WO2011121922A1 - Glass plate provided with transparent conductive film and method for manufacturing the glass plate - Google Patents

Glass plate provided with transparent conductive film and method for manufacturing the glass plate Download PDF

Info

Publication number
WO2011121922A1
WO2011121922A1 PCT/JP2011/001575 JP2011001575W WO2011121922A1 WO 2011121922 A1 WO2011121922 A1 WO 2011121922A1 JP 2011001575 W JP2011001575 W JP 2011001575W WO 2011121922 A1 WO2011121922 A1 WO 2011121922A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive layer
glass plate
conductive film
film
Prior art date
Application number
PCT/JP2011/001575
Other languages
French (fr)
Japanese (ja)
Inventor
田中智
瀬戸康徳
大谷強
平田昌宏
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2011121922A1 publication Critical patent/WO2011121922A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching

Definitions

  • the present invention relates to a glass plate with a transparent conductive film used for a photoelectric conversion element and the like and a method for producing the same.
  • Thin-film solar cell generally on a transparent substrate such as a glass plate, tin oxide (SnO 2) transparent conductive film (surface electrode) made of, of amorphous semiconductor such as amorphous silicon or amorphous silicon germanium A photoelectric conversion layer and a conductive film (back electrode) are sequentially stacked.
  • a transparent substrate such as a glass plate
  • tin oxide (SnO 2) transparent conductive film surface electrode
  • amorphous semiconductor such as amorphous silicon or amorphous silicon germanium
  • a photoelectric conversion layer and a conductive film (back electrode) are sequentially stacked.
  • Patent Document 1 discloses a thin film solar cell in which a first underlayer having holes on a glass plate, a second underlayer, and a transparent conductive film are formed in this order. The second underlayer is depressed in the holes in the first underlayer, and the portion of the second underlayer that is depressed in the holes acts as a growth nucleus for efficiently forming the transparent conductive film.
  • Patent Document 2 discloses a thin film solar cell in which irregularities are formed on the surface by etching the surface of a transparent conductive film formed of zinc oxide using hydrochloric acid.
  • Patent Document 3 discloses a thin-film solar cell in which fine irregularities are provided on the irregularities on the surface of a transparent conductive film.
  • the unevenness on the surface contributes to the light confinement of sunlight in the wavelength range of 600 nm to 800 nm, and the minute unevenness contributes to the light confinement of sunlight from 400 nm to 600 nm. Thereby, the photoelectric conversion efficiency with respect to the wide wavelength range of sunlight is improved.
  • the light confinement effect is acquired by disperse
  • Patent Document 4 When the technique disclosed in Patent Document 4 is used, the surface roughness of the surface of the transparent conductive film can be kept low even if the haze ratio is increased.
  • the technique of Patent Document 4 requires inorganic scattering fine particles (for example, alumina fine particles) separately from the binder matrix (for example, silica).
  • the binder matrix for example, silica.
  • the present invention improves the transparent conductive film itself, and even if the haze ratio of the transparent conductive film is increased, the glass plate with a transparent conductive film that can suppress the surface roughness of the surface can be suppressed.
  • the purpose is to provide.
  • the present invention comprises a glass plate and a transparent conductive film formed on the glass plate, the transparent conductive film having a transparent conductive layer A and a transparent conductive layer B, and the transparent conductive layer B is
  • the transparent conductive layer A is formed on the transparent conductive layer A
  • the transparent conductive film includes a plurality of holes, and each of the plurality of holes fills the concave portion on the surface of the transparent conductive layer A with the transparent conductive layer B
  • a glass plate with a transparent conductive film is provided.
  • this invention is a manufacturing method of the glass plate with a transparent conductive film provided with the glass plate and the transparent conductive film containing the several void
  • the metal is formed on the transparent conductive layer A so as to close the plurality of recesses by supplying a film-forming gas containing an oxidizable component capable of generating oxidant and an oxidant capable of oxidizing the oxidizable component.
  • this invention is a manufacturing method of the glass plate with a transparent conductive film provided with the glass plate and the transparent conductive film containing the several void
  • supplying a mixed gas containing an oxidant capable of oxidizing the component a plurality of regions on the surface of the transparent conductive layer a are caused to recede in the film thickness direction by the etching component, and a plurality of regions are removed from the transparent conductive layer a.
  • the transparent conductive layer A having recesses is formed, and the transparent holes are formed by forming the transparent conductive layer B containing the metal oxide on the transparent conductive layer A so as to close the plurality of recesses.
  • the present invention it is possible to achieve a high haze ratio required for a thin film solar cell substrate while suppressing an increase in surface roughness of the surface of the transparent conductive film.
  • FIG. 1A is a schematic cross-sectional view of an example of a glass plate with a transparent conductive film of the present invention.
  • a glass plate 10 with a transparent conductive film includes a glass plate 11, a base film 12 formed on the surface of the glass plate 11, and a transparent conductive film formed on the surface of the base film 12. 15.
  • the base film 12 includes a first base layer 12a and a second base layer 12b in this order from the glass plate 11 side.
  • the transparent conductive film 15 includes a first transparent conductive layer (transparent conductive layer A) 13 and a second transparent conductive layer (transparent conductive layer B) 14 in order from the glass plate 11 side.
  • the glass plate 10 with a transparent conductive film is preferably provided with a base film 12, and the transparent conductive film 15 is preferably formed on the glass plate 11 through the base film 12. Thereby, the alkali component of the glass plate 11 can be prevented from entering the transparent conductive film 15.
  • the base film 12 may be composed of one layer, and in that case, it is preferable that silicon oxide, silicon oxycarbide, silicon nitride, aluminum oxide, silicon oxynitride, or tin-doped silicon oxide be a main component.
  • the base film 12 may be composed of two layers, a first base layer 12a and a second base layer 12b.
  • the first underlayer 12a is preferably composed mainly of silicon oxide, titanium oxide, zinc oxide, or silicon oxycarbide, and particularly preferably composed mainly of tin oxide.
  • the second underlayer 12b is preferably composed mainly of silicon oxide or aluminum oxide, and particularly preferably composed mainly of silicon oxide.
  • the “main component” refers to a component having a composition component content of 50% by mass or more according to common usage. Furthermore, if the film thickness and refractive index of these foundation layers 12a and 12b are appropriately adjusted, the reflectance and reflection interference color of the glass plate 10 with a transparent conductive film can be reduced.
  • the film thickness of the first underlayer 12a is preferably 10 to 100 nm, particularly 20 to 70 nm.
  • the refractive index of the first base layer 12a is preferably 1.8 to 2.4.
  • the thickness of the second underlayer 12b is preferably 5 to 80 nm, particularly 10 to 40 nm.
  • the refractive index of the second underlayer 12b is preferably 1.4 to 1.7.
  • the transparent conductive film 15 is composed of at least two transparent conductive layers 13 and 14.
  • the transparent conductive layer A13 preferably contains zinc oxide as a main component.
  • the material constituting the transparent conductive layer A13 is not particularly limited as long as it is conductive and can be etched by an etching component described later.
  • the etching component may be selected as appropriate depending on the material to be etched, but hydrogen chloride, silicon chloride, or the like may be used.
  • As an etching component of zinc oxide hydrogen chloride is suitable.
  • the thickness of the transparent conductive layer A13 is preferably from 180 nm to 600 nm, more preferably from 200 nm to 600 nm, particularly preferably from 300 nm to 500 nm. If the transparent conductive layer A13 is too thin, the size of the pores 13a and 13b in the film thickness direction is the wavelength of sunlight that should cause scattering as described later (depending on the photoelectric conversion layer used, for example, a wavelength of about 800 nm) In comparison, it becomes too small. On the other hand, if the thickness of the transparent conductive layer A13 is excessively thick, there is a possibility that the visible light transmittance is reduced, or the stress in the film is increased to deteriorate the durability.
  • Holes 13 a and 13 b are formed in the transparent conductive layer A 13, and the holes 13 a and 13 b scatter light that enters from below in FIG. 1 and reaches the photoelectric conversion layer formed above the transparent conductive film 15. Contribute to.
  • the holes 13a and 13b are formed by the transparent conductive layer B14 closing the recess 13h, which is generated when a part of the surface 13s of the transparent conductive layer A13 recedes in the film thickness direction (specifically, downward in the drawing) from above. Is formed.
  • the surface 13s of the transparent conductive layer A13 may recede over the entire thickness range (hole 13a) or may recede to a partial thickness range (hole 13b).
  • the hole has a height equal to the film thickness of the transparent conductive film A13.
  • FIG. 1B is an enlarged view of the region 13c in the transparent conductive film 15 of FIG.
  • the hole 13a has a needle-like body 13d extending from the surrounding wall surface toward the inside of the hole 13a.
  • the needle-like body 13d is typically formed so as to hang down from the bottom surface of the transparent conductive layer B14.
  • the needle-like body 13d is assumed to have grown by the deposition of the material constituting the transparent conductive layer B14. However, depending on the film forming conditions of the transparent conductive film 15, the needle-like body 13d may not be formed. In some cases, the needle-like body grows not from above the hole 13a but from the side surface of the hole 13a. Needle-like bodies may be formed not only in the holes 13a but also in the holes 13b.
  • the size of the holes 13a and 13b when the transparent conductive film 15 is observed along the film thickness direction is calculated by converting the average area into a circle (the diameter ( (Hereinafter referred to as “diameter A”), preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 1.0 ⁇ m to 5.0 ⁇ m. This diameter can be measured by a method using EPMA described later.
  • the size of the holes 13a and 13b appearing in the cross section obtained by cutting the transparent conductive film 15 along the film thickness direction is expressed by a diameter (hereinafter referred to as “diameter B”) calculated by converting the average area into a circle. It is preferably 0.1 ⁇ m or more and 0.6 ⁇ m or less. This diameter can be measured by cross-sectional observation with an SEM. Further, the ratio of the total area of the holes 13a and 13b to the area of the transparent conductive layer A13 when observed along the film thickness direction is preferably 10% or more and 40% or less. When the size and area ratio of the holes 13a and 13b are in an appropriate range, the incident light can be efficiently scattered and the strength of the transparent conductive layer A13 can be maintained.
  • the ratio of diameter A to diameter B (diameter A / diameter B) is preferably 3 or more and 10 or less. If the ratio of the diameter A to the diameter B is out of the above range, the incident light scattering effect may not be sufficiently obtained.
  • the number of holes in a region of 100 ⁇ m ⁇ 100 ⁇ m is preferably 100 or more and 1000 or less. A larger number of pores is not preferable because it is difficult to maintain the mechanical strength of the film. On the other hand, if the number of holes is smaller than this, the effect of light scattering is lowered, which is not preferable.
  • the transparent conductive layer B14 is made of a transparent and conductive material.
  • the transparent conductive layer B14 preferably contains tin oxide as a main component and also contains fluorine. By adding fluorine, the conductivity of the transparent conductive layer B14 can be improved. In order to increase the conductivity of the transparent conductive layer B14, other trace components such as antimony may be added together with fluorine or instead of fluorine.
  • the component to be oxidized (tin raw material) to be added to the film forming gas to produce tin oxide by chemical vapor deposition (CVD) include tin chloride, dimethyltin dichloride, and monobutyltin trichloride.
