WO2011122894A2 - 무선 통신 시스템에서 신호 처리 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 신호 처리 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2011122894A2
WO2011122894A2 PCT/KR2011/002260 KR2011002260W WO2011122894A2 WO 2011122894 A2 WO2011122894 A2 WO 2011122894A2 KR 2011002260 W KR2011002260 W KR 2011002260W WO 2011122894 A2 WO2011122894 A2 WO 2011122894A2
Authority
WO
WIPO (PCT)
Prior art keywords
interface
subframe
relay node
signal processing
node
Prior art date
Application number
PCT/KR2011/002260
Other languages
English (en)
French (fr)
Other versions
WO2011122894A3 (ko
Inventor
이승준
천성덕
이재욱
정성훈
이영대
박성준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to JP2012519485A priority Critical patent/JP5548265B2/ja
Priority to EP11763066.5A priority patent/EP2555553B1/en
Priority to CN201180003654.4A priority patent/CN102484807B/zh
Priority to KR1020127004931A priority patent/KR101887062B1/ko
Priority to US13/322,060 priority patent/US8780698B2/en
Publication of WO2011122894A2 publication Critical patent/WO2011122894A2/ko
Publication of WO2011122894A3 publication Critical patent/WO2011122894A3/ko
Priority to US14/298,600 priority patent/US9148900B2/en
Priority to US14/541,821 priority patent/US9338815B2/en
Priority to US14/541,810 priority patent/US9844090B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure

Definitions

  • the present invention relates to a signal processing method in a wireless communication system.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described in brief.
  • the LTE system is a mobile communication system that has evolved from the UMTS system, and standards have been established by 3GPP (3rd Generation Partnership Project), an international standardization organization, and a schematic system structure thereof is shown in FIG.
  • FIG. 1 is a diagram illustrating a network structure of an LTE system which is an example of a mobile communication system.
  • the LTE system structure can be largely classified into an Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) and an Evolved Packet Core (EPC).
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the E-UTRAN consists of a UE (User Equipment, UE) and an eNB (Evolved NodeB, BS).
  • UE User Equipment
  • eNB Evolved NodeB
  • the interface between the UE and the eNB is called a Uu interface, and the eNB and the eNB are called an X2 interface.
  • EPC is composed of MME (Mobility Management Entity) in charge of control plane function and S-GW (Serving Gateway) in charge of user plane function.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the interface between the eNB and the MME is called an S1-MME interface
  • S1-U interface The two interfaces may be collectively referred to as an S1 interface.
  • the air interface protocol is horizontally composed of a physical layer, a data link layer, and a network layer.
  • the air interface protocol is vertically divided into a user plane (U-plane) for transmitting user data and a control plane (C-plane) for transmitting control signals.
  • U-plane user plane
  • C-plane control plane
  • This air interface protocol is based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • a first layer an L2 (second layer) including a MAC / RLC / PDCP layer, and an L3 (third layer) including an RRC layer.
  • L2 second layer
  • L3 third layer
  • RRC Radio Resource Control
  • the present invention provides a method and apparatus for receiving control information in a wireless communication system.
  • the present invention is to control the RN subframe when there is a problem in the connection of the Un interface between the Donor eNB (DeNB) and the RN in the LTE-A system in which a relay node (RN) is introduced.
  • the RN subframe is canceled and operated as a general terminal, thereby preventing interference and preventing unnecessary data transmission attempts of the terminal when the Un interface is restored.
  • the present invention provides a method of processing a signal by a wireless node in a wireless communication system, the method comprising: establishing a specific subframe to communicate with a network node, starting a timer when detecting a connection problem with the network node, and When the started timer expires, it provides a signal processing method comprising the step of releasing the set specific subframe.
  • the signal processing method further includes performing recovery of a connection problem with the network node using the specific subframe while the timer is running.
  • the signal processing method further includes performing a connection with the network node using any subframe when the above-described timer expires.
  • the signal processing method further includes the step of transitioning the radio node to the Radio Resource Control (RRC) IDLE state when the above-described timer expires, and performing a cell selection operation.
  • RRC Radio Resource Control
  • connection problem with the wireless node is RLF (Radio Link Failure), and the network node is a base station.
  • RLF Radio Link Failure
  • the RN when the RN encounters an Un interface problem, uses the RN subframe to an appropriate point in time to recover the Un interface, thereby optimizing the time taken to recover the Un interface problem.
  • FIG. 1 is a diagram illustrating a network structure of an LTE system which is an example of a mobile communication system.
  • FIGS. 2 and 3 illustrate a structure of a radio interface protocol between a terminal and an E-UTRAN in an LTE system.
  • FIG. 4 is a diagram illustrating the configuration of a relay node, an Un interface, a relay backhaul link, and a relay access link in a wireless communication system.
  • 5 is a diagram illustrating an example of relay node resource partitioning.
  • FIG. 6 is a diagram illustrating a flow of relay node operation when a physical channel out of sync occurs in an Un interface.
  • FIG. 7 illustrates a flow of relay node operation when a radio link failure occurs in an Un interface.
  • FIG. 8 is a block diagram illustrating a communication device according to an embodiment of the present invention.
  • FIGS. 2 and 3 illustrate a structure of a radio interface protocol between a UE and an E-UTRAN in an LTE system. Description of each layer of the wireless protocol of FIG. 2 and FIG. 3 is as follows.
  • a physical layer (PHY) layer which is a first layer, provides an information transfer service to a higher layer using a physical channel.
  • the PHY layer is connected to the upper Medium Access Control (MAC) layer through a transport channel. Data is transferred between the MAC layer and the PHY layer through the transport channel.
  • the transport channel is largely divided into a dedicated transport channel and a common transport channel according to whether the channel is shared. Then, data is transferred between different PHY layers, that is, between PHY layers of a transmitting side and a receiving side through a physical channel using radio resources.
  • the Medium Access Control (MAC) layer serves to map various logical channels to various transport channels.
  • the MAC layer plays a role of logical channel multiplexing that maps multiple logical channels to one transport channel.
  • the MAC layer is connected to the RLC layer, which is the upper layer, by a logical channel.
  • the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • AM Acknowledged Mode, Response mode.
  • AM RLC performs a retransmission function through an Automatic Repeat and Request (ARQ) function for reliable data transmission.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a low bandwidth wireless section when transmitting IP packets such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size. This transmits only the necessary information in the header portion of the data, thereby increasing the transmission efficiency of the radio section.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control (RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration, re-configuration, and release of radio bearers (RBs) are performed. It is responsible for controlling logical channels, transport channels and physical channels.
  • RB means a logical path provided by the first and second layers of the radio protocol for data transmission between the terminal and the UTRAN, and in general, the RB is established to mean that the radio protocol layer and the channel of the radio protocol layer required to provide a specific service are The process of defining characteristics and setting each specific parameter and operation method.
  • RB is divided into SRB (Signaling RB) and DRB (Data RB).
  • the SRB is used as a path for transmitting RRC messages in the control plane
  • the DRB is used as a path for transmitting user data in the user plane.
  • a downlink transmission channel for transmitting data from a network to a UE includes a broadcast channel (BCH) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • BCH broadcast channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the UE to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RAC random access channel
  • SCH uplink shared channel
  • logical channels mapped to transport channels include BCCH (Broadcast Channel), PCCH (Paging Control Channel), CCCH (Common Control Channel), MCCH (Multicast Control Channel), MTCH (Multicast Traffic Channel) ) And the like.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one sub-frame consists of a plurality of symbols on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific symbols (eg, the first symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • PDCCH physical downlink control channel
  • One subframe is 0.5 ms
  • a transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to two subframes.
  • RLF radio link failure
  • the UE may determine that the RLF has occurred when the following problems occur in the radio link.
  • the UE may determine that out-of-sync has occurred in the physical channel when the quality of a reference signal (RS) periodically received from the eNB in the physical channel is detected below a threshold. If such out-of-sync occurs continuously by a certain number (eg, N310), it is notified to RRC. Receiving an out-of-sync message from the physical layer, the RRC drives the timer T310 and waits for the physical channel to be resolved while the T310 is running. If the RRC receives a message from the physical layer that a certain number of consecutive in-syncs have occurred from the physical layer while the T310 is running, the RRC determines that the physical channel problem has been resolved and stops the running T310. Let's do it. However, if the in-sync message is not received until T310 expires, the RRC determines that an RLF has occurred.
  • RS reference signal
  • random access resource selection-> random access preamble transmission-> random access response reception-> contention cancellation It goes through the process of (Contention Resolution).
  • the entire process is referred to as one random access process. If this process is not completed successfully, the user waits for the back off time and performs the next random access process. However, if this random access process is attempted a predetermined number of times (eg, preambleTransMax) but is not successful, it is notified to the RRC, and the RRC determines that the RLF has occurred.
  • preambleTransMax a predetermined number of times
  • the UE retransmits an RLC PDU that is not successfully transmitted when using an AM (Acknowledged Mode) RLC in the RLC layer.
  • AM Acknowledged Mode
  • the RRC informs the RRC, and the RRC determines that an RLF has occurred.
  • RRC determines the occurrence of RLF due to the above three causes.
  • RRC connection reestablishment which is a procedure for reestablishing RRC connection with eNB, is performed.
  • the RRC connection resetting process which is performed when RLF occurs, is as follows.
  • the UE determines that a serious problem has occurred in the RRC connection itself, the UE performs the RRC connection reconfiguration process to reestablish the connection with the eNB.
  • RLF Radio Link Failure
  • the UE performs the RRC connection reconfiguration process to reestablish the connection with the eNB.
  • RLF Radio Link Failure
  • Mobility from E-UTRA Mobility from E-UTRA
  • PDCP Integrity PDCP Integrity Check Failure (5) RRC Connection Reconfiguration Failure.
  • the terminal drives the timer T311 and starts the RRC connection resetting process. During this process, the UE accesses a new cell through cell selection and random access procedures.
  • the terminal stops T311 and starts a random access procedure to the corresponding cell. However, if no suitable cell is found until T311 expires, the UE determines that the RRC connection has failed and transitions to the RRC_IDLE mode.
  • FIG. 4 is a diagram illustrating the configuration of a relay node, an Un interface, a relay backhaul link, and a relay access link in a wireless communication system.
  • Relay technology is a technology for relaying data between a user equipment (UE) and an eNB (Evolved Node B, eNB).
  • UE user equipment
  • eNB evolved Node B
  • Relay technology has been introduced in the LTE-A system as a way to compensate for the communication is not smooth when the distance between the UE and eNB in the LTE system is far.
  • a relay technology in a cell boundary region having a poor channel state from a base station, it is possible to provide a faster data channel and expand a cell service area.
  • a new network node called a relay node is introduced between the UE and the eNB.
  • the eNB that manages the RN is called a Donor eNB (DeNB).
  • the interface between the newly generated RN and DeNB due to the RN is defined as an Un interface, and is distinguished from the Uu interface, which is an interface between the UE and the network node. 4 shows the concept of this RN and the Un interface.
  • the RN serves to manage the UE on behalf of the DeNB. That is, from the UE's point of view, the RN appears to be DeNB, and therefore, the Uu interface between the UE and the RN uses MAC / RLC / PDCP / RRC, which is a Uu interface protocol used in the conventional LTE system.
  • the RN is seen as a UE and an eNB depending on the situation. That is, when the RN first accesses the DeNB, since the DeNB does not know the existence of the RN, the RN accesses through random access like the UE, and once the RN accesses the DeNB, the RN operates as an eNB managing the UE connected to the DeNB. Therefore, the Un interface protocol is defined as a form in which the network protocol function is added together with the function of the Uu interface protocol.
  • relay node technology is an essential technology for reducing the base station expansion cost and the backhaul network maintenance cost in the next generation mobile communication system, while expanding service coverage and improving data throughput.
  • relay node technology gradually develops, it is necessary to support a relay node used in a conventional wireless communication system in a new wireless communication system.
  • 3GPP LTE-A (3rd Generation Partnership Project Long Term Evolution-Advanced) systems have the role of forwarding the link connection between a base station and a terminal to a relay node, and have two different attributes in each uplink and downlink carrier frequency band. Will be applied.
  • the part of the connection link established between the link between the base station and the relay node is defined as a backhaul link.
  • the transmission is performed by the frequency division duplex (FDD) or the time division duplex (TDD) using the downlink resources, and is called backhaul downlink, and the transmission is performed by the FDD or TDD using the uplink resources. This may be expressed as a backhaul uplink.
  • FDD frequency division duplex
  • TDD time division duplex
  • two types of links having different attributes are applied to respective uplink and downlink carrier frequency bands as relay nodes are introduced to forward a link between a base station and a terminal.
  • the connection link portion established between the base station and the relay node is defined and represented as a relay backhaul link.
  • the backhaul link is transmitted using a downlink frequency band (for Frequency Division Duplex (FDD)) or a downlink subframe (for Time Division Duplex (TDD)) resources
  • the backhaul link is represented as a backhaul downlink and is uplink. If transmission is performed using a frequency band (in case of FDD) or an uplink subframe (in case of TDD), it may be expressed as a backhaul uplink.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • connection link portion established between the relay node and the series of terminals is defined and represented as a relay access link.
  • a relay access link transmits using a downlink frequency band (in case of FDD) or a downlink subframe (in case of TDD), it is expressed as an access downlink and an uplink frequency band (in case of FDD).
  • TDD uplink subframe
  • the relay node RN may receive information from the base station through the relay backhaul downlink and may transmit information to the base station through the relay backhaul uplink. In addition, the relay node may transmit information to the terminal through the relay access downlink, and may receive information from the terminal through the relay access uplink.
  • the band (or spectrum) of the relay node the case in which the backhaul link operates in the same frequency band as the access link is referred to as 'in-band', and the backhaul link and the access link have different frequencies.
  • the case of operating in band is called 'out-band'.
  • a terminal operating according to an existing LTE system eg, Release-8) (hereinafter referred to as a legacy terminal) should be able to access the donor cell.
  • the relay node may be classified as a transparent relay node or a non-transparent relay node.
  • a transparent means a case where a terminal does not recognize whether or not it communicates with a network through a relay node
  • a non-transparent means a case where a terminal recognizes whether a terminal communicates with a network through a relay node.
  • the relay node may be divided into a relay node configured as part of a donor cell or a relay node controlling a cell by itself.
  • a relay node configured as part of a donor cell may have a relay node identifier (ID), but does not have a relay node's own cell identity.
  • ID a relay node identifier
  • the relay node is configured as part of the donor cell.
  • a relay node can support legacy terminals.
  • various types of smart repeaters, decode-and-forward relays, L2 (layer 2) relay nodes, and type 2 relay nodes may be included in these relay nodes. Corresponding.
  • the relay node controls one or several cells, each of the cells controlled by the relay node is provided with a unique physical layer cell identity, and may use the same RRM mechanism. From a terminal perspective, there is no difference between accessing a cell controlled by a relay node and accessing a cell controlled by a general base station.
  • the cell controlled by this relay node can support the legacy terminal.
  • self-backhauling relay nodes, L3 (third layer) relay nodes, type-1 relay nodes, and type-1a relay nodes are such relay nodes.
  • the type-1 relay node controls the plurality of cells as in-band relay nodes, each of which appears to be a separate cell from the donor cell from the terminal's point of view.
  • the plurality of cells have their own physical cell IDs (defined in LTE Release-8), and the relay node may transmit its own synchronization channel, reference signal, and the like.
  • the terminal may receive scheduling information and HARQ feedback directly from the relay node and transmit its control channel (scheduling request (SR), CQI, ACK / NACK, etc.) to the relay node.
  • SR scheduling request
  • CQI CQI
  • ACK / NACK etc.
  • the type-1 relay node is seen as a legacy base station (base station operating according to the LTE Release-8 system). That is, it has backward compatibility.
  • the type-1 relay node may be seen as a base station different from the legacy base station, thereby providing a performance improvement.
  • the type-1a relay node has the same features as the type-1 relay node described above in addition to operating out-band.
  • the operation of the type-1a relay node can be configured to minimize or eliminate the impact on L1 (first layer) operation.
  • the type-2 relay node is an in-band relay node and does not have a separate physical cell ID and thus does not form a new cell.
  • the type 2 relay node is transparent to the legacy terminal, and the legacy terminal is not aware of the existence of the type 2 relay node.
  • the type-2 relay node may transmit the PDSCH, but at least do not transmit the CRS and PDCCH.
  • resource partitioning In order for the relay node to operate in-band, some resources in the time-frequency space must be reserved for the backhaul link and these resources can be set not to be used for the access link. This is called resource partitioning.
  • the backhaul downlink and the access downlink may be multiplexed in a time division multiplexing (TDM) scheme on one carrier frequency (ie, only one of the backhaul downlink or the access downlink is activated at a specific time).
  • TDM time division multiplexing
  • the backhaul uplink and access uplink may be multiplexed in a TDM manner on one carrier frequency (ie, only one of the backhaul uplink or access uplink is activated at a particular time).
  • Backhaul link multiplexing in FDD may be described as backhaul downlink transmission is performed in a downlink frequency band, and backhaul uplink transmission is performed in an uplink frequency band.
  • Backhaul link multiplexing in TDD may be described as backhaul downlink transmission is performed in a downlink subframe of a base station and a relay node, and backhaul uplink transmission is performed in an uplink subframe of a base station and a relay node.
  • an in-band relay node for example, if a backhaul downlink reception from a base station and an access downlink transmission to a terminal are simultaneously performed in a predetermined frequency band, a signal transmitted from a transmitting node of the relay node is transmitted to the relay node. It may be received at the receiving end, and thus signal interference or RF jamming may occur at the RF front-end of the relay node. Similarly, if the reception of the access uplink from the terminal and the transmission of the backhaul uplink to the base station are simultaneously performed in a predetermined frequency band, signal interference may occur at the RF front end of the relay node.
  • simultaneous transmission and reception in one frequency band at a relay node is provided with sufficient separation between the received signal and the transmitted signal (e.g., sufficient distance between the transmit antenna and the receive antenna geographically (e.g., ground / underground). Is not provided unless) is provided.
  • One way to solve this problem of signal interference is to operate the relay node so that it does not transmit a signal to the terminal while receiving a signal from the donor cell. That is, a gap can be created in the transmission from the relay node to the terminal, and during this gap, the terminal (including the legacy terminal) can be set not to expect any transmission from the relay node. This gap can be set by configuring a Multicast Broadcast Single Frequency Network (MBSFN) subframe.
  • MBSFN Multicast Broadcast Single Frequency Network
  • 5 is a diagram illustrating an example of relay node resource partitioning.
  • a downlink (ie, access downlink) control signal and data are transmitted from a relay node to a terminal as a first subframe, and a second subframe is a control region of a downlink subframe as an MBSFN subframe.
  • the control signal is transmitted from the relay node to the terminal, but no transmission is performed from the relay node to the terminal in the remaining areas of the downlink subframe.
  • the legacy UE since the physical downlink control channel (PDCCH) is expected to be transmitted in all downlink subframes (in other words, the relay node measures the legacy UEs in their area by receiving the PDCCH in every subframe. It is necessary to support to perform the function), it is necessary to transmit the PDCCH in all downlink subframes for the correct operation of the legacy terminal.
  • PDCCH physical downlink control channel
  • the relay node needs to perform access downlink transmission rather than receive the backhaul downlink.
  • N 1, 2 or 3 OFDM symbol intervals of the subframe.
  • the relay node needs to perform access downlink transmission rather than receive the backhaul downlink.
  • the relay node since the PDCCH is transmitted from the relay node to the terminal in the control region of the second subframe, backward compatibility with respect to the legacy terminal served by the relay node may be provided.
  • the relay node may receive the transmission from the base station while no transmission is performed from the relay node to the terminal. Accordingly, through this resource partitioning scheme, it is possible to prevent access downlink transmission and backhaul downlink reception from being simultaneously performed at the in-band relay node.
  • the control region of the second subframe may be referred to as a relay node non-hearing interval.
  • the relay node non-hearing interval means a period in which the relay node transmits the access downlink signal without receiving the backhaul downlink signal. This interval may be set to 1, 2 or 3 OFDM lengths as described above.
  • the relay node may perform access downlink transmission to the terminal and receive a backhaul downlink from the base station in the remaining areas. At this time, since the relay node cannot simultaneously transmit and receive in the same frequency band, it takes time for the relay node to switch from the transmission mode to the reception mode.
  • guard time GT needs to be set so that the relay node performs transmission / reception mode switching in the first partial period of the backhaul downlink reception region.
  • a guard time GT for switching the reception / transmission mode of the relay node may be set.
  • This length of guard time may be given as a value in the time domain, for example, may be given as k (k ⁇ 1) time sample (Ts) values, or may be set to one or more OFDM symbol lengths. have.
  • the guard time of the last part of the subframe may not be defined or set.
  • Such guard time may be defined only in a frequency domain configured for backhaul downlink subframe transmission in order to maintain backward compatibility (when a guard time is set in an access downlink period, legacy terminals cannot be supported).
  • the relay node may receive the relay node dedicated PDCCH and PDSCH from the base station. This may be expressed as a relay-PDCCH (R-PDCCH) and an R-PDSCH (Relay-PDSCH) in the sense of a relay node dedicated physical channel.
  • the RN may be classified into two types, in-band and out-band.
  • in-band RN the Un interface and the Uu interface use the same frequency.
  • all the up and down subframes in which the RN is allocated to communicate with the DeNB are called RN subframes. That is, RN performs data transmission and reception to the Un interface using the RN subframe, and data transmission and reception to the Uu interface is performed in the remaining subframes except the RN subframe.
  • the RN Since the RN is connected wirelessly at the DeNB and the Un interface, problems such as the out-of-sync of a physical channel, a radio link failure, etc. may occur in the radio channel of the Un interface like the Uu interface.
  • the RN should first attempt to recover the Un interface.
  • the RN should reduce data transmission / reception with the UE when restoring the connection with the DeNB, and should attempt recovery using the RN subframe with the DeNB.
  • the RN maintains the Uu interface and attempts to recover the Un interface to the RN subframe. If the Uu interface is maintained in case of an Un interface problem, the Un interface is delayed because only the RN subframe needs to be used to recover the Un interface.
  • the present invention proposes the following method in which the RN attempts Un interface recovery using the RN subframe while maintaining the Uu interface for a predetermined time when a radio channel problem occurs in the Un interface.
  • FIG. 6 is a flow of RN operation when physical channel out-of-sync occurs in an Un interface.
  • the RN determines that physical channel out-of-sync has occurred when receiving N310 consecutive out-of-syncs from the physical channel in the Un interface (S610).
  • the RN determines that out of sync has occurred for the channel if the quality of the RS periodically received from the DeNB in the physical channel is less than or equal to the threshold.
  • the RN drives the timer T310 (S620).
  • the timer may be driven as a procedure for interface recovery, and when the physical channel out of sync occurs, the timer T310 may be driven.
  • the RN checks whether consecutive N310 in-sync messages are received on the physical channel of the Un interface while the T310 is being driven (S630).
  • the RN If the RN receives a message indicating that a certain number (N310) of continuous in-sync has occurred from the physical interface of the Un interface while the timer T310 is running, the RN recovers the Un interface. I think it is.
  • RN maintains the Uu interface while timer T310 is running.
  • the RN performs data transmission and reception with the DeNB using an RN subframe.
  • the RN performs interface recovery through the RN subframe.
  • step S630 If it is determined in step S630 that the RN receives N310 consecutive in-sync messages from the physical channel before T310 expires, it is determined that the radio channel out-of-sync problem of the Un interface has been solved. , RN performs a normal operation (S670).
  • the RN does not receive N310 consecutive in-sync messages from the physical channel until T310 expires, the RN releases the Uu interface and releases the RN subframe (S650).
  • RN releases the Uu RB of all terminals of the Uu interface.
  • the RN also stops system information broadcast on the Uu interface.
  • the RN After releasing the RN subframe, the RN performs an RRC connection reconfiguration procedure for the corresponding DeNB using a random subframe (S660).
  • the RN determines that an RLF has occurred and performs an RRC connection resetting process.
  • the RN subframe is released and an Un interface connection attempt is performed using not only the RN subframe but also another subframe, that is, a random subframe. In other words, the RN performs a random access procedure using an arbitrary subframe.
  • FIG. 7 is a diagram illustrating a flow of an RN operation when an RLF occurs in an Un interface.
  • the RN detects whether an RLF is generated for the Un interface (S710).
  • the generation of RLF is largely one of the following three.
  • RN drives timer T311 and the timer value has a value greater than zero.
  • the timer value is received from the DeNB when the RN first connects to the DeNB.
  • the RN performs an RRC connection reconfiguration process using the RN subframe in the Un interface while the timer T311 is running (S730).
  • the RN performs an RRC connection reconfiguration process to reestablish the connection with the DeNB. At this time, the RN performs an RRC connection reconfiguration process using only a specific subframe.
  • the specific subframe may be an RN subframe.
  • releasing the Uu interface involves the following steps. That is, the RN releases Uu RBs of all terminals of the Uu interface, and the RN stops broadcasting system information to the Uu interface.
  • the RN transitions to the RRC_IDLE mode and re-executes the RRC connection establishment process for the Un interface using an arbitrary subframe (S770).
  • the RN determines that an RRC connection failure has occurred when the timer expires, and transitions to the RRC_IDLE mode. Thereafter, the RN re-provisions the RRC connection establishment process to the corresponding DeNB using an arbitrary subframe as well as the RN subframe.
  • T311 expires, 1) RN releases RN subframe configuration, 2) RN transitions to RRC_IDLE mode, and 3) RN stays in a new appropriate cell and performs a random access procedure to access a cell using a random subframe. You can proceed.
  • the RN may minimize interference through control of the Uu interface or control of the Un interface.
  • the RN sends a stop message to the UEs by dedicated or common signaling.
  • the UE receives the stop message, it can stop all the RBs and the process. Even if the RBs are stopped, the PDCP SDU discard timer can continue to run.
  • the system information may indicate the state of the RN.
  • the state of the RN may include a normal, recovery, and idle state. 1) When the UE confirms that the RN state is Recovery, all RBs and processes can be stopped. 2) When the UE confirms that the RN state is Idle, the UE releases all the RBs and changes to the Idle state, and the UE may search another cell to create an RRC connection. 3) If the UE confirms the RN state as Normal, the UE resumes all suspended RBs and procedures.
  • the RN does not assign any UL grant to the UE. Even if the RN receives a Buffer Status Report, Scheduling Request, or Random Access preamble, the RN does not respond to the UE's request, that is, the RN does not allocate the UL grant to the UE.
  • the RN instructs the UE to go to DRX (Discontinuous Reception Period) by command.
  • the RN may instruct the UE to go from the continuous state to the Long DRX state.
  • the RN While T311 is in progress, the RN performs UL transmission only in the Mulcast Broadcast Single Frequency (MBSFN) subframe.
  • MMSFN Mulcast Broadcast Single Frequency
  • the RN uses a pre-allocated random access preamble (RA preamble).
  • the random access preamble is pre-allocated by the DeNB for use in emergency situations where the RN is an RLF.
  • the RN may perform UL transmission in any subframe instead of a specific subframe. That is, after expiration of T311, the RN may perform UL transmission using not only the MBSFN subframe but also other subframes.
  • FIG. 8 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the communication device 800 includes a processor 810, a memory 820, an RF module 830, a display module 840, and a user interface module 850.
  • the communication device 800 is shown for convenience of description and some modules may be omitted. In addition, the communication device 800 may further include necessary modules. In addition, some modules in the communication device 800 may be classified into more granular modules.
  • the processor 810 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 810 may refer to the contents described with reference to FIGS. 1 to 6.
  • the memory 820 is connected to the processor 810 and stores an operating system, an application, program code, data, and the like.
  • the RF module 830 is connected to the processor 810 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 830 performs analog conversion, amplification, filtering and frequency up conversion, or a reverse process thereof.
  • the display module 840 is connected to the processor 810 and displays various information.
  • the display module 840 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the user interface module 850 is connected to the processor 810 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • embodiments of the present invention have been mainly described based on data transmission / reception relations between a relay node and a base station.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 출원에서는 무선 통신 시스템에서 무선 노드가 신호를 처리하는 방법이 제공된다. 본 출원은 네트워크 노드와 통신하기 위해서 특정 서브프레임을 설정하는 단계, 상기 네트워크 노드와의 연결 문제를 검출하는 경우 타이머를 개시하는 단계, 및 상기 개시된 타이머가 만료되는 경우 상기 설정된 특정 서브프레임을 해제하는 단계를 포함하는, 신호 처리 방법을 제공한다.

