WO2011121862A1 - Inspection device of capacitive touch panel and method of inspection - Google Patents

Inspection device of capacitive touch panel and method of inspection Download PDF

Info

Publication number
WO2011121862A1
WO2011121862A1 PCT/JP2010/072952 JP2010072952W WO2011121862A1 WO 2011121862 A1 WO2011121862 A1 WO 2011121862A1 JP 2010072952 W JP2010072952 W JP 2010072952W WO 2011121862 A1 WO2011121862 A1 WO 2011121862A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
measured
touch panel
electrodes
capacitance
Prior art date
Application number
PCT/JP2010/072952
Other languages
French (fr)
Japanese (ja)
Inventor
池田輝雄
大江健一
杉原薫
Original Assignee
株式会社アイテス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイテス filed Critical 株式会社アイテス
Priority to JP2011533029A priority Critical patent/JP4889833B2/en
Publication of WO2011121862A1 publication Critical patent/WO2011121862A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2829Testing of circuits in sensor or actuator systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to an inspection apparatus and an inspection method for inspecting defects in a touch panel, and more particularly, to an inspection apparatus and an inspection method applicable to a capacitive touch panel.
  • touch panels have been frequently used as input devices for electronic devices such as bank ATMs, portable information terminals, car navigation systems, and multifunction devices.
  • These touch panel types include a resistive touch panel that detects changes in the voltage of a transparent electrode with resistance, an optical touch panel that measures changes in the current flowing through the photosensor, and the capacitance between the human body and the detection electrode.
  • a capacitive touch panel or the like for detecting a change is known.
  • the principle of these touch panels is to detect a change in electrical characteristics that occurs upon contact. Therefore, when inspecting the touch panel, it is usually necessary to check whether there is an abnormality in the change in the electrical characteristics.
  • a voltage is applied to a pair of resistance films constituting the resistance film type touch panel, and an output voltage value (resistance value) corresponding to a predetermined input position is measured.
  • the output voltage value is less than or equal to a predetermined threshold, the polarity of the voltage applied to the resistance film is switched.
  • the electrical characteristics (resistance value) of the resistive touch panel are measured, and it can be determined whether the product is a non-defective product or a defective product (see, for example, Patent Document 1).
  • Patent Document 1 and Patent Document 2 are different in “voltage value (resistance value)” and “current value” as electrical characteristics to be measured, both are common in that the touch panel conduction state is observed. . Then, even in a capacitive touch panel, which has been in increasing demand in recent years, it is conceivable to measure a conduction state such as a resistance value when inspecting whether the product is a good product or a defective product.
  • the capacitive touch panel captures the state and location touched with a finger or the like as a slight change in capacitance (about several pF), it has the same resistance value and current value as in Patent Document 1 and Patent Document 2. It is practically impossible to confirm the abnormality electrically.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an inspection apparatus and an inspection method that can be suitably applied to a capacitive touch panel.
  • a characteristic configuration of a capacitive touch panel inspection device for solving the above-described problems is a capacitive touch panel inspection device including a plurality of electrodes, and a measurement target electrode to be inspected and Monitoring means for monitoring the voltage across the capacitance between the specific counter electrode of the counter electrodes opposed to the measured electrode, and determining means for determining the state of the measured electrode based on the monitoring result It is in having prepared.
  • the capacitance touch panel inspection device of this configuration employs a method of monitoring the voltage across the capacitance between the electrode to be measured and the counter electrode.
  • the electrode to be measured and the counter electrode intersect each other in a plan view, but are separated by a predetermined distance in a sectional view. That is, both are close to each other at the intersection in plan view.
  • the electrode to be measured and the counter electrode act as a kind of capacitor, and a very small capacitance can be generated between them. Therefore, if the minute change in capacitance can be measured, the state of the electrode under measurement (for example, breakage, short circuit, etc.) can be determined.
  • a counter electrode (specific counter electrode) to be measured is selected from a plurality of counter electrodes, the voltage across the capacitance between the electrode to be measured and the specific counter electrode can be measured. And since the change in capacitance at the approaching part of the electrode to be measured and the specific counter electrode can be measured only by the switch operation on the control side, the capacitance type without touching the sensor surface of the touch panel directly with the inspection device The touch panel can be inspected.
  • the inspection apparatus for a capacitive touch panel includes signal input means capable of individually inputting signals to the plurality of electrodes, and the signal input means is an inspection pattern signal for the electrode to be measured. It is preferable to input a pulse signal synchronized with the inspection pattern signal to the electrodes other than the electrode to be measured and the specific counter electrode.
  • the capacitance generated between the measured electrode and the counter electrode other than the specific counter electrode It is necessary to suppress the influence as much as possible.
  • the pulsed signal synchronized with the test pattern signal is input to the electrodes other than the electrode to be measured and the specific counter electrode,
  • the influence of the extra capacitance generated between the electrode to be measured and the other counter electrode is suppressed, and accurate measurement can be performed. .
  • the determination unit includes a continuity determination unit that determines a continuity state of the electrode to be measured, and the time for the voltage across the capacitance to reach the reference voltage is determined.
  • the monitoring unit preferably changes the specific counter electrode to another counter electrode.
  • the monitoring unit when it is determined that the electrode to be measured is not in the conductive state, changes the counter electrode to another counter electrode.
  • a counter electrode that is in a conductive state can be determined between the counter electrode that is not in a conductive state and the electrode to be measured. As a result, the non-conduction position of the electrode to be measured can be specifically detected.
  • the inspection apparatus includes: a grounding unit that individually grounds the plurality of electrodes; and a signal input unit that is capable of individually inputting a signal to the plurality of electrodes.
  • the means grounds an electrode other than the electrode to be measured, and the signal input means inputs an inspection pattern signal to the electrode to be measured.
  • electrodes other than the electrode to be measured are grounded, and an inspection pattern signal is input to the electrode to be measured. Therefore, when the electrode to be measured and an electrode other than the electrode to be measured are short-circuited, current leaks to the ground through the short-circuited portion, so that the static electricity between the electrode to be measured and the electrode other than the electrode to be measured is No potential difference occurs in the capacitance. When the electrode to be measured and an electrode other than the electrode to be measured are not short-circuited, capacitance is generated between the electrode to be measured and an electrode other than the electrode to be measured. In this way, it can be determined whether or not the electrode under measurement and an electrode other than the electrode under measurement are short-circuited.
  • the determination unit includes a short-circuit determination unit that determines a short circuit between the electrode to be measured and an electrode other than the electrode to be measured, and the grounding unit includes the grounded unit. Whether all the electrodes other than the measurement electrode are grounded, and whether the short-circuit determination unit is short-circuited between the electrode under measurement and the electrode other than the electrode under measurement based on a change in voltage between both ends of the capacitance at the time of grounding Is preferably determined.
  • the short-circuit determining unit determines that the electrode to be measured and an electrode other than the electrode to be measured are short-circuited, one earthing of the electrode is performed. It is preferable to repeat the steps until the capacitance between the electrode to be measured and the electrode other than the electrode to be measured is charged and a potential difference is generated.
  • the capacitive touch panel inspection device of this configuration when it is determined that the electrode to be measured and the electrode other than the electrode to be measured are short-circuited, the grounding of the electrodes is released one by one, Since it repeats until an electrostatic capacitance generate
  • a characteristic configuration of a capacitive touch panel inspection method according to the present invention for solving the above-described problem is a capacitive touch panel inspection method including a plurality of electrodes, and includes a measurement target electrode to be inspected and A monitoring step of monitoring the voltage across the capacitance between a specific counter electrode of the counter electrodes opposed to the electrode to be measured, and a determination step of determining the state of the electrode to be measured based on the monitoring result When, It is to include.
  • the method for inspecting a capacitive touch panel of this configuration has substantially the same effect as the above-described capacitance touch panel inspection apparatus. That is, the method for inspecting the capacitive touch panel of this configuration employs a method of monitoring the voltage across the capacitance between the electrode to be measured and the counter electrode.
  • the electrode to be measured and the counter electrode intersect each other in a plan view, but are separated by a predetermined distance in a sectional view. That is, both are close to each other at the intersection in plan view.
  • the electrode to be measured and the counter electrode act as a kind of capacitor, and a very small capacitance can be generated between them.
  • the state of the electrode under measurement (for example, breakage, short circuit, etc.) can be determined.
  • a counter electrode (specific counter electrode) to be measured is selected from a plurality of counter electrodes, the voltage across the capacitance between the electrode to be measured and the specific counter electrode can be measured.
  • the change in capacitance at the approaching part of the electrode to be measured and the specific counter electrode can be measured only by the switch operation on the control side, the capacitance type without touching the sensor surface of the touch panel directly with the inspection device The touch panel can be inspected.
  • the inspection method of the capacitive touch panel according to the present invention includes a signal input step of individually inputting signals to the plurality of electrodes, and in the signal input step, an inspection pattern signal for the electrode to be measured. It is preferable to input a pulse signal synchronized with the inspection pattern signal to the electrodes other than the electrode to be measured and the specific counter electrode.
  • a continuity determination step of determining a continuity state of the electrode to be measured is performed, and a time during which the voltage across the capacitance reaches a reference potential
  • the counter electrode is changed to another counter electrode in the monitoring step.
  • the method for inspecting a capacitive touch panel of this configuration has substantially the same effect as the above-described capacitance touch panel inspection apparatus. That is, according to the inspection method of the capacitive touch panel of this configuration, when it is determined that the electrode to be measured is not in a conductive state, in the monitoring process, the counter electrode is changed to another counter electrode. It is possible to determine a counter electrode that is in a conductive state between a counter electrode that is not in a conductive state and a measured electrode. As a result, the non-conduction position of the electrode to be measured can be specifically detected.
  • the method includes a grounding step of individually grounding the plurality of electrodes, and a signal input step of individually inputting signals to the plurality of electrodes, Preferably, in the step, electrodes other than the electrode to be measured are grounded, and in the signal input step, an inspection pattern signal is input to the electrode to be measured.
  • the method for inspecting a capacitive touch panel of this configuration has substantially the same effect as the above-described capacitance touch panel inspection apparatus. That is, according to the inspection method of the capacitive touch panel of this configuration, electrodes other than the electrode to be measured are grounded, and an inspection pattern signal is input to the electrode to be measured. Therefore, when the electrode to be measured and an electrode other than the electrode to be measured are short-circuited, current leaks to the ground through the short-circuited portion, so that the static electricity between the electrode to be measured and the electrode other than the electrode to be measured is No potential difference occurs in the capacitance.
  • a short-circuit determination step for determining a short-circuit between the electrode to be measured and an electrode other than the electrode to be measured is performed. Whether all the electrodes to be measured are grounded, and whether or not the electrodes to be measured and the electrodes other than the electrodes to be measured are short-circuited in the short-circuit determination based on a change in voltage between both ends of the capacitance at the time of grounding It is preferable to determine whether or not.