  • the oxidizing agent to be added to the film forming gas in order to oxidize the tin raw material include oxygen and water vapor.
  • the thickness of the transparent conductive layer B14 is preferably 200 nm to 1000 nm, more preferably 200 nm to 800 nm, and particularly preferably 250 nm to 700 nm. If the transparent conductive layer B14 is too thin, the conductivity of the transparent conductive film 15 may be too low. On the other hand, if the transparent conductive layer B14 is too thick, the light transmittance of the glass plate with the transparent conductive film is too low, the surface roughness of the surface of the transparent conductive film 15 is excessive, or the residual stress in the film is large. And durability may deteriorate.
  • the surface of the transparent conductive film 15 is formed by the surface of the transparent conductive layer B14.
  • the surface roughness Ra on the surface of the transparent conductive film 15 is preferably 40 nm or less, and more preferably 5 nm or more and 30 nm or less. When the surface roughness Ra on the surface of the transparent conductive film 15 exceeds 40 nm, the surface of the transparent conductive film 15 tends to cause defects in the photoelectric conversion layer, which is not preferable.
  • the surface of the transparent conductive film 15 may be constituted by the surface of a transparent conductive layer (transparent conductive layer C) other than the transparent conductive layer B14 further laminated on the transparent conductive layer B14.
  • the surface roughness of the transparent conductive film 15 is preferably in the above range.
  • the transparent conductive layer C may be, for example, an ITO film or a zinc oxide film doped with aluminum.
  • the haze ratio of the transparent conductive film 15 is preferably 10% or more, more preferably 15% or more, and particularly preferably 20% or more.
  • the haze rate means a haze rate in the wavelength range of 400 nm to 800 nm.
  • the sheet resistance Rs on the surface of the transparent conductive film 15 is preferably 30 ⁇ / ⁇ or less, more preferably 20 ⁇ / ⁇ or less, and particularly preferably 5 ⁇ / ⁇ or more and 15 ⁇ / ⁇ or less.
  • FIG. 2A shows a preformed body 50 a in which only the base film 52 is formed on the glass plate 51.
  • the base film 52 that is, the base layers 52a and 52b can be formed on the glass plate 51 by sputtering, CVD, or the like. However, it is not always necessary to form the base film 52.
  • a transparent conductive layer (transparent conductive layer a) 57 is formed on the preform 50a to obtain a preform 50b shown in FIG.
  • the transparent conductive layer 57 is preferably a zinc oxide film formed by a sputtering method, but may be formed by other methods such as a CVD method.
  • a mixed gas containing an etching component for etching the transparent conductive layer 57 and an oxidizable component and an oxidizing component for forming an additional transparent conductive layer is sprayed on the transparent conductive layer 57 by a CVD method.
  • a transparent conductive layer (transparent conductive layer A) 53 having a recess is obtained by retreating a part of the surface of the transparent conductive layer 57, and a transparent conductive layer (transparent conductive layer B) 54 is formed, and the transparent conductive layer having pores 53a.
  • a glass plate 50 with a transparent conductive film provided with the film 55 is obtained (FIG. 2D).
  • FIG. 2C In the middle of film formation using the mixed gas, as shown in FIG. 2C, a part of the surface of the transparent conductive layer 57 is retreated, and the transparent conductive layer B grows thereon, so that the preform 50c is formed. It is thought that is formed.
  • the transparent conductive layer 54 may be formed in two or more steps. In that case, it is preferable to spray a film-forming gas obtained by removing the etching component from the above-mentioned mixed gas at the time of forming the transparent conductive layer 54 for the second time and thereafter.
  • a film-forming gas that does not include such an etching component is sprayed when the transparent conductive layer 54 is formed for the second time or later
  • a mixed gas containing an etching component is sprayed when the transparent conductive layer 54 is formed for the second time or later.
  • the film formation rate is increased, and the transparent conductive layer 54 is easily grown to a sufficient thickness.
  • the surface characteristics such as the surface roughness Ra and the sheet resistance of the transparent conductive layer 54 can be improved.
  • the electron mobility in the transparent conductive layer 54 can be improved.
  • the transparent conductive film C may be formed by a CVD method, but formed by a physical vapor deposition method (PVD method) such as a sputtering method.
  • PVD method physical vapor deposition method
  • the transparent conductive layer 53 is preferably composed mainly of zinc oxide.
  • mixed gas contains the tin raw material and oxidizing agent which are to-be-oxidized components, and also hydrogen chloride.
  • the molar ratio of hydrogen chloride to the tin raw material in the mixed gas is preferably 0.24 or more and 0.72 or less. When the molar ratio of hydrogen chloride is smaller than this, vacancies are hardly formed and it is difficult to achieve a desired haze ratio.
  • the molar ratio of hydrogen chloride is larger than this, by-products are generated excessively from the transparent conductive layer 57, the conductivity of the formed transparent conductive film 55 is lowered, or the pores 53a are too large. The mechanical strength of the transparent conductive film 55 may decrease.
  • the temperature of the glass plate when supplying the mixed gas is preferably 400 ° C. or higher and 800 ° C. or lower, particularly preferably 600 ° C. or higher and 750 ° C. or lower.
  • the transparent conductive layer 54 is formed using a mixed gas containing an etching component and a film forming component (oxidized component and oxidizing agent).
  • a mixed gas containing an etching component and a film forming component oxidized component and oxidizing agent.
  • an etching gas containing an etching component and a film forming gas containing a film forming component are used. May be sequentially supplied to form the transparent conductive layer 54.
  • Example 1 A first underlayer (SnO 2 film: thickness 25 nm) and a second underlayer (SiO 2 film: thickness 25 nm) are formed on a glass plate (thickness 3.2 mm) made of soda lime silica glass by a CVD method. The layers were laminated in this order, and then a transparent conductive layer a (ZnO film: thickness 368 nm) was formed by a sputtering method to obtain a preform. This preform was put into a substrate transfer type atmospheric pressure CVD apparatus, and the glass plate was heated to 660 ° C., and dimethyltin dichloride (hereinafter referred to as “DMT”) (1.68 mol%), water vapor (water vapor relative to DMT).
  • DMT dimethyltin dichloride
  • Example 2 A glass plate with a transparent conductive film having pores in the transparent conductive film was obtained in the same manner as in Example 1 except that the concentration of hydrogen chloride in the mixed gas was changed so that the molar ratio to DMT was 0.48.
  • Example 3 A glass plate with a transparent conductive film having pores in the transparent conductive film was obtained in the same manner as in Example 1 except that the concentration of hydrogen chloride in the mixed gas was changed so that the molar ratio to DMT was 0.96.
  • Example 4 A glass plate with a transparent conductive film having pores in the transparent conductive film was obtained in the same manner as in Example 1 except that the concentration of hydrogen chloride in the mixed gas was changed so that the molar ratio to DMT was 1.20.
  • Example 5 A glass plate with a transparent conductive film having pores in the transparent conductive film was obtained in the same manner as in Example 1 except that the thickness of the transparent conductive layer a was changed to 231 nm.
  • Example 6 In the same manner as in Example 1, except that the thickness of the transparent conductive layer a was changed to 458 nm and the concentration of oxygen in the mixed gas was increased so that the molar ratio with respect to DMT was 24, pores were formed in the transparent conductive film. A glass plate with a transparent conductive film was obtained.
  • Example 7 In the same manner as in Example 1, except that the thickness of the transparent conductive layer a was changed to 540 nm and the concentration of water vapor in the mixed gas was increased so that the molar ratio with respect to DMT was 15. A glass plate with a transparent conductive film was obtained.
  • Example 8 The first film formation was performed in the same manner as in Example 1 except that the thickness of the transparent conductive layer a was changed to 458 nm and the concentration of hydrogen fluoride in the mixed gas was changed so that the molar ratio to DMT was 0.10. Went. Subsequently, hydrogen chloride is removed from the mixed gas used in the first film formation (that is, using a film forming gas obtained by removing hydrogen chloride from the mixed gas), and the second transparent film is formed in the same manner as in the first time. Conductive layer B was formed to obtain a glass plate with a transparent conductive film having pores in the transparent conductive film.
  • Example 1 A glass plate with a transparent conductive film was obtained in the same manner as in Example 1 except that hydrogen chloride was removed from the mixed gas (that is, a film forming gas from which hydrogen chloride was removed from the mixed gas was used).
  • Example 2 A glass plate with a transparent conductive film was obtained in the same manner as in Example 2 except that the transparent conductive layer a was not formed.
  • Example 3 A glass plate with a transparent conductive film was obtained in the same manner as in Example 7 except that hydrogen chloride was removed from the mixed gas (that is, a film forming gas from which hydrogen chloride was removed from the mixed gas was used).
  • the thickness of the transparent conductive layer B, the haze ratio, the shape of the pores, the surface roughness Ra, the sheet resistance, and the light beam are as follows.
  • the transmittance and durability were examined.
  • the cross section of the glass plate with a transparent conductive film was image
  • the thickness of the transparent conductive layer B was measured by observing the cross section along the film thickness direction of the transparent conductive layer B using SEM. Note that the thickness of the transparent conductive layer a (which becomes the transparent conductive layer A after the supply of the mixed gas) does not change even after the transparent conductive layer B is formed using the mixed gas. Has been confirmed.
  • hole with respect to the area of the transparent conductive layer A whole was computed.
  • the cross section along the film thickness direction of the glass plate with the transparent conductive film was observed by SEM, the area of the voids in the transparent conductive layer A that appeared in the range of 4 mm in the cross section direction was measured, and this average area was true.
  • the diameter (diameter B) when considered as a circle was calculated. However, in the calculation of the diameter A and the area ratio, only the part where the area of the part where zinc does not exist is 1 ⁇ m 2 or more was regarded as a hole.
  • the thickness of the transparent conductive layer B, the haze ratio, the shape and distribution of the holes, the surface roughness Ra, the sheet resistance as described above Table 1 shows the results of measurement of light transmittance and durability.
  • the composition of the second transparent conductive layer B is formed. Only the measurement results after the film are described.
  • Voids were formed in any of the transparent conductive films of the glass plates with the transparent conductive film of Examples 1 to 8. On the other hand, no pores were formed in the glass plates with transparent conductive films of Comparative Examples 1 to 3.
  • the transparent conductive layer A does not exist in the glass plate with a transparent conductive film of Comparative Example 2, no pores are formed.
  • the surface roughness Ra increases as the haze ratio increases because the surface irregularities are the main factor determining the haze ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a glass plate provided with a transparent conductive film, wherein an increase of the roughness of the surface can be suppressed, even if the haze rate of the transparent conductive film is increased. The glass plate provided with the transparent conductive film is provided with the glass plate, and the transparent conductive film formed on the glass plate. The transparent conductive film has a transparent conductive layer (transparent conductive layer (A)), and a transparent conductive layer (transparent conductive layer (B)), the transparent conductive layer (B) is formed on the transparent conductive layer (A), the transparent conductive film includes a plurality of holes, and each of the holes is formed by having the transparent conductive layer (B) cover a recessed section in the surface of the transparent conductive layer (A).

