JP2010140992A - Thin-film solar battery - Google Patents

Thin-film solar battery Download PDF

Info

Publication number
JP2010140992A
JP2010140992A JP2008314119A JP2008314119A JP2010140992A JP 2010140992 A JP2010140992 A JP 2010140992A JP 2008314119 A JP2008314119 A JP 2008314119A JP 2008314119 A JP2008314119 A JP 2008314119A JP 2010140992 A JP2010140992 A JP 2010140992A
Authority
JP
Japan
Prior art keywords
film
semiconductor layer
conductive transparent
metal electrode
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008314119A
Other languages
Japanese (ja)
Inventor
Kensuke Takenaka
研介 竹中
Akihiro Takano
章弘 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2008314119A priority Critical patent/JP2010140992A/en
Publication of JP2010140992A publication Critical patent/JP2010140992A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means to suppress deterioration of film quality of a semiconductor layer and deterioration of conversion efficiency owing to influence of a texture structure of the surface of a metal electrode, in a thin-film solar battery formed by laminating at least the metal electrode, a conductive transparent film, the semiconductor layer and a conductive transparent electrode in this order. <P>SOLUTION: The conductive transparent film formed on the metal electrode is formed so as to have a film thickness of not less than 0.5 μm. Thus, influence of the texture structure on the surface of the metal electrode is reduced, and deterioration of film quality of the semiconductor layer is suppressed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光電変換効率の高効率化を可能とする薄膜太陽電池に関する。   The present invention relates to a thin-film solar cell that enables high photoelectric conversion efficiency.

半導体薄膜を利用した薄膜太陽電池として、基板上に、金属電極、導電性透明膜、半導体層、導電性透明電極を順次積層した構造を有するものがある(特許文献1、2、3)。
ここで、金属電極は、裏面電極として使用されるが、薄膜太陽電池に入射した光のうち、半導体層で吸収されなかった光を反射して半導体層に戻し、入射した光を有効に光電変換する裏面反射効果を奏する働きもする。このため、銀(Ag)、アルミニウム(Al)などの光反射率の高い金属の薄膜が、金属電極として用いられる。
Some thin-film solar cells using a semiconductor thin film have a structure in which a metal electrode, a conductive transparent film, a semiconductor layer, and a conductive transparent electrode are sequentially laminated on a substrate (Patent Documents 1, 2, and 3).
Here, the metal electrode is used as the back electrode, but among the light incident on the thin film solar cell, the light that has not been absorbed by the semiconductor layer is reflected back to the semiconductor layer, and the incident light is effectively photoelectrically converted. It also has the function of producing a back surface reflection effect. For this reason, a metal thin film having a high light reflectance such as silver (Ag) or aluminum (Al) is used as the metal electrode.

半導体層は、アモルファスシリコン(a−Si)、多結晶シリコンまたは微結晶シリコンなどの半導体材料を用いて形成される。
金属電極と半導体層の間に形成された導電性透明膜について、特許文献2には、導電性透明膜は、金属電極と半導体層の熱膨張係数の相違による熱歪みを緩和して付着性を高め、かつ金属原子が半導体層へ拡散するのを防止すると述べられている。また、特許文献1には、導電性透明膜は金属電極の表面で反射した光に多重干渉効果を生じさせるため、反射する光の反射率が向上すると述べられている。
The semiconductor layer is formed using a semiconductor material such as amorphous silicon (a-Si), polycrystalline silicon, or microcrystalline silicon.
Regarding the conductive transparent film formed between the metal electrode and the semiconductor layer, Patent Document 2 discloses that the conductive transparent film has reduced adhesion due to the difference in thermal expansion coefficient between the metal electrode and the semiconductor layer. It is said to increase and prevent metal atoms from diffusing into the semiconductor layer. Further, Patent Document 1 states that since the conductive transparent film produces a multiple interference effect on the light reflected on the surface of the metal electrode, the reflectance of the reflected light is improved.