  • the method for inspecting a capacitive touch panel of this configuration has substantially the same effect as the above-described capacitance touch panel inspection apparatus. That is, according to the inspection method of the capacitive touch panel of this configuration, all the electrodes other than the electrode to be measured are grounded. Therefore, when the electrode to be measured is short-circuited with an electrode other than the electrode to be measured, the electrostatic charge between the electrode to be measured and the electrode other than the electrode to be measured is not charged, and the electrode to be measured is When the other electrodes are not short-circuited, electric charge is charged in the capacitance between the electrode to be measured and the electrode other than the electrode to be measured. As a result, it can be determined whether the electrode to be measured is short-circuited with an electrode other than the electrode to be measured.
  • grounding other than the electrode to be measured is grounded. It is preferable to remove one by one and repeat until the capacitance between the electrode to be measured and the electrode other than the electrode to be measured is charged and a potential difference is generated.
  • the method for inspecting a capacitive touch panel of this configuration has substantially the same effect as the above-described capacitance touch panel inspection apparatus. That is, according to the inspection method of the capacitive touch panel of this configuration, when it is determined that the electrode to be measured and the electrode other than the electrode to be measured are short-circuited, the grounding of the electrodes is released one by one, Since it repeats until an electrostatic capacitance generate
  • FIG. 2 is an enlarged schematic view around a region A shown in FIG. 1. It is explanatory drawing of an electrostatic capacitance detection circuit. It is a schematic diagram which shows a test
  • FIG. 1 is a plan view schematically showing an inspection apparatus 100 for a capacitive touch panel 1 according to an embodiment of the present invention.
  • the capacitive touch panel 1 to be inspected includes nine horizontal electrodes X0 to X8 and seven vertical electrodes Y0 to Y6.
  • Nine lead wires a0 to a8 extend downward from the horizontal electrodes X0 to X8 in the drawing, and seven lead wires b0 to b6 extend from the vertical electrodes Y0 to Y6 to the side in the drawing. .
  • each of the lead wires a0 to a8 constitutes a part of each of the horizontal electrodes X0 to X8, and each of the lead wires b0 to b6 is each of the vertical electrodes Y0 to Y6. Part of it. Furthermore, each of the lead wires a0 to a8 intersects each of the lead wires b0 to b6 in a plan view, but is separated by a predetermined distance in a cross sectional view. That is, both are close to each other at the intersection in plan view. This approaching part functions as a capacitor, and electrostatic capacity can be generated.
  • the inspection apparatus 100 includes a capacitance detection circuit (monitoring unit) 10 and a state determination unit (determination unit) 20 as main components.
  • the capacitance detection circuit 10 is provided between the electrode to be measured 2 to be inspected and the counter electrode (specific counter electrode 4) to be measured among the counter electrodes 3 to be opposed to the electrode to be measured 2 (the above-described approach portion). ) Monitor the voltage across the capacitance at.
  • the capacitance detection circuit 10 is configured to include a programmable logic device (FPGA). Since the capacitance detection circuit 10 has the FPGA function, it becomes easy to individually switch the horizontal electrodes X0 to X8 and the vertical electrodes Y0 to Y6.
  • FPGA programmable logic device
  • the capacitance detection circuit 10 further inputs a test pattern signal to the electrode to be measured 2 as a signal input means for individually inputting signals to a plurality of electrodes, as well as the electrode to be measured 2 and the specified electrode. It functions as a signal input means for inputting a pulse signal synchronized with the inspection pattern signal to the electrodes other than the counter electrode 4. Furthermore, the capacitance detection circuit 10 functions as a grounding means for grounding a plurality of electrodes individually.
  • the measured electrode 2 is an arbitrary electrode to be inspected among the horizontal electrodes X0 to X8 and the vertical electrodes Y0 to Y6.
  • the counter electrode 3 is disposed so as to oppose the electrode 2 to be measured.
  • the electrode 2 to be measured is one of the vertical electrodes Y0 to Y6
  • the counter electrode 3 is all of the horizontal electrodes X0 to X8.
  • the counter electrode 3 is all of the vertical electrodes Y0 to Y6.
  • the counter electrode to be measured is selected as the specific counter electrode 4 from the counter electrodes X0 to X8.
  • the state determination unit 20 determines the state of the electrode 2 to be measured based on the monitoring result of the capacitance detection circuit 10.
  • the state determination unit 20 includes a continuity determination unit 30 that determines the continuity state of the electrode under measurement 2 and a short circuit determination unit 40 that determines a short circuit between the electrode under measurement 2 and an electrode other than the electrode under measurement 2.
  • a region A surrounded by a circle indicates a region where the lead wire b ⁇ b> 6 extending from the measured electrode 2 and the lead wire a ⁇ b> 0 extending from the specific counter electrode 4 approach each other.
  • FIG. 2 is an enlarged schematic view around the area A shown in FIG. (A) shows the detail around the area A.
  • the capacitive touch panel 1 includes sensor portions c1 and c2 connected to the lead wire a0, sensor portions c3 and c4 connected to the lead wire a1, sensor portions d1 and d2 connected to the lead wire b5, Sensor parts d3 and d4 connected to the lead wire b6.
  • the sensor units c1 to c4 and d1 to d4 detect contact with the capacitive touch panel 1 as a change in capacitance generated between the contact object and the sensor units c1 to c4 and d1 to d4.
  • the contact position to the capacitive touch panel 1 is output.
  • (B) is an enlarged perspective view of the region B shown in (a).
  • the lead wire a0 and the lead wire b6 are close to each other.
  • (C) is sectional drawing along the lead wire b6 of the area
  • FIG. 3 is an explanatory diagram of the capacitance detection circuit 10.
  • (A) is a circuit diagram of the capacitance detection circuit 10, and (b) is an example of a graph showing a change with time of the voltage between both ends of the capacitance between the measured electrode 2 and the specific counter electrode 4. It is.
  • the capacitance detection circuit 10 monitors the voltage across the capacitance between the measured electrode 2 and the specific counter electrode 4.
  • the capacitance detection circuit 10 has a line potential of the lead wires a0 to a8 (that is, a voltage between both ends of the capacitance between the horizontal electrodes X0 to X8 and the ground) and a line potential of the lead wires b0 to b6.
  • the circuit configuration is integrated or a plurality of circuits are provided. Is also possible.
  • the electrode to be measured 2 (for example, the lead wire b6) and the specific counter electrode 4 (for example, the lead wire a0) are connected to one input of the operational amplifier 11, and the capacitance between the electrode to be measured 2 and the specific counter electrode 4 is measured.
  • the potential difference between the measured potential (Vm) corresponding to the voltage between both ends and the reference potential (Vref) is constantly monitored.
  • Vcc in FIG. 3A is the power supply potential of the capacitance detection circuit 10.
  • the switch 12 Before performing the inspection, first, the switch 12 is turned on and connected to the ground, and the measured potential (Vm) of the measured electrode 2 and the specific counter electrode 4 is completely discharged so that each becomes substantially zero (discharge state) ). At this time, since the reference potential (Vref) exceeds the potential to be measured (Vm), the signal output from the operational amplifier 11 is switched from Low to High as shown in the upper part of FIG.
  • a potential is applied to the electrode 2 to be measured.
  • Vm potential to be measured
  • Vcc power supply potential
  • the signal output from the operational amplifier 11 is switched from High to Low. Therefore, the time t during which the High signal is output from the operational amplifier 11 required for the voltage across the capacitances of the electrode 2 to be measured and the specific counter electrode 4 to reach the reference potential (Vref) from the discharge state. Time t is reached. If the lead wire of the electrode 2 to be measured is normal (that is, a non-defective product), the time t falls within a certain range.
  • the time t becomes abnormally long or the voltage across the capacitance Cannot reach the reference potential (Vref), and the time t cannot be measured. Therefore, it is possible to determine whether the capacitive touch panel 1 is normal or abnormal by measuring the time t.
  • the state determination unit 20 determines whether the capacitive touch panel 1 is normal or abnormal.
  • the state determination unit 20 can be configured by, for example, a general-purpose personal computer.
  • the state determination unit 20 applies a potential to the electrode 2 to be measured and charges the voltage between both ends of the capacitance between the electrode 2 to be measured and the specific counter electrode 4 from the discharge state, between the both ends of the capacitance
  • the determination is made based on whether or not the voltage reaches the reference potential (Vref) within a predetermined time range. For example, if the time for the voltage across the capacitance to reach the reference voltage is longer than a predetermined time range, it is determined that the electrode 2 to be measured is not in a conductive state. Therefore, it is found that the lead wire of the electrode 2 to be measured is about to be disconnected or disconnected.
  • the state determination unit 20 determines whether or not the state determination unit 20 is based on a change in voltage across the capacitance at the time of grounding. Then, it is determined whether or not the electrode to be measured 2 and an electrode other than the electrode to be measured 2 are short-circuited. For example, when the electrode to be measured 2 is short-circuited with an electrode other than the electrode to be measured 2, no charge is charged in the capacitance between the electrode to be measured 2 and the electrode other than the electrode to be measured 2. On the other hand, when the electrode 2 to be measured is not short-circuited with an electrode other than the electrode 2 to be measured, an electric charge is charged to the capacitance between the electrode 2 to be measured and the electrode other than the electrode 2 to be measured 2.
  • the capacitance detection circuit 10 grounds electrodes other than the electrode to be measured 2 and inputs an inspection pattern signal to the electrode to be measured 2.
  • the electrode 2 to be measured and an electrode other than the electrode 2 to be measured are short-circuited, the current leaks to the ground through the short-circuit portion. No potential difference occurs in the capacitance at.
  • the electrode to be measured 2 and an electrode other than the electrode to be measured 2 are not short-circuited, a potential difference occurs in the capacitance between the electrode to be measured 2 and an electrode other than the electrode to be measured 2. In this way, it can be determined whether or not the electrode under measurement 2 and an electrode other than the electrode under measurement 2 are short-circuited.
  • the capacitance is determined based on the time when the voltage between both ends of the capacitance reaches the reference potential (Vref).
  • the normality of the touch panel 1 can also be obtained.
  • the state determination unit 20 quantifies the time when the voltage across the capacitance reaches the reference potential (Vref). The closer the measured value is to a predetermined set value, the more normal the capacitive touch panel 1 is. Judge that there is. In this case, since the subtle state of the capacitive touch panel 1 can be known, a more precise inspection can be performed.
  • the reference potential (Vref) is set to, for example, a value of 0.1 to 0.9 times the potential measured when a lead wire having a normal capacitance is fully charged.
  • the predetermined time range is set to, for example, 0.3 to 2.0 times the time required for the capacitance of a specific part having a normal value to be charged to the reference potential (Vref). If it is within this range, it is difficult to be affected by external noise during charging, so the reproducibility of the time-dependent graph of the voltage across the capacitance in FIG. Can do.
  • the inspection apparatus 100 of the capacitive touch panel 1 having this configuration, it is possible to measure the voltage across the capacitance between the electrode 2 to be measured and the specific counter electrode 4. And since the change of the electrostatic capacitance in the approach part of the to-be-measured electrode 2 and the specific counter electrode 4 can be measured only by control side switch operation, without touching the sensor surface of a touch panel directly with the test
  • the capacitive touch panel 1 can be inspected.