Description

透明導電膜付きガラス板およびその製造方法Glass plate with transparent conductive film and method for producing the same
 本発明は光電変換素子などに使用される透明導電膜付きガラス板およびその製造方法に関する。 The present invention relates to a glass plate with a transparent conductive film used for a photoelectric conversion element and the like and a method for producing the same.
 環境への負担を抑制するという観点から、クリーンエネルギーを生成することができる太陽電池が注目されている。さらに省資源化の観点から、半導体材料の使用量が少ない薄膜太陽電池への期待が高まっている。薄膜太陽電池は、一般的には、ガラス板などの透明基板上に、酸化スズ(SnO2)などからなる透明導電膜(表面電極)、アモルファスシリコンやアモルファスシリコンゲルマニウムなどの非晶質半導体からなる光電変換層、ならびに導電膜(裏面電極)を順次積層して構成される。 From the viewpoint of reducing the burden on the environment, solar cells capable of generating clean energy have attracted attention. Furthermore, from the viewpoint of resource saving, there is an increasing expectation for thin film solar cells that use less semiconductor material. Thin-film solar cell generally on a transparent substrate such as a glass plate, tin oxide (SnO 2) transparent conductive film (surface electrode) made of, of amorphous semiconductor such as amorphous silicon or amorphous silicon germanium A photoelectric conversion layer and a conductive film (back electrode) are sequentially stacked.
 薄膜太陽電池の光電変換効率を向上させるために種々の工夫がなされている。入射光が光電変換層に達する前に、ヘイズ率が高い透明導電膜において入射光を散乱させて光閉じ込め効果を得る技術はその一例である。例えば、特許文献1にはガラス板上に空孔を有する第1下地層、第2下地層、透明導電膜がこの順に形成された薄膜太陽電池が開示されている。第1下地層における空孔に第2下地層が陥没し、第2下地層において空孔に陥没した部分が透明導電膜を効率的に形成する成長核として作用する。その結果、透明導電膜の表面に大きな凹凸が形成され、この凹凸によって透明導電膜のヘイズ率が高くなり、透明導電膜での光閉じ込め効果が向上している。また、特許文献2には、酸化亜鉛によって形成された透明導電膜の表面を、塩酸を用いてエッチングすることで表面に凹凸を形成した薄膜太陽電池が開示されている。 Various ideas have been made to improve the photoelectric conversion efficiency of thin film solar cells. An example is a technique for obtaining a light confinement effect by scattering incident light in a transparent conductive film having a high haze ratio before the incident light reaches the photoelectric conversion layer. For example, Patent Document 1 discloses a thin film solar cell in which a first underlayer having holes on a glass plate, a second underlayer, and a transparent conductive film are formed in this order. The second underlayer is depressed in the holes in the first underlayer, and the portion of the second underlayer that is depressed in the holes acts as a growth nucleus for efficiently forming the transparent conductive film. As a result, large irregularities are formed on the surface of the transparent conductive film, the haze ratio of the transparent conductive film is increased by the irregularities, and the light confinement effect in the transparent conductive film is improved. Patent Document 2 discloses a thin film solar cell in which irregularities are formed on the surface by etching the surface of a transparent conductive film formed of zinc oxide using hydrochloric acid.
 また、特許文献3には、透明導電膜の表面の凹凸上にさらに微小な凹凸を設けた薄膜太陽電池が開示されている。表面の凹凸が600nmから800nmの波長域の太陽光の光閉じ込めに寄与し、微小な凹凸が400nmから600nmの太陽光の光閉じ込めに寄与している。これにより、太陽光の広い波長域に対しての光電変換効率の改善を図っている。 Patent Document 3 discloses a thin-film solar cell in which fine irregularities are provided on the irregularities on the surface of a transparent conductive film. The unevenness on the surface contributes to the light confinement of sunlight in the wavelength range of 600 nm to 800 nm, and the minute unevenness contributes to the light confinement of sunlight from 400 nm to 600 nm. Thereby, the photoelectric conversion efficiency with respect to the wide wavelength range of sunlight is improved.
 また、特許文献4に開示されている薄膜太陽電池では、表面の形状ではなく、透明基板と透明導電膜との間の無機バインダーマトリックス層に無機散乱粒子を分散させることで、光閉じ込め効果を得ることとしている。 Moreover, in the thin film solar cell currently disclosed by patent document 4, the light confinement effect is acquired by disperse | distributing an inorganic scattering particle to the inorganic binder matrix layer between a transparent substrate and a transparent conductive film instead of a surface shape. I am going to do that.
特開2001-053307号公報JP 2001-053307 A 特開2008-160165号公報JP 2008-160165 A 特開2009-140930号公報JP 2009-140930 A 特開2009-212507号公報JP 2009-212507 A
 薄膜太陽電池の光電変換効率を向上させるためには、透明導電膜のヘイズ率を高くするとともに透明導電膜の表面の表面粗さが大きくなり過ぎないようにすることが望ましい。透明導電膜の表面と光電変換層の表面とは接するため、透明導電膜の表面の形状が光電変換層の特性に影響を与えるためである。具体的には、透明導電膜の表面の表面粗さが大き過ぎると、光電変換層に欠陥が生じやすくなる。特許文献1、2および3ではヘイズ率を高くするために透明導電膜の表面の凹凸が利用されている。このため、透明導電膜のヘイズ率が高くなるにつれて表面の表面粗さも大きくなる。特許文献4が開示する技術を用いると、ヘイズ率を高くしても透明導電膜の表面の表面粗さを低く保つことができる。しかし、特許文献4の技術は、バインダーマトリックス(例えばシリカ)とは別に無機散乱微粒子(例えばアルミナ微粒子)を要する。また、高いヘイズ率を達成するためには、導電性の向上に寄与しない無機バインダーマトリックス層を厚膜化する必要がある。 In order to improve the photoelectric conversion efficiency of the thin film solar cell, it is desirable to increase the haze ratio of the transparent conductive film and prevent the surface roughness of the transparent conductive film from becoming too large. This is because the surface of the transparent conductive film and the surface of the photoelectric conversion layer are in contact with each other, and thus the shape of the surface of the transparent conductive film affects the characteristics of the photoelectric conversion layer. Specifically, when the surface roughness of the surface of the transparent conductive film is too large, defects are likely to occur in the photoelectric conversion layer. In Patent Documents 1, 2, and 3, irregularities on the surface of the transparent conductive film are used to increase the haze ratio. For this reason, the surface roughness of the surface increases as the haze ratio of the transparent conductive film increases. When the technique disclosed in Patent Document 4 is used, the surface roughness of the surface of the transparent conductive film can be kept low even if the haze ratio is increased. However, the technique of Patent Document 4 requires inorganic scattering fine particles (for example, alumina fine particles) separately from the binder matrix (for example, silica). Moreover, in order to achieve a high haze ratio, it is necessary to thicken the inorganic binder matrix layer that does not contribute to the improvement of conductivity.
 本発明は、このような事情に鑑み、透明導電膜自体を改善することにより、透明導電膜のヘイズ率を高くしても、その表面の表面粗さの上昇を抑制できる透明導電膜付きガラス板を提供することを目的とする。 In view of such circumstances, the present invention improves the transparent conductive film itself, and even if the haze ratio of the transparent conductive film is increased, the glass plate with a transparent conductive film that can suppress the surface roughness of the surface can be suppressed. The purpose is to provide.
 本発明は、ガラス板と、前記ガラス板上に形成された透明導電膜と、を備え、前記透明導電膜が透明導電層Aと透明導電層Bとを有し、前記透明導電層Bが前記透明導電層Aの上に形成され、前記透明導電膜が複数の空孔を含み、前記複数の空孔の各々が、前記透明導電層Aの表面における凹部を前記透明導電層Bが塞いだものである、透明導電膜付きガラス板、を提供する。 The present invention comprises a glass plate and a transparent conductive film formed on the glass plate, the transparent conductive film having a transparent conductive layer A and a transparent conductive layer B, and the transparent conductive layer B is The transparent conductive layer A is formed on the transparent conductive layer A, the transparent conductive film includes a plurality of holes, and each of the plurality of holes fills the concave portion on the surface of the transparent conductive layer A with the transparent conductive layer B A glass plate with a transparent conductive film is provided.
 また、本発明は、その別の側面から、ガラス板と、前記ガラス板上に形成された複数の空孔を含む透明導電膜と、を備えた透明導電膜付きガラス板の製造方法であって、前記ガラス板上に予め形成された透明導電層aの表面に、前記透明導電層aをエッチングすることができるエッチング成分を含むエッチングガスを供給することにより、前記透明導電層aの表面の複数の領域を前記エッチング成分によって膜厚方向に後退させて前記透明導電層aから複数の凹部を有する透明導電層Aを形成する工程と、前記透明導電層Aの表面に、酸化されて金属酸化物を生成可能な被酸化成分、および前記被酸化成分を酸化することができる酸化剤を含む成膜ガスを供給することにより、前記複数の凹部を塞ぐように前記透明導電層Aの上に前記金属酸化物を含む透明導電層Bを成膜して前記複数の空孔を形成する工程と、を含む、透明導電膜付きガラス板の製造方法、を提供する。 Moreover, this invention is a manufacturing method of the glass plate with a transparent conductive film provided with the glass plate and the transparent conductive film containing the several void | hole formed on the said glass plate from the other side surface, A plurality of surfaces of the transparent conductive layer a are supplied by supplying an etching gas containing an etching component capable of etching the transparent conductive layer a to the surface of the transparent conductive layer a formed in advance on the glass plate. Forming a transparent conductive layer A having a plurality of recesses from the transparent conductive layer a by retreating the region in the film thickness direction by the etching component, and the surface of the transparent conductive layer A is oxidized to be a metal oxide The metal is formed on the transparent conductive layer A so as to close the plurality of recesses by supplying a film-forming gas containing an oxidizable component capable of generating oxidant and an oxidant capable of oxidizing the oxidizable component. By forming a transparent conductive layer B containing compound and forming a plurality of holes, a method of manufacturing a transparent conductive film-attached glass plate, provides.
 また、本発明は、さらに別の側面から、ガラス板と、前記ガラス板上に形成された複数の空孔を含む透明導電膜と、を備えた透明導電膜付きガラス板の製造方法であって、前記ガラス板上に予め形成された透明導電層aの表面に、前記透明導電層aをエッチングすることができるエッチング成分、酸化されて金属酸化物を生成可能な被酸化成分、および前記被酸化成分を酸化することができる酸化剤を含む混合ガスを供給することにより、前記透明導電層aの表面の複数の領域を前記エッチング成分によって膜厚方向に後退させて前記透明導電層aから複数の凹部を有する透明導電層Aを形成するとともに、当該複数の凹部を塞ぐように前記透明導電層Aの上に前記金属酸化物を含む透明導電層Bを成膜して前記複数の空孔を形成する、透明導電膜付きガラス板の製造方法、を提供する。 Moreover, this invention is a manufacturing method of the glass plate with a transparent conductive film provided with the glass plate and the transparent conductive film containing the several void | hole formed on the said glass plate from another side surface, An etching component capable of etching the transparent conductive layer a on a surface of the transparent conductive layer a previously formed on the glass plate, an oxidizable component capable of being oxidized to form a metal oxide, and the oxidizable By supplying a mixed gas containing an oxidant capable of oxidizing the component, a plurality of regions on the surface of the transparent conductive layer a are caused to recede in the film thickness direction by the etching component, and a plurality of regions are removed from the transparent conductive layer a. The transparent conductive layer A having recesses is formed, and the transparent holes are formed by forming the transparent conductive layer B containing the metal oxide on the transparent conductive layer A so as to close the plurality of recesses. To see through METHOD FOR PRODUCING glass sheet with a conductive film to provide.
 本発明によれば、透明導電膜の表面の表面粗さの上昇を抑制しながら、薄膜太陽電池用基板に要求される高いヘイズ率を実現することができる。 According to the present invention, it is possible to achieve a high haze ratio required for a thin film solar cell substrate while suppressing an increase in surface roughness of the surface of the transparent conductive film.
本発明の透明導電膜付きガラス板の一例の断面模式図Cross-sectional schematic diagram of an example of a glass plate with a transparent conductive film of the present invention 本発明の透明導電膜付きガラス板の製造方法を説明するための模式図The schematic diagram for demonstrating the manufacturing method of the glass plate with a transparent conductive film of this invention. 走査型電子顕微鏡(SEM)を用いて観察した透明導電膜付きガラス板の断面図Sectional view of a glass plate with a transparent conductive film observed using a scanning electron microscope (SEM) SEMを用いて観察した透明導電膜付きガラス板の断面図Sectional view of glass plate with transparent conductive film observed using SEM