裏面反射効果を奏する金属電極について、特許文献1には、金属電極の表面に微細な凹凸を形成して、テクスチャー構造を形成することが述べられている。テクスチャー構造を形成することにより、金属電極の表面で反射する入射光が拡散反射されて、半導体層内部に閉じこめられるため、入射光を有効に光電変換することができる利点がある。
このように、金属電極の表面をテクスチャー構造とした場合、入射光を有効に光電変換することができるが、他方、つぎのような問題点を生じる。基板上に積層した金属電極と導電性透明膜の上に形成した半導体層の膜質が低下することがある。半導体層として、微結晶シリコンの薄膜を用いる場合、金属電極表面のテクスチャー構造の影響を受けて、微結晶シリコンの成長方向がランダムとなるときは、欠陥を生じて、その膜質が低下するため、変換効率が低下する。
Regarding a metal electrode having a back surface reflection effect, Patent Document 1 describes that fine irregularities are formed on the surface of the metal electrode to form a texture structure. By forming the texture structure, the incident light reflected on the surface of the metal electrode is diffusely reflected and confined in the semiconductor layer, so that there is an advantage that the incident light can be effectively photoelectrically converted.
As described above, when the surface of the metal electrode has a texture structure, incident light can be effectively photoelectrically converted, but the following problems occur. The film quality of the semiconductor layer formed on the metal electrode laminated on the substrate and the conductive transparent film may deteriorate. When a microcrystalline silicon thin film is used as the semiconductor layer, when the growth direction of the microcrystalline silicon is random due to the influence of the texture structure on the surface of the metal electrode, defects are generated and the film quality is lowered. Conversion efficiency decreases.

そこで、本発明は、金属電極表面のテクスチャー構造の影響を受けて、半導体層の膜質が低下し、変換効率が低下することを抑止する手段を提供することを課題とする。
特開平6−204535号公報 特開2000−252497号公報 特開2003−101052号公報
Accordingly, an object of the present invention is to provide a means for preventing the film quality of the semiconductor layer from being lowered and the conversion efficiency from being lowered due to the influence of the texture structure on the surface of the metal electrode.
JP-A-6-204535 JP 2000-252497 A JP 2003-101052 A

上記課題は、基板上に少なくとも金属電極、導電性透明膜、半導体層、導電性透明電極がこの順で積層されてなる薄膜太陽電池において、前記導電性透明膜の膜厚を0.5μm以上に形成することにより解決される。
請求項1に記載の発明は、基板上に、少なくとも金属電極、導電性透明膜、半導体層、導電性透明電極がこの順で積層されてなる薄膜太陽電池において、前記導電性透明膜の膜厚が0.5μm以上であることを特徴とする薄膜太陽電池に係るものである。
In the thin film solar cell in which at least a metal electrode, a conductive transparent film, a semiconductor layer, and a conductive transparent electrode are laminated in this order on a substrate, the thickness of the conductive transparent film is 0.5 μm or more. It is solved by forming.
The invention according to claim 1 is a thin film solar cell in which at least a metal electrode, a conductive transparent film, a semiconductor layer, and a conductive transparent electrode are laminated in this order on a substrate, and the film thickness of the conductive transparent film Is a thin film solar cell characterized by being 0.5 μm or more.

