JP2002222975A - THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD - Google Patents

THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD

Info

Publication number
JP2002222975A
JP2002222975A JP2001020623A JP2001020623A JP2002222975A JP 2002222975 A JP2002222975 A JP 2002222975A JP 2001020623 A JP2001020623 A JP 2001020623A JP 2001020623 A JP2001020623 A JP 2001020623A JP 2002222975 A JP2002222975 A JP 2002222975A
Authority
JP
Japan
Prior art keywords
film
transparent conductive
crystalline
conductive film
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001020623A
Other languages
Japanese (ja)
Inventor
Kouichirou Shinraku
浩一郎 新楽
Kenji Fukui
健次 福井
Hideki Shiroma
英樹 白間
Hirofumi Senda
浩文 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001020623A priority Critical patent/JP2002222975A/en
Publication of JP2002222975A publication Critical patent/JP2002222975A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical confinement structure without introducing a decrease in electrical characteristics while realizing optically optimum double- side rugged structure, by eliminating the relationship between optical characteristics and trade-off of the electrical characteristics in association with an introduction of the rugged structure. SOLUTION: A thin film crystalline Si solar battery comprises a metal layer 2 as a rear electrode, a rear transparent conductive film 3, a semiconductor film 4 having a semiconductor junction formed of a crystalline Si in a photoactive layer, a front transparent conductive film 5, and collector electrodes 6 made in a main body of a metal as a surface electrode sequentially laminated on a substrate 1. In the battery, an interface between the layer 2 as the back electrode and the film 3 becomes a rugged shape. A mean height difference of the interface between the film 3 and the film 4 is smaller than that of the rugged shape of the interface between the layer 2 as the rear electrode and the film 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜結晶質Si太
陽電池とその製造方法に関する。
The present invention relates to a thin-film crystalline Si solar cell and a method for manufacturing the same.

【0002】[0002]

【従来の技術】薄膜多結晶Si太陽電池に代表される薄
膜結晶質Si太陽電池は、次世代太陽電池として注目さ
れているが、結晶Siの光吸収係数が薄膜たる膜厚に対
して充分大きな値ではないため、充分な光電流値を得る
ためには光閉じ込め構造の導入による光利用効率の向上
が特に重要である。
2. Description of the Related Art Thin-film crystalline Si solar cells typified by thin-film polycrystalline Si solar cells have attracted attention as next-generation solar cells, but the light absorption coefficient of crystalline Si is sufficiently large relative to the thickness of a thin film. In order to obtain a sufficient photocurrent value, it is particularly important to improve the light use efficiency by introducing a light confinement structure.

【0003】光閉じ込め技術としては、従来より光入射
面側への反射防止膜形成技術や凹凸構造形成技術が知ら
れており、太陽電池に応用実用化されて久しい。
As a light confinement technology, a technology for forming an antireflection film on the light incident surface side and a technology for forming a concavo-convex structure have been known, and have been applied to solar cells for a long time.

【0004】しかし薄膜結晶質Si太陽電池において
は、結晶Siの光吸収係数が長波長側で小さい値である
ため、数μm程度以下の膜厚で光吸収を充分に生ぜしめ
て光電変換をより効率的に行わせるためには、入射光が
結晶質Si膜内を多数回反射往復するようにして光をよ
り有効に閉じ込められる構造とすることが特に重要であ
る。このため、薄膜結晶質Si太陽電池では、従来から
の光入射面側の半導体層表面へ凹凸構造を形成すること
に加えて、光入射面とは反対側の半導体層面にも凹凸構
造を形成して、光閉じ込めをより有効に行うべく両面凹
凸構造の検討が進められてきている。これらの従来例と
しては、例えば、特許第2713847号、特許第27
71414号、特許第2784841号、特許第302
7669号、特許第3029169号、特開平5−21
8469号、特開平6−196738号、特開平10−
117006号、特開平11−233800号等に述べ
られており、いずれにおいても光電流が増大して変換効
率が向上する結果が得られている。ここで代表的な素子
構造として、図4、図5、図6にサブストレート型のそ
れを、図7にスーパーストレート型のそれを示す。図4
ないし図6において、21は基板、22は裏面電極層、
23は裏透明導電膜、24は半導体層、25は表透明導
電膜、26は表集電極であり、図4は裏透明導電膜23
の表面を凹凸構造にしたもの、図5は裏電極22の表面
を凹凸構造にしたもの、図6は基板21の表面を凹凸構
造にしたものである。また、図7において、31は透光
性基板、32は表透明導電膜、33は半導体層、34は
裏透明導電膜、35は裏電極である。
However, in a thin-film crystalline Si solar cell, since the light absorption coefficient of crystalline Si is small on the long wavelength side, light absorption is sufficiently generated at a film thickness of about several μm or less, and photoelectric conversion is more efficiently performed. It is particularly important that the incident light be reflected and reciprocated a number of times in the crystalline Si film so that the light can be more effectively confined. For this reason, in the thin-film crystalline Si solar cell, in addition to the conventional formation of the concavo-convex structure on the surface of the semiconductor layer on the light incident surface side, the concavo-convex structure is also formed on the semiconductor layer surface opposite to the light incident surface. In order to more effectively confine light, studies have been made on a double-sided uneven structure. These conventional examples include, for example, Japanese Patent No. 2713847 and Japanese Patent No. 2713847.
No. 71414, Japanese Patent No. 2784841, Japanese Patent No. 302
No. 7669, Japanese Patent No. 3029169, JP-A-5-21
No. 8469, JP-A-6-196738, JP-A-10-
No. 117006, Japanese Patent Application Laid-Open No. 11-233800, etc., all show that the photoelectric current increases and the conversion efficiency is improved. Here, as typical element structures, FIGS. 4, 5 and 6 show a substrate type and FIG. 7 shows a superstrate type. FIG.
6, 21 is a substrate, 22 is a back electrode layer,
23 is a back transparent conductive film, 24 is a semiconductor layer, 25 is a front transparent conductive film, 26 is a front electrode, and FIG.
5 shows a structure in which the surface of the back electrode 22 has an uneven structure, and FIG. 5 shows a structure in which the surface of the substrate 21 has an uneven structure. 7, reference numeral 31 denotes a light-transmitting substrate, 32 denotes a front transparent conductive film, 33 denotes a semiconductor layer, 34 denotes a back transparent conductive film, and 35 denotes a back electrode.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、半導体
層24、33の両面を凹凸構造とする従来の両面凹凸構
造では、半導体層24、33の形成にあたって既に凹凸
構造を有した堆積面に半導体膜24、33を成長させる
ことになる。これは良質な半導体膜を成長させるために
は本来は好ましくないものである。なぜならば、フラッ
ト面への薄膜成長であれば、凹凸構造に起因した不要な
核発生サイトが少ないので結晶の大粒径化がはかりやす
く、また、全ての結晶がフラット面に対して垂直な方向
に成長していくために成長結晶粒どうしが衝突して結晶
粒界を生じさせたりすることがなく、また結晶配向も一
方向にそろいやすく望ましい結晶配向特性に制御しやす
いという利点があるのに対して、凹凸面上への薄膜成長
ではこれらの利点が失われてしまうからである。
However, in the conventional double-sided uneven structure in which both surfaces of the semiconductor layers 24 and 33 are uneven, when forming the semiconductor layers 24 and 33, the semiconductor film 24 is formed on the deposition surface already having the uneven structure. , 33 will be grown. This is originally not preferable for growing a high-quality semiconductor film. This is because, when a thin film is grown on a flat surface, the number of unnecessary nucleation sites due to the uneven structure is small, so that it is easy to increase the crystal grain size, and all crystals are oriented in a direction perpendicular to the flat surface. However, there is an advantage that the crystal grains do not collide with each other to form crystal grain boundaries, and the crystal orientation is easily aligned in one direction, and the desired crystal orientation characteristics can be easily controlled. On the other hand, these advantages are lost when the thin film is grown on the uneven surface.

