JP2011129288A - Substrate with transparent conductive film and thin film photoelectric conversion device - Google Patents

Substrate with transparent conductive film and thin film photoelectric conversion device Download PDF

Info

Publication number
JP2011129288A
JP2011129288A JP2009284743A JP2009284743A JP2011129288A JP 2011129288 A JP2011129288 A JP 2011129288A JP 2009284743 A JP2009284743 A JP 2009284743A JP 2009284743 A JP2009284743 A JP 2009284743A JP 2011129288 A JP2011129288 A JP 2011129288A
Authority
JP
Japan
Prior art keywords
substrate
transparent conductive
conductive film
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009284743A
Other languages
Japanese (ja)
Inventor
Tomomi Meguro
智巳 目黒
Kenji Yamamoto
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2009284743A priority Critical patent/JP2011129288A/en
Publication of JP2011129288A publication Critical patent/JP2011129288A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate with a transparent conductive film wherein a base layer and a transparent conductive film are formed on the substrate in this order, and a photoelectric conversion device having high conversion efficiency. <P>SOLUTION: In the substrate with a transparent conductive film, the transparent conductive film is constituted with a plurality of transparent electrode layers formed by a chemical vapor deposition method. When forming the plurality of transparent electrode layers, a next layer is formed after stopping film deposition by vacuum-exhausting a film deposition chamber after making film deposition of each layer when continuously forming under a pressure-reduced atmosphere. Or, after once stopping the film deposition by taking out the substrate under atmospheric pressure, the next layer is film-deposited under the pressure-reduced atmosphere by again supplying to the film-deposition chamber. A new crystal nucleus is generated on a texture formed by once stopping crystal growth, and the most suitable surface unevenness shape for a thin-film photoelectric conversion device can be formed by forming a new texture from the new crystal nucleus on the basis of these methods. Consequently, the thin-film photoelectric conversion device which can restrain reduction of voltage and a curvilinear factor while retaining short-circuit current density and has high power generation efficiency can be attained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、薄膜光電変換装置の変換効率について改善可能な手段を提供するものであり、特に薄膜光電変換装置における透明導電膜の改良に関する。   The present invention provides means capable of improving the conversion efficiency of a thin film photoelectric conversion device, and particularly relates to improvement of a transparent conductive film in a thin film photoelectric conversion device.

近年、光電変換装置の低コスト化、高効率化を両立するために資源面での問題がほとんど無い薄膜光電変換装置が注目され、開発が精力的に行われている。薄膜光電変換装置の一つである薄膜シリコン太陽電池は、低温で大面積のガラス基板やステンレス基板上に形成できることから、低コスト化が期待できる。この薄膜シリコン太陽電池の変換効率を向上させるために、従来、太陽光の吸収量を増加させる方法として、光電変換層に入射する光の光路長を増加させる工夫がなされてきた。   In recent years, in order to achieve both cost reduction and high efficiency of a photoelectric conversion device, a thin film photoelectric conversion device having almost no problem in terms of resources has been attracting attention and has been vigorously developed. A thin film silicon solar cell, which is one of the thin film photoelectric conversion devices, can be formed on a glass substrate or a stainless steel substrate having a large area at a low temperature. In order to improve the conversion efficiency of this thin-film silicon solar cell, conventionally, as a method for increasing the amount of absorption of sunlight, contrivance has been made to increase the optical path length of light incident on the photoelectric conversion layer.

例えばガラス基板を使用した薄膜シリコン太陽電池の場合は、透明電極である酸化錫(SnO2)膜を熱CVD法により形成することで様々な形のテクスチャを形成する方法、透明電極の表面をエッチングすることで凹凸構造を形成する方法、或いは透明電極とガラス基板の間に凹凸構造を有する層を形成することで入射光の散乱を増大させる方法が行われている。一方、透明電極の凹凸構造はその形状が急峻であったり表面に突起が存在すると、続いて形成される発電層に欠陥が生じたり、電極層と短絡することで漏れ電流が生じ太陽電池の出力が低下する。よって散乱特性を維持しつつ、電圧および曲線因子が低下しない表面形状を形成することが重要である。例えば特許文献1においては、透明電極層の製膜後にシリコン層を形成し、当該シリコン層表面上に突き出た突起に対しエッチングを行うことにより表面を平滑にすることで、発電層における欠陥発生や電極層との短絡を抑制している。しかしながら、本法においては、太陽電池の活性層の一部であるp層やn層を形成した後にエッチングを行うことからシリコン層表面に傷等の欠陥や汚染を生じさせる事になり、引き続き形成する発電層の膜質が低下する。また突起だけではなく、凹凸構造の高さや急峻性については本法において変えることが出来ないため、有効な方法であるとは言えない。また特許文献2においては、透明電極層を多層にすることで膜厚や表面凹凸の全体的なバラツキを抑制しているが、各層の形成が連続的であるため、部分的に急峻な凹凸部の改善に特に有効な方法であるとは言えない。 For example, in the case of a thin-film silicon solar cell using a glass substrate, a tin oxide (SnO 2 ) film, which is a transparent electrode, is formed by a thermal CVD method to form various textures, and the surface of the transparent electrode is etched. Thus, a method of forming a concavo-convex structure or a method of increasing the scattering of incident light by forming a layer having a concavo-convex structure between a transparent electrode and a glass substrate is performed. On the other hand, if the concavo-convex structure of the transparent electrode is steep in shape or has protrusions on the surface, defects will occur in the subsequent power generation layer, or leakage current will occur due to short circuit with the electrode layer, resulting in the output of the solar cell Decreases. Therefore, it is important to form a surface shape in which the voltage and fill factor do not decrease while maintaining the scattering characteristics. For example, in Patent Document 1, a silicon layer is formed after the transparent electrode layer is formed, and defects are generated in the power generation layer by smoothing the surface by etching the protrusion protruding on the surface of the silicon layer. Short circuit with the electrode layer is suppressed. However, in this method, etching is performed after forming the p layer and the n layer, which are part of the active layer of the solar cell, which causes defects such as scratches and contamination on the surface of the silicon layer. The film quality of the power generation layer is reduced. In addition, not only the protrusions but also the height and steepness of the concavo-convex structure cannot be changed by this method, so it cannot be said to be an effective method. Further, in Patent Document 2, the transparent electrode layer is formed into a multilayer, thereby suppressing the overall variation in film thickness and surface unevenness. However, since the formation of each layer is continuous, a partially steep uneven portion is formed. It cannot be said that it is a particularly effective method for improving the above.

特開2001−352081号公報JP 2001-352081 A 特開2004−323321号公報JP 2004-323321 A

本発明は、従来技術が有していた上記の問題を解決し、光電変換層に入射する光の光路長を増大させ、電流を増加させつつ、電圧および曲線因子が低下しない、透明導電膜付き基板および薄膜光電変換装置を得るものである。 The present invention solves the above-described problems of the prior art, increases the optical path length of light incident on the photoelectric conversion layer, increases the current, and does not decrease the voltage and fill factor, with a transparent conductive film A substrate and a thin film photoelectric conversion device are obtained.

本願発明は以下に関するものである。
(1)基板上に下地層、透明導電膜がこの順に形成された透明導電膜付き基板において、当該透明導電膜が減圧雰囲気下CVD法により形成された複数の透明電極層により構成されていることを特徴とする透明導電膜付き基板の製造方法。
(2)前記複数の透明電極層が、減圧雰囲気下にて連続的に形成され、かつ各透明電極層の製膜後に、真空排気により製膜を停止させて次の層を製膜することを特徴とする(1)に記載の透明導電膜付き基板の製造方法。
(3)前記製膜を停止させる場合において、その真空度が3×10-3Pa以下であり、かつ基板温度が100℃以下であることを特徴とする(2)に記載の透明導電膜付き基板の製造方法。
(4)前記複数の透明電極層が、各透明電極層の製膜後に大気圧下に取り出され、再度減圧雰囲気下にて次の層を製膜することを特徴とする(1)に記載の透明導電膜付き基板の製造方法。
(5)前記複数の透明電極層において、各層の製膜後のSDR(表面面積比)は、(n+1)層目の方がn層目よりも小さくなることを特徴とする(1)〜(4)のいずれかに記載の透明導電膜付き基板の製造方法。
(6)前記複数の透明電極層のうちの少なくとも1層が、酸化亜鉛を含むことを特徴とする(1)〜(5)のいずれかに記載の透明導電膜付き基板の製造方法。
(7)前記下地層が、単結晶シリコン基板をエッチングして形成された母型の凹凸構造を、ナノインプリント技術により下地層に転写して形成したものであることを特徴とする(1)〜(6)のいずれかに記載の透明導電膜付き基板の製造方法。
(8)前記下地層が、酸化珪素により形成されていることを特徴とする(1)〜(7)のいずれかに記載の透明導電膜付き基板の製造方法。
(9)(1)〜(8)のいずれかに記載の製造方法により形成したものであることを特徴とする透明導電膜付き基板。
(10)(1)〜(9)のいずれかに記載の透明導電膜付き基板上に、光入射側から少なくとも一つの非晶質シリコン光電変換ユニット、結晶質シリコン光電変換ユニット、裏面電極層の順に積層されたことを特徴とする薄膜光電変換装置。
The present invention relates to the following.
(1) In a substrate with a transparent conductive film in which a base layer and a transparent conductive film are formed in this order on a substrate, the transparent conductive film is composed of a plurality of transparent electrode layers formed by a CVD method under a reduced pressure atmosphere. The manufacturing method of the board | substrate with a transparent conductive film characterized by these.
(2) The plurality of transparent electrode layers are continuously formed in a reduced-pressure atmosphere, and after the formation of each transparent electrode layer, the film formation is stopped by vacuum evacuation to form the next layer. The manufacturing method of the board | substrate with a transparent conductive film as described in (1) characterized by the above-mentioned.
(3) When the film formation is stopped, the degree of vacuum is 3 × 10 −3 Pa or less, and the substrate temperature is 100 ° C. or less. With the transparent conductive film according to (2) A method for manufacturing a substrate.
(4) The plurality of transparent electrode layers are taken out under atmospheric pressure after forming each transparent electrode layer, and the next layer is formed again under a reduced pressure atmosphere. A method for producing a substrate with a transparent conductive film.
(5) In the plurality of transparent electrode layers, the SDR (surface area ratio) after forming each layer is smaller in the (n + 1) th layer than in the nth layer (1) to (1) The manufacturing method of the board | substrate with a transparent conductive film in any one of 4).
(6) The method for producing a substrate with a transparent conductive film according to any one of (1) to (5), wherein at least one of the plurality of transparent electrode layers contains zinc oxide.
(7) The base layer is formed by transferring a concavo-convex structure of a matrix formed by etching a single crystal silicon substrate to the base layer by a nanoimprint technique (1) to ( The manufacturing method of the board | substrate with a transparent conductive film in any one of 6).
(8) The method for manufacturing a substrate with a transparent conductive film according to any one of (1) to (7), wherein the base layer is formed of silicon oxide.
(9) A substrate with a transparent conductive film, which is formed by the production method according to any one of (1) to (8).
(10) On the substrate with a transparent conductive film according to any one of (1) to (9), at least one amorphous silicon photoelectric conversion unit, crystalline silicon photoelectric conversion unit, and back electrode layer from the light incident side. A thin film photoelectric conversion device, which is sequentially stacked.