請求項2に記載の発明は、前記半導体層が、微結晶シリコン、アモルファスシリコン、多結晶シリコンからなる群から選ばれてなることを特徴とする請求項1に記載の薄膜太陽電池に係るものである。
請求項1に記載の発明によれば、金属電極の上に形成する導電性透明膜の膜厚を0.5μm以上とすることにより、金属電極表面のテクスチャー構造の影響が減少するため、導電性透明膜の上に形成する半導体層の膜質の低下を抑止することができる。請求項2に記載の発明では、半導体層が微結晶シリコンからなる薄膜太陽電池において、導電性透明膜の膜厚を0.5μm以上とすることにより、金属電極表面のテクスチャー構造の影響が減少するため、導電性透明膜の上に形成する半導体層の膜質の低下を抑止することができる。また、導電性透明膜の膜厚を増すことにより、拡散反射率が向上する。
The invention according to claim 2 relates to the thin-film solar cell according to claim 1, wherein the semiconductor layer is selected from the group consisting of microcrystalline silicon, amorphous silicon, and polycrystalline silicon. is there.
According to the first aspect of the present invention, since the influence of the texture structure on the surface of the metal electrode is reduced by setting the film thickness of the conductive transparent film formed on the metal electrode to 0.5 μm or more, the conductivity is reduced. Degradation of the film quality of the semiconductor layer formed on the transparent film can be suppressed. In the invention according to claim 2, in the thin film solar cell in which the semiconductor layer is made of microcrystalline silicon, the influence of the texture structure on the surface of the metal electrode is reduced by setting the thickness of the conductive transparent film to 0.5 μm or more. Therefore, it is possible to suppress the deterioration of the film quality of the semiconductor layer formed on the conductive transparent film. Moreover, the diffuse reflectance is improved by increasing the film thickness of the conductive transparent film.

以上の請求項1ないし請求項2に記載の発明によれば、基板上に少なくとも金属電極、導電性透明膜、半導体層、導電性透明電極がこの順で積層されてなる薄膜太陽電池において、導電性透明膜の膜厚を0.5μm以上に形成することにより、金属電極表面のテクスチャー構造の影響が減少し、導電性透明膜の上に形成する半導体層の膜質の低下が抑止されるとともに、拡散反射率も向上するため、薄膜太陽電池の変換効率を向上することができる。   According to the invention described in claims 1 and 2, in the thin film solar cell in which at least a metal electrode, a conductive transparent film, a semiconductor layer, and a conductive transparent electrode are laminated in this order on a substrate, By forming the film thickness of the conductive transparent film to 0.5 μm or more, the influence of the texture structure of the metal electrode surface is reduced, and the deterioration of the film quality of the semiconductor layer formed on the conductive transparent film is suppressed, Since the diffuse reflectance is also improved, the conversion efficiency of the thin film solar cell can be improved.

本発明の実施例について、以下の実施例1にて説明する。   Examples of the present invention will be described in Example 1 below.

図1は、実施例1に係る薄膜太陽電池の構造を示す断面図である。基板1として、ガラス板(コーニング#1737)を使用し、基板1上に、金属電極2として、0.3原子%(at%)のAlを含むAg合金膜(膜厚200nm)を形成した。基板1としては、ガラス基板の他に、ポリイミドのような高分子フィルムからなる可撓性基板が使用するのに適切である。さらに、導電性透明膜3として、酸化亜鉛膜(ZnO膜)を形成した。Ag合金膜、ZnO膜は、いずれもマグネトロン・スパッタリング法により同一真空槽内で、製膜温度350℃にて連続的に形成した。Ag合金膜はアルゴン雰囲気0.67Paにて、0.56nm/秒の製膜速度で、ZnO膜はアルゴン−酸素混合ガス(ガス流量比でアルゴン98に対し酸素2)雰囲気0.67Paにて、0.11nm/秒の製膜速度で製膜した。   FIG. 1 is a cross-sectional view illustrating the structure of the thin-film solar cell according to the first embodiment. A glass plate (Corning # 1737) was used as the substrate 1, and an Ag alloy film (thickness: 200 nm) containing 0.3 atomic% (at%) Al was formed as the metal electrode 2 on the substrate 1. As the substrate 1, in addition to the glass substrate, a flexible substrate made of a polymer film such as polyimide is suitable. Further, a zinc oxide film (ZnO film) was formed as the conductive transparent film 3. Each of the Ag alloy film and the ZnO film was continuously formed at a film forming temperature of 350 ° C. in the same vacuum chamber by a magnetron sputtering method. The Ag alloy film has an argon atmosphere of 0.67 Pa, a film forming speed of 0.56 nm / second, and the ZnO film has an argon-oxygen mixed gas (oxygen 2 with respect to argon 98 by gas flow ratio) atmosphere of 0.67 Pa. The film was formed at a film forming speed of 0.11 nm / second.