  • the electrostatic capacitance type touch panel inspection apparatus 100 is a method for detecting a minute capacitance generated at a site where the electrode 2 to be measured and the counter electrode 3 approach each other.
  • the inspection pattern signal is input to the electrode 2 to be measured by the capacitance detection circuit 10, and the electrodes other than the electrode 2 to be measured and the specific counter electrode 4 are as shown in FIG. A pulse signal synchronized with a correct inspection pattern signal is input.
  • the influence of the extra capacitance generated between the electrode to be measured 2 and the other counter electrode 3 can be suppressed and accurate. Can be measured.
  • the inspection method for the capacitive touch panel 1 of the present invention can be implemented.
  • a procedure for determining the conduction state of the electrode 2 to be measured and a procedure for determining a short circuit between the electrode 2 to be measured and the counter electrode 3 will be described. .
  • FIG. 5 is a schematic diagram showing a procedure for determining the conduction state of the electrode 2 to be measured.
  • the procedure for determining the conduction state is executed by steps 1 to 3.
  • (a) to (c) correspond to Step 1 to Step 3, respectively.
  • the x mark on the lead wire b ⁇ b> 6 indicates a disconnected portion of the lead wire b ⁇ b> 6.
  • Step 1 The capacitance detection circuit 10 selects the lead wire b6 as the electrode to be measured 2 and the lead wire a0 as the specific counter electrode 4, and determines whether the voltage across the capacitance reaches the reference voltage within a predetermined time. Monitor whether or not. The state of the electrode 2 to be measured is determined based on the monitoring result. Here, since the reference voltage is not reached within a predetermined time, the continuity determination unit 30 determines that the measured electrode 2 is not in a conductive state with respect to the lead wire a0. The capacitance detection circuit 10 changes the specific counter electrode 4 to another counter electrode (lead wire a1).
  • Step 2 The capacitance detection circuit 10 selects the lead wire a1 as the specific counter electrode 4, and monitors whether the voltage across the capacitance reaches the reference voltage within a predetermined time. Here, since the reference voltage is reached earlier than the predetermined time, the continuity determination unit 30 determines that the electrode under measurement 2 is not in a conductive state with respect to the lead wire a1. The capacitance detection circuit 10 changes the specific counter electrode 4 to another counter electrode (lead wire a2).
  • Step 3 The capacitance detection circuit 10 selects the lead wire a2 as the specific counter electrode 4, and monitors whether the voltage across the capacitance reaches the reference voltage within a predetermined time.
  • the continuity determination unit 30 determines that the electrode 2 to be measured is in a conductive state with respect to the lead wire a2.
  • the capacitance detection circuit 10 monitors whether the voltage between both ends of the capacitance between the measured electrode 2 and the specific counter electrode 4 reaches the reference voltage within a predetermined time, When the reference voltage is reached earlier than the predetermined time, the continuity determination unit 30 determines that the measured electrode 2 is not in a conductive state with respect to the specific counter electrode 4. In this way, it can be checked whether or not it is in a conductive state. Further, when it is determined that the measured electrode 2 is not in the conductive state, the specific counter electrode 4 is sequentially changed to another counter electrode, and whether or not the reference voltage is reached within a predetermined time is monitored.
  • the counter electrode 3 that is not in conduction with the counter electrode 3 and the counter electrode 3 that is in conduction with the electrode 2 to be measured can be determined.
  • the counter electrodes that are not in conduction with the electrode to be measured 2 are the lead wire a0 and the lead wire a1
  • the counter electrodes that are in conduction with the electrode to be measured 2 are the lead wire a2. Therefore, the disconnection position can be specified on the assumption that a disconnection has occurred between the portion close to the lead wire a1 and the portion adjacent to the lead wire a2 in the lead wire b6.
  • FIG. 6 is a schematic diagram illustrating a procedure for determining a short circuit between the measured electrode 2 and an electrode other than the measured electrode 2.
  • the procedure for determining the conduction state is executed by steps 1 to 3.
  • (a) to (c) correspond to Step 1 to Step 3, respectively.
  • black circles on the lead wire b6 indicate a short-circuit portion between the lead wire a1 and the lead wire b6.
  • Step 1 The capacitance detection circuit 10 grounds all electrodes other than the electrode 2 to be measured.
  • the capacitance at the time of grounding is not charged, and the potential of the electrode 2 to be measured is not charged to the reference potential (Vref). Therefore, the short circuit determination unit 40 can determine whether or not the electrode 2 to be measured and an electrode other than the electrode 2 to be measured are short-circuited.
  • Step 2 When the short-circuit determining unit 40 determines that the electrode 2 to be measured is short-circuited with any electrode other than the electrode 2 to be measured, the capacitance detection circuit 10 includes the electrodes other than the electrode 2 to be measured. The ground of one electrode (for example, lead wire a0) is released. Since the electrode 2 to be measured is short-circuited to the lead wire a1, the electrostatic capacitance at the time of grounding is not charged, and the potential of the electrode 2 to be measured is not charged to the reference potential (Vref).
  • Vref reference potential
  • Step 3 When the short-circuit determining unit 40 determines that the electrode 2 to be measured and an electrode other than the electrode 2 to be measured are short-circuited, the capacitance detection circuit 10 grounds the electrode (for example, the lead wire a1). Is released. Since the electrode 2 to be measured is short-circuited to the lead wire a1, the electrostatic capacity at the time of grounding is charged, and the potential of the electrode 2 to be measured is charged to the reference potential (Vref). As a result, it can be confirmed that the electrode 2 to be measured is short-circuited with the lead wire a1.
  • Vref reference potential
  • the inspection method for the capacitive touch panel of the present invention is executed, all the electrodes other than the electrode to be measured 2 are grounded. Therefore, when the electrode 2 to be measured is short-circuited with an electrode other than the electrode 2 to be measured, the electrostatic charge between the electrode 2 to be measured and the electrode other than the electrode 2 to be measured is not charged, and the electrode to be measured When 2 is not short-circuited with an electrode other than the electrode to be measured 2, electric charge is charged to the capacitance between the electrode to be measured 2 and an electrode other than the electrode to be measured 2. As a result, it can be determined whether the electrode 2 to be measured is short-circuited with an electrode other than the electrode 2 to be measured.
  • the electrodes are grounded one by one and between the electrode to be measured 2 and the electrode other than the electrode to be measured 2. Therefore, it is possible to identify an electrode in a short-circuited state with the electrode 2 to be measured. As a result, an electrode that is short-circuited with the electrode 2 to be measured can be specified.
  • the inspection device for the capacitive touch panel 1 in which the lead wires a0 to a8 (counter electrodes) and the lead wires b0 to b6 (measurement electrodes) are close to each other in a state of being orthogonal to each other in plan view 100 explained.
  • the lead wires a0 to a8 and the lead wires b0 to b6 are close to each other, capacitance can be generated.
  • the lead wires a0 to a8 and the lead wires b0 to b6 intersect at an acute angle in plan view. Inspection is also possible for the capacitive touch panel. Therefore, the present invention also includes an inspection apparatus and an inspection method performed on such a capacitive touch panel that intersects at an acute angle in plan view.
  • the inspection object when conducting a continuous inspection of a capacitive touch panel, the inspection object is sequentially moved from one lead wire in an adjacent direction to inspect all lead wires. It is also possible to register in advance a lead wire to be inspected in a computer and inspect only a specific lead wire according to the execution of the computer program. In this case, for example, inspection of lead wires with a low probability of failure can be omitted and only necessary lead wires can be inspected, so that the inspection speed can be improved while ensuring certain reliability.
  • the capacitive touch panel inspection device and inspection method of the present invention can be suitably applied to the inspection of a capacitive touch panel, but other electronic devices utilizing changes in capacitance. It can also be used in other inspections.
  • the inspection device, the inspection method, and the inspection sheet of the capacitive touch panel of the present invention can be used in the inspection of input devices of electronic devices such as bank ATMs, portable information terminals, car navigation systems, and multifunction devices. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Position Input By Displaying (AREA)

Abstract

Provided is an inspection device which is preferably applicable to a capacitive touch panel. The inspection device (100) of the capacitive touch panel (1) which includes a plurality of electrodes, comprises: a monitor means (20) for monitoring a voltage between both ends of the capacitance between an electrode to be measured (2) which is subject to inspection and a specific opposite electrode (4) among opposite electrodes (3) which are opposed to the electrode to be measured (2); and a determination means (30) for determining the state of the electrode to be measured (2) based on the monitoring results. Further provided is a signal input means for inputting a signal into each of the plurality of electrodes, wherein the signal input means inputs an inspection pattern signal into the electrode to be measured (2), while inputting a pulse signal synchronized with the inspection pattern signal into the electrodes other than the electrode to be measured (2) and the specific opposite electrode (4).

Description

静電容量式タッチパネルの検査装置、及び検査方法Capacitive touch panel inspection device and inspection method
 本発明は、タッチパネルの不具合を検査する検査装置及び検査方法に関し、特に、静電容量式タッチパネルに適用可能な検査装置及び検査方法に関する。 The present invention relates to an inspection apparatus and an inspection method for inspecting defects in a touch panel, and more particularly, to an inspection apparatus and an inspection method applicable to a capacitive touch panel.
 銀行ATM、携帯型情報端末、カーナビゲーションシステム、複合機等の電子機器の入力装置として、近年、タッチパネルが多く使用されている。これらタッチパネルのタイプには、抵抗を有する透明電極の電圧の変化を検出する抵抗膜式タッチパネル、フォトセンサに流れる電流の変化を測定する光学式タッチパネル、人体と検出電極との間における静電容量の変化を検出する静電容量式タッチパネル等が従来から知られている。これらタッチパネルの原理は、何れも接触時に発生する電気的特性の変化を検出するものである。従って、タッチパネルの検査を行う場合、通常、上記電気的特性の変化に異常がないかを確認する必要がある。 In recent years, touch panels have been frequently used as input devices for electronic devices such as bank ATMs, portable information terminals, car navigation systems, and multifunction devices. These touch panel types include a resistive touch panel that detects changes in the voltage of a transparent electrode with resistance, an optical touch panel that measures changes in the current flowing through the photosensor, and the capacitance between the human body and the detection electrode. Conventionally, a capacitive touch panel or the like for detecting a change is known. The principle of these touch panels is to detect a change in electrical characteristics that occurs upon contact. Therefore, when inspecting the touch panel, it is usually necessary to check whether there is an abnormality in the change in the electrical characteristics.
 例えば、抵抗膜式タッチパネルの検査では、当該抵抗膜式タッチパネルを構成する一対の抵抗膜に電圧を印加し、所定入力位置に対応する出力電圧値(抵抗値)を測定する。出力電圧値が所定の閾値以下である場合、抵抗膜に印加する電圧の極性を切り替える。この一連の操作により、抵抗膜式タッチパネルの電気的特性(抵抗値)が測定され、良品か不良品かを判定することができる(例えば、特許文献1を参照)。 For example, in the inspection of a resistance film type touch panel, a voltage is applied to a pair of resistance films constituting the resistance film type touch panel, and an output voltage value (resistance value) corresponding to a predetermined input position is measured. When the output voltage value is less than or equal to a predetermined threshold, the polarity of the voltage applied to the resistance film is switched. By this series of operations, the electrical characteristics (resistance value) of the resistive touch panel are measured, and it can be determined whether the product is a non-defective product or a defective product (see, for example, Patent Document 1).