【0006】特に太陽電池においては、結晶粒径が小さ
いことによる結晶粒界の増加や、成長結晶粒どうしの衝
突による結晶粒界の生成は、結晶粒界部がリーク電流の
発生経路となるため、開放電圧特性の低下や曲線因子特
性の低下を招く致命的なマイナス因子となる。
In particular, in a solar cell, an increase in crystal grain boundaries due to a small crystal grain size and generation of crystal grain boundaries due to collision between grown crystal grains are caused by the crystal grain boundary portions serving as a path for generating a leak current. This is a fatal negative factor that causes a decrease in the open-circuit voltage characteristic and a decrease in the curve factor characteristic.

【0007】実際、凹凸形状と開放電圧との関係につい
て、第61回秋期応用物理学会予稿集6a−C−6,
p.829(2000)、同6a−C−7,p.830
(2000)で報告されており、凹凸形状の増大とともに
光電流は増大するが開放電圧は低下してしまうことが述
べられている。
[0007] In fact, regarding the relationship between the concavo-convex shape and the open circuit voltage, the 61st Autumn Meeting of the Japan Society of Applied Physics 6a-C-6,
p. 829 (2000), 6a-C-7, p. 830
(2000), which states that the photocurrent increases but the open-circuit voltage decreases with the increase in the uneven shape.

【0008】このように、半導体層24、33の両面を
凹凸構造とする従来の両面凹凸構造では、光電流と開放
電圧及び曲線因子がトレードオフの関係にあり、光電流
特性だけからみるとより最適な凹凸形状が別に存在する
ことがわかっているにもかかわらず、一方で開放電圧、
曲線因子の低下が無視できなくなるために凹凸構造の選
択に制約が生じ、必ずしも光学的に最適な凹凸構造とす
ることができず、本来得られるべきより高い変換効率が
実際には得られないという課題があった。
As described above, in the conventional double-sided concavo-convex structure in which both surfaces of the semiconductor layers 24 and 33 are concavo-convex, there is a trade-off relationship between the photocurrent, the open-circuit voltage, and the fill factor. Despite the fact that the optimal uneven shape is known to exist separately, the open-circuit voltage,
Since the reduction of the fill factor cannot be ignored, the selection of the concave-convex structure is restricted, and it is not always possible to obtain an optically optimal concave-convex structure, and it is not possible to actually obtain a higher conversion efficiency than originally obtained. There were challenges.

【0009】また光活性層部である結晶質Si層につい
ては、その結晶配向特性を(110)配向とすること
が、光閉じ込めに適した凹凸形状をその成長表面に自生
的に形成するためには重要であるが、半導体層を形成す
る前に既に凹凸形状が形成されている場合は、この配向
の制御性が乱されてしまい、理想的な強い(110)配
向を得にくいという課題があった。
In the crystalline Si layer which is the photoactive layer portion, the crystal orientation characteristic is set to be (110) orientation in order to spontaneously form an uneven shape suitable for light confinement on the growth surface. Is important, but when the uneven shape is already formed before the semiconductor layer is formed, the controllability of the orientation is disturbed, and there is a problem that it is difficult to obtain an ideal strong (110) orientation. Was.

【0010】本発明は、上記の両面凹凸構造導入にとも
なう光電流と開放電圧及び曲線因子とのトレードオフの
関係、つまり光学的特性と電気的特性とのトレードオフ
の関係を解消し、光学的に最適な両面凹凸構造を実現し
つつも、電気的な特性低下を招かない新たな光閉じ込め
構造を提供するものである。
The present invention eliminates the trade-off relationship between the photocurrent and the open-circuit voltage and the fill factor associated with the introduction of the double-sided concavo-convex structure, that is, the trade-off relationship between the optical characteristics and the electrical characteristics. It is intended to provide a new light confinement structure that does not cause a decrease in electrical characteristics while realizing a double-sided uneven structure that is optimal for the above.

【0011】[0011]

【課題を解決するための手段】請求項1に係る薄膜結晶
質Si太陽電池は、基板上に、裏電極となる金属層、裏
透明導電膜、光活性層部を結晶質Siで形成した半導体
接合を有する半導体膜、表透明導電膜、および表電極と
なる金属を主体とする集電極が順次積層された薄膜結晶
質Si太陽電池において、前記裏電極となる金属層と裏
透明導電膜との界面が凹凸形状となっており、前記裏透
明導電膜と半導体膜との界面の平均高低差が前記裏電極
となる金属層と裏透明導電膜との界面の凹凸形状の平均
高低差よりも小さいことを特徴とする。
According to a first aspect of the present invention, there is provided a thin-film crystalline Si solar cell in which a metal layer serving as a back electrode, a back transparent conductive film, and a photoactive layer are formed of crystalline Si on a substrate. In a thin-film crystalline Si solar cell in which a semiconductor film having a junction, a front transparent conductive film, and a collector mainly composed of a metal serving as a front electrode are sequentially stacked, the metal layer serving as the back electrode and the back transparent conductive film are formed. The interface has an uneven shape, and the average height difference at the interface between the back transparent conductive film and the semiconductor film is smaller than the average height difference at the interface between the metal layer serving as the back electrode and the back transparent conductive film. It is characterized by the following.

【0012】前記薄膜結晶質Si太陽電池では、前記基
板が裏電極となる金属層を兼ねており、前記裏透明導電
膜と半導体膜との界面の平均高低差が前記裏電極となる
金属層と裏透明導電膜との界面の凹凸形状の平均高低差
よりも小さいことが望ましい。
[0012] In the thin-film crystalline Si solar cell, the substrate also serves as a metal layer serving as a back electrode, and the average height difference at the interface between the back transparent conductive film and the semiconductor film is different from the metal layer serving as the back electrode. It is desirable that the average height difference between the irregularities at the interface with the back transparent conductive film is smaller than the average height difference.

【0013】また、前記薄膜結晶質Si太陽電池では、
前記請求項1及び2の裏透明導電膜の裏電極側の界面の
凹凸の断面形状における横方向の平均的凹凸ピッチが
0.01〜5μmであり、縦方向の平均高低差が0.0
1〜1μmであることが望ましい。
Further, in the thin-film crystalline Si solar cell,
The average lateral pitch of the irregularities in the cross-sectional shape of the irregularities at the interface on the back electrode side of the back transparent conductive film according to claim 1 or 2 is 0.01 to 5 μm, and the average height difference in the longitudinal direction is 0.0.
Desirably, it is 1 to 1 μm.

【0014】請求項4に係る薄膜結晶質Si太陽電池
は、透光性基板上に、表電極となる表透明導電膜、光活
性層部を結晶質Siで形成した半導体接合を有する半導
体膜、裏透明導電膜、および裏電極となる金属層が順次
積層された薄膜結晶質Si太陽電池において、前記透光
性基板と表透明導電膜との界面が凹凸形状となってお
り、前記表透明導電膜と半導体膜との界面の平均高低差
が前記透光性基板と表透明導電膜との界面の凹凸形状の
平均高低差よりも小さいことを特徴とする。
According to a fourth aspect of the present invention, there is provided a thin-film crystalline Si solar cell, comprising: a transparent conductive film serving as a front electrode; a semiconductor film having a semiconductor junction in which a photoactive layer is formed of crystalline Si; In a thin-film crystalline Si solar cell in which a back transparent conductive film and a metal layer serving as a back electrode are sequentially laminated, the interface between the translucent substrate and the front transparent conductive film has an uneven shape, The average height difference at the interface between the film and the semiconductor film is smaller than the average height difference between the irregularities at the interface between the translucent substrate and the front transparent conductive film.

【0015】上記薄膜結晶質Si太陽電池では、前記表
透明導電膜の透光性基板側の界面の凹凸の断面形状にお
ける横方向の平均的凹凸ピッチが0.01〜5μmであ
り、縦方向の平均高低差が0.01〜1μmであること
が望ましい。
In the above-mentioned thin-film crystalline Si solar cell, the average horizontal uneven pitch in the cross-sectional shape of the unevenness at the interface of the front transparent conductive film on the light-transmitting substrate side is 0.01 to 5 μm, and the vertical unevenness pitch is 0.01 to 5 μm. It is desirable that the average height difference is 0.01 to 1 μm.