ZnO膜については、膜厚の異なる5種類(膜厚50nm、0.5μm、1μm、1.5μm、2μm)を作製した。膜厚50nmのZnO膜を試料a1とし、以下、膜厚の増す順に、試料a2、a3、a4、a5とする。また、比較試料として、製膜温度250℃にて作製したZnO膜(膜厚50nm)を試料bとする。
ZnO膜の上に、半導体層4として、微結晶シリコン層(i層の膜厚2μm)を形成し、さらに微結晶シリコン層の上に、導電性透明電極5としてITO膜を形成したのち、金属櫛型電極6を形成した。
Regarding the ZnO film, five types having different film thicknesses (film thicknesses 50 nm, 0.5 μm, 1 μm, 1.5 μm, and 2 μm) were produced. A ZnO film having a thickness of 50 nm is referred to as a sample a1, and hereinafter referred to as samples a2, a3, a4, and a5 in order of increasing film thickness. Further, as a comparative sample, a ZnO film (film thickness 50 nm) manufactured at a film forming temperature of 250 ° C. is set as a sample b.
A microcrystalline silicon layer (i layer thickness 2 μm) is formed as a semiconductor layer 4 on the ZnO film, and an ITO film is formed as a conductive transparent electrode 5 on the microcrystalline silicon layer. Comb electrodes 6 were formed.

以上のように作製したZnO膜の膜厚が異なる薄膜太陽電池について、その変換効率を測定した。その結果は後述する。以上の薄膜太陽電池の試料のほかに、基板1上にAg合金膜(膜厚200nm)、ZnO膜を積層した試料を作製し、拡散反射率の測定、走査型電子顕微鏡(SEM)による表面観察を行った。ZnO膜の製膜温度250℃、膜厚50nmの試料を試料b、製膜温度350℃、膜厚50nmを試料a1、製膜温度350℃、膜厚2μmを試料a5とする。   The conversion efficiency was measured about the thin film solar cell from which the film thickness of the ZnO film | membrane produced as mentioned above differs. The result will be described later. In addition to the above thin film solar cell sample, a sample in which an Ag alloy film (thickness: 200 nm) and a ZnO film is laminated on the substrate 1 is manufactured, and the diffuse reflectance is measured, and the surface is observed with a scanning electron microscope (SEM). Went. A sample having a ZnO film deposition temperature of 250 ° C. and a film thickness of 50 nm is designated as sample b, a film deposition temperature of 350 ° C. and a film thickness of 50 nm as sample a1, a film deposition temperature of 350 ° C., and a film thickness of 2 μm as sample a5.

図2は、試料b、a1、a5について、波長の変化に対する拡散反射率の変化を測定した結果である。拡散反射率は正反射光だけを選択的に除去する光学測定系を用いて測定した。試料a5の拡散反射率は、試料bと比べ、437nm以上の波長範囲で約15〜40%向上している。また、試料a5は、試料a1と比べ、424nm未満の波長範囲では低下している。   FIG. 2 shows the results of measuring the change in diffuse reflectance with respect to the change in wavelength for samples b, a1, and a5. The diffuse reflectance was measured using an optical measurement system that selectively removes only regular reflection light. The diffuse reflectance of the sample a5 is improved by about 15 to 40% in the wavelength range of 437 nm or more compared to the sample b. In addition, the sample a5 is lower than the sample a1 in the wavelength range of less than 424 nm.

SEMによる表面構造を図3(試料b)、図4(試料a1)、図5(試料a5)に示す。ZnO膜の膜厚が厚い図5の試料a5は、図3の試料bおよび図4の試料a1と比べ、Ag合金膜に由来する凹凸構造から表面形態が変化している。
薄膜太陽電池の試料について、その量子効率を測定した結果を図6に示す。図6において、試料a5は、試料bと比べ、波長500nm以上の長波長範囲で量子効率が向上している。また、424nm以下の短波長範囲では両者に違いがない。
The surface structure by SEM is shown in FIG. 3 (sample b), FIG. 4 (sample a1), and FIG. 5 (sample a5). The sample a5 of FIG. 5 having a thick ZnO film has a surface shape changed from the concavo-convex structure derived from the Ag alloy film as compared to the sample b of FIG. 3 and the sample a1 of FIG.
The result of measuring the quantum efficiency of the sample of the thin film solar cell is shown in FIG. In FIG. 6, the quantum efficiency of the sample a5 is improved in the long wavelength range of 500 nm or more compared to the sample b. Further, there is no difference between them in the short wavelength range of 424 nm or less.

