应的周期性信号来抵消所述光源 出射光强度的波动; 所述驱动电流或驱动电压所对应的至少一个周期长度的数据为所述补 偿数据。 根据本发明实质, 所述驱动电流或驱动电压还可以用其它物理量及其参数来代替, 例 如用来实现驱动电流或驱动电压调节的可调电阻, 或用来调制驱动电流或驱动电压实现大 小变化的调制信号; 或使用数模转换器来代替, 通过控制转换倍数来将所述补偿数据由数 字信号转换成控制用模拟信号。 ……这些均应落入本发明保护范围。 可以通过激发光源的 输入电流 I(t)来控制 E(t)的强度输出变化。 可以预料, 由于波长转换材料的非线性光波长转换特性及光源系统存在的其它非线性 因素, 上述同步调整极可能不是经一次尝试就能达到所述抵消效果。 为此, 本发明还提出 按预定算法经过若干次迭代来完成所述同步调整的方法, 包括步骤:
① 根据所述 P(O和获得该 时的所述发光源出射光强度 E( )或所述驱动电流或驱 动电压, 由所述预定算法来产生新的所述发光源出射光强度 E(o或所述驱动电流或 驱动电压, 同步测试并采样预定时间长度内新的光源出射光强度尸 (0; ② 判断该次测试的 的波动幅度是否超过所述预定值,若超过则以该次测试的 (t) 来重复①步骤; 否则, 结束所述迭代。 结合图 3 所示的流程图, 对本发明所述补偿数据的获得及其补偿过程以最佳实施例具 体阐述如下:
先使发光源提供一恒定输出光强的条件下运行光源模块, 测量一段时间内 (以时段 A t 来表示, 下同)光源的光输出尸 (t) ; 所述时段 A t不短于所述预定区域的一个运动周期; 设 此时提供给所述发光源的是 1. 5A电流恒流, 以获得如图 7上面一条曲线为例的光源输出光 为例 (光强例以毫瓦为单位);
接着, 根据 (t)和所述常数 E(t), 运用预定算法 , 得到新的发光源光强输出 E(t) = A(P(t), E(t)) ; 将该光强作为所述发光源在下一时段 A t内的光输出条件, 来同步测量 该时段内的光源光输出尸 (0及其随时间的变化量尸(0';
判断所述 t) ' 是否满足显示要求;
若是, 则调较结束。 将该时段内的发光源输出光强 E(o对应的釆样数据存储为补偿数 据, 或根据该输出光强的采样数据来查所述变化关系表, 通过查询或插值得到以驱动电流 表示的补偿数据, 例如图 7 下面一条曲线为例所示的驱动电流(以安培为单位), 该电流的 波动方向将与上面一条曲线相反;
若否, 则利用该时段内的发光源输出光强 E(0及光源输出 ^(0来进行所述迭代。 上述实施例中, 所述预定算法可以依发光源的个体差异进行不同选择。
例如可选择实施例之一为
Figure imgf000010_0001
其中, E (t) 和 P (t)为上一时段 A t 内的发光源输出和光源输出, Max (P (t) )为其中 P (t)的 最大值; E'(t)为修正后的发光源输出, 也就是当前时段 A t 内发光源要提供的光输出。 这 样, 也就是以上一时段内的光源最大光强输出为参照, 放大预定区域其它位置所对应的当 前发光源光输出来实施所述抵消。
可选择实施例之二为 尸 (t)/M"(P(t))