【0016】また、上記薄膜結晶質Si太陽電池では、
前記結晶質Si層の結晶配向特性が(110)配向であ
ることが望ましい。
Further, in the thin film crystalline Si solar cell,
It is desirable that the crystalline orientation characteristics of the crystalline Si layer be (110) orientation.

【0017】また、上記薄膜結晶質Si太陽電池では、
前記結晶質Si層の膜形成後の表面形状が、その結晶粒
の結晶方位を反映した自生的な凹凸形状を有しているこ
とが望ましい。
Further, in the thin film crystalline Si solar cell,
It is desirable that the surface shape of the crystalline Si layer after the film is formed has a spontaneous irregular shape reflecting the crystal orientation of the crystal grains.

【0018】請求項8に係る薄膜Si太陽電池の製造方
法は、基板上に裏電極となる金属層をその表面が凹凸形
状となるように形成し、さらに裏透明導電膜、光活性層
部を結晶質Siで形成した半導体接合を有する半導体
膜、表透明導電膜、および表電極となる金属を主体とす
る集電極を順次積層する薄膜結晶質Si太陽電池の形成
方法において、前記凹凸形状を前記基板表面もしくは裏
電極となる金属層表面をRIE法で凹凸状にして形成す
ることを特徴とする。
According to a eighth aspect of the present invention, in the method of manufacturing a thin film Si solar cell, a metal layer serving as a back electrode is formed on a substrate so that the surface thereof has an uneven shape, and a back transparent conductive film and a photoactive layer portion are formed. In a method for forming a thin film crystalline Si solar cell, in which a semiconductor film having a semiconductor junction formed of crystalline Si, a front transparent conductive film, and a collector mainly composed of a metal serving as a front electrode are sequentially laminated, the uneven shape is It is characterized in that the surface of the substrate or the surface of the metal layer serving as the back electrode is formed in an uneven shape by RIE.

【0019】請求項9に係る薄膜Si太陽電池の製造方
法は、透光性基板上に表電極となる表透明導電膜をその
表面が凹凸形状となるように形成し、さらに光活性層部
を結晶質Siで形成した半導体接合を有する半導体膜、
裏透明導電膜、および裏電極となる金属層を順次積層す
る薄膜結晶質Si太陽電池の製造方法において、前記凹
凸形状を前記透光性基板表面もしくは表電極となる表透
明導電膜表面をRIE法で凹凸状にして形成することを
特徴とする。
According to a ninth aspect of the present invention, in the method for manufacturing a thin-film Si solar cell, a front transparent conductive film serving as a front electrode is formed on a translucent substrate so that the surface thereof has an uneven shape, and the photoactive layer portion is further formed. A semiconductor film having a semiconductor junction formed of crystalline Si,
In a method of manufacturing a thin-film crystalline Si solar cell in which a back transparent conductive film and a metal layer serving as a back electrode are sequentially laminated, the irregularities are formed by RIE on the surface of the transparent substrate or the surface of the front transparent conductive film serving as a front electrode. It is characterized in that it is formed in a concave and convex shape.

【0020】[0020]

【発明の実施の形態】以下、図1及び図2を用いて光入
射面が基板と反対側にあるサブストレート型太陽電池の
場合について説明する。図1および図2において、1は
基板、2は裏電極となる金属層、3は裏透明導電膜、4
は光活性層部を結晶質Siで形成した半導体接合を有す
る半導体膜、5は表透明導電膜、6は表電極となる金属
を主体とする集電極である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A case of a substrate type solar cell having a light incident surface on the opposite side to a substrate will be described below with reference to FIGS. 1 and 2, 1 is a substrate, 2 is a metal layer serving as a back electrode, 3 is a back transparent conductive film, 4
Reference numeral denotes a semiconductor film having a semiconductor junction in which the photoactive layer portion is formed of crystalline Si, reference numeral 5 denotes a front transparent conductive film, and reference numeral 6 denotes a collector electrode mainly composed of a metal serving as a front electrode.

【0021】まず、基板1として、ガラス、金属、プラ
スチックなどを材料とした板材あるいはフィルム材など
を用意し、この基板1の表面を凹凸形状に加工する。加
工形状は、横方向の平均的凹凸ピッチについては0.0
1〜5μm程度、縦方向の平均高低差については0.0
1〜1μm程度の範囲とし、より好ましくは、横方向の
平均的凹凸ピッチについては0.1〜2μm程度、縦方
向の平均的凹凸高低差については0.05〜0.5μm
とするのがよい。ここで、横方向ピッチが0.01μm
程度以下であると、後述する裏電極となる金属層2を形
成した際にこの金属層2の表面が実質的に平坦化されて
しまい充分な光閉じ込め効果が得られず、また、横方向
ピッチが5μm程度以上であると凹凸形状そのものが実
質的に平坦に近い形状となるため充分な光閉じ込め効果
が得られない。一方、縦方向の平均高低差が0.01μ
m以下であると、後述する裏電極となる金属層2を形成
した際にこの金属層2の表面が実質的に平坦化されてし
まい充分な光閉じ込め効果が得られず、また、縦方向の
平均高低差を1μm程度以上とすることは、裏透明導電
膜3をそれ以上の膜厚で形成することになるのでコスト
的に非現実的である。
First, a plate or a film made of glass, metal, plastic or the like is prepared as the substrate 1, and the surface of the substrate 1 is processed into an uneven shape. The processing shape is 0.0
About 1 to 5 μm, and the average height difference in the vertical direction is 0.0
The average unevenness pitch in the horizontal direction is about 0.1 to 2 μm, and the average height difference in the vertical direction is 0.05 to 0.5 μm.
It is good to do. Here, the lateral pitch is 0.01 μm
When the thickness is less than the above range, the surface of the metal layer 2 is substantially flattened when a metal layer 2 serving as a back electrode described later is formed, and a sufficient light confinement effect cannot be obtained. If it is about 5 μm or more, the uneven shape itself becomes substantially flat, and a sufficient light confinement effect cannot be obtained. On the other hand, the average height difference in the vertical direction is 0.01μ
If it is less than m, the surface of the metal layer 2 will be substantially flattened when a metal layer 2 serving as a back electrode described later is formed, and a sufficient light confinement effect cannot be obtained. Setting the average height difference to about 1 μm or more is impractical in terms of cost because the back transparent conductive film 3 is formed with a film thickness larger than that.

【0022】この凹凸形状の形成には、サンドブラスト
法、ウェットエッチング法、ドライエッチング法など様
々な公知の技術を用いることができるが、特にドライエ
ッチング法の一種であるRIE法を用いれば、ガス種、
ガス圧等のエッチング条件によって、所望の微細かつラ
ンダムな凹凸形状を得られることが特願2000−30
1419号に述べられている。
Various known techniques such as a sand blast method, a wet etching method, and a dry etching method can be used for forming the uneven shape. ,
Japanese Patent Application No. 2000-30 discloses that a desired fine and random uneven shape can be obtained by etching conditions such as gas pressure.
No. 1419.

【0023】なお、この凹凸形状は、原理的には基板1
に形成せずに後述する裏電極となる金属層2に対して形
成してもよいが、その場合、金属層2を凹凸形状化する
ことを見越して厚く形成しなければならないなどのコス
ト的に好ましくない要因が生ずるため、この凹凸形状は
予め基板1側に形成しておくことが望ましい。
It should be noted that, in principle, this uneven shape is
The metal layer 2 may be formed on the metal layer 2 serving as a back electrode, which will be described later, but in this case, the metal layer 2 needs to be formed thicker in anticipation of forming the metal layer 2 into an uneven shape. Since an unfavorable factor occurs, it is desirable that this uneven shape is formed in advance on the substrate 1 side.

【0024】次に、裏電極となる金属層2を形成する。
金属膜材料としては、光反射特性に優れるAl、Agな
どを用いるのが望ましい。製膜方法としては、蒸着法、
スパッタリング法などの公知の技術を使用できる。この
とき膜厚は、0.1〜2μm程度とし、既に形成されて
いる基板1表面の凹凸形状をほぼなぞって金属膜が形成
されるようにし、この金属膜を形成した後の表面が不必
要に平坦化しないようにする。
Next, a metal layer 2 serving as a back electrode is formed.
As the metal film material, it is desirable to use Al, Ag, or the like which has excellent light reflection characteristics. As a film forming method, a vapor deposition method,
A known technique such as a sputtering method can be used. At this time, the film thickness is set to about 0.1 to 2 μm so that the metal film is formed so as to substantially trace the unevenness of the surface of the substrate 1 already formed. So that it is not flattened.