薄膜太陽電池の試料について、その変換効率を測定した結果を図7に示す。ZnO膜の製膜温度350℃、膜厚が50nmである試料a1の変換効率を1として、ZnO膜の膜厚の変化に対する変換効率の変化を表している。変換効率は、ZnO膜の膜厚が0.5μm以上では増大し、向上している。これは、ZnO膜の膜厚が増すことによって、ZnO膜の下に形成した金属電極2のAg合金膜表面のテクスチャー構造の影響が減少し、半導体層4の微結晶シリコンの膜質の低下が抑止されたことを示している。また、この変換効率の向上には、図2の拡散反射率の結果が示すように、拡散反射率の向上も寄与している。   FIG. 7 shows the results of measuring the conversion efficiency of the thin film solar cell sample. The change in conversion efficiency with respect to the change in film thickness of the ZnO film is represented by assuming that the conversion efficiency of the sample a1 having a ZnO film formation temperature of 350 ° C. and a film thickness of 50 nm is 1. The conversion efficiency is increased and improved when the thickness of the ZnO film is 0.5 μm or more. This is because the influence of the texture structure on the surface of the Ag alloy film of the metal electrode 2 formed under the ZnO film is reduced by increasing the film thickness of the ZnO film, and the deterioration of the film quality of the microcrystalline silicon of the semiconductor layer 4 is suppressed. It has been shown. Further, the improvement of the diffusion efficiency also contributes to the improvement of the conversion efficiency, as the result of the diffuse reflectance of FIG.

以上の実施例1において、半導体層4として微結晶シリコン層を用いたが、アモルファスシリコン(a−Si)、または多結晶シリコンを使用した薄膜太陽電池においても、導電性透明膜3の膜厚を0.5μm以上に形成することにより、金属電極2表面のテクスチャー構造の影響が減少し、導電性透明膜3の上に形成する半導体層4の膜質の低下が抑止される。   In Example 1 described above, a microcrystalline silicon layer is used as the semiconductor layer 4, but the thickness of the conductive transparent film 3 is also reduced in a thin film solar cell using amorphous silicon (a-Si) or polycrystalline silicon. By forming to 0.5 μm or more, the influence of the texture structure on the surface of the metal electrode 2 is reduced, and the deterioration of the film quality of the semiconductor layer 4 formed on the conductive transparent film 3 is suppressed.

本発明の実施例1に係る薄膜太陽電池の構造を表す断面図。Sectional drawing showing the structure of the thin film solar cell which concerns on Example 1 of this invention. Ag合金膜、ZnO膜の積層試料の拡散反射率を示す図。The figure which shows the diffuse reflectance of the laminated sample of Ag alloy film and ZnO film. Ag合金膜、ZnO膜の積層試料(試料b)の表面構造を示す図。The figure which shows the surface structure of the laminated sample (sample b) of Ag alloy film and ZnO film. Ag合金膜、ZnO膜の積層試料(試料a1)の表面構造を示す図。The figure which shows the surface structure of the laminated sample (sample a1) of Ag alloy film and ZnO film. Ag合金膜、ZnO膜の積層試料(試料a5)の表面構造を示す図。The figure which shows the surface structure of the laminated sample (sample a5) of Ag alloy film and ZnO film. 薄膜太陽電池の量子効率を示す図Diagram showing quantum efficiency of thin film solar cell 薄膜太陽電池の変換効率向上率を示す図。The figure which shows the conversion efficiency improvement rate of a thin film solar cell.