Description

무선 통신 시스템에서 신호 처리 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에서 신호 처리 방법에 관한 것이다.
본 발명이 적용될 수 있는 이동통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
LTE 시스템은 UMTS 시스템에서 진화한 이동통신 시스템으로서 국제 표준화기구인 3GPP (3rd Generation Partnership Project)에서 표준이 제정되었으며, 그 개략적인 시스템 구조는 도 1과 같다.
도 1은 이동통신 시스템의 일례인 LTE 시스템의 망구조를 나타낸 도면이다.
LTE 시스템 구조는 크게 E-UTRAN (Evolved UMTS Terrestrial Radio Access Network)과 EPC (Evolved Packet Core)로 구분할 수 있다.
E-UTRAN은 UE (User Equipment, 단말)와 eNB (Evolved NodeB, 기지국)로 구성된다. UE 와 eNB 사이의 인터페이스를 Uu 인터페이스라고 하며, eNB 와 eNB 사이를 X2 인터페이스라고 한다.
EPC는 제어 평면 기능을 담당하는 MME (Mobility Management Entity)와 사용자 평면 기능을 담당하는 S-GW (Serving Gateway)로 구성된다. eNB 와 MME 사이의 인터페이스를 S1-MME 인터페이스 라하며, eNB 와 S-GW 사이의 인터페이스를 S1-U 인터페이스라고 한다. 상기 두 개의 인터페이스를 통칭하여 S1 인터페이스라 부를 수도 있다.
무선 구간인 Uu 인터페이스에는 무선 인터페이스 프로토콜 (Radio 인터페이스 Protocol)이 정의되어 있다. 무선 인터페이스 프로토콜은 수평적으로 물리계층 (Physical Layer), 데이터링크계층 (Data Link Layer) 및 네트워크계층 (Network Layer)으로 이루어진다. 무선 인터페이스 프로토콜은 수직적으로는 사용자 데이터 전송을 위한 사용자평면 (User Plane, U-plane)과 제어신호 (Signaling) 전달을 위한 제어평면 (Control Plane, C-plane)으로 구분된다.
이러한 무선 인터페이스 프로토콜은 일반적으로 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 도2와 도3과 같이 물리계층인 PHY 을 포함하는 L1 (제1계층), MAC/RLC/PDCP 계층을 포함하는 L2 (제2계층), 그리고 RRC 계층을 포함하는 L3 (제3계층)로 구분될 수 있다. 이들은 UE와 E-UTRAN에 쌍(pair)으로 존재하여, Uu 인터페이스의 데이터 전송을 담당한다.
본 발명은 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치를 제공하기 위한 것이다.
본 발명은 릴레이 노드 (RN; Relay Node)가 도입된 LTE-A 시스템에서 Donor eNB (DeNB)와 RN 사이의 Un 인터페이스의 연결에 문제가 있는 경우 RN 서브프레임을 제어하기 위한 것으로써, 상기 RN은 Un 인터페이스의 상황이 악화될 경우, RN 서브프레임을 해지하고 일반 단말로 동작함으로써, Un 인터페이스 복구 시 간섭 방지 및 단말의 불필요한 데이터 송신 시도를 방지하는 것을 목적으로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명은 무선 통신 시스템에서 무선 노드가 신호를 처리하는 방법으로서, 네트워크 노드와 통신하기 위해서 특정 서브프레임을 설정하는 단계, 상기 네트워크 노드와의 연결 문제를 탐지하는 경우 타이머를 개시하는 단계, 및 상기 개시된 타이머가 만료되는 경우 상기 설정된 특정 서브프레임을 해제하는 단계를 포함하는 신호 처리 방법을 제공한다.
신호 처리 방법은 상기 타이머가 진행하는 동안 상기 특정 서브프레임을 사용해서 상기 네트워크 노드와의 연결 문제의 복구를 수행하는 단계를 더 포함한다.
신호 처리 방법은 상기 개시된 타이머가 만료되는 경우 임의의 서브프레임을 사용해서 상기 네트워크 노드와의 연결을 수행하는 단계를 더 포함한다.
또한, 신호 처리 방법은 상기 개시된 타이머가 만료된 경우 상기 무선 노드가 RRC (Radio Resource Control) IDLE 상태로 천이되는 단계, 및 셀 선택 동작을 수행하는 단계를 더 포함한다.
상기 무선 노드와의 연결 문제는 RLF (Radio Link Failure) 이며, 상기 네트워크 노드는 기지국인 것을 특징으로 한다.
본 발명의 실시예들에 따르면, RN이 Un 인터페이스의 문제 발생 시 RN 서브프레임을 적절한 시점까지 사용하여 Un 인터페이스를 복구하도록 함으로써, Un 인터페이스 문제 복구에 걸리는 시간을 최적화하는 효과가 존재한다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 이동통신 시스템의 일례인 LTE 시스템의 망구조를 나타낸 도면이다.
도 2 와 도 3은 LTE 시스템에서의 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜 (Radio Interface Protocol)의 구조를 나타낸다.
도 4 는 무선 통신 시스템에서 릴레이 노드, Un 인터페이스, 릴레이 백홀 링크 및 릴레이 액세스 링크의 구성을 나타낸 도면이다.
도 5는 릴레이 노드 자원 분할의 예시를 나타내는 도면이다.
도 6 는 Un 인터페이스 에서 물리 채널 out of sync 가 발생시 릴레이 노드 동작의 흐름을 나타내는 도면이다.
도 7 은 Un 인터페이스 에서 무선 링크 실패 (Radio Link Failure) 가 발생시 릴레이 노드 동작의 흐름을 나타내는 도면이다.
도 8은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한 도면이다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.도 2 와 도 3은 LTE 시스템에서의 단말과 E-UTRAN 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 구조를 나타낸다. 상기 도 2와 도3의 무선프로토콜 각 계층에 대한 설명은 다음과 같다.
제 1 계층인 물리 (Physical; PHY) 계층은 물리채널 (Physical Channel)을 이용하여 상위 계층에게 정보전송서비스 (Information Transfer Service)를 제공한다. PHY 계층은 상위의 매체접속제어 (Medium Access Control; MAC) 계층과 전송채널 (Transport Channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 PHY 계층 사이의 데이터가 이동한다. 이때, 전송채널은 크게 채널의 공유 여부에 따라 전용 (Dedicated) 전송채널과 공용 (Common) 전송채널로 나뉜다. 그리고, 서로 다른 PHY 계층 사이, 즉 송신측과 수신측의 PHY 계층 사이는 무선 자원을 이용한 물리채널을 통해 데이터가 이동한다.
제 2 계층에 여러 가지 계층이 존재할 수 있다. 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 한다. 또한 MAC 계층은 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면 (Control Plane)의 정보를 전송하는 제어채널 (Control Channel)과 사용자평면 (User Plane)의 정보를 전송하는 트래픽채널 (Traffic Channel)로 나뉜다.
제 2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다. 또한, 각각의 무선베어러 (Radio Bearer; RB)가 요구하는 다양한 QoS를 보장할 수 있도록 하기 위해 TM (Transparent Mode, 투명모드), UM (Un-acknowledged Mode, 무응답모드), 및 AM (Acknowledged Mode, 응답모드)의 세가지 동작 모드를 제공한다. 특히, AM RLC는 신뢰성 있는 데이터 전송을 위해 자동 반복 및 요청 (Automatic Repeat and Request; ARQ) 기능을 통한 재전송 기능을 수행한다.
제 2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 이는 데이터의 헤더(Header) 부분에서 반드시 필요한 정보만을 전송하도록 하여, 무선 구간의 전송효율을 증가시키는 역할을 한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제 3 계층의 가장 상부에 위치한 무선자원제어 (Radio Resource Control; RRC) 계층은 제어평면에서만 정의되며, 무선베어러 (Radio Bearer; RB)들의 설정 (Configuration), 재설정 (Re-configuration) 및 해제 (Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. 여기서 RB는 단말과 UTRAN간의 데이터 전달을 위해 무선 프로토콜의 제 1 및 제 2 계층에 의해 제공되는 논리적 경로를 의미하며, 일반적으로 RB가 설정된다는 것은 특정 서비스를 제공하기 위해 필요한 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB (Signaling RB)와 DRB (Data RB) 두 가지로 나누어 진다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
망에서 단말로 데이터를 전송하는 하향 전송 채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)와 그 외에 사용자 트래픽이나 제어메시지를 전송하는 하향 SCH(Shared Channel)가 존재한다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다.
한편, 단말에서 망으로 데이터를 전송하는 상향전송채널은 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 존재한다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 부반송파(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간축 상에 복수의 심볼(Symbol)들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼들과 복수개의 부반송파로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel), 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 심볼들(가령, 첫번째 심볼)의 특정 부반송파들을 이용할 수 있다. 하나의 서브프레임은 0.5 ms이며, 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 2개의 서브프레임에 해당하는 1ms이다.
이하에서, 무선 링크 실패 (Radio Link Failure; RLF) 에 대해서 설명한다.
단말은 무선 링크에 다음과 같은 문제가 발생하면 RLF가 발생했다고 판단할 수 있다.
(1) 먼저, 물리 채널 문제 (Physical channel problem) 로 인해서 RLF 가 발생했다고 판단될 수 있다.
단말은 물리 채널에서 eNB로부터 주기적으로 수신하는 RS(Reference Signal)의 품질이 임계값 (threshold) 이하로 검출되면 물리 채널에서 out-of-sync가 발생했다고 판단할 수 있다. 이러한 out-of-sync가 연속적으로 특정 개수(예를 들어, N310)만큼 발생하면 이를 RRC로 알린다. 물리 계층으로부터 out-of-sync 메시지를 수신한 RRC는 타이머 T310을 구동하고, T310이 구동하는 동안 물리 채널의 문제가 해결되기를 기다린다. 만약 RRC가 T310이 구동하는 동안 물리 계층으로부터 특정 개수(예를 들어, N310) 만큼의 연속적인 in-sync가 발생했다는 메시지를 수신하면, RRC는 물리 채널 문제가 해결되었다고 판단하고 구동 중인 T310을 중지시킨다. 그러나, T310이 만료될 때까지 in-sync 메시지를 수신하지 못하는 경우, RRC는 RLF가 발생했다고 판단한다.
(2) MAC Random Access 문제로 인해서 RLF 가 발생했다고 판단할 수도 있다.
단말은 MAC 계층에서 랜덤 액세스 과정을 수행할 때 랜덤 액세스 리소스 선택 (Random Access Resource selection) -> 랜덤 액세스 프리앰블 송신 (Random Access Preamble transmission) -> 랜덤 액세스 응답 수신 (Random Access Response reception)-> 경합 해소 (Contention Resolution) 의 과정을 거친다. 상기의 전체 과정을 한 번의 랜덤 액세스 과정이라고 하는데, 이 과정을 성공적으로 마치지 못하면, 백 오프 시간만큼 기다렸다가 다음 랜덤 액세스 과정을 수행한다. 하지만, 이러한 랜덤 액세스 과정을 일정 횟수 (예를 들어, preambleTransMax) 만큼 시도했으나 성공하지 못하면, 이를 RRC로 알리고, RRC는 RLF가 발생했다고 판단한다.
(3) RLC 최대 재전송 (maximum retransmission) 문제로 인해서 RLF 가 발생했다고 판단할 수도 있다.
단말은 RLC 계층에서 AM(Acknowledged Mode) RLC를 사용할 경우 전송에 성공하지 못한 RLC PDU를 재전송한다. 그런데, AM RLC가 특정 AMD PDU에 대해 일정 횟수 (예를 들어, maxRetxThreshold) 만큼 재전송을 했으나 전송에 성공하지 못하면, 이를 RRC로 알리고, RRC는 RLF가 발생했다고 판단한다.
RRC는 상기와 같은 세 가지 원인으로 RLF 발생을 판단한다. 이렇게 RLF가 발생하게 되면 eNB와의 RRC 연결을 재수립하기 위한 절차인 RRC 연결 재설정 (RRC Connection Re-establishment)를 수행한다.
RLF 가 발생한 경우 수행되는 과정인 RRC 연결 재설정 과정은 다음과 같다.
단말은 RRC 연결 자체에 심각한 문제가 발생했다고 판단하면, eNB와의 연결을 재수립하기 위해 RRC 연결 재설정 과정을 수행한다. RRC 연결에 대한 심각한 문제는 다음과 같이 5가지, 즉, (1) 무선 링크 실패 (RLF), (2) 핸드오버 실패 (Handover Failure), (3) Mobility from E-UTRA, (4) PDCP 무결성 검사 실패 (PDCP Integrity Check Failure), (5) RRC 연결 재설정 실패 (RRC Connection Reconfiguration Failure) 로 볼 수 있다.
상기와 같은 문제 중 하나가 발생하면, 단말은 타이머 T311을 구동하고 RRC 연결 재설정 과정을 시작한다. 이 과정 중에 단말은 셀 선택 (Cell Selection), 랜덤 액세스 절차 등을 거쳐 새로운 셀에 접속하게 된다.
만약 타이머 T311이 구동되고 있는 동안에 셀 선택 절차를 통해 적절한 셀을 찾으면, 단말은 T311을 중단시키며, 해당 셀로의 랜덤 액세스 절차를 시작한다. 그러나, 만약 T311이 만료될 때까지 적절한 셀을 찾지 못하면, 단말은 RRC 연결 실패로 판단하고 RRC_IDLE mode로 천이한다.
도 4 는 무선 통신 시스템에서 릴레이 노드, Un 인터페이스, 릴레이 백홀 링크 및 릴레이 액세스 링크의 구성을 나타낸 도면이다.