【0025】次に、裏透明導電膜3を形成する。透明導
電膜材料としては、SnO2、ITO、ZnOなど公知
の材料を用いることができるが、この後に堆積するSi
膜を形成するときにSiH4とH2を使用することに起因
して水素ガス雰囲気に曝されることになるので、耐還元
性に優れるZnO膜を少なくとも最終表面として裏透明
導電膜3を形成するのが望ましい。製膜方法としては、
蒸着法、イオンプレーティング法、スパッタリング法な
ど公知の技術を用いることができる。このとき、膜厚
は、基板1の凹凸形状の高さと製膜コストを考慮して最
大1μm程度までの範囲で調節すればよい。なお、裏透
明導電膜3を製膜した後の表面の凹凸形状の平均高低差
が製膜前の裏電極となる金属層2の表面の凹凸形状の平
均高低差よりも大きかったり、あるいは小さい場合でも
その平均高低差が次に続く半導体膜3の形成に適してい
ないと判断される場合は、機械的研磨法、各種エッチン
グ法、CMP(Chemical Mechanical
Polishing)法などによって裏透明導電膜3の
表面の平均高低差を縮小することができ、実質的に平坦
な表面状態になるまでの範囲で自由に調整できる。
Next, a back transparent conductive film 3 is formed. Known materials such as SnO 2 , ITO, and ZnO can be used as the transparent conductive film material.
Since the film is exposed to a hydrogen gas atmosphere due to the use of SiH 4 and H 2 when forming the film, the back transparent conductive film 3 is formed with a ZnO film having excellent reduction resistance at least as a final surface. It is desirable to do. As the film forming method,
Known techniques such as a vapor deposition method, an ion plating method, and a sputtering method can be used. At this time, the film thickness may be adjusted up to a maximum of about 1 μm in consideration of the height of the uneven shape of the substrate 1 and the film forming cost. In addition, when the average height difference of the unevenness of the surface after forming the back transparent conductive film 3 is larger than or smaller than the average height difference of the unevenness of the surface of the metal layer 2 to be the back electrode before film formation. However, when it is determined that the average height difference is not suitable for the subsequent formation of the semiconductor film 3, a mechanical polishing method, various etching methods, and CMP (Chemical Mechanical) are used.
The average height difference on the surface of the back transparent conductive film 3 can be reduced by a Polishing method or the like, and can be freely adjusted within a range until the surface becomes substantially flat.

【0026】次に、半導体接合を有した光電変換層とな
る半導体層4を形成する。プロセスは大別して下地層
(不図示)形成、光活性層(不図示)形成、接合(不図
示)形成となる。なお、これらの半導体膜4の形成にお
いては、前述したように既に半導体堆積面が実質的に平
坦化されているので不要な核形成が抑えられて半導体結
晶粒の大粒径化を行いやすく、また結晶粒は共に基板1
に垂直な方向に平行して柱状成長していくので結晶粒ど
うしの衝突による結晶粒界の発生を抑えることができ、
結晶粒界に起因した半導体膜4の品質低下が極力抑制さ
れた半導体膜を形成することができる。また比較的容易
に強い(110)配向特性を得ることができるので、半
導体膜4の表面に光閉じ込めに適した理想的な自生的凹
凸構造を形成することができる。
Next, a semiconductor layer 4 serving as a photoelectric conversion layer having a semiconductor junction is formed. The process is roughly divided into formation of a base layer (not shown), formation of a photoactive layer (not shown), and formation of a joint (not shown). In the formation of these semiconductor films 4, as described above, since the semiconductor deposition surface is already substantially flattened, unnecessary nucleation is suppressed, and it is easy to increase the semiconductor crystal grain size. Also, the crystal grains are both on the substrate 1
As the columnar growth grows in parallel to the direction perpendicular to the direction, the generation of crystal grain boundaries due to collisions between crystal grains can be suppressed,
It is possible to form a semiconductor film in which quality deterioration of the semiconductor film 4 due to crystal grain boundaries is suppressed as much as possible. Further, since strong (110) orientation characteristics can be obtained relatively easily, an ideal spontaneous uneven structure suitable for light confinement can be formed on the surface of the semiconductor film 4.

【0027】まず、下地層(不図示)として、非単結晶
Si膜を、触媒CVD法やプラズマCVD法などの方法
で形成する。膜厚は、10〜500nm程度とする。ド
ーピング元素濃度については1E18〜1E21/cm
3程度としてp+型(またはn +型)とする。
First, as a base layer (not shown), a non-single crystal
Si film is formed by a method such as catalytic CVD or plasma CVD.
Formed. The film thickness is about 10 to 500 nm. Do
1E18-1E21 / cm
ThreeP as degree+Type (or n +Type).

【0028】次に、光活性層(不図示)として、結晶質
Si膜を、触媒CVD法やプラズマCVD法などの方法
で形成する。膜厚は、0.5〜10μm程度とする。な
お、導電型は、前記下地層よりはドーピング濃度が低い
同導電型とするか、あるいは実質的なi型とする。
Next, a crystalline Si film is formed as a photoactive layer (not shown) by a method such as a catalytic CVD method or a plasma CVD method. The thickness is about 0.5 to 10 μm. The conductivity type is the same conductivity type having a lower doping concentration than that of the underlayer, or substantially i-type.

【0029】次に、半導体接合(不図示)を形成するべ
く、非単結晶Si膜(不図示)を、触媒CVD法やプラ
ズマCVD法などの方法で形成する。膜厚は5〜500
nm程度とする。ドーピング元素濃度は1E18〜1E
21/cm3程度とし、前述した下地層とは反対導電型
であるn+(またはp+型)とする。なお、接合特性をよ
り改善するために光活性層と該接合層との間に実質的に
i型の非単結晶Si層を挿入してもよい。このとき挿入
層の厚さは、結晶質Si層の場合は10〜500nm程
度、非晶質Siの場合は1〜20nm程度とする。
Next, in order to form a semiconductor junction (not shown), a non-single-crystal Si film (not shown) is formed by a method such as a catalytic CVD method or a plasma CVD method. The film thickness is 5-500
nm. Doping element concentration is 1E18 ~ 1E
It is set to about 21 / cm 3, and n + (or p + type), which is of the opposite conductivity type to the above-described underlayer. In order to further improve the bonding characteristics, a substantially i-type non-single-crystal Si layer may be inserted between the photoactive layer and the bonding layer. At this time, the thickness of the insertion layer is about 10 to 500 nm in the case of a crystalline Si layer, and about 1 to 20 nm in the case of amorphous Si.

【0030】次に、表透明導電膜5を形成する。透明導
電膜材料としては、SnO2、ITO、ZnOなど公知
の材料を用いることができる。製膜方法としては、蒸着
法、イオンプレーティング法、スパッタリング法など公
知の技術を用いることができる。このとき、膜厚は、光
学的干渉効果を考慮して60〜300nm程度にするの
がよい。
Next, the front transparent conductive film 5 is formed. Known materials such as SnO 2 , ITO, and ZnO can be used as the transparent conductive film material. As a film forming method, a known technique such as a vapor deposition method, an ion plating method, and a sputtering method can be used. At this time, the film thickness is preferably about 60 to 300 nm in consideration of the optical interference effect.

【0031】最後に、表電極となる金属を主体とする集
電極6を形成する。金属膜材料としては、導電性に優れ
るAl、Agなどを用いるのが望ましい。製膜方法とし
ては、蒸着法、スパッタリング法、スクリーン印刷法な
どの公知の技術を使用できる。電極パターンについて
は、マスキング法、リフトオフ法などを用いて所望のパ
ターンに形成することができる。なお、表透明導電膜5
との接着強度強化のためには、表透明導電膜5と導電性
に優れた前記金属との間に、Ti等の酸化物材料との接
着強度に優れる金属材料を挿入すると効果的である。
Finally, a collector electrode 6 mainly composed of a metal serving as a front electrode is formed. As the metal film material, it is desirable to use Al, Ag, or the like having excellent conductivity. Known techniques such as a vapor deposition method, a sputtering method, and a screen printing method can be used as a film forming method. The electrode pattern can be formed into a desired pattern by using a masking method, a lift-off method, or the like. The front transparent conductive film 5
It is effective to insert a metal material having an excellent adhesive strength with an oxide material such as Ti between the front transparent conductive film 5 and the metal having an excellent conductivity in order to enhance the adhesive strength with the metal.