本発明では基板上に下地層、透明導電膜がこの順に形成された透明導電膜付き基板において、透明導電膜が減圧雰囲気下CVD法により形成された複数の透明電極層により構成されている。上記の複数の透明電極層を形成する場合において、減圧雰囲気下で連続的に形成する場合には、各層の製膜後に製膜室内を真空排気して製膜を完全停止した後、次の層を形成する。或いは各層の製膜後に、一旦大気圧下に基板を取り出し、再度製膜室に投入し減圧雰囲気下で製膜を行う。これらの方法により製膜を停止することで、結晶成長が一旦停止するため、上記透明電極層表面に形成されたテクスチャの上に新たな結晶核が発生し、そこから新たなテクスチャが成長し薄膜光電変換装置に最適な表面凹凸形状が形成される。よって短絡電流密度などの光散乱特性を保持したまま、電圧および曲線因子の低下を抑制でき、結果として高い発電効率を有する薄膜光電変換装置が得られる。   In the present invention, in a substrate with a transparent conductive film in which an underlayer and a transparent conductive film are formed in this order on a substrate, the transparent conductive film is composed of a plurality of transparent electrode layers formed by a CVD method under a reduced pressure atmosphere. In the case of forming the plurality of transparent electrode layers described above, in the case of continuously forming in a reduced pressure atmosphere, after the deposition of each layer, the deposition chamber is evacuated to completely stop the deposition, and then the next layer Form. Alternatively, after film formation of each layer, the substrate is once taken out under atmospheric pressure, and again put into the film formation chamber, and film formation is performed under a reduced pressure atmosphere. When the film formation is stopped by these methods, the crystal growth is temporarily stopped. Therefore, a new crystal nucleus is generated on the texture formed on the surface of the transparent electrode layer, and a new texture is grown therefrom to form a thin film. An uneven surface shape optimal for the photoelectric conversion device is formed. Therefore, a decrease in voltage and fill factor can be suppressed while maintaining light scattering characteristics such as short-circuit current density, and as a result, a thin film photoelectric conversion device having high power generation efficiency can be obtained.

本発明の一態様の透明導電膜付き基板の断面図である。It is sectional drawing of the board | substrate with a transparent conductive film of 1 aspect of this invention. 本発明の一態様の透明導電膜付き基板の断面図である。It is sectional drawing of the board | substrate with a transparent conductive film of 1 aspect of this invention. 本発明のSDRの説明図である。It is explanatory drawing of SDR of this invention. 本発明の一態様の二接合型薄膜シリコン太陽電池(薄膜光電変換装置)の模 式的断面図である。1 is a schematic cross-sectional view of a two-junction thin film silicon solar cell (thin film photoelectric conversion device) according to one embodiment of the present invention. 本発明の実施例1に係る凹凸構造付き基板のAFM像である。It is an AFM image of the board | substrate with an uneven structure which concerns on Example 1 of this invention. 本発明の実施例3に係る凹凸構造付き基板のAFM像である。It is an AFM image of the board | substrate with an uneven structure which concerns on Example 3 of this invention. 本発明の実施例1に係る薄膜光電変換装置のTEM断面図である。It is TEM sectional drawing of the thin film photoelectric conversion apparatus which concerns on Example 1 of this invention.

本発明は、「基板上に下地層、透明導電膜がこの順に形成された透明導電膜付き基板において、当該透明導電膜が減圧雰囲気下CVD法により形成された複数の透明電極層により構成されていることを特徴とする透明導電膜付き基板の製造方法」に関するものである。   The present invention relates to "a substrate with a transparent conductive film in which a base layer and a transparent conductive film are formed in this order on a substrate, wherein the transparent conductive film is composed of a plurality of transparent electrode layers formed by a CVD method under a reduced pressure atmosphere. The manufacturing method of the board | substrate with a transparent conductive film characterized by being ".

以下に、本発明の実施の形態として図を参照しつつ説明する。図1および2は、本発明における透明導電膜付き基板の断面図である。本発明における透明導電膜付き基板4は、図1に示すように基板1上に、下地層2、透明導電膜3がこの順に形成されたものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are cross-sectional views of a substrate with a transparent conductive film according to the present invention. As shown in FIG. 1, the substrate 4 with a transparent conductive film in the present invention is such that a base layer 2 and a transparent conductive film 3 are formed in this order on a substrate 1.

基板1としては、透光性絶縁基板を好ましく用いることができ、中でもガラスや透明樹脂などから成る、板状部材やシート状部材などが好ましく用いられる。   As the substrate 1, a translucent insulating substrate can be preferably used, and among them, a plate-like member or a sheet-like member made of glass or transparent resin is preferably used.

下地層2については、例えばナノインプリント法によりモールド(金型)の凹凸形状を転写する場合には、無機系のゾルゲル材料、またはチタン等の金属酸化物やアルコキシドを添加した有機−無機ハイブリッド材料などを用いることが出来るが、無機系のゾルゲル材料が望ましく、中でもSiO2からなるゾルゲル材料は、ガラスと同じく透過率が高く光の吸収ロスが少ないため特に望ましい。 For the underlayer 2, for example, when transferring the concavo-convex shape of the mold (mold) by the nanoimprint method, an inorganic sol-gel material or an organic-inorganic hybrid material to which a metal oxide such as titanium or an alkoxide is added is used. Although inorganic sol-gel materials can be used, a sol-gel material made of SiO 2 is particularly preferable because it has a high transmittance and a small light absorption loss, similar to glass.

SiO2からなるゾルゲル材料としては具体的にはスピンオンガラス(SOG)材料などを用いることができる。中でもテトラアルコキシシランあるいはアルキルアルコキシランを主成分としたものを用いることが好ましい。 As the sol-gel material made of SiO 2, specifically, a spin-on glass (SOG) material or the like can be used. Among them, it is preferable to use a material mainly composed of tetraalkoxysilane or alkylalkoxylane.

基板1として、例えばガラス基板を用いた場合、当該ガラス基板上に上記下地層を形成する方法としては、ディッピング法、スピンコート法、バーコート法、スプレー法、ダイコート法、ロールコート法、フローコート法などが挙げられるが、簡便にかつ均一性良く形成するには、特にロールコート法又はスピンコート法が好適に用いられる。   When a glass substrate is used as the substrate 1, for example, a dipping method, a spin coat method, a bar coat method, a spray method, a die coat method, a roll coat method, a flow coat is used as a method for forming the base layer on the glass substrate. In order to form easily and uniformly, a roll coating method or a spin coating method is particularly preferably used.

モールドとしては、単結晶シリコン基板を酸又はアルカリでエッチングすることでピラミッド又は逆ピラミッド型の微細構造(以下「テクスチャ」という)が形成された単結晶シリコン基板(以下「母型」という)などを用いることが出来る。   As a mold, a single crystal silicon substrate (hereinafter referred to as “matrix”) in which a pyramid or inverted pyramid microstructure (hereinafter referred to as “texture”) is formed by etching a single crystal silicon substrate with acid or alkali is used. Can be used.

母型のテクスチャを下地層に転写する方法としては、ナノインプリント技術などを用いることが出来る。基板と透明導電膜との間の下地層に、母型と同様のテクスチャを形成することで、界面反射が低減し光散乱が増大すると考えられる。この場合、下地層表面のテクスチャサイズ(すなわち山と谷の間の高さ)は300〜1200nmが望ましい。何故なら、シリコン太陽電池の光吸収特性に合致した散乱特性が得られるからである。またテクスチャの構造はピラミッド型に限定されるものではなく、例えばハニカム状、ポーラス状などの構造を形成しても同様の効果が生じると考えられる。   Nanoimprint technology or the like can be used as a method for transferring the matrix texture to the underlying layer. By forming a texture similar to that of the matrix on the base layer between the substrate and the transparent conductive film, it is considered that interface reflection is reduced and light scattering is increased. In this case, the texture size (that is, the height between peaks and valleys) on the surface of the underlayer is preferably 300 to 1200 nm. This is because a scattering characteristic that matches the light absorption characteristic of the silicon solar cell can be obtained. Further, the texture structure is not limited to the pyramid type, and it is considered that the same effect can be obtained even when a honeycomb structure, a porous structure, or the like is formed.