릴레이 (Relay) 기술은 UE (User Equipment, 단말)와 eNB (Evolved Node B, 기지국) 사이의 데이터를 중계하는 기술이다. 릴레이 기술은 LTE 시스템에서 UE와 eNB의 거리가 먼 경우 원활하게 통신이 이루어지지 않기 때문에 이를 보완하는 방법으로 LTE-A 시스템에서 도입되었다. 또한, 기지국으로부터 채널 상태가 열악한 셀 경계 지역에서 릴레이 기술을 도입하여 사용함으로써 보다 고속의 데이터 채널을 제공할 수 있고, 셀 서비스 영역을 확장시킬 수 있다.
이러한 릴레이 역할을 수행하도록 하기 위해 릴레이 노드 (RN) 라는 새로운 네트워크 노드를 UE와 eNB 사이에 도입하였다. 이 때 RN을 관리하는 eNB를 Donor eNB (DeNB)라고 부른다. 또한, RN으로 인해 새롭게 생성된 RN 과 DeNB 사이의 인터페이스를 Un 인터페이스라고 정의하며 UE와 네트워크 노드 사이의 인터페이스인 Uu 인터페이스와 구분한다. 도 4는 이러한 RN 의 개념과 Un 인터페이스를 보여주고 있다.
RN은 DeNB를 대신하여 UE를 관리하는 역할을 한다. 즉, UE의 입장에서는 RN이 DeNB로 보이게 되며, 따라서 UE 와 RN 사이의 Uu 인터페이스에서는 종래 LTE 시스템에서 사용하던 Uu 인터페이스 프로토콜인 MAC/RLC/PDCP/RRC를 그대로 사용한다.
DeNB의 입장에서 RN은 상황에 따라 UE로도 보이고 eNB로도 보인다. 즉, RN이 처음 DeNB에 접속할 때는 DeNB가 RN의 존재를 모르기 때문에 UE처럼 랜덤 액세스를 통해 접속을 하며, 일단 RN이 DeNB에 접속한 이후에는 자신과 연결된 UE를 관리하는 eNB 처럼 동작한다. 따라서, Un 인터페이스 프로토콜은 Uu 인터페이스 프로토콜의 기능과 함께 네트워크 프로토콜의 기능도 추가된 형태로 정의된다.
과거의 방식이 단순히 신호를 증폭해서 전송하는 리피터(Repeater)의 기능에 국한된 것에 비해 최근에는 보다 지능화된 형태로 발전하고 있다. 더 나아가 릴레이 노드 기술은 차세대 이동통신 시스템에서 기지국 증설 비용과 백홀망의 유지 비용을 줄이는 동시에, 서비스 커버리지 확대와 데이터 처리율 향상을 위해 반드시 필요한 기술에 해당한다. 릴레이 노드 기술이 점차 발전함에 따라, 종래의 무선 통신 시스템에서 이용하는 릴레이 노드를 새로운 무선 통신 시스템에서 지원할 필요가 있다.
3GPP LTE-A(3rd Generation Partnership Project Long Term Evolution-Advanced) 시스템에서 릴레이 노드에 기지국과 단말 간의 링크 연결을 포워딩하는 역할을 도입하면서 각각의 상향링크 및 하향링크 캐리어 주파수 밴드에 속성이 다른 두 가지 종류의 링크가 적용되게 된다. 기지국과 릴레이 노드의 링크 간에 설정되는 연결 링크 부분을 백홀 링크(backhaul link)라고 정의하여 표현한다. 하향링크 자원을 이용하여 FDD(Frequency Division Duplex)) 혹은 TDD(Time Division Duplex) 방식으로 전송이 이루어지는 것을 백홀 하향링크(backhaul downlink)라고 하며, 상향링크 자원을 이용하여 FDD 또는 TDD 방식으로 전송이 이루어지는 것을 백홀 상향링크라고 표현할 수 있다.
도 4을 참조하면, 기지국과 단말 간 링크의 연결을 포워딩(forwarding)하는 역할을 위해 릴레이 노드가 도입되면서 각각의 상향링크 및 하향링크 캐리어 주파수 대역에 속성이 다른 두 종류의 링크가 적용된다. 기지국과 릴레이 노드 간의 설정되는 연결 링크 부분을 릴레이 백홀 링크(relay backhaul link)로서 정의하여 표현한다. 백홀 링크가 하향링크 주파수 대역(Frequency Division Duplex, FDD의 경우)이나 하향링크 서브프레임(Time Division Duplex, TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 백홀 하향링크(backhaul downlink)로 표현하고 상향링크 주파수 대역이나(FDD의 경우) 상향링크 서브프레임(TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 백홀 상향링크(backhaul uplink)로 표현할 수 있다.
반면 릴레이 노드와 일련의 단말들 간에 설정되는 연결 링크 부분을 릴레이 액세스 링크(relay access link)로서 정의하여 표현한다. 릴레이 액세스 링크가 하향링크 주파수 대역(FDD의 경우)이나 하향링크 서브프레임(TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 액세스 하향링크(access downlink)로 표현하고 상향링크 주파수 대역(FDD의 경우)이나 상향링크 서브프레임(TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 액세스 상향링크(access uplink)로 표현할 수 있다.
릴레이 노드(RN)는 릴레이 백홀 하향링크(relay backhaul downlink)를 통해 기지국으로부터 정보를 수신할 수 있고, 릴레이 백홀 상향링크를 통해 기지국으로 정보를 전송할 수 있다. 또한, 릴레이 노드는 릴레이 액세스 하향링크를 통해 단말로 정보를 전송할 수 있고, 릴레이 액세스 상향링크를 통해 단말로부터 정보를 수신할 수 있다.
한편, 릴레이 노드의 대역(또는 스펙트럼) 사용과 관련하여, 백홀 링크가 액세스 링크와 동일한 주파수 대역에서 동작하는 경우를 '인-밴드(in-band)'라고 하고, 백홀 링크와 액세스 링크가 상이한 주파수 대역에서 동작하는 경우를 '아웃-밴드(out-band)'라고 한다. 인-밴드 및 아웃-밴드 경우 모두에서 기존의 LTE 시스템(예를 들어, 릴리즈-8)에 따라 동작하는 단말(이하, 레거시(legacy) 단말이라 함)이 도너 셀에 접속할 수 있어야 한다.
단말에서 릴레이 노드를 인식하는지 여부에 따라 릴레이 노드는 트랜스패런트(transparent) 릴레이 노드 또는 넌-트랜스패런트(non-transparent) 릴레이 노드로 분류될 수 있다. 트랜스패런트는 단말이 릴레이 노드를 통하여 네트워크와 통신하는지 여부를 인지하지 못하는 경우를 의미하고, 넌-트랜스패런트는 단말이 릴레이 노드를 통하여 네트워크와 통신하는지 여부를 인지하는 경우를 의미한다.
릴레이 노드의 제어와 관련하여, 도너 셀의 일부로 구성되는 릴레이 노드 또는 스스로 셀을 제어하는 릴레이 노드로 구분될 수 있다.
도너 셀의 일부로서 구성되는 릴레이 노드는 릴레이 노드 식별자(ID)를 가질 수는 있지만, 릴레이 노드 자신의 셀 아이덴터티(identity)를 가지지 않는다. 도너 셀이 속하는 기지국에 의하여 RRM(Radio Resource Management)의 적어도 일부가 제어되면 (RRM의 나머지 부분들은 릴레이 노드에 위치하더라도), 도너 셀의 일부로서 구성되는 릴레이 노드라 한다. 바람직하게는, 이러한 릴레이 노드는 레거시 단말을 지원할 수 있다. 예를 들어, 스마트 리피터(Smart repeaters), 디코드-앤-포워드 릴레이 노드(decode-and-forward relays), L2(제2계층) 릴레이 노드들의 다양한 종류들 및 타입-2 릴레이 노드가 이러한 릴레이 노드에 해당한다.
스스로 셀을 제어하는 릴레이 노드의 경우에, 릴레이 노드는 하나 또는 여러개의 셀들을 제어하고, 릴레이 노드에 의해 제어되는 셀들 각각에 고유의 물리계층 셀 아이덴터티가 제공되며, 동일한 RRM 메커니즘을 이용할 수 있다. 단말 관점에서는 릴레이 노드에 의하여 제어되는 셀에 액세스하는 것과 일반 기지국에 의해 제어되는 셀에 액세스하는 것에 차이점이 없다. 바람직하게는, 이러한 릴레이 노드에 의해 제어되는 셀은 레거시 단말을 지원할 수 있다. 예를 들어, 셀프-백홀링(Self-backhauling) 릴레이 노드, L3(제3계층) 릴레이 노드, 타입-1 릴레이 노드 및 타입-1a 릴레이 노드가 이러한 릴레이 노드에 해당한다.
타입-1 릴레이 노드는 인-밴드 릴레이 노드로서 복수개의 셀들을 제어하고, 이들 복수개의 셀들의 각각은 단말 입장에서 도너 셀과 구별되는 별개의 셀로 보인다. 또한, 복수개의 셀들은 각자의 물리 셀 ID(LTE 릴리즈-8에서 정의함)를 가지고, 릴레이 노드는 자신의 동기화 채널, 참조신호 등을 전송할 수 있다. 단일-셀 동작의 경우에, 단말은 릴레이 노드로부터 직접 스케줄링 정보 및 HARQ 피드백을 수신하고 릴레이 노드로 자신의 제어 채널(스케줄링 요청(SR), CQI, ACK/NACK 등)을 전송할 수 있다. 또한, 레거시 단말(LTE 릴리즈-8 시스템에 따라 동작하는 단말)들에게 타입-1 릴레이 노드는 레거시 기지국(LTE 릴리즈-8 시스템에 따라 동작하는 기지국)으로 보인다. 즉, 역방향 호환성(backward compatibility)을 가진다. 한편, LTE-A 시스템에 따라 동작하는 단말들에게는, 타입-1 릴레이 노드는 레거시 기지국과 다른 기지국으로 보여, 성능 향상을 제공할 수 있다.
타입-1a 릴레이 노드는 아웃-밴드로 동작하는 것 외에 전술한 타입-1 릴레이 노드와 동일한 특징들을 가진다. 타입-1a 릴레이 노드의 동작은 L1(제1계층) 동작에 대한 영향이 최소화 또는 없도록 구성될 수 있다.
타입-2 릴레이 노드는 인-밴드 릴레이 노드로서, 별도의 물리 셀 ID를 가지지 않으며, 이에 따라 새로운 셀을 형성하지 않는다. 타입-2 릴레이 노드는 레거시 단말에 대해 트랜스패런트하고, 레거시 단말은 타입-2 릴레이 노드의 존재를 인지하지 못한다. 타입-2 릴레이 노드는 PDSCH를 전송할 수 있지만, 적어도 CRS 및 PDCCH는 전송하지 않는다.
한편, 릴레이 노드가 인-밴드로 동작하도록 하기 위하여, 시간-주파수 공간에서의 일부 자원이 백홀 링크를 위해 예비되어야 하고 이 자원은 액세스 링크를 위해서 사용되지 않도록 설정할 수 있다. 이를 자원 분할(resource partitioning)이라 한다.
릴레이 노드에서의 자원 분할에 있어서의 일반적인 원리는 다음과 같이 설명할 수 있다. 백홀 하향링크 및 액세스 하향링크가 하나의 반송파 주파수 상에서 시간분할다중화(Time Division Multiplexing; TDM) 방식으로 다중화될 수 있다 (즉, 특정 시간에서 백홀 하향링크 또는 액세스 하향링크 중 하나만이 활성화된다). 유사하게, 백홀 상향링크 및 액세스 상향링크는 하나의 반송파 주파수 상에서 TDM 방식으로 다중화될 수 있다 (즉, 특정 시간에서 백홀 상향링크 또는 액세스 상향링크 중 하나만이 활성화된다).
FDD 에서의 백홀 링크 다중화는, 백홀 하향링크 전송은 하향링크 주파수 대역에서 수행되고, 백홀 상향링크 전송은 상향링크 주파수 대역에서 수행되는 것으로 설명할 수 있다. TDD 에서의 백홀 링크 다중화는, 백홀 하향링크 전송은 기지국과 릴레이 노드의 하향링크 서브프레임에서 수행되고, 백홀 상향링크 전송은 기지국과 릴레이 노드의 상향링크 서브프레임에서 수행되는 것으로 설명할 수 있다.
인-밴드 릴레이 노드의 경우에, 예를 들어, 소정의 주파수 대역에서 기지국으로부터의 백홀 하향링크 수신과 단말로의 액세스 하향링크 전송이 동시에 이루어지면, 릴레이 노드의 송신단으로부터 전송되는 신호가 릴레이 노드의 수신단에서 수신될 수 있고, 이에 따라 릴레이 노드의 RF 전단(front-end)에서 신호 간섭 또는 RF 재밍(jamming)이 발생할 수 있다. 유사하게, 소정의 주파수 대역에서 단말로부터의 액세스 상향링크의 수신과 기지국으로의 백홀 상향링크의 전송이 동시에 이루어지면, 릴레이 노드의 RF 전단에서 신호 간섭이 발생할 수 있다. 따라서, 릴레이 노드에서 하나의 주파수 대역에서의 동시 송수신은 수신 신호와 송신 신호간에 충분한 분리(예를 들어, 송신 안테나와 수신 안테나를 지리적으로 충분히 이격시켜(예를 들어, 지상/지하에) 설치함)가 제공되지 않으면 구현하기 어렵다.
이와 같은 신호 간섭의 문제를 해결하는 한 가지 방안은, 릴레이 노드가 도너 셀로부터 신호를 수신하는 동안에 단말로 신호를 전송하지 않도록 동작하게 하는 것이다. 즉, 릴레이 노드로부터 단말로의 전송에 갭(gap)을 생성하고, 이 갭 동안에는 단말(레거시 단말 포함)이 릴레이 노드로부터의 어떠한 전송도 기대하지 않도록 설정할 수 있다. 이러한 갭은 MBSFN (Multicast Broadcast Single Frequency Network) 서브프레임을 구성함으로써 설정할 수 있다
도 5는 릴레이 노드 자원 분할의 예시를 나타내는 도면이다.
도 5에서는 제 1 서브프레임은 일반 서브프레임으로서 릴레이 노드로부터 단말로 하향링크 (즉, 액세스 하향링크) 제어신호 및 데이터가 전송되고, 제 2 서브프레임은 MBSFN 서브프레임으로서 하향링크 서브프레임의 제어 영역에서는 릴레이 노드로부터 단말로 제어 신호가 전송되지만 하향링크 서브프레임의 나머지 영역에서는 릴레이 노드로부터 단말로 아무런 전송이 수행되지 않는다. 여기서, 레거시 단말의 경우에는 모든 하향링크 서브프레임에서 물리하향링크제어채널(PDCCH)의 전송을 기대하게 되므로 (다시 말하자면, 릴레이 노드는 자신의 영역 내의 레거시 단말들이 매 서브프레임에서 PDCCH를 수신하여 측정 기능을 수행하도록 지원할 필요가 있으므로), 레거시 단말의 올바른 동작을 위해서는 모든 하향링크 서브프레임에서 PDCCH를 전송할 필요가 있다.
따라서, 기지국으로부터 릴레이 노드로의 하향링크 (즉, 백홀 하향링크) 전송을 위해 설정된 서브프레임 (제 2 서브프레임)상에서도, 서브프레임의 처음 N (N=1, 2 또는 3) 개의 OFDM 심볼구간에서 릴레이 노드는 백홀 하향링크를 수신하는 것이 아니라 액세스 하향링크 전송을 해야 할 필요가 있다. 이에 대하여, 제 2 서브프레임의 제어 영역에서 PDCCH가 릴레이 노드로부터 단말로 전송되므로 릴레이 노드에서 서빙하는 레거시 단말에 대한 역방향 호환성이 제공될 수 있다. 제 2 서브프레임의 나머지 영역에서는 릴레이 노드로부터 단말로 아무런 전송이 수행되지 않는 동안에 릴레이 노드는 기지국으로부터의 전송을 수신할 수 있다. 따라서, 이러한 자원 분할 방식을 통해서, 인-밴드 릴레이 노드에서 액세스 하향링크 전송과 백홀 하향링크 수신이 동시에 수행되지 않도록 할 수 있다.
MBSFN 서브프레임을 이용하는 제 2 서브프레임에 대하여 구체적으로 설명한다. 제 2 서브프레임의 제어 영역은 릴레이 노드 비-청취(non-hearing) 구간이라고 할 수 있다. 릴레이 노드 비-청취 구간은 릴레이 노드가 백홀 하향링크 신호를 수신하지 않고 액세스 하향링크 신호를 전송하는 구간을 의미한다. 이 구간은 전술한 바와 같이 1, 2 또는 3 OFDM 길이로 설정될 수 있다. 릴레이 노드 비-청취 구간에서 릴레이 노드는 단말로의 액세스 하향링크 전송을 수행하고 나머지 영역에서는 기지국으로부터 백홀 하향링크를 수신할 수 있다. 이 때, 릴레이 노드는 동일한 주파수 대역에서 동시에 송수신을 수행할 수 없으므로, 릴레이 노드가 송신 모드에서 수신 모드로 전환하는 데에 시간이 소요된다. 따라서, 백홀 하향링크 수신 영역의 처음 일부 구간에서 릴레이 노드가 송신/수신 모드 스위칭을 하도록 가드 시간(GT)이 설정될 필요가 있다. 유사하게 릴레이 노드가 기지국으로부터의 백홀 하향링크를 수신하고 단말로의 액세스 하향링크를 전송하도록 동작하는 경우에도, 릴레이 노드의 수신/송신 모드 스위칭을 위한 가드 시간(GT)이 설정될 수 있다. 이러한 가드 시간의 길이는 시간 영역의 값으로 주어질 수 있고, 예를 들어, k (k≥1) 개의 시간 샘플(time sample, Ts) 값으로 주어질 수있고, 또는 하나 이상의 OFDM 심볼 길이로 설정될 수도 있다. 또는, 릴레이 노드 백홀 하향링크 서브프레임이 연속으로 설정되어 있는 경우에 또는 소정의 서브프레임 타이밍 정렬(timing alignment) 관계에 따라서, 서브프레임의 마지막 부분의 가드시간은 정의되거나 설정되지 않을 수 있다. 이러한 가드 시간은 역방향 호환성을 유지하기 위하여, 백홀 하향링크 서브프레임 전송을 위해 설정되어 있는 주파수 영역에서만 정의될 수 있다 (액세스 하향링크 구간에서 가드 시간이 설정되는 경우에는 레거시 단말을 지원할 수 없다). 가드 시간을 제외한 백홀 하향링크 수신 구간에서 릴레이 노드는 기지국으로부터 릴레이 노드 전용 PDCCH 및 PDSCH를 수신할 수 있다. 이를 릴레이 노드 전용 물리 채널이라는 의미에서 R-PDCCH (Relay-PDCCH) 및 R-PDSCH (Relay-PDSCH)로 표현할 수도 있다.