 光学式タッチパネルの検査では、アレイ基板上に形成されたフォトセンサの所定領域に対して、光の照射/非照射を行う。この操作により、フォトセンサの電気的特性(電流値)が測定され、良品か不良品かを判定することができる(例えば、特許文献2を参照)。 In the inspection of the optical touch panel, light irradiation / non-irradiation is performed on a predetermined area of the photosensor formed on the array substrate. By this operation, the electrical characteristics (current value) of the photosensor are measured, and it can be determined whether the product is a non-defective product or a defective product (see, for example, Patent Document 2).
 上記特許文献1及び上記特許文献2は、測定する電気的特性として「電圧値(抵抗値)」と「電流値」とで相違するものの、何れもタッチパネルの導通状態を見ている点で共通する。そうすると、近年、需要が増している静電容量式タッチパネルにおいても、良品か不良品かの検査を行う場合、抵抗値等の導通状態を測定することが考えられる。 Although the above Patent Document 1 and Patent Document 2 are different in “voltage value (resistance value)” and “current value” as electrical characteristics to be measured, both are common in that the touch panel conduction state is observed. . Then, even in a capacitive touch panel, which has been in increasing demand in recent years, it is conceivable to measure a conduction state such as a resistance value when inspecting whether the product is a good product or a defective product.
特開2005-274225公報JP 2005-274225 A 特開2008-310374号公報JP 2008-310374 A
 ところが、静電容量式タッチパネルは、指などで触れた状態及び箇所をわずかな静電容量の変化(数pF程度)として捕えるため、特許文献1や特許文献2と同様の抵抗値や電流値の異常として電気的に確認することは実質的に不可能である。 However, since the capacitive touch panel captures the state and location touched with a finger or the like as a slight change in capacitance (about several pF), it has the same resistance value and current value as in Patent Document 1 and Patent Document 2. It is practically impossible to confirm the abnormality electrically.
 一方、静電容量式タッチパネルの検査において、当該静電容量式タッチパネルをコントローラ(コントロールIC)に実装した状態で導通状態を測定することも考えられる。この場合、コントローラ側において静電容量式タッチパネルの微少な静電容量の変化を間接的に測定することになる。ところが、この場合、コントローラ側に何らかの問題があっても、静電容量式タッチパネルとコントローラとを含む全体として不良と判断されてしまう。このため、タッチパネルメーカーには、静電容量式タッチパネルをコントローラに実装する前にタッチパネル単体で検査を実施することが望まれている。 On the other hand, in the inspection of the capacitive touch panel, it is also conceivable to measure the conduction state in a state where the capacitive touch panel is mounted on a controller (control IC). In this case, a minute change in capacitance of the capacitive touch panel is indirectly measured on the controller side. However, in this case, even if there is some problem on the controller side, it is determined as a whole that the capacitive touch panel and the controller are defective. For this reason, it is desired for the touch panel manufacturer to perform the inspection with the touch panel alone before mounting the capacitive touch panel on the controller.
 また、静電容量式タッチパネルは外部ノイズ等の影響を受け易いという問題もある。このため、接触に伴う電圧や電流等の電気的特性の変化を正確に測定することも困難である。そして、静電容量式タッチパネルには通常多数の検出電極が設けられているため、検出結果が本当に検査対象の部分(パッド)に対応したものか判別することも困難である。 Also, there is a problem that the capacitive touch panel is easily affected by external noise. For this reason, it is also difficult to accurately measure changes in electrical characteristics such as voltage and current accompanying contact. Since a capacitance type touch panel is usually provided with a large number of detection electrodes, it is difficult to determine whether the detection result really corresponds to a portion (pad) to be inspected.
 さらに、タッチパネルのセンサ面はタッチパネルの重要部分であるため、タッチパネルメーカーからは、検査目的であっても、センサ面を検査装置で直接触れることは避けたいとの要望も強い。 Furthermore, since the sensor surface of the touch panel is an important part of the touch panel, there is a strong demand from touch panel manufacturers to avoid touching the sensor surface directly with an inspection device even for inspection purposes.
 このように、現状においては、静電容量式タッチパネルの検査を確実に実施し得る検査装置や検査方法は未だ開発されていない。本発明は、上記問題点に鑑みてなされたものであり、静電容量式タッチパネルに好適に適用可能な検査装置及び検査方法を提供することを目的とする。 Thus, at present, an inspection apparatus and an inspection method that can reliably inspect a capacitive touch panel have not yet been developed. The present invention has been made in view of the above problems, and an object thereof is to provide an inspection apparatus and an inspection method that can be suitably applied to a capacitive touch panel.
 上記課題を解決するための本発明に係る静電容量式タッチパネルの検査装置の特徴構成は、複数の電極を備えた静電容量式タッチパネルの検査装置であって、検査対象となる被測定電極と当該被測定電極に対抗する対抗電極のうちの特定対抗電極との間における静電容量の両端間の電圧を監視する監視手段と、監視結果に基づいて前記被測定電極の状態を判定する判定手段と、を備えたことにある。 A characteristic configuration of a capacitive touch panel inspection device according to the present invention for solving the above-described problems is a capacitive touch panel inspection device including a plurality of electrodes, and a measurement target electrode to be inspected and Monitoring means for monitoring the voltage across the capacitance between the specific counter electrode of the counter electrodes opposed to the measured electrode, and determining means for determining the state of the measured electrode based on the monitoring result It is in having prepared.
 背景技術の項目で説明したように、静電容量式タッチパネルにおいては、指などで触れた状態及び箇所をわずかな静電容量の変化(数pF程度)として捕えてしまうことに起因して、導通状態を抵抗値や電流値の異常として確認することは困難であった。また、静電容量式タッチパネルは外部ノイズ等の影響を受け易いため、検出結果が得られたとしても本当に検査対象の部分(パッド)に対応したものか判別することも困難であった。さらに、タッチパネルのセンサ面は重要部分であるため、検査目的であっても、センサ面を検査装置で直接触れることは避けたいとの要望も強い。 As explained in the background art section, in a capacitive touch panel, the state and location touched with a finger or the like are captured as a slight change in capacitance (about several pF), and thus conduction It was difficult to confirm the state as an abnormal resistance value or current value. In addition, since the capacitive touch panel is easily affected by external noise or the like, it is difficult to determine whether it corresponds to a part (pad) to be inspected even if a detection result is obtained. Furthermore, since the sensor surface of the touch panel is an important part, there is a strong demand to avoid touching the sensor surface directly with an inspection device even for inspection purposes.
 この点、本構成の静電容量式タッチパネルの検査装置は、被測定電極と対抗電極との間における静電容量の両端間の電圧を監視する方式を採用する。静電容量式タッチパネルにあっては、被測定電極と対抗電極とは平面視で交差しているが、断面視では所定の距離をおいて離間している。すなわち、両者は平面視における交差部で互いに接近した状態となっている。この接近部位においては、被測定電極と対抗電極とが一種のコンデンサとして作用し、両者の間に微少な静電容量を発生し得る。そこで、この微少な静電容量の変化を測定することができれば、被測定電極の状態(例えば、破断や短絡等)を判定することができる。特に、複数の対抗電極の中から測定対象の対抗電極(特定対抗電極)を選択すれば、被測定電極と特定対抗電極との間における静電容量の両端間の電圧を測定することができる。そして、被測定電極と特定対抗電極との接近部位における静電容量の変化は、制御側のスイッチ操作のみで測定し得るため、タッチパネルのセンサ面を直接検査装置で触れることなく、静電容量式タッチパネルを検査し得る。 In this respect, the capacitance touch panel inspection device of this configuration employs a method of monitoring the voltage across the capacitance between the electrode to be measured and the counter electrode. In the capacitive touch panel, the electrode to be measured and the counter electrode intersect each other in a plan view, but are separated by a predetermined distance in a sectional view. That is, both are close to each other at the intersection in plan view. In this approaching part, the electrode to be measured and the counter electrode act as a kind of capacitor, and a very small capacitance can be generated between them. Therefore, if the minute change in capacitance can be measured, the state of the electrode under measurement (for example, breakage, short circuit, etc.) can be determined. In particular, if a counter electrode (specific counter electrode) to be measured is selected from a plurality of counter electrodes, the voltage across the capacitance between the electrode to be measured and the specific counter electrode can be measured. And since the change in capacitance at the approaching part of the electrode to be measured and the specific counter electrode can be measured only by the switch operation on the control side, the capacitance type without touching the sensor surface of the touch panel directly with the inspection device The touch panel can be inspected.
 本発明に係る静電容量式タッチパネルの検査装置において、前記複数の電極に対して信号を個別に入力可能な信号入力手段を備え、前記信号入力手段は、前記被測定電極に対して検査パターン信号を入力するとともに、前記被測定電極及び前記特定対抗電極以外の電極に対して前記検査パターン信号と同期したパルス信号を入力することが好ましい。 The inspection apparatus for a capacitive touch panel according to the present invention includes signal input means capable of individually inputting signals to the plurality of electrodes, and the signal input means is an inspection pattern signal for the electrode to be measured. It is preferable to input a pulse signal synchronized with the inspection pattern signal to the electrodes other than the electrode to be measured and the specific counter electrode.
 被測定電極と特定対抗電極とが接近する部位に発生する微少な静電容量を正確に検知するためには、被測定電極と特定対抗電極以外の対抗電極との間に発生する静電容量の影響をできる限り抑える必要がある。この点、本構成の静電容量式タッチパネルの検査装置によれば、被測定電極及び特定対抗電極以外の電極に対して検査パターン信号と同期したパルス信号を入力するため、被測定電極と測定対象でない対抗電極との間においては電位差の差分が略ゼロとなる(Q=CVにおいて、Vがゼロとなる)。このため、被測定電極と他の対抗電極との間の電位差を小さくすることが出来る。その結果、被測定電極と特定対抗電極との間に発生する静電容量以外に被測定電極と他の対抗電極との間に生じる余分な静電容量の影響を抑えて、正確な測定ができる。 In order to accurately detect the minute capacitance generated at the part where the measured electrode and the specific counter electrode approach, the capacitance generated between the measured electrode and the counter electrode other than the specific counter electrode It is necessary to suppress the influence as much as possible. In this respect, according to the inspection apparatus for the capacitive touch panel of this configuration, the pulsed signal synchronized with the test pattern signal is input to the electrodes other than the electrode to be measured and the specific counter electrode, The difference in potential difference between the counter electrode and the non-counter electrode is substantially zero (when Q = CV, V is zero). For this reason, the potential difference between the electrode to be measured and the other counter electrode can be reduced. As a result, in addition to the capacitance generated between the electrode to be measured and the specific counter electrode, the influence of the extra capacitance generated between the electrode to be measured and the other counter electrode is suppressed, and accurate measurement can be performed. .