下地層2としては、図2に示すように、酸化珪素(SiO2)の微粒子を含むものを用いることができる。何故ならSiO2は屈折率が透明導電膜よりも低く、ガラス等の透光性絶縁基板に近い値を有するため、光の界面反射を防ぐことができる。さらに、下地層2の屈折率を調整する目的で、SiO2に加え、酸化チタン(TiO2)、酸化アルミニウム(Al23)、酸化インジウム錫(ITO)、酸化ジルコニウム(ZrO2)、またはフッ化マグネシウム(MgF2)等の微粒子を含んでいてもよい。これらの微粒子を含んだ下地層を形成する方法としては、種々の方法が用いられるが、微粒子と溶媒を含んだバインダー形成材料を共に塗布するロールコート法が好適に用いられる。微粒子により緻密な下地層を均一に形成する事が出来るからである。これらの微粒子のサイズは50nm〜800nm、望ましくは90nm〜600nmが良い。何故なら微粒子のサイズがこれらの範囲にあることにより、例えば薄膜シリコン型の太陽電池の場合においては吸収可能な波長である300〜1200nmについてこのテクスチャサイズにより光が有効に散乱され界面反射が低減される効果が大きくなる。 As the underlayer 2, as shown in FIG. 2, a layer containing fine particles of silicon oxide (SiO 2 ) can be used. This is because SiO 2 has a refractive index lower than that of the transparent conductive film and has a value close to that of a light-transmitting insulating substrate such as glass, so that interface reflection of light can be prevented. Further, for the purpose of adjusting the refractive index of the base layer 2, in addition to SiO 2, titanium oxide (TiO 2), aluminum oxide (Al 2 O 3), indium tin oxide (ITO), zirconium oxide (ZrO 2), or Fine particles such as magnesium fluoride (MgF 2 ) may be included. Various methods are used as a method for forming the underlayer containing these fine particles, and a roll coating method in which a binder forming material containing fine particles and a solvent is applied together is preferably used. This is because a fine underlayer can be uniformly formed with fine particles. The size of these fine particles is 50 nm to 800 nm, preferably 90 nm to 600 nm. This is because when the size of the fine particles is within these ranges, for example, in the case of a thin-film silicon type solar cell, light is effectively scattered by this texture size for an absorption wavelength of 300 to 1200 nm, and interface reflection is reduced. The effect becomes greater.

透明導電膜3は、複数の透明電極層から形成されており、この場合、当該透明電極層としては酸化錫、酸化亜鉛、ITO、またはインジウム−チタン複合酸化物などの金属酸化物が好ましく用いられる。中でも、上記複数の透明電極層のうちの少なくとも1層が、酸化亜鉛を含むことがより好ましい。   The transparent conductive film 3 is formed of a plurality of transparent electrode layers. In this case, a metal oxide such as tin oxide, zinc oxide, ITO, or indium-titanium composite oxide is preferably used as the transparent electrode layer. . Among these, it is more preferable that at least one of the plurality of transparent electrode layers contains zinc oxide.

本発明における透明導電膜3は、CVD法により形成することができる。CVD法では、スパッタなどの物理的気相成長法(PVD)とは異なり、薄い膜厚においても簡単に表面凹凸構造を形成できる。すなわち製膜条件によりテクスチャ構造を変化させることができるため、光の散乱による光閉じ込め効果を制御することが可能となる。   The transparent conductive film 3 in the present invention can be formed by a CVD method. Unlike the physical vapor deposition method (PVD) such as sputtering, the CVD method can easily form a surface uneven structure even in a thin film thickness. That is, since the texture structure can be changed according to the film forming conditions, the light confinement effect due to light scattering can be controlled.

CVD法は、熱CVD法やLP−CVD(減圧CVD)法などが挙げられるが、例えば酸化亜鉛を透明導電膜として用いる場合にはLP−CVD(減圧CVD)法などにより形成することが出来る。上記LP−CVD法による透明導電膜の製膜条件としては、特に限定されないが、例えば、基板温度が150℃、圧力5〜1000Pa、原料ガスとして有機亜鉛、酸化剤、ドーピングガス、および希釈ガスで形成することが好ましい。有機亜鉛としてはジエチル亜鉛(DEZ)やジメチル亜鉛などを用いることが出来るが、酸化剤との反応性が良好なことや原料調達が容易なことからDEZが好ましい。酸化剤としては、水、酸素、二酸化炭素、一酸化炭素、酸化二窒素、二酸化窒素、二酸化硫黄、五酸化二窒素、アルコール類(R(OH))、ケトン類(R(CO)R’)、エーテル類(ROR’)、アルデヒド類(R(COH))、アミド類((RCO)x(NH3-x)、x=1,2,3)、スルホキシド類(R(SO)R’)(ただし、RおよびR’はアルキル基)などを用いることが出来るが、有機亜鉛との反応性が良好でかつ取扱が簡便なことから水を用いることが好ましい。希釈ガスとしては、希ガス(He、Ar、Xe、Kr、Rn)、窒素、水素などを用いることができるが、熱伝導率が高く基板内の均熱性に優れる水素を用いることが好ましい。ドーピングガスとしては、ジボラン(B26)、アルキルアルミ、アルキルガリウムなどを用いることができるが、分解効率に優れたジボランを用いることが望ましい。酸化剤として水を用いる場合において、水は常温常圧で液体であるため、加熱蒸発、バブリング、噴霧などの方法で気化させてから供給することが好ましい。 Examples of the CVD method include a thermal CVD method and an LP-CVD (low pressure CVD) method. For example, when zinc oxide is used as the transparent conductive film, it can be formed by an LP-CVD (low pressure CVD) method or the like. The film-forming conditions of the transparent conductive film by the LP-CVD method are not particularly limited. For example, the substrate temperature is 150 ° C., the pressure is 5 to 1000 Pa, and the source gas is organic zinc, oxidizing agent, doping gas, and dilution gas. It is preferable to form. As the organic zinc, diethyl zinc (DEZ), dimethyl zinc or the like can be used, but DEZ is preferable because of its good reactivity with an oxidizing agent and easy procurement of raw materials. As oxidizing agents, water, oxygen, carbon dioxide, carbon monoxide, dinitrogen oxide, nitrogen dioxide, sulfur dioxide, dinitrogen pentoxide, alcohols (R (OH)), ketones (R (CO) R ′) , Ethers (ROR ′), aldehydes (R (COH)), amides ((RCO) x (NH 3−x ), x = 1,2,3), sulfoxides (R (SO) R ′) (However, R and R ′ are alkyl groups) and the like can be used, but it is preferable to use water because it has good reactivity with organic zinc and is easy to handle. As the diluent gas, a rare gas (He, Ar, Xe, Kr, Rn), nitrogen, hydrogen, or the like can be used, but it is preferable to use hydrogen that has high thermal conductivity and excellent thermal uniformity in the substrate. As the doping gas, diborane (B 2 H 6 ), alkylaluminum, alkylgallium, or the like can be used, but it is desirable to use diborane excellent in decomposition efficiency. In the case where water is used as the oxidant, water is a liquid at normal temperature and pressure, so that it is preferably supplied after being vaporized by a method such as heat evaporation, bubbling, or spraying.

本発明における透明導電膜3は、減圧雰囲気下CVD法により形成された複数の透明電極層により構成されている。この場合、「減圧雰囲気下」とは大気圧より低い圧力であることを意味する。上記複数の透明導電膜を製膜するCVD装置は、仕込み室と製膜室を有する。仕込み室の役割は、製膜する基板の脱着および減圧を行うと共に、製膜室で製膜した基板を再び仕込み室に戻して減圧雰囲気下にて静置する事ができる。すなわち仕込み室の圧力は大気圧〜数Pa程度まで変化させる事が出来る。製膜室は、減圧雰囲気下に保たれており、仕込み室から基板を搬入し、原料となるガスを供給して製膜すると共に、製膜後にガスを排気して真空にする(以下「真空排気」という)場合には、室内の圧力(以下「真空度」という)を3×10-3Pa以下にすることが可能である。本発明における「減圧雰囲気下」とは、製膜時における反応ガスの供給時を除いて、真空に近い状態であることが好ましい。 The transparent conductive film 3 in the present invention is composed of a plurality of transparent electrode layers formed by a CVD method under a reduced pressure atmosphere. In this case, “under reduced pressure atmosphere” means a pressure lower than atmospheric pressure. The CVD apparatus for depositing the plurality of transparent conductive films has a preparation chamber and a deposition chamber. The role of the preparation chamber is to desorb and depressurize the substrate to be formed, and return the substrate formed in the film formation chamber to the preparation chamber again and leave it in a reduced pressure atmosphere. That is, the pressure in the charging chamber can be changed from atmospheric pressure to several Pa. The film forming chamber is maintained in a reduced-pressure atmosphere. The substrate is loaded from the preparation chamber, and a gas as a raw material is supplied to form a film, and after forming the film, the gas is exhausted to make a vacuum (hereinafter referred to as “vacuum”). In the case of “exhaust”, the indoor pressure (hereinafter referred to as “vacuum degree”) can be 3 × 10 −3 Pa or less. The “under reduced pressure atmosphere” in the present invention is preferably in a state close to a vacuum except when a reaction gas is supplied during film formation.

各透明電極層を形成する場合には、一旦製膜を停止して再び製膜を開始することが好ましい。上記のように結晶成長を一旦停止させ、形成されたテクスチャの谷や側面に新たな結晶核が発生し、そこから新たなテクスチャが成長することでテクスチャの数が増加すると共に、急峻な形状が緩和され、後に成長する発電層の表面カバーレッジが改善する。これにより、光散乱特性を保持したまま、発電層におけるクラック等の線欠陥の発生等に伴う電気的欠陥を抑制する最適なテクスチャ形状が形成される。CVD法により形成する利点としては、スパッタ法などの物理的気相成長法とは異なり、薄い膜厚においても凹凸形状が形成されやすいことにある。   When forming each transparent electrode layer, it is preferable to stop the film formation and start the film formation again. As described above, once the crystal growth is stopped, new crystal nuclei are generated in the valleys and side surfaces of the formed texture, and the new texture grows from there. The surface coverage of the power generation layer that is relaxed and grows later is improved. Thereby, the optimal texture shape which suppresses the electrical defect accompanying generation | occurrence | production of line defects, such as a crack in a power generation layer, with a light-scattering characteristic maintained is formed. The advantage of forming by the CVD method is that, unlike a physical vapor deposition method such as a sputtering method, an uneven shape is easily formed even with a thin film thickness.