RN은 상기 설명한 바와 같이 크게 인 밴드(in-band), 아웃 밴드 (out-band) 두 가지로 나눌 수 있다. 인 밴드 RN에서는 Un 인터페이스와 Uu 인터페이스가 동일한 주파수를 사용한다. 이 경우, Un 인터페이스의 송수신과 Uu 인터페이스의 송수신이 서로에게 간섭으로 작용하지 않도록 각 인터페이스가 사용하는 전용의 서브프레임을 할당하는 것이 필요하다. 이 때, RN이 DeNB와 통신하기 위해 할당된 모든 상하향 서브프레임을 RN 서브프레임이라 한다. 즉, RN은 Un 인터페이스로의 데이터 송수신은 RN 서브프레임을 이용해서 수행하며, Uu 인터페이스로의 데이터 송수신은 RN 서브프레임을 제외한 나머지 서브프레임에서 수행한다.
RN은 DeNB와 Un 인터페이스에서 무선으로 연결되어 있기 때문에, Uu 인터페이스처럼 Un 인터페이스의 무선 채널에 문제 (예를 들어, 물리 채널의 out-of-sync., 무선 링크 실패 등)가 발생할 수 있다.
이러한 무선 채널 문제가 Un 인터페이스에서 발생할 경우, RN의 관리하에 있는 모든 단말의 데이터 송수신에 문제가 발생할 수 있다. 따라서, RN은 최우선적으로 Un 인터페이스의 복구를 시도해야 한다.
하지만, 인 밴드 RN인 경우 단말과 RN과의 데이터 송수신은 RN의 DeNB와의 연결 복구에 간섭으로 작용한다. 따라서, RN은 DeNB와의 연결 복구시 단말과의 데이터 송수신을 줄이고, DeNB와는 RN 서브프레임을 이용하여 복구를 시도해야 한다.
하지만, RN이 어느 시점까지 Uu 인터페이스를 유지하며 RN 서브프레임으로 Un 인터페이스의 복구를 시도해야 하는지 정해져 있지 않다. 만약 Un 인터페이스 의 문제 발생 시 Uu 인터페이스를 계속 유지한다면, RN 서브프레임 만을 이용하여 Un 인터페이스를 복구해야 하므로 Un 복구를 지연시키게 된다.
반대로 Un 인터페이스 문제 발생시 RN 서브프레임을 바로 해제하게 되면, 간섭 문제로 인해 Uu 인터페이스 역시 바로 해제해야 하므로 Un 복구 이후에 다시 단말들과 Uu 인터페이스에서 RRC 연결을 연결하기 위해서 시그널링 오버헤드와 시간 지연이 발생하게 된다.
따라서 본 발명에서는 RN이 Un 인터페이스에서 무선 채널 문제 발생 시 일정 시간 동안 Uu 인터페이스를 유지한 채 RN 서브프레임을 이용하여 Un 인터페이스 복구를 시도하는 다음의 방법을 제안한다.
(1) Un 인터페이스에서 무선 채널 문제 발생한 경우, 타이머를 구동시키며, 타이머가 구동되는 동안, Uu 인터페이스는 정상적으로 유지하면서, RN 서브프레임만을 이용하여 Un 인터페이스의 복구를 시도한다.
(2) 타이머 만료 시까지 Un 인터페이스 복구가 성공하는 경우 Uu 인터페이스와 Un 인터페이스를 정상적으로 유지하지만, 타이머 만료 시까지 Un 인터페이스 복구에 성공하지 못하는 경우, Uu 인터페이스 해제하고, RN 서브프레임을 해제하며, 임의의 서브프레임을 이용하여 Un 인터페이스 연결 시도를 수행한다.
이하에서는 물리적 채널 out of sync 가 발생한 경우 및 RLF 가 발생한 경우 타이머를 구동시키고 인터페이스를 복구하는 동작에 대해서 상세하게 설명한다.
먼저 도 6은 Un 인터페이스에서 물리적 채널 out-of-sync가 발생했을 때의 RN 동작의 흐름이다.
(1) RN은 Un 인터페이스에서 물리 채널로부터 N310개의 연속적인 out-of-sync를 수신하는 경우 물리적 채널 out-of-sync가 발생했다고 판단한다 (S610).
RN 은 물리 채널에서 DeNB 로부터 주기적으로 수신하는 RS 의 품질이 임계값 이하로 검출되면 해당 채널에 대해서 out of sync 가 발생했다고 판단한다.
(2) 물리적 채널 out of sync 가 발생한 경우 RN은 타이머 T310을 구동시킨다 (S620). 물리적 채널 out of sync 가 발생시, 인터페이스 복구를 위한 절차로 타이머를 구동시키며, 물리적 채널 out of sync 발생시에는 타이머 T310 을 구동시킬 수 있다.
(3) RN은 T310이 구동하는 동안 Un 인터페이스의 물리 채널에서 연속적인 N310개의 in-sync 메시지를 수신하는 지를 확인한다 (S630).
RN 은 물리 채널 out-of-sync가 발생한 경우, 타이머 T310이 구동하는 동안 Un 인터페이스의 물리 채널로부터 특정 개수 (N310) 의 연속적인 in-sync가 발생했음을 알리는 메시지를 수신하면 RN은 Un 인터페이스가 복구되었다고 판단한다.
한편, 타이머 T310 가 구동되는 동안에 RN 은 Uu 인터페이스를 유지한다. 또한, RN은 DeNB와의 데이터 송수신을 RN 서브프레임을 이용하여 수행한다. 또한, RN 은 RN 서브 프레임을 통해서 인터페이스 복구를 수행한다.
(4) 만약 단계 (S630) 에서 RN이 T310이 만료되기 전까지 물리채널로부터 N310개의 연속적인 in-sync 메시지를 수신하는 지를 확인한 경우, Un 인터페이스의 무선 채널 out-of-sync 문제가 해결되었다고 판단하며, RN은 정상적인 동작을 수행한다 (S670).
(5) 타이머 T310 이 만료되는 지를 확인한다 (S640).
(6) 만약 RN이 T310이 만료되기 전까지 물리채널로부터 N310개의 연속적인 in-sync 메시지를 수신하지 못한 경우, Uu 인터페이스를 해제하고 RN 서브프레임을 해제한다 (S650).
여기에서, RN 은 Uu 인터페이스의 모든 단말의 Uu RB를 해제한다. 또한, RN은 Uu 인터페이스로 시스템 정보 브로드캐스트 (system information broadcast) 를 중단한다.
(7) RN 서브프레임을 해제한 후 RN은 임의의 서브프레임 (normal subframe)을 이용하여 해당 DeNB로의 RRC 연결 재설정 과정을 진행한다 (S660).
한편, 타이머 T310 이 만료한 경우에도 out of sync 가 지속되는 경우 RN 은 RLF 가 발생했다고 판단하며, RRC 연결 재설정 과정을 수행한다.
상기 과정에서 타이머 만료 시까지 Un 인터페이스 복구가 성공하지 못하는 경우 RN 서브프레임을 해제하고 RN 서브프레임 뿐만 아니라 다른 서브 프레임, 즉, 임의의 서브프레임을 이용한 Un 인터페이스 연결 시도를 한다. 즉, RN 은 임의의 서브프레임을 이용하여 랜덤 액세스 과정을 진행한다.
도 7 은 Un 인터페이스에서 RLF가 발생했을 때의 RN 동작의 흐름을 나타내는 도면이다.
(1) RN은 Un 인터페이스에 대해서 RLF가 발생하는 지를 탐지한다 (S710).
상기 설명한 바와 같이, RLF 의 발생은 크게는 다음의 세 가지 중 하나이다.
1) 먼저 상기 설명한 물리적 채널의 문제로 Un 인터페이스의 물리 채널로부터 특정 개수(N310)의 연속적인 out-of-sync 메시지를 수신한 후 일정 시간이 지날 때까지 특정 개수(N310)의 연속적인 in-sync 메시지를 수신하지 못한 경우에 RLF 가 발생한 것으로 판단될 수 있다. 2) 두번째, MAC 랜덤 액세스 문제로, Un 인터페이스로 랜덤 액세스 과정을 일정 횟수 (preambleTransMax) 만큼 시도했으나 성공하지 못한 경우 RLF 가 발생한 것으로 판단될 수 있다. 3) 세번째, RLC 최대 재전송 문제로, Un 인터페이스의 AM RLC가 특정 AMD PDU를 일정 횟수 (maxRetxThreshold) 만큼 재전송을 했으나 전송에 성공하지 못한 경우에 RLF 가 발생한 것으로 볼 수 있다.
(2) RN은 타이머 T311을 구동시킨다 (S720).
RLF 가 발생한 경우, RN 은 타이머 T311 을 구동시키며, 타이머 값은 0 이상의 값을 가진다. 또한, 타이머 값은 처음 RN이 DeNB에 접속할 때 DeNB로부터 수신받는다.
(3) RN은 타이머 T311 가 구동하는 동안 Un 인터페이스에서 RN 서브프레임을 이용하여 RRC 연결 재설정 과정을 수행한다 (S730).
Un 인터페이스 에 대해서 RLF 가 발생한 경우, RN 은 DeNB와의 연결을 재설정하기 위해 RRC 연결 재설정 과정을 수행한다. 이때, RN 은 특정 서브프레임만을 이용해서 RRC 연결 재설정 과정을 수행한다. 여기에서, 특정 서브프레임은 RN 서브프레임일 수 있다.
(4) RRC 연결 재설정 과정이 성공적인 지를 판단한다 (S740).
(5) 만약 RN이 타이머 T311이 만료되기 전까지 RRC 연결 재설정 과정을 성공적으로 수행한 경우, Un 인터페이스의 RLF 문제가 해결되었다고 판단하고, RN으로서의 정상적인 동작을 수행한다 (S780).
(6) 타이머 T311 이 만료되는 지를 판단한다 (S750).
타이머 T311 이 아직 만료되지 않은 경우 RRC 연결 재설정 과정을 반복한다.
(7) 만약 RN이 T311이 만료되기 전까지 RRC 연결 재설정 과정을 성공하지 못한 경우, Uu 인터페이스를 해제하고 RN 서브프레임을 해제한다(S760).
타이머 만료 시까지 Un 인터페이스 복구가 성공하지 못하는 경우 Uu 인터페이스를 해제하는 것은 다음의 과정을 포함한다. 즉, RN은 Uu 인터페이스의 모든 단말의 Uu RB를 해제하며, RN은 Uu 인터페이스로 시스템 정보 브로드캐스트를 중단한다.
(8) RN 은 RRC_IDLE 모드로 천이되며, 임의의 서브프레임을 이용해서 Un 인터페이스에 대한 RRC 연결 설정 과정을 재수행한다 (S770).
RN 은 타이머 만료시 RRC 연결 실패가 발생한 것으로 판단하고, RRC_IDLE mode로 천이된다. 이후 RN 은 RN 서브 프레임을 뿐만 아니라 임의의 서브프레임을 이용하여 해당 DeNB로의 RRC 연결 설정 과정을 재진행한다. T311 만료 시 1) RN은 RN 서브프레임 설정을 해제하고, 2) RN은 RRC_IDLE mode로 천이하며, 3) RN은 새로운 적절한 셀에 머물며 임의의 서브프레임을 이용하여 셀에 접속하기 위한 랜덤 액세스 과정을 진행할 수 있다.
한편, RN 은 Uu 인터페이스 에 대한 제어 또는 Un 인터페이스에 대한 제어를 통해서 간섭을 최소화할 수도 있다.
먼저, RN 의 Uu 인터페이스 에 대한 제어를 통해서 간섭을 최소화하는 방식을 설명한다.
RN 은 전용 (dedicated) 또는 공통 (common) 시그널링에 의해서 UE 들에 중지 메시지를 송신한다. UE 는 중지 메시지를 수신하면, 모든 RB 들 및 과정을 중지시킬 수 있다. RB 들이 중지되더라도, PDCP SDU 폐기 타이머는 계속 운영될 수 있다.
시스템 정보는 RN 의 상태를 나타낼 수 있는데, RN 의 상태는 Normal, Recovery, Idle 상태를 포함할 수 있다. 1) UE 가 RN 상태가 Recovery 로 확인한 경우, 모든 RB들 및 과정을 중지시킬 수 있다. 2) UE 가 RN 상태가 Idle 로 확인한 경우, UE 는 모든 RB 들을 해제하고 Idle 상태로 변화되고, UE 는 RRC 연결 을 생성하기 위해서 다른 셀을 검색할 수도 있다. 3) UE 가 RN 상태를 Normal 로 확인한 경우, UE 는 모든 중지된 RB 들 및 과정들을 재개한다.
RN 은 UE 에 어떠한 UL 그랜트도 할당하지 않는다. RN 이 Buffer Status Report, Scheduling Request 또는 Random Access preamble 을 수신하더라도, RN 은 UE 의 요청에 응답하지 않으며, 즉, RN 은 UE 에 UL 그랜트를 할당하지 않는다.
RN 은 명령에 의해서 UE 가 DRX (Discontinuous Reception;불연속 수신 주기)로 가도록 명령한다. RN 은 연속 (continuous) 상태에서 Long DRX 상태로 가도록 UE 에 명령할 수 있다.
다음으로, RN 의 Un 인터페이스 에 대한 제어를 통해서 간섭을 최소화하는 방식을 설명한다.
RRC 연결 재설정 수행하는 동안, 즉, 타이머 T311 이 만료되기 전까지 MBSFN 서브프레임에서 UL 송신을 수행한다.
T311 이 진행되는 동안 RN 은 오직 MBSFN (Mulicast Broadcast Single Frequency) 서브프레임으로만 UL 송신을 수행한다. 타이머 T311 이 진행되는 동안 RN 이 랜덤 액세스 과정을 수행할 때, RN 은 사전 할당된 랜덤 액세스 프리엠블 (RA preamble) 을 사용한다. 랜덤 액세스 프리엠블은 RN 이 RLF 와 같은 긴급 상황에서 사용하기 위해서 DeNB 에 의해서 사전 할당된다.
T311 이 만료된 경우, 즉, RRC 연결 재설정 가 실패한 경우, RN 은 특정 서브프레임이 아닌 임의의 서브프레임으로 UL 송신을 수행할 수 있다. 즉, RN 은 T311 만료 이후에는 MBSFN 서브 프레임 뿐만 아니라 다른 서브프레임을 이용해서도 UL 송신을 수행할 수도 있다.
도 8는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 8을 참조하면, 통신 장치(800)는 프로세서(810), 메모리(820), RF 모듈(830), 디스플레이 모듈(840) 및 사용자 인터페이스 모듈(850)을 포함한다.
통신 장치(800)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(800)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(800)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(810)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(810)의 자세한 동작은 도 1 내지 도 6에 기재된 내용을 참조할 수 있다.
메모리(820)는 프로세서(810)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(830)은 프로세서(810)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(830)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(840)은 프로세서(810)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(840)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(850)은 프로세서(810)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 릴레이 노드와 기지국 간의 데이터 송수신 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 액세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 통신 시스템에서 무선 노드에 의해서 신호를 처리하는 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (9)