【0032】以上によって、高い光電流値を実現しつ
つ、開放電圧低下などの特性低下を招くことのない両面
凹凸光閉じ込め構造を有した高効率薄膜結晶質Si太陽
電池を得ることができる。
As described above, it is possible to obtain a high-efficiency thin-film crystalline Si solar cell having a double-sided concavo-convex optical confinement structure that does not cause a deterioration in characteristics such as a decrease in open-circuit voltage while realizing a high photocurrent value.

【0033】次に、図3を用いて光入射面が基板側にあ
るスーパーストレート型太陽電池の場合について説明す
る。図3において、31は透光性基板、32は表電極と
なる表透明導電膜、33は光活性層部を結晶質Siで形
成した半導体接合を有する半導体膜、34は裏透明導電
膜、35は裏電極となる金属層である。
Next, a case of a superstrate type solar cell having a light incident surface on the substrate side will be described with reference to FIG. 3, reference numeral 31 denotes a translucent substrate; 32, a front transparent conductive film serving as a front electrode; 33, a semiconductor film having a semiconductor junction in which a photoactive layer portion is formed of crystalline Si; 34, a back transparent conductive film; Is a metal layer to be a back electrode.

【0034】まず、透光性基板31として、ガラスやプ
ラスチックなどを材料とした板材あるいはフィルム材を
用意し、この基板31の表面を上の実施形態で述べた要
領で凹凸形状に加工する。
First, a plate material or a film material made of glass, plastic, or the like is prepared as the translucent substrate 31, and the surface of the substrate 31 is processed into an uneven shape as described in the above embodiment.

【0035】次に、表透明導電膜32を形成する。透明
導電膜材料としては、SnO2、ITO、ZnOなど公
知の材料を用いることができるが、この後に堆積するS
i膜形成時にSiH4とH2を使うことに起因して水素ガ
ス雰囲気に曝されることになるので、耐還元性に優れる
ZnO膜を少なくとも最終表面として膜形成するのが望
ましい。製膜方法としては、蒸着法、イオンプレーティ
ング法、スパッタリング法など公知の技術を用いること
ができる。このとき、膜厚は、基板の凹凸形状高さ、製
膜コスト、光学的干渉効果等を考慮して60〜1000
nm程度の範囲で調節する。なお、製膜後の表面の凹凸
形状の平均高低差が製膜前の基板面の凹凸形状の平均高
低差よりも大きかったり、あるいは小さい場合でもその
平均高低差が次に続く半導体膜形成に適していないと判
断される場合は、機械的研磨法、各種エッチング法、C
MP(Chemical Mechanical Poli
shing)法などによって表面の平均高低差を縮小す
ることができ、実質的に平坦な表面状態になるまでの範
囲で自由に調整できる。
Next, a front transparent conductive film 32 is formed. Known materials such as SnO 2 , ITO, and ZnO can be used as the transparent conductive film material.
Since the i-film is exposed to a hydrogen gas atmosphere due to the use of SiH 4 and H 2 during the formation of the i-film, it is desirable to form a ZnO film having excellent reduction resistance at least as a final surface. As a film forming method, a known technique such as a vapor deposition method, an ion plating method, and a sputtering method can be used. At this time, the film thickness is 60 to 1000 in consideration of the height of the uneven shape of the substrate, the film formation cost, the optical interference effect, and the like.
It is adjusted in the range of about nm. Even if the average height difference of the unevenness of the surface after film formation is larger or smaller than the average height difference of the unevenness of the substrate surface before film formation, the average height difference is suitable for the subsequent semiconductor film formation. If it is determined that there is no mechanical polishing method, various etching methods, C
MP (Chemical Mechanical Poli)
(Shing) method or the like can reduce the average height difference of the surface, and can be adjusted freely within a range until a substantially flat surface state is obtained.

【0036】次に、半導体接合を有した光電変換層とな
る半導体層33を形成する。プロセスは大別して接合層
(不図示)形成、光活性層(不図示)形成、BSF層
(不図示)形成となる。なお、これらの半導体膜形成に
おいては、前述したように既に半導体堆積面が実質的に
平坦化されているので不要な核形成が抑えられて半導体
結晶粒の大粒径化を行いやすく、また結晶粒は共に基板
に垂直な方向に平行して柱状成長していくので結晶粒ど
うしの衝突による結晶粒界発生を抑えることができ、結
晶粒界に起因した半導体膜品質の低下が極力抑制された
半導体膜形成を行うことができる。また比較的容易に強
い(110)配向特性を得ることができるので、半導体
膜表面に光閉じ込めに適した理想的な自生的凹凸構造を
形成することができる。
Next, a semiconductor layer 33 serving as a photoelectric conversion layer having a semiconductor junction is formed. The process is roughly divided into forming a bonding layer (not shown), forming a photoactive layer (not shown), and forming a BSF layer (not shown). In forming these semiconductor films, unnecessary nucleation is suppressed because the semiconductor deposition surface is already substantially flat as described above, so that it is easy to increase the size of semiconductor crystal grains. Since both grains grow in a columnar shape in parallel with the direction perpendicular to the substrate, generation of grain boundaries due to collisions between the grains can be suppressed, and deterioration of the semiconductor film quality due to the grain boundaries is suppressed as much as possible. A semiconductor film can be formed. Since strong (110) orientation characteristics can be obtained relatively easily, an ideal spontaneous uneven structure suitable for optical confinement can be formed on the surface of the semiconductor film.

【0037】まず、接合層(不図示)として、非単結晶
Si膜を、触媒CVD法やプラズマCVD法などの方法
で形成する。膜厚は、10〜500nm程度とする。ド
ーピング元素濃度については1E18〜1E21/cm
3程度としてp+型(またはn +型)とする。ここで次に
堆積する光活性層との間に接合が形成されることになる
のであるが、この接合品質を高める目的で接合層と光活
性層との間に、i型の非晶質Si層を厚さ1〜20nm
程度で、あるいはi型の結晶質Si層を厚さ10〜50
0nm程度で形成してもよい。
First, a non-single crystal is used as a bonding layer (not shown).
Si film is formed by a method such as catalytic CVD or plasma CVD.
Formed. The film thickness is about 10 to 500 nm. Do
1E18-1E21 / cm
ThreeP as degree+Type (or n +Type). Here next
A bond will be formed between the photoactive layer to be deposited
However, in order to improve the bonding quality, the bonding layer
An i-type amorphous Si layer having a thickness of 1 to 20 nm
Or an i-type crystalline Si layer having a thickness of 10 to 50
It may be formed with a thickness of about 0 nm.

【0038】次に、光活性層(不図示)として、結晶質
Si膜を、触媒CVD法やプラズマCVD法などの方法
で形成する。膜厚は、0.5〜10μm程度とする。な
お、導電型は、前記接合層とは反対型とするか、あるい
は実質的なi型とする。
Next, a crystalline Si film is formed as a photoactive layer (not shown) by a method such as a catalytic CVD method or a plasma CVD method. The thickness is about 0.5 to 10 μm. Note that the conductivity type is opposite to the bonding layer or is substantially i-type.

【0039】次に、BSF層(不図示)として、非単結
晶Si膜を、触媒CVD法やプラズマCVD法などの方
法で形成する。膜厚は10〜500nm程度とする。ド
ーピング元素濃度は1E18〜1E21/cm3程度と
し、前記接合層とは反対導電型であるn+(またはp
+型)とする。
Next, a non-single-crystal Si film is formed as a BSF layer (not shown) by a method such as a catalytic CVD method or a plasma CVD method. The film thickness is about 10 to 500 nm. The doping element concentration is about 1E18 to 1E21 / cm 3, and n + (or p
+ Type).