以下に、製膜を停止する方法について説明する。製膜を停止する方法としては、減圧雰囲気下における方法、あるいは大気圧下における方法があげられる。「減圧雰囲気下における方法」とは、減圧雰囲気下において連続的に形成され、製膜室にて各透明電極層を製膜した後、真空排気して製膜を停止する方法である。ここで、「減圧雰囲気下において連続的に形成する」とは、大気圧下に取り出すことなく、減圧状態を保ったまま各層を形成することを意味する。また上記方法において、製膜を停止させるためには、基板を製膜室から仕込み室等へ搬出して静置する方法も好ましく用いることができる。製膜を停止させるためには、製膜室内の真空度を3×10-3Pa以下とすることが好ましい。またこの場合、基板温度を100℃以下とすることがより好ましい。この範囲の真空度とすることで製膜を停止させることができ、また基板温度を上記範囲にすることでさらに完全に製膜を停止させることが可能となる。「大気圧下における方法」とは、製膜室において製膜した後、基板を大気圧下に取り出し、再度製膜室に入れて減圧雰囲気下にて次の層を製膜する方法のことをいう。このように一旦大気圧下に取り出すことにより、製膜を停止させることができる。このとき、製膜室から仕込み室を経て大気圧下に取り出すことが好ましい。 Below, the method to stop film forming is demonstrated. Examples of the method for stopping film formation include a method under a reduced pressure atmosphere and a method under atmospheric pressure. The “method in a reduced-pressure atmosphere” is a method that is continuously formed in a reduced-pressure atmosphere, and after forming each transparent electrode layer in the film-forming chamber, evacuation is performed to stop the film formation. Here, “to form continuously in a reduced-pressure atmosphere” means to form each layer while maintaining a reduced-pressure state without taking it out under atmospheric pressure. Moreover, in the said method, in order to stop film forming, the method of carrying out a board | substrate from a film forming chamber to a preparation chamber etc. and leaving still can also be used preferably. In order to stop the film formation, the degree of vacuum in the film formation chamber is preferably set to 3 × 10 −3 Pa or less. In this case, the substrate temperature is more preferably 100 ° C. or lower. Film formation can be stopped by setting the degree of vacuum within this range, and film formation can be more completely stopped by setting the substrate temperature within the above range. The "method under atmospheric pressure" refers to a method in which after the film is formed in the film forming chamber, the substrate is taken out under atmospheric pressure, and then placed in the film forming chamber again to form the next layer in a reduced pressure atmosphere. Say. Thus, once taking out under atmospheric pressure, film formation can be stopped. At this time, it is preferable to take it out from the film forming chamber through the preparation chamber to atmospheric pressure.

上記方法のうち「減圧雰囲気下における方法」は、基板を装置から取り出すことなく、ガスの供給・排気や室内温度の調整などによってのみ製膜を停止させることができる。また各透明電極層をCVD法のみにより製膜することができるため、CVD法とスパッタ法などといった異なる製膜方法を併用する場合に比べて、コストや生産性等の観点から特に好ましく使用することができる。   Among the above methods, the “method under a reduced pressure atmosphere” can stop film formation only by supplying / exhausting gas or adjusting the room temperature without removing the substrate from the apparatus. In addition, since each transparent electrode layer can be formed only by the CVD method, it is particularly preferably used from the viewpoint of cost, productivity, etc., compared to the case where different film forming methods such as the CVD method and the sputtering method are used in combination. Can do.

上記透明導電膜3を形成する「複数の透明電極層」において、各層の製膜後のSDR(表面面積比)は、(n+1)層目の方がn層目よりも小さくなることが好ましい。ここでnは1以上の整数を表し、下地層2上に1層目、2層目・・・の順に各透明電極層を形成するものとする。すなわち図1の場合は3aよりも3bの方がSDRが小さくなることが好ましい。ここで、SDRは、図3の図及び数式で定義されるように、平坦な表面に対する凹凸表面の表面積の比であり、この値が大きいほどテクスチャの表面積が大きいこと(すなわち急峻な凸部を持つテクスチャが形成されていること)を意味し、この値が小さいほどテクスチャの表面積が大きいこと(すなわちなだらかな凸部を持つテクスチャが形成されていること)を意味する。このようにして透明導電膜3を形成した場合、表面がなだらかな凹凸構造になるため、その上に形成される発電層などに欠陥が生じることを抑制でき、結果として電圧および曲線因子といった太陽電池特性の低下を抑制することが可能となる。   In the “plurality of transparent electrode layers” forming the transparent conductive film 3, the SDR (surface area ratio) after film formation of each layer is preferably smaller in the (n + 1) th layer than in the nth layer. Here, n represents an integer of 1 or more, and the transparent electrode layers are formed on the base layer 2 in the order of the first layer, the second layer,. That is, in the case of FIG. 1, it is preferable that SDR is smaller in 3b than in 3a. Here, SDR is the ratio of the surface area of the uneven surface to the flat surface, as defined by the diagram and the mathematical formula of FIG. 3, and the larger this value, the larger the surface area of the texture (that is, the steep convex portion). The smaller the value, the larger the surface area of the texture (that is, the texture having a gentle convex portion is formed). When the transparent conductive film 3 is formed in this way, the surface has a gentle concavo-convex structure, so that it is possible to suppress the generation of defects in the power generation layer and the like formed thereon, resulting in a solar cell such as voltage and fill factor. It becomes possible to suppress the deterioration of characteristics.

また、上記透明導電膜3を形成する「複数の透明電極層」において、各層の製膜後のSDS(サミット密度)は、(n+1)層目の方がn層目よりも大きくなることが好ましい。すなわち図1の場合は3bの方が3aよりもSDSが大きくなることが好ましい。ここでSDSは「単位面積あたりの極大値の数」を示し、例えばテクスチャの場合は頂点の数を示す。よって(n+1)層目の方がn層目よりも、表面上の頂点の数が多くなることが好ましい。この場合、短絡電流密度などの光散乱特性の保持効果が期待できると考えられる。   In addition, in the “plurality of transparent electrode layers” forming the transparent conductive film 3, it is preferable that the SDS (summit density) after forming each layer is larger in the (n + 1) th layer than in the nth layer. . That is, in the case of FIG. 1, it is preferable that SDS is larger in 3b than in 3a. Here, SDS indicates “the number of maximum values per unit area”. For example, in the case of texture, the number indicates the number of vertices. Therefore, it is preferable that the number of vertices on the surface is larger in the (n + 1) th layer than in the nth layer. In this case, it is considered that the effect of maintaining the light scattering characteristics such as the short circuit current density can be expected.

上記のように(n+1)層目の方がn層目よりもSDRが小さく、SDSが大きくなることにより、すなわちテクスチャ数を保持したまま表面をなだらかな凹凸構造にすることにより、短絡電流密度などの光散乱特性を保持したまま、電圧および曲線因子等の太陽電池特性を向上させることができると考えられる。   As described above, the (n + 1) -th layer has a smaller SDR and a larger SDS than the n-th layer, that is, by making the surface a gentle uneven structure while maintaining the number of textures, the short-circuit current density, etc. It is considered that the solar cell characteristics such as voltage and fill factor can be improved while maintaining the light scattering characteristics.

各透明電極層の膜厚については、例えば透明電極層として酸化亜鉛を用いる場合、(n+1)層目の酸化亜鉛層の膜厚は、n層目の酸化亜鉛層の膜厚を超えない事が好ましい。例えば1層目の酸化亜鉛層3aの膜厚は1〜2μmに対し、2層目の酸化亜鉛層3bの膜厚は0.1〜0.4μmであることが好ましい。この範囲の膜厚にすることで、光閉じ込め効果に有効に寄与する凹凸構造を十分に付与することができる。また透明電極層として必要な導電性が得やすく、また酸化亜鉛自体による光吸収も起こりにくいことから光電変換ユニットへ到達する光量の減少も抑制でき、変換効率が上昇すると考えられる。各透明電極層の製膜条件は同一にしても、あるいは変更しても良いが、最も高品質な膜が得られる製膜条件に固定して製膜する事が望ましい。   Regarding the film thickness of each transparent electrode layer, for example, when zinc oxide is used as the transparent electrode layer, the film thickness of the (n + 1) th zinc oxide layer may not exceed the film thickness of the nth zinc oxide layer. preferable. For example, the thickness of the first zinc oxide layer 3a is preferably 1 to 2 μm, and the thickness of the second zinc oxide layer 3b is preferably 0.1 to 0.4 μm. By setting the film thickness within this range, a concavo-convex structure that contributes effectively to the light confinement effect can be sufficiently imparted. In addition, it is easy to obtain the necessary conductivity for the transparent electrode layer, and light absorption by zinc oxide itself is less likely to occur, so it is possible to suppress a decrease in the amount of light reaching the photoelectric conversion unit, thereby increasing the conversion efficiency. The film forming conditions for each transparent electrode layer may be the same or may be changed, but it is desirable to form the film by fixing the film forming conditions to obtain the highest quality film.

上記複数の透明電極層により形成した透明導電膜3については、膜厚をエリプソメーター、ヘイズ率をヘイズメーター、Sa(平均粗さ)、SDS(サミット密度)、およびSDR(表面面積比)をAFM(原子間顕微鏡)でそれぞれ測定した。エリプソメトリー測定は、分光エリプソメーターVASE(ジェイ・エー・ウーラム社製)を用いて行った。ヘイズ率とは(拡散光透過率)/(全光線透過率)×100で表される値であり、JIS K7136に準拠する方法で測定を行った。測定は日本電色工業製NDH 5000Wを用いて行った。シート抵抗は、抵抗率計ロレスタGP MCT−610(三菱化学社製)を用い、JISK−7194に基づいて測定した。なお、本発明におけるSa、SDS、SDRは、一辺が5μmの正方形領域を観察した原子間力顕微鏡(AFM)像から求めている(ISO 4287/1)。このAFM測定にはNano−Rシステム(Pacific Nanotechnology社製)のノンコンタクトモードが用いられた。   For the transparent conductive film 3 formed of the plurality of transparent electrode layers, the film thickness is an ellipsometer, the haze ratio is a haze meter, Sa (average roughness), SDS (summit density), and SDR (surface area ratio) are AFM. Each was measured by (atomic microscope). Ellipsometry measurement was performed using a spectroscopic ellipsometer VASE (manufactured by JA Woollam). The haze ratio is a value represented by (diffuse light transmittance) / (total light transmittance) × 100, and was measured by a method based on JIS K7136. The measurement was performed using NDH 5000W manufactured by Nippon Denshoku Industries Co., Ltd. The sheet resistance was measured based on JISK-7194 using a resistivity meter Loresta GP MCT-610 (manufactured by Mitsubishi Chemical Corporation). Note that Sa, SDS, and SDR in the present invention are obtained from an atomic force microscope (AFM) image obtained by observing a square region having a side of 5 μm (ISO 4287/1). The non-contact mode of Nano-R system (manufactured by Pacific Nanotechnology) was used for this AFM measurement.