  1. 무선 통신 시스템에서 무선 노드가 신호를 처리하는 방법에 있어서,
    네트워크 노드와 통신하기 위해서 특정 서브프레임을 설정하는 단계;
    상기 네트워크 노드와의 연결 문제를 검출한 경우, 타이머를 개시하는 단계; 및
    상기 개시된 타이머가 만료되는 경우, 상기 설정된 특정 서브프레임을 해제하는 단계를 포함하는,
    신호 처리 방법.
  2. 제 1 항에 있어서,
    상기 타이머가 진행하는 동안 상기 특정 서브프레임을 사용해서 상기 네트워크 노드와의 연결 문제의 복구를 수행하는 단계를 더 포함하는,
    신호 처리 방법.
  3. 제 1 항에 있어서,
    상기 개시된 타이머가 만료되는 경우 임의의 서브프레임을 사용해서 상기 네트워크 노드와의 연결을 수행하는 단계를 더 포함하는,
    신호 처리 방법.
  4. 제 1 항에 있어서,
    상기 특정 서브프레임은 RN (Relay Node) 서브프레임인 것을 특징으로 하는,
    신호 처리 방법.
  5. 제 1 항에 있어서,
    상기 무선 노드는 RN (Relay Node) 또는 UE (User Equipment) 중 어느 하나인 것을 특징으로 하는,
    신호 처리 방법.
  6. 제 1 항에 있어서,
    상기 개시된 타이머가 만료된 경우 RRC (Raido Resource Control) 휴지 상태로 천이하는 단계; 및
    셀 선택 동작을 수행하는 단계를 더 포함하는,
    신호 처리 방법.
  7. 제 1 항에 있어서,
    상기 무선 노드와의 연결 문제는 RLF (Radio Link Failure) 인 것을 특징으로 하는,
    신호 처리 방법.
  8. 제 1 항에 있어서,
    상기 네트워크 노드는 기지국 (Node B) 인 것을 특징으로 하는,
    신호 처리 방법.
  9. 제 8 항에 있어서,
    상기 기지국은 도너 기지국인 것을 특징으로 하는,
    신호 처리 방법.
PCT/KR2011/002260 2010-04-01 2011-04-01 무선 통신 시스템에서 신호 처리 방법 및 이를 위한 장치 WO2011122894A2 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012519485A JP5548265B2 (ja) 2010-04-01 2011-04-01 無線通信システムにおける信号処理方法及びそのための装置
EP11763066.5A EP2555553B1 (en) 2010-04-01 2011-04-01 Signal processing method in wireless communication system and device therefor
CN201180003654.4A CN102484807B (zh) 2010-04-01 2011-04-01 无线通信系统中的信号处理方法及其设备
KR1020127004931A KR101887062B1 (ko) 2010-04-01 2011-04-01 무선 통신 시스템에서 신호 처리 방법 및 이를 위한 장치
US13/322,060 US8780698B2 (en) 2010-04-01 2011-04-01 Signal processing method in wireless communication system and device therefor
US14/298,600 US9148900B2 (en) 2010-04-01 2014-06-06 Signal processing method in wireless communication system and device therefor
US14/541,821 US9338815B2 (en) 2010-04-01 2014-11-14 Signal processing method in wireless communication system and device therefor
US14/541,810 US9844090B2 (en) 2010-04-01 2014-11-14 Signal processing method in wireless communication system and relay node therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32029810P 2010-04-01 2010-04-01
US61/320,298 2010-04-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/322,060 A-371-Of-International US8780698B2 (en) 2010-04-01 2011-04-01 Signal processing method in wireless communication system and device therefor
US14/298,600 Continuation US9148900B2 (en) 2010-04-01 2014-06-06 Signal processing method in wireless communication system and device therefor