【0040】最後に、裏電極となる金属層15を形成す
る。金属膜材料としては、光反射特性および導電性に優
れるAl、Agなどを用いるのが望ましい。製膜方法と
しては、蒸着法、スパッタリング法などの公知の技術を
使用できる。このとき膜厚は、0.1〜2μm程度とす
る。
Finally, a metal layer 15 serving as a back electrode is formed. As the metal film material, it is desirable to use Al, Ag, or the like which has excellent light reflection characteristics and conductivity. Known techniques such as a vapor deposition method and a sputtering method can be used as a film forming method. At this time, the film thickness is about 0.1 to 2 μm.

【0041】なお、半導体膜33と裏電極となる金属層
35との界面での実効的光反射率を高めるためには、半
導体層33と裏金属層35との間に裏透明導電膜層34
を挿入することが効果的である。裏透明導電膜材料とし
ては、SnO2、ITO、ZnOなど公知の材料を用い
ることができる。製膜方法としては、蒸着法、イオンプ
レーティング法、スパッタリング法など公知の技術を用
いることができる。このとき、膜厚は、光学的干渉効果
を考慮して10〜300nm程度にするのがよい。
In order to increase the effective light reflectance at the interface between the semiconductor film 33 and the metal layer 35 serving as the back electrode, a back transparent conductive film layer 34 is provided between the semiconductor layer 33 and the back metal layer 35.
Is effective. Known materials such as SnO 2 , ITO, and ZnO can be used as the material of the back transparent conductive film. As a film forming method, a known technique such as a vapor deposition method, an ion plating method, and a sputtering method can be used. At this time, the film thickness is preferably about 10 to 300 nm in consideration of the optical interference effect.

【0042】以上によって、高い光電流値を実現しつ
つ、開放電圧低下などの特性低下を招くことのない両面
凹凸光閉じ込め構造を有した高効率薄膜結晶質Si太陽
電池を得ることができる。
As described above, it is possible to obtain a high-efficiency thin-film crystalline Si solar cell having a double-sided concavo-convex optical confinement structure that does not cause a deterioration in characteristics such as a decrease in open-circuit voltage while realizing a high photocurrent value.

【0043】[0043]

【発明の効果】以上のように、本発明の薄膜結晶質Si
太陽電池によれば、裏透明導電膜と半導体膜との界面の
凹凸形状の平均高低差を裏電極となる金属層と裏透明導
電膜との界面の凹凸形状の平均高低差よりも小さくした
り、表透明導電膜と半導体膜との界面の凹凸形状の平均
高低差を透光性基板と表透明導電膜との界面の凹凸形状
の平均高低差よりも小さくすることから、開放電圧など
の特性低下を招くことなく高い光電流値が得られる両面
凹凸光閉じ込め構造を実現でき、従来よりも高効率な薄
膜結晶質Si太陽電池を製造することができる。
As described above, the thin-film crystalline Si of the present invention
According to the solar cell, the average height difference between the irregularities at the interface between the back transparent conductive film and the semiconductor film is made smaller than the average height difference between the irregular shapes at the interface between the metal layer serving as the back electrode and the back transparent conductive film. Since the average height difference between the irregularities at the interface between the front transparent conductive film and the semiconductor film is smaller than the average height difference between the irregularities at the interface between the translucent substrate and the front transparent conductive film, characteristics such as open-circuit voltage can be reduced. A double-sided concavo-convex optical confinement structure that can obtain a high photocurrent value without causing a decrease can be realized, and a thin-film crystalline Si solar cell with higher efficiency than before can be manufactured.

【0044】また、本発明の薄膜結晶質Si太陽電池の
製造方法によれば、凹凸形状を基板表面もしくは裏電極
となる金属層表面をRIE法で凹凸状にして形成した
り、透光性基板表面もしくは表電極となる表透明導電膜
表面をRIE法で凹凸状にして形成することから、ガス
種、ガス圧等のエッチング条件によって、所望する微細
かつランダムな凹凸形状を得ることができる。すなわ
ち、例えばSi結晶基板のウエットエッチングでは結晶
Siの結晶構造を反映したピラミッド状の規則正しい凹
凸形状になるが、より効果的な光閉じ込め構造とするに
は規則性を崩したランダムな凹凸形状が望ましいく、R
IE法によれば結晶Siの結晶構造に依存しないランダ
ムな凹凸形状を形成できる。
According to the method of manufacturing a thin-film crystalline Si solar cell of the present invention, the unevenness can be formed on the substrate surface or the metal layer surface serving as the back electrode by the RIE method. Since the surface or the surface of the front transparent conductive film serving as the front electrode is formed to be uneven by the RIE method, a desired fine and random uneven shape can be obtained depending on etching conditions such as a gas type and a gas pressure. That is, for example, in the wet etching of a Si crystal substrate, a regular pyramid-like irregular shape reflecting the crystal structure of crystalline Si is obtained, but a random irregular shape with a disordered regularity is desirable for a more effective light confinement structure. K, R
According to the IE method, a random uneven shape that does not depend on the crystal structure of crystalline Si can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に係る薄膜結晶質Si太陽電池の一実
施形態を示す図である。
FIG. 1 is a view showing one embodiment of a thin-film crystalline Si solar cell according to claim 1;

【図2】請求項1に係る薄膜結晶質Si太陽電池の他の
実施形態を示す図である。
FIG. 2 is a view showing another embodiment of the thin-film crystalline Si solar cell according to claim 1;

【図3】請求項4に係る薄膜結晶質Si太陽電池の一実
施形態を示す図である。
FIG. 3 is a view showing one embodiment of a thin-film crystalline Si solar cell according to claim 4;

【図4】裏透明導電膜表面を凹凸構造にした従来のサブ
ストレート型薄膜結晶質Si太陽電池で示す図である。
FIG. 4 is a view showing a conventional substrate-type thin-film crystalline Si solar cell in which the surface of the back transparent conductive film has an uneven structure.

【図5】裏電極となる金属層表面を凹凸構造にした従来
のサブストレート型薄膜結晶質Si太陽電池を示す図で
ある。
FIG. 5 is a diagram showing a conventional substrate-type thin-film crystalline Si solar cell in which the surface of a metal layer serving as a back electrode has an uneven structure.

【図6】基板表面を凹凸構造にした従来のサブストレー
ト型薄膜結晶質Si太陽電池を示す図である。
FIG. 6 is a view showing a conventional substrate-type thin-film crystalline Si solar cell in which a substrate surface has an uneven structure.

【図7】従来のスーパーストレート型薄膜結晶質Si太
陽電池を示す図である。
FIG. 7 is a view showing a conventional super straight type thin film crystalline Si solar cell.

【符号の説明】[Explanation of symbols]

1・・・基板、2・・・裏電極となる金属層、3・・・
裏透明導電膜、4・・・光活性層部を結晶質Siで形成
した半導体接合を有する半導体膜、5・・・表透明導電
膜、6・・・表電極となる金属を主体とする集電極、3
1・・・透光性基板、32・・・表電極となる表透明導
電膜、33・・・光活性層部を結晶質Siで形成した半
導体接合を有する半導体膜、34・・・裏透明導電膜、
35・・・裏電極となる金属層
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Metal layer used as back electrode, 3 ...
Back transparent conductive film, 4 ... a semiconductor film having a semiconductor junction in which the photoactive layer portion is formed of crystalline Si, 5 ... a front transparent conductive film, 6 ... a collection mainly composed of a metal serving as a front electrode Electrodes, 3
DESCRIPTION OF SYMBOLS 1 ... Translucent board | substrate, 32 ... Front transparent conductive film used as a front electrode, 33 ... Semiconductor film which has the semiconductor junction which formed the photoactive layer part by crystalline Si, 34 ... Transparent behind Conductive film,
35 ... Metal layer to be back electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千田 浩文 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀八日市工場内 Fターム(参考) 5F051 AA03 CB22 FA02 FA03 FA04 FA13 FA14 FA15 FA18 FA19 GA02 GA03 GA14 GA20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hirofumi Senda 1166, Haseno, Snake-cho, Yokaichi City, Shiga Prefecture F-term in the Kyocera Corporation Shiga Yokaichi Plant F-term (reference) GA03 GA14 GA20