透明導電膜3のヘイズ率は、5〜80%程度、さらには35〜80%程度が好ましく、シート抵抗は5〜20Ω/□程度に設定されるのが好ましい。   The haze ratio of the transparent conductive film 3 is preferably about 5 to 80%, more preferably about 35 to 80%, and the sheet resistance is preferably set to about 5 to 20Ω / □.

以上により透明導電膜付き基板4が形成することができる。   Thus, the substrate 4 with a transparent conductive film can be formed.

次に本発明の薄膜光電変換装置の代表的な断面図を図4に示す。図4では透明導電膜付き基板4上に、非晶質シリコン光電変換ユニット5、結晶質シリコン光電変換ユニット6、および裏面電極層7の順に配置されている。   Next, a typical cross-sectional view of the thin film photoelectric conversion device of the present invention is shown in FIG. In FIG. 4, the amorphous silicon photoelectric conversion unit 5, the crystalline silicon photoelectric conversion unit 6, and the back electrode layer 7 are arranged in this order on the substrate 4 with a transparent conductive film.

まず、透明導電膜付き基板4上に非晶質シリコン光電変換ユニット5をプラズマCVD法などで形成することができる。非晶質シリコン光電変換ユニット5は、約360〜800nmの光に感度を有することが好ましい。非晶質シリコン光電変換ユニット5は、p型非晶質シリコンカーバイド層51、i型非晶質シリコン層52、及びn型微結晶シリコン層53からなる構造のものを用いることができる。   First, the amorphous silicon photoelectric conversion unit 5 can be formed on the substrate 4 with a transparent conductive film by a plasma CVD method or the like. The amorphous silicon photoelectric conversion unit 5 is preferably sensitive to light of about 360 to 800 nm. As the amorphous silicon photoelectric conversion unit 5, a structure composed of a p-type amorphous silicon carbide layer 51, an i-type amorphous silicon layer 52, and an n-type microcrystalline silicon layer 53 can be used.

非晶質シリコンカーバイド層51はシラン、ジボラン、水素、メタンなどをチャンバーに導入することにより形成することが出来る。この時、非晶質シリコンカーバイド層51の膜厚としては5nm以上50nm以下に設定されることが好ましい。次に製膜ガスとしてシランおよび水素を導入することにより、i型非晶質シリコン層52が100nm以上500nm以下の膜厚で形成されることが好ましい。さらに製膜ガスとしてシラン、ホスフィン、水素をチャンバーに導入することでn型微結晶シリコン層53を5nm以上50nm以下の膜厚に形成することが好ましい。51、52、53の膜厚は、上記範囲に限定されることなく、適宜変更することができる。   The amorphous silicon carbide layer 51 can be formed by introducing silane, diborane, hydrogen, methane, or the like into the chamber. At this time, the film thickness of the amorphous silicon carbide layer 51 is preferably set to 5 nm or more and 50 nm or less. Next, it is preferable that the i-type amorphous silicon layer 52 is formed to a thickness of 100 nm to 500 nm by introducing silane and hydrogen as a film forming gas. Furthermore, it is preferable to form the n-type microcrystalline silicon layer 53 with a film thickness of 5 nm to 50 nm by introducing silane, phosphine, and hydrogen into the chamber as a film forming gas. The film thicknesses of 51, 52, and 53 are not limited to the above ranges, and can be changed as appropriate.

次に、非晶質シリコン光電変換ユニット5の上に結晶質シリコン光電変換ユニット6を形成する。結晶質シリコン光電変換ユニット6を形成する方法としては、まずp型微結晶シリコン層61がシラン、ジボラン、水素をチャンバーに導入することにより形成される。この時膜厚は5nm以上50nm以下で形成されることが好ましい。次に製膜ガスとしてシランおよび水素を導入することによりi型結晶質シリコン層62が0.5μmから3.5μm以下の膜厚で形成されることが好ましい。さらに製膜ガスとしてシラン、ホスフィン、水素をチャンバーに導入することでn型微結晶シリコン層63を5nm以上50nm以下の膜厚に形成することが好ましい。61、62、63の膜厚は、上記範囲に限定されることなく、適宜変更することができる。   Next, the crystalline silicon photoelectric conversion unit 6 is formed on the amorphous silicon photoelectric conversion unit 5. As a method of forming the crystalline silicon photoelectric conversion unit 6, first, the p-type microcrystalline silicon layer 61 is formed by introducing silane, diborane, and hydrogen into the chamber. At this time, the film thickness is preferably 5 nm or more and 50 nm or less. Next, it is preferable that the i-type crystalline silicon layer 62 is formed with a film thickness of 0.5 μm to 3.5 μm by introducing silane and hydrogen as a film forming gas. Furthermore, it is preferable to form the n-type microcrystalline silicon layer 63 with a thickness of 5 nm to 50 nm by introducing silane, phosphine, and hydrogen into the chamber as a film forming gas. The film thicknesses of 61, 62, and 63 are not limited to the above range and can be changed as appropriate.

次に、裏面電極層7を形成する。裏面電極層7としては酸化亜鉛層71とAg層72からなる2層構造とすることが好ましい。酸化亜鉛層71はスパッタ法やCVD法などにより作成されるが、シリコン層への電気的なダメージを低減できることから、CVD法で形成することが好ましい。Ag層72については、スパッタリング法や蒸着法などで形成することが出来る。上記裏面電極層7は上記のものに限定されることなく、その他の材料も用いることができる。   Next, the back electrode layer 7 is formed. The back electrode layer 7 preferably has a two-layer structure including a zinc oxide layer 71 and an Ag layer 72. The zinc oxide layer 71 is formed by a sputtering method, a CVD method, or the like, but is preferably formed by a CVD method because electrical damage to the silicon layer can be reduced. The Ag layer 72 can be formed by sputtering or vapor deposition. The back electrode layer 7 is not limited to the above, and other materials can also be used.

上述のような実施の形態の具体的な例として、以下において、いくつかの実施例を比較例と共に説明する。
(実施例1)
実施例1として図4に示すような薄膜光電変換装置を作成した。
まず厚み0.7mm、125mm角のガラス基板1上に下地層2としてSiO2層をゾルゲル法により形成した。コーティング液としては、SOG材料として用いられているSiO2ゾルゲル液(商品名:ハネウエル社製 512B)を用い、塗布の方法としてスピンコート法を用いて膜厚1000nmの下地層2を形成した。
As specific examples of the embodiment described above, some examples will be described below together with comparative examples.
Example 1
As Example 1, a thin film photoelectric conversion device as shown in FIG.
First, an SiO 2 layer was formed as a foundation layer 2 on a glass substrate 1 having a thickness of 0.7 mm and a 125 mm square by a sol-gel method. As a coating solution, a SiO 2 sol-gel solution (trade name: 512B manufactured by Honeywell) used as an SOG material was used, and a base layer 2 having a film thickness of 1000 nm was formed using a spin coating method as a coating method.

続いて下地層2が形成された基板全体をホットプレート上で60℃、20分間プリベークを行い、下地層を半硬化させた。続いてインプリント装置に上記基板を搬入し、表面にテクスチャサイズ600nmのピラミッド型のテクスチャ構造が形成された母型を用い、ナノインプリント法により下地層が形成された基板に押し当てることで、下地層にテクスチャ構造を形成した。なお母型は、アセトンおよびエタノールにて超音波照射下、脱脂洗浄を行ない、引き続いて水酸化カリウム/イソプロピルアルコール混合水溶液に浸漬し所定の時間エッチングすることでテクスチャ構造を形成したものを使用している。   Subsequently, the entire substrate on which the underlayer 2 was formed was pre-baked on a hot plate at 60 ° C. for 20 minutes to semi-cure the underlayer. Subsequently, the substrate is carried into the imprint apparatus, and the base layer is pressed against the substrate on which the base layer is formed by the nanoimprint method using a matrix having a textured structure having a texture size of 600 nm formed on the surface. A texture structure was formed. The mother mold is made by degreasing and cleaning with ultrasonic irradiation with acetone and ethanol, followed by immersion in a potassium hydroxide / isopropyl alcohol mixed aqueous solution and etching for a predetermined time to form a textured structure. Yes.

次に、凹凸構造が形成された基板を大気雰囲気下400℃で1時間焼成した。この基板の透過率を、分光光度計にて凹凸構造が形成されていない側から光を入射し測定したところ、波長400〜1200nmの範囲で85%以上の透過率であり、ヘイズ率は52%、Saは81.1nm、SDSは7.52 1/μm2、SDRは23.9%であった。上記の凹凸構造付き基板表面のAFM像を図5に示す。 Next, the substrate on which the uneven structure was formed was baked at 400 ° C. for 1 hour in an air atmosphere. The transmittance of this substrate was measured by entering light from the side where the uneven structure was not formed with a spectrophotometer. The transmittance was 85% or more in the wavelength range of 400 to 1200 nm, and the haze ratio was 52%. , Sa was 81.1 nm, SDS was 7.52 1 / μm 2 , and SDR was 23.9%. FIG. 5 shows an AFM image of the surface of the substrate with the concavo-convex structure.