Publications (2)

Publication Number Publication Date
WO2011122894A2 true WO2011122894A2 (ko) 2011-10-06
WO2011122894A3 WO2011122894A3 (ko) 2012-01-12

Family

ID=44712786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002260 WO2011122894A2 (ko) 2010-04-01 2011-04-01 무선 통신 시스템에서 신호 처리 방법 및 이를 위한 장치

Country Status (6)

Country Link
US (4) US8780698B2 (ko)
EP (1) EP2555553B1 (ko)
JP (1) JP5548265B2 (ko)
KR (1) KR101887062B1 (ko)
CN (2) CN102484807B (ko)
WO (1) WO2011122894A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111601A1 (en) * 2012-01-26 2013-08-01 Sharp Kabushiki Kaisha Control channel design for relay node backhaul
JP2013229756A (ja) * 2012-04-25 2013-11-07 Kyocera Corp 無線中継装置および無線通信方法
WO2014021611A1 (ko) * 2012-07-31 2014-02-06 주식회사 팬택 무선통신 시스템에서 셀 선택 또는 셀 재선택을 제어하는 장치 및 방법
WO2019160282A1 (ko) * 2018-02-14 2019-08-22 주식회사 케이티 릴레이 노드에서 상향링크 사용자 데이터를 처리하는 방법 및 그 장치