 以下、この発明の実施の形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1(A)は本発明の透明導電膜付きガラス板の一例の断面模式図である。図1(A)に示すように、透明導電膜付きガラス板10は、ガラス板11と、ガラス板11の表面に形成された下地膜12と、下地膜12の表面に形成された透明導電膜15とを有する。下地膜12は、ガラス板11側から順に、第1下地層12aと、第2下地層12bとを有する。透明導電膜15は、ガラス板11側から順に、第1透明導電層(透明導電層A)13と第2透明導電層(透明導電層B)14とを有する。 FIG. 1A is a schematic cross-sectional view of an example of a glass plate with a transparent conductive film of the present invention. As shown in FIG. 1A, a glass plate 10 with a transparent conductive film includes a glass plate 11, a base film 12 formed on the surface of the glass plate 11, and a transparent conductive film formed on the surface of the base film 12. 15. The base film 12 includes a first base layer 12a and a second base layer 12b in this order from the glass plate 11 side. The transparent conductive film 15 includes a first transparent conductive layer (transparent conductive layer A) 13 and a second transparent conductive layer (transparent conductive layer B) 14 in order from the glass plate 11 side.
 透明導電膜付きガラス板10は下地膜12を備え、透明導電膜15が下地膜12を介してガラス板11上に形成されることが好ましい。これにより、ガラス板11のアルカリ成分が透明導電膜15に侵入することを防ぐことができる。また、下地膜12は、1層から構成されていてもよく、その場合は酸化ケイ素、酸炭化ケイ素、窒化ケイ素、酸化アルミニウム、酸窒化ケイ素、またはスズドープ酸化ケイ素を主成分とすることが好ましい。また、下地膜12は、第1下地層12aと第2下地層12bの2層から構成されていてもよい。その場合は、第1下地層12aは、酸化ケイ素、酸化チタン、酸化亜鉛、または酸炭化ケイ素を主成分とすることが好ましく、特に酸化スズを主成分とすることが好ましい。また、第2下地層12bは、酸化ケイ素または酸化アルミニウムを主成分とすることが好ましく、特に酸化ケイ素を主成分とすることが好ましい。なお、「主成分」とは、慣用に従い、組成成分含有率で50質量%以上の成分を指す。さらに、これら下地層12a,12bの膜厚と屈折率を適切に調整すれば、透明導電膜付きガラス板10の反射率および反射干渉色を低減させることが可能となる。第1下地層12aの膜厚は、10~100nm、特に20~70nmが好ましい。第1下地層12aの屈折率は、1.8~2.4が好適である。第2下地層12bの膜厚は、5~80nm、特に10~40nmが好ましい。第2下地層12bの屈折率は、1.4~1.7が好適である。 The glass plate 10 with a transparent conductive film is preferably provided with a base film 12, and the transparent conductive film 15 is preferably formed on the glass plate 11 through the base film 12. Thereby, the alkali component of the glass plate 11 can be prevented from entering the transparent conductive film 15. Further, the base film 12 may be composed of one layer, and in that case, it is preferable that silicon oxide, silicon oxycarbide, silicon nitride, aluminum oxide, silicon oxynitride, or tin-doped silicon oxide be a main component. Further, the base film 12 may be composed of two layers, a first base layer 12a and a second base layer 12b. In that case, the first underlayer 12a is preferably composed mainly of silicon oxide, titanium oxide, zinc oxide, or silicon oxycarbide, and particularly preferably composed mainly of tin oxide. The second underlayer 12b is preferably composed mainly of silicon oxide or aluminum oxide, and particularly preferably composed mainly of silicon oxide. The “main component” refers to a component having a composition component content of 50% by mass or more according to common usage. Furthermore, if the film thickness and refractive index of these foundation layers 12a and 12b are appropriately adjusted, the reflectance and reflection interference color of the glass plate 10 with a transparent conductive film can be reduced. The film thickness of the first underlayer 12a is preferably 10 to 100 nm, particularly 20 to 70 nm. The refractive index of the first base layer 12a is preferably 1.8 to 2.4. The thickness of the second underlayer 12b is preferably 5 to 80 nm, particularly 10 to 40 nm. The refractive index of the second underlayer 12b is preferably 1.4 to 1.7.
 透明導電膜15は少なくとも2層の透明導電層13,14から構成されている。透明導電層A13は酸化亜鉛を主成分とすることが好ましい。ただし、透明導電層A13を構成する材料は、導電性があり、後述するエッチング成分によってエッチング可能なものであれば、特に制限はない。エッチング成分は、エッチングするべき材料によって適宜選択すればよいが、塩化水素、塩化シュウ素などを用いるとよい。酸化亜鉛のエッチング成分としては、塩化水素が好適である。 The transparent conductive film 15 is composed of at least two transparent conductive layers 13 and 14. The transparent conductive layer A13 preferably contains zinc oxide as a main component. However, the material constituting the transparent conductive layer A13 is not particularly limited as long as it is conductive and can be etched by an etching component described later. The etching component may be selected as appropriate depending on the material to be etched, but hydrogen chloride, silicon chloride, or the like may be used. As an etching component of zinc oxide, hydrogen chloride is suitable.
 透明導電層A13の厚さは180nm以上600nm以下が好ましく、200nm以上600nm以下がさらに好ましく、300nm以上500nm以下が特に好ましい。透明導電層A13が薄過ぎると、空孔13a,13bの膜厚方向の大きさが後述のような散乱を発生させるべき太陽光の波長(用いる光電変換層によるが、例えば800nm程度の波長)と比較して、小さくなり過ぎる。他方、透明導電層A13の厚さを過度に厚くすると、可視光透過率が低下したり、膜中の応力が増大して、耐久性を劣化させたりするなどの弊害が大きくなるおそれがある。 The thickness of the transparent conductive layer A13 is preferably from 180 nm to 600 nm, more preferably from 200 nm to 600 nm, particularly preferably from 300 nm to 500 nm. If the transparent conductive layer A13 is too thin, the size of the pores 13a and 13b in the film thickness direction is the wavelength of sunlight that should cause scattering as described later (depending on the photoelectric conversion layer used, for example, a wavelength of about 800 nm) In comparison, it becomes too small. On the other hand, if the thickness of the transparent conductive layer A13 is excessively thick, there is a possibility that the visible light transmittance is reduced, or the stress in the film is increased to deteriorate the durability.
 透明導電層A13には空孔13a,13bが形成されており、空孔13a,13bは、図1において下方から入射して透明導電膜15の上方に形成される光電変換層に達する光の散乱に寄与する。空孔13a,13bは、透明導電層A13の表面13sの一部が膜厚方向(具体的には図示下方)に後退することにより生じた凹部13hをその上方から透明導電層B14が塞ぐことにより形成されている。透明導電層A13の表面13sは、膜厚の全範囲にわたって後退していてもよく(空孔13a)、膜厚の一部の範囲にまで後退していてもよい(空孔13b)。効率的に光を散乱させるためには、複数の空孔の少なくとも一部の空孔が透明導電層A13の全膜厚にわたって拡がっていること、言い換えれば、複数の空孔の少なくとも一部の空孔が透明導電膜A13の膜厚と等しい高さを有していることが好ましい。 Holes 13 a and 13 b are formed in the transparent conductive layer A 13, and the holes 13 a and 13 b scatter light that enters from below in FIG. 1 and reaches the photoelectric conversion layer formed above the transparent conductive film 15. Contribute to. The holes 13a and 13b are formed by the transparent conductive layer B14 closing the recess 13h, which is generated when a part of the surface 13s of the transparent conductive layer A13 recedes in the film thickness direction (specifically, downward in the drawing) from above. Is formed. The surface 13s of the transparent conductive layer A13 may recede over the entire thickness range (hole 13a) or may recede to a partial thickness range (hole 13b). In order to efficiently scatter light, at least some of the plurality of vacancies extend over the entire film thickness of the transparent conductive layer A13, in other words, at least some of the vacancies of the plurality of vacancies. It is preferable that the hole has a height equal to the film thickness of the transparent conductive film A13.
 図1(B)は図1(A)の透明導電膜15における領域13cを拡大した図である。空孔13aには、周囲の壁面から空孔13aの内部に向かって延びる針状体13dが存在する。針状体13dは、典型的には透明導電層B14の底面から垂れ下がるように形成される。針状体13dは透明導電層B14を構成する材料が析出して成長したものと推察される。ただし、透明導電膜15の成膜条件によっては針状体13dが形成されない場合もある。また、空孔13aの上方からではなく、空孔13aの側面から針状体が成長する場合もある。空孔13aのみならず空孔13bにも針状体が形成されることもある。 FIG. 1B is an enlarged view of the region 13c in the transparent conductive film 15 of FIG. The hole 13a has a needle-like body 13d extending from the surrounding wall surface toward the inside of the hole 13a. The needle-like body 13d is typically formed so as to hang down from the bottom surface of the transparent conductive layer B14. The needle-like body 13d is assumed to have grown by the deposition of the material constituting the transparent conductive layer B14. However, depending on the film forming conditions of the transparent conductive film 15, the needle-like body 13d may not be formed. In some cases, the needle-like body grows not from above the hole 13a but from the side surface of the hole 13a. Needle-like bodies may be formed not only in the holes 13a but also in the holes 13b.
 以下、空孔13a,13bの大きさについて説明する。透明導電膜15を膜厚方向に沿って(換言すれば膜面に垂直な方向から)観察したときの空孔13a,13bの大きさは、その平均面積を円に換算して算出した直径(以下「直径A」という)により表示して0.5μm以上10μm以下、特に1.0μm以上5.0μm以下が好ましい。この直径は後述するEPMAを用いた方法により測定することができる。透明導電膜15を膜厚方向に沿って切断した断面に現れる空孔13a,13bの大きさは、その平均面積を円に換算して算出した直径(以下「直径B」という)により表示して0.1μm以上0.6μm以下が好ましい。この直径は、SEMによる断面観察により測定することができる。また、膜厚方向に沿って観察したときの透明導電層A13の面積に対する空孔13a,13bの総面積の割合は10%以上40%以下が好ましい。空孔13a,13bの大きさおよび面積の割合が適切な範囲にあると、入射光の散乱を効率的に行うことができるとともに透明導電層A13の強度を保つことができる。 Hereinafter, the size of the holes 13a and 13b will be described. The size of the holes 13a and 13b when the transparent conductive film 15 is observed along the film thickness direction (in other words, from the direction perpendicular to the film surface) is calculated by converting the average area into a circle (the diameter ( (Hereinafter referred to as “diameter A”), preferably 0.5 μm to 10 μm, and more preferably 1.0 μm to 5.0 μm. This diameter can be measured by a method using EPMA described later. The size of the holes 13a and 13b appearing in the cross section obtained by cutting the transparent conductive film 15 along the film thickness direction is expressed by a diameter (hereinafter referred to as “diameter B”) calculated by converting the average area into a circle. It is preferably 0.1 μm or more and 0.6 μm or less. This diameter can be measured by cross-sectional observation with an SEM. Further, the ratio of the total area of the holes 13a and 13b to the area of the transparent conductive layer A13 when observed along the film thickness direction is preferably 10% or more and 40% or less. When the size and area ratio of the holes 13a and 13b are in an appropriate range, the incident light can be efficiently scattered and the strength of the transparent conductive layer A13 can be maintained.
 また、直径Bに対する直径Aの比(直径A/直径B)は、3以上10以下が好ましい。直径Bに対する直径Aの比が上記範囲から外れると、入射光の散乱効果を十分に得ることができなくなるおそれがある。 The ratio of diameter A to diameter B (diameter A / diameter B) is preferably 3 or more and 10 or less. If the ratio of the diameter A to the diameter B is out of the above range, the incident light scattering effect may not be sufficiently obtained.
 透明導電膜15を膜厚方向に沿って観察したときに、100μm×100μmの領域内における空孔の数は、100個以上1000個以下が好ましい。空孔の数がこれよりも多いと膜の機械的強度を保持し難くなるため好ましくない。他方、空孔の数がこれよりも少ないと光散乱の効果が低下するため好ましくない。 When the transparent conductive film 15 is observed along the film thickness direction, the number of holes in a region of 100 μm × 100 μm is preferably 100 or more and 1000 or less. A larger number of pores is not preferable because it is difficult to maintain the mechanical strength of the film. On the other hand, if the number of holes is smaller than this, the effect of light scattering is lowered, which is not preferable.
 透明導電層B14は、透明で導電性がある材料から構成される。透明導電層B14は酸化スズを主成分とするとともにフッ素を含有することが好ましい。フッ素を添加することにより、透明導電層B14の導電性を向上させることができる。透明導電層B14の導電性を高めるためにはフッ素とともに、または、フッ素に代えて、アンチモンのような他の微量成分を添加してもよい。化学気相法(CVD法)により、酸化スズを生成させるために成膜ガスに添加すべき被酸化成分(スズ原料)としては、塩化スズ、ジメチルスズジクロライド、モノブチルスズトリクロライドなどが挙げられる。スズ原料を酸化するために成膜ガスに添加すべき酸化剤としては、酸素、水蒸気が挙げられる。 The transparent conductive layer B14 is made of a transparent and conductive material. The transparent conductive layer B14 preferably contains tin oxide as a main component and also contains fluorine. By adding fluorine, the conductivity of the transparent conductive layer B14 can be improved. In order to increase the conductivity of the transparent conductive layer B14, other trace components such as antimony may be added together with fluorine or instead of fluorine. Examples of the component to be oxidized (tin raw material) to be added to the film forming gas to produce tin oxide by chemical vapor deposition (CVD) include tin chloride, dimethyltin dichloride, and monobutyltin trichloride. Examples of the oxidizing agent to be added to the film forming gas in order to oxidize the tin raw material include oxygen and water vapor.
 透明導電層B14の厚さは200nm以上1000nm以下、さらに200nm以上800nm以下、特に250nm以上700nm以下が好ましい。透明導電層B14が薄過ぎると、透明導電膜15の導電性が低くなり過ぎることがある。他方、透明導電層B14が厚過ぎると、透明導電膜付きガラス板の光線透過率が低下し過ぎたり、透明導電膜15の表面の表面粗さが過大となったり、膜中の残留応力が大きくなり、耐久性が劣化したりしてしまうことがある。 The thickness of the transparent conductive layer B14 is preferably 200 nm to 1000 nm, more preferably 200 nm to 800 nm, and particularly preferably 250 nm to 700 nm. If the transparent conductive layer B14 is too thin, the conductivity of the transparent conductive film 15 may be too low. On the other hand, if the transparent conductive layer B14 is too thick, the light transmittance of the glass plate with the transparent conductive film is too low, the surface roughness of the surface of the transparent conductive film 15 is excessive, or the residual stress in the film is large. And durability may deteriorate.
 本実施の形態では、透明導電膜15の表面が、透明導電層B14の表面により形成されている。透明導電膜15の表面における表面粗さRaは40nm以下が好ましく、5nm以上30nm以下がさらに好ましい。透明導電膜15の表面における表面粗さRaが40nmを超えると、透明導電膜15の表面が光電変換層に欠陥が発生させやすくなるため、好ましくない。なお、透明導電膜15の表面は、透明導電層B14の上にさらに積層させた透明導電層B14以外の透明導電層(透明導電層C)の表面により構成されていてもよいが、その場合も透明導電膜15の表面の表面粗さは上記の範囲にあることが好ましい。透明導電層Cは、例えばITO膜、アルミニウムをドープした酸化亜鉛膜であってもよい。 In the present embodiment, the surface of the transparent conductive film 15 is formed by the surface of the transparent conductive layer B14. The surface roughness Ra on the surface of the transparent conductive film 15 is preferably 40 nm or less, and more preferably 5 nm or more and 30 nm or less. When the surface roughness Ra on the surface of the transparent conductive film 15 exceeds 40 nm, the surface of the transparent conductive film 15 tends to cause defects in the photoelectric conversion layer, which is not preferable. The surface of the transparent conductive film 15 may be constituted by the surface of a transparent conductive layer (transparent conductive layer C) other than the transparent conductive layer B14 further laminated on the transparent conductive layer B14. The surface roughness of the transparent conductive film 15 is preferably in the above range. The transparent conductive layer C may be, for example, an ITO film or a zinc oxide film doped with aluminum.
 また、透明導電膜15のヘイズ率は10%以上、さらに15%以上、特に20%以上が好ましい。なお、上記ヘイズ率は波長が400nm~800nmの範囲のヘイズ率を意味する。 The haze ratio of the transparent conductive film 15 is preferably 10% or more, more preferably 15% or more, and particularly preferably 20% or more. The haze rate means a haze rate in the wavelength range of 400 nm to 800 nm.
 また、透明導電膜15の表面のシート抵抗Rsは30Ω/□以下が好ましく、20Ω/□以下がさらに好ましく、5Ω/□以上15Ω/□以下が特に好ましい。 Further, the sheet resistance Rs on the surface of the transparent conductive film 15 is preferably 30Ω / □ or less, more preferably 20Ω / □ or less, and particularly preferably 5Ω / □ or more and 15Ω / □ or less.
 図2を参照して透明導電膜55の形成の工程の一例を説明する。図2(A)は、ガラス板51上に下地膜52のみが形成された予備成形体50aである。下地膜52、すなわち下地層52a、52bは、スパッタリング法、CVD法などによってガラス板51上に形成可能である。ただし、下地膜52を形成する必要は必ずしもない。 An example of the process of forming the transparent conductive film 55 will be described with reference to FIG. FIG. 2A shows a preformed body 50 a in which only the base film 52 is formed on the glass plate 51. The base film 52, that is, the base layers 52a and 52b can be formed on the glass plate 51 by sputtering, CVD, or the like. However, it is not always necessary to form the base film 52.
 予備成形体50a上に透明導電層(透明導電層a)57を形成し、図2(B)に示す予備成形体50bを得る。透明導電層57は、スパッタリング法によって形成された酸化亜鉛膜が好ましいが、CVD法など他の方法で形成してもよい。 A transparent conductive layer (transparent conductive layer a) 57 is formed on the preform 50a to obtain a preform 50b shown in FIG. The transparent conductive layer 57 is preferably a zinc oxide film formed by a sputtering method, but may be formed by other methods such as a CVD method.
 その後、CVD法により、透明導電層57上に、透明導電層57をエッチングするためのエッチング成分と、追加の透明導電層を形成するための被酸化成分および酸化成分とを含む混合ガスを吹き付け、透明導電層57の表面の一部を後退させて凹部を有する透明導電層(透明導電層A)53を得るとともに透明導電層(透明導電層B)54を形成し、空孔53aを有する透明導電膜55を備えた透明導電膜付きガラス板50を得る(図2(D))。混合ガスを用いた成膜の途中では、図2(C)に示すように、透明導電層57の表面の一部が後退しながらその上に透明導電層Bが成長して、予備成形体50cが形成されていると考えられる。 Thereafter, a mixed gas containing an etching component for etching the transparent conductive layer 57 and an oxidizable component and an oxidizing component for forming an additional transparent conductive layer is sprayed on the transparent conductive layer 57 by a CVD method. A transparent conductive layer (transparent conductive layer A) 53 having a recess is obtained by retreating a part of the surface of the transparent conductive layer 57, and a transparent conductive layer (transparent conductive layer B) 54 is formed, and the transparent conductive layer having pores 53a. A glass plate 50 with a transparent conductive film provided with the film 55 is obtained (FIG. 2D). In the middle of film formation using the mixed gas, as shown in FIG. 2C, a part of the surface of the transparent conductive layer 57 is retreated, and the transparent conductive layer B grows thereon, so that the preform 50c is formed. It is thought that is formed.
 なお、厚い透明導電層54を形成する場合には、透明導電層54を2回以上に分けて成膜してもよい。その場合は、2回目以降の透明導電層54の成膜時には、上述の混合ガスからエッチング成分を除去した成膜ガスを吹き付けることが好ましい。2回目以降の透明導電層54の成膜時にこのようなエッチング成分を含まない成膜ガスを吹き付けると、2回目以降の透明導電層54の成膜時にエッチング成分を含む混合ガスを吹き付けた場合に比べて成膜速度が高まり、透明導電層54を十分な厚さにまで成長させ易くなる。また、2回目以降の透明導電層54の成膜時にエッチング成分を含まない成膜ガスを吹き付けることにより、透明導電層54の表面の表面粗さRaおよびシート抵抗などの表面特性を改善することができるとともに、透明導電層54における電子移動度を向上させることができる。 In addition, when forming the thick transparent conductive layer 54, the transparent conductive layer 54 may be formed in two or more steps. In that case, it is preferable to spray a film-forming gas obtained by removing the etching component from the above-mentioned mixed gas at the time of forming the transparent conductive layer 54 for the second time and thereafter. When a film-forming gas that does not include such an etching component is sprayed when the transparent conductive layer 54 is formed for the second time or later, a mixed gas containing an etching component is sprayed when the transparent conductive layer 54 is formed for the second time or later. In comparison, the film formation rate is increased, and the transparent conductive layer 54 is easily grown to a sufficient thickness. Further, by spraying a film forming gas not containing an etching component during the second and subsequent transparent conductive layer 54 film formation, the surface characteristics such as the surface roughness Ra and the sheet resistance of the transparent conductive layer 54 can be improved. In addition, the electron mobility in the transparent conductive layer 54 can be improved.
 また、透明導電層54の上に透明導電層Cをさらに形成する場合は、透明導電膜Cを、CVD法により形成してもよいが、スパッタリング法などの物理蒸着法(PVD法)により、形成することもできる。 When the transparent conductive layer C is further formed on the transparent conductive layer 54, the transparent conductive film C may be formed by a CVD method, but formed by a physical vapor deposition method (PVD method) such as a sputtering method. You can also
 透明導電層53は酸化亜鉛を主成分とすることが好ましい。また、混合ガスを用いて透明導電層54を成膜する場合は、混合ガスが、被酸化成分であるスズ原料と酸化剤、さらには塩化水素を含むことが好ましい。混合ガスにおけるスズ原料に対する塩化水素のモル比は0.24以上0.72以下が好ましい。塩化水素のモル比がこれより小さいと、空孔が形成されにくくなって所望のヘイズ率を達成することが困難となる。他方、塩化水素のモル比がこれより大きいと、透明導電層57から副生成物が過剰に生成され、形成される透明導電膜55の導電性が低下したり、空孔53aが大きくなりすぎて透明導電膜55の機械的強度が低下したりすることがある。 The transparent conductive layer 53 is preferably composed mainly of zinc oxide. Moreover, when forming the transparent conductive layer 54 using mixed gas, it is preferable that mixed gas contains the tin raw material and oxidizing agent which are to-be-oxidized components, and also hydrogen chloride. The molar ratio of hydrogen chloride to the tin raw material in the mixed gas is preferably 0.24 or more and 0.72 or less. When the molar ratio of hydrogen chloride is smaller than this, vacancies are hardly formed and it is difficult to achieve a desired haze ratio. On the other hand, if the molar ratio of hydrogen chloride is larger than this, by-products are generated excessively from the transparent conductive layer 57, the conductivity of the formed transparent conductive film 55 is lowered, or the pores 53a are too large. The mechanical strength of the transparent conductive film 55 may decrease.
 混合ガスを供給するときのガラス板の温度は400℃以上800℃以下、特に600℃以上750℃以下が好ましい。 The temperature of the glass plate when supplying the mixed gas is preferably 400 ° C. or higher and 800 ° C. or lower, particularly preferably 600 ° C. or higher and 750 ° C. or lower.
 なお、上記ではエッチング成分と成膜成分(被酸化成分および酸化剤)とを含む混合ガスを用いて透明導電層54を形成したが、エッチング成分を含むエッチングガスと成膜成分を含む成膜ガスとを順次供給して透明導電層54を形成してもよい。 In the above description, the transparent conductive layer 54 is formed using a mixed gas containing an etching component and a film forming component (oxidized component and oxidizing agent). However, an etching gas containing an etching component and a film forming gas containing a film forming component are used. May be sequentially supplied to form the transparent conductive layer 54.
 以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例により制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
 (実施例1)
 CVD法により、ソーダライムシリカガラスからなるガラス板(厚さ3.2mm)上に、第1下地層(SnO2膜:厚さ25nm)、第2下地層(SiO2膜:厚さ25nm)をこの順に積層し、その後スパッタリング法により透明導電層a(ZnO膜:厚さ368nm)を形成して、予備成形体を得た。この予備成形体を基板搬送型大気圧CVD装置に投入し、ガラス板を660℃まで加熱して、ジメチルスズジクロライド(以下「DMT」と表記する)(1.68mol%)、水蒸気(DMTに対する水蒸気のモル比:10)、酸素(DMTに対する酸素のモル比:12)、塩化水素(DMTに対する塩化水素のモル比:0.72)、フッ化水素(DMTに対するフッ化水素のモル比:0.30)およびキャリアガスとしての窒素からなる混合ガスを供給した。これにより、透明導電層aの表面の一部を膜厚方向に後退させて凹部を有する透明導電膜Aを形成するとともに透明導電層A上に透明導電層B(フッ素ドープ酸化スズ膜)を形成し、透明導電膜に空孔を有する透明導電膜付きガラス板を得た。
Example 1
A first underlayer (SnO 2 film: thickness 25 nm) and a second underlayer (SiO 2 film: thickness 25 nm) are formed on a glass plate (thickness 3.2 mm) made of soda lime silica glass by a CVD method. The layers were laminated in this order, and then a transparent conductive layer a (ZnO film: thickness 368 nm) was formed by a sputtering method to obtain a preform. This preform was put into a substrate transfer type atmospheric pressure CVD apparatus, and the glass plate was heated to 660 ° C., and dimethyltin dichloride (hereinafter referred to as “DMT”) (1.68 mol%), water vapor (water vapor relative to DMT). Molar ratio: 10), oxygen (molar ratio of oxygen to DMT: 12), hydrogen chloride (molar ratio of hydrogen chloride to DMT: 0.72), hydrogen fluoride (molar ratio of hydrogen fluoride to DMT: 0. 30) and a mixed gas consisting of nitrogen as a carrier gas was supplied. As a result, a part of the surface of the transparent conductive layer a is retreated in the film thickness direction to form a transparent conductive film A having a recess, and a transparent conductive layer B (fluorine-doped tin oxide film) is formed on the transparent conductive layer A. And the glass plate with a transparent conductive film which has a hole in a transparent conductive film was obtained.
 (実施例2)
 混合ガスにおける塩化水素の濃度をDMTに対するモル比が0.48となるように変更した以外は実施例1と同様にして、透明導電膜に空孔を有する透明導電膜付きガラス板を得た。
(Example 2)
A glass plate with a transparent conductive film having pores in the transparent conductive film was obtained in the same manner as in Example 1 except that the concentration of hydrogen chloride in the mixed gas was changed so that the molar ratio to DMT was 0.48.
 (実施例3)
 混合ガスにおける塩化水素の濃度をDMTに対するモル比が0.96となるように変更した以外は実施例1と同様にして、透明導電膜に空孔を有する透明導電膜付きガラス板を得た。
(Example 3)
A glass plate with a transparent conductive film having pores in the transparent conductive film was obtained in the same manner as in Example 1 except that the concentration of hydrogen chloride in the mixed gas was changed so that the molar ratio to DMT was 0.96.
 (実施例4)
 混合ガスにおける塩化水素の濃度をDMTに対するモル比が1.20となるように変更した以外は実施例1と同様にして、透明導電膜に空孔を有する透明導電膜付きガラス板を得た。
Example 4
A glass plate with a transparent conductive film having pores in the transparent conductive film was obtained in the same manner as in Example 1 except that the concentration of hydrogen chloride in the mixed gas was changed so that the molar ratio to DMT was 1.20.
 (実施例5)
 透明導電層aの厚さを231nmに変更した以外は実施例1と同様にして、透明導電膜に空孔を有する透明導電膜付きガラス板を得た。
(Example 5)
A glass plate with a transparent conductive film having pores in the transparent conductive film was obtained in the same manner as in Example 1 except that the thickness of the transparent conductive layer a was changed to 231 nm.
 (実施例6)
 透明導電層aの厚さを458nmに変更し、混合ガスにおける酸素の濃度をDMTに対するモル比が24となるように増加させた以外は、実施例1と同様にして、透明導電膜に空孔を有する透明導電膜付きガラス板を得た。
(Example 6)
In the same manner as in Example 1, except that the thickness of the transparent conductive layer a was changed to 458 nm and the concentration of oxygen in the mixed gas was increased so that the molar ratio with respect to DMT was 24, pores were formed in the transparent conductive film. A glass plate with a transparent conductive film was obtained.
 (実施例7)
 透明導電層aの厚さを540nmに変更し、混合ガスにおける水蒸気の濃度をDMTに対するモル比が15となるように増加させた以外は、実施例1と同様にして、透明導電膜に空孔を有する透明導電膜付きガラス板を得た。
(Example 7)
In the same manner as in Example 1, except that the thickness of the transparent conductive layer a was changed to 540 nm and the concentration of water vapor in the mixed gas was increased so that the molar ratio with respect to DMT was 15. A glass plate with a transparent conductive film was obtained.
 (実施例8)
 透明導電層aの厚さを458nmに、混合ガスにおけるフッ化水素の濃度をDMTに対するモル比が0.10となるように変更した以外は実施例1と同様にして、第一回目の成膜を行った。続いて、第一回目の成膜で用いた混合ガスから塩化水素を除去して(つまり混合ガスから塩化水素を除去した成膜ガスを用いて)、第一回目と同様に第二回目の透明導電層Bの成膜を行い、透明導電膜に空孔を有する透明導電膜付きガラス板を得た。
(Example 8)
The first film formation was performed in the same manner as in Example 1 except that the thickness of the transparent conductive layer a was changed to 458 nm and the concentration of hydrogen fluoride in the mixed gas was changed so that the molar ratio to DMT was 0.10. Went. Subsequently, hydrogen chloride is removed from the mixed gas used in the first film formation (that is, using a film forming gas obtained by removing hydrogen chloride from the mixed gas), and the second transparent film is formed in the same manner as in the first time. Conductive layer B was formed to obtain a glass plate with a transparent conductive film having pores in the transparent conductive film.
 (比較例1)
 混合ガスから塩化水素を除去した(つまり混合ガスから塩化水素を除去した成膜ガスを用いた)以外は実施例1と同様にして、透明導電膜付きガラス板を得た。
(Comparative Example 1)
A glass plate with a transparent conductive film was obtained in the same manner as in Example 1 except that hydrogen chloride was removed from the mixed gas (that is, a film forming gas from which hydrogen chloride was removed from the mixed gas was used).
 (比較例2)
 透明導電層aを形成しないこと以外は実施例2と同様にして、透明導電膜付きガラス板を得た。
(Comparative Example 2)
A glass plate with a transparent conductive film was obtained in the same manner as in Example 2 except that the transparent conductive layer a was not formed.
 (比較例3)
 混合ガスから塩化水素を除去した(つまり混合ガスから塩化水素を除去した成膜ガスを用いた)以外は実施例7と同様にして、透明導電膜付きガラス板を得た。
(Comparative Example 3)
A glass plate with a transparent conductive film was obtained in the same manner as in Example 7 except that hydrogen chloride was removed from the mixed gas (that is, a film forming gas from which hydrogen chloride was removed from the mixed gas was used).
 実施例1~8と比較例1~3の透明導電膜付きガラス板につき、次のようにして透明導電層Bの厚さ、ヘイズ率、空孔の形状、表面粗さRa、シート抵抗、光線透過率、および耐久性を調べた。また、走査型電子顕微鏡(SEM)を用いて透明導電膜付きガラス板の断面を撮影した。実施例1および比較例1に対応する写真を図3および4に示す。 For the glass plates with a transparent conductive film of Examples 1 to 8 and Comparative Examples 1 to 3, the thickness of the transparent conductive layer B, the haze ratio, the shape of the pores, the surface roughness Ra, the sheet resistance, and the light beam are as follows. The transmittance and durability were examined. Moreover, the cross section of the glass plate with a transparent conductive film was image | photographed using the scanning electron microscope (SEM). Photos corresponding to Example 1 and Comparative Example 1 are shown in FIGS.
 [透明導電層Bの厚さ]
 SEMを用いて透明導電層Bの膜厚方向に沿った断面を観察することにより、透明導電層Bの厚さを測定した。なお、混合ガスを用いて透明導電層Bを形成した後も、透明導電層a(混合ガスの供給後は透明導電層Aとなる)の厚さが変わらないことは、別途SEMを用いた観察により確認済みである。
[Thickness of transparent conductive layer B]
The thickness of the transparent conductive layer B was measured by observing the cross section along the film thickness direction of the transparent conductive layer B using SEM. Note that the thickness of the transparent conductive layer a (which becomes the transparent conductive layer A after the supply of the mixed gas) does not change even after the transparent conductive layer B is formed using the mixed gas. Has been confirmed.
 [ヘイズ率]
 ヘイズメーター(日本電色工業社製NDH 2000)を用い、ガラス板側から透明導電膜付きガラス板に光を入射させて、透明導電膜付きガラス板のヘイズ率を測定した。
[Haze rate]
Using a haze meter (NDH 2000 manufactured by Nippon Denshoku Industries Co., Ltd.), light was incident on the glass plate with a transparent conductive film from the glass plate side, and the haze ratio of the glass plate with the transparent conductive film was measured.
 [空孔の形状および分布]
 電子線プローブマイクロアナライザー(Electron Prove Micro Analyzer:EPMA)を用いて透明導電膜付きガラス板の透明導電膜の表面の100μm×100μmの領域を測定し、亜鉛のマッピングをして亜鉛が存在しない部分を検出した。EPMAのプローブ侵入深さは約1μmであるので、透明導電層Bの上方からであっても、透明導電層Aにおける亜鉛の有無を検出することができる。次いで、画像処理により亜鉛が存在しない部分を空孔と判定し、その個数を測定するとともに各々の空孔の面積を測定した。測定された各々の空孔の平均面積を真円とみなしたときの直径(直径A)を算出した。また、透明導電層A全体の面積に対する測定された空孔の総面積の割合(面積率)を算出した。次に、SEMによって透明導電膜付きガラス板の膜厚方向に沿った断面を観察し、断面方向4mmの範囲に現れた透明導電層A内の空孔について面積を測定し、この平均面積を真円とみなしたときの直径(直径B)を算出した。ただし、直径Aおよび面積率の算出においては、亜鉛が存在しない部分の面積が1μm2以上である部分のみを空孔とみなした。
[Hole shape and distribution]
Using an electron probe microanalyzer (EPMA), measure the area of 100 μm × 100 μm on the surface of the transparent conductive film of the glass plate with a transparent conductive film, and map the zinc to the part where zinc does not exist Detected. Since the EPMA probe penetration depth is about 1 μm, the presence or absence of zinc in the transparent conductive layer A can be detected even from above the transparent conductive layer B. Next, the portion where zinc was not present was determined as a hole by image processing, the number of holes was measured, and the area of each hole was measured. The diameter (diameter A) when the average area of each measured pore was regarded as a perfect circle was calculated. Moreover, the ratio (area ratio) of the measured total area of the void | hole with respect to the area of the transparent conductive layer A whole was computed. Next, the cross section along the film thickness direction of the glass plate with the transparent conductive film was observed by SEM, the area of the voids in the transparent conductive layer A that appeared in the range of 4 mm in the cross section direction was measured, and this average area was true. The diameter (diameter B) when considered as a circle was calculated. However, in the calculation of the diameter A and the area ratio, only the part where the area of the part where zinc does not exist is 1 μm 2 or more was regarded as a hole.
 [表面粗さ]
 原子間力顕微鏡(AFM、エスアイアイナノテクノロジー社製 SPA-400)を用いて、透明導電膜付きガラス板における透明導電膜の表面の10μm×10μmの領域を観測し、解析ソフト(AFM、エスアイアイナノテクノロジー製 Nano Navi)を用いて、透明導電膜Bの表面の表面粗さRaを測定した。
[Surface roughness]
Using an atomic force microscope (AFM, SPA-400 manufactured by SII Nano Technology), a 10 μm × 10 μm region of the surface of the transparent conductive film on the glass plate with a transparent conductive film was observed, and analysis software (AFM, SII The surface roughness Ra of the surface of the transparent conductive film B was measured using Nano Navi).
 [シート抵抗]
 ダイアインスツルメンツ社製MCP-TESTER LORESTA-FPを用いて、透明導電層Bの表面のシート抵抗を測定した。
[Sheet resistance]
The sheet resistance of the surface of the transparent conductive layer B was measured using MCP-TESTER LORESTA-FP manufactured by Dia Instruments.
 [光線透過率]
 ヘイズメーター(日本電色工業社製 NDH2000)を用いて、JIS B 7107に基づき、透明導電膜付きガラス板の光線透過率の測定を行った。
[Light transmittance]
Based on JIS B 7107, the light transmittance of the glass plate with a transparent conductive film was measured using a haze meter (NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.).
 [耐久性]
 恒温恒湿試験のひとつであるプレッシャークッカー試験(PCT)機(タバイエスペック社製、TPC-411)に、透明導電膜付きガラス板を投入し、温度125℃、湿度85%の条件で65時間放置した後に、透明導電膜の剥離の有無を目視で観察した。また、SPIE(SPIE - The International Society for Optical Engineering)で報告されたECDLテスト(Electrochemical delamination test)に基づき(Proceedings of SPIE, Reliability of Photovoltaic Cells, Modules, Components, and Systems, 11-13、Aug.2008 講演番号70480M 参照)、透明導電膜のガラス板面と透明導電層Bの表面との間に100Vの直流電圧を印加した状態で、185℃で15分保持した後に、透明導電膜の剥離の有無を目視で観察した。ECDLテストにおいては、透明導電膜が剥離するまでの保持回数を記録した。
[durability]
A glass plate with a transparent conductive film is put into a pressure cooker test (PCT) machine (TPC-411, manufactured by Tabay Espec Co., Ltd.), one of constant temperature and humidity tests, and left for 65 hours under conditions of a temperature of 125 ° C and a humidity of 85%. Then, the presence or absence of peeling of the transparent conductive film was visually observed. In addition, based on the ECDL test (Electrochemical delamination test) reported in SPIE (SPIE-The International Society for Optical Engineering) (Proceedings of SPIE, Reliability of Photovoltaic Cells, Modules, Components, and 13-13Au, 11-13, August 13-13). Lecture No. 70480M), whether or not the transparent conductive film is peeled off after being held at 185 ° C. for 15 minutes with a DC voltage of 100 V applied between the glass plate surface of the transparent conductive film and the surface of the transparent conductive layer B Was visually observed. In the ECDL test, the number of holding times until the transparent conductive film peeled was recorded.
 実施例1~8と比較例1~3の透明導電膜付きガラス板につき、上記のようにして透明導電層Bの厚さ、ヘイズ率、空孔の形状および分布、表面粗さRa、シート抵抗、光線透過率、耐久性を測定した結果を表1に示す。なお、実施例8の透明導電膜付きガラス板のヘイズ率、空孔の形状および分布、表面粗さRa、シート抵抗、光線透過率、耐久性については、第二回目の透明導電層Bの成膜後の測定結果のみを記載する。 For the glass plates with a transparent conductive film of Examples 1 to 8 and Comparative Examples 1 to 3, the thickness of the transparent conductive layer B, the haze ratio, the shape and distribution of the holes, the surface roughness Ra, the sheet resistance as described above Table 1 shows the results of measurement of light transmittance and durability. In addition, about the haze rate of the glass plate with a transparent conductive film of Example 8, a hole shape and distribution, surface roughness Ra, sheet resistance, light transmittance, and durability, the composition of the second transparent conductive layer B is formed. Only the measurement results after the film are described.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~8の透明導電膜付きガラス板のいずれの透明導電膜にも空孔が形成された。他方、比較例1~3の透明導電膜付きガラス板には空孔が形成されなかった。 Voids were formed in any of the transparent conductive films of the glass plates with the transparent conductive film of Examples 1 to 8. On the other hand, no pores were formed in the glass plates with transparent conductive films of Comparative Examples 1 to 3.
 混合ガスに塩化水素を含む実施例1~8と塩化水素を含まない比較例1、3とを比較すると、実施例1~8の透明導電膜付きガラス板は比較例1、3の透明導電膜付きガラス板に比べて高いヘイズ率を示した。特に、実施例7の透明導電膜付きガラス板と比較例3の透明導電膜付きガラス板との差異は、製造工程における混合ガス中の塩化水素の有無だけであることを考慮すると、混合ガス中の塩化水素が空孔の形成に寄与していることが分かる。 When Examples 1 to 8 containing hydrogen chloride in the mixed gas were compared with Comparative Examples 1 and 3 not containing hydrogen chloride, the glass plates with transparent conductive film of Examples 1 to 8 were transparent conductive films of Comparative Examples 1 and 3. The haze rate was higher than that of the attached glass plate. In particular, considering that the difference between the glass plate with a transparent conductive film of Example 7 and the glass plate with a transparent conductive film of Comparative Example 3 is only the presence or absence of hydrogen chloride in the mixed gas in the production process, It can be seen that hydrogen chloride contributes to the formation of vacancies.
 比較例2の透明導電膜付きガラス板には透明導電層Aが存在しないため、空孔も形成されていない。空孔が形成されていない透明導電膜付きガラス板では、表面の凹凸がヘイズ率を定める主要因となるため、ヘイズ率が高くなるにつれて表面粗さRaも大きくなる。 Since the transparent conductive layer A does not exist in the glass plate with a transparent conductive film of Comparative Example 2, no pores are formed. In the glass plate with a transparent conductive film in which no pores are formed, the surface roughness Ra increases as the haze ratio increases because the surface irregularities are the main factor determining the haze ratio.

Claims (16)

  1.  ガラス板と、前記ガラス板上に形成された透明導電膜と、を備え、
     前記透明導電膜が透明導電層Aと透明導電層Bとを有し、
     前記透明導電層Bが前記透明導電層Aの上に形成され、
     前記透明導電膜が複数の空孔を含み、
     前記複数の空孔の各々が、前記透明導電層Aの表面における凹部を前記透明導電層Bが塞いだものである、
     透明導電膜付きガラス板。
    A glass plate, and a transparent conductive film formed on the glass plate,
    The transparent conductive film has a transparent conductive layer A and a transparent conductive layer B,
    The transparent conductive layer B is formed on the transparent conductive layer A,
    The transparent conductive film includes a plurality of pores;
    Each of the plurality of holes is one in which the transparent conductive layer B blocks a recess in the surface of the transparent conductive layer A.
    A glass plate with a transparent conductive film.
  2.  前記複数の空孔の少なくとも一部の空孔が前記透明導電層Aの全膜厚にわたって拡がっている請求項1に記載の透明導電膜付きガラス板。 The glass plate with a transparent conductive film according to claim 1, wherein at least some of the plurality of holes are spread over the entire film thickness of the transparent conductive layer A.
  3.  前記ガラス板上に形成された下地膜をさらに備え、
     前記透明導電膜が前記下地膜を介して前記ガラス板上に形成された、
     請求項1に記載の透明導電膜付きガラス板。
    Further comprising a base film formed on the glass plate,
    The transparent conductive film was formed on the glass plate through the base film,
    The glass plate with a transparent conductive film according to claim 1.
  4.  前記透明導電膜の表面の表面粗さRaが40nm以下であり、
     ヘイズ率が10%以上である、
     請求項1に記載の透明導電膜付きガラス板。
    The surface roughness Ra of the surface of the transparent conductive film is 40 nm or less,
    The haze rate is 10% or more,
    The glass plate with a transparent conductive film according to claim 1.
  5.  膜厚方向に沿って観察したときの前記複数の空孔の平均面積を円に換算して算出した直径Aが0.5μm以上10μm以下である請求項1に記載の透明導電膜付きガラス板。 2. The glass plate with a transparent conductive film according to claim 1, wherein a diameter A calculated by converting an average area of the plurality of pores into a circle when observed along the film thickness direction is 0.5 μm or more and 10 μm or less.
  6.  膜厚方向に沿って切断した断面に現れる前記複数の空孔の平均面積を円に換算して算出した直径Bが0.1μm以上0.6μm以下である請求項1に記載の透明導電膜付きガラス板。 The transparent conductive film according to claim 1, wherein a diameter B calculated by converting an average area of the plurality of holes appearing in a cross section cut along the film thickness direction into a circle is 0.1 μm or more and 0.6 μm or less. Glass plate.
  7.  膜厚方向に沿って観察したときの前記透明導電膜の面積に対する前記複数の空孔の総面積の割合が10%以上40%以下である請求項1に記載の透明導電膜付きガラス板。 The glass plate with a transparent conductive film according to claim 1, wherein the ratio of the total area of the plurality of pores to the area of the transparent conductive film when observed along the film thickness direction is 10% or more and 40% or less.
  8.  前記透明導電層Aが酸化亜鉛を主成分とする請求項1に記載の透明導電膜付きガラス板。 The glass plate with a transparent conductive film according to claim 1, wherein the transparent conductive layer A contains zinc oxide as a main component.
  9.  前記透明導電層Bが酸化スズを主成分とするとともにフッ素を含有する請求項1に記載の透明導電膜付きガラス板。 The glass plate with a transparent conductive film according to claim 1, wherein the transparent conductive layer B contains tin oxide as a main component and contains fluorine.
  10.  前記透明導電層Aの厚さが180nm以上600nm以下である請求項1に記載の透明導電膜付きガラス板。 The glass plate with a transparent conductive film according to claim 1, wherein the thickness of the transparent conductive layer A is 180 nm or more and 600 nm or less.
  11.  前記透明導電層Bの厚さが200nm以上1000nm以下である請求項1に記載の透明導電膜付きガラス板。 The glass plate with a transparent conductive film according to claim 1, wherein the thickness of the transparent conductive layer B is 200 nm or more and 1000 nm or less.
  12.  前記透明導電膜が、前記透明導電層Bの上に、透明導電層Cをさらに有する請求項1に記載の透明導電膜付きガラス板。 The glass plate with a transparent conductive film according to claim 1, wherein the transparent conductive film further has a transparent conductive layer C on the transparent conductive layer B.
  13.  前記複数の空孔の各々が、前記透明導電層Aの表面の一部の領域が膜厚方向に後退するとともに当該一部の領域を前記透明導電層Bが塞ぐことによって形成されたものである、請求項1に記載の透明導電膜付きガラス板。 Each of the plurality of holes is formed by a part of the surface of the transparent conductive layer A receding in the film thickness direction and the transparent conductive layer B closing the part of the area. The glass plate with a transparent conductive film according to claim 1.
  14.  ガラス板と、前記ガラス板上に形成された複数の空孔を含む透明導電膜と、を備えた透明導電膜付きガラス板の製造方法であって、
     前記ガラス板上に予め形成された透明導電層aの表面に、前記透明導電層aをエッチングすることができるエッチング成分を含むエッチングガスを供給することにより、前記透明導電層aの表面の複数の領域を前記エッチング成分によって膜厚方向に後退させて前記透明導電層aから複数の凹部を有する透明導電層Aを形成する工程と、
     前記透明導電層Aの表面に、酸化されて金属酸化物を生成可能な被酸化成分、および前記被酸化成分を酸化することができる酸化剤を含む成膜ガスを供給することにより、前記複数の凹部を塞ぐように前記透明導電層Aの上に前記金属酸化物を含む透明導電層Bを成膜して前記複数の空孔を形成する工程と、を含む、
     透明導電膜付きガラス板の製造方法。
    A method for producing a glass plate with a transparent conductive film, comprising a glass plate and a transparent conductive film containing a plurality of pores formed on the glass plate,
    By supplying an etching gas containing an etching component capable of etching the transparent conductive layer a to the surface of the transparent conductive layer a formed in advance on the glass plate, a plurality of surfaces on the surface of the transparent conductive layer a Forming a transparent conductive layer A having a plurality of recesses from the transparent conductive layer a by retreating the region in the film thickness direction by the etching component;
    By supplying to the surface of the transparent conductive layer A a film forming gas containing an oxidizable component that can be oxidized to form a metal oxide, and an oxidizing agent that can oxidize the oxidizable component, Forming a plurality of pores by forming a transparent conductive layer B containing the metal oxide on the transparent conductive layer A so as to close the recess,
    The manufacturing method of a glass plate with a transparent conductive film.
  15.  ガラス板と、前記ガラス板上に形成された複数の空孔を含む透明導電膜と、を備えた透明導電膜付きガラス板の製造方法であって、
     前記ガラス板上に予め形成された透明導電層aの表面に、前記透明導電層aをエッチングすることができるエッチング成分、酸化されて金属酸化物を生成可能な被酸化成分、および前記被酸化成分を酸化することができる酸化剤を含む混合ガスを供給することにより、前記透明導電層aの表面の複数の領域を前記エッチング成分によって膜厚方向に後退させて前記透明導電層aから複数の凹部を有する透明導電層Aを形成するとともに、当該複数の凹部を塞ぐように前記透明導電層Aの上に前記金属酸化物を含む透明導電層Bを成膜して前記複数の空孔を形成する、
     透明導電膜付きガラス板の製造方法。
    A method for producing a glass plate with a transparent conductive film, comprising a glass plate and a transparent conductive film containing a plurality of pores formed on the glass plate,
    An etching component capable of etching the transparent conductive layer a on the surface of the transparent conductive layer a previously formed on the glass plate, an oxidizable component capable of being oxidized to form a metal oxide, and the oxidizable component By supplying a mixed gas containing an oxidizing agent that can oxidize a plurality of regions on the surface of the transparent conductive layer a, the etching component causes the etching component to recede in the film thickness direction to form a plurality of recesses from the transparent conductive layer a. And forming the plurality of pores by forming the transparent conductive layer B containing the metal oxide on the transparent conductive layer A so as to close the plurality of recesses. ,
    The manufacturing method of a glass plate with a transparent conductive film.
  16.  前記透明導電層Bの表面に、酸化されて金属酸化物を生成可能な被酸化成分、および前記被酸化成分を酸化することができる酸化剤を含む成膜ガスをさらに供給する請求項15に記載の透明導電膜付きガラス板の製造方法。 The film forming gas containing an oxidizable component capable of being oxidized to generate a metal oxide and an oxidant capable of oxidizing the oxidizable component is further supplied to the surface of the transparent conductive layer B. Manufacturing method of a glass plate with a transparent conductive film.
PCT/JP2011/001575 2010-03-31 2011-03-17 Glass plate provided with transparent conductive film and method for manufacturing the glass plate WO2011121922A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-083847 2010-03-31
JP2010083847A JP2011212988A (en) 2010-03-31 2010-03-31 Glass plate provided with transparent conductive film and method for manufacturing the glass plate