次に上記の凹凸構造が形成された基板をCVD装置の仕込み室に搬入して減圧した後、引き続き減圧雰囲気下にある製膜室に搬入した。その後、透明電極層3aとしてB(ボロン)がドープされた酸化亜鉛を、上記基板の凹凸構造が形成された側に1.2μmの膜厚で形成した。この場合透明電極層3aの形成条件として、まず上記基板を製膜室内に搬入し基板温度を150℃まで温調した。その後水素を1000sccm、水素で5000ppmに希釈されたジボランを500sccm、水を100sccm、ジエチル亜鉛を50sccm導入した。この時の製膜室内の圧力は10Paとした。上記の製膜後、製膜室内の圧力(すなわち真空度)が3×10-3Paになるまで真空排気した後に基板を仕込み室に搬入し、基板温度が80℃になるまで放置した。このときの仕込み室内の圧力は5Paであった。続いて、再び基板を製膜室に搬入し、透明電極層3aと同条件で透明電極層3bを0.4μmの厚さで形成し、透明導電膜3とした。 Next, the substrate on which the concavo-convex structure was formed was carried into the preparation chamber of the CVD apparatus and depressurized, and then carried into the film forming chamber under a reduced pressure atmosphere. Thereafter, zinc oxide doped with B (boron) was formed as a transparent electrode layer 3a with a film thickness of 1.2 μm on the side where the uneven structure of the substrate was formed. In this case, as a condition for forming the transparent electrode layer 3a, the substrate was first carried into the film forming chamber and the substrate temperature was adjusted to 150 ° C. Thereafter, 1000 sccm of hydrogen, 500 sccm of diborane diluted to 5000 ppm with hydrogen, 100 sccm of water, and 50 sccm of diethylzinc were introduced. The pressure in the film forming chamber at this time was 10 Pa. After film formation, the substrate was evacuated until the pressure in the film formation chamber (that is, the degree of vacuum) was 3 × 10 −3 Pa, the substrate was carried into the preparation chamber, and left until the substrate temperature reached 80 ° C. The pressure in the charging chamber at this time was 5 Pa. Subsequently, the substrate was again carried into the film forming chamber, and the transparent electrode layer 3b was formed to a thickness of 0.4 μm under the same conditions as the transparent electrode layer 3a.

この場合、3bを形成後の透明導電膜付き基板4の特性は、全光線透過率が83.6%、シート抵抗は22Ω/□、ヘイズ率は72%、Saは78.4nm、SDSは60.9 1/μm2、SDRは55.7%であった。 In this case, the characteristics of the substrate 4 with a transparent conductive film after forming 3b are as follows: total light transmittance is 83.6%, sheet resistance is 22Ω / □, haze ratio is 72%, Sa is 78.4 nm, and SDS is 60 .9 1 / μm 2 and the SDR was 55.7%.

続いて非晶質シリコン光電変換ユニット5を形成するためにこの透明導電膜付き基板4をプラズマCVD装置内に導入し、この上に、ボロンドープのp型非晶質シリコンカーバイド(SiC)層51を10nm、ノンドープのi型非晶質シリコン変換層52を300nm、リンドープのn型微結晶シリコン層53を20nmの膜厚でそれぞれ製膜した。   Subsequently, in order to form the amorphous silicon photoelectric conversion unit 5, the substrate 4 with a transparent conductive film is introduced into a plasma CVD apparatus, and a boron-doped p-type amorphous silicon carbide (SiC) layer 51 is formed thereon. A 10 nm, non-doped i-type amorphous silicon conversion layer 52 was formed to a thickness of 300 nm, and a phosphorus-doped n-type microcrystalline silicon layer 53 was formed to a thickness of 20 nm.

引き続いてボロンドープのp型微結晶シリコン層61を15nm、ノンドープのi型結晶質シリコン変換層62を0.7μm、リンドープのn型微結晶シリコン層63を20nmの膜厚でそれぞれプラズマCVD法により製膜した。これにより結晶質シリコン光電変換ユニット6を形成した。さらに裏面電極層7として酸化亜鉛層を71nm、Ag層72を300nmの膜厚で、それぞれスパッタ法により形成した。   Subsequently, a boron-doped p-type microcrystalline silicon layer 61 having a thickness of 15 nm, a non-doped i-type crystalline silicon conversion layer 62 having a thickness of 0.7 μm, and a phosphorus-doped n-type microcrystalline silicon layer 63 having a thickness of 20 nm are formed by plasma CVD. Filmed. Thereby, the crystalline silicon photoelectric conversion unit 6 was formed. Further, a zinc oxide layer having a thickness of 71 nm and an Ag layer 72 having a thickness of 300 nm were formed as the back electrode layer 7 by sputtering.

以上のようにして得られた薄膜光電変換装置から1cm角の受光面積を有する光電変換ユニットを分離し、その光電変換特性を測定した。すなわちAM1.5のスペクトル分布を有するソーラシミュレータを用いて、擬似太陽光を25℃の下で100mW/cm2のエネルギー密度で照射して出力特性を測定したところ、開放端電圧が1.37V、短絡電流密度が10.6mA/cm2、曲線因子が69.5%、そして変換効率が10.2%であった。結果を表1に示す。また上記の薄膜光電変換装置の断面TEM写真を図7に示す。 A photoelectric conversion unit having a 1 cm square light receiving area was separated from the thin film photoelectric conversion device obtained as described above, and the photoelectric conversion characteristics were measured. That is, using a solar simulator having a spectral distribution of AM1.5, the pseudo-sunlight was irradiated with an energy density of 100 mW / cm 2 at 25 ° C., and the output characteristics were measured. The short-circuit current density was 10.6 mA / cm 2 , the fill factor was 69.5%, and the conversion efficiency was 10.2%. The results are shown in Table 1. A cross-sectional TEM photograph of the above thin film photoelectric conversion device is shown in FIG.

(実施例2)
次に実施例2として実施例1と同様に薄膜光電変換装置を形成した。但し、実施例1における透明電極層の形成方法においてのみ異なっていた。すなわち透明電極層3aを形成後に仕込み室より基板を大気圧下に取り出した(大気暴露した)後に、再度仕込み室に搬入して減圧し、引き続き減圧雰囲気下である製膜室に搬入して透明電極層3bを形成した。その結果、3aを形成した段階で基板の特性を評価したところ、全光線透過率は87.6%、シート抵抗は40.2Ω/□、ヘイズ率は65.7%、Saは103nm、SDSは50.0 1/μm2、SDRは76.5%であった。また透明電極層3b形成後の透明導電膜付き基板4の全光線透過率が83.6%、ヘイズ率70%、シート抵抗は22.7Ω/□、Saは78.4nm、SDSは60.0 1/μm2、SDRは55.7%であり、実施例1と同様の特性が得られた。また、3a形成後と3b形成後の基板特性を比較した場合、特に積層構造とする(すなわち3a層形成後に3b層を形成する)ことによりSDSが増加しSDRが低下していることから、テクスチャの数が増加すると共になだらかな表面凹凸形状が形成されたといえる。また同様に薄膜光電変換装置を形成し光電変換特性を測定したところ、開放端電圧が1.37V、短絡電流密度が10.5mA/cm2、曲線因子が70.0%、そして変換効率が10.1%であり、実施例1と比較して同様の特性が得られた。
(Example 2)
Next, as Example 2, a thin film photoelectric conversion device was formed in the same manner as in Example 1. However, the difference was only in the method for forming the transparent electrode layer in Example 1. That is, after the transparent electrode layer 3a is formed, the substrate is taken out from the preparation chamber under atmospheric pressure (exposure to the atmosphere), and then transferred again into the preparation chamber and depressurized, and subsequently transferred into the film forming chamber under a reduced-pressure atmosphere to be transparent. Electrode layer 3b was formed. As a result, when the characteristics of the substrate were evaluated at the stage of forming 3a, the total light transmittance was 87.6%, the sheet resistance was 40.2Ω / □, the haze ratio was 65.7%, Sa was 103 nm, and SDS was It was 50.0 1 / μm 2 and the SDR was 76.5%. Further, the total light transmittance of the substrate 4 with a transparent conductive film after the formation of the transparent electrode layer 3b is 83.6%, the haze ratio is 70%, the sheet resistance is 22.7Ω / □, Sa is 78.4 nm, and SDS is 60.0. 1 / μm 2 and SDR were 55.7%, and the same characteristics as in Example 1 were obtained. In addition, when comparing the substrate characteristics after the formation of 3a and after the formation of 3b, since the SDS increases and the SDR decreases due to the laminated structure (that is, the 3b layer is formed after the 3a layer is formed), the texture is decreased. It can be said that a smooth surface irregularity shape was formed as the number of Similarly, when a thin film photoelectric conversion device was formed and the photoelectric conversion characteristics were measured, the open-circuit voltage was 1.37 V, the short-circuit current density was 10.5 mA / cm 2 , the fill factor was 70.0%, and the conversion efficiency was 10 The same characteristics as those of Example 1 were obtained.

以上より、減圧雰囲気下にて連続的に製膜しても(減圧雰囲気下のまま製膜を停止させても)、また製膜装置の外に出して再度製膜しても(大気圧下にて製膜を停止させても)同様の効果が得られた。   From the above, even if the film is continuously formed in a reduced pressure atmosphere (even if the film formation is stopped in a reduced pressure atmosphere), or even if the film is formed out of the film forming apparatus and then formed again (at atmospheric pressure) The same effect was obtained even when film formation was stopped at

(比較例1)
次に比較例1として実施例1、2と同様に薄膜光電変換装置を形成した。但し、実施例1、2で該当する透明電極層3aのみにより構成され、3bが存在せずかつ透明電極層3aの膜厚が1.6μmであることにおいてのみ異なっていた。すなわち実施例1、2と同様に下地層2を形成し、透明電極層3aを形成した。この場合、ヘイズは71%、Saは85.8nm、SDSは37.9 1/μm2、SDRは74.6%であった。引き続き同様の方法にて非晶質光電変換ユニット6、結晶質シリコン光電変換ユニット7、裏面電極層8を製膜し、二接合型薄膜シリコン太陽電池を形成した。以上のようにして得られた薄膜光電変換装置から1cm角の受光面積を有する光電変換ユニットを分離し、その光電変換特性を測定した。ソーラシミュレータ試験の結果、開放端電圧が1.34V、短絡電流密度が10.5mA/cm2、曲線因子が68.0%、そして変換効率が9.57%であった。
(Comparative Example 1)
Next, as Comparative Example 1, a thin film photoelectric conversion device was formed in the same manner as in Examples 1 and 2. However, only the transparent electrode layer 3a corresponding to Examples 1 and 2 was configured, and the difference was only in that 3b was not present and the film thickness of the transparent electrode layer 3a was 1.6 μm. That is, the base layer 2 was formed in the same manner as in Examples 1 and 2, and the transparent electrode layer 3a was formed. In this case, haze was 71%, Sa was 85.8 nm, SDS was 37.9 1 / μm 2 , and SDR was 74.6%. Subsequently, the amorphous photoelectric conversion unit 6, the crystalline silicon photoelectric conversion unit 7, and the back electrode layer 8 were formed by the same method to form a two-junction thin film silicon solar cell. A photoelectric conversion unit having a 1 cm square light receiving area was separated from the thin film photoelectric conversion device obtained as described above, and the photoelectric conversion characteristics were measured. As a result of the solar simulator test, the open-circuit voltage was 1.34 V, the short-circuit current density was 10.5 mA / cm 2 , the fill factor was 68.0%, and the conversion efficiency was 9.57%.