 本発明に係る静電容量式タッチパネルの検査装置において、前記判定手段は、前記被測定電極の導通状態を判定する導通判定部を備え、静電容量の両端間の電圧が基準電圧に達する時間の変化に基づいて、前記導通判定部が前記被測定電極は導通状態にないと判定した場合、前記監視手段は前記特定対抗電極を他の対抗電極に変更することが好ましい。 In the inspection apparatus for a capacitive touch panel according to the present invention, the determination unit includes a continuity determination unit that determines a continuity state of the electrode to be measured, and the time for the voltage across the capacitance to reach the reference voltage is determined. When the continuity determination unit determines that the measured electrode is not in a conductive state based on the change, the monitoring unit preferably changes the specific counter electrode to another counter electrode.
 本構成の静電容量式タッチパネルの検査装置によれば、被測定電極が導通状態にないと判定した場合、監視手段は対抗電極を他の対抗電極に変更するため、被測定電極との間で導通状態にない対抗電極と被測定電極との間で導通状態にある対抗電極とを判定できる。その結果、被測定電極の非導通位置を特定検出することができる。 According to the inspection apparatus of the capacitive touch panel of this configuration, when it is determined that the electrode to be measured is not in the conductive state, the monitoring unit changes the counter electrode to another counter electrode. A counter electrode that is in a conductive state can be determined between the counter electrode that is not in a conductive state and the electrode to be measured. As a result, the non-conduction position of the electrode to be measured can be specifically detected.
 本発明に係る静電容量式タッチパネルの検査装置において、前記複数の電極を個別に接地させる接地手段と、前記複数の電極に対して信号を個別に入力可能な信号入力手段とを備え、前記接地手段が前記被測定電極以外の電極を接地させるとともに、前記信号入力手段が前記被測定電極に対して検査パターン信号を入力することが好ましい。 In the inspection apparatus for a capacitive touch panel according to the present invention, the inspection apparatus includes: a grounding unit that individually grounds the plurality of electrodes; and a signal input unit that is capable of individually inputting a signal to the plurality of electrodes. Preferably, the means grounds an electrode other than the electrode to be measured, and the signal input means inputs an inspection pattern signal to the electrode to be measured.
 本構成の静電容量式タッチパネルの検査装置によれば、被測定電極以外の電極を接地させるとともに、被測定電極に対して検査パターン信号を入力する。従って、被測定電極と被測定電極以外の電極とが短絡している場合は、短絡部を伝わってグラウンドへと電流が漏洩するため、被測定電極と被測定電極以外の電極との間における静電容量に電位差が発生しない。被測定電極と被測定電極以外の電極とが短絡していない場合は、被測定電極と被測定電極以外の電極との間において静電容量が発生する。このようにして、被測定電極と被測定電極以外の電極とが短絡しているか否かを判定することができる。 According to the capacitive touch panel inspection apparatus of this configuration, electrodes other than the electrode to be measured are grounded, and an inspection pattern signal is input to the electrode to be measured. Therefore, when the electrode to be measured and an electrode other than the electrode to be measured are short-circuited, current leaks to the ground through the short-circuited portion, so that the static electricity between the electrode to be measured and the electrode other than the electrode to be measured is No potential difference occurs in the capacitance. When the electrode to be measured and an electrode other than the electrode to be measured are not short-circuited, capacitance is generated between the electrode to be measured and an electrode other than the electrode to be measured. In this way, it can be determined whether or not the electrode under measurement and an electrode other than the electrode under measurement are short-circuited.
 本発明に係る静電容量式タッチパネルの検査装置において、前記判定手段は、前記被測定電極と前記被測定電極以外の電極との短絡を判定する短絡判定部を備え、前記接地手段は、前記被測定電極以外を全て接地させ、接地時の静電容量の両端間の電圧の変化に基づいて、前記短絡判定部が前記被測定電極と前記被測定電極以外の電極とが短絡しているか否かを判定することが好ましい。 In the capacitance-type touch panel inspection apparatus according to the present invention, the determination unit includes a short-circuit determination unit that determines a short circuit between the electrode to be measured and an electrode other than the electrode to be measured, and the grounding unit includes the grounded unit. Whether all the electrodes other than the measurement electrode are grounded, and whether the short-circuit determination unit is short-circuited between the electrode under measurement and the electrode other than the electrode under measurement based on a change in voltage between both ends of the capacitance at the time of grounding Is preferably determined.
 本構成の静電容量式タッチパネルの検査装置によれば、被測定電極以外の電極を全て接地させる。従って、被測定電極が被測定電極以外の電極と短絡している場合は被測定電極と被測定電極以外の電極との間における静電容量に電荷が充電されず、被測定電極が被測定電極以外の電極と短絡していない場合は被測定電極と被測定電極以外の電極との間における静電容量に電荷が充電される。その結果、被測定電極が被測定電極以外の電極と短絡しているか否かを判定することができる。 ¡According to the capacitive touch panel inspection device of this configuration, all electrodes other than the electrode to be measured are grounded. Therefore, when the electrode to be measured is short-circuited with an electrode other than the electrode to be measured, the electrostatic charge between the electrode to be measured and the electrode other than the electrode to be measured is not charged, and the electrode to be measured is When the other electrodes are not short-circuited, electric charge is charged in the capacitance between the electrode to be measured and the electrode other than the electrode to be measured. As a result, it can be determined whether the electrode to be measured is short-circuited with an electrode other than the electrode to be measured.
 本発明に係る静電容量式タッチパネルの検査装置において、前記短絡判定部が、前記被測定電極と前記被測定電極以外の電極とが短絡していると判定した場合、前記電極の接地を1つずつ解除し、前記被測定電極と前記被測定電極以外の電極との間の静電容量が充電され電位差が発生するまで繰り返すことが好ましい。 In the inspection apparatus for a capacitive touch panel according to the present invention, when the short-circuit determining unit determines that the electrode to be measured and an electrode other than the electrode to be measured are short-circuited, one earthing of the electrode is performed. It is preferable to repeat the steps until the capacitance between the electrode to be measured and the electrode other than the electrode to be measured is charged and a potential difference is generated.
 本構成の静電容量式タッチパネルの検査装置によれば、被測定電極と被測定電極以外の電極とが短絡していると判定した場合、電極の接地を1つずつ解除し、被測定電極と被測定電極以外の電極との間に静電容量が発生するまで繰り返すため、短絡状態にある被測定電極を特定できる。その結果、被測定電極と短絡している電極を特定することが出来る。 According to the capacitive touch panel inspection device of this configuration, when it is determined that the electrode to be measured and the electrode other than the electrode to be measured are short-circuited, the grounding of the electrodes is released one by one, Since it repeats until an electrostatic capacitance generate | occur | produces between electrodes other than a to-be-measured electrode, the to-be-measured electrode in a short circuit state can be specified. As a result, an electrode that is short-circuited with the electrode to be measured can be identified.
 上記課題を解決するための本発明に係る静電容量式タッチパネルの検査方法の特徴構成は、複数の電極を備えた静電容量式タッチパネルの検査方法であって、検査対象となる被測定電極と当該被測定電極に対抗する対抗電極のうちの特定対抗電極との間における静電容量の両端間の電圧を監視する監視工程と、監視結果に基づいて前記被測定電極の状態を判定する判定工程と、
を包含することにある。
A characteristic configuration of a capacitive touch panel inspection method according to the present invention for solving the above-described problem is a capacitive touch panel inspection method including a plurality of electrodes, and includes a measurement target electrode to be inspected and A monitoring step of monitoring the voltage across the capacitance between a specific counter electrode of the counter electrodes opposed to the electrode to be measured, and a determination step of determining the state of the electrode to be measured based on the monitoring result When,
It is to include.
 本構成の静電容量式タッチパネルの検査方法は、上述した静電容量式タッチパネルの検査装置と実質的に同じ作用効果を奏する。すなわち、本構成の静電容量式タッチパネルの検査方法は、被測定電極と対抗電極との間における静電容量の両端間の電圧を監視する方式を採用する。静電容量式タッチパネルにあっては、被測定電極と対抗電極とは平面視で交差しているが、断面視では所定の距離をおいて離間している。すなわち、両者は平面視における交差部で互いに接近した状態となっている。この接近部位においては、被測定電極と対抗電極とが一種のコンデンサとして作用し、両者の間に微少な静電容量を発生し得る。そこで、この微少な静電容量の変化を測定することができれば、被測定電極の状態(例えば、破断や短絡等)を判定することができる。特に、複数の対抗電極の中から測定対象の対抗電極(特定対抗電極)を選択すれば、被測定電極と特定対抗電極との間における静電容量の両端間の電圧を測定することができる。そして、被測定電極と特定対抗電極との接近部位における静電容量の変化は、制御側のスイッチ操作のみで測定し得るため、タッチパネルのセンサ面を直接検査装置で触れることなく、静電容量式タッチパネルを検査し得る。 The method for inspecting a capacitive touch panel of this configuration has substantially the same effect as the above-described capacitance touch panel inspection apparatus. That is, the method for inspecting the capacitive touch panel of this configuration employs a method of monitoring the voltage across the capacitance between the electrode to be measured and the counter electrode. In the capacitive touch panel, the electrode to be measured and the counter electrode intersect each other in a plan view, but are separated by a predetermined distance in a sectional view. That is, both are close to each other at the intersection in plan view. In this approaching part, the electrode to be measured and the counter electrode act as a kind of capacitor, and a very small capacitance can be generated between them. Therefore, if the minute change in capacitance can be measured, the state of the electrode under measurement (for example, breakage, short circuit, etc.) can be determined. In particular, if a counter electrode (specific counter electrode) to be measured is selected from a plurality of counter electrodes, the voltage across the capacitance between the electrode to be measured and the specific counter electrode can be measured. And since the change in capacitance at the approaching part of the electrode to be measured and the specific counter electrode can be measured only by the switch operation on the control side, the capacitance type without touching the sensor surface of the touch panel directly with the inspection device The touch panel can be inspected.
 本発明に係る静電容量式タッチパネルの検査方法において、前記複数の電極に対して信号を個別に入力する信号入力工程を包含し、前記信号入力工程において、前記被測定電極に対して検査パターン信号を入力するとともに、前記被測定電極及び前記特定対抗電極以外の電極に対して前記検査パターン信号と同期したパルス信号を入力することが好ましい。 The inspection method of the capacitive touch panel according to the present invention includes a signal input step of individually inputting signals to the plurality of electrodes, and in the signal input step, an inspection pattern signal for the electrode to be measured. It is preferable to input a pulse signal synchronized with the inspection pattern signal to the electrodes other than the electrode to be measured and the specific counter electrode.
 本構成の静電容量式タッチパネルの検査方法は、上述した静電容量式タッチパネルの検査装置と実質的に同じ作用効果を奏する。すなわち、本構成の静電容量式タッチパネルの検査方法によれば、被測定電極及び特定対抗電極以外の電極に対して検査パターン信号と同期したパルス信号を入力するため、被測定電極と測定対象でない対抗電極との間においては電位差の差分が略ゼロとなる(Q=CVにおいて、Vがゼロとなる)。このため、被測定電極と他の対抗電極との間の電位差を小さくすることが出来る。その結果、被測定電極と特定対抗電極との間に発生する静電容量以外に被測定電極と他の対抗電極との間に生じる余分な静電容量の影響を抑えて、正確な測定ができる。 The method for inspecting a capacitive touch panel of this configuration has substantially the same effect as the above-described capacitance touch panel inspection apparatus. That is, according to the inspection method of the capacitive touch panel of this configuration, since the pulse signal synchronized with the inspection pattern signal is input to the electrodes other than the measurement target electrode and the specific counter electrode, the measurement target electrode and the measurement target are not used. The difference in potential difference between the counter electrode and the counter electrode is substantially zero (when Q = CV, V is zero). For this reason, the potential difference between the electrode to be measured and the other counter electrode can be reduced. As a result, in addition to the capacitance generated between the electrode to be measured and the specific counter electrode, the influence of the extra capacitance generated between the electrode to be measured and the other counter electrode is suppressed, and accurate measurement can be performed. .
 本発明に係る静電容量式タッチパネルの検査方法において、前記判定工程において、前記被測定電極の導通状態を判定する導通判定工程を実行し、静電容量の両端間の電圧が基準電位に達する時間の変化に基づいて、前記導通判定工程において、前記被測定電極は導通状態にないと判定した場合、前記監視工程において、前記対抗電極を他の対抗電極に変更することが好ましい。 In the inspection method for a capacitive touch panel according to the present invention, in the determination step, a continuity determination step of determining a continuity state of the electrode to be measured is performed, and a time during which the voltage across the capacitance reaches a reference potential When it is determined in the continuity determination step that the measured electrode is not in the continuity state based on the change of the above, it is preferable that the counter electrode is changed to another counter electrode in the monitoring step.
 本構成の静電容量式タッチパネルの検査方法は、上述した静電容量式タッチパネルの検査装置と実質的に同じ作用効果を奏する。すなわち、本構成の静電容量式タッチパネルの検査方法によれば、被測定電極が導通状態にないと判定した場合、監視工程において、対抗電極を他の対抗電極に変更するため、被測定電極との間で導通状態にない対抗電極と被測定電極との間で導通状態にある対抗電極とを判定できる。その結果、被測定電極の非導通位置を特定検出することができる。 The method for inspecting a capacitive touch panel of this configuration has substantially the same effect as the above-described capacitance touch panel inspection apparatus. That is, according to the inspection method of the capacitive touch panel of this configuration, when it is determined that the electrode to be measured is not in a conductive state, in the monitoring process, the counter electrode is changed to another counter electrode. It is possible to determine a counter electrode that is in a conductive state between a counter electrode that is not in a conductive state and a measured electrode. As a result, the non-conduction position of the electrode to be measured can be specifically detected.
 本発明に係る静電容量式タッチパネルの検査方法において、前記複数の電極を個別に接地させる接地工程と、前記複数の電極に対して信号を個別に入力する信号入力工程とを包含し、前記接地工程において、前記被測定電極以外の電極を接地させるとともに、前記信号入力工程において、前記被測定電極に対して検査パターン信号を入力することが好ましい。 In the inspection method of the capacitive touch panel according to the present invention, the method includes a grounding step of individually grounding the plurality of electrodes, and a signal input step of individually inputting signals to the plurality of electrodes, Preferably, in the step, electrodes other than the electrode to be measured are grounded, and in the signal input step, an inspection pattern signal is input to the electrode to be measured.
 本構成の静電容量式タッチパネルの検査方法は、上述した静電容量式タッチパネルの検査装置と実質的に同じ作用効果を奏する。すなわち、本構成の静電容量式タッチパネルの検査方法によれば、被測定電極以外の電極を接地させるとともに、被測定電極に対して検査パターン信号を入力する。従って、被測定電極と被測定電極以外の電極とが短絡している場合は、短絡部を伝わってグラウンドへと電流が漏洩するため、被測定電極と被測定電極以外の電極との間における静電容量に電位差が発生しない。被測定電極と被測定電極以外の電極とが短絡していない場合は、被測定電極と被測定電極以外の電極との間において静電容量が発生する。このようにして、被測定電極と被測定電極以外の電極とが短絡しているか否かを判定することができる。 The method for inspecting a capacitive touch panel of this configuration has substantially the same effect as the above-described capacitance touch panel inspection apparatus. That is, according to the inspection method of the capacitive touch panel of this configuration, electrodes other than the electrode to be measured are grounded, and an inspection pattern signal is input to the electrode to be measured. Therefore, when the electrode to be measured and an electrode other than the electrode to be measured are short-circuited, current leaks to the ground through the short-circuited portion, so that the static electricity between the electrode to be measured and the electrode other than the electrode to be measured is No potential difference occurs in the capacitance. When the electrode to be measured and an electrode other than the electrode to be measured are not short-circuited, capacitance is generated between the electrode to be measured and an electrode other than the electrode to be measured. In this way, it can be determined whether or not the electrode under measurement and an electrode other than the electrode under measurement are short-circuited.
 本発明に係る静電容量式タッチパネルの検査方法において、前記判定工程において、前記被測定電極と前記被測定電極以外の電極との短絡を判定する短絡判定工程を実行し、前記接地工程において、前記被測定電極以外を全て接地させ、接地時の静電容量の両端間の電圧の変化に基づいて、前記短絡判定において、前記被測定電極と前記被測定電極以外の電極とが短絡しているか否かを判定することが好ましい。 In the inspection method of the capacitive touch panel according to the present invention, in the determination step, a short-circuit determination step for determining a short-circuit between the electrode to be measured and an electrode other than the electrode to be measured is performed. Whether all the electrodes to be measured are grounded, and whether or not the electrodes to be measured and the electrodes other than the electrodes to be measured are short-circuited in the short-circuit determination based on a change in voltage between both ends of the capacitance at the time of grounding It is preferable to determine whether or not.
 本構成の静電容量式タッチパネルの検査方法は、上述した静電容量式タッチパネルの検査装置と実質的に同じ作用効果を奏する。すなわち、本構成の静電容量式タッチパネルの検査方法によれば、被測定電極以外の電極を全て接地させる。従って、被測定電極が被測定電極以外の電極と短絡している場合は被測定電極と被測定電極以外の電極との間における静電容量に電荷が充電されず、被測定電極が被測定電極以外の電極と短絡していない場合は被測定電極と被測定電極以外の電極との間における静電容量に電荷が充電される。その結果、被測定電極が被測定電極以外の電極と短絡しているか否かを判定することができる。 The method for inspecting a capacitive touch panel of this configuration has substantially the same effect as the above-described capacitance touch panel inspection apparatus. That is, according to the inspection method of the capacitive touch panel of this configuration, all the electrodes other than the electrode to be measured are grounded. Therefore, when the electrode to be measured is short-circuited with an electrode other than the electrode to be measured, the electrostatic charge between the electrode to be measured and the electrode other than the electrode to be measured is not charged, and the electrode to be measured is When the other electrodes are not short-circuited, electric charge is charged in the capacitance between the electrode to be measured and the electrode other than the electrode to be measured. As a result, it can be determined whether the electrode to be measured is short-circuited with an electrode other than the electrode to be measured.
 本発明に係る静電容量式タッチパネルの検査方法において、前記短絡判定工程において前記被測定電極と前記被測定電極以外の電極とが短絡していると判定した場合、前記被測定電極以外の接地を1つずつ外し、前記被測定電極と前記被測定電極以外の電極との間の静電容量が充電され電位差が発生するまで繰り返すことが好ましい。 In the inspection method for a capacitive touch panel according to the present invention, when it is determined in the short-circuit determination step that the electrode to be measured and an electrode other than the electrode to be measured are short-circuited, grounding other than the electrode to be measured is grounded. It is preferable to remove one by one and repeat until the capacitance between the electrode to be measured and the electrode other than the electrode to be measured is charged and a potential difference is generated.
 本構成の静電容量式タッチパネルの検査方法は、上述した静電容量式タッチパネルの検査装置と実質的に同じ作用効果を奏する。すなわち、本構成の静電容量式タッチパネルの検査方法によれば、被測定電極と被測定電極以外の電極とが短絡していると判定した場合、電極の接地を1つずつ解除し、被測定電極と被測定電極以外の電極との間に静電容量が発生するまで繰り返すため、短絡状態にある被測定電極を特定できる。その結果、被測定電極と短絡している電極を特定することが出来る。 The method for inspecting a capacitive touch panel of this configuration has substantially the same effect as the above-described capacitance touch panel inspection apparatus. That is, according to the inspection method of the capacitive touch panel of this configuration, when it is determined that the electrode to be measured and the electrode other than the electrode to be measured are short-circuited, the grounding of the electrodes is released one by one, Since it repeats until an electrostatic capacitance generate | occur | produces between electrodes and electrodes other than a to-be-measured electrode, the to-be-measured electrode in a short circuit state can be specified. As a result, an electrode that is short-circuited with the electrode to be measured can be identified.
本発明に係る実施形態の静電容量式タッチパネルの検査装置を概略的に示した平面図である。It is the top view which showed roughly the inspection apparatus of the capacitive touch panel of embodiment which concerns on this invention. 図1で示された領域A周辺の拡大模式図である。FIG. 2 is an enlarged schematic view around a region A shown in FIG. 1. 静電容量検出回路の説明図である。It is explanatory drawing of an electrostatic capacitance detection circuit. 検査パターン信号とパルス信号とを示す模式図である。It is a schematic diagram which shows a test | inspection pattern signal and a pulse signal. 被測定電極の導通状態を判定する手順を示す模式図である。It is a schematic diagram which shows the procedure which determines the conduction | electrical_connection state of a to-be-measured electrode. 被測定電極と被測定電極以外の電極との短絡を判定する手順を示す模式図である。It is a schematic diagram which shows the procedure which determines the short circuit with a measured electrode and electrodes other than a measured electrode.
 図1~図6を参照して、本発明を実施するための形態を説明する。本発明は、以下に説明する実施形態や図面に記載される構成に限定されることを意図せず、当該構成と均等な構成も含む。 Embodiments for carrying out the present invention will be described with reference to FIGS. The present invention is not intended to be limited to the configurations described in the embodiments and drawings described below, and includes configurations equivalent to those configurations.
〔静電容量式タッチパネルの検査装置〕
 図1は、本発明に係る実施形態の静電容量式タッチパネル1の検査装置100を概略的に示した平面図である。本実施形態において、検査対象となる静電容量式タッチパネル1は、9個の水平電極X0~X8と、7個の垂直電極Y0~Y6とを備えている。そして、各水平電極X0~X8から図中下方に9本のリード線a0~a8が夫々延伸し、各垂直電極Y0~Y6から図中側方に7本のリード線b0~b6が夫々延伸する。なお、静電容量式タッチパネル1において、リード線a0~a8の夫々は、水平電極X0~X8の夫々の一部を構成し、リード線b0~b6の夫々は、垂直電極Y0~Y6の夫々の一部を構成する。更に、リード線a0~a8の各々はリード線b0~b6の各々と平面視で交差しているが、断面視では所定の距離をおいて離間している。すなわち、両者は平面視における交差部で互いに接近した状態となっている。この接近部がコンデンサとして機能し、静電容量が発生し得る。
[Capacitive touch panel inspection device]
FIG. 1 is a plan view schematically showing an inspection apparatus 100 for a capacitive touch panel 1 according to an embodiment of the present invention. In the present embodiment, the capacitive touch panel 1 to be inspected includes nine horizontal electrodes X0 to X8 and seven vertical electrodes Y0 to Y6. Nine lead wires a0 to a8 extend downward from the horizontal electrodes X0 to X8 in the drawing, and seven lead wires b0 to b6 extend from the vertical electrodes Y0 to Y6 to the side in the drawing. . In the capacitive touch panel 1, each of the lead wires a0 to a8 constitutes a part of each of the horizontal electrodes X0 to X8, and each of the lead wires b0 to b6 is each of the vertical electrodes Y0 to Y6. Part of it. Furthermore, each of the lead wires a0 to a8 intersects each of the lead wires b0 to b6 in a plan view, but is separated by a predetermined distance in a cross sectional view. That is, both are close to each other at the intersection in plan view. This approaching part functions as a capacitor, and electrostatic capacity can be generated.
 検査装置100は、主要な構成要素として、静電容量検出回路(監視手段)10、状態判定部(判定手段)20を備えている。静電容量検出回路10は、検査対象となる被測定電極2と被測定電極2に対抗する対抗電極3のうちの測定対象となる対抗電極(特定対抗電極4)との間(前述の接近部)における静電容量の両端間の電圧を監視する。静電容量検出回路10は、プログラマブルロジックデバイス(FPGA)を含むように構成される。静電容量検出回路10がFPGAの機能を備えることにより、水平電極X0~X8及び垂直電極Y0~Y6を、夫々個別にスイッチングすることが容易となる。また、静電容量検出回路10は、複数の電極に対して信号を個別に入力する信号入力手段として、更に、被測定電極2に対して検査パターン信号を入力するとともに、被測定電極2及び特定対抗電極4以外の電極に対して検査パターン信号と同期したパルス信号を入力する信号入力手段として機能する。更にまた、静電容量検出回路10は、複数の電極を個別に接地させる接地手段として機能する。 The inspection apparatus 100 includes a capacitance detection circuit (monitoring unit) 10 and a state determination unit (determination unit) 20 as main components. The capacitance detection circuit 10 is provided between the electrode to be measured 2 to be inspected and the counter electrode (specific counter electrode 4) to be measured among the counter electrodes 3 to be opposed to the electrode to be measured 2 (the above-described approach portion). ) Monitor the voltage across the capacitance at. The capacitance detection circuit 10 is configured to include a programmable logic device (FPGA). Since the capacitance detection circuit 10 has the FPGA function, it becomes easy to individually switch the horizontal electrodes X0 to X8 and the vertical electrodes Y0 to Y6. Further, the capacitance detection circuit 10 further inputs a test pattern signal to the electrode to be measured 2 as a signal input means for individually inputting signals to a plurality of electrodes, as well as the electrode to be measured 2 and the specified electrode. It functions as a signal input means for inputting a pulse signal synchronized with the inspection pattern signal to the electrodes other than the counter electrode 4. Furthermore, the capacitance detection circuit 10 functions as a grounding means for grounding a plurality of electrodes individually.
 被測定電極2は、水平電極X0~X8及び垂直電極Y0~Y6のうち検査対象となる任意の電極である。対抗電極3は、被測定電極2に対抗して配置されている。例えば、被測定電極2が垂直電極Y0~Y6のうちの一つの場合、対抗電極3は水平電極X0~X8の全てである。また、被測定電極2が水平電極X0~X8のうちの一つの場合、対抗電極3は垂直電極Y0~Y6の全てである。ここで、例えば、Y6を被測定電極2とする場合、対抗電極X0~X8の中から測定対象の対抗電極を特定対抗電極4として選択する。 The measured electrode 2 is an arbitrary electrode to be inspected among the horizontal electrodes X0 to X8 and the vertical electrodes Y0 to Y6. The counter electrode 3 is disposed so as to oppose the electrode 2 to be measured. For example, when the electrode 2 to be measured is one of the vertical electrodes Y0 to Y6, the counter electrode 3 is all of the horizontal electrodes X0 to X8. When the electrode 2 to be measured is one of the horizontal electrodes X0 to X8, the counter electrode 3 is all of the vertical electrodes Y0 to Y6. Here, for example, when Y6 is the electrode to be measured 2, the counter electrode to be measured is selected as the specific counter electrode 4 from the counter electrodes X0 to X8.
 状態判定部20は、静電容量検出回路10の監視結果に基づいて被測定電極2の状態を判定する。状態判定部20は、被測定電極2の導通状態を判定する導通判定部30と被測定電極2と被測定電極2以外の電極との短絡を判定する短絡判定部40とを備える。 The state determination unit 20 determines the state of the electrode 2 to be measured based on the monitoring result of the capacitance detection circuit 10. The state determination unit 20 includes a continuity determination unit 30 that determines the continuity state of the electrode under measurement 2 and a short circuit determination unit 40 that determines a short circuit between the electrode under measurement 2 and an electrode other than the electrode under measurement 2.
 なお、図1において、○印で囲まれた領域Aは、被測定電極2から延伸するリード線b6と特定対抗電極4から延伸するリード線a0とが接近する領域を示す。 In FIG. 1, a region A surrounded by a circle indicates a region where the lead wire b <b> 6 extending from the measured electrode 2 and the lead wire a <b> 0 extending from the specific counter electrode 4 approach each other.
 図2は、図1で示された領域A周辺の拡大模式図である。(a)は、領域A周辺の詳細を示す。静電容量式タッチパネル1は、リード線a0に接続されたセンサ部c1、c2と、リード線a1に接続されたセンサ部c3、c4と、リード線b5に接続されたセンサ部d1、d2と、リード線b6に接続されたセンサ部d3、d4とを含む。センサ部c1~c4、d1~d4は静電容量式タッチパネル1への接触を、当該接触物とセンサ部c1~c4、d1~d4との間に発生する静電容量の変化として検知し、静電容量式タッチパネル1への接触位置を出力する。(b)は、(a)の中に示した領域Bの拡大斜視図である。リード線a0とリード線b6とは近接している。(c)は、(a)の中に示した領域Bのリード線b6に沿った断面図である。リード線a0とリード線b6との間に静電容量が発生する。 FIG. 2 is an enlarged schematic view around the area A shown in FIG. (A) shows the detail around the area A. FIG. The capacitive touch panel 1 includes sensor portions c1 and c2 connected to the lead wire a0, sensor portions c3 and c4 connected to the lead wire a1, sensor portions d1 and d2 connected to the lead wire b5, Sensor parts d3 and d4 connected to the lead wire b6. The sensor units c1 to c4 and d1 to d4 detect contact with the capacitive touch panel 1 as a change in capacitance generated between the contact object and the sensor units c1 to c4 and d1 to d4. The contact position to the capacitive touch panel 1 is output. (B) is an enlarged perspective view of the region B shown in (a). The lead wire a0 and the lead wire b6 are close to each other. (C) is sectional drawing along the lead wire b6 of the area | region B shown in (a). Capacitance is generated between the lead wire a0 and the lead wire b6.
 図3は、静電容量検出回路10の説明図である。(a)は、静電容量検出回路10の回路図であり、(b)は被測定電極2と特定対抗電極4との間における静電容量の両端間の電圧の経時変化を示すグラフの一例である。静電容量検出回路10は、被測定電極2と特定対抗電極4との間における静電容量の両端間の電圧を監視する。静電容量検出回路10は、リード線a0~a8のライン電位(すなわち、各水平電極X0~X8とグラウンドとの間における静電容量の両端間の電圧)と、リード線b0~b6のライン電位(すなわち、各垂直電極Y0~Y6とグラウンドとの間における静電容量の両端間の電圧)とを同時に監視可能とするために、回路構成を集積化するか、あるいは回路自体を複数個設けることも可能である。 FIG. 3 is an explanatory diagram of the capacitance detection circuit 10. (A) is a circuit diagram of the capacitance detection circuit 10, and (b) is an example of a graph showing a change with time of the voltage between both ends of the capacitance between the measured electrode 2 and the specific counter electrode 4. It is. The capacitance detection circuit 10 monitors the voltage across the capacitance between the measured electrode 2 and the specific counter electrode 4. The capacitance detection circuit 10 has a line potential of the lead wires a0 to a8 (that is, a voltage between both ends of the capacitance between the horizontal electrodes X0 to X8 and the ground) and a line potential of the lead wires b0 to b6. In order to be able to monitor simultaneously (that is, the voltage between both ends of the capacitance between each vertical electrode Y0 to Y6 and the ground), the circuit configuration is integrated or a plurality of circuits are provided. Is also possible.
 被測定電極2(例えばリード線b6)と特定対抗電極4(例えばリード線a0)とはオペアンプ11の一方の入力に接続され、被測定電極2と特定対抗電極4との間における静電容量の両端間の電圧に相当する被測定電位(Vm)と基準電位(Vref)との電位差が常時監視される。なお、図3(a)中のVccは静電容量検出回路10の電源電位である。 The electrode to be measured 2 (for example, the lead wire b6) and the specific counter electrode 4 (for example, the lead wire a0) are connected to one input of the operational amplifier 11, and the capacitance between the electrode to be measured 2 and the specific counter electrode 4 is measured. The potential difference between the measured potential (Vm) corresponding to the voltage between both ends and the reference potential (Vref) is constantly monitored. Note that Vcc in FIG. 3A is the power supply potential of the capacitance detection circuit 10.
 検査を行う前に、先ずスイッチ12をONにしてグラウンドに接続し、被測定電極2と特定対抗電極4との被測定電位(Vm)が夫々略ゼロとなるように完全に放電させる(放電状態)。このとき、基準電位(Vref)が被測定電位(Vm)を上回るため、図3(b)の上段に示したように、オペアンプ11から出力される信号はLowからHighに切り替わる。 Before performing the inspection, first, the switch 12 is turned on and connected to the ground, and the measured potential (Vm) of the measured electrode 2 and the specific counter electrode 4 is completely discharged so that each becomes substantially zero (discharge state) ). At this time, since the reference potential (Vref) exceeds the potential to be measured (Vm), the signal output from the operational amplifier 11 is switched from Low to High as shown in the upper part of FIG.