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923995B1 (en) 2010-02-27 2018-03-20 Sitting Man, Llc Methods, systems, and computer program products for sharing information for detecting an idle TCP connection
CN103650615A (zh) * 2011-06-29 2014-03-19 瑞典爱立信有限公司 无线通信系统中的子载波分配
US9532241B2 (en) * 2011-10-04 2016-12-27 Nokia Technologies Oy Method and apparatus for managing handover failure
KR20160124231A (ko) * 2012-01-20 2016-10-26 후지쯔 가부시끼가이샤 링크 실패의 원인을 분석하는 방법, 및 네트워크 최적화 방법 및 장치
WO2014019131A1 (zh) 2012-07-31 2014-02-06 华为技术有限公司 链路失败的恢复方法及装置
CN103731920B (zh) * 2012-10-10 2019-04-23 中兴通讯股份有限公司 Un子帧配置方法及装置
CN104756590B (zh) 2012-11-01 2018-12-04 Lg电子株式会社 用于在无线通信系统中发送消息的方法和设备
US9374151B2 (en) 2013-08-08 2016-06-21 Intel IP Corporation Coverage extension level for coverage limited device
US9258747B2 (en) 2013-09-17 2016-02-09 Intel IP Corporation User equipment and methods for fast handover failure recovery in 3GPP LTE network
US9572171B2 (en) 2013-10-31 2017-02-14 Intel IP Corporation Systems, methods, and devices for efficient device-to-device channel contention
EP3120641B1 (en) 2014-03-19 2021-01-20 Interdigital Patent Holdings, Inc. Device-to-device synchronization
EP2934039B1 (en) * 2014-04-15 2019-03-20 Telefonaktiebolaget LM Ericsson (publ) Technique for event reporting
KR102272846B1 (ko) * 2015-04-16 2021-07-05 코르보 인터내셔널 피티이. 엘티디. 멀티-채널 수신기
KR101992713B1 (ko) 2015-09-04 2019-06-25 엘에스산전 주식회사 통신 인터페이스 장치
EP3393055A4 (en) * 2016-03-30 2019-08-07 Guangdong OPPO Mobile Telecommunications Corp., Ltd. RELAY TRANSMISSION METHOD AND DEVICE
JP6194987B2 (ja) * 2016-07-06 2017-09-13 富士通株式会社 リンク失敗原因の分析方法、ネットワーク最適化方法及びその装置
CN107659951B (zh) 2016-07-26 2020-10-09 华为技术有限公司 链路恢复方法、装置和设备
CN108631889A (zh) * 2017-03-22 2018-10-09 株式会社Ntt都科摩 无线链路失败检测方法和用户设备
EP3603319B1 (en) * 2017-03-24 2024-10-16 Nokia Technologies Oy Beam-based radio link monitoring
EP4138313A1 (en) 2017-05-05 2023-02-22 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, base station and methods in a radio communications network
JP6478195B2 (ja) * 2017-09-07 2019-03-06 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. リンク障害復旧方法および装置
WO2020017872A1 (en) * 2018-07-16 2020-01-23 Samsung Electronics Co., Ltd. Method and system for handling radio link failure in multi-rat dual connectivity system
US11696204B2 (en) * 2018-08-07 2023-07-04 Lg Electronics Inc. Operating method of node in wireless communication system, and device using method
CN110831095B (zh) * 2018-08-11 2021-11-19 华为技术有限公司 通信方法和通信装置
AU2019343578A1 (en) * 2018-09-20 2021-04-29 FG Innovation Company Limited Systems, Devices, and Methods for Handling Radio Link Failures in Wireless Relay Networks
WO2021134725A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 通信方法及装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3226774B2 (ja) * 1995-12-04 2001-11-05 富士通株式会社 セル同期装置、セル同期監視装置、及びセル再同期装置
JP2003283414A (ja) * 2002-03-25 2003-10-03 Hitachi Kokusai Electric Inc 中継基地局装置
EP1361768B1 (en) * 2002-05-03 2007-06-13 Innovative Sonic Limited Method of cell update via idle mode for power saving in a UMTS mobile upon radio link failure.
KR20070069360A (ko) 2005-12-28 2007-07-03 주식회사 팬택 이동 통신 단말기의 이동 통신 동작 제어 방법
US8040826B2 (en) 2006-03-03 2011-10-18 Samsung Electronics Co., Ltd Apparatus and method for supporting relay service in a multi-hop relay broadband wireless access communication system
KR100861930B1 (ko) * 2006-03-03 2008-10-09 삼성전자주식회사 다중 홉 중계방식의 광대역 무선 접속 통신시스템에서 중계서비스를 지원하기 위한 장치 및 방법
CA2659173C (en) 2006-08-23 2012-11-27 Lg Electronics Inc. A method for requesting radio resources for uplink packet transmission in gprs system
CN101141173B (zh) * 2006-09-08 2012-02-22 华为技术有限公司 启动与停止中继站中继功能的方法
US20080074994A1 (en) 2006-09-21 2008-03-27 Innovative Sonic Limited Method for detecting radio link failure in wireless communications system and related apparatus
CN101166055B (zh) 2006-10-18 2011-06-01 华为技术有限公司 多跳中继方法和多跳中继系统
EP2127456B1 (en) * 2007-01-15 2019-11-27 Nokia Technologies Oy Method and apparatus for providing context recovery
CN101282569B (zh) * 2007-04-03 2012-11-14 中兴通讯股份有限公司 包含基站和无线中继站的无线传输网络的自适应管理方法
CN101286781B (zh) * 2007-04-13 2013-02-27 中兴通讯股份有限公司 一种无线中继站连接关系终止的方法
US9307464B2 (en) * 2007-06-21 2016-04-05 Sony Corporation Cellular communication system, apparatus and method for handover
US8201041B2 (en) 2007-07-03 2012-06-12 Industrial Technology Research Institute Transmission control methods and devices for communication systems
EP2028890B1 (en) * 2007-08-12 2019-01-02 LG Electronics Inc. Handover method with link failure recovery, wireless device and base station for implementing such method
RU2441350C1 (ru) * 2007-10-29 2012-01-27 Интердиджитал Пэйтент Холдингз, Инк. Способ для обнаружения сбоя в линии радиосвязи при передаче по усовершенствованному выделенному каналу в состоянии cell_fach
JP4976440B2 (ja) * 2008-05-19 2012-07-18 創新音▲速▼股▲ふん▼有限公司 接続を再確立する方法及び通信装置
US9867203B2 (en) 2008-07-11 2018-01-09 Qualcomm Incorporated Synchronous TDM-based communication in dominant interference scenarios
KR101509251B1 (ko) 2008-09-03 2015-04-08 엘지전자 주식회사 무선통신 시스템에서 무선자원 요청 방법
CN101668340B (zh) * 2008-09-05 2012-05-23 华为技术有限公司 一种上行多址接入方式切换的方法及装置
GB0816992D0 (en) * 2008-09-17 2008-10-22 Vodafone Plc Reference symbol design for relay
WO2010031439A1 (en) * 2008-09-19 2010-03-25 Nokia Siemens Networks Oy Network element and method of operating a network element
EP2341741A4 (en) * 2008-09-22 2016-05-25 Ntt Docomo Inc MOBILE STATION, RADIO BASE STATION, AND MOBILE COMMUNICATION METHOD
EP2359630B1 (en) * 2008-09-30 2013-07-17 Telefonaktiebolaget L M Ericsson (PUBL) Methods and apparatuses for detecting radio link failure in a telecommunications system
EP2180741A1 (en) * 2008-10-27 2010-04-28 Nokia Siemens Networks OY Apparatus and method for dynamically deploying a network node
CN102217352B (zh) * 2008-11-18 2016-04-20 诺基亚技术有限公司 在通信系统中进行中继
US8599771B2 (en) 2009-04-15 2013-12-03 Qualcomm Incorporated Control of radio links in a multiple carrier system
US8289895B2 (en) * 2009-04-24 2012-10-16 Research In Motion Limited Relay link HARQ operation
US8818381B2 (en) * 2009-08-07 2014-08-26 Nokia Siemens Networks Oy Operation in case of radio link failure
US8730921B2 (en) * 2009-08-28 2014-05-20 Blackberry Limited System and method for call re-establishment
US8270374B2 (en) * 2009-10-02 2012-09-18 Research In Motion Limited Determining link quality for networks having relays
US8493996B2 (en) * 2010-03-31 2013-07-23 Nokia Siemens Networks Oy Automatic connection re-establishment using escape carrier
US9609688B2 (en) * 2010-04-05 2017-03-28 Qualcomm Incorporated Methods and apparatus to facilitate relay startup and radio link failure (RLF) handling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111601A1 (en) * 2012-01-26 2013-08-01 Sharp Kabushiki Kaisha Control channel design for relay node backhaul
JP2013229756A (ja) * 2012-04-25 2013-11-07 Kyocera Corp 無線中継装置および無線通信方法
WO2014021611A1 (ko) * 2012-07-31 2014-02-06 주식회사 팬택 무선통신 시스템에서 셀 선택 또는 셀 재선택을 제어하는 장치 및 방법
WO2019160282A1 (ko) * 2018-02-14 2019-08-22 주식회사 케이티 릴레이 노드에서 상향링크 사용자 데이터를 처리하는 방법 및 그 장치
US11252635B2 (en) 2018-02-14 2022-02-15 Kt Corporation Method for processing uplink user data in relay node, and device for same

Also Published As

Publication number Publication date
US20120063298A1 (en) 2012-03-15
US9844090B2 (en) 2017-12-12
JP5548265B2 (ja) 2014-07-16
US9338815B2 (en) 2016-05-10
CN102484807A (zh) 2012-05-30
EP2555553B1 (en) 2019-02-27
US9148900B2 (en) 2015-09-29
WO2011122894A3 (ko) 2012-01-12
EP2555553A4 (en) 2017-01-04
JP2012533210A (ja) 2012-12-20
CN106028439B (zh) 2019-10-01
EP2555553A2 (en) 2013-02-06
US8780698B2 (en) 2014-07-15
CN106028439A (zh) 2016-10-12
US20150071056A1 (en) 2015-03-12
KR20130021352A (ko) 2013-03-05
US20140286157A1 (en) 2014-09-25
CN102484807B (zh) 2016-08-24
US20150071227A1 (en) 2015-03-12
KR101887062B1 (ko) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2011122894A2 (ko) 무선 통신 시스템에서 신호 처리 방법 및 이를 위한 장치
WO2018084608A2 (en) Method for determining retransmission numbers of sidelink data in wireless communication system and a device therefor
WO2019160343A1 (en) Method and apparatus for performing uplink transmission with pre-allocated beams in wireless communication system
WO2016163845A1 (en) Method and apparatus for performing contention based random access procedure over contention free random access procedure in wireless communication system
WO2014182134A1 (ko) 이중연결 시스템에서 멀티 플로우를 고려한 순차적 전달 방법 및 장치
WO2010013980A2 (ko) 중계기를 포함하는 무선통신 시스템에서 백홀링크 및 액세스링크를 위한 자원할당 방법
WO2010074536A2 (ko) 중계기에 대한 자원 할당 방법
WO2013137667A1 (ko) Tag에 포함된 셀의 비활성화 타이머를 제어하는 방법 및 장치
WO2010123220A2 (ko) 전송 지시자를 이용한 중계기 통신 기법
WO2012060565A2 (en) Method and apparatus for reconfiguring connection to base station at relay node in a wireless communication system
WO2014182132A1 (ko) 이중 연결성을 지원하는 무선 통신 시스템에서 데이터 전송 방법 및 장치
WO2010053339A2 (ko) 무선통신 시스템의 harq 수행방법, 서브프레임 할당 방법 및 장치
WO2010123279A2 (en) Method of utilizing a relay node in wireless communication system
WO2010050705A2 (en) Method of operating relay station in wireless communication system
WO2019050293A1 (en) RESOURCE MANAGEMENT IN A WIRELESS COMMUNICATION SYSTEM
WO2012008691A2 (en) Data transmission method, related base station and user equipment
WO2011122808A2 (ko) 무선 통신 시스템에서 릴레이 노드의 접속 가능 셀 정보 송수신 방법 및 이를 위한 장치
WO2011139114A2 (ko) 무선 통신 시스템에서 기지국과 릴레이 노드 간의 백홀 서브프레임 설정 방법 및 이를 위한 장치
WO2012115352A2 (ko) 무선 통신 시스템에서 릴레이 노드의 핸드오버를 위한 검색 영역 설정 방법 및 이를 위한 장치
WO2019139361A1 (en) Method and apparatus for transmitting signals based on configured grant in wireless communication system
WO2018008878A1 (ko) 차세대 무선 통신 시스템에서 이동식 릴레이 노드를 위한 동기 설정 방법 및 이를 위한 장치
WO2015065076A1 (ko) 이중연결 방식을 이용하는 무선통신 시스템에서 불연속 수신을 위한 파라미터 구성 방법 및 장치
WO2019221421A1 (en) Method and apparatus for transmitting data units by user equipment in wireless communication system
WO2019050302A1 (en) METHOD AND USER EQUIPMENT FOR UPLINK SIGNAL TRANSMISSION
KR20150007726A (ko) 이중 연결을 지원하는 무선 통신 시스템에서 무선 링크 제어 계층에서의 데이터 제어 방법 및 그 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003654.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13322060

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11763066

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012519485

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011763066

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127004931

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE