WO2011122438A1 - Drive module, electronic device, and drive module control method - Google Patents

Drive module, electronic device, and drive module control method Download PDF

Info

Publication number
WO2011122438A1
WO2011122438A1 PCT/JP2011/057165 JP2011057165W WO2011122438A1 WO 2011122438 A1 WO2011122438 A1 WO 2011122438A1 JP 2011057165 W JP2011057165 W JP 2011057165W WO 2011122438 A1 WO2011122438 A1 WO 2011122438A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory alloy
shape memory
temperature
lens frame
alloy body
Prior art date
Application number
PCT/JP2011/057165
Other languages
French (fr)
Japanese (ja)
Inventor
彩子 野邉
哲也 野邉
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Publication of WO2011122438A1 publication Critical patent/WO2011122438A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing

Definitions

  • the present invention relates to a drive module, an electronic device, and a drive module control method for performing autofocus for automatically focusing by driving a lens frame that holds a lens.
  • an imaging apparatus having a lens such as a camera
  • Many imaging apparatuses having an autofocus function for automatically performing (focus) are provided.
  • the drive module includes a support, a lens frame that can reciprocate along a certain direction with respect to the support, a spring member that elastically holds the lens frame, and a lens frame that resists the restoring force of the spring member.
  • Driving means for driving in this manner includes a rotatable arm portion engaged with the lens frame, and a shape memory alloy wire wound around the arm portion and fixed at both ends.
  • the shape memory alloy wire when the shape memory alloy wire is energized, the shape memory alloy wire is contracted and deformed by the heat generated by the energization.
  • the shape memory alloy wire contracts and deforms, the arm portion rotates, the lens frame is pressed by the arm portion, and the lens frame moves to one side along a certain direction.
  • the temperature of the shape memory alloy wire is lowered and the shape memory alloy wire is stretched and deformed.
  • the shape memory alloy wire expands and deforms, the arm portion rotates in the return direction, and the lens frame moves to the other side along a certain direction by the biasing force of the spring member.
  • the lens frame can be moved to the in-focus position by controlling energization to the shape memory alloy wire while monitoring the temperature of the shape memory alloy wire based on the electric resistance value of the shape memory alloy wire.
  • the above-described conventional driving module is operated as shown in FIGS. 13A and 13B, for example. That is, first, by energizing the shape memory alloy wire to gradually increase the temperature of the shape memory alloy wire, the shape memory alloy wire is gradually contracted and deformed to move the lens frame over the entire movement range. At this time, the focal point where the harmonic component becomes the largest is searched. Subsequently, the shape memory alloy wire is stretched and deformed by lowering the temperature of the shape memory alloy wire to the above-described focus temperature. As a result, the lens frame moves to the in-focus position, and the lens is focused.
  • the shape memory alloy wire is energized to shrink and deform the shape memory alloy wire to near the limit. Subsequently, by gradually lowering the temperature of the shape memory alloy wire, the shape memory alloy wire is gradually extended and deformed to move the lens frame over the entire movement range. At this time, the focal point where the harmonic component becomes the largest is searched. Subsequently, the shape memory alloy wire is shrunk and deformed by raising the temperature of the shape memory alloy wire to the temperature of the focal point. As a result, the lens frame moves to the in-focus position, and the lens is focused.
  • the electric resistance value of the shape memory alloy described above changes with a curve as shown in FIG. 15 with respect to the temperature change. More specifically, as the temperature rises from the initial temperature T 0 , the electrical resistance value gradually rises. Then, when the deformation of the shape memory alloy is started (temperature T 1 ), the electric resistance value starts to decrease and gradually decreases, the deformation of the shape memory alloy reaches the limit, and the deformation of the shape memory alloy is settled. At the time (temperature T 2 ), the electric resistance value starts to increase again and gradually increases. That is, the electric resistance value R max when the deformation of the shape memory alloy is started becomes the maximum value, and the electric resistance value R min when the deformation of the shape memory alloy is stopped becomes the minimum value.
  • the shape memory alloy wire is energized to contract and deform the shape memory alloy wire to the limit. Thereby, the maximum electric resistance value R max and the minimum electric resistance value R min are detected, and the operable range by the drive module is detected.
  • the shape memory alloy wire described above expands and contracts due to a temperature change, when the environmental temperature is high, it takes time for cooling, the convergence time when the shape memory alloy wire is deformed in the extension direction becomes long, and the environmental temperature is low. In this case, heating takes time, and the convergence time when the shape memory alloy wire is deformed in the shrinking direction becomes long. Therefore, in the above-described conventional technology, there is a problem that the operation time of autofocus may become long depending on the environmental temperature. Specifically, for example, when the drive module is operated as shown in FIGS. 13A and 13B, the lens frame is aligned by lowering the temperature of the shape memory alloy wire after the focus search as described above. Move to the focal position. Therefore, when the environmental temperature is low, as shown in FIG.
  • the temperature of the shape memory alloy wire decreases to the temperature of the in-focus position in a short time, and the autofocus operation time becomes relatively short.
  • the environmental temperature is high, as shown in FIG. 13 (b), it takes time to lower the temperature of the shape memory alloy wire to the temperature of the in-focus position, and the operation time of the autofocus is correspondingly increased. Becomes longer.
  • the lens frame is moved to the in-focus position by increasing the temperature of the shape memory alloy wire after searching for the focus as described above.
  • the environmental temperature is high, as shown in FIG. 14B, the temperature of the shape memory alloy wire rises to the temperature of the in-focus position in a short time, and the operation time of the autofocus is relatively short.
  • the environmental temperature is low, as shown in FIG. 14 (a), it takes time to raise the temperature of the shape memory alloy wire to the temperature of the in-focus position, and the operation time of the autofocus is correspondingly increased. Becomes longer.
  • the present invention has been made in consideration of the above-described conventional problems, and provides a drive module, an electronic apparatus, and a drive module control method capable of preventing an autofocus operation time from being increased due to an environmental temperature. It is an object.
  • the drive module according to the present invention is provided with a support, a lens frame that is reciprocally movable along a fixed direction with respect to the support and holds a lens, and a spring member that elastically holds the lens frame. And having a shape memory alloy body that can be deformed by heat generated by energization, and energizing the shape memory alloy body to deform the shape memory alloy body to drive the lens frame against the restoring force of the spring member A drive module, and a control means for controlling the drive means by controlling energization to the shape memory alloy body, wherein a drive mode of the drive module is used for the shape memory alloy body.
  • the environmental temperature is detected, the first driving mode is selected when the detected environmental temperature is lower than the threshold temperature, and the second driving mode is selected when the environmental temperature is higher than the threshold temperature.
  • the drive means is driven by controlling energization to the shape memory alloy body.
  • a drive module includes a support, a lens frame that is reciprocally movable along a fixed direction with respect to the support and holds a lens, and a spring that elastically holds the lens frame. And a shape memory alloy body that can be deformed by heat generated by energization, and the shape memory alloy body is energized to deform the shape memory alloy body to resist the restoring force of the spring member.
  • Drive module and a control module that controls the drive module by controlling energization to the shape memory alloy body, wherein the shape memory alloy body is used as a drive mode of the drive module.
  • the shape memory alloy body is energized to lower the temperature of the shape memory alloy body to move the lens frame to investigate the focal point, and after the focal point is detected, the shape memory alloy is obtained by a hill climbing method.
  • a first driving mode in which the position of the lens frame is finely adjusted while moving the temperature up and down to move the lens frame to the in-focus position, and the temperature of the shape memory alloy body by energizing the shape memory alloy body
  • the lens frame is moved by moving the lens frame to explore the focal point, and after the focal point is detected, the position of the lens frame is finely adjusted by raising and lowering the temperature of the shape memory alloy body by a hill climbing method.
  • a second driving mode for moving the lens frame to the in-focus position and the control means detects the environmental temperature, and the first driving mode when the detected environmental temperature is lower than the threshold temperature. And selecting the second drive mode when the environmental temperature is higher than the threshold temperature, and controlling the energization to the shape memory alloy body according to the selected drive mode to drive the drive means. Moyo .
  • the drive mode is selected according to the environmental temperature, the drive means is driven according to the drive mode, and the lens frame moves to the in-focus position and is focused.
  • the time (deformation convergence time) until the shape memory alloy body is stretched and deformed to a desired shape after energizing or stopping energization does not become longer due to the influence of the environmental temperature.
  • the drive means when the environmental temperature is low, the drive means is driven in the first drive mode in which the temperature of the shape memory alloy body is lowered. At this time, since the environmental temperature is low and the temperature of the shape memory alloy body is likely to decrease, the shape memory alloy body expands and deforms to a desired shape in a short time after the power supply to the shape memory alloy body is stopped.
  • the drive means is driven in the second drive mode in which the temperature of the shape memory alloy body is increased.
  • the shape memory alloy body shrinks and deforms into a desired shape in a short time after the shape memory alloy body is energized. Therefore, the lens frame moves to the in-focus position in a short time and is immediately focused.
  • the control means includes a graph of a function of the environmental temperature at the time of temperature rise of the shape memory alloy body and the deformation convergence time of the shape memory alloy body, and the shape memory alloy body. It is preferable that the temperature at the intersection of the environmental temperature during the temperature drop and the graph of the function of the deformation convergence time of the shape memory alloy body is the threshold temperature. As a result, a time-efficient drive mode is surely selected, so that the time for the lens frame to move to the in-focus position is reliably prevented.
  • an electronic apparatus is characterized by including the drive module described above.
  • the drive module control method includes a support, a lens frame that is reciprocally movable along a fixed direction with respect to the support, and a lens frame that holds the lens, and the lens frame is elastic.
  • the shape memory alloy body In the drive mode of the drive module, the shape memory alloy body is energized and the temperature of the shape memory alloy body is gradually increased to move the lens frame over the entire movement range.
  • the drive module control method includes a support, a lens frame that is reciprocally movable along a fixed direction with respect to the support, and a lens frame that holds the lens, and the lens frame is elastic.
  • the drive mode of the drive module is to search the focal point by moving the lens frame by energizing the shape memory alloy body and lowering the temperature of the shape memory alloy body.
  • the lens frame is moved to search for the focal point, and after the focal point is detected, the shape memory alloy body is obtained by a hill climbing method.
  • a second drive mode for finely adjusting the position of the lens frame while moving the temperature up and down to move the lens frame to the in-focus position, and a temperature detection step for detecting an environmental temperature A mode selection step of selecting the first drive mode when the environmental temperature detected in the detection step is lower than a threshold temperature and selecting the second drive mode when the environmental temperature is higher than the threshold temperature; A driving step of driving said drive means to control the energization of the shape memory alloy member in accordance with the selected driving mode over mode selection step, it may be provided with a.
  • the deformation convergence time of the shape memory alloy body does not become long due to the influence of the environmental temperature, and the lens frame moves to the in-focus position in a short time and is immediately focused.
  • the drive mode according to the environmental temperature is selected, and the lens frame is moved to the in-focus position in a short time, so that the focus is immediately adjusted. It is possible to prevent the autofocus operation time from becoming longer due to the environmental temperature.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG. 4.
  • a symbol M in the figure is a virtual axis line of the drive module 1 that coincides with the optical axis of the lens 50 shown in FIG. 5, and indicates the drive direction of the lens frame 4 described later.
  • the position and direction may be referred to based on the positional relationship with the axis M at the time of assembly.
  • the direction along the axis M is simply referred to as “axial direction”, and the direction perpendicular to the axis M is simply “radial direction”.
  • the direction around the axis M may be simply referred to as “circumferential direction”.
  • a control board 32 side to be described later in the axial direction is referred to as “downward”, and the opposite side is referred to as “upward”.
  • the drive module 1 of the present embodiment is a drive module for reciprocating the lens 12 (lens unit 12) shown in FIG. 5 along the axial direction, and is mounted on an electronic device or the like. It is what is done.
  • the drive module 1 is disposed so as to cover the drive unit 31, a control board 32 serving as control means, an adapter 30 positioned on the control board 32, a drive unit 31 disposed on the adapter 30. And a cover 11.
  • the drive unit 31 includes a lens frame 4 as a driven body, a module frame 5 as a support, an upper leaf spring 6 and a lower leaf spring 7 as spring members, a module lower plate 8, and a power feeding member. 9, and a shape memory alloy (Shape Memory Alloy, hereinafter abbreviated as SMA) wire 10 which is a shape memory alloy body, which is a main constituent member. Configure the actuator.
  • SMA Shape Memory Alloy
  • the lens frame 4 described above is inserted inside the module frame 5 so as to be movable in the axial direction, and an upper leaf spring 6 is arranged at the upper ends of the lens frame 4 and the module frame 5.
  • the lower plate spring 7 is disposed at the lower ends of the lens frame 4 and the module frame 5, and the lens frame 4 and the module frame 5 are sandwiched between the upper plate spring 6 and the lower plate spring 7. Yes.
  • the upper leaf spring 6 is fixed to the upper ends of the lens frame 4 and the module frame 5 by caulking.
  • a module lower plate 8 is stacked below the lower plate spring 7, and a power supply member 9 is stacked below the module lower plate 8.
  • the lower plate spring 7, the module lower plate 8, and the power supply are stacked.
  • the members 9 are fixed to the lower end of the module frame 5 by caulking, and the lower leaf spring 7 is fixed to the lower end of the lens frame 4 by caulking.
  • the cover 11 is placed and fixed on the upper surface of the module lower plate 8.
  • the lens frame 4 described above is a substantially cylindrical tubular member extending along the axial direction with the axis M as the central axis, and as shown in FIG. A female screw is formed on the inner peripheral surface 4F of the portion 4A.
  • the lens unit 12 is screwed onto the inner peripheral surface 4F of the housing portion 4A, whereby the lens unit 12 is held by the lens frame 4.
  • the lens unit 12 includes a cylindrical tube portion 51 having a male screw formed on the outer peripheral surface, and a lens 50 fitted inside the tube portion 51.
  • a protruding portion 4C (convex portion) that protrudes radially outward with an interval of approximately 90 degrees in the circumferential direction extends in the axial direction.
  • An upper fixing pin 13A and a lower fixing pin 13B are erected on the upper end surface 4a and the lower end surface 4b of the portion 4C, respectively.
  • the upper fixing pin 13 ⁇ / b> A holds the upper leaf spring 6, and the lower fixing pin 13 ⁇ / b> B holds the lower leaf spring 7.
  • the insertion positions of the upper fixing pin 13A and the lower fixing pin 13B in the upper leaf spring 6 and the lower leaf spring 7 are standardized.
  • the positions of the upper fixing pin 13A and the lower fixing pin 13B in plan view may be different.
  • the upper fixing pin 13A is attached to each upper end surface 4a of the two protruding portions 4C out of the four protruding portions 4C.
  • the lower fixing pins 13B may be erected on the upper end surfaces 4a of the remaining two protrusions 4C.
  • the lens frame 4 is provided with a guide protrusion 4D on which the SMA wire 10 can be hung.
  • the guide projection 4D is integrally joined to the outer peripheral surface of the lower end of one of the plurality of protrusions 4C, and a distal end key portion (locking portion) 4D1 is formed to be hooked and locked by the SMA wire 10.
  • the distal end key portion 4D1 is for lifting the lens frame 4 upward and moving it upward along the axial direction by contraction of the SMA wire 10 hung thereon.
  • the lens frame 4 is provided with a spring holding portion 33 for holding the coil spring 34 shown in FIG. 2 that urges the lens frame 4 downward.
  • the spring holding portion 33 is a columnar convex portion erected on the upper end surface of the guide protrusion 4D, and the coil spring 34 shown in FIG. Accordingly, it is possible to suppress the movement of the SMA wire 10 that is contracted due to the influence of the surrounding environment and the like to raise the lens frame 4.
  • the lens frame 4 is integrally formed of a thermoplastic resin that can be heat-clamped or ultrasonically-clamped, such as polycarbonate (PC) or liquid crystal polymer (LCP) resin.
  • the module frame 5 is a cylindrical member extending along the axial direction with the axis M as the central axis, and the outer shape in plan view is formed in a substantially rectangular shape as a whole, and penetrates in the central portion in the axial direction.
  • An accommodating portion 5A having a circular shape in cross section is formed.
  • the lens frame 4 described above is accommodated in the accommodating portion 5A.
  • Flat upper and lower end surfaces 5a and 5b formed along a virtual perpendicular to the axis M are formed at the upper and lower corners of the module frame 5, respectively, and upper fixing pins 14A are directed upward on the upper end surfaces 5a.
  • the lower fixing pins 14B protrude downward from the lower end surfaces 5b.
  • the upper fixing pin 14A holds the upper leaf spring 6, and the lower fixing pin 14B holds the lower leaf spring 7, the module lower plate 8, and the power supply member 9.
  • the position of the upper fixing pin 14A in plan view may be different from the arrangement of the lower fixing pin 14B, but in this embodiment, they are arranged at coaxial positions parallel to the axis M, respectively. For this reason, the insertion positions of the upper fixing pin 14A and the lower fixing pin 14B in the upper leaf spring 6 and the lower leaf spring 7 are made common.
  • the distance between the upper and lower end surfaces 5 a and 5 b described above is set to be substantially the same distance as the distance between the upper and lower end surfaces 4 a and 4 b of the lens frame 4.
  • a notch 5B having a size in which a groove width in a plan view is fitted to the guide projection 4D of the lens frame 4 so as to be movable in the axial direction is formed at a lower portion of one corner of the module frame 5.
  • the notch 5B penetrates the guide projection 4D of the lens frame 4 in a state in which the lens frame 4 is inserted and accommodated in the module frame 5 from below, and the tip key portion 4D1 of the guide projection 4D is inserted into the diameter of the module frame 5. This is for projecting outward in the direction and positioning the lens frame 4 in the circumferential direction.
  • the SMA wire 10 is held at the two corners adjacent to the notch 5B of the module frame 5 on the side surface in the same direction as the corner provided with the notch 5B.
  • a pair of locking grooves 5C for attaching the wire holding members (holding terminals) 15A, 15B to be formed are formed.
  • the pins 35A and 35B are formed at positions where the wire holding members 15A and 15B are arranged on the side surface of the module frame 5, respectively. Further, a groove portion 36 that is filled with an adhesive and fixes the module frame 5 and the wire holding members 15A and 15B is formed below the pins 35A and 35B. And when fixing wire holding member 15A, 15B to the module frame 5, the wall part 35C which can suppress that wire holding member 15A, 15B rotates is formed.
  • the wall portion 35 ⁇ / b> C extends laterally (perpendicular to the side surface) from the side surface of the module frame 5.
  • the module frame 5 is integrally formed of a thermoplastic resin that can be heat-clamped or ultrasonically caulked, such as polycarbonate (PC), liquid crystal polymer (LCP) resin, and the like, in the same manner as the lens frame 4. ing.
  • a thermoplastic resin that can be heat-clamped or ultrasonically caulked, such as polycarbonate (PC), liquid crystal polymer (LCP) resin, and the like, in the same manner as the lens frame 4. ing.
  • the wire holding member 15A is attached to the side surface on the side where the pair of terminal portions 9C of the power supply member 9 protrudes from the drive module 1, and the wire holding member 15B is connected to the pair of terminal portions 9C of the power supply member 9 from the drive module 1. It is attached to the side of the side that does not protrude.
  • the wire holding members 15A and 15B are conductive members such as a metal plate formed in a key shape formed by caulking the end portion of the SMA wire 10 to the wire holding portion 15b.
  • the wire holding members 15A and 15B are formed with through holes 36A and 36B that fit into the pins 35A and 35B of the module frame 5, respectively. Further, through holes 37A and 37B for pouring the adhesive are formed below the through holes 36A and 36B in the axial direction. Then, when the module frame 5 and the wire holding members 15A and 15B are fixed, the arm portions 38A and 38B for contacting the wall portion 35C of the module frame 5 and suppressing the rotation of the wire holding members 15A and 15B. Are formed respectively.
  • the end portion of the SMA wire 10 is positioned and held by fitting the locking portion 5C and the pins 35A and 35B from the side and bringing the wall portion 35C and the arm portions 38A and 38B into contact with each other.
  • the wire holding members 15 ⁇ / b> A and 15 ⁇ / b> B are provided with a piece-like terminal portion 15 a on the opposite side of the wire holding portion 15 b (clamping position) of the SMA wire 10, and the terminal portion 15 a is attached to the module frame 5 when attached to the module frame 5. It protrudes slightly below the module lower plate 8 stacked below.
  • the SMA wire 10 held at both ends by the pair of wire holding members 15A and 15B is locked from below to the front end key portion 4D1 of the guide projection 4D of the lens frame 4 protruding from the notch 5B of the module frame,
  • the lens frame 4 is urged upward by the tension of the SMA wire 10 via the distal end key portion 4D1.
  • an upper leaf spring 6 and a lower leaf spring 7 are laminated on the upper and lower portions of the module frame 5 and the lens frame 4 inserted into the module frame 5, respectively.
  • the upper leaf spring 6 and the lower leaf spring 7 are flat plate spring members punched into substantially the same shape, and are made of a metal plate such as a stainless steel (SUS) steel plate.
  • the shape of the upper leaf spring 6 (lower leaf spring 7) has a substantially rectangular shape in plan view, similar to the upper (lower) end of the module frame 5, and is coaxial with the axis M at the center.
  • a circular opening 6C (7C) that is slightly larger than the inner peripheral surface 4F of the frame 4 is formed, and has a ring shape as a whole.
  • the upper fixing pins 14A (lower fixing pins 14B) formed in the vicinity of the corners of the module frame 5 correspond to the positions of the upper fixing pins 14A.
  • the upper plate spring 6 (lower plate spring 7) has upper fixing pins 13A (lower fixing pins) corresponding to the positions of the upper fixing pins 13A (lower fixing pins 13B) formed on the lens frame 4.
  • upper fixing pins 13A lower fixing pins
  • Four through holes 6A (7A) that can be respectively inserted into the pins 13B) are formed.
  • a ring portion 6F (7F) is formed on the outer side in the radial direction of the opening 6C (7C), and in the circumferential direction from a position in the vicinity of the through holes 6A (7A) that face each other diagonally across the axis M.
  • Four slits 6D (7D) extending in a substantially semicircular arc shape are formed so as to overlap each other in the radial direction by a substantially quadrant arc.
  • the outer shape of the upper leaf spring 6 (lower leaf spring 7) is provided in a rectangular shape substantially matching the outer shape of the module frame 5, and the spring portion 6E (7E) and the ring portion 6F (7F) are formed in the opening 6C ( 7C) is formed in a ring-shaped region.
  • a through-hole that is a fixed portion is provided at a corner having a sufficient space. Since the hole 6B (7B) is provided, the shape of the through-hole 6B (7B) can be separated from the spring portion 6E (7E), so that manufacturing by precise punching or etching is easy.
  • the module lower plate 8 allows the lower fixing pins 14B of the module frame 5 to pass through the through holes 7B of the lower leaf spring 7, and the lower fixing pins 13B of the lens frame 4 accommodated in the module frame 5 are lower plates.
  • the lower plate spring 7 is stacked between the module frame 5 with the lower plate spring 7 sandwiched from the lower side in a state of passing through the through hole 7A of the spring 7, and the rectangular outer frame of the lower plate spring 7 is attached to the end surface of the module frame 5. It fixes to a pressing state with respect to 5b.
  • the shape of the module lower plate 8 is a plate-like member having a rectangular outer shape that is substantially the same as the outer shape of the module frame 5, and a substantially circular opening 8 ⁇ / b> A centering on the axis M penetrates in the center in the thickness direction. Is formed. Then, on the side of the upper surface 8a laminated on the lower leaf spring 7 at the time of assembly, a position 4 corresponding to the position of the lower fixing pin 13B of the lens frame 4 is used to avoid interference with a caulking portion described later. Two U-shaped concave portions 8B are formed.
  • through holes 8C through which the lower fixing pins 14B are inserted are formed at the corners located on the periphery of the module lower plate 8 corresponding to the positions of the lower fixing pins 14B of the module frame 5.
  • the material of the module lower plate 8 is, for example, a synthetic resin having electrical insulation and light shielding properties. Further, since the module lower plate 8 has electrical insulation, it is an insulating member that fixes the power supply member 9 to the lower plate spring 7 in an electrically insulated state.
  • the power supply member 9 includes a pair of electrodes 9a and 9b each made of a plate-shaped metal plate.
  • Each of the electrodes 9a and 9b includes a substantially L-shaped wiring portion 9B that follows the outer shape of the module lower plate 8, and a terminal portion 9C that protrudes outside the outer shape of the module lower plate 8 from the end of the wiring portion. It consists of a polygonal metal plate.
  • Each of the wiring portions 9B has two lower fixing pins adjacent to each other along the outer shape of the module lower plate 8 out of the lower fixing pins 14B of the module frame 5 protruding downward from the lower surface of the module lower plate 8. Two through holes 9A for positioning the electrodes 9a and 9b with respect to the module frame 5 by inserting the pins 14B, respectively, are provided.
  • the terminal portions 9C of the pair of electrodes 9a and 9b are provided so as to protrude in parallel downward in the axial direction from the side surface of the module frame 5 on which the wire holding member 15A is attached. It has been.
  • one electrode 9a is notched in a concave shape to electrically connect the terminal portion 15a of the wire holding member 15A to the side surface on the wiring portion 9B between the through hole 9A and the terminal portion 9C.
  • a conductive connection portion 9D is provided.
  • the other electrode 9b is formed with a conductive connection portion 9D that is notched at a connection location with the terminal portion 15a of the wire holding member 15B on the side surface of the wiring portion 9B. In the conductive connection portion 9D, the other electrode 9b and the wire holding member 15B are electrically connected.
  • each conductive connection portion 9D to the terminal portion 15a
  • soldering or adhesion with a conductive adhesive can be employed.
  • the cover 11 is a member in which a side wall portion 11 ⁇ / b> D that covers the module frame 5 is extended from the outer edge portion of the upper surface 11 ⁇ / b> E to the lower side, and a rectangular opening 11 ⁇ / b> C is formed on the lower side.
  • a circular opening 11A centering on the axis M is provided at the center of the upper surface 11E. The size of the opening 11A is set so that the lens unit 12 can be taken in and out.
  • the control board 32 is a control board that supplies a control signal and power to the drive unit 31, and is a printed wiring that is electrically connected to each terminal portion 9C of the pair of electrodes 9a and 9b.
  • a printed circuit board 39 and 39 are formed on the surface, and a control circuit (not shown) mounted on the printed circuit board. More specifically, the control board 32 is a control means for energizing the pair of electrodes 9a and 9b via the printed wirings 39 and 39 to appropriately expand and contract the SMA wire 10, and by extending and contracting the SMA wire 10, the lens frame 4 is moved along the axial direction relative to the module frame 5 to place the lens frame 4 at a desired position (in-focus position).
  • the lens frame 4 is inserted into the housing portion 5A of the module frame 5 from below, and the upper end surface 5a of the module frame 5 and the upper end surface 4a of the lens frame 4 are aligned at the same height.
  • the upper fixing pins 14A of the module frame 5 and the upper fixing pins 13A of the lens frame 4 are inserted through the through holes 6B and 6A of the upper leaf spring 6, respectively.
  • the tips of the upper fixing pins 13A and 14A protruding through the through holes 6A and 6B of the upper leaf spring 6 are heat-clamped by a heater chip (not shown), as shown in FIGS. In this way, a caulking portion 16 that is a first fixing portion and a caulking portion 17 that is a second fixing portion are formed.
  • the upper end surface 4a of the lens frame 4 and the upper end surface 5a of the module frame 5 are aligned on the same plane, and the plate-like upper leaf spring 6 is arranged without being deformed, and heat caulking is performed. It can be carried out. Therefore, it is not necessary to hold down the upper plate spring 6 that is deformed, so that the caulking work can be easily performed. Further, the occurrence of floating or the like due to the deformation of the upper leaf spring 6 can be prevented.
  • each heater chip can be made common, even if both the crimping portions 16 and 17 are formed at the same time, variations in the crimping accuracy can be reduced.
  • the lower fixing pins 13B of the lens frame 4 are inserted into the through holes 7A of the lower leaf spring 7, respectively.
  • the lower fixing pins 14B of the module frame 5 are simultaneously inserted into the through holes 7B of the lower plate spring 7, the through holes 8C of the module lower plate 8, and the through holes 9A of the power supply member 9.
  • the front end portion of each lower fixing pin 13B penetrating through each through-hole 7A of the lower leaf spring 7 is heat-clamped with a heater chip (not shown), and the first end as shown in FIG.
  • a caulking portion 18 that is a fixing portion is formed.
  • the lower end surfaces 4b and 5b are on the same plane. Since the module lower plate 8 can be stacked and heat-clamped without deforming the flat plate-like lower leaf spring 7, the occurrence of floating due to the deformation of the lower leaf spring 7 can be prevented. can do.
  • each heater chip can be made common, even if the caulking portion 18 is formed at the same time, variations in caulking accuracy can be reduced.
  • each lower fixing pin 14B penetrating through the through-holes 7B, 8C, 9A is heat-clamped with a heater chip (not shown) and shown in FIG.
  • the caulking portion 19 that is the second fixing portion is formed.
  • the crimped portion 18 formed in the second step does not contact the module lower plate 8.
  • the upper plate spring 6, the lower plate spring 7, the module lower plate 8, and the power supply member 9 are laminated and fixed to both ends of the lens frame 4 and the module frame 5. Since the upper fixing pin 13A and the lower fixing pin 13B, and the upper fixing pin 14A and the lower fixing pin 14B are provided coaxially, the caulking portion 16 is used in caulking in the first to third steps. , 18 and the caulking portions 17, 19 have the same position on the plane of the heater chip. Therefore, since it is not necessary to change the heater chip position in each caulking, the caulking work can be performed efficiently.
  • the pair of wire holding members 15A and 15B to which the SMA wire 10 is attached are fixed to the module frame 5.
  • the through holes 36A and 36B of the wire holding members 15A and 15B are fitted to the two pins 35A and 35B formed on the module frame 5, and the wire holding members 15A and 15B are fitted to the locking grooves 5C. Lock each one.
  • the center portion of the SMA wire 10 is engaged with the distal end key portion 4D1 of the guide protrusion 4D, and the distal end key portion 4D1 is supported so as to be supported from below.
  • the terminal portions 15a of the wire holding members 15A and 15B protrude below the module lower plate 8, and are respectively connected to the conductive connection portions 9D of the electrodes 9a and 9b, which are power supply members 9 fixed to the module lower plate 8. Locked or placed close together.
  • thermosetting adhesive is poured into the through holes 37 ⁇ / b> A and 37 ⁇ / b> B to fill the groove portion 36 of the module frame 5.
  • the groove 36 is filled with the thermosetting adhesive, it is placed in a heating furnace in order to cure the adhesive.
  • the heating furnace for example, by heating at about 100 ° C. for about 20 to 30 minutes, the adhesive is cured and the module frame 5 and the wire holding members 15A and 15B are bonded and fixed.
  • each terminal portion 15a is electrically connected to the conductive connection portion 9D using, for example, soldering or a conductive adhesive.
  • the cover 11 is covered from above the module frame 5, and the side wall portion 11D and the module lower plate 8 are joined.
  • an engaging claw or the like is provided on the side wall part 11D and joined by fitting, or the side wall part 11D and the module lower plate 8 are bonded or welded to join.
  • the caulking portions 16 and 17 are in a state of being separated from the back surface of the upper surface 11E of the cover 11, respectively.
  • the adapter 30 is attached below the drive unit 31 and then mounted on the substrate.
  • fixing means such as adhesion and fitting can be employed.
  • the substrate may be an independent member attached to the drive module 1 or a member connected to and disposed on an electronic device or the like.
  • the lens unit 12 is screwed into the lens frame 4 through the opening 11A of the cover 11 and attached. As described above, the lens unit 12 is attached last because the lens of the lens unit 12 is not soiled or dust is attached by the assembling work.
  • the drive module 1 is attached to the lens unit 12. This process is performed at an early stage (sixth stage) when the product is shipped in a product state where the lens is attached, or when the opening 11A of the cover 11 is desired to be smaller than the outer shape of the lens unit 12, for example, when the aperture stop is also used. It may be carried out before the process).
  • the drive module 1 In the state where electric power is not supplied to the terminal portion 9 ⁇ / b> C, the drive module 1 has the tension from the SMA wire 10 and the urging force of the coil spring 34, and the restoring force from the upper leaf spring 6 and the lower leaf spring 7 at the crimping portions 16 and 18.
  • the forces acting on the lens frame 4 are balanced, and the lens frame 4 to which the lens unit 12 is attached is held at a fixed position in the axial direction.
  • the coil spring 34, the upper leaf spring 6, and the lower leaf spring 7 are deformed, and an elastic restoring force corresponding to the amount of deformation is urged to the lens frame 4. Then, the lens frame 4 stops at a position where this elastic restoring force is balanced with the tension of the SMA wire 10.
  • the lens frame 4 since the upper leaf spring 6 and the lower leaf spring 7 constitute a parallel spring, the lens frame 4 accurately moves along the axis M without being along an axial guide member or the like. Is done. For this reason, it is possible to reduce the number of parts and reduce the size. Further, since no sliding load is generated on the guide member, low power consumption can be realized.
  • the SMA wire 10 can be extended, and the lens frame 4 moves to the lower balance position.
  • the lens frame 4 is driven in the direction of the axis M by controlling the power supply amount by the control board 32.
  • temperature hysteresis appears between when the temperature is raised and when it is lowered, but this can be dealt with by correcting with software or the like.
  • the driving module 1 having the above-described configuration can be controlled by the control board 32 by the method shown in FIGS.
  • the environmental temperature is detected (temperature detection step). More specifically, as shown in FIGS. 7A and 7B, each time the electronic device is turned on, the SMA wire 10 is energized to contract and deform the SMA wire 10 to the limit. As a result, the maximum electric resistance value R max (shown in FIG. 15) and the minimum electric resistance value R min (shown in FIG. 15) of the SMA wire 10 are detected, and the operable range by the drive module 1 (of the SMA wire 10). (Expansion / contraction range) and environmental temperature are detected.
  • the environmental temperature includes the initial electrical resistance value R 0 (shown in FIG. 15), the initial temperature T 0 (shown in FIG. 15), the initial electrical resistance value R 0, and the maximum electrical resistance value R of the SMA wire 10. It can be detected based on the difference from max , etc., or may be measured by a temperature sensor.
  • one of the first drive mode shown in FIG. 7A and the second drive mode shown in FIG. 7B is selected based on the detected environmental temperature.
  • Mode selection step More specifically, when the detected environmental temperature is lower than the threshold temperature, the first drive mode is selected, and when the environmental temperature is higher than the threshold temperature, the second drive mode is selected.
  • the above-described threshold temperature is a preset temperature.
  • a graph G1 of a function of the environmental temperature and the deformation convergence time of the SMA wire 10 when the temperature of the SMA wire 10 is raised, The environmental temperature T X at the intersection of the graph G2 of the function of the environmental temperature at the time of temperature drop and the deformation convergence time of the SMA wire 10 is the threshold temperature.
  • the above-mentioned graph G1 is a graph when the temperature of the SMA wire 10 is increased and contracted and deformed, and conversely, the above-described graph G2 is when the temperature of the SMA wire 10 is decreased and expanded and deformed. It is a graph.
  • the energization of the SMA wire 10 is controlled according to the selected drive mode to cause the SMA wire 10 to expand and contract and move the lens frame 4 to the in-focus position (drive step).
  • the energization of the SMA wire 10 in the contracted state as described above is stopped.
  • the temperature of the SMA wire 10 is lowered, the SMA wire 10 is stretched and deformed, and the lens frame 4 is returned to the original reference position (lower reference position).
  • the SMA wire 10 is energized again to gradually increase the temperature of the SMA wire 10.
  • the SMA wire 10 is heated minutely and stepwise by energizing the stretched SMA wire 10 intermittently. Thereby, the SMA wire 10 is gradually contracted and deformed, and the lens frame 4 is gradually raised. Then, while moving the lens frame 4 over the entire movement range, a focus where the harmonic component becomes the largest is searched, and the temperature (electric resistance value) of the SMA wire 10 when the focus is achieved is recorded.
  • the energization to the SMA wire 10 is stopped, and the temperature of the SMA wire 10 is lowered to the focus temperature. Specifically, by continuously stopping energization to the SMA wire 10, the temperature of the SMA wire 10 is roughly lowered to cool down to the target temperature (focus temperature) at once. As a result, the SMA wire 10 extends and deforms, the lens frame 4 moves down, the lens frame 4 moves to the in-focus position, and the lens 50 is focused.
  • the SMA wire 10 is stopped, and the temperature of the SMA wire 10 is gradually decreased. Specifically, the SMA wire 10 is cooled finely stepwise by intermittently stopping energization to the SMA wire 10. Thereby, the SMA wire 10 is gradually extended and deformed, and the lens frame 4 is gradually lowered. Then, while moving the lens frame 4 over the entire movement range, a focus where the harmonic component becomes the largest is searched, and the temperature (electric resistance value) of the SMA wire 10 when the focus is achieved is recorded.
  • the SMA wire 10 is energized again to raise the temperature of the SMA wire 10 to the focus temperature. Specifically, by continuously energizing the SMA wire 10, the temperature of the SMA wire 10 is increased roughly and heated to the target temperature (focus temperature) at once. Thereby, the SMA wire 10 is contracted and deformed, the lens frame 4 is raised, the lens frame 4 is moved to the in-focus position, and the lens 50 is focused.
  • the drive module 1 having the above-described configuration can also be controlled by the method shown in FIGS.
  • the ambient temperature is detected (temperature detection step). More specifically, similar to the control method described above (shown in FIGS. 6 and 7), as shown in FIGS. 9A and 9B, each time the electronic device is turned on, the SMA wire 10 is connected. The SMA wire 10 is contracted and deformed to the limit by energization, and the operable range by the drive module 1 is detected and the environmental temperature is detected.
  • either one of the first drive mode shown in FIG. 10A and the second drive mode shown in FIG. 10B is selected based on the detected environmental temperature. (Mode selection step). More specifically, when the detected environmental temperature is lower than the threshold temperature, the first drive mode is selected, and when the environmental temperature is higher than the threshold temperature, the second drive mode is selected.
  • the energization of the SMA wire 10 is controlled according to the selected drive mode to expand and contract the SMA wire 10, and the lens frame 4 is moved to the in-focus position (drive step).
  • the environmental temperature is lower than the threshold temperature and the driving is performed in the first drive mode
  • first as shown in FIG. 10A, first, the temperature of the SMA wire 10 in the contracted state as described above is slightly decreased. Then, the lens frame 4 is moved to the reference position (upper reference position).
  • energization to the SMA wire 10 is stopped, and the temperature of the SMA wire 10 is roughly lowered (rapidly lowered). Specifically, energization to the SMA wire 10 is stopped intermittently or continuously to cool the SMA wire 10. Thereby, the SMA wire 10 is quickly stretched and deformed, and the lens frame 4 is quickly lowered. At this time, the focal point with the highest harmonic component is searched, and the temperature of the SMA wire 10 is lowered until the focal point is detected, and the lens frame 4 is lowered.
  • the position of the lens frame 4 is finely adjusted by moving the temperature of the SMA wire 10 up and down by the hill climbing method, and the lens frame 4 is moved to the in-focus position. More specifically, energization of the SMA wire 10 is started when the focus is detected. As a result, the lowering lens frame 4 is folded back and turned up. Then, by intermittently energizing the SMA wire 10, the SMA wire 10 is heated minutely stepwise to gradually increase the temperature of the SMA wire 10. Thereby, the SMA wire 10 is gradually contracted and deformed, and the lens frame 4 is gradually raised. At this time, the focal point where the harmonic component becomes the largest is searched, and the temperature of the SMA wire 10 is raised until the focal point is detected, and the lens frame 4 is raised.
  • the energization to the SMA wire 10 is stopped. As a result, the rising lens frame 4 is turned back and lowered. Then, by intermittently stopping energization of the SMA wire 10, the SMA wire 10 is finely and gradually cooled to gradually decrease the temperature of the SMA wire 10. Thereby, the SMA wire 10 is gradually extended and deformed, and the lens frame 4 is gradually lowered. At this time, the focal point with the highest harmonic component is searched, and the temperature of the SMA wire 10 is lowered until the focal point is detected, and the lens frame 4 is lowered.
  • the lens frame 4 is gradually brought closer to the in-focus position by repeatedly heating and cooling the SMA wire 10 described above, and finally the lens frame 4 is stopped at the in-focus position. Thereby, the lens 50 is focused.
  • the energization to the SMA wire 10 in the contracted state as described above is stopped.
  • the temperature of the SMA wire 10 is lowered, the SMA wire 10 is stretched and deformed, and the lens frame 4 is returned to the original reference position (lower reference position).
  • the SMA wire 10 is energized to raise the temperature of the SMA wire 10 roughly (rapid increase).
  • the SMA wire 10 is heated by energizing the SMA wire 10 intermittently or continuously. Thereby, the SMA wire 10 is rapidly contracted and deformed, and the lens frame 4 is quickly raised. At this time, the focal point where the harmonic component becomes the largest is searched, and the temperature of the SMA wire 10 is raised until the focal point is detected, and the lens frame 4 is raised.
  • the position of the lens frame 4 is finely adjusted by moving the temperature of the SMA wire 10 up and down by the hill climbing method, and the lens frame 4 is moved to the in-focus position.
  • energization to the SMA wire 10 is stopped when the focus is detected. As a result, the rising lens frame 4 is turned back and lowered. Then, by intermittently stopping energization of the SMA wire 10, the SMA wire 10 is finely and gradually cooled to gradually decrease the temperature of the SMA wire 10. Thereby, the SMA wire 10 is gradually extended and deformed, and the lens frame 4 is gradually lowered. At this time, the focal point with the highest harmonic component is searched, and the temperature of the SMA wire 10 is lowered until the focal point is detected, and the lens frame 4 is lowered.
  • the lens frame 4 is gradually brought closer to the in-focus position by repeatedly heating and cooling the SMA wire 10 described above, and finally the lens frame 4 is stopped at the in-focus position. Thereby, the lens 50 is focused.
  • the drive mode is selected according to the environmental temperature
  • the energization to the SMA wire 10 is controlled according to the drive mode
  • the SMA wire 10 expands and contracts
  • the lens frame 4 moves to the in-focus position. Therefore, the time (deformation convergence time) from when the SMA wire 10 is energized or de-energized until the SMA wire 10 expands or contracts to a desired shape is affected by the environmental temperature. It will not be long.
  • energization to the SMA wire 10 is controlled in the first drive mode in which the temperature of the SMA wire 10 is roughly lowered (rapidly lowered). At this time, since the environmental temperature is low and the temperature of the SMA wire 10 is likely to decrease, the SMA wire 10 expands and deforms into a desired shape in a short time after the energization of the SMA wire 10 is stopped. In addition, when the environmental temperature is higher than the threshold temperature, energization of the SMA wire 10 is controlled in the second drive mode in which the temperature of the SMA wire 10 is roughly increased (rapidly increased). At this time, since the environmental temperature is high and the temperature of the SMA wire 10 is likely to rise, the SMA wire 10 contracts and deforms into a desired shape in a short time after the SMA wire 10 is energized.
  • the SMA wire 10 is controlled in a time efficient mode according to the environmental temperature, and the lens frame 4 moves to the in-focus position in a short time and is immediately focused. It is possible to prevent the focus operation time from becoming long.
  • FIGS. 11A and 11B are perspective external views of the front surface and the back surface of the electronic apparatus according to the embodiment of the present invention.
  • FIG.11 (c) is FF sectional drawing in FIG.11 (b).
  • a camera-equipped mobile phone 20 according to the present embodiment shown in FIGS. 11A and 11B is an example of an electronic apparatus including the drive module 1 according to the above-described embodiment.
  • the camera-equipped mobile phone 20 includes a known mobile phone device configuration inside and outside the cover 22 such as a reception unit 22a, a transmission unit 22b, an operation unit 22c, a liquid crystal display unit 22d, an antenna unit 22e, and a control circuit unit (not shown). ing.
  • a window 22A through which external light is transmitted is provided in the cover 22 on the back surface side on which the liquid crystal display unit 22d is provided, and as shown in FIG. 11 (c), The drive module 1 of the first embodiment is installed so that the opening 11A of the drive module 1 faces the window 22A of the cover 22 and the axis M is along the normal direction of the window 22A.
  • the deformation convergence time of the SMA wire 10 does not become long due to the influence of the environmental temperature, and the lens frame 4 moves to the in-focus position in a short time and is immediately focused. It is possible to provide a high-performance camera-equipped mobile phone 20 with high responsiveness of operation.
  • the upper fixing pins 13A and 14A and the lower fixing pins 13B and 14B are inserted through the upper plate spring 6 and the lower plate spring 7 that are plate spring members for urging the lens frame 4,
  • the fixing method of a spring member is not limited to this.
  • it may be fixed by ultrasonic caulking or the like, or a spring member may be bonded to the lens frame 4 or the module frame 5. According to this structure, a large bonding area can be secured, so that a large strength can be obtained even if an adhesive is used.
  • the spring member in the present invention is not limited to a leaf spring, and may be a spring member having another shape.
  • the module frame 5 has been described as a substantially rectangular member as a whole, but is not limited to a substantially rectangular shape, and may be a polygonal shape.
  • the SMA wire 10 is provided as a shape memory alloy body.
  • the shape memory alloy body in the present invention is not limited to a wire shape, and for example, a shape memory of another shape such as a plate shape. An alloy body may be sufficient.
  • the example of the camera-equipped mobile phone is described as the electronic device using the drive module, but the type of the electronic device is not limited to this.
  • it can be used for other optical devices such as a digital camera and a camera built in a personal computer.
  • it is possible to replace suitably the component in above-mentioned embodiment with a well-known component, and you may combine the above-mentioned modification suitably.

Abstract

Disclosed is a drive module, provided with drive modes of a first drive mode wherein, after a focal point is detected by moving a lens frame across an entire range of movement by sending electricity through a shape-memory alloy body and gradually increasing the temperature thereof, the temperature of the shape-memory alloy body is decreased and the lens frame moved to the focus location; and a second drive mode wherein, after the focus is detected by moving the lens frame across the entire range of movement by sending electricity through the shape-memory alloy and gradually decreasing the temperature thereof, the temperature of the shape-memory alloy is increased and the lens frame moved to the focal point location. A control means detects the ambient temperature, selects the first drive mode if the ambient temperature is less than a threshold temperature, selects the second drive mode if the ambient temperature is greater than the threshold temperature, and controls the sending of electricity to the shape-memory alloy body according to the selected drive mode, driving a drive means.

Description

駆動モジュール、電子機器及び駆動モジュールの制御方法Drive module, electronic device, and drive module control method
 本発明は、レンズを保持するレンズ枠を駆動して自動で焦点を合わせるオートフォーカスを行う駆動モジュール、電子機器及び駆動モジュールの制御方法に関するものである。 The present invention relates to a drive module, an electronic device, and a drive module control method for performing autofocus for automatically focusing by driving a lens frame that holds a lens.
 例えばカメラ等のようなレンズを有する撮像装置では、撮影時に図12に示すように映像の高調波成分がピークとなる位置(フォーカスポイント)にレンズを移動させる動作を行う必要であり、この動作(フォーカス)を自動で行うオートフォーカス機能を有する撮像装置が数多く提供されている。 For example, in an imaging apparatus having a lens such as a camera, it is necessary to perform an operation of moving the lens to a position (focus point) where the harmonic component of the image reaches a peak as shown in FIG. Many imaging apparatuses having an autofocus function for automatically performing (focus) are provided.
 上記したオートフォーカスを実現する駆動モジュールとして、従来、例えば下記特許文献1に記載されているような、形状記憶合金の温度変化に伴う変形特性を利用してレンズ枠を駆動する駆動モジュールが提案されている。この駆動モジュールには、支持体と、その支持体に対して一定方向に沿って往復移動可能なレンズ枠と、そのレンズ枠を弾性保持するばね部材と、レンズ枠をばね部材の復元力に抗して駆動する駆動手段と、が備えられている。前記した駆動手段には、レンズ枠に係合した回動可能なアーム部と、アーム部に巻き掛けられていると共に両端がそれぞれ固定された形状記憶合金ワイヤと、が備えられている。 As a drive module that realizes the autofocus described above, a drive module that drives a lens frame using a deformation characteristic associated with a temperature change of a shape memory alloy as described in, for example, Patent Document 1 below has been proposed. ing. The drive module includes a support, a lens frame that can reciprocate along a certain direction with respect to the support, a spring member that elastically holds the lens frame, and a lens frame that resists the restoring force of the spring member. Driving means for driving in this manner. The driving means described above includes a rotatable arm portion engaged with the lens frame, and a shape memory alloy wire wound around the arm portion and fixed at both ends.
 上記した従来の駆動モジュールによれば、形状記憶合金ワイヤに通電することで、その通電に伴う発熱によって形状記憶合金ワイヤが縮み変形する。そして、形状記憶合金ワイヤが縮み変形することでアーム部が回動し、そのアーム部によってレンズ枠が押圧され、レンズ枠が一定方向に沿って一方側に移動する。また、上記した通電を停止することで、形状記憶合金ワイヤの温度が低下して形状記憶合金ワイヤが伸び変形する。そして、形状記憶合金ワイヤが伸び変形することでアーム部が戻り方向に回動し、レンズ枠がばね部材の付勢力によってレンズ枠が一定方向に沿って他方側に移動する。また、従来より、形状記憶合金の電気抵抗値に基いて形状記憶合金の温度をモニタリングする技術が知られている(例えば、下記特許文献2参照。)。したがって、上記した形状記憶合金ワイヤの電気抵抗値に基いて形状記憶合金ワイヤの温度をモニタリングしながら形状記憶合金ワイヤに対する通電を制御することで、レンズ枠を合焦位置まで移動させることができる。 According to the conventional drive module described above, when the shape memory alloy wire is energized, the shape memory alloy wire is contracted and deformed by the heat generated by the energization. When the shape memory alloy wire contracts and deforms, the arm portion rotates, the lens frame is pressed by the arm portion, and the lens frame moves to one side along a certain direction. Moreover, by stopping the above-described energization, the temperature of the shape memory alloy wire is lowered and the shape memory alloy wire is stretched and deformed. When the shape memory alloy wire expands and deforms, the arm portion rotates in the return direction, and the lens frame moves to the other side along a certain direction by the biasing force of the spring member. Conventionally, a technique for monitoring the temperature of a shape memory alloy based on the electrical resistance value of the shape memory alloy is known (for example, see Patent Document 2 below). Therefore, the lens frame can be moved to the in-focus position by controlling energization to the shape memory alloy wire while monitoring the temperature of the shape memory alloy wire based on the electric resistance value of the shape memory alloy wire.
 また、上記した従来の駆動モジュールは、例えば、図13(a)、(b)に示すように動作させる。すなわち、まず、形状記憶合金ワイヤに対して通電して形状記憶合金ワイヤの温度を漸次上昇させることで、形状記憶合金ワイヤを徐々に縮み変形させてレンズ枠を全移動範囲に亘って移動させる。このとき、高調波成分が最も大きくなる焦点を探査する。続いて、形状記憶合金ワイヤの温度を前記した焦点の温度まで低下させて形状記憶合金ワイヤを伸び変形させる。これにより、レンズ枠が合焦位置まで移動し、レンズの焦点が合わせられる。 Further, the above-described conventional driving module is operated as shown in FIGS. 13A and 13B, for example. That is, first, by energizing the shape memory alloy wire to gradually increase the temperature of the shape memory alloy wire, the shape memory alloy wire is gradually contracted and deformed to move the lens frame over the entire movement range. At this time, the focal point where the harmonic component becomes the largest is searched. Subsequently, the shape memory alloy wire is stretched and deformed by lowering the temperature of the shape memory alloy wire to the above-described focus temperature. As a result, the lens frame moves to the in-focus position, and the lens is focused.
 また、上記した従来の駆動モジュールの動作として、例えば、図14(a)、(b)に示すような動作も考えられる。すなわち、まず、形状記憶合金ワイヤに対して通電して形状記憶合金ワイヤを限界付近まで縮み変形させる。続いて、形状記憶合金ワイヤの温度を漸次低下させることで、形状記憶合金ワイヤを徐々に伸び変形させてレンズ枠を全移動範囲に亘って移動させる。このとき、高調波成分が最も大きくなる焦点を探査する。続いて、形状記憶合金ワイヤの温度を前記した焦点の温度まで上昇させて形状記憶合金ワイヤを縮み変形させる。これにより、レンズ枠が合焦位置まで移動し、レンズの焦点が合わせられる。 Further, as the operation of the above-described conventional drive module, for example, the operations shown in FIGS. 14A and 14B are also conceivable. That is, first, the shape memory alloy wire is energized to shrink and deform the shape memory alloy wire to near the limit. Subsequently, by gradually lowering the temperature of the shape memory alloy wire, the shape memory alloy wire is gradually extended and deformed to move the lens frame over the entire movement range. At this time, the focal point where the harmonic component becomes the largest is searched. Subsequently, the shape memory alloy wire is shrunk and deformed by raising the temperature of the shape memory alloy wire to the temperature of the focal point. As a result, the lens frame moves to the in-focus position, and the lens is focused.
 ところで、上記した形状記憶合金の電気抵抗値は、温度変化に対して図15に示すような曲線で変化する。詳しく説明すると、初期温度T0から温度が上昇するのに伴い電気抵抗値が漸次上昇していく。そして、形状記憶合金の変形が開始された時点(温度T1)で電気抵抗値が下降に転じて漸次低下していき、形状記憶合金の変形が限界に達して形状記憶合金の変形が収まった時点(温度T2)で電気抵抗値が再び上昇に転じて漸次上昇する。つまり、形状記憶合金の変形が開始された時点の電気抵抗値Rmaxが最大値となり、形状記憶合金の変形が収まった時点の電気抵抗値Rminが最小値となる。 By the way, the electric resistance value of the shape memory alloy described above changes with a curve as shown in FIG. 15 with respect to the temperature change. More specifically, as the temperature rises from the initial temperature T 0 , the electrical resistance value gradually rises. Then, when the deformation of the shape memory alloy is started (temperature T 1 ), the electric resistance value starts to decrease and gradually decreases, the deformation of the shape memory alloy reaches the limit, and the deformation of the shape memory alloy is settled. At the time (temperature T 2 ), the electric resistance value starts to increase again and gradually increases. That is, the electric resistance value R max when the deformation of the shape memory alloy is started becomes the maximum value, and the electric resistance value R min when the deformation of the shape memory alloy is stopped becomes the minimum value.
 そして、上記した従来の駆動モジュールでは、図13、図14に示すように、撮像装置の電源を入れるたびに、形状記憶合金ワイヤに通電して当該形状記憶合金ワイヤを限界まで縮み変形させる。これにより、最大電気抵抗値Rmaxと最小電気抵抗値Rminを検出して駆動モジュールによる動作可能範囲を検出する。 In the conventional driving module described above, as shown in FIGS. 13 and 14, each time the imaging apparatus is turned on, the shape memory alloy wire is energized to contract and deform the shape memory alloy wire to the limit. Thereby, the maximum electric resistance value R max and the minimum electric resistance value R min are detected, and the operable range by the drive module is detected.
特開2007-58075号公報JP 2007-58075 A 特開2006-183564号公報JP 2006-183564 A
しかしながら、上記した形状記憶合金ワイヤは温度変化によって伸縮するため、環境温度が高い場合、冷却に時間がかかり、形状記憶合金ワイヤが伸び方向に変形する際の収束時間が長くなり、環境温度が低い場合、加熱に時間がかかり、形状記憶合金ワイヤが縮み方向に変形する際の収束時間が長くなる。したがって、上記した従来の技術では、環境温度によってオートフォーカスの作動時間が長くなる場合があるという問題が存在する。
具体的に説明すると、例えば駆動モジュールを図13(a)、(b)に示すように動作させる場合、上述したように焦点の探査後に形状記憶合金ワイヤの温度を低下させることでレンズ枠を合焦位置まで移動させる。よって、環境温度が低い場合には、図13(a)に示すように、形状記憶合金ワイヤの温度が合焦位置の温度まで短時間で低下し、オートフォーカスの作動時間が比較的短時間になるが、環境温度が高い場合には、図13(b)に示すように、形状記憶合金ワイヤの温度を合焦位置の温度まで低下させるのに時間がかかり、その分だけオートフォーカスの作動時間が長くなる。
However, since the shape memory alloy wire described above expands and contracts due to a temperature change, when the environmental temperature is high, it takes time for cooling, the convergence time when the shape memory alloy wire is deformed in the extension direction becomes long, and the environmental temperature is low. In this case, heating takes time, and the convergence time when the shape memory alloy wire is deformed in the shrinking direction becomes long. Therefore, in the above-described conventional technology, there is a problem that the operation time of autofocus may become long depending on the environmental temperature.
Specifically, for example, when the drive module is operated as shown in FIGS. 13A and 13B, the lens frame is aligned by lowering the temperature of the shape memory alloy wire after the focus search as described above. Move to the focal position. Therefore, when the environmental temperature is low, as shown in FIG. 13A, the temperature of the shape memory alloy wire decreases to the temperature of the in-focus position in a short time, and the autofocus operation time becomes relatively short. However, when the environmental temperature is high, as shown in FIG. 13 (b), it takes time to lower the temperature of the shape memory alloy wire to the temperature of the in-focus position, and the operation time of the autofocus is correspondingly increased. Becomes longer.
 また、例えば駆動モジュールを図14(a)、(b)に示すように動作させる場合、上述したように焦点の探査後に形状記憶合金ワイヤの温度を上昇させることでレンズ枠を合焦位置まで移動させる。よって、環境温度が高い場合には、図14(b)に示すように、形状記憶合金ワイヤの温度が合焦位置の温度まで短時間で上昇し、オートフォーカスの作動時間が比較的短時間になるが、環境温度が低い場合には、図14(a)に示すように、形状記憶合金ワイヤの温度を合焦位置の温度まで上昇させるのに時間がかかり、その分だけオートフォーカスの作動時間が長くなる。 Further, for example, when the drive module is operated as shown in FIGS. 14A and 14B, the lens frame is moved to the in-focus position by increasing the temperature of the shape memory alloy wire after searching for the focus as described above. Let Therefore, when the environmental temperature is high, as shown in FIG. 14B, the temperature of the shape memory alloy wire rises to the temperature of the in-focus position in a short time, and the operation time of the autofocus is relatively short. However, when the environmental temperature is low, as shown in FIG. 14 (a), it takes time to raise the temperature of the shape memory alloy wire to the temperature of the in-focus position, and the operation time of the autofocus is correspondingly increased. Becomes longer.
 本発明は、上記した従来の問題が考慮されたものであり、環境温度によってオートフォーカスの作動時間が長くなるのを防止することができる駆動モジュール、電子機器及び駆動モジュールの制御方法を提供することを目的としている。 The present invention has been made in consideration of the above-described conventional problems, and provides a drive module, an electronic apparatus, and a drive module control method capable of preventing an autofocus operation time from being increased due to an environmental temperature. It is an object.
 本発明に係る駆動モジュールは、支持体と、該支持体に対して一定方向に沿って往復移動可能に設けられていると共にレンズを保持するレンズ枠と、該レンズ枠を弾性保持するばね部材と、通電による発熱によって変形可能な形状記憶合金体を有し、該形状記憶合金体に通電して該形状記憶合金体を変形させることで前記レンズ枠を前記ばね部材の復元力に抗して駆動する駆動手段と、前記形状記憶合金体に対する通電を制御することで前記駆動手段を制御する制御手段と、を備える駆動モジュールであって、該駆動モジュールの駆動モードとして、前記形状記憶合金体に対して通電して該形状記憶合金体の温度を漸次上昇させることで前記レンズ枠を全移動範囲に亘って移動させて焦点を探査し、その後、前記形状記憶合金体の温度を低下させて合焦位置まで前記レンズ枠を移動させる第一駆動モードと、前記形状記憶合金体に対して通電して該形状記憶合金体の温度を漸次低下させることで前記レンズ枠を全移動範囲に亘って移動させて焦点を探査し、その後、前記形状記憶合金体の温度を上昇させて合焦位置まで前記レンズ枠を移動させる第二駆動モードと、を有しており、前記制御手段が、環境温度を検出し、検出された環境温度が閾値温度よりも低い場合に前記第一駆動モードを選択して環境温度が閾値温度よりも高い場合に前記第二駆動モードを選択し、選択された駆動モードに従い前記形状記憶合金体に対する通電を制御して前記駆動手段を駆動させることを特徴としている。 The drive module according to the present invention is provided with a support, a lens frame that is reciprocally movable along a fixed direction with respect to the support and holds a lens, and a spring member that elastically holds the lens frame. And having a shape memory alloy body that can be deformed by heat generated by energization, and energizing the shape memory alloy body to deform the shape memory alloy body to drive the lens frame against the restoring force of the spring member A drive module, and a control means for controlling the drive means by controlling energization to the shape memory alloy body, wherein a drive mode of the drive module is used for the shape memory alloy body. To increase the temperature of the shape memory alloy body by gradually increasing the temperature of the shape memory alloy body so as to move the lens frame over the entire movement range to search the focal point, and then lower the temperature of the shape memory alloy body. A first drive mode for moving the lens frame to the in-focus position, and energizing the shape memory alloy body to gradually reduce the temperature of the shape memory alloy body to bring the lens frame into the full movement range. A second driving mode in which the lens frame is moved to the in-focus position by increasing the temperature of the shape memory alloy body and then moving the lens frame to the in-focus position. The environmental temperature is detected, the first driving mode is selected when the detected environmental temperature is lower than the threshold temperature, and the second driving mode is selected when the environmental temperature is higher than the threshold temperature. According to a drive mode, the drive means is driven by controlling energization to the shape memory alloy body.
 また、本発明に係る駆動モジュールは、支持体と、該支持体に対して一定方向に沿って往復移動可能に設けられていると共にレンズを保持するレンズ枠と、該レンズ枠を弾性保持するばね部材と、通電による発熱によって変形可能な形状記憶合金体を有し、該形状記憶合金体に通電して該形状記憶合金体を変形させることで前記レンズ枠を前記ばね部材の復元力に抗して駆動する駆動手段と、前記形状記憶合金体に対する通電を制御することで前記駆動手段を制御する制御手段と、を備える駆動モジュールであって、該駆動モジュールの駆動モードとして、前記形状記憶合金体に対して通電して該形状記憶合金体の温度を低下させることで前記レンズ枠を移動させて焦点を探査し、該焦点が検出された後、山登り法によって前記形状記憶合金体の温度を上下させながら前記レンズ枠の位置を微調整して該レンズ枠を合焦位置まで移動させる第一駆動モードと、前記形状記憶合金体に対して通電して該形状記憶合金体の温度を上昇させることで前記レンズ枠を移動させて焦点を探査し、該焦点が検出された後、山登り法によって前記形状記憶合金体の温度を上下させながら前記レンズ枠の位置を微調整して該レンズ枠を合焦位置まで移動させる第二駆動モードと、を有しており、前記制御手段が、環境温度を検出し、検出された環境温度が閾値温度よりも低い場合に前記第一駆動モードを選択して環境温度が閾値温度よりも高い場合に前記第二駆動モードを選択し、選択された駆動モードに従い前記形状記憶合金体に対する通電を制御して前記駆動手段を駆動させるものであってもよい。
上述した駆動モジュールによれば、環境温度に応じて駆動モードが選択され、その駆動モードに従い駆動手段が駆動してレンズ枠が合焦位置まで移動して焦点が合わせられるので、形状記憶合金体に対して通電したり通電を停止したりしてから形状記憶合金体が所望の形状に伸縮変形するまでの時間(変形収束時間)が環境温度の影響で長くなることがない。すなわち、環境温度が低い場合には、形状記憶合金体の温度を低下させる第一駆動モードで駆動手段が駆動する。このとき、環境温度が低くて形状記憶合金体の温度が低下しやすいので、形状記憶合金体に対する通電を停止してから短時間で形状記憶合金体が所望の形状に伸長変形する。また、環境温度が高い場合には、形状記憶合金体の温度を上昇させる第二駆動モードで駆動手段が駆動する。このとき、環境温度が高くて形状記憶合金体の温度が上昇しやすいので、形状記憶合金体に通電してから短時間で形状記憶合金体が所望の形状に収縮変形する。したがって、レンズ枠が合焦位置まで短時間で移動して焦点が直ちに合わせられる。
In addition, a drive module according to the present invention includes a support, a lens frame that is reciprocally movable along a fixed direction with respect to the support and holds a lens, and a spring that elastically holds the lens frame. And a shape memory alloy body that can be deformed by heat generated by energization, and the shape memory alloy body is energized to deform the shape memory alloy body to resist the restoring force of the spring member. Drive module, and a control module that controls the drive module by controlling energization to the shape memory alloy body, wherein the shape memory alloy body is used as a drive mode of the drive module. The shape memory alloy body is energized to lower the temperature of the shape memory alloy body to move the lens frame to investigate the focal point, and after the focal point is detected, the shape memory alloy is obtained by a hill climbing method. A first driving mode in which the position of the lens frame is finely adjusted while moving the temperature up and down to move the lens frame to the in-focus position, and the temperature of the shape memory alloy body by energizing the shape memory alloy body The lens frame is moved by moving the lens frame to explore the focal point, and after the focal point is detected, the position of the lens frame is finely adjusted by raising and lowering the temperature of the shape memory alloy body by a hill climbing method. A second driving mode for moving the lens frame to the in-focus position, and the control means detects the environmental temperature, and the first driving mode when the detected environmental temperature is lower than the threshold temperature. And selecting the second drive mode when the environmental temperature is higher than the threshold temperature, and controlling the energization to the shape memory alloy body according to the selected drive mode to drive the drive means. Moyo .
According to the drive module described above, the drive mode is selected according to the environmental temperature, the drive means is driven according to the drive mode, and the lens frame moves to the in-focus position and is focused. On the other hand, the time (deformation convergence time) until the shape memory alloy body is stretched and deformed to a desired shape after energizing or stopping energization does not become longer due to the influence of the environmental temperature. That is, when the environmental temperature is low, the drive means is driven in the first drive mode in which the temperature of the shape memory alloy body is lowered. At this time, since the environmental temperature is low and the temperature of the shape memory alloy body is likely to decrease, the shape memory alloy body expands and deforms to a desired shape in a short time after the power supply to the shape memory alloy body is stopped. When the environmental temperature is high, the drive means is driven in the second drive mode in which the temperature of the shape memory alloy body is increased. At this time, since the environmental temperature is high and the temperature of the shape memory alloy body easily rises, the shape memory alloy body shrinks and deforms into a desired shape in a short time after the shape memory alloy body is energized. Therefore, the lens frame moves to the in-focus position in a short time and is immediately focused.
 また、本発明に係る駆動モジュールは、前記制御手段が、前記形状記憶合金体の昇温時における環境温度と該形状記憶合金体の変形収束時間との関数のグラフと、前記形状記憶合金体の降温時における環境温度と該形状記憶合金体の変形収束時間との関数のグラフと、の交点における温度を前記閾値温度とすることが好ましい。
これにより、時間的に効率の良い駆動モードが確実に選択されるので、レンズ枠が合焦位置まで移動する時間が長くなることが確実に防止される。
In the drive module according to the present invention, the control means includes a graph of a function of the environmental temperature at the time of temperature rise of the shape memory alloy body and the deformation convergence time of the shape memory alloy body, and the shape memory alloy body. It is preferable that the temperature at the intersection of the environmental temperature during the temperature drop and the graph of the function of the deformation convergence time of the shape memory alloy body is the threshold temperature.
As a result, a time-efficient drive mode is surely selected, so that the time for the lens frame to move to the in-focus position is reliably prevented.
 また、本発明に係る電子機器は、上記した駆動モジュールを備えたことを特徴としている。このような特徴により、レンズ枠が合焦位置まで短時間で移動して焦点が直ちに合わせられるので、電子機器のオートフォーカス動作の応答性が高くなる。 Further, an electronic apparatus according to the present invention is characterized by including the drive module described above. With such a feature, since the lens frame moves to the in-focus position in a short time and is immediately focused, the responsiveness of the autofocus operation of the electronic device is increased.
 また、本発明に係る駆動モジュールの制御方法は、支持体と、該支持体に対して一定方向に沿って往復移動可能に設けられていると共にレンズを保持するレンズ枠と、該レンズ枠を弾性保持するばね部材と、通電による発熱によって変形可能な形状記憶合金体を有し、該形状記憶合金体に通電して該形状記憶合金体を変形させることで前記レンズ枠を前記ばね部材の復元力に抗して駆動する駆動手段と、前記形状記憶合金体に対する通電を制御することで前記駆動手段を制御して前記レンズ枠を合焦位置まで移動させる制御手段と、を備える駆動モジュールの制御方法であって、該駆動モジュールの駆動モードとして、前記形状記憶合金体に対して通電して該形状記憶合金体の温度を漸次上昇させることで前記レンズ枠を全移動範囲に亘って移動させて焦点を探査し、その後、前記形状記憶合金体の温度を低下させて合焦位置まで前記レンズ枠を移動させる第一駆動モードと、前記形状記憶合金体に対して通電して該形状記憶合金体の温度を漸次低下させることで前記レンズ枠を全移動範囲に亘って移動させて焦点を探査し、その後、前記形状記憶合金体の温度を上昇させて合焦位置まで前記レンズ枠を移動させる第二駆動モードと、を有しており、環境温度を検出する温度検出ステップと、該温度検出ステップで検出された環境温度が閾値温度よりも低い場合に前記第一駆動モードを選択して環境温度が閾値温度よりも高い場合に前記第二駆動モードを選択するモード選択ステップと、該モード選択ステップで選択された駆動モードに従い前記形状記憶合金体に対する通電を制御して前記駆動手段を駆動させる駆動ステップと、を備えることを特徴としている。 The drive module control method according to the present invention includes a support, a lens frame that is reciprocally movable along a fixed direction with respect to the support, and a lens frame that holds the lens, and the lens frame is elastic. A spring member to be held and a shape memory alloy body that can be deformed by heat generated by energization, and the shape memory alloy body is energized to deform the shape memory alloy body so that the lens frame is restored to the restoring force of the spring member And a control means for controlling the drive means to move the lens frame to an in-focus position by controlling energization to the shape memory alloy body. In the drive mode of the drive module, the shape memory alloy body is energized and the temperature of the shape memory alloy body is gradually increased to move the lens frame over the entire movement range. A first driving mode for moving the lens frame to the in-focus position by lowering the temperature of the shape memory alloy body and then energizing the shape memory alloy body to By gradually lowering the temperature of the memory alloy body, the lens frame is moved over the entire movement range to investigate the focal point, and then the temperature of the shape memory alloy body is raised to bring the lens frame to the in-focus position. A second drive mode for moving, and a temperature detection step for detecting an environmental temperature, and the first drive mode is selected when the environmental temperature detected in the temperature detection step is lower than a threshold temperature. A mode selection step of selecting the second drive mode when the environmental temperature is higher than a threshold temperature, and energization of the shape memory alloy body according to the drive mode selected in the mode selection step. It is characterized in that it comprises a drive step for driving the driving means and.
 また、本発明に係る駆動モジュールの制御方法は、支持体と、該支持体に対して一定方向に沿って往復移動可能に設けられていると共にレンズを保持するレンズ枠と、該レンズ枠を弾性保持するばね部材と、通電による発熱によって変形可能な形状記憶合金体を有し、該形状記憶合金体に通電して該形状記憶合金体を変形させることで前記レンズ枠を前記ばね部材の復元力に抗して駆動する駆動手段と、前記形状記憶合金体に対する通電を制御することで前記駆動手段を制御して前記レンズ枠を合焦位置まで移動させる制御手段と、を備える駆動モジュールの制御方法であって、該駆動モジュールの駆動モードとして、前記形状記憶合金体に対して通電して該形状記憶合金体の温度を低下させることで前記レンズ枠を移動させて焦点を探査し、該焦点が検出された後、山登り法によって前記形状記憶合金体の温度を上下させながら前記レンズ枠の位置を微調整して該レンズ枠を合焦位置まで移動させる第一駆動モードと、前記形状記憶合金体に対して通電して該形状記憶合金体の温度を上昇させることで前記レンズ枠を移動させて焦点を探査し、該焦点が検出された後、山登り法によって前記形状記憶合金体の温度を上下させながら前記レンズ枠の位置を微調整して該レンズ枠を合焦位置まで移動させる第二駆動モードと、を有しており、環境温度を検出する温度検出ステップと、該温度検出ステップで検出された環境温度が閾値温度よりも低い場合に前記第一駆動モードを選択して環境温度が閾値温度よりも高い場合に前記第二駆動モードを選択するモード選択ステップと、該モード選択ステップで選択された駆動モードに従い前記形状記憶合金体に対する通電を制御して前記駆動手段を駆動させる駆動ステップと、を備えるものであってもよい。 The drive module control method according to the present invention includes a support, a lens frame that is reciprocally movable along a fixed direction with respect to the support, and a lens frame that holds the lens, and the lens frame is elastic. A spring member to be held and a shape memory alloy body that can be deformed by heat generated by energization, and the shape memory alloy body is energized to deform the shape memory alloy body so that the lens frame is restored to the restoring force of the spring member And a control means for controlling the drive means to move the lens frame to an in-focus position by controlling energization to the shape memory alloy body. The drive mode of the drive module is to search the focal point by moving the lens frame by energizing the shape memory alloy body and lowering the temperature of the shape memory alloy body. A first drive mode for finely adjusting the position of the lens frame while moving the temperature of the shape memory alloy body up and down by a hill-climbing method after the focus is detected; By energizing the shape memory alloy body to increase the temperature of the shape memory alloy body, the lens frame is moved to search for the focal point, and after the focal point is detected, the shape memory alloy body is obtained by a hill climbing method. A second drive mode for finely adjusting the position of the lens frame while moving the temperature up and down to move the lens frame to the in-focus position, and a temperature detection step for detecting an environmental temperature, A mode selection step of selecting the first drive mode when the environmental temperature detected in the detection step is lower than a threshold temperature and selecting the second drive mode when the environmental temperature is higher than the threshold temperature; A driving step of driving said drive means to control the energization of the shape memory alloy member in accordance with the selected driving mode over mode selection step, it may be provided with a.
 上述した駆動モジュールの制御方法によれば、形状記憶合金体の変形収束時間が環境温度の影響で長くなることがなく、レンズ枠が合焦位置まで短時間で移動して焦点が直ちに合わせられる。 According to the control method of the drive module described above, the deformation convergence time of the shape memory alloy body does not become long due to the influence of the environmental temperature, and the lens frame moves to the in-focus position in a short time and is immediately focused.
 本発明に係る駆動モジュール、電子機器及び駆動モジュールの制御方法によれば、環境温度に応じた駆動モードが選択され、レンズ枠が合焦位置まで短時間で移動して焦点が直ちに合わせられるので、環境温度によってオートフォーカスの作動時間が長くなるのを防止することができる。 According to the drive module, the electronic device, and the drive module control method according to the present invention, the drive mode according to the environmental temperature is selected, and the lens frame is moved to the in-focus position in a short time, so that the focus is immediately adjusted. It is possible to prevent the autofocus operation time from becoming longer due to the environmental temperature.
本発明の実施形態における駆動モジュールの斜視図である。It is a perspective view of the drive module in the embodiment of the present invention. 本発明の実施形態における駆動モジュールの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the drive module in embodiment of this invention. 本発明の実施形態における駆動ユニットの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the drive unit in embodiment of this invention. 本発明の実施形態における駆動ユニットを示す斜視図である。It is a perspective view which shows the drive unit in embodiment of this invention. 図4のA-A線に沿う断面図である。FIG. 5 is a cross-sectional view taken along line AA in FIG. 4. 本発明の実施形態における駆動モジュールの制御方法を示すフローチャート図である。It is a flowchart figure which shows the control method of the drive module in embodiment of this invention. 本発明の実施形態における駆動モジュールの駆動モードを示すグラフである。It is a graph which shows the drive mode of the drive module in embodiment of this invention. 本発明の実施形態における駆動モジュールの閾値温度を示すグラフである。It is a graph which shows the threshold temperature of the drive module in embodiment of this invention. 本発明の実施形態における駆動モジュールの制御方法を示すフローチャート図である。It is a flowchart figure which shows the control method of the drive module in embodiment of this invention. 本発明の実施形態における駆動モジュールの駆動モードを示すグラフである。It is a graph which shows the drive mode of the drive module in embodiment of this invention. 本発明の実施形態における電子機器の図面であり、(a)表面斜視図、(b)裏面斜視図、(c)(b)のF-F線に沿う断面図である。It is drawing of the electronic device in embodiment of this invention, (a) Front surface perspective view, (b) Back surface perspective view, (c) It is sectional drawing which follows the FF line | wire of (b). レンズの焦点位置を示すグラフである。It is a graph which shows the focal position of a lens. 従来の駆動モジュールの駆動モードを示すグラフである。It is a graph which shows the drive mode of the conventional drive module. 従来の駆動モジュールの駆動モードを示すグラフである。It is a graph which shows the drive mode of the conventional drive module. 形状記憶合金体の温度変化に対する電気抵抗値を示すグラフである。It is a graph which shows the electrical resistance value with respect to the temperature change of a shape memory alloy body.
 以下、本発明に係る駆動モジュール、電子機器及び駆動モジュールの制御方法の実施の形態について、図面に基いて説明する。 Hereinafter, embodiments of a drive module, an electronic device, and a drive module control method according to the present invention will be described with reference to the drawings.
 なお、一部の図面では見易さのため、例えば図5に示すレンズユニット12などの構成部材を適宜省略して図示している。
また、図中の符号Mは、図5に示すレンズ50の光軸に一致する駆動モジュール1の仮想的な軸線であり、後述するレンズ枠4の駆動方向を示している。以下では、説明を簡単にするため、分解された各構成部材の説明においても、組立時の軸線Mとの位置関係に基づいて、位置や方向を参照する場合がある。例えば、構成部材に明確な円、円筒面が存在しない場合でも、誤解のおそれのない限り、軸線Mに沿う方向を単に「軸方向」と称し、軸線Mに直交する方向を単に「径方向」と称し、軸線M回りの方向を単に「周方向」と称する場合がある。また、軸方向のうちの後述する制御基板32側を「下方」とし、その反対側を「上方」とする。
For ease of viewing in some drawings, for example, components such as the lens unit 12 shown in FIG. 5 are omitted as appropriate.
A symbol M in the figure is a virtual axis line of the drive module 1 that coincides with the optical axis of the lens 50 shown in FIG. 5, and indicates the drive direction of the lens frame 4 described later. Hereinafter, in order to simplify the description, in the description of each disassembled component member, the position and direction may be referred to based on the positional relationship with the axis M at the time of assembly. For example, even when there is no clear circle or cylindrical surface in the component, unless there is a risk of misunderstanding, the direction along the axis M is simply referred to as “axial direction”, and the direction perpendicular to the axis M is simply “radial direction”. The direction around the axis M may be simply referred to as “circumferential direction”. Further, a control board 32 side to be described later in the axial direction is referred to as “downward”, and the opposite side is referred to as “upward”.
 まず、本実施形態における駆動モジュール1の構成について説明する。 First, the configuration of the drive module 1 in the present embodiment will be described.
 図1、2に示すように、本実施形態の駆動モジュール1は、図5に示すレンズ12(レンズユニット12)を軸方向に沿って往復移動させるための駆動モジュールであり、電子機器などに搭載されるものである。この駆動モジュール1は、制御手段となる制御基板32と、制御基板32上に位置するアダプタ30と、アダプタ30上に配設される駆動ユニット31と、駆動ユニット31を覆うように配設されたカバー11と、を備えている。 As shown in FIGS. 1 and 2, the drive module 1 of the present embodiment is a drive module for reciprocating the lens 12 (lens unit 12) shown in FIG. 5 along the axial direction, and is mounted on an electronic device or the like. It is what is done. The drive module 1 is disposed so as to cover the drive unit 31, a control board 32 serving as control means, an adapter 30 positioned on the control board 32, a drive unit 31 disposed on the adapter 30. And a cover 11.
 図3に示すように、駆動ユニット31は、被駆動体となるレンズ枠4、支持体となるモジュール枠5、ばね部材となる上板ばね6と下板ばね7、モジュール下板8、給電部材9、及び形状記憶合金体となる形状記憶合金(Shape Memory Alloy、以下、SMAと略称する)ワイヤ10を主な構成部材とするものであって、これら構成部材が一体に組み立てられることで1つのアクチュエータを構成する。 As shown in FIG. 3, the drive unit 31 includes a lens frame 4 as a driven body, a module frame 5 as a support, an upper leaf spring 6 and a lower leaf spring 7 as spring members, a module lower plate 8, and a power feeding member. 9, and a shape memory alloy (Shape Memory Alloy, hereinafter abbreviated as SMA) wire 10 which is a shape memory alloy body, which is a main constituent member. Configure the actuator.
 図3~5に示すように、上記したレンズ枠4はモジュール枠5の内側に軸方向に移動可能に挿入されており、これらレンズ枠4とモジュール枠5の上端部に上板ばね6が配設されていると共にレンズ枠4とモジュール枠5の下端部に下板ばね7が配設されており、これらの上板ばね6及び下板ばね7によってレンズ枠4及びモジュール枠5が挟持されている。上板ばね6はレンズ枠4及びモジュール枠5の各上端部にそれぞれ加締めにより固定されている。また、下板ばね7の下方にはモジュール下板8が積層されており、そのモジュール下板8の下方には給電部材9が積層されており、これら下板ばね7、モジュール下板8及び給電部材9はモジュール枠5の下端部に加締めによりそれぞれ共に固定され、さらに、下板ばね7はレンズ枠4の下端部に加締めにより固定されている。また、上記したモジュール下板8の上面に上記したカバー11が載置されて固定されている。 As shown in FIGS. 3 to 5, the lens frame 4 described above is inserted inside the module frame 5 so as to be movable in the axial direction, and an upper leaf spring 6 is arranged at the upper ends of the lens frame 4 and the module frame 5. The lower plate spring 7 is disposed at the lower ends of the lens frame 4 and the module frame 5, and the lens frame 4 and the module frame 5 are sandwiched between the upper plate spring 6 and the lower plate spring 7. Yes. The upper leaf spring 6 is fixed to the upper ends of the lens frame 4 and the module frame 5 by caulking. A module lower plate 8 is stacked below the lower plate spring 7, and a power supply member 9 is stacked below the module lower plate 8. The lower plate spring 7, the module lower plate 8, and the power supply are stacked. The members 9 are fixed to the lower end of the module frame 5 by caulking, and the lower leaf spring 7 is fixed to the lower end of the lens frame 4 by caulking. The cover 11 is placed and fixed on the upper surface of the module lower plate 8.
 上記したレンズ枠4は、軸線Mを中心軸線として軸方向に沿って延設された略円筒形状の筒状部材であり、図5に示すように、軸方向に貫通する横断面視円形の収容部4Aの内周面4Fに雌ネジが形成されている。そして、収容部4Aの内周面4Fにはレンズユニット12が螺合されており、これによりレンズユニット12がレンズ枠4に保持されている。なお、レンズユニット12は、外周面に雄ネジが形成された円筒形状の筒部51と、その筒部51の内側に嵌合されたレンズ50と、から構成されている。 The lens frame 4 described above is a substantially cylindrical tubular member extending along the axial direction with the axis M as the central axis, and as shown in FIG. A female screw is formed on the inner peripheral surface 4F of the portion 4A. The lens unit 12 is screwed onto the inner peripheral surface 4F of the housing portion 4A, whereby the lens unit 12 is held by the lens frame 4. The lens unit 12 includes a cylindrical tube portion 51 having a male screw formed on the outer peripheral surface, and a lens 50 fitted inside the tube portion 51.
 レンズ枠4の外壁面4Bには周方向に略90度の間隔をおいて、径方向外方に向けて突出する突出部4C(凸部)が軸方向に延設されており、それら各突出部4Cの上端面4aと下端面4bには、上側固定ピン13A、下側固定ピン13Bがそれぞれ立設されている。上側固定ピン13Aは上板ばね6を保持し、下側固定ピン13Bは下板ばね7を保持するためのものである。 On the outer wall surface 4B of the lens frame 4, a protruding portion 4C (convex portion) that protrudes radially outward with an interval of approximately 90 degrees in the circumferential direction extends in the axial direction. An upper fixing pin 13A and a lower fixing pin 13B are erected on the upper end surface 4a and the lower end surface 4b of the portion 4C, respectively. The upper fixing pin 13 </ b> A holds the upper leaf spring 6, and the lower fixing pin 13 </ b> B holds the lower leaf spring 7.
 上側固定ピン13A及び下側固定ピン13Bは、軸線Mに平行な同軸位置に配置されているため、上板ばね6及び下板ばね7における、上側固定ピン13A及び下側固定ピン13Bの挿通位置はそれぞれ共通化されている。
なお、上側固定ピン13Aおよび下側固定ピン13Bの平面視の位置が異なっていてもよく、例えば4本の突出部4Cのうちの2つの突出部4Cの各上端面4aに上側固定ピン13Aをそれぞれ立設し、残りの2本の突出部4Cの各上端面4aに下側固定ピン13Bをそれぞれ立設してもよい。
Since the upper fixing pin 13A and the lower fixing pin 13B are arranged at a coaxial position parallel to the axis M, the insertion positions of the upper fixing pin 13A and the lower fixing pin 13B in the upper leaf spring 6 and the lower leaf spring 7 Are standardized.
Note that the positions of the upper fixing pin 13A and the lower fixing pin 13B in plan view may be different. For example, the upper fixing pin 13A is attached to each upper end surface 4a of the two protruding portions 4C out of the four protruding portions 4C. The lower fixing pins 13B may be erected on the upper end surfaces 4a of the remaining two protrusions 4C.
 レンズ枠4には、SMAワイヤ10を掛けられるガイド突起4Dが設けられている。このガイド突起4Dは、複数の突出部4Cのうちの1つの下端部の外周面に一体に接合されており、SMAワイヤ10が掛けられて係止する先端鍵部(係止部)4D1が形成されている。この先端鍵部4D1は、そこに掛けられたSMAワイヤ10が収縮することによりレンズ枠4を上方に持ち上げて軸方向に沿って上方に移動させるものである。 The lens frame 4 is provided with a guide protrusion 4D on which the SMA wire 10 can be hung. The guide projection 4D is integrally joined to the outer peripheral surface of the lower end of one of the plurality of protrusions 4C, and a distal end key portion (locking portion) 4D1 is formed to be hooked and locked by the SMA wire 10. Has been. The distal end key portion 4D1 is for lifting the lens frame 4 upward and moving it upward along the axial direction by contraction of the SMA wire 10 hung thereon.
 また、レンズ枠4には、レンズ枠4を下向きに付勢する図2に示すコイルスプリング34を保持するスプリング保持部33が設けられている。このスプリング保持部33はガイド突起4Dの上端面に立設された柱状の凸部であり、このスプリング保持部33には図2に示すコイルスプリング34が挿通されている。これによりSMAワイヤ10が周囲環境の影響などにより収縮してレンズ枠4を上昇させようとする動きを抑制することができる。なお、レンズ枠4は、熱加締めまたは超音波加締めが可能な熱可塑性樹脂、例えばポリカーボネート(PC)、液晶ポリマー(LCP)樹脂などにより一体成形されている。 Further, the lens frame 4 is provided with a spring holding portion 33 for holding the coil spring 34 shown in FIG. 2 that urges the lens frame 4 downward. The spring holding portion 33 is a columnar convex portion erected on the upper end surface of the guide protrusion 4D, and the coil spring 34 shown in FIG. Accordingly, it is possible to suppress the movement of the SMA wire 10 that is contracted due to the influence of the surrounding environment and the like to raise the lens frame 4. The lens frame 4 is integrally formed of a thermoplastic resin that can be heat-clamped or ultrasonically-clamped, such as polycarbonate (PC) or liquid crystal polymer (LCP) resin.
 モジュール枠5は、軸線Mを中心軸線として軸方向に沿って延設された筒状部材であり、平面視の外形が全体として略矩形状に形成され、かつその中央部に、軸方向に貫通する横断面視円形の収容部5Aが形成されている。この収容部5A内には、上記したレンズ枠4が収容されている。モジュール枠5の上部及び下部の四隅には、軸線Mに対する仮想垂直に沿って形成された平面状の上下端面5a、5bがそれぞれ形成され、各上端面5aには上側固定ピン14Aが上方に向けてそれぞれ突設され、各下端面5bには下側固定ピン14Bが下方に向けてそれぞれ突設されている。 The module frame 5 is a cylindrical member extending along the axial direction with the axis M as the central axis, and the outer shape in plan view is formed in a substantially rectangular shape as a whole, and penetrates in the central portion in the axial direction. An accommodating portion 5A having a circular shape in cross section is formed. The lens frame 4 described above is accommodated in the accommodating portion 5A. Flat upper and lower end surfaces 5a and 5b formed along a virtual perpendicular to the axis M are formed at the upper and lower corners of the module frame 5, respectively, and upper fixing pins 14A are directed upward on the upper end surfaces 5a. The lower fixing pins 14B protrude downward from the lower end surfaces 5b.
 上側固定ピン14Aは上板ばね6を保持し、下側固定ピン14Bは下板ばね7、モジュール下板8及び給電部材9を保持するためのものである。なお、上側固定ピン14Aの平面視の位置は、下側固定ピン14Bの配置と異なっていてもよいが、本実施形態では、それぞれ軸線Mに平行な同軸位置に配置されている。このため、上板ばね6、下板ばね7における、上側固定ピン14A及び下側固定ピン14Bの挿通位置は、それぞれ共通化されている。また、上記した上下端面5a、5bの間の距離は、レンズ枠4の上下端面4a、4bの間の距離と略同一距離に設定されている。 The upper fixing pin 14A holds the upper leaf spring 6, and the lower fixing pin 14B holds the lower leaf spring 7, the module lower plate 8, and the power supply member 9. Note that the position of the upper fixing pin 14A in plan view may be different from the arrangement of the lower fixing pin 14B, but in this embodiment, they are arranged at coaxial positions parallel to the axis M, respectively. For this reason, the insertion positions of the upper fixing pin 14A and the lower fixing pin 14B in the upper leaf spring 6 and the lower leaf spring 7 are made common. Further, the distance between the upper and lower end surfaces 5 a and 5 b described above is set to be substantially the same distance as the distance between the upper and lower end surfaces 4 a and 4 b of the lens frame 4.
 モジュール枠5の一隅の下部には平面視の溝幅がレンズ枠4のガイド突起4Dに軸方向に移動可能に嵌合する大きさを有する切欠き5Bが形成されている。この切欠き5Bは、レンズ枠4をモジュール枠5内に下方から挿入して収容した状態で、レンズ枠4のガイド突起4Dを貫通させ、ガイド突起4Dの先端鍵部4D1をモジュール枠5の径方向外部に突出させるとともに、レンズ枠4の周方向の位置決めを行うためのものである。 A notch 5B having a size in which a groove width in a plan view is fitted to the guide projection 4D of the lens frame 4 so as to be movable in the axial direction is formed at a lower portion of one corner of the module frame 5. The notch 5B penetrates the guide projection 4D of the lens frame 4 in a state in which the lens frame 4 is inserted and accommodated in the module frame 5 from below, and the tip key portion 4D1 of the guide projection 4D is inserted into the diameter of the module frame 5. This is for projecting outward in the direction and positioning the lens frame 4 in the circumferential direction.
 また、図3、4に示すように、モジュール枠5の切欠き5Bに隣り合う2つの隅部には、切欠き5Bが設けられた隅部と同方向側の側面において、SMAワイヤ10を保持するワイヤ保持部材(保持端子)15A、15Bを取り付けるための一対の係止溝5Cが形成されている。 As shown in FIGS. 3 and 4, the SMA wire 10 is held at the two corners adjacent to the notch 5B of the module frame 5 on the side surface in the same direction as the corner provided with the notch 5B. A pair of locking grooves 5C for attaching the wire holding members (holding terminals) 15A, 15B to be formed are formed.
 モジュール枠5の側面におけるワイヤ保持部材15A,15Bが配される位置には、ピン35A,35Bがそれぞれ形成されている。さらに、ピン35A,35Bが形成された下方には、接着剤が充填されてモジュール枠5とワイヤ保持部材15A,15Bとを固定する溝部36が形成されている。そして、ワイヤ保持部材15A,15Bをモジュール枠5に固定する際に、ワイヤ保持部材15A,15Bが回動するのを抑制することができる壁部35Cが形成されている。壁部35Cは、モジュール枠5の側面から側方(側面に対して鉛直方向)に延出されている。 The pins 35A and 35B are formed at positions where the wire holding members 15A and 15B are arranged on the side surface of the module frame 5, respectively. Further, a groove portion 36 that is filled with an adhesive and fixes the module frame 5 and the wire holding members 15A and 15B is formed below the pins 35A and 35B. And when fixing wire holding member 15A, 15B to the module frame 5, the wall part 35C which can suppress that wire holding member 15A, 15B rotates is formed. The wall portion 35 </ b> C extends laterally (perpendicular to the side surface) from the side surface of the module frame 5.
 また、モジュール枠5は、本実施形態ではレンズ枠4と同様に、熱加締めまたは超音波加締めが可能な熱可塑性樹脂、例えばポリカーボネート(PC)、液晶ポリマー(LCP)樹脂などにより一体成形されている。 Further, in the present embodiment, the module frame 5 is integrally formed of a thermoplastic resin that can be heat-clamped or ultrasonically caulked, such as polycarbonate (PC), liquid crystal polymer (LCP) resin, and the like, in the same manner as the lens frame 4. ing.
 ワイヤ保持部材15Aは、駆動モジュール1から給電部材9の一対の端子部9Cが突出される側の側面に取り付けられ、ワイヤ保持部材15Bは、駆動モジュール1から給電部材9の一対の端子部9Cが突出されない側の側面に取り付けられている。 The wire holding member 15A is attached to the side surface on the side where the pair of terminal portions 9C of the power supply member 9 protrudes from the drive module 1, and the wire holding member 15B is connected to the pair of terminal portions 9C of the power supply member 9 from the drive module 1. It is attached to the side of the side that does not protrude.
 図4に示すように、ワイヤ保持部材15A、15Bは、ワイヤ保持部15bにSMAワイヤ10の端部を加締めてなる鍵状に形成された金属板などの導電性部材である。ワイヤ保持部材15A,15Bには、モジュール枠5のピン35A,35Bに嵌合する貫通孔36A,36Bがそれぞれ形成されている。また、貫通孔36A,36Bの軸方向下方には接着剤を流し込むための貫通孔37A,37Bがそれぞれ形成されている。そして、モジュール枠5とワイヤ保持部材15A,15Bとを固定する際に、モジュール枠5の壁部35Cに当接して、ワイヤ保持部材15A,15Bの回動を抑止するための腕部38A,38Bがそれぞれ形成されている。係止溝5Cおよびピン35A,35Bに側方から嵌合させ、壁部35Cと腕部38A,38Bとを当接させることで、SMAワイヤ10の端部を位置決めして保持するものである。 As shown in FIG. 4, the wire holding members 15A and 15B are conductive members such as a metal plate formed in a key shape formed by caulking the end portion of the SMA wire 10 to the wire holding portion 15b. The wire holding members 15A and 15B are formed with through holes 36A and 36B that fit into the pins 35A and 35B of the module frame 5, respectively. Further, through holes 37A and 37B for pouring the adhesive are formed below the through holes 36A and 36B in the axial direction. Then, when the module frame 5 and the wire holding members 15A and 15B are fixed, the arm portions 38A and 38B for contacting the wall portion 35C of the module frame 5 and suppressing the rotation of the wire holding members 15A and 15B. Are formed respectively. The end portion of the SMA wire 10 is positioned and held by fitting the locking portion 5C and the pins 35A and 35B from the side and bringing the wall portion 35C and the arm portions 38A and 38B into contact with each other.
 ワイヤ保持部材15A、15Bは、SMAワイヤ10のワイヤ保持部15b(加締め位置)と反対側に片状の端子部15aを備え、モジュール枠5に対する取付状態において、端子部15aがモジュール枠5の下方に積層されたモジュール下板8の下方にわずかに突出されるようになっている。 The wire holding members 15 </ b> A and 15 </ b> B are provided with a piece-like terminal portion 15 a on the opposite side of the wire holding portion 15 b (clamping position) of the SMA wire 10, and the terminal portion 15 a is attached to the module frame 5 when attached to the module frame 5. It protrudes slightly below the module lower plate 8 stacked below.
 また、一対のワイヤ保持部材15A、15Bによって両端が保持されたSMAワイヤ10は、モジュール枠の切欠き5Bから突出されたレンズ枠4のガイド突起4Dの先端鍵部4D1に下方から係止され、SMAワイヤ10の張力により、先端鍵部4D1を介して、レンズ枠4を上方に付勢している。 Further, the SMA wire 10 held at both ends by the pair of wire holding members 15A and 15B is locked from below to the front end key portion 4D1 of the guide projection 4D of the lens frame 4 protruding from the notch 5B of the module frame, The lens frame 4 is urged upward by the tension of the SMA wire 10 via the distal end key portion 4D1.
 図3,4に示すように、モジュール枠5及びモジュール枠5内に挿入されたレンズ枠4のそれぞれの上部と下部には、それぞれ上板ばね6と下板ばね7とが積層されている。上板ばね6及び下板ばね7は、略同一形状に打ち抜かれた平板状の板ばね部材であり、例えば、ステンレス(SUS)鋼板などの金属板からなる。 3 and 4, an upper leaf spring 6 and a lower leaf spring 7 are laminated on the upper and lower portions of the module frame 5 and the lens frame 4 inserted into the module frame 5, respectively. The upper leaf spring 6 and the lower leaf spring 7 are flat plate spring members punched into substantially the same shape, and are made of a metal plate such as a stainless steel (SUS) steel plate.
 上板ばね6(下板ばね7)の形状は、平面視の外形が、モジュール枠5の上側(下側)の端部と同様な略矩形状とされ、中央部に軸線Mと同軸でレンズ枠4の内周面4Fよりわずかに大きな円状の開口6C(7C)が形成され、全体としてリング状とされている。 The shape of the upper leaf spring 6 (lower leaf spring 7) has a substantially rectangular shape in plan view, similar to the upper (lower) end of the module frame 5, and is coaxial with the axis M at the center. A circular opening 6C (7C) that is slightly larger than the inner peripheral surface 4F of the frame 4 is formed, and has a ring shape as a whole.
 上板ばね6(下板ばね7)の隅部近傍には、モジュール枠5の隅部近傍に形成された上側固定ピン14A(下側固定ピン14B)の配置位置に対応して、各上側固定ピン14A(下側固定ピン14B)にそれぞれ挿通可能な4つの貫通孔6B(7B)が形成されている。これにより、モジュール枠5に対する軸線Mに直交する平面内の位置決めが可能となっている。 In the vicinity of the corner of the upper leaf spring 6 (lower leaf spring 7), the upper fixing pins 14A (lower fixing pins 14B) formed in the vicinity of the corners of the module frame 5 correspond to the positions of the upper fixing pins 14A. Four through holes 6B (7B) that can be inserted through the pins 14A (lower fixing pins 14B) are formed. Thereby, positioning in the plane orthogonal to the axis line M with respect to the module frame 5 is possible.
 また、上板ばね6(下板ばね7)には、レンズ枠4に形成された上側固定ピン13A(下側固定ピン13B)の配置位置に対応して、各上側固定ピン13A(下側固定ピン13B)にそれぞれ挿通可能な4つの貫通孔6A(7A)が形成されている。 Further, the upper plate spring 6 (lower plate spring 7) has upper fixing pins 13A (lower fixing pins) corresponding to the positions of the upper fixing pins 13A (lower fixing pins 13B) formed on the lens frame 4. Four through holes 6A (7A) that can be respectively inserted into the pins 13B) are formed.
 また、開口6C(7C)の径方向外側には、リング部6F(7F)が形成され、軸線Mを挟んで互いに対角方向に対向する貫通孔6A(7A)の近傍位置から、周方向に略半円弧状に延びる4つのスリット6D(7D)がそれぞれ、略四分円弧ずつ径方向に重なった状態に形成されている。 Further, a ring portion 6F (7F) is formed on the outer side in the radial direction of the opening 6C (7C), and in the circumferential direction from a position in the vicinity of the through holes 6A (7A) that face each other diagonally across the axis M. Four slits 6D (7D) extending in a substantially semicircular arc shape are formed so as to overlap each other in the radial direction by a substantially quadrant arc.
 これにより、上板ばね6(下板ばね7)の外側の矩形状枠体から、略四分円弧状に延ばされた4つのばね部6E(7E)が、それぞれ1つずつ貫通孔6A(7A)近傍に延ばされた板ばね部材が形成されている。 Thereby, four spring parts 6E (7E) extended from the rectangular frame outside the upper leaf | plate spring 6 (lower leaf | plate spring 7) to the substantially quadrant arc shape one each through-hole 6A ( 7A) A leaf spring member extending in the vicinity is formed.
 このように、上板ばね6(下板ばね7)の外形が、モジュール枠5の外形に略合わせた矩形状に設けられ、ばね部6E(7E)、リング部6F(7F)が開口6C(7C)に沿うリング状の領域に形成されている。そして、上板ばね6(下板ばね7)をモジュール枠5に固定する上側固定ピン14A(下側固定ピン14B)の配置に応じて、スペースに余裕のある隅部に被固定部である貫通孔6B(7B)が設けられるため、貫通孔6B(7B)の形状が、ばね部6E(7E)から離すことができるので、精密な打ち抜きによる製造やエッチングでの製造が容易となる。 Thus, the outer shape of the upper leaf spring 6 (lower leaf spring 7) is provided in a rectangular shape substantially matching the outer shape of the module frame 5, and the spring portion 6E (7E) and the ring portion 6F (7F) are formed in the opening 6C ( 7C) is formed in a ring-shaped region. Then, depending on the arrangement of the upper fixing pin 14A (lower fixing pin 14B) for fixing the upper leaf spring 6 (lower leaf spring 7) to the module frame 5, a through-hole that is a fixed portion is provided at a corner having a sufficient space. Since the hole 6B (7B) is provided, the shape of the through-hole 6B (7B) can be separated from the spring portion 6E (7E), so that manufacturing by precise punching or etching is easy.
 モジュール下板8は、モジュール枠5の各下側固定ピン14Bを下板ばね7の貫通孔7Bに貫通させるとともに、モジュール枠5内に収容したレンズ枠4の各下側固定ピン13Bを下板ばね7の貫通孔7Aに貫通させた状態で、モジュール枠5との間で、下板ばね7を下方側から挟んで積層し、下板ばね7の矩形状の外形枠をモジュール枠5の端面5bに対して押圧状態に固定するものである。 The module lower plate 8 allows the lower fixing pins 14B of the module frame 5 to pass through the through holes 7B of the lower leaf spring 7, and the lower fixing pins 13B of the lens frame 4 accommodated in the module frame 5 are lower plates. The lower plate spring 7 is stacked between the module frame 5 with the lower plate spring 7 sandwiched from the lower side in a state of passing through the through hole 7A of the spring 7, and the rectangular outer frame of the lower plate spring 7 is attached to the end surface of the module frame 5. It fixes to a pressing state with respect to 5b.
 モジュール下板8の形状は、モジュール枠5の外形と略同様の矩形状外形を有する板状部材であり、中央部に軸線Mを中心とする略円形状の開口8Aが厚さ方向に貫通して形成されている。そして、組立時に下板ばね7に積層される上面8a側には、レンズ枠4の各下側固定ピン13Bの配置位置に対応する位置に、後述する加締め部との干渉を避けるための4つのU字状の凹部8Bが形成されている。また、モジュール下板8の周縁に位置する各隅部にはモジュール枠5の各下側固定ピン14Bの配置位置に対応して、これら下側固定ピン14Bをそれぞれ挿通させる貫通孔8Cが形成されている。モジュール下板8の材質は、例えば、電気絶縁性および遮光性を有する合成樹脂を採用している。また、モジュール下板8が電気絶縁性を有することで、給電部材9を下板ばね7に対して電気的絶縁状態で固定する絶縁部材となっている。 The shape of the module lower plate 8 is a plate-like member having a rectangular outer shape that is substantially the same as the outer shape of the module frame 5, and a substantially circular opening 8 </ b> A centering on the axis M penetrates in the center in the thickness direction. Is formed. Then, on the side of the upper surface 8a laminated on the lower leaf spring 7 at the time of assembly, a position 4 corresponding to the position of the lower fixing pin 13B of the lens frame 4 is used to avoid interference with a caulking portion described later. Two U-shaped concave portions 8B are formed. In addition, through holes 8C through which the lower fixing pins 14B are inserted are formed at the corners located on the periphery of the module lower plate 8 corresponding to the positions of the lower fixing pins 14B of the module frame 5. ing. The material of the module lower plate 8 is, for example, a synthetic resin having electrical insulation and light shielding properties. Further, since the module lower plate 8 has electrical insulation, it is an insulating member that fixes the power supply member 9 to the lower plate spring 7 in an electrically insulated state.
 給電部材9は、それぞれ板状の金属板からなる一対の電極9a、9bからなる。電極9a、9bは、いずれも、モジュール下板8の外形に沿う略L字状の配線部9Bと、配線部の端部からモジュール下板8の外形の外側に突出する端子部9Cとを備える折れ線状の金属板からなる。そして、それぞれの配線部9Bには、モジュール下板8の下面から下方に突出されるモジュール枠5の下側固定ピン14Bのうち、モジュール下板8の外形に沿って隣り合う2つの下側固定ピン14Bを、それぞれ挿通させて、電極9a、9bをモジュール枠5に対して位置決めを行う2つの貫通孔9Aが設けられている。 The power supply member 9 includes a pair of electrodes 9a and 9b each made of a plate-shaped metal plate. Each of the electrodes 9a and 9b includes a substantially L-shaped wiring portion 9B that follows the outer shape of the module lower plate 8, and a terminal portion 9C that protrudes outside the outer shape of the module lower plate 8 from the end of the wiring portion. It consists of a polygonal metal plate. Each of the wiring portions 9B has two lower fixing pins adjacent to each other along the outer shape of the module lower plate 8 out of the lower fixing pins 14B of the module frame 5 protruding downward from the lower surface of the module lower plate 8. Two through holes 9A for positioning the electrodes 9a and 9b with respect to the module frame 5 by inserting the pins 14B, respectively, are provided.
 また、図4に示すように、一対の電極9a、9bの端子部9Cは、モジュール枠5において、ワイヤ保持部材15Aが取り付けられた側の側面から軸方向下方に並列して突出するように設けられている。 Further, as shown in FIG. 4, the terminal portions 9C of the pair of electrodes 9a and 9b are provided so as to protrude in parallel downward in the axial direction from the side surface of the module frame 5 on which the wire holding member 15A is attached. It has been.
 このため、一方の電極9aには、貫通孔9Aと端子部9Cとの間の配線部9B上の側面に、ワイヤ保持部材15Aの端子部15aを電気的に接続するために凹状に切り欠かれた導電接続部9Dが設けられている。
これに対し、他方の電極9bには、配線部9Bの側面におけるワイヤ保持部材15Bの端子部15aとの接続箇所に、切り欠かれた導電接続部9Dが形成されている。この導電接続部9Dにおいて、他方の電極9bとワイヤ保持部材15Bとが電気的に接続されている。
Therefore, one electrode 9a is notched in a concave shape to electrically connect the terminal portion 15a of the wire holding member 15A to the side surface on the wiring portion 9B between the through hole 9A and the terminal portion 9C. A conductive connection portion 9D is provided.
On the other hand, the other electrode 9b is formed with a conductive connection portion 9D that is notched at a connection location with the terminal portion 15a of the wire holding member 15B on the side surface of the wiring portion 9B. In the conductive connection portion 9D, the other electrode 9b and the wire holding member 15B are electrically connected.
 また、それぞれの導電接続部9Dを、端子部15aと電気的に接続する手段としては、例えば、半田付けまたは導電性接着剤による接着を採用することができる。 Further, as means for electrically connecting each conductive connection portion 9D to the terminal portion 15a, for example, soldering or adhesion with a conductive adhesive can be employed.
 図2にように、カバー11は、上面11Eの外縁部から下方側に、モジュール枠5を外嵌可能に覆う側壁部11Dが延ばされ、下方側に矩形状の開口11Cが形成された部材であり、上面11Eの中央部に軸線Mを中心とした円状の開口11Aが設けられている。開口11Aの大きさは、レンズユニット12を出し入れ可能な大きさとされる。 As shown in FIG. 2, the cover 11 is a member in which a side wall portion 11 </ b> D that covers the module frame 5 is extended from the outer edge portion of the upper surface 11 </ b> E to the lower side, and a rectangular opening 11 </ b> C is formed on the lower side. A circular opening 11A centering on the axis M is provided at the center of the upper surface 11E. The size of the opening 11A is set so that the lens unit 12 can be taken in and out.
 図1,2に示すように、制御基板32は、駆動ユニット31に制御信号や電力を供給する制御基板であり、一対の電極9a、9bの各端子部9Cに電気的に接続されるプリント配線39,39が表面に形成されたプリント基板と、そのプリント基板上に実装された図示しない制御回路と、からなる。詳しく説明すると、制御基板32は、プリント配線39,39を介して一対の電極9a、9bに通電してSMAワイヤ10を適宜伸縮変形させる制御手段であり、SMAワイヤ10を伸縮させることでレンズ枠4をモジュール枠5に対して相対的に軸方向に沿って移動させてレンズ枠4を所望の位置(合焦位置)に配置させるものである。 As shown in FIGS. 1 and 2, the control board 32 is a control board that supplies a control signal and power to the drive unit 31, and is a printed wiring that is electrically connected to each terminal portion 9C of the pair of electrodes 9a and 9b. A printed circuit board 39 and 39 are formed on the surface, and a control circuit (not shown) mounted on the printed circuit board. More specifically, the control board 32 is a control means for energizing the pair of electrodes 9a and 9b via the printed wirings 39 and 39 to appropriately expand and contract the SMA wire 10, and by extending and contracting the SMA wire 10, the lens frame 4 is moved along the axial direction relative to the module frame 5 to place the lens frame 4 at a desired position (in-focus position).
 次に、上記した構成の駆動モジュール1の組立方法について順を追って説明する。 Next, the assembly method of the drive module 1 having the above configuration will be described step by step.
 第1工程では、まず、モジュール枠5の収容部5A内に下方からレンズ枠4を挿入し、モジュール枠5の上端面5aと、レンズ枠4の上端面4aとを同一高さに揃える。そして、モジュール枠5の各上側固定ピン14Aとレンズ枠4の各上側固定ピン13Aとを上板ばね6の各貫通孔6B、6Aにそれぞれ挿通する。
その後、上板バネ6の各貫通孔6A、6Bを貫通して上方に突き出された各上側固定ピン13A、14Aの先端部を図示しないヒータチップにより熱加締めして、図4、5に示すようにそれぞれ第1の固定部である加締め部16と、第2の固定部である加締め部17を形成する。
In the first step, first, the lens frame 4 is inserted into the housing portion 5A of the module frame 5 from below, and the upper end surface 5a of the module frame 5 and the upper end surface 4a of the lens frame 4 are aligned at the same height. Then, the upper fixing pins 14A of the module frame 5 and the upper fixing pins 13A of the lens frame 4 are inserted through the through holes 6B and 6A of the upper leaf spring 6, respectively.
Thereafter, the tips of the upper fixing pins 13A and 14A protruding through the through holes 6A and 6B of the upper leaf spring 6 are heat-clamped by a heater chip (not shown), as shown in FIGS. In this way, a caulking portion 16 that is a first fixing portion and a caulking portion 17 that is a second fixing portion are formed.
 このとき、レンズ枠4の上端面4aとモジュール枠5の上端面5aとは、同一平面上に整列されており、平板状の上板ばね6を変形させることなく配置して、熱加締めを行うことができる。そのため、変形する上板ばね6を押さえる必要がないので、容易に加締め作業を行うことができる。また、上板ばね6の変形による浮きなどの発生を防止することができる。 At this time, the upper end surface 4a of the lens frame 4 and the upper end surface 5a of the module frame 5 are aligned on the same plane, and the plate-like upper leaf spring 6 is arranged without being deformed, and heat caulking is performed. It can be carried out. Therefore, it is not necessary to hold down the upper plate spring 6 that is deformed, so that the caulking work can be easily performed. Further, the occurrence of floating or the like due to the deformation of the upper leaf spring 6 can be prevented.
 また、各ヒータチップの高さを共通とすることができるので、双方の加締め部16、17を同時に形成しても、加締め精度のバラツキを低減することができる。 Moreover, since the height of each heater chip can be made common, even if both the crimping portions 16 and 17 are formed at the same time, variations in the crimping accuracy can be reduced.
 次に、第2工程では、レンズ枠4の各下側固定ピン13Bを下板ばね7の各貫通孔7Aにそれぞれ挿通する。その際、同時にモジュール枠5の各下側固定ピン14Bを下板ばね7の各貫通孔7B、モジュール下板8の各貫通孔8C、給電部材9の各貫通孔9Aに挿通する。その後、下板ばね7の各貫通孔7Aを貫通して下方に突き出された各下側固定ピン13Bの先端部を図示しないヒータチップにより熱加締めして、図5に示すように第1の固定部である加締め部18を形成する。 Next, in the second step, the lower fixing pins 13B of the lens frame 4 are inserted into the through holes 7A of the lower leaf spring 7, respectively. At that time, the lower fixing pins 14B of the module frame 5 are simultaneously inserted into the through holes 7B of the lower plate spring 7, the through holes 8C of the module lower plate 8, and the through holes 9A of the power supply member 9. Thereafter, the front end portion of each lower fixing pin 13B penetrating through each through-hole 7A of the lower leaf spring 7 is heat-clamped with a heater chip (not shown), and the first end as shown in FIG. A caulking portion 18 that is a fixing portion is formed.
 このとき、レンズ枠4の上下端面4a、4b間の軸方向距離と、モジュール枠5の上下端面5a、5b間の軸方向距離とは等しいため、各下端面4b、5b同士は、同一平面上に整列されており、平板状の下板ばね7を変形させることなくモジュール下板8を積層配置して熱加締めを行うことができるので、下板ばね7の変形による浮きなどの発生を防止することができる。 At this time, since the axial distance between the upper and lower end surfaces 4a and 4b of the lens frame 4 is equal to the axial distance between the upper and lower end surfaces 5a and 5b of the module frame 5, the lower end surfaces 4b and 5b are on the same plane. Since the module lower plate 8 can be stacked and heat-clamped without deforming the flat plate-like lower leaf spring 7, the occurrence of floating due to the deformation of the lower leaf spring 7 can be prevented. can do.
 また、各ヒータチップの高さを共通とすることができるので、加締め部18を同時に形成しても、加締め精度のバラツキを低減することができる。 Moreover, since the height of each heater chip can be made common, even if the caulking portion 18 is formed at the same time, variations in caulking accuracy can be reduced.
 次に、第3工程では、これら貫通孔7B、8C、9Aを貫通して下方に突き出された各下側固定ピン14Bの下端部を図示しないヒータチップにより熱加締めして、図5に示すように第2の固定部である加締め部19を形成する。 Next, in the third step, the lower end portion of each lower fixing pin 14B penetrating through the through- holes 7B, 8C, 9A is heat-clamped with a heater chip (not shown) and shown in FIG. Thus, the caulking portion 19 that is the second fixing portion is formed.
 このとき、各ヒータチップの高さを共通とすることができるため、加締め部19を同時に形成しても、加締め精度のバラツキを低減することができる。 At this time, since the height of each heater chip can be made common, even if the caulking portion 19 is formed at the same time, variations in caulking accuracy can be reduced.
 また、モジュール下板8に凹部8Bが形成されているため、第2工程で形成された加締め部18は、モジュール下板8とは接触しない。 Further, since the recess 8B is formed in the module lower plate 8, the crimped portion 18 formed in the second step does not contact the module lower plate 8.
 これら第1~第3工程の作業を行うことによって、レンズ枠4とモジュール枠5の両端部に、上板ばね6、下板ばね7、モジュール下板8、給電部材9が積層固定される。
なお、上側固定ピン13Aと下側固定ピン13B、また上側固定ピン14Aと下側固定ピン14Bが、それぞれ同軸に設けられているため、第1~第3工程の加締めにおいて、加締め部16、18、加締め部17、19をそれぞれ形成するためのヒータチップの平面上の位置がそれぞれ共通となる。そのため、各加締めにおいて、ヒータチップ位置を変更する必要がないため効率よく加締め作業を行うことができる。
By performing the operations in the first to third steps, the upper plate spring 6, the lower plate spring 7, the module lower plate 8, and the power supply member 9 are laminated and fixed to both ends of the lens frame 4 and the module frame 5.
Since the upper fixing pin 13A and the lower fixing pin 13B, and the upper fixing pin 14A and the lower fixing pin 14B are provided coaxially, the caulking portion 16 is used in caulking in the first to third steps. , 18 and the caulking portions 17, 19 have the same position on the plane of the heater chip. Therefore, since it is not necessary to change the heater chip position in each caulking, the caulking work can be performed efficiently.
 次に、第4工程(配設工程)では、SMAワイヤ10が取り付けられた一対のワイヤ保持部材15A、15Bを、モジュール枠5に固定する。具体的には、モジュール枠5に形成された2箇所のピン35A,35Bにワイヤ保持部材15A,15Bの貫通孔36A,36Bを嵌合するとともに、係止溝5Cにワイヤ保持部材15A,15Bをそれぞれ係止させる。その際、SMAワイヤ10の中央部を、ガイド突起4Dの先端鍵部4D1に係止させ、かつ、この先端鍵部4D1を下側から支持するように掛け渡す。また、ワイヤ保持部材15A、15Bの各端子部15aは、モジュール下板8の下方に突出され、それぞれ、モジュール下板8に固定された給電部材9である電極9a、9bの導電接続部9Dに係止されるか、もしくは近接して配置されている。 Next, in the fourth step (arrangement step), the pair of wire holding members 15A and 15B to which the SMA wire 10 is attached are fixed to the module frame 5. Specifically, the through holes 36A and 36B of the wire holding members 15A and 15B are fitted to the two pins 35A and 35B formed on the module frame 5, and the wire holding members 15A and 15B are fitted to the locking grooves 5C. Lock each one. At that time, the center portion of the SMA wire 10 is engaged with the distal end key portion 4D1 of the guide protrusion 4D, and the distal end key portion 4D1 is supported so as to be supported from below. The terminal portions 15a of the wire holding members 15A and 15B protrude below the module lower plate 8, and are respectively connected to the conductive connection portions 9D of the electrodes 9a and 9b, which are power supply members 9 fixed to the module lower plate 8. Locked or placed close together.
 次に、第5工程(固定工程)では、貫通孔37A,37Bに熱硬化性接着剤を流し込み、モジュール枠5の溝部36内に充填する。溝部36に熱硬化性接着剤を充填したら、その接着剤を硬化させるために加熱炉の中に入れる。加熱炉内において、例えば約100℃で20~30分程度加熱することにより接着剤が硬化してモジュール枠5とワイヤ保持部材15A,15Bとが接着固定される。 Next, in the fifth step (fixing step), a thermosetting adhesive is poured into the through holes 37 </ b> A and 37 </ b> B to fill the groove portion 36 of the module frame 5. When the groove 36 is filled with the thermosetting adhesive, it is placed in a heating furnace in order to cure the adhesive. In the heating furnace, for example, by heating at about 100 ° C. for about 20 to 30 minutes, the adhesive is cured and the module frame 5 and the wire holding members 15A and 15B are bonded and fixed.
 モジュール枠5とワイヤ保持部材15A,15Bとを接着固定した後、例えば、半田付けや導電性接着剤などを用いて、各端子部15aを、それぞれ導電接続部9Dに対して電気的に接続させる。 After the module frame 5 and the wire holding members 15A and 15B are bonded and fixed, each terminal portion 15a is electrically connected to the conductive connection portion 9D using, for example, soldering or a conductive adhesive. .
 次に、第6工程では、モジュール枠5の上方から、カバー11を被せ、側壁部11Dとモジュール下板8とを接合する。例えば、側壁部11Dに係合爪などを設けてはめ込みによって接合したり、側壁部11Dとモジュール下板8とを接着、または溶着して接合したりする。また、加締め部16、17は、それぞれカバー11の上面11Eの裏面に対して、離間された状態にある。 Next, in the sixth step, the cover 11 is covered from above the module frame 5, and the side wall portion 11D and the module lower plate 8 are joined. For example, an engaging claw or the like is provided on the side wall part 11D and joined by fitting, or the side wall part 11D and the module lower plate 8 are bonded or welded to join. Further, the caulking portions 16 and 17 are in a state of being separated from the back surface of the upper surface 11E of the cover 11, respectively.
 以上で、駆動モジュール1本体の組み立てが完了する。 This completes the assembly of the drive module 1 main body.
 その後、駆動ユニット31の下方にアダプタ30を取り付けた後、基板上へ取り付ける。駆動モジュール1の基板上への取り付けは、接着、嵌め込みなどの固定手段を採用することができる。なお、基板は、駆動モジュール1に付属する独立した部材であってもよいし、電子機器等に接続、配置された部材であってもよい。 After that, the adapter 30 is attached below the drive unit 31 and then mounted on the substrate. For mounting the drive module 1 on the substrate, fixing means such as adhesion and fitting can be employed. Note that the substrate may be an independent member attached to the drive module 1 or a member connected to and disposed on an electronic device or the like.
 さらに、カバー11の開口11Aを通じてレンズ枠4内にレンズユニット12を螺合して取り付ける。このように、レンズユニット12を最後に取り付けているのは、組立作業により、レンズユニット12のレンズが汚れたり、ゴミなどが付着したりしないためであるが、例えば、駆動モジュール1をレンズユニット12が取り付けられた製品状態で出荷する場合や、カバー11の開口11Aをレンズユニット12の外形より小さくしたい場合、例えば開口絞りを兼用するような場合などには、この工程を、早い段階(第6工程の前)で実施してもよい。 Furthermore, the lens unit 12 is screwed into the lens frame 4 through the opening 11A of the cover 11 and attached. As described above, the lens unit 12 is attached last because the lens of the lens unit 12 is not soiled or dust is attached by the assembling work. For example, the drive module 1 is attached to the lens unit 12. This process is performed at an early stage (sixth stage) when the product is shipped in a product state where the lens is attached, or when the opening 11A of the cover 11 is desired to be smaller than the outer shape of the lens unit 12, for example, when the aperture stop is also used. It may be carried out before the process).
 次に、上記した駆動モジュール1の動作について説明する。 Next, the operation of the drive module 1 will be described.
 駆動モジュール1は、端子部9Cに電力が供給されない状態では、SMAワイヤ10からの張力およびコイルスプリング34の付勢力、加締め部16、18で上板ばね6及び下板ばね7からの復元力などのレンズ枠4に作用する力がつり合い、レンズユニット12が取り付けられたレンズ枠4が、軸方向の一定位置に保持される。 In the state where electric power is not supplied to the terminal portion 9 </ b> C, the drive module 1 has the tension from the SMA wire 10 and the urging force of the coil spring 34, and the restoring force from the upper leaf spring 6 and the lower leaf spring 7 at the crimping portions 16 and 18. The forces acting on the lens frame 4 are balanced, and the lens frame 4 to which the lens unit 12 is attached is held at a fixed position in the axial direction.
 上記した駆動モジュール1を駆動させる際には、後述する制御方法に従って制御基板32から端子部9Cを介して給電部材9に電力を供給する。このとき、電極9a、ワイヤ保持部材15A、SMAワイヤ10、ワイヤ保持部15b及び電極9bは、それぞれ導通されているため、SMAワイヤ10に電流が流れる。
したがって、SMAワイヤ10に対して通電すると、SMAワイヤ10にジュール熱が発生して、SMAワイヤ10の温度が上昇し、SMAワイヤ10の変態開始温度を超えると、SMAワイヤ10が温度に応じた長さに収縮する。この結果、レンズ枠4のガイド突起4Dが、上方に移動する。これにより、コイルスプリング34、上板ばね6及び下板ばね7が、それぞれ変形し、変形量に応じた弾性復元力がレンズ枠4に付勢される。そして、この弾性復元力がSMAワイヤ10の張力とつり合う位置でレンズ枠4が停止する。このとき、上板ばね6、下板ばね7は、平行ばねを構成しているため、レンズ枠4は、軸方向のガイド部材などに沿わせなくても、正確に軸線M上に沿って移動される。このため、部品点数を削減し、小型化することが可能となっている。また、ガイド部材に対する摺動負荷も発生しないので、低消費電力を実現することが可能となる。
When driving the drive module 1 described above, power is supplied from the control board 32 to the power supply member 9 via the terminal portion 9C according to a control method described later. At this time, since the electrode 9a, the wire holding member 15A, the SMA wire 10, the wire holding portion 15b, and the electrode 9b are respectively conducted, current flows through the SMA wire 10.
Therefore, when the SMA wire 10 is energized, Joule heat is generated in the SMA wire 10 and the temperature of the SMA wire 10 rises. When the transformation start temperature of the SMA wire 10 is exceeded, the SMA wire 10 responds to the temperature. Shrink to length. As a result, the guide protrusion 4D of the lens frame 4 moves upward. As a result, the coil spring 34, the upper leaf spring 6, and the lower leaf spring 7 are deformed, and an elastic restoring force corresponding to the amount of deformation is urged to the lens frame 4. Then, the lens frame 4 stops at a position where this elastic restoring force is balanced with the tension of the SMA wire 10. At this time, since the upper leaf spring 6 and the lower leaf spring 7 constitute a parallel spring, the lens frame 4 accurately moves along the axis M without being along an axial guide member or the like. Is done. For this reason, it is possible to reduce the number of parts and reduce the size. Further, since no sliding load is generated on the guide member, low power consumption can be realized.
 一方、電力の供給を停止してSMAワイヤ10に対する通電を停止すると、SMAワイヤ10が伸長可能となり、レンズ枠4は、下方のつり合い位置まで移動する。 On the other hand, when the supply of power is stopped and the energization to the SMA wire 10 is stopped, the SMA wire 10 can be extended, and the lens frame 4 moves to the lower balance position.
 このようにして、制御基板32によって電力供給量を制御することで、レンズ枠4を軸線M方向に駆動する。
なお、SMAワイヤ10は昇温時と降温時との間で温度ヒステリシスが現れるが、ソフト等で補正することで対応可能である。
In this manner, the lens frame 4 is driven in the direction of the axis M by controlling the power supply amount by the control board 32.
In the SMA wire 10, temperature hysteresis appears between when the temperature is raised and when it is lowered, but this can be dealt with by correcting with software or the like.
 次に、駆動モジュール1の制御方法について説明する。 Next, a method for controlling the drive module 1 will be described.
 上記した構成からなる駆動モジュール1は制御基板32によって図6、7に示す方法で制御することが可能である。 The driving module 1 having the above-described configuration can be controlled by the control board 32 by the method shown in FIGS.
 まず初めに、図6に示すように、環境温度を検出する(温度検出ステップ)。具体的に説明すると、図7(a)、(b)に示すように、電子機器の電源を入れるたびに、SMAワイヤ10に通電して当該SMAワイヤ10を限界まで縮み変形させる。これにより、SMAワイヤ10の最大電気抵抗値Rmax(図15に示す。)と最小電気抵抗値Rmin(図15に示す。)を検出して駆動モジュール1による動作可能範囲(SMAワイヤ10の伸縮範囲)を検出すると共に環境温度を検出する。なお、環境温度は、SMAワイヤ10の初期の電気抵抗値R0(図15に示す。)や初期温度T0(図15に示す。)、初期の電気抵抗値R0と最大電気抵抗値Rmaxとの差、その他に基いて検出することが可能であり、或いは温度センサによって測定してもよい。 First, as shown in FIG. 6, the environmental temperature is detected (temperature detection step). More specifically, as shown in FIGS. 7A and 7B, each time the electronic device is turned on, the SMA wire 10 is energized to contract and deform the SMA wire 10 to the limit. As a result, the maximum electric resistance value R max (shown in FIG. 15) and the minimum electric resistance value R min (shown in FIG. 15) of the SMA wire 10 are detected, and the operable range by the drive module 1 (of the SMA wire 10). (Expansion / contraction range) and environmental temperature are detected. The environmental temperature includes the initial electrical resistance value R 0 (shown in FIG. 15), the initial temperature T 0 (shown in FIG. 15), the initial electrical resistance value R 0, and the maximum electrical resistance value R of the SMA wire 10. It can be detected based on the difference from max , etc., or may be measured by a temperature sensor.
 次に、図6に示すように、検出された環境温度に基いて図7(a)に示す第一駆動モード及び図7(b)に示す第二駆動モードのうちの何れか一方を選択する(モード選択ステップ)。詳しく説明すると、検出された環境温度が閾値温度よりも低い場合には上記した第一駆動モードを選択し、環境温度が閾値温度よりも高い場合には上記した第二駆動モードを選択する。上記した閾値温度は予め設定された温度であり、図8に示すように、SMAワイヤ10の昇温時における環境温度とSMAワイヤ10の変形収束時間との関数のグラフG1と、SMAワイヤ10の降温時における環境温度とSMAワイヤ10の変形収束時間との関数のグラフG2と、の交点における環境温度TXが閾値温度となる。なお、上記したグラフG1は、SMAワイヤ10の温度を上昇させて縮み変形させたときのグラフであり、反対に上記したグラフG2は、SMAワイヤ10の温度を低下させて伸び変形させたときのグラフである。 Next, as shown in FIG. 6, one of the first drive mode shown in FIG. 7A and the second drive mode shown in FIG. 7B is selected based on the detected environmental temperature. (Mode selection step). More specifically, when the detected environmental temperature is lower than the threshold temperature, the first drive mode is selected, and when the environmental temperature is higher than the threshold temperature, the second drive mode is selected. The above-described threshold temperature is a preset temperature. As shown in FIG. 8, a graph G1 of a function of the environmental temperature and the deformation convergence time of the SMA wire 10 when the temperature of the SMA wire 10 is raised, The environmental temperature T X at the intersection of the graph G2 of the function of the environmental temperature at the time of temperature drop and the deformation convergence time of the SMA wire 10 is the threshold temperature. The above-mentioned graph G1 is a graph when the temperature of the SMA wire 10 is increased and contracted and deformed, and conversely, the above-described graph G2 is when the temperature of the SMA wire 10 is decreased and expanded and deformed. It is a graph.
 次に、図6に示すように、選択された駆動モードに従いSMAワイヤ10に対する通電を制御してSMAワイヤ10を伸縮変形させ、レンズ枠4を合焦位置まで移動させる(駆動ステップ)。 Next, as shown in FIG. 6, the energization of the SMA wire 10 is controlled according to the selected drive mode to cause the SMA wire 10 to expand and contract and move the lens frame 4 to the in-focus position (drive step).
 例えば、環境温度が閾値温度よりも低くて第一駆動モードで駆動させる場合、図7(a)に示すように、まず、上述したように最大に縮んだ状態のSMAワイヤ10に対する通電を停止してSMAワイヤ10の温度を低下させ、SMAワイヤ10を伸び変形させてレンズ枠4を元の基準位置(下側の基準位置)に戻す。
次に、SMAワイヤ10に対して再び通電してSMAワイヤ10の温度を漸次上昇させる。具体的には、伸びた状態のSMAワイヤ10に対して間欠的に通電することでSMAワイヤ10を細かく段階的に加熱していく。これにより、SMAワイヤ10が徐々に縮み変形してレンズ枠4が徐々に上昇していく。そして、レンズ枠4を全移動範囲に亘って移動させながら、高調波成分が最も大きくなる焦点を探査し、焦点が合ったときのSMAワイヤ10の温度(電気抵抗値)を記録する。
For example, when the environmental temperature is lower than the threshold temperature and the driving is performed in the first drive mode, as shown in FIG. 7A, first, the energization of the SMA wire 10 in the contracted state as described above is stopped. Thus, the temperature of the SMA wire 10 is lowered, the SMA wire 10 is stretched and deformed, and the lens frame 4 is returned to the original reference position (lower reference position).
Next, the SMA wire 10 is energized again to gradually increase the temperature of the SMA wire 10. Specifically, the SMA wire 10 is heated minutely and stepwise by energizing the stretched SMA wire 10 intermittently. Thereby, the SMA wire 10 is gradually contracted and deformed, and the lens frame 4 is gradually raised. Then, while moving the lens frame 4 over the entire movement range, a focus where the harmonic component becomes the largest is searched, and the temperature (electric resistance value) of the SMA wire 10 when the focus is achieved is recorded.
 そして、レンズ枠4の全移動範囲のスキャンが完了した後、SMAワイヤ10に対する通電を停止してSMAワイヤ10の温度を焦点の温度まで低下させる。具体的には、SMAワイヤ10に対する通電を継続的に停止することでSMAワイヤ10の温度を荒く低下させて目標温度(焦点の温度)まで一気に冷却する。これにより、SMAワイヤ10が伸び変形してレンズ枠4が下降し、レンズ枠4が合焦位置まで移動してレンズ50の焦点が合わせられる。 Then, after the scanning of the entire movement range of the lens frame 4 is completed, the energization to the SMA wire 10 is stopped, and the temperature of the SMA wire 10 is lowered to the focus temperature. Specifically, by continuously stopping energization to the SMA wire 10, the temperature of the SMA wire 10 is roughly lowered to cool down to the target temperature (focus temperature) at once. As a result, the SMA wire 10 extends and deforms, the lens frame 4 moves down, the lens frame 4 moves to the in-focus position, and the lens 50 is focused.
 また、環境温度が閾値温度よりも高くて第二駆動モードで駆動させる場合、図7(b)に示すように、まず、上述したように最大に縮んだ状態のSMAワイヤ10の温度を若干低下させてレンズ枠4を基準位置(上側の基準位置)に移動させる。 When the ambient temperature is higher than the threshold temperature and the driving is performed in the second driving mode, first, as shown in FIG. 7B, first, the temperature of the SMA wire 10 in the contracted state as described above is slightly decreased. Then, the lens frame 4 is moved to the reference position (upper reference position).
 その後、SMAワイヤ10に対する通電を停止してSMAワイヤ10の温度を漸次低下させる。具体的には、SMAワイヤ10に対する通電を間欠的に停止することでSMAワイヤ10を細かく段階的に冷却していく。これにより、SMAワイヤ10が徐々に伸び変形してレンズ枠4が徐々に下降していく。そして、レンズ枠4を全移動範囲に亘って移動させながら、高調波成分が最も大きくなる焦点を探査し、焦点が合ったときのSMAワイヤ10の温度(電気抵抗値)を記録する。 Thereafter, energization to the SMA wire 10 is stopped, and the temperature of the SMA wire 10 is gradually decreased. Specifically, the SMA wire 10 is cooled finely stepwise by intermittently stopping energization to the SMA wire 10. Thereby, the SMA wire 10 is gradually extended and deformed, and the lens frame 4 is gradually lowered. Then, while moving the lens frame 4 over the entire movement range, a focus where the harmonic component becomes the largest is searched, and the temperature (electric resistance value) of the SMA wire 10 when the focus is achieved is recorded.
 そして、レンズ枠4の全移動範囲のスキャンが完了した後、SMAワイヤ10に対して再び通電してSMAワイヤ10の温度を焦点の温度まで上昇させる。具体的には、SMAワイヤ10に対して継続的に通電することでSMAワイヤ10の温度を荒く上昇させて目標温度(焦点の温度)まで一気に加熱する。これにより、SMAワイヤ10が縮み変形してレンズ枠4が上昇し、レンズ枠4が合焦位置まで移動してレンズ50の焦点が合わせられる。 Then, after the scanning of the entire moving range of the lens frame 4 is completed, the SMA wire 10 is energized again to raise the temperature of the SMA wire 10 to the focus temperature. Specifically, by continuously energizing the SMA wire 10, the temperature of the SMA wire 10 is increased roughly and heated to the target temperature (focus temperature) at once. Thereby, the SMA wire 10 is contracted and deformed, the lens frame 4 is raised, the lens frame 4 is moved to the in-focus position, and the lens 50 is focused.
 また、上記した構成からなる駆動モジュール1は制御基板32によって図9、10に示す方法によって制御することも可能である。 The drive module 1 having the above-described configuration can also be controlled by the method shown in FIGS.
 まず初めに、図9に示すように、環境温度を検出する(温度検出ステップ)。具体的に説明すると、上述した制御方法(図6、7に示す。)と同様に、図9(a)、(b)に示すように、電子機器の電源を入れるたびに、SMAワイヤ10に通電して当該SMAワイヤ10を限界まで縮み変形させ、駆動モジュール1による動作可能範囲を検出すると共に環境温度を検出する。 First, as shown in FIG. 9, the ambient temperature is detected (temperature detection step). More specifically, similar to the control method described above (shown in FIGS. 6 and 7), as shown in FIGS. 9A and 9B, each time the electronic device is turned on, the SMA wire 10 is connected. The SMA wire 10 is contracted and deformed to the limit by energization, and the operable range by the drive module 1 is detected and the environmental temperature is detected.
 次に、図9に示すように、検出された環境温度に基いて図10(a)に示す第一駆動モード及び図10(b)に示す第二駆動モードのうちの何れか一方を選択する(モード選択ステップ)。詳しく説明すると、検出された環境温度が閾値温度よりも低い場合には上記した第一駆動モードを選択し、環境温度が閾値温度よりも高い場合には上記した第二駆動モードを選択する。 Next, as shown in FIG. 9, either one of the first drive mode shown in FIG. 10A and the second drive mode shown in FIG. 10B is selected based on the detected environmental temperature. (Mode selection step). More specifically, when the detected environmental temperature is lower than the threshold temperature, the first drive mode is selected, and when the environmental temperature is higher than the threshold temperature, the second drive mode is selected.
 次に、図9に示すように、選択された駆動モードに従いSMAワイヤ10に対する通電を制御してSMAワイヤ10を伸縮変形させ、レンズ枠4を合焦位置まで移動させる(駆動ステップ)。 Next, as shown in FIG. 9, the energization of the SMA wire 10 is controlled according to the selected drive mode to expand and contract the SMA wire 10, and the lens frame 4 is moved to the in-focus position (drive step).
 例えば、環境温度が閾値温度よりも低くて第一駆動モードで駆動させる場合、図10(a)に示すように、まず、上述したように最大に縮んだ状態のSMAワイヤ10の温度を若干低下させてレンズ枠4を基準位置(上側の基準位置)に移動させる。 For example, when the environmental temperature is lower than the threshold temperature and the driving is performed in the first drive mode, first, as shown in FIG. 10A, first, the temperature of the SMA wire 10 in the contracted state as described above is slightly decreased. Then, the lens frame 4 is moved to the reference position (upper reference position).
 次に、SMAワイヤ10に対する通電を停止させてSMAワイヤ10の温度を荒く低下(急低下)させる。具体的には、SMAワイヤ10に対する通電を間欠的或いは継続的に停止させてSMAワイヤ10を冷却する。これにより、SMAワイヤ10が速やかに伸び変形してレンズ枠4が速やかに下降していく。このとき、高調波成分が最も大きくなる焦点を探査し、焦点が検出されるまでSMAワイヤ10の温度を低下させてレンズ枠4を下降させる。 Next, energization to the SMA wire 10 is stopped, and the temperature of the SMA wire 10 is roughly lowered (rapidly lowered). Specifically, energization to the SMA wire 10 is stopped intermittently or continuously to cool the SMA wire 10. Thereby, the SMA wire 10 is quickly stretched and deformed, and the lens frame 4 is quickly lowered. At this time, the focal point with the highest harmonic component is searched, and the temperature of the SMA wire 10 is lowered until the focal point is detected, and the lens frame 4 is lowered.
 そして、焦点が検出された後、山登り法によってSMAワイヤ10の温度を上下させながらレンズ枠4の位置を微調整してレンズ枠4を合焦位置まで移動させる。
詳しく説明すると、焦点が検出された時点で、SMAワイヤ10に対する通電を開始する。これにより、下降中のレンズ枠4が折り返して上昇に転じる。そして、SMAワイヤ10に対して間欠的に通電することでSMAワイヤ10を細かく段階的に加熱してSMAワイヤ10の温度を漸次上昇させる。これにより、SMAワイヤ10が徐々に縮み変形してレンズ枠4が徐々に上昇していく。このとき、高調波成分が最も大きくなる焦点を探査し、焦点が検出されるまでSMAワイヤ10の温度を上昇させてレンズ枠4を上昇させる。
Then, after the focus is detected, the position of the lens frame 4 is finely adjusted by moving the temperature of the SMA wire 10 up and down by the hill climbing method, and the lens frame 4 is moved to the in-focus position.
More specifically, energization of the SMA wire 10 is started when the focus is detected. As a result, the lowering lens frame 4 is folded back and turned up. Then, by intermittently energizing the SMA wire 10, the SMA wire 10 is heated minutely stepwise to gradually increase the temperature of the SMA wire 10. Thereby, the SMA wire 10 is gradually contracted and deformed, and the lens frame 4 is gradually raised. At this time, the focal point where the harmonic component becomes the largest is searched, and the temperature of the SMA wire 10 is raised until the focal point is detected, and the lens frame 4 is raised.
 そして、焦点が検出された時点で、SMAワイヤ10に対する通電を停止する。これにより、上昇中のレンズ枠4が折り返して下降に転じる。そして、SMAワイヤ10に対する通電を間欠的に停止することでSMAワイヤ10を細かく段階的に冷却してSMAワイヤ10の温度を漸次低下させる。これにより、SMAワイヤ10が徐々に伸び変形してレンズ枠4が徐々に下降していく。このとき、高調波成分が最も大きくなる焦点を探査し、焦点が検出されるまでSMAワイヤ10の温度を下降させてレンズ枠4を下降させる。 Then, when the focus is detected, the energization to the SMA wire 10 is stopped. As a result, the rising lens frame 4 is turned back and lowered. Then, by intermittently stopping energization of the SMA wire 10, the SMA wire 10 is finely and gradually cooled to gradually decrease the temperature of the SMA wire 10. Thereby, the SMA wire 10 is gradually extended and deformed, and the lens frame 4 is gradually lowered. At this time, the focal point with the highest harmonic component is searched, and the temperature of the SMA wire 10 is lowered until the focal point is detected, and the lens frame 4 is lowered.
 上記したSMAワイヤ10に対する加熱と冷却を繰り返すことでレンズ枠4を合焦位置に徐々に近づけていき、最終的にレンズ枠4を合焦位置で停止させる。これにより、レンズ50の焦点が合わせられる。 The lens frame 4 is gradually brought closer to the in-focus position by repeatedly heating and cooling the SMA wire 10 described above, and finally the lens frame 4 is stopped at the in-focus position. Thereby, the lens 50 is focused.
 また、環境温度が閾値温度よりも高くて第二駆動モードで駆動させる場合、図10(b)に示すように、まず、上述したように最大に縮んだ状態のSMAワイヤ10に対する通電を停止してSMAワイヤ10の温度を低下させ、SMAワイヤ10を伸び変形させてレンズ枠4を元の基準位置(下側の基準位置)に戻す。
次に、SMAワイヤ10に対して通電してSMAワイヤ10の温度を荒く上昇(急上昇)させる。具体的には、SMAワイヤ10に対して間欠的或いは継続的に通電してSMAワイヤ10を加熱する。これにより、SMAワイヤ10が速やかに縮み変形してレンズ枠4が速やかに上昇していく。このとき、高調波成分が最も大きくなる焦点を探査し、焦点が検出されるまでSMAワイヤ10の温度を上昇させてレンズ枠4を上昇させる。
Further, when the environmental temperature is higher than the threshold temperature and the driving is performed in the second driving mode, as shown in FIG. 10B, first, the energization to the SMA wire 10 in the contracted state as described above is stopped. Thus, the temperature of the SMA wire 10 is lowered, the SMA wire 10 is stretched and deformed, and the lens frame 4 is returned to the original reference position (lower reference position).
Next, the SMA wire 10 is energized to raise the temperature of the SMA wire 10 roughly (rapid increase). Specifically, the SMA wire 10 is heated by energizing the SMA wire 10 intermittently or continuously. Thereby, the SMA wire 10 is rapidly contracted and deformed, and the lens frame 4 is quickly raised. At this time, the focal point where the harmonic component becomes the largest is searched, and the temperature of the SMA wire 10 is raised until the focal point is detected, and the lens frame 4 is raised.
 そして、焦点が検出された後、山登り法によってSMAワイヤ10の温度を上下させながらレンズ枠4の位置を微調整してレンズ枠4を合焦位置まで移動させる。 Then, after the focus is detected, the position of the lens frame 4 is finely adjusted by moving the temperature of the SMA wire 10 up and down by the hill climbing method, and the lens frame 4 is moved to the in-focus position.
 詳しく説明すると、焦点が検出された時点で、SMAワイヤ10に対する通電を停止する。これにより、上昇中のレンズ枠4が折り返して下降に転じる。そして、SMAワイヤ10に対する通電を間欠的に停止することでSMAワイヤ10を細かく段階的に冷却してSMAワイヤ10の温度を漸次低下させる。これにより、SMAワイヤ10が徐々に伸び変形してレンズ枠4が徐々に下降していく。このとき、高調波成分が最も大きくなる焦点を探査し、焦点が検出されるまでSMAワイヤ10の温度を下降させてレンズ枠4を下降させる。 More specifically, energization to the SMA wire 10 is stopped when the focus is detected. As a result, the rising lens frame 4 is turned back and lowered. Then, by intermittently stopping energization of the SMA wire 10, the SMA wire 10 is finely and gradually cooled to gradually decrease the temperature of the SMA wire 10. Thereby, the SMA wire 10 is gradually extended and deformed, and the lens frame 4 is gradually lowered. At this time, the focal point with the highest harmonic component is searched, and the temperature of the SMA wire 10 is lowered until the focal point is detected, and the lens frame 4 is lowered.
 そして、焦点が検出された時点で、SMAワイヤ10に対する通電を開始する。これにより、下降中のレンズ枠4が折り返して上昇に転じる。そして、SMAワイヤ10に対して間欠的に通電することでSMAワイヤ10を細かく段階的に加熱してSMAワイヤ10の温度を漸次上昇させる。これにより、SMAワイヤ10が徐々に縮み変形してレンズ枠4が徐々に上昇していく。このとき、高調波成分が最も大きくなる焦点を探査し、焦点が検出されるまでSMAワイヤ10の温度を上昇させてレンズ枠4を上昇させる。 Then, when the focus is detected, energization to the SMA wire 10 is started. As a result, the lowering lens frame 4 is folded back and turned up. Then, by intermittently energizing the SMA wire 10, the SMA wire 10 is heated minutely stepwise to gradually increase the temperature of the SMA wire 10. Thereby, the SMA wire 10 is gradually contracted and deformed, and the lens frame 4 is gradually raised. At this time, the focal point where the harmonic component becomes the largest is searched, and the temperature of the SMA wire 10 is raised until the focal point is detected, and the lens frame 4 is raised.
 上記したSMAワイヤ10に対する加熱と冷却を繰り返すことでレンズ枠4を合焦位置に徐々に近づけていき、最終的にレンズ枠4を合焦位置で停止させる。これにより、レンズ50の焦点が合わせられる。 The lens frame 4 is gradually brought closer to the in-focus position by repeatedly heating and cooling the SMA wire 10 described above, and finally the lens frame 4 is stopped at the in-focus position. Thereby, the lens 50 is focused.
 上述した駆動モジュール1によれば、環境温度に応じて駆動モードが選択され、その駆動モードに従いSMAワイヤ10に対する通電が制御されてSMAワイヤ10が伸縮変形してレンズ枠4が合焦位置まで移動して焦点が合わせられるので、SMAワイヤ10に対して通電したり通電を停止したりしてからSMAワイヤ10が所望の形状に伸縮変形するまでの時間(変形収束時間)が環境温度の影響で長くなることがない。 According to the drive module 1 described above, the drive mode is selected according to the environmental temperature, the energization to the SMA wire 10 is controlled according to the drive mode, the SMA wire 10 expands and contracts, and the lens frame 4 moves to the in-focus position. Therefore, the time (deformation convergence time) from when the SMA wire 10 is energized or de-energized until the SMA wire 10 expands or contracts to a desired shape is affected by the environmental temperature. It will not be long.
 すなわち、環境温度が閾値温度よりも低い場合には、SMAワイヤ10の温度を荒く低下(急低下)させる第一駆動モードでSMAワイヤ10に対する通電が制御される。このとき、環境温度が低くてSMAワイヤ10の温度が低下しやすいので、SMAワイヤ10に対する通電を停止してから短時間でSMAワイヤ10が所望の形状に伸長変形する。また、環境温度が閾値温度よりも高い場合には、SMAワイヤ10の温度を荒く上昇(急上昇)させる第二駆動モードでSMAワイヤ10に対する通電が制御される。このとき、環境温度が高くてSMAワイヤ10の温度が上昇しやすいので、SMAワイヤ10に通電してから短時間でSMAワイヤ10が所望の形状に収縮変形する。 That is, when the environmental temperature is lower than the threshold temperature, energization to the SMA wire 10 is controlled in the first drive mode in which the temperature of the SMA wire 10 is roughly lowered (rapidly lowered). At this time, since the environmental temperature is low and the temperature of the SMA wire 10 is likely to decrease, the SMA wire 10 expands and deforms into a desired shape in a short time after the energization of the SMA wire 10 is stopped. In addition, when the environmental temperature is higher than the threshold temperature, energization of the SMA wire 10 is controlled in the second drive mode in which the temperature of the SMA wire 10 is roughly increased (rapidly increased). At this time, since the environmental temperature is high and the temperature of the SMA wire 10 is likely to rise, the SMA wire 10 contracts and deforms into a desired shape in a short time after the SMA wire 10 is energized.
 上述したように、環境温度に応じて時間的に効率の良いモードでSMAワイヤ10が制御され、レンズ枠4が合焦位置まで短時間で移動して焦点が直ちに合わせられるので、環境温度によってオートフォーカスの作動時間が長くなるのを防止することができる。 As described above, the SMA wire 10 is controlled in a time efficient mode according to the environmental temperature, and the lens frame 4 moves to the in-focus position in a short time and is immediately focused. It is possible to prevent the focus operation time from becoming long.
 また、上述した駆動モジュール1によれば、SMAワイヤ10の昇温時における環境温度とSMAワイヤ10の変形収束時間との関数のグラフG1と、SMAワイヤ10の降温時における環境温度とSMAワイヤ10の変形収束時間との関数のグラフG2と、の交点における環境温度TXを閾値温度としているので、時間的に効率の良い駆動モードが確実
に選択され、レンズ枠4が合焦位置まで移動する時間が長くなることが確実に防止される。これにより、環境温度によってオートフォーカスの作動時間が長くなるのをより確実に防止することができる。
Further, according to the drive module 1 described above, a graph G1 of a function of the environmental temperature when the SMA wire 10 is raised and the deformation convergence time of the SMA wire 10, and the environmental temperature and the SMA wire 10 when the SMA wire 10 is lowered. Since the environmental temperature T X at the intersection point with the graph G2 of the function with the deformation convergence time is set as the threshold temperature, the time-efficient driving mode is surely selected, and the lens frame 4 moves to the in-focus position. A long time is reliably prevented. As a result, it is possible to more reliably prevent the autofocus operation time from becoming longer due to the environmental temperature.
 次に、本発明の実施形態に係る電子機器について説明する。 Next, an electronic device according to an embodiment of the present invention will be described.
 図11(a)、(b)は、本発明の実施形態に係る電子機器の表面、裏面の斜視外観図である。図11(c)は、図11(b)におけるF-F断面図である。 FIGS. 11A and 11B are perspective external views of the front surface and the back surface of the electronic apparatus according to the embodiment of the present invention. FIG.11 (c) is FF sectional drawing in FIG.11 (b).
 図11(a)、(b)に示す本実施形態のカメラ付き携帯電話20は、上記実施形態の駆動モジュール1を備えた電子機器の一例である。 A camera-equipped mobile phone 20 according to the present embodiment shown in FIGS. 11A and 11B is an example of an electronic apparatus including the drive module 1 according to the above-described embodiment.
 カメラ付き携帯電話20は、受話部22a、送話部22b、操作部22c、液晶表示部22d、アンテナ部22e、不図示の制御回路部などの周知の携帯電話の装置構成をカバー22内外に備えている。 The camera-equipped mobile phone 20 includes a known mobile phone device configuration inside and outside the cover 22 such as a reception unit 22a, a transmission unit 22b, an operation unit 22c, a liquid crystal display unit 22d, an antenna unit 22e, and a control circuit unit (not shown). ing.
 また、図11(b)に示すように、液晶表示部22dが設けられた側の裏面側のカバー22に、外光を透過させる窓22Aが設けられ、図11(c)に示すように、駆動モジュール1の開口11Aがカバー22の窓22Aを臨み、窓22Aの法線方向に軸線Mが沿うように、上記第一実施形態の駆動モジュール1が設置されている。 Further, as shown in FIG. 11 (b), a window 22A through which external light is transmitted is provided in the cover 22 on the back surface side on which the liquid crystal display unit 22d is provided, and as shown in FIG. 11 (c), The drive module 1 of the first embodiment is installed so that the opening 11A of the drive module 1 faces the window 22A of the cover 22 and the axis M is along the normal direction of the window 22A.
 このような構成によれば、SMAワイヤ10の変形収束時間が環境温度の影響で長くなることがなく、レンズ枠4が合焦位置まで短時間で移動して焦点が直ちに合わせられるので、オートフォーカス動作の応答性が高い高性能のカメラ付き携帯電話20を提供することができる。 According to such a configuration, the deformation convergence time of the SMA wire 10 does not become long due to the influence of the environmental temperature, and the lens frame 4 moves to the in-focus position in a short time and is immediately focused. It is possible to provide a high-performance camera-equipped mobile phone 20 with high responsiveness of operation.
 以上、本発明に係る駆動モジュール、電子機器及び駆動モジュールの制御方法の実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 The embodiments of the drive module, the electronic device, and the drive module control method according to the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and may be appropriately selected without departing from the scope of the present invention. It can be changed.
 例えば、本実施形態では、レンズ枠4を付勢するための板ばね部材である上板ばね6、下板ばね7に上側固定ピン13A、14A、下側固定ピン13B、14Bを挿通させて、これら固定ピンの先端部を熱カシメする場合の例で説明したが、ばね部材の固定方法は、これに限定されない。例えば、超音波加締めなどで固定してもよいし、ばね部材を、レンズ枠4やモジュール枠5に接着してもよい。本構造によれば、大きな接着面積が確保できるので接着剤を用いても大きな強度が得られる。さらに、本発明におけるばね部材は板ばねに限定されず、他の形状のばね部材であってもよい。 For example, in the present embodiment, the upper fixing pins 13A and 14A and the lower fixing pins 13B and 14B are inserted through the upper plate spring 6 and the lower plate spring 7 that are plate spring members for urging the lens frame 4, Although the example in the case of carrying out the heat crimping of the front-end | tip part of these fixing pins was demonstrated, the fixing method of a spring member is not limited to this. For example, it may be fixed by ultrasonic caulking or the like, or a spring member may be bonded to the lens frame 4 or the module frame 5. According to this structure, a large bonding area can be secured, so that a large strength can be obtained even if an adhesive is used. Furthermore, the spring member in the present invention is not limited to a leaf spring, and may be a spring member having another shape.
 また、上記の説明では、モジュール枠5は、全体として略矩形状の部材として説明したが、略矩形状には限定されず、多角形状であってもよい。 In the above description, the module frame 5 has been described as a substantially rectangular member as a whole, but is not limited to a substantially rectangular shape, and may be a polygonal shape.
 また、上記した説明では、形状記憶合金体としてSMAワイヤ10が備えられているが、本発明における形状記憶合金体はワイヤ状のものに限定されず、例えば板状などの他の形状の形状記憶合金体であってもよい。 In the above description, the SMA wire 10 is provided as a shape memory alloy body. However, the shape memory alloy body in the present invention is not limited to a wire shape, and for example, a shape memory of another shape such as a plate shape. An alloy body may be sufficient.
 また、上記の説明では、駆動モジュールを用いた電子機器として、カメラ付き携帯電話の例で説明したが、電子機器の種類はこれに限定されない。例えば、デジタルカメラ、パソコン内蔵のカメラなどの他の光学機器に用いることができる。
その他、本発明の主旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した変形例を適宜組み合わせてもよい。
In the above description, the example of the camera-equipped mobile phone is described as the electronic device using the drive module, but the type of the electronic device is not limited to this. For example, it can be used for other optical devices such as a digital camera and a camera built in a personal computer.
In addition, in the range which does not deviate from the main point of this invention, it is possible to replace suitably the component in above-mentioned embodiment with a well-known component, and you may combine the above-mentioned modification suitably.
1…駆動モジュール 4…レンズ枠 5…モジュール枠(支持体) 6…上板ばね(ばね部材) 7…下板ばね(ばね部材) 10…SMAワイヤ(形状記憶合金体、駆動手段)
 20…カメラ付携帯電話(電子機器) 32…制御基板(制御手段) 50…レンズ
DESCRIPTION OF SYMBOLS 1 ... Drive module 4 ... Lens frame 5 ... Module frame (support body) 6 ... Upper leaf | plate spring (spring member) 7 ... Lower leaf | plate spring (spring member) 10 ... SMA wire (shape memory alloy body, drive means)
20 ... Mobile phone with camera (electronic equipment) 32 ... Control board (control means) 50 ... Lens

Claims (6)

  1. 支持体と、
     該支持体に対して一定方向に沿って往復移動可能に設けられていると共にレンズを保持するレンズ枠と、
     該レンズ枠を弾性保持するばね部材と、
     通電による発熱によって変形可能な形状記憶合金体を有し、該形状記憶合金体に通電して該形状記憶合金体を変形させることで前記レンズ枠を前記ばね部材の復元力に抗して駆動する駆動手段と、
     前記形状記憶合金体に対する通電を制御することで前記駆動手段を制御する制御手段と、
     を備える駆動モジュールであって、
     該駆動モジュールの駆動モードとして、
     前記形状記憶合金体に対して通電して該形状記憶合金体の温度を漸次上昇させることで前記レンズ枠を全移動範囲に亘って移動させて焦点を探査し、その後、前記形状記憶合金体の温度を低下させて合焦位置まで前記レンズ枠を移動させる第一駆動モードと、
     前記形状記憶合金体に対して通電して該形状記憶合金体の温度を漸次低下させることで前記レンズ枠を全移動範囲に亘って移動させて焦点を探査し、その後、前記形状記憶合金体の温度を上昇させて合焦位置まで前記レンズ枠を移動させる第二駆動モードと、
     を有しており、
    前記制御手段が、環境温度を検出し、検出された環境温度が閾値温度よりも低い場合に前記第一駆動モードを選択して環境温度が閾値温度よりも高い場合に前記第二駆動モードを選択し、選択された駆動モードに従い前記形状記憶合金体に対する通電を制御して前記駆動手段を駆動させることを特徴とする駆動モジュール。
    A support;
    A lens frame that is reciprocally movable along a fixed direction with respect to the support and holds a lens;
    A spring member for elastically holding the lens frame;
    It has a shape memory alloy body that can be deformed by heat generation by energization, and the lens frame is driven against the restoring force of the spring member by energizing the shape memory alloy body to deform the shape memory alloy body. Driving means;
    Control means for controlling the drive means by controlling energization to the shape memory alloy body;
    A drive module comprising:
    As a drive mode of the drive module,
    By energizing the shape memory alloy body to gradually increase the temperature of the shape memory alloy body, the lens frame is moved over the entire movement range to investigate the focal point, and then the shape memory alloy body A first drive mode for lowering the temperature and moving the lens frame to the in-focus position;
    By energizing the shape memory alloy body and gradually lowering the temperature of the shape memory alloy body, the lens frame is moved over the entire movement range to investigate the focal point, and then the shape memory alloy body A second drive mode in which the lens frame is moved to the in-focus position by raising the temperature;
    Have
    The control means detects the environmental temperature, selects the first driving mode when the detected environmental temperature is lower than the threshold temperature, and selects the second driving mode when the environmental temperature is higher than the threshold temperature And driving the drive means by controlling energization to the shape memory alloy body in accordance with the selected drive mode.
  2. 支持体と、
     該支持体に対して一定方向に沿って往復移動可能に設けられていると共にレンズを保持するレンズ枠と、
     該レンズ枠を弾性保持するばね部材と、
     通電による発熱によって変形可能な形状記憶合金体を有し、該形状記憶合金体に通電して該形状記憶合金体を変形させることで前記レンズ枠を前記ばね部材の復元力に抗して駆動する駆動手段と、
     前記形状記憶合金体に対する通電を制御することで前記駆動手段を制御する制御手段と、
     を備える駆動モジュールであって、
     該駆動モジュールの駆動モードとして、
     前記形状記憶合金体に対して通電して該形状記憶合金体の温度を低下させることで前記レンズ枠を移動させて焦点を探査し、該焦点が検出された後、山登り法によって前記形状記憶合金体の温度を上下させながら前記レンズ枠の位置を微調整して該レンズ枠を合焦位置まで移動させる第一駆動モードと、
     前記形状記憶合金体に対して通電して該形状記憶合金体の温度を上昇させることで前記レンズ枠を移動させて焦点を探査し、該焦点が検出された後、山登り法によって前記形状記憶合金体の温度を上下させながら前記レンズ枠の位置を微調整して該レンズ枠を合焦位置まで移動させる第二駆動モードと、
     を有しており、
     前記制御手段が、環境温度を検出し、検出された環境温度が閾値温度よりも低い場合に前記第一駆動モードを選択して環境温度が閾値温度よりも高い場合に前記第二駆動モードを選択し、選択された駆動モードに従い前記形状記憶合金体に対する通電を制御して前記駆動手段を駆動させることを特徴とする駆動モジュール。
    A support;
    A lens frame that is reciprocally movable along a fixed direction with respect to the support and holds a lens;
    A spring member for elastically holding the lens frame;
    It has a shape memory alloy body that can be deformed by heat generation by energization, and the lens frame is driven against the restoring force of the spring member by energizing the shape memory alloy body to deform the shape memory alloy body. Driving means;
    Control means for controlling the drive means by controlling energization to the shape memory alloy body;
    A drive module comprising:
    As a drive mode of the drive module,
    The shape memory alloy body is energized to decrease the temperature of the shape memory alloy body to move the lens frame to search for a focal point, and after the focal point is detected, the shape memory alloy is obtained by a hill climbing method. A first drive mode for finely adjusting the position of the lens frame while moving the body temperature up and down and moving the lens frame to the in-focus position;
    The shape memory alloy body is energized to increase the temperature of the shape memory alloy body to move the lens frame to search for a focal point, and after the focal point is detected, the shape memory alloy is obtained by a hill climbing method. A second drive mode for finely adjusting the position of the lens frame while moving the body temperature up and down and moving the lens frame to the in-focus position;
    Have
    The control means detects the environmental temperature, selects the first driving mode when the detected environmental temperature is lower than the threshold temperature, and selects the second driving mode when the environmental temperature is higher than the threshold temperature And driving the drive means by controlling energization to the shape memory alloy body in accordance with the selected drive mode.
  3. 請求項1または2に記載の駆動モジュールにおいて、
     前記制御手段が、
     前記形状記憶合金体の昇温時における環境温度と該形状記憶合金体の変形収束時間との関数のグラフと、前記形状記憶合金体の降温時における環境温度と該形状記憶合金体の変形収束時間との関数のグラフと、の交点における環境温度を前記閾値温度とすることを特徴とする駆動モジュール。
    The drive module according to claim 1 or 2,
    The control means is
    The graph of the function of the environmental temperature at the time of temperature rise of the shape memory alloy body and the deformation convergence time of the shape memory alloy body, the environment temperature at the time of temperature fall of the shape memory alloy body and the deformation convergence time of the shape memory alloy body A drive module characterized in that the environmental temperature at the intersection of the graph with the function is the threshold temperature.
  4. 請求項1から3の何れか一項に記載の駆動モジュールを備えたことを特徴とする電子機器。 An electronic apparatus comprising the drive module according to any one of claims 1 to 3.
  5. 支持体と、
     該支持体に対して一定方向に沿って往復移動可能に設けられていると共にレンズを保持するレンズ枠と、
     該レンズ枠を弾性保持するばね部材と、
     通電による発熱によって変形可能な形状記憶合金体を有し、該形状記憶合金体に通電して該形状記憶合金体を変形させることで前記レンズ枠を前記ばね部材の復元力に抗して駆動する駆動手段と、
     前記形状記憶合金体に対する通電を制御することで前記駆動手段を制御して前記レンズ枠を合焦位置まで移動させる制御手段と、
     を備える駆動モジュールの制御方法であって、
     該駆動モジュールの駆動モードとして、
     前記形状記憶合金体に対して通電して該形状記憶合金体の温度を漸次上昇させることで前記レンズ枠を全移動範囲に亘って移動させて焦点を探査し、その後、前記形状記憶合金体の温度を低下させて合焦位置まで前記レンズ枠を移動させる第一駆動モードと、
     前記形状記憶合金体に対して通電して該形状記憶合金体の温度を漸次低下させることで前記レンズ枠を全移動範囲に亘って移動させて焦点を探査し、その後、前記形状記憶合金体の温度を上昇させて合焦位置まで前記レンズ枠を移動させる第二駆動モードと、
     を有しており、
     環境温度を検出する温度検出ステップと、
    該温度検出ステップで検出された環境温度が閾値温度よりも低い場合に前記第一駆動モードを選択して環境温度が閾値温度よりも高い場合に前記第二駆動モードを選択するモード選択ステップと、
    該モード選択ステップで選択された駆動モードに従い前記形状記憶合金体に対する通電を制御して前記駆動手段を駆動させる駆動ステップと、
    を備えることを特徴とする駆動モジュールの制御方法。
    A support;
    A lens frame that is reciprocally movable along a fixed direction with respect to the support and holds a lens;
    A spring member for elastically holding the lens frame;
    It has a shape memory alloy body that can be deformed by heat generation by energization, and the lens frame is driven against the restoring force of the spring member by energizing the shape memory alloy body to deform the shape memory alloy body. Driving means;
    Control means for controlling the drive means by controlling energization to the shape memory alloy body to move the lens frame to a focus position;
    A drive module control method comprising:
    As a drive mode of the drive module,
    By energizing the shape memory alloy body to gradually increase the temperature of the shape memory alloy body, the lens frame is moved over the entire movement range to investigate the focal point, and then the shape memory alloy body A first drive mode for lowering the temperature and moving the lens frame to the in-focus position;
    By energizing the shape memory alloy body and gradually lowering the temperature of the shape memory alloy body, the lens frame is moved over the entire movement range to investigate the focal point, and then the shape memory alloy body A second drive mode in which the lens frame is moved to the in-focus position by raising the temperature;
    Have
    A temperature detection step for detecting the environmental temperature;
    A mode selection step of selecting the first drive mode when the environmental temperature detected in the temperature detection step is lower than a threshold temperature and selecting the second drive mode when the environmental temperature is higher than the threshold temperature;
    A driving step of driving the driving means by controlling energization to the shape memory alloy body according to the driving mode selected in the mode selection step;
    A drive module control method comprising:
  6. 支持体と、
     該支持体に対して一定方向に沿って往復移動可能に設けられていると共にレンズを保持するレンズ枠と、
     該レンズ枠を弾性保持するばね部材と、
     通電による発熱によって変形可能な形状記憶合金体を有し、該形状記憶合金体に通電して該形状記憶合金体を変形させることで前記レンズ枠を前記ばね部材の復元力に抗して駆動する駆動手段と、
     前記形状記憶合金体に対する通電を制御することで前記駆動手段を制御して前記レンズ枠を合焦位置まで移動させる制御手段と、
     を備える駆動モジュールの制御方法であって、
     該駆動モジュールの駆動モードとして、
     前記形状記憶合金体に対して通電して該形状記憶合金体の温度を低下させることで前記レンズ枠を移動させて焦点を探査し、該焦点が検出された後、山登り法によって前記形状記憶合金体の温度を上下させながら前記レンズ枠の位置を微調整して該レンズ枠を合焦位置まで移動させる第一駆動モードと、
     前記形状記憶合金体に対して通電して該形状記憶合金体の温度を上昇させることで前記レンズ枠を移動させて焦点を探査し、該焦点が検出された後、山登り法によって前記形状記憶合金体の温度を上下させながら前記レンズ枠の位置を微調整して該レンズ枠を合焦位置まで移動させる第二駆動モードと、
     を有しており、
     環境温度を検出する温度検出ステップと、
    該温度検出ステップで検出された環境温度が閾値温度よりも低い場合に前記第一駆動モードを選択して環境温度が閾値温度よりも高い場合に前記第二駆動モードを選択するモード選択ステップと、
    該モード選択ステップで選択された駆動モードに従い前記形状記憶合金体に対する通電を制御して前記駆動手段を駆動させる駆動ステップと、
    を備えることを特徴とする駆動モジュールの制御方法。
    A support;
    A lens frame that is reciprocally movable along a fixed direction with respect to the support and holds a lens;
    A spring member for elastically holding the lens frame;
    It has a shape memory alloy body that can be deformed by heat generation by energization, and the lens frame is driven against the restoring force of the spring member by energizing the shape memory alloy body to deform the shape memory alloy body. Driving means;
    Control means for controlling the drive means by controlling energization to the shape memory alloy body to move the lens frame to a focus position;
    A drive module control method comprising:
    As a drive mode of the drive module,
    The shape memory alloy body is energized to decrease the temperature of the shape memory alloy body to move the lens frame to search for a focal point, and after the focal point is detected, the shape memory alloy is obtained by a hill climbing method. A first drive mode for finely adjusting the position of the lens frame while moving the body temperature up and down and moving the lens frame to the in-focus position;
    The shape memory alloy body is energized to increase the temperature of the shape memory alloy body to move the lens frame to search for a focal point, and after the focal point is detected, the shape memory alloy is obtained by a hill climbing method. A second drive mode for finely adjusting the position of the lens frame while moving the body temperature up and down and moving the lens frame to the in-focus position;
    Have
    A temperature detection step for detecting the environmental temperature;
    A mode selection step of selecting the first drive mode when the environmental temperature detected in the temperature detection step is lower than a threshold temperature and selecting the second drive mode when the environmental temperature is higher than the threshold temperature;
    A driving step of driving the driving means by controlling energization to the shape memory alloy body according to the driving mode selected in the mode selection step;
    A drive module control method comprising:
PCT/JP2011/057165 2010-03-29 2011-03-24 Drive module, electronic device, and drive module control method WO2011122438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010076359A JP2011209468A (en) 2010-03-29 2010-03-29 Drive module, electronic device and drive module control method
JP2010-076359 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011122438A1 true WO2011122438A1 (en) 2011-10-06