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、裏電極となる金属層、裏透明
導電膜、光活性層部を結晶質Siで形成した半導体接合
を有する半導体膜、表透明導電膜、および表電極となる
金属を主体とする集電極が順次積層された薄膜結晶質S
i太陽電池において、前記裏電極となる金属層と裏透明
導電膜との界面が凹凸形状となっており、前記裏透明導
電膜と半導体膜との界面の平均高低差が前記裏電極とな
る金属層と裏透明導電膜との界面の凹凸形状の平均高低
差よりも小さいことを特徴とする薄膜結晶質Si太陽電
池。
A semiconductor layer having a semiconductor junction in which a photoactive layer portion is formed of crystalline Si, a front transparent conductive film, and a metal serving as a front electrode are provided on a substrate. Thin film crystalline S in which collector electrodes mainly composed of
In the i solar cell, the interface between the metal layer serving as the back electrode and the back transparent conductive film has an uneven shape, and the average height difference at the interface between the back transparent conductive film and the semiconductor film is the metal serving as the back electrode. A thin-film crystalline Si solar cell, characterized in that it is smaller than the average height difference of the irregularities at the interface between the layer and the back transparent conductive film.
【請求項2】 前記基板が裏電極となる金属層を兼ねて
おり、前記裏透明導電膜と半導体膜との界面の平均高低
差が前記裏電極となる金属層と裏透明導電膜との界面の
凹凸形状の平均高低差よりも小さいことを特徴とする請
求項1に記載の薄膜結晶質Si太陽電池。
2. The substrate also serves as a metal layer serving as a back electrode, and the average height difference between the interface between the back transparent conductive film and the semiconductor film is determined by the interface between the metal layer serving as the back electrode and the back transparent conductive film. 2. The thin-film crystalline Si solar cell according to claim 1, wherein the average height difference of the uneven shape is smaller than the average height difference.
【請求項3】 前記裏透明導電膜の裏電極側の界面の凹
凸の断面形状における横方向の平均的凹凸ピッチが0.
01〜5μmであり、縦方向の平均高低差が0.01〜
1μmであることを特徴とする請求項1または2に記載
の薄膜結晶質Si太陽電池。
3. An average lateral irregularity pitch in the cross-sectional shape of the irregularity at the interface of the back transparent conductive film on the back electrode side is 0.
01 to 5 μm, and the average height difference in the vertical direction is 0.01 to
The thin-film crystalline Si solar cell according to claim 1, wherein the thickness is 1 μm.
【請求項4】 透光性基板上に、表電極となる表透明導
電膜、光活性層部を結晶質Siで形成した半導体接合を
有する半導体膜、裏透明導電膜、および裏電極となる金
属層が順次積層された薄膜結晶質Si太陽電池におい
て、前記透光性基板と表透明導電膜との界面が凹凸形状
となっており、前記表透明導電膜と半導体膜との界面の
平均高低差が前記透光性基板と表透明導電膜との界面の
凹凸形状の平均高低差よりも小さいことを特徴とする薄
膜結晶質Si太陽電池。
4. A front transparent conductive film serving as a front electrode, a semiconductor film having a semiconductor junction in which a photoactive layer portion is formed of crystalline Si, a back transparent conductive film, and a metal serving as a back electrode are formed on a light transmitting substrate. In a thin-film crystalline Si solar cell in which layers are sequentially stacked, the interface between the light-transmitting substrate and the front transparent conductive film has an uneven shape, and the average height difference at the interface between the front transparent conductive film and the semiconductor film is increased. Is smaller than the average height difference between the irregularities at the interface between the light-transmitting substrate and the front transparent conductive film.
【請求項5】 前記表透明導電膜の透光性基板側の界面
の凹凸の断面形状における横方向の平均的凹凸ピッチが
0.01〜5μmであり、縦方向の平均高低差が0.0
1〜1μmであることを特徴とする請求項4に記載の薄
膜結晶質Si太陽電池。
5. An average horizontal unevenness pitch in the cross-sectional shape of the unevenness at the interface of the front transparent conductive film on the light-transmitting substrate side is 0.01 to 5 μm, and the average height difference in the vertical direction is 0.0.
The thin-film crystalline Si solar cell according to claim 4, wherein the thickness is 1 to 1 µm.
【請求項6】 前記結晶質Si層の結晶配向特性が(1
10)配向であることを特徴とす請求項1ないし5に記
載の薄膜結晶質Si太陽電池。
6. The crystalline Si layer has a crystal orientation characteristic of (1).
10) The thin-film crystalline Si solar cell according to any one of claims 1 to 5, wherein the solar cell is oriented.
【請求項7】 前記結晶質Si層の成膜終了側の界面の
形状が、その結晶粒の結晶方位を反映した自生的な凹凸
形状を有していることを特徴とする請求項1ないし6に
記載の薄膜結晶質Si太陽電池。
7. The method according to claim 1, wherein the shape of the interface of the crystalline Si layer on the film formation end side has a spontaneous uneven shape reflecting the crystal orientation of the crystal grain. 2. The thin-film crystalline Si solar cell according to 1.
【請求項8】 基板上に裏電極となる金属層をその表面
が凹凸形状となるように形成し、さらに裏透明導電膜、
光活性層部を結晶質Siで形成した半導体接合を有する
半導体膜、表透明導電膜、および表電極となる金属を主
体とする集電極を順次積層する薄膜結晶質Si太陽電池
の形成方法において、前記凹凸形状を前記基板表面もし
くは裏電極となる金属層表面をRIE法で凹凸状にして
形成することを特徴とする薄膜Si太陽電池の製造方
法。
8. A metal layer serving as a back electrode is formed on a substrate so that the surface thereof has an uneven shape.
In a method of forming a thin film crystalline Si solar cell in which a semiconductor film having a semiconductor junction in which a photoactive layer portion is formed of crystalline Si, a front transparent conductive film, and a collector electrode mainly composed of a metal serving as a front electrode are sequentially stacked, A method for manufacturing a thin-film Si solar cell, wherein the unevenness is formed by forming the surface of the substrate or the surface of a metal layer serving as a back electrode by the RIE method.
【請求項9】 透光性基板上に表電極となる表透明導電
膜をその表面が凹凸形状となるように形成し、さらに光
活性層部を結晶質Siで形成した半導体接合を有する半
導体膜、裏透明導電膜、および裏電極となる金属層を順
次積層する薄膜結晶質Si太陽電池の製造方法におい
て、前記凹凸形状を前記透光性基板表面もしくは表電極
となる表透明導電膜表面をRIE法で凹凸状にして形成
することを特徴とする薄膜Si太陽電池の製造方法。
9. A semiconductor film having a semiconductor junction in which a front transparent conductive film serving as a front electrode is formed on a translucent substrate so that the surface thereof has an uneven shape, and a photoactive layer portion is formed of crystalline Si. , A back transparent conductive film, and a metal layer serving as a back electrode are sequentially laminated. In the method for manufacturing a thin film crystalline Si solar cell, the irregularities are formed by RIE on the surface of the transparent substrate or the surface of the front transparent conductive film serving as the front electrode. A method for manufacturing a thin-film Si solar cell, wherein the thin-film Si solar cell is formed in a concavo-convex shape by a method.
JP2001020623A 2001-01-29 2001-01-29 THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD Pending JP2002222975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020623A JP2002222975A (en) 2001-01-29 2001-01-29 THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020623A JP2002222975A (en) 2001-01-29 2001-01-29 THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
JP2002222975A true JP2002222975A (en) 2002-08-09