符号の説明Explanation of symbols

1 基板
2 金属電極
3 導電性透明膜
4 半導体層
5 導電性透明電極
6 金属櫛型電極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Metal electrode 3 Conductive transparent film 4 Semiconductor layer 5 Conductive transparent electrode 6 Metal comb electrode

Claims (2)

基板上に、少なくとも金属電極、導電性透明膜、半導体層、導電性透明電極がこの順で積層されてなる薄膜太陽電池において、前記導電性透明膜の膜厚が0.5μm以上であることを特徴とする薄膜太陽電池。   In a thin film solar cell in which at least a metal electrode, a conductive transparent film, a semiconductor layer, and a conductive transparent electrode are laminated in this order on a substrate, the film thickness of the conductive transparent film is 0.5 μm or more. A thin film solar cell characterized. 前記半導体層が、微結晶シリコン、アモルファスシリコン、多結晶シリコンからなる群から選ばれてなることを特徴とする請求項1に記載の薄膜太陽電池。









































The thin film solar cell according to claim 1, wherein the semiconductor layer is selected from the group consisting of microcrystalline silicon, amorphous silicon, and polycrystalline silicon.









































JP2008314119A 2008-12-10 2008-12-10 Thin-film solar battery Withdrawn JP2010140992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314119A JP2010140992A (en) 2008-12-10 2008-12-10 Thin-film solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314119A JP2010140992A (en) 2008-12-10 2008-12-10 Thin-film solar battery

Publications (1)

Publication Number Publication Date
JP2010140992A true JP2010140992A (en) 2010-06-24

Family

ID=42350892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314119A Withdrawn JP2010140992A (en) 2008-12-10 2008-12-10 Thin-film solar battery

Country Status (1)

Country Link
JP (1) JP2010140992A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222975A (en) * 2001-01-29 2002-08-09 Kyocera Corp THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222975A (en) * 2001-01-29 2002-08-09 Kyocera Corp THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD

Similar Documents

Publication Publication Date Title
JP5243697B2 (en) Transparent conductive film for photoelectric conversion device and manufacturing method thereof
US20100175749A1 (en) Solar cell and method for manufacturing metal electrode layer to be used in the solar cell
JP2010034232A (en) Thin-film solar cell and surface electrode for thin-film solar cell
JP2008270562A (en) Multi-junction type solar cell
JP4713819B2 (en) Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device using the same
TW201133887A (en) Thin-film photoelectric conversion device
JP5533448B2 (en) Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
JP2005347490A (en) Substrate with transparent conductive oxide film, its manufacturing method and photoelectric transfer element
US8003431B2 (en) Method for antireflection treatment of a zinc oxide film and method for manufacturing solar cell using the same
Yan et al. Ga-doped ZnO rear transparent contact enables high efficiency silicon heterojunction solar cells
JP6199608B2 (en) Photoelectric conversion device
JP2009117463A (en) Thin-film photoelectric conversion device
JP2016127179A (en) Thin film solar cell and manufacturing method thereof
WO2011136177A1 (en) Thin film solar cell and method for manufacturing same, and base with transparent conductive film and method for producing same
JP2013179217A (en) Solar cell and manufacturing method for the same
JP4325310B2 (en) Method for forming conductive light reflecting film
JP4178513B2 (en) Method for forming conductive thin film having texture structure
JP2011192896A (en) Thin-film solar cell, and method for manufacturing the same
CN101312223A (en) Method for manufacturing film on solar energy battery substrate by sputtering process
JP5056651B2 (en) Thin film solar cell and surface electrode for thin film solar cell
JP5093502B2 (en) Thin film solar cell and surface electrode for thin film solar cell
JP5469298B2 (en) Transparent conductive film for photoelectric conversion device and method for producing the same
JP2010140992A (en) Thin-film solar battery
JP2013191587A (en) Back electrode, manufacturing method therefor, and thin-film solar cell
JP2009164644A (en) Conductive light-reflecting film, substrate for thin-film solar cell, and thin film solar cell applied with the same

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120827