Family

ID=44712147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057165 WO2011122438A1 (en) 2010-03-29 2011-03-24 Drive module, electronic device, and drive module control method

Country Status (2)

Country Link
JP (1) JP2011209468A (en)
WO (1) WO2011122438A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20122099A1 (en) * 2012-12-10 2014-06-11 Getters Spa AUTO-FOCUS DEVICE WITH SHAPE MEMORY ACTUATOR
WO2016075606A1 (en) 2014-11-12 2016-05-19 Actuator Solutions GmbH Camera module autofocus actuator and control method thereof
CN107272138A (en) * 2016-04-01 2017-10-20 台湾东电化股份有限公司 Lens driving mechanism and control method thereof
CN108303779A (en) * 2018-04-13 2018-07-20 湖南新视电子技术有限公司 A kind of camera lens holder assembly suitable for webcam driver motor
WO2018203173A1 (en) 2017-05-04 2018-11-08 Actuator Solutions GmbH Camera module autofocus actuator
IT201700074728A1 (en) * 2017-07-04 2019-01-04 Actuator Solutions GmbH Camera module auto-focus actuator
WO2019109929A1 (en) * 2017-12-08 2019-06-13 宁波舜宇光电信息有限公司 Optical assembly, image pickup module, and intelligent device provided with image pickup module
CN109901347A (en) * 2017-12-08 2019-06-18 宁波舜宇光电信息有限公司 Optical module, camera module and the smart machine with camera module
CN112782824A (en) * 2020-04-07 2021-05-11 北京可利尔福科技有限公司 Lens module control system and control method thereof
WO2022227811A1 (en) * 2021-04-29 2022-11-03 荣耀终端有限公司 Driving apparatus, photographing module, and electronic device
US11598975B2 (en) 2016-04-01 2023-03-07 Tdk Taiwan Corp. Lens driving mechanism and method for controlling the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099156A2 (en) * 2007-02-12 2008-08-21 Cambridge Mechatronics Limited Shape memory alloy actuation apparatus
JP2008280879A (en) * 2007-05-09 2008-11-20 Konica Minolta Opto Inc Drive unit and movable module
JP2009531729A (en) * 2006-03-30 2009-09-03 1...リミテッド Camera lens drive device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531729A (en) * 2006-03-30 2009-09-03 1...リミテッド Camera lens drive device
WO2008099156A2 (en) * 2007-02-12 2008-08-21 Cambridge Mechatronics Limited Shape memory alloy actuation apparatus
JP2008280879A (en) * 2007-05-09 2008-11-20 Konica Minolta Opto Inc Drive unit and movable module

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091399A2 (en) 2012-12-10 2014-06-19 Actuator Solutions GmbH Auto-focus device with shape memory actuator
WO2014091399A3 (en) * 2012-12-10 2014-10-30 Actuator Solutions GmbH Auto-focus device with shape memory actuator
ITMI20122099A1 (en) * 2012-12-10 2014-06-11 Getters Spa AUTO-FOCUS DEVICE WITH SHAPE MEMORY ACTUATOR
US10114272B2 (en) 2014-11-12 2018-10-30 Actuator Solutions GmbH Camera module autofocus actuator and control method thereof
WO2016075606A1 (en) 2014-11-12 2016-05-19 Actuator Solutions GmbH Camera module autofocus actuator and control method thereof
CN111913267A (en) * 2016-04-01 2020-11-10 台湾东电化股份有限公司 Lens driving mechanism
CN107272138A (en) * 2016-04-01 2017-10-20 台湾东电化股份有限公司 Lens driving mechanism and control method thereof
US11598975B2 (en) 2016-04-01 2023-03-07 Tdk Taiwan Corp. Lens driving mechanism and method for controlling the same
WO2018203173A1 (en) 2017-05-04 2018-11-08 Actuator Solutions GmbH Camera module autofocus actuator
WO2019008522A1 (en) 2017-07-04 2019-01-10 Actuator Solutions GmbH Camera module autofocus actuator
US10901173B2 (en) 2017-07-04 2021-01-26 Actuator Solutions GmbH Camera module autofocus actuator
IT201700074728A1 (en) * 2017-07-04 2019-01-04 Actuator Solutions GmbH Camera module auto-focus actuator
WO2019109929A1 (en) * 2017-12-08 2019-06-13 宁波舜宇光电信息有限公司 Optical assembly, image pickup module, and intelligent device provided with image pickup module
CN109901347A (en) * 2017-12-08 2019-06-18 宁波舜宇光电信息有限公司 Optical module, camera module and the smart machine with camera module
CN109901347B (en) * 2017-12-08 2020-12-11 宁波舜宇光电信息有限公司 Optical assembly, camera module and intelligent equipment with camera module
CN108303779A (en) * 2018-04-13 2018-07-20 湖南新视电子技术有限公司 A kind of camera lens holder assembly suitable for webcam driver motor
CN112782824A (en) * 2020-04-07 2021-05-11 北京可利尔福科技有限公司 Lens module control system and control method thereof
CN112782824B (en) * 2020-04-07 2023-10-03 北京可利尔福科技有限公司 Lens module control system and control method thereof
WO2022227811A1 (en) * 2021-04-29 2022-11-03 荣耀终端有限公司 Driving apparatus, photographing module, and electronic device

Also Published As

Publication number Publication date
JP2011209468A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
WO2011122438A1 (en) Drive module, electronic device, and drive module control method
JP5181208B2 (en) Drive module and electronic device
WO2009096207A1 (en) Drive module, and electronic device having the same
US20110235194A1 (en) Drive module and electronic device
EP2572240B1 (en) Camera module having mems actuator
JP5107682B2 (en) Drive module and electronic device including the same
WO2010073906A1 (en) Drive module and electronic device
WO2010004993A1 (en) Drive module, method of assembling the same, and electronic apparatus
US20110030368A1 (en) Driving module and electronic apparatus provided with the same
JP2012047907A (en) Drive module, electronic apparatus, and control method of drive module
JP2011107413A (en) Actuator, drive module, and electronic equipment
JP2012047908A (en) Drive module and electronic equipment
JP2011127585A (en) Actuator manufacturing method, actuator, drive module manufacturing method, drive module, and electronic apparatus
JP2009134292A (en) Drive module and electronic device equipped with the same
JP2012137544A (en) Drive module and electronic apparatus
JP2012137668A (en) Drive module, electronics and control method of drive module
JP2009134291A (en) Drive module and electronic device equipped with the same
JP2013178457A (en) Drive module and electronic apparatus
JP2009239993A (en) Drive module and electronic apparatus with the same
JP4995752B2 (en) Drive module and electronic device including the same
JP2010020177A (en) Drive module and electronic device having the same
WO2009060937A9 (en) Drive module and electronic device using the same
JP2010262065A (en) Drive module and electronic equipment
JP2011106342A (en) Actuator, driving module, method of manufacturing actuator, method of manufacturing driving module, and electronic equipment
JP2013019952A (en) Drive module and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762669

Country of ref document: EP

Kind code of ref document: A1