以上の結果より、同じ膜厚であっても、最表面に細かい微細な凹凸構造を形成することにより散乱特性と表面形状が改善し、特性が大幅に向上している。結果を表1に示す。   From the above results, even with the same film thickness, by forming a fine fine uneven structure on the outermost surface, the scattering characteristics and the surface shape are improved, and the characteristics are greatly improved. The results are shown in Table 1.

(実施例3)
次に実施例3として実施例1と同様に薄膜光電変換装置を形成した。但し、実施例1、2における下地層2の形成方法においてのみ異なっていた。すなわち、まず厚み0.7mm、125mm角のガラス基板1上にSiO2微粒子を含む下地層2を形成した。下地層2を形成する際に用いた塗布液は、粒径90nmの球状シリカ分散液、水、エチルセロソルブの混合液にテトラエトキシシランを加え、更に塩酸を添加してテトラエトキシシランを加水分解させたものを用いた。塗布液を印刷機にてガラス上に塗布した後、90℃で30分乾燥し、その後350℃で5分加熱することにより、表面に微細な凹凸が形成されていることを確認した。この基板の表面を原子間力顕微鏡(AFM)で観察したところ、微粒子の形状を反映し、凸部が曲面からなる凹凸が確認され、ヘイズ率は1%、Saは21nm、SDSは48.6 1/μm2、SDRは34.6%であった。上記の凹凸構造付き基板表面のAFM像を図6に示す。
(Example 3)
Next, as Example 3, a thin film photoelectric conversion device was formed in the same manner as in Example 1. However, the difference was only in the formation method of the underlayer 2 in Examples 1 and 2. That is, first, an underlayer 2 containing SiO 2 fine particles was formed on a glass substrate 1 having a thickness of 0.7 mm and a square of 125 mm. The coating solution used to form the underlayer 2 is a mixture of a spherical silica dispersion having a particle size of 90 nm, water, and ethyl cellosolve, and tetraethoxysilane is added to the mixture to further hydrolyze the tetraethoxysilane. Used. After apply | coating a coating liquid on glass with a printing machine, after drying for 30 minutes at 90 degreeC, it confirmed that the fine unevenness | corrugation was formed on the surface by heating for 5 minutes at 350 degreeC after that. When the surface of this substrate was observed with an atomic force microscope (AFM), the shape of the fine particles was reflected, and the projections and depressions were confirmed to be curved, with a haze ratio of 1%, Sa of 21 nm, and SDS of 48.6. The 1 / μm 2 and the SDR were 34.6%. FIG. 6 shows an AFM image of the surface of the substrate with the concavo-convex structure.

次に実施例1と同様の方法で透明電極層3aと3bを形成した。この場合透明電極層3bを形成後の特性は、全光線透過率が85%、ヘイズ率は15.0%、シート抵抗は18Ω/□、Saは30.0nm、SDSは52.0 1/μm2、SDRは45.7%であった。引き続き同様の方法にて非晶質光電変換ユニット6、結晶質シリコン光電変換ユニット7、裏面電極層8を製膜し、薄膜光電変換装置を形成した。 Next, transparent electrode layers 3a and 3b were formed in the same manner as in Example 1. In this case, after forming the transparent electrode layer 3b, the total light transmittance is 85%, the haze ratio is 15.0%, the sheet resistance is 18Ω / □, Sa is 30.0 nm, and SDS is 52.0 1 / μm. 2 and SDR was 45.7%. Subsequently, the amorphous photoelectric conversion unit 6, the crystalline silicon photoelectric conversion unit 7, and the back electrode layer 8 were formed by the same method to form a thin film photoelectric conversion device.

以上のようにして得られた薄膜光電変換装置から1cm角の受光面積を有する光電変換ユニットを分離し、その光電変換特性を測定した。すなわちAM1.5のスペクトル分布を有するソーラシミュレータを用いて、擬似太陽光を25℃の下で100mW/cm2のエネルギー密度で照射して出力特性を測定したところ、開放端電圧が1.37V、短絡電流密度が10.2mA/cm2、曲線因子が70.1%、そして変換効率が9.80%であった。結果を表1に示す。 A photoelectric conversion unit having a 1 cm square light receiving area was separated from the thin film photoelectric conversion device obtained as described above, and the photoelectric conversion characteristics were measured. That is, using a solar simulator having a spectral distribution of AM1.5, the pseudo-sunlight was irradiated with an energy density of 100 mW / cm 2 at 25 ° C., and the output characteristics were measured. The short circuit current density was 10.2 mA / cm 2 , the fill factor was 70.1%, and the conversion efficiency was 9.80%. The results are shown in Table 1.

(実施例4)
次に実施例4として実施例3と同様に薄膜光電変換装置を形成した。但し、実施例3における透明電極層の形成方法においてのみ異なっていた。すなわち透明電極層3aを製膜室で形成後に、仕込み室を経て基板を大気圧下に取り出し大気暴露した後に、再度仕込み室より製膜室へ基板を搬入し、製膜室にて透明電極層3bを形成した。その結果、透明電極層3a形成後の特性(3a形成後に大気暴露した後、すなわち3b形成前の特性)は、全光線透過率は84.2%、ヘイズ率11%、シート抵抗は34Ω/□、Saは31.4nm、SDSは45.0 1/μm2、SDRは51.9%であった。また、3bを形成後の特性は、全光線透過率が83.7%、ヘイズ率15%、シート抵抗は19Ω/□、Saは29nm、SDSは52.0 1/μm2、SDRは46.7%であり、実施例3と同様の特性が得られた。また同様に薄膜光電変換装置を形成し光電変換特性を測定したところ、開放端電圧が1.37V、短絡電流密度が10.1mA/cm2、曲線因子が70.5%、そして変換効率が9.76%であり、実施例3と比較して同様の特性が得られた。
Example 4
Next, as Example 4, a thin film photoelectric conversion device was formed in the same manner as in Example 3. However, the difference was only in the method for forming the transparent electrode layer in Example 3. That is, after the transparent electrode layer 3a is formed in the film forming chamber, the substrate is taken out to atmospheric pressure through the preparation chamber and exposed to the atmosphere, and then the substrate is again transferred from the preparation chamber to the film forming chamber. 3b was formed. As a result, the characteristics after the transparent electrode layer 3a was formed (after exposure to the atmosphere after the formation of 3a, that is, the characteristics before the formation of 3b) were 84.2% in total light transmittance, 11% in haze ratio, and 34Ω / □ in sheet resistance. , Sa was 31.4 nm, SDS was 45.0 1 / μm 2 , and SDR was 51.9%. Further, after the formation of 3b, the total light transmittance was 83.7%, the haze ratio was 15%, the sheet resistance was 19Ω / □, Sa was 29 nm, SDS was 52.0 1 / μm 2 , and SDR was 46. The same characteristics as in Example 3 were obtained. Similarly, when a thin film photoelectric conversion device was formed and the photoelectric conversion characteristics were measured, the open-circuit voltage was 1.37 V, the short-circuit current density was 10.1 mA / cm 2 , the fill factor was 70.5%, and the conversion efficiency was 9 It was 0.76%, and the same characteristics as in Example 3 were obtained.

以上より、減圧雰囲気下にて連続的に製膜しても(減圧雰囲気下のまま製膜を停止させても)、また製膜装置の外に出して再度製膜しても(大気圧下にて製膜を停止させても)同様の効果が得られた。従って、装置の稼動状況や生産状態などに合わせて最適な方法を選択すれば良いと考えられる。   From the above, even if the film is continuously formed in a reduced pressure atmosphere (even if the film formation is stopped in a reduced pressure atmosphere), or even if the film is formed out of the film forming apparatus and then formed again (at atmospheric pressure) The same effect was obtained even when film formation was stopped at Therefore, it is considered that an optimal method should be selected in accordance with the operation status and production status of the apparatus.

(比較例2)
次に比較例2として実施例3、4と同様に薄膜光電変換装置を形成した。但し、実施例3、4で該当する透明電極層3aのみにより構成され、3bが存在せずかつ透明電極層3aの膜厚が1.6μmであることにおいてのみ異なっていた。すなわち実施例3、4と同様に下地層2を形成し、透明電極層3aを形成したところ透過率82%、ヘイズ率14%、シート抵抗は20Ω/□、Saは30.0nm、SDSは37.0 1/μm2、SDRは50.0%であった。引き続き同様の方法にて非晶質光電変換ユニット6、結晶質シリコン光電変換ユニット7、裏面電極層8を製膜し、薄膜光電変換装置を形成した。以上のようにして得られた薄膜光電変換装置から1cm角の受光面積を有する光電変換ユニットを分離し、その光電変換特性を測定した。ソーラシミュレータ試験の結果、開放端電圧が1.33V、短絡電流密度が10.2mA/cm2、曲線因子が67.5%、そして変換効率が9.16%であった。これらの結果より、同じ膜厚であっても、テクスチャの数を増加させてなだらかな形状を形成することにより散乱特性と表面形状が改善し、特性が大幅に向上した。結果を表1に示す。
(Comparative Example 2)
Next, as Comparative Example 2, a thin film photoelectric conversion device was formed in the same manner as in Examples 3 and 4. However, only the transparent electrode layer 3a corresponding to Examples 3 and 4 was configured, and the difference was only in that 3b was not present and the film thickness of the transparent electrode layer 3a was 1.6 μm. That is, when the base layer 2 was formed in the same manner as in Examples 3 and 4 and the transparent electrode layer 3a was formed, the transmittance was 82%, the haze ratio was 14%, the sheet resistance was 20Ω / □, Sa was 30.0 nm, and SDS was 37. 0.0 1 / μm 2 and the SDR was 50.0%. Subsequently, the amorphous photoelectric conversion unit 6, the crystalline silicon photoelectric conversion unit 7, and the back electrode layer 8 were formed by the same method to form a thin film photoelectric conversion device. A photoelectric conversion unit having a 1 cm square light receiving area was separated from the thin film photoelectric conversion device obtained as described above, and the photoelectric conversion characteristics were measured. As a result of the solar simulator test, the open circuit voltage was 1.33 V, the short circuit current density was 10.2 mA / cm 2 , the fill factor was 67.5%, and the conversion efficiency was 9.16%. From these results, even when the film thickness was the same, the scattering characteristics and the surface shape were improved by increasing the number of textures to form a gentle shape, and the characteristics were greatly improved. The results are shown in Table 1.