其中各物理量的含义同上, Min (P (t) )为 P (t)的最小值。 这样, 也就是以上一时段内的光源 最小光强输出为参照, 降低预定区域其它位置所对应的当前发光源光输出来实施所述抵消。
可选择实施例之三为
E'(0 = A( (/), E(/)) = ° ,
P(t)/ Aver{P(t)) 其中各物理量的含义同上, Aver (P (t) )为 P (t)的平均值。 在所述迭代过程中, 每一时间段内的预定算法可以固定为同一种, 也可以调整为釆用 不同算法; 只要所述光源调色装置、 发光源能正常工作, 上述实施例中的算法总能收敛, 使调较后的光源光输出保持稳定。 鉴于光源在长期使用过程中, 所述一种或多种光波长转换材料可能因老化等原因导致 光源输出在有补偿情况下再次发生不稳定, 本发明还提出为所述光源设置一个自补偿工作 模式。 为此, 本发明将图 2所示的光源结构改进成如图 4所示: 所述驱动模块还包括一个 自补偿控制模块; 所述光源还包括一个光电探测装置(23 ), 监测来自于所述调色装置(2 ) 的光输出, 并输出一个反馈信号给所述自补偿控制模块; 所述调色装置( 2 )还提供所述周 期性电信号给所述自补偿控制模块用作为进行数据处理的同步信号; 所述自补偿模块还连 接所述数据存储模块, 以读写所述补偿数据。 这样, 在本发明方法中, 还包括所述光源监 测光源光输出波动幅度的步骤。 在该步骤中, 一旦通过所述反馈信号确认了所述光输出波 动幅度超出所述预定值, 光源将被强制进入自补偿模式, 以对所述补偿数据进行重新计算 和更新。 在该自补偿模式, 所述光源将自行使用上述迭代过程来获得补偿数据后, 将该补 偿数据写入所述数据存储模块, 再退出所述自补偿模式。 所述来自于调色装置(2 ) 的光输出还可以经由第二光导系统导往所述光电探测装置 ( 23 )。 所述第二光导系统可以包括透镜或其它光导器件。 在本发明中, 所述调色装置可以包括转动盘(例如色轮), 或包括如图 5所示的转动滚 简, 或包括如图 6所示的移动盘或移动带。 在图 5或图 6中, 来自发光源的光 41射往所述 调色装置的运动面后, 受激发光 42可以通过透射或被反射的形式来射出光源。 图示的方向 箭号表示了所述转动滚筒的转动方向或移动盘的移动方向。 在图 5或图 6的实施例中, 所述预定区域可以包括具有不同透光特性或不同光波长转 换特性的两个或两个以上的子区域; 所述不同光波长转换特性通过在各子区域上承载或不 承载光波长转换材料, 或承载不同的光波长转换材料来实现。 例如图示所分割的 a、 b、 c 三个子区域中, 可以有一个不承载光波长转换材料, 另两个承载不同的光波长转换材料; 或可以是三个分别承载不同的光波长转换材料; 或可以是一个承载光波长转换材料, 另两 个不承载光波长转换材料但具有不同的透光特性。 在特定场合, 也允许所述预定区域仅包 括一个所述子区域, 也就是调色装置仅带一种光波长转换材料。 为了配合调色装置的高速运动, 本发明中所述发光源最好采用 LED, 但也不排除使用其 它控制实时性好的半导体发光器件, 例如激光二极管。 本发明经过试验验证, 大大提高了光源出射光的稳定性。

Claims

权 利 要 求 书
1. 一种提供稳定出射光的方法, 用于包括发光源和带一种或一种以上光波长转换材料的调 色装置的光源, 包括步骤:
引导来自所述发光源的光投射到所述调色装置上;
控制所述调色装置运动, 来带动运动面上的预定区域周期性地依序行进经过所述 光的投射范围; 所述预定区域至少包括一个分布有所述光波长转换材料的子区域; 其特征在于, 还包括步骤:
根据所述预定区域运动的周期, 在所述发光源的驱动模块中设置至少一个所述周 期之长度的补偿数据;
利用所述补偿数据来同步调整提供给所述发光源的供电源, 从而通过实时改变所 述发光源的光输出强度, 来使所述光源的光输出强度波动幅度小于或等于一预定值。
2. 根据杈利要求 1所述提供稳定出射光的方法, 其特征在于:
所述调色装置包括转动盘、 移动盘 /带或转动滚简。
3. 根据权利要求 1所述提供稳定出射光的方法, 其特征在于:
所述预定区域包括具有不同透光特性或不同光波长转换特性的两个或两个以上的 子区域; 所述不同光波长转换特性通过在各子区域上承载或不承载光波长转换材料, 或 承载不同的光波长转换材料来实现。
4. 根据权利要求 1所述提供稳定出射光的方法, 其特征在于:
所述预定区域仅包括一个所述子区域。
5. 根据权利要求 1所述提供稳定出射光的方法, 其特征在于:
所述发光源釆用 LED。
6. 根据权利要求 1所述提供稳定出射光的方法, 其特征在于:
所述光波长转换材料包括荧光粉、 染料或纳米发光材料。
7. 根据权利要求 1所述提供稳定出射光的方法, 其特征在于, 所述同步的实现步驟包括: 获取一与所述预定区域运动位置相关且具有相同周期的周期性电信号, 用作为同步 信号提供给所述发光源的驱动模块;
根据所述同步信号, 该驱动模块实时确定所述预定区域的当前位置, 并根据该当前 位置和所述补偿数据来确定所述供电源的当前电流或电压输出值, 来驱动所述发光源。
8. 根据权利要求 7所述提供稳定出射光的方法, 其特征在于:
所述周期性电信号为取自于所述调色装置的伺服装置的一个角度或位置相关信号。
9. 根据权利要求 7所述提供稳定出射光的方法, 其特征在于:
在所述调色装置的边缘安装一突起, 该突起随调色装置的运动周期性地触发产生的 一个光或机电的检测信号为所述周期性电信号。
10. 根据权利要求 7所述提供稳定出射光的方法, 其特征在于:
在所述调色装置中安装一反射或吸收装置, 同时在调色装置外静止安装一光电发 射及接收装置, 该调色装置的运动使该光电发射及接收装置接通或阻断, 以产生所述周 期性电信号。
11. 根据权利要求 7所述提供稳定出射光的方法, 其特征在于:
在所述调色装置外的出射光路的边缘安装一光电探头, 该探头的探测灵敏度随光 波长的不同而变化, 从而随所述运动装置的运动该探头输出的变化信号为所述周期性电 信号。
12. 根据权利要求 7所述提供稳定出射光的方法, 其特征在于:
在所述调色装置中安装一线形或圆形光栅尺, 在所述调色装置外安装一光电探头, 从而通过 "读取" 该光栅尺直接给出所述周期性电信号。
13. 根据杈利要求 1或 7所述提供稳定出射光的方法, 其特征在于:
所述补偿数据是以硬件方式被固化在所述发光源的驱动模块中。
14. 根据权利要求 1所述提供稳定出射光的方法, 其特征在于, 还包括步骤: 所述光源监测该光源光输出波动幅度; 一旦该波动幅度超出所述预定值, 该光源 将进入自补偿模式来重新计算并更新所述补偿数据。
15. 根据权利要求 1或 14所述提供稳定出射光的方法, 其特征在于, 所述补偿数据的获得 包括步骤:
获取或制定发光源的出射光强度与驱动电流或驱动电压之间的变化关系表; 使所述发光源的出射光强度不变, 在光源工作状态下测试并采样预定时间长度内的 光源出射光强度 P(t), 该 (t)具有周期性;
根据所述户(0, 同步调整所述发光源的出射光强度 E(t)为对应的周期性信号来抵消 所述光源出射光强度的波动;
根据所述发光源的出射光强度 E(0 , 利用所述变化关系表来查询或插值产生至少一 个周期长度的所述驱动电流或驱动电压数据, 作为所述补偿数据。
16. 根据权利要求 1或 14所述提供稳定出射光的方法, 其特征在于, 所述补偿数据的获得 包括步骤:
使提供给所述发光源的驱动电流或驱动电压不变, 在光源工作状态下测试并釆样预 定时间长度内的光源出射光强度 P(t), 该 />(t)具有周期性; .
. 根据所述 P(t), 同步调整所述驱动电流或驱动电压为对应的周期性信号来抵消所述 光源出射光强度的波动; 所述驱动电流或驱动电压所对应的至少一个周期长度的数据 为所述补偿数据。
17. 根据权利要求 15或 16所述提供稳定出射光的方法, 其特征在于, 所述同步调整是按 预定算法经过若干次迭代来完成的, 包括步骤:
① 根据所述 P(t)和获得该 P(t)时的所述发光源出射光强度 E(t)或所述驱动电流或 驱动电压, 由所述预定算法来产生新的所述发光源出射光强度 E(t)或所述驱动电流或驱 动电压, 同步测试并釆样预定时间长度内新的光源出射光强度尸 (0 ; ② 判断该次测试的 P(0的波动幅度是否超过所述预定值, 若超过则以该次测试的 Ρ( )来重复①步骤; 否则, 结束所述迭代。
18. 一种光源, 包括发光源(1 )及其驱动模块, 带一种或一种以上光波长转换材料的调色 装置(2 ); 所述驱动模块包括一光源供电模块, 该光源供电模块输出驱动电流或驱动电 压往所述发光源(1 ); 来自所述发光源的光经过第一光导系统投射到所述调色装置(2 ) 上, 该调色装置具有一运动面, 该运动面上的预定区域随调色装置的周期性运动依序行 进经过所述光的投射范围; 所述预定区域至少包括一个分布有所述光波长转换材料的子 区域; 其特征在于:
所述驱动模块还包括一个存放有至少一个周期之长度的补偿数据的数据存储模块, 该数据存储模块输出所述补偿数据往所述光源供电模块;
所述调色装置(2 )提供一个与所述预定区域运动位置相关且具有相同周期的周期 性电信号给所述数据存储模块, 用作为控制输出所述补偿数据的同步信号。
19. 根据权利要求 18所述的光源, 其特征在于:
所述调色装置(2 ) 的伺服装置提供一个角度或位置相关信号给所述光源供电模块 用作为所述同步信号。
20. 根据权利要求 18所述的光源, 其特征在于:
所述调色装置运动面的边缘包括一突起, 该突起随调色装置的运动周期性地触发产 生一个光或机电的检测信号, 用作为所述同步信号。
21. 根据权利要求 18所述的光源, 其特征在于:
所述调色装置的运动面上包括一线形或圆形光栅尺, 在所述调色装置外安装有一光 电探头(22 ), 该光电探头 (22 )通过 "读取" 所述光栅尺来给出所述同步信号。
22. 根据权利要求 18所述的光源, 其特征在于:
所述驱动模块还包括一个自补偿控制模块; 所述光源还包括一个光电探测装置 ( 23 ), 监测来自于所述调色装置(2 ) 的光输出, 并输出一个反馈信号给所述自补偿控 制模块; 所述调色装置(2 )还提供所述周期性电信号给所述自补偿控制模块用作为进 行数据处理的同步信号; 所述自补偿模块还连接所述数据存储模块, 以读 /写所述补偿 数据。
23. 根据权利要求 22所述的光源, 其特征在于:
所述来自于调色装置( 2 )的光输出经由第二光导系统导往所述光电探测装置( 23 )。
24. 根据权利要求 18所述的光源, 其特征在于:
所述调色装置(2 )包括转动盘、 移动盘或转动滚简。
25. 根据权利要求 18所述的光源, 其特征在于:
所述发光源 (2 )为 LED。
26. 根据权利要求 18所述的光源, 其特征在于:
所述光波长转换材料包括荧光粉、 染料或纳米发光材料。
PCT/CN2010/000467 2010-04-09 2010-04-09 光源及其提供稳定出射光的方法 WO2011123988A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000467 WO2011123988A1 (zh) 2010-04-09 2010-04-09 光源及其提供稳定出射光的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000467 WO2011123988A1 (zh) 2010-04-09 2010-04-09 光源及其提供稳定出射光的方法

Publications (1)

Publication Number Publication Date
WO2011123988A1 true WO2011123988A1 (zh) 2011-10-13

Family

ID=44761998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000467 WO2011123988A1 (zh) 2010-04-09 2010-04-09 光源及其提供稳定出射光的方法

Country Status (1)

Country Link
WO (1) WO2011123988A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154719A (zh) * 2016-07-10 2016-11-23 中山市捷信科技服务有限公司 一种多光源投影仪
CN108535943A (zh) * 2017-03-03 2018-09-14 深圳市光峰光电技术有限公司 一种光源装置及其投影显示系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341105A (ja) * 2003-05-14 2004-12-02 Nec Viewtechnology Ltd 投写型表示装置
CN1655625A (zh) * 2004-02-12 2005-08-17 Lg电子株式会社 用于修正色彩误差的装置和方法
US20060109653A1 (en) * 2004-11-23 2006-05-25 Takacs Laszlo A Lighting fixture with synchronizable optical filter wheel and related method
US20060250336A1 (en) * 1995-01-31 2006-11-09 Wood Lawson A Display apparatus and method
JP2007026749A (ja) * 2005-07-13 2007-02-01 Mitsubishi Electric Corp 発光装置および照明装置
CN101498416A (zh) * 2008-02-02 2009-08-05 绎立锐光科技开发(深圳)有限公司 可调节出射光颜色的光源及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060250336A1 (en) * 1995-01-31 2006-11-09 Wood Lawson A Display apparatus and method
JP2004341105A (ja) * 2003-05-14 2004-12-02 Nec Viewtechnology Ltd 投写型表示装置
CN1655625A (zh) * 2004-02-12 2005-08-17 Lg电子株式会社 用于修正色彩误差的装置和方法
US20060109653A1 (en) * 2004-11-23 2006-05-25 Takacs Laszlo A Lighting fixture with synchronizable optical filter wheel and related method
JP2007026749A (ja) * 2005-07-13 2007-02-01 Mitsubishi Electric Corp 発光装置および照明装置
CN101498416A (zh) * 2008-02-02 2009-08-05 绎立锐光科技开发(深圳)有限公司 可调节出射光颜色的光源及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154719A (zh) * 2016-07-10 2016-11-23 中山市捷信科技服务有限公司 一种多光源投影仪
CN108535943A (zh) * 2017-03-03 2018-09-14 深圳市光峰光电技术有限公司 一种光源装置及其投影显示系统

Similar Documents

Publication Publication Date Title
US9467667B2 (en) Method and apparatus of white balance adjustment
US7172295B2 (en) LED control system with feedback
WO2010115345A1 (zh) 光源及其控制方法、带光源的投影系统
JP2004526992A (ja) カラー順次投影ディスプレイのランプ電力パルス変調
US9532017B2 (en) Light sensitivity controlling apparatus and projection-type display device equipped with same
JP6569077B2 (ja) 映像表示装置とその調整方法
CN102158674A (zh) 投影仪及其控制方法
KR20090105642A (ko) 디스플레이장치 및 그 광조절방법
CN101813297B (zh) 光源及其提供稳定出射光的方法
JP2007531919A (ja) ほぼ一定の光度を有する光ビームを発生する方法
JP2005175255A5 (zh)
WO2011123988A1 (zh) 光源及其提供稳定出射光的方法
JP2006154460A (ja) 冷却装置および投射型表示装置
CN101231475A (zh) 光刻机曝光系统
JP2007328074A (ja) 光源制御装置
CN108604049A (zh) 投影型影像显示装置
JP2017142451A (ja) 光源装置、投射型表示装置及び光源装置の制御方法
TWI443439B (zh) 一種投影裝置、用於該投影裝置之光源模組及亮度調整方法
JP2014164289A (ja) 光源装置および投写型映像表示装置
JP2021536038A (ja) カラーホイール回転数検出装置、光源システム及び投影装置
JP2009528661A (ja) 放電ランプの駆動方法、及び駆動装置
JP5666171B2 (ja) 太陽電池出力特性の測定装置
US5137347A (en) Information retrieval apparatus
TWI274973B (en) Uniform light generating system and method of using the same
JPS6010872A (ja) 原稿読取装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849228

Country of ref document: EP

Kind code of ref document: A1