Family

ID=18886305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020623A Pending JP2002222975A (en) 2001-01-29 2001-01-29 THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP2002222975A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299661A (en) * 2001-03-30 2002-10-11 Kyocera Corp THIN-FILM CRYSTALLINE Si SOLAR CELL
JP2004087667A (en) * 2002-08-26 2004-03-18 Hitachi Cable Ltd Method of manufacturing crystalline silicon thin film semiconductor device
EP1670065A1 (en) 2004-12-10 2006-06-14 Mitsubishi Heavy Industries, Ltd. Light-scattering film and optical device using the same
JP2010140992A (en) * 2008-12-10 2010-06-24 Fuji Electric Holdings Co Ltd Thin-film solar battery
CN101325225B (en) * 2008-07-11 2011-06-15 中国科学院电工研究所 Emitter electrode structure capable of improving crystal silicon solar battery shortwave response
JP2012023236A (en) * 2010-07-15 2012-02-02 Fuji Electric Co Ltd Thin film solar cell
JP2012522403A (en) * 2009-05-06 2012-09-20 シンシリコン・コーポレーション Photovoltaic cell and method for enhancing light capture in a semiconductor layer stack
JP2013065910A (en) * 2009-02-24 2013-04-11 Hamamatsu Photonics Kk Photodiode and photodiode array
JP2013065912A (en) * 2009-02-24 2013-04-11 Hamamatsu Photonics Kk Photodiode manufacturing method and photodiode
WO2014051078A1 (en) * 2012-09-28 2014-04-03 株式会社カネカ Thin-film photovoltaic device and process for production thereof
US8916945B2 (en) 2009-02-24 2014-12-23 Hamamatsu Photonics K.K. Semiconductor light-detecting element
US8994135B2 (en) 2009-02-24 2015-03-31 Hamamatsu Photonics K.K. Photodiode and photodiode array
US9190551B2 (en) 2009-02-24 2015-11-17 Hamamatsu Photonics K.K. Photodiode and photodiode array

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216489A (en) * 1985-03-22 1986-09-26 Agency Of Ind Science & Technol Thin film solar battery
JPH01154570A (en) * 1987-12-10 1989-06-16 Mitsubishi Electric Corp Photovoltaic element
JPH05308148A (en) * 1992-03-05 1993-11-19 Tdk Corp Solar cell
JPH11135810A (en) * 1997-10-27 1999-05-21 Kyocera Corp Photoelectric conversion device
JPH11214728A (en) * 1998-01-28 1999-08-06 Kanegafuchi Chem Ind Co Ltd Tandem type silicon thin-film photoelectric conversion device
JP2000058892A (en) * 1998-06-01 2000-02-25 Kanegafuchi Chem Ind Co Ltd Silicon based thin film photoelectric converter
JP2000150928A (en) * 1998-11-06 2000-05-30 Sanyo Electric Co Ltd Transparent electrode substrate, manufacture thereof and photovoltaic element
JP2000252500A (en) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd Silicon thin-film photoelectric conversion device
JP2001007356A (en) * 1999-06-22 2001-01-12 Sharp Corp Thin-film solar cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216489A (en) * 1985-03-22 1986-09-26 Agency Of Ind Science & Technol Thin film solar battery
JPH01154570A (en) * 1987-12-10 1989-06-16 Mitsubishi Electric Corp Photovoltaic element
JPH05308148A (en) * 1992-03-05 1993-11-19 Tdk Corp Solar cell
JPH11135810A (en) * 1997-10-27 1999-05-21 Kyocera Corp Photoelectric conversion device
JPH11214728A (en) * 1998-01-28 1999-08-06 Kanegafuchi Chem Ind Co Ltd Tandem type silicon thin-film photoelectric conversion device
JP2000058892A (en) * 1998-06-01 2000-02-25 Kanegafuchi Chem Ind Co Ltd Silicon based thin film photoelectric converter
JP2000150928A (en) * 1998-11-06 2000-05-30 Sanyo Electric Co Ltd Transparent electrode substrate, manufacture thereof and photovoltaic element
JP2000252500A (en) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd Silicon thin-film photoelectric conversion device
JP2001007356A (en) * 1999-06-22 2001-01-12 Sharp Corp Thin-film solar cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299661A (en) * 2001-03-30 2002-10-11 Kyocera Corp THIN-FILM CRYSTALLINE Si SOLAR CELL
JP2004087667A (en) * 2002-08-26 2004-03-18 Hitachi Cable Ltd Method of manufacturing crystalline silicon thin film semiconductor device
US8129611B2 (en) 2004-12-10 2012-03-06 Mitsubishi Heavy Industries, Ltd. Light-scattering film and optical device using the same
EP1670065A1 (en) 2004-12-10 2006-06-14 Mitsubishi Heavy Industries, Ltd. Light-scattering film and optical device using the same
CN101325225B (en) * 2008-07-11 2011-06-15 中国科学院电工研究所 Emitter electrode structure capable of improving crystal silicon solar battery shortwave response
JP2010140992A (en) * 2008-12-10 2010-06-24 Fuji Electric Holdings Co Ltd Thin-film solar battery
US9419159B2 (en) 2009-02-24 2016-08-16 Hamamatsu Photonics K.K. Semiconductor light-detecting element
US8994135B2 (en) 2009-02-24 2015-03-31 Hamamatsu Photonics K.K. Photodiode and photodiode array
JP2013065910A (en) * 2009-02-24 2013-04-11 Hamamatsu Photonics Kk Photodiode and photodiode array
JP2013065912A (en) * 2009-02-24 2013-04-11 Hamamatsu Photonics Kk Photodiode manufacturing method and photodiode
JP2013093609A (en) * 2009-02-24 2013-05-16 Hamamatsu Photonics Kk Semiconductor photodetection element
US9972729B2 (en) 2009-02-24 2018-05-15 Hamamatsu Photonics K.K. Photodiode and photodiode array
US8916945B2 (en) 2009-02-24 2014-12-23 Hamamatsu Photonics K.K. Semiconductor light-detecting element
US9614109B2 (en) 2009-02-24 2017-04-04 Hamamatsu Photonics K.K. Photodiode and photodiode array
US9190551B2 (en) 2009-02-24 2015-11-17 Hamamatsu Photonics K.K. Photodiode and photodiode array
JP2012522403A (en) * 2009-05-06 2012-09-20 シンシリコン・コーポレーション Photovoltaic cell and method for enhancing light capture in a semiconductor layer stack
JP2012023236A (en) * 2010-07-15 2012-02-02 Fuji Electric Co Ltd Thin film solar cell
JPWO2014051078A1 (en) * 2012-09-28 2016-08-25 株式会社カネカ Thin film photoelectric conversion device and manufacturing method thereof
US9865762B2 (en) 2012-09-28 2018-01-09 Kaneka Corporation Thin-film photoelectric conversion device and method for manufacturing same
WO2014051078A1 (en) * 2012-09-28 2014-04-03 株式会社カネカ Thin-film photovoltaic device and process for production thereof

Similar Documents

Publication Publication Date Title
JP2003179241A (en) Thin film solar cell
JP4903314B2 (en) Thin film crystalline Si solar cell
US7893348B2 (en) Nanowires in thin-film silicon solar cells
JP2002057359A (en) Laminated solar battery
JP5374755B2 (en) Silicon nanowire formation method
JP2002222975A (en) THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD
JP2000252500A (en) Silicon thin-film photoelectric conversion device
JP4193961B2 (en) Multi-junction thin film solar cell
JP4193962B2 (en) Solar cell substrate and thin film solar cell
JP4899118B2 (en) Method for producing non-single crystal semiconductor material
JP2003101051A (en) Surface-roughening method of substrate for solar battery
JP4467218B2 (en) Surface roughening method for solar cell substrates
JP2003282902A (en) Thin film solar cell
JP2000058892A (en) Silicon based thin film photoelectric converter
JP2007088434A (en) Photovoltaic device
JP2005142358A (en) Solar battery
CN110416336B (en) Novel nano-structure thin-film solar cell and preparation method thereof
CN211295115U (en) Solar cell based on silicon nanowire structure
JP5144949B2 (en) Substrate for thin film photoelectric conversion device and method for manufacturing thin film photoelectric conversion device including the same
JP2002280590A (en) Multi-junction type thin-film solar battery and method for manufacturing the same
JP2000312014A (en) Thin-film photoelectric conversion device
CN214898476U (en) Solar cell and cell module using piezoelectric effect
JP2000252504A (en) Silicon thin film optoelectric transducer device and manufacture thereof
JPH1070293A (en) Solar cell and fabrication thereof
JP2000208788A (en) Amorphous silicon solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607