1 基板
2 下地層
3 透明導電膜
3a 透明電極層
3b 透明電極層
4 透明導電膜付き基板
5 非晶質シリコン光電変換ユニット
51 p型非晶質シリコンカーバイド層
52 i型非晶質シリコン層
53 n型微結晶シリコン層
6 結晶質シリコン光電変換ユニット
61 p型微結晶シリコン層
62 i型結晶質シリコン層
63 n型微結晶シリコン層
7 裏面電極層
71 酸化亜鉛層
72 Ag層
DESCRIPTION OF SYMBOLS 1 Substrate 2 Underlayer 3 Transparent conductive film 3a Transparent electrode layer 3b Transparent electrode layer 4 Substrate with transparent conductive film 5 Amorphous silicon photoelectric conversion unit 51 p-type amorphous silicon carbide layer 52 i-type amorphous silicon layer 53 n 6 microcrystalline silicon layer 6 crystalline silicon photoelectric conversion unit 61 p type microcrystalline silicon layer 62 i type crystalline silicon layer 63 n type microcrystalline silicon layer 7 back electrode layer 71 zinc oxide layer 72 Ag layer

Claims (10)

基板上に下地層、透明導電膜がこの順に形成された透明導電膜付き基板において、当該透明導電膜が減圧雰囲気下CVD法により形成された複数の透明電極層により構成されていることを特徴とする透明導電膜付き基板の製造方法。 A substrate with a transparent conductive film in which a base layer and a transparent conductive film are formed in this order on a substrate, wherein the transparent conductive film is composed of a plurality of transparent electrode layers formed by a CVD method under a reduced pressure atmosphere. A method for manufacturing a substrate with a transparent conductive film. 前記複数の透明電極層が、減圧雰囲気下にて連続的に形成され、かつ各透明電極層の製膜後に、真空排気により製膜を停止させて次の層を製膜することを特徴とする請求項1に記載の透明導電膜付き基板の製造方法。 The plurality of transparent electrode layers are continuously formed in a reduced-pressure atmosphere, and after forming each transparent electrode layer, the film formation is stopped by vacuum evacuation to form the next layer. The manufacturing method of the board | substrate with a transparent conductive film of Claim 1. 前記製膜を停止させる場合において、その真空度が3×10-3Pa以下であり、かつ基板温度が100℃以下であることを特徴とする請求項2に記載の透明導電膜付き基板の製造方法。 3. The production of a substrate with a transparent conductive film according to claim 2, wherein when the film formation is stopped, the degree of vacuum is 3 × 10 −3 Pa or less and the substrate temperature is 100 ° C. or less. Method. 前記複数の透明電極層が、各透明電極層の製膜後に大気圧下に取り出され、再度減圧雰囲気下にて次の層を製膜することを特徴とする請求項1に記載の透明導電膜付き基板の製造方法。 2. The transparent conductive film according to claim 1, wherein the plurality of transparent electrode layers are taken out under atmospheric pressure after the formation of each transparent electrode layer, and the next layer is formed again under a reduced pressure atmosphere. A method for manufacturing a substrate with a substrate. 前記複数の透明電極層において、各層の製膜後のSDR(表面面積比)は、(n+1)層目の方がn層目よりも小さくなることを特徴とする請求項1〜4のいずれかに記載の透明導電膜付き基板の製造方法。 5. The SDR (surface area ratio) after film formation of each layer in the plurality of transparent electrode layers is characterized in that the (n + 1) th layer is smaller than the nth layer. The manufacturing method of the board | substrate with a transparent conductive film of description. 前記複数の透明電極層のうちの少なくとも1層が、酸化亜鉛を含むことを特徴とする請求項1〜5のいずれかに記載の透明導電膜付き基板の製造方法。 The method for producing a substrate with a transparent conductive film according to claim 1, wherein at least one of the plurality of transparent electrode layers contains zinc oxide. 前記下地層が、単結晶シリコン基板をエッチングして形成された母型の凹凸構造を、ナノインプリント技術により下地層に転写して形成したものであることを特徴とする請求項1〜6のいずれかに記載の透明導電膜付き基板の製造方法。 The base layer is formed by transferring a concavo-convex structure of a matrix formed by etching a single crystal silicon substrate to the base layer by a nanoimprint technique. The manufacturing method of the board | substrate with a transparent conductive film of description. 前記下地層が、酸化珪素により形成されていることを特徴とする請求項1〜7のいずれかに記載の透明導電膜付き基板の製造方法。 The method for manufacturing a substrate with a transparent conductive film according to claim 1, wherein the underlayer is formed of silicon oxide. 請求項1〜8のいずれかに記載の製造方法により形成したものであることを特徴とする透明導電膜付き基板。 It forms with the manufacturing method in any one of Claims 1-8, The board | substrate with a transparent conductive film characterized by the above-mentioned. 請求項1〜9のいずれかに記載の透明導電膜付き基板上に、光入射側から少なくとも一つの非晶質シリコン光電変換ユニット、結晶質シリコン光電変換ユニット、裏面電極層の順に積層されたことを特徴とする薄膜光電変換装置。 On the substrate with a transparent conductive film according to claim 1, at least one amorphous silicon photoelectric conversion unit, a crystalline silicon photoelectric conversion unit, and a back electrode layer were laminated in this order from the light incident side. A thin film photoelectric conversion device.
JP2009284743A 2009-12-16 2009-12-16 Substrate with transparent conductive film and thin film photoelectric conversion device Pending JP2011129288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009284743A JP2011129288A (en) 2009-12-16 2009-12-16 Substrate with transparent conductive film and thin film photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009284743A JP2011129288A (en) 2009-12-16 2009-12-16 Substrate with transparent conductive film and thin film photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2011129288A true JP2011129288A (en) 2011-06-30

Family

ID=44291678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009284743A Pending JP2011129288A (en) 2009-12-16 2009-12-16 Substrate with transparent conductive film and thin film photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2011129288A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368513A (en) * 2011-11-11 2012-03-07 保定天威集团有限公司 Preparation method of double-structure suede transparent conducting oxide thin film of thin film cell
JP2012174899A (en) * 2011-02-22 2012-09-10 Mitsubishi Materials Corp Transparent substrate with composite film for solar cell and manufacturing method therefor
WO2013176048A1 (en) * 2012-05-25 2013-11-28 旭硝子株式会社 Method for feeding raw material and device for feeding raw material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174899A (en) * 2011-02-22 2012-09-10 Mitsubishi Materials Corp Transparent substrate with composite film for solar cell and manufacturing method therefor
CN102368513A (en) * 2011-11-11 2012-03-07 保定天威集团有限公司 Preparation method of double-structure suede transparent conducting oxide thin film of thin film cell
CN102368513B (en) * 2011-11-11 2013-03-27 保定天威集团有限公司 Preparation method of double-structure suede transparent conducting oxide thin film of thin film cell
WO2013176048A1 (en) * 2012-05-25 2013-11-28 旭硝子株式会社 Method for feeding raw material and device for feeding raw material

Similar Documents

Publication Publication Date Title
JP5559704B2 (en) MANUFACTURING METHOD FOR SUBSTRATE WITH TRANSPARENT CONDUCTIVE FILM, MULTI-JUNCTION TYPE THIN-FILM PHOTOELECTRIC CONVERSION DEVICE AND LIGHT-EMITTING DEVICE
JP5156641B2 (en) Substrate with transparent conductive film for photoelectric conversion device and method for manufacturing photoelectric conversion device
EP2333818B1 (en) Transparent conductive film, and transparent electrode comprising same
JP2005311292A (en) Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same
WO2005093854A1 (en) Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
JP6046619B2 (en) Thin film solar cell and manufacturing method thereof
US20150171261A1 (en) Transparent conductive oxide (tco) layer, and systems, apparatuses and methods for fabricating a transparent conductive oxide (tco) layer
WO2009157447A1 (en) Substrate provided with transparent conductive film, thin film photoelectric conversion device and method for manufacturing the substrate
JP2013529845A (en) Substrate provided with transparent conductive oxide film and method for manufacturing the same
US20080210300A1 (en) Method of Producing Substrate for Thin Film Photoelectric Conversion Device, and Thin Film Photoelectric Conversion Device
Jang et al. Three dimensional a-Si: H thin-film solar cells with silver nano-rod back electrodes
JP2011129288A (en) Substrate with transparent conductive film and thin film photoelectric conversion device
WO2011121922A1 (en) Glass plate provided with transparent conductive film and method for manufacturing the glass plate
JP2013179217A (en) Solar cell and manufacturing method for the same
US10103282B2 (en) Direct texture transparent conductive oxide served as electrode or intermediate layer for photovoltaic and display applications
JP2012174735A (en) Thin film solar cell
TW201327862A (en) Conductive substrate and fabricating method thereof, and solar cell
JP5513963B2 (en) Method for producing conductive substrate with transparent conductive layer
Park et al. Influence on the haze effect of Si thin-film solar cell on multi-surface textures of periodic honeycomb glass
Hussain et al. Advanced Light scattering through various textured glass surface morphologies in thin film silicon solar cells
JP5827224B2 (en) Thin film solar cell and manufacturing method thereof
JP2009111183A (en) Transparent conductive film for photoelectric conversion device, and manufacturing method therefor
JP2011146529A (en) Method of manufacturing die for insulating substrate with base
JP2013191587A (en) Back electrode, manufacturing method therefor, and thin-film solar cell
JP2007234996A (en) Method of manufacturing thin-film solar cell, and thin-film solar cell