Publications (1)

Publication Number Publication Date
WO2011121922A1 true WO2011121922A1 (en) 2011-10-06

Family

ID=44711692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001575 WO2011121922A1 (en) 2010-03-31 2011-03-17 Glass plate provided with transparent conductive film and method for manufacturing the glass plate

Country Status (2)

Country Link
JP (1) JP2011212988A (en)
WO (1) WO2011121922A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014137967A1 (en) * 2013-03-08 2014-09-12 Corning Incorporated Layered transparent conductive oxide thin films
CN104718581A (en) * 2012-10-17 2015-06-17 旭硝子株式会社 Conductive thin film-equipped glass substrate, thin-film solar cell, low-emissivity glass substrate, and production method for conductive thin film-equipped glass substrate
EP3100986A4 (en) * 2014-01-31 2017-09-20 Nippon Sheet Glass Company, Limited Process for producing glass plate, and glass plate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7186184B2 (en) * 2018-01-11 2022-12-08 日本板硝子株式会社 Method for manufacturing substrate with thin film and substrate with thin film
JP7306502B2 (en) * 2019-07-12 2023-07-11 Agc株式会社 Film-coated glass substrate and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053307A (en) * 1999-05-28 2001-02-23 Nippon Sheet Glass Co Ltd Substrate for photoelectric conversion device and manufacture thereof and photoelectric conversion device using the same
JP2004323321A (en) * 2003-04-25 2004-11-18 Nippon Sheet Glass Co Ltd Method of manufacturing substrate with transparent conductive film
JP2007530311A (en) * 2004-02-23 2007-11-01 シン アン エスエヌピー タイワン カンパニー リミテッド Two-layer transparent conductor scheme with improved etching characteristics for transparent electrodes in electro-optic displays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053307A (en) * 1999-05-28 2001-02-23 Nippon Sheet Glass Co Ltd Substrate for photoelectric conversion device and manufacture thereof and photoelectric conversion device using the same
JP2004323321A (en) * 2003-04-25 2004-11-18 Nippon Sheet Glass Co Ltd Method of manufacturing substrate with transparent conductive film
JP2007530311A (en) * 2004-02-23 2007-11-01 シン アン エスエヌピー タイワン カンパニー リミテッド Two-layer transparent conductor scheme with improved etching characteristics for transparent electrodes in electro-optic displays

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104718581A (en) * 2012-10-17 2015-06-17 旭硝子株式会社 Conductive thin film-equipped glass substrate, thin-film solar cell, low-emissivity glass substrate, and production method for conductive thin film-equipped glass substrate
CN104718581B (en) * 2012-10-17 2018-04-13 旭硝子株式会社 The manufacture method of glass substrate, thin-film solar cells, low emissivity glass substrate with conductive membrane, the glass substrate with conductive membrane
WO2014137967A1 (en) * 2013-03-08 2014-09-12 Corning Incorporated Layered transparent conductive oxide thin films
US9688570B2 (en) 2013-03-08 2017-06-27 Corning Incorporated Layered transparent conductive oxide thin films
EP3100986A4 (en) * 2014-01-31 2017-09-20 Nippon Sheet Glass Company, Limited Process for producing glass plate, and glass plate
US10358381B2 (en) 2014-01-31 2019-07-23 Nippon Sheet Glass Company, Limited Method for producing glass sheet, and glass sheet

Also Published As

Publication number Publication date
JP2011212988A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
US6355353B1 (en) Glass substrate having transparent conductive film
JP5012793B2 (en) Substrate with transparent conductive oxide film and photoelectric conversion element
JP5095776B2 (en) Transparent substrate with transparent conductive film, method for producing the same, and photoelectric conversion element including the substrate
WO2009142156A1 (en) Substrate for thin-film photoelectric conversion device, thin-film photoelectric conversion including the same, and method for producing substrate for thin-film photoelectric conversion device
WO2011121922A1 (en) Glass plate provided with transparent conductive film and method for manufacturing the glass plate
JP3227449B2 (en) Substrate for photoelectric conversion device, method for manufacturing the same, and photoelectric conversion device using the same
JPH02503615A (en) Substrate for solar cells
EP2728623B1 (en) Thin film solar cell and method for manufacturing same
JP5830882B2 (en) Zinc oxide-based transparent conductive film, method for producing the same, and use thereof
JP2013529845A (en) Substrate provided with transparent conductive oxide film and method for manufacturing the same
KR20120037952A (en) Transparent conductive substrate for solar cells, and solar cell
JPWO2013035746A1 (en) Glass substrate with alkali barrier layer and glass substrate with transparent conductive oxide film
JPWO2005027229A1 (en) Substrate with transparent conductive film and method for producing the same
JP2005347490A (en) Substrate with transparent conductive oxide film, its manufacturing method and photoelectric transfer element
JP2013179217A (en) Solar cell and manufacturing method for the same
JP2011129288A (en) Substrate with transparent conductive film and thin film photoelectric conversion device
US20110020621A1 (en) Glass-type substrate coated with thin layers and production method
JP2011228407A (en) Conductive substrate with transparent conductive layer, and manufacturing method of the same
JP2014038807A (en) Substrate with transparent conductive oxide film and manufacturing method therefor
JP2012084843A (en) Substrate with transparent conductive oxide film and photoelectric conversion element
JP5588224B2 (en) Translucent substrate with transparent conductive layer, method for producing transparent substrate with transparent conductive layer, and integrated thin-film photoelectric conversion device using the transparent substrate with transparent conductive layer
JP2009239301A (en) Substrate and photoelectric conversion device using the same
JP2002158366A (en) Photoelectric conversion device
JP2001102607A (en) Substrate for photoelectric conversion element
JP2010140992A (en) Thin-film solar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762175

Country of ref document: EP

Kind code of ref document: A1