 次に、被測定電極2に電位を加える。被測定電極2に電位が加わると、被測定電極2の被測定電位(Vm)(静電容量の両端間の電圧)が時間の経過とともに徐々に上昇する。このとき、電源電位(Vcc)とグラウンドとの間に設けた第1可変抵抗13の抵抗値と第2可変抵抗14の抵抗値との比率を適宜変更することにより、静電容量の両端間の電圧を完全な充電状態にしたり、あるいは任意の電圧にプリセットしたりすることができる。 Next, a potential is applied to the electrode 2 to be measured. When a potential is applied to the electrode 2 to be measured, the potential to be measured (Vm) (voltage across the capacitance) of the electrode 2 to be measured gradually rises with time. At this time, by appropriately changing the ratio between the resistance value of the first variable resistor 13 and the resistance value of the second variable resistor 14 provided between the power supply potential (Vcc) and the ground, the capacitance between both ends is changed. The voltage can be fully charged or preset to any voltage.
 被測定電位(Vm)が基準電位(Vref)を超えると、オペアンプ11から出力される信号はHighからLowに切り替わる。従って、オペアンプ11からHigh信号が出力されている時間tが、被測定電極2と特定対抗電極4とにおける静電容量の両端間の電圧が放電状態から基準電位(Vref)に達するのに要した時間tとなる。被測定電極2のリード線が正常(すなわち、良品)であれば、この時間tは一定の範囲内に収まる。一方、被測定電極2のリード線が切れかかっていたり、断線していたり、あるいは他のリード線と短絡していたりすると、時間tが異常に長くなるか、あるいは静電容量の両端間の電圧が基準電位(Vref)に達しないため時間tを測定できなくなる。従って、時間tを測定することにより、静電容量式タッチパネル1の正常又は異常を判定が可能となる。 When the measured potential (Vm) exceeds the reference potential (Vref), the signal output from the operational amplifier 11 is switched from High to Low. Therefore, the time t during which the High signal is output from the operational amplifier 11 required for the voltage across the capacitances of the electrode 2 to be measured and the specific counter electrode 4 to reach the reference potential (Vref) from the discharge state. Time t is reached. If the lead wire of the electrode 2 to be measured is normal (that is, a non-defective product), the time t falls within a certain range. On the other hand, if the lead wire of the electrode 2 to be measured is about to be cut, disconnected, or short-circuited with another lead wire, the time t becomes abnormally long or the voltage across the capacitance Cannot reach the reference potential (Vref), and the time t cannot be measured. Therefore, it is possible to determine whether the capacitive touch panel 1 is normal or abnormal by measuring the time t.
 本発明では、静電容量式タッチパネル1の正常又は異常を、状態判定部20で判定する。状態判定部20は、例えば、汎用のパーソナルコンピュータで構成することができる。 In the present invention, the state determination unit 20 determines whether the capacitive touch panel 1 is normal or abnormal. The state determination unit 20 can be configured by, for example, a general-purpose personal computer.
 状態判定部20は、被測定電極2へ電位を加え、被測定電極2と特定対抗電極4との間における静電容量の両端間の電圧を放電状態から充電する際、静電容量の両端間の電圧が所定時間範囲内で基準電位(Vref)に達したか否かに基づいて判断を行う。例えば、静電容量の両端間の電圧が基準電圧に達する時間が所定時間範囲より長い場合は、被測定電極2は導通状態にないと判定する。従って、被測定電極2のリード線が切れかかっていたり、あるいは断線していたりすることが判明する。 When the state determination unit 20 applies a potential to the electrode 2 to be measured and charges the voltage between both ends of the capacitance between the electrode 2 to be measured and the specific counter electrode 4 from the discharge state, between the both ends of the capacitance The determination is made based on whether or not the voltage reaches the reference potential (Vref) within a predetermined time range. For example, if the time for the voltage across the capacitance to reach the reference voltage is longer than a predetermined time range, it is determined that the electrode 2 to be measured is not in a conductive state. Therefore, it is found that the lead wire of the electrode 2 to be measured is about to be disconnected or disconnected.
 また、静電容量検出回路10が、被測定電極2以外の電極を全て接地させておいた場合には、接地時の静電容量の両端間の電圧の変化に基づいて、状態判定部20は、被測定電極2と被測定電極2以外の電極とが短絡しているか否かを判定する。例えば、被測定電極2が被測定電極2以外の電極と短絡している場合は被測定電極2と被測定電極2以外の電極との間における静電容量に電荷が充電されない。一方、被測定電極2が被測定電極2以外の電極と短絡していない場合は被測定電極2と被測定電極2以外の電極との間における静電容量に電荷が充電される。 In addition, when the capacitance detection circuit 10 has grounded all electrodes other than the electrode 2 to be measured, the state determination unit 20 determines whether or not the state determination unit 20 is based on a change in voltage across the capacitance at the time of grounding. Then, it is determined whether or not the electrode to be measured 2 and an electrode other than the electrode to be measured 2 are short-circuited. For example, when the electrode to be measured 2 is short-circuited with an electrode other than the electrode to be measured 2, no charge is charged in the capacitance between the electrode to be measured 2 and the electrode other than the electrode to be measured 2. On the other hand, when the electrode 2 to be measured is not short-circuited with an electrode other than the electrode 2 to be measured, an electric charge is charged to the capacitance between the electrode 2 to be measured and the electrode other than the electrode 2 to be measured 2.
 さらに、静電容量検出回路10が、被測定電極2以外の電極を接地させるとともに、被測定電極2に対して検査パターン信号を入力する。被測定電極2と被測定電極2以外の電極とが短絡している場合は、短絡部を伝わってグラウンドへと電流が漏洩するため、被測定電極2と被測定電極2以外の電極との間における静電容量に電位差が発生しない。被測定電極2と被測定電極2以外の電極とが短絡していない場合は、被測定電極2と被測定電極2以外の電極との間において静電容量に電位差が発生する。このようにして、被測定電極2と被測定電極2以外の電極とが短絡しているか否かを判定することができる。 Furthermore, the capacitance detection circuit 10 grounds electrodes other than the electrode to be measured 2 and inputs an inspection pattern signal to the electrode to be measured 2. When the electrode 2 to be measured and an electrode other than the electrode 2 to be measured are short-circuited, the current leaks to the ground through the short-circuit portion. No potential difference occurs in the capacitance at. When the electrode to be measured 2 and an electrode other than the electrode to be measured 2 are not short-circuited, a potential difference occurs in the capacitance between the electrode to be measured 2 and an electrode other than the electrode to be measured 2. In this way, it can be determined whether or not the electrode under measurement 2 and an electrode other than the electrode under measurement 2 are short-circuited.
 状態判定部20が行う別の判定手法として、例えば、リード線における静電容量を充電する際、当該静電容量の両端間の電圧が基準電位(Vref)に達する時間に基づいて、静電容量式タッチパネル1の正常度を求めることもできる。例えば、状態判定部20は、静電容量の両端間の電圧が基準電位(Vref)に達した時間を数値化し、測定した数値が所定の設定値に近いほど静電容量式タッチパネル1は正常であると判断する。この場合、静電容量式タッチパネル1の微妙な状態まで知ることができるため、より精密な検査を実施することができる。 As another determination method performed by the state determination unit 20, for example, when charging the capacitance of the lead wire, the capacitance is determined based on the time when the voltage between both ends of the capacitance reaches the reference potential (Vref). The normality of the touch panel 1 can also be obtained. For example, the state determination unit 20 quantifies the time when the voltage across the capacitance reaches the reference potential (Vref). The closer the measured value is to a predetermined set value, the more normal the capacitive touch panel 1 is. Judge that there is. In this case, since the subtle state of the capacitive touch panel 1 can be known, a more precise inspection can be performed.
 上記基準電位(Vref)は、例えば、正常な静電容量を有するリード線が完全に充電されたときに測定される電位の0.1~0.9倍の値に設定される。上記所定時間範囲は、例えば、正常な値を有する特定部位の静電容量が、基準電位(Vref)まで充電されるのに要する時間の0.3~2.0倍に設定される。この範囲であれば、充電時に外部ノイズ等の影響を受け難いため、図3(b)の静電容量の両端間の電圧の経時変化のグラフの再現性が良好となり、正確な判断を行うことができる。 The reference potential (Vref) is set to, for example, a value of 0.1 to 0.9 times the potential measured when a lead wire having a normal capacitance is fully charged. The predetermined time range is set to, for example, 0.3 to 2.0 times the time required for the capacitance of a specific part having a normal value to be charged to the reference potential (Vref). If it is within this range, it is difficult to be affected by external noise during charging, so the reproducibility of the time-dependent graph of the voltage across the capacitance in FIG. Can do.
 このように本構成の静電容量式タッチパネル1の検査装置100を用いれば、被測定電極2と特定対抗電極4との間における静電容量の両端間の電圧を測定することができる。そして、被測定電極2と特定対抗電極4との接近部位における静電容量の変化は、制御側のスイッチ操作のみで測定し得るため、タッチパネルのセンサ面を直接検査装置100で触れることなく、静電容量式タッチパネル1を検査し得る。 Thus, by using the inspection apparatus 100 of the capacitive touch panel 1 having this configuration, it is possible to measure the voltage across the capacitance between the electrode 2 to be measured and the specific counter electrode 4. And since the change of the electrostatic capacitance in the approach part of the to-be-measured electrode 2 and the specific counter electrode 4 can be measured only by control side switch operation, without touching the sensor surface of a touch panel directly with the test | inspection apparatus 100, it is static. The capacitive touch panel 1 can be inspected.
 ところで、本発明の静電容量式タッチパネルの検査装置100は、被測定電極2と対抗電極3とが接近する部位に発生する微少な静電容量を検知する方式であるため、被測定電極2と特定対抗電極4との間に発生する静電容量のみを監視するためには、被測定電極2と特定対抗電極4以外の対抗電極3との間に発生する静電容量の影響を出来る限り抑える必要がある。そこで、本発明では、静電容量検出回路10により被測定電極2に対して検査パターン信号を入力するとともに、被測定電極2及び特定対抗電極4以外の電極に対しては、図4に示すような検査パターン信号と同期したパルス信号を入力する。これにより、被測定電極2と特定対抗電極4以外の対抗電極3との間においては、電位差の差分が略ゼロとなるため(Q=CVにおいて、Vがゼロとなるため)、静電容量に電位差が生じない。その結果、被測定電極2と特定対抗電極4との間に発生する静電容量以外に被測定電極2と他の対抗電極3との間に生じる余分な静電容量の影響を抑えて、正確な測定ができる。 By the way, the electrostatic capacitance type touch panel inspection apparatus 100 according to the present invention is a method for detecting a minute capacitance generated at a site where the electrode 2 to be measured and the counter electrode 3 approach each other. In order to monitor only the capacitance generated between the specific counter electrode 4, the influence of the capacitance generated between the electrode to be measured 2 and the counter electrode 3 other than the specific counter electrode 4 is suppressed as much as possible. There is a need. Therefore, in the present invention, the inspection pattern signal is input to the electrode 2 to be measured by the capacitance detection circuit 10, and the electrodes other than the electrode 2 to be measured and the specific counter electrode 4 are as shown in FIG. A pulse signal synchronized with a correct inspection pattern signal is input. As a result, the difference in potential difference between the electrode to be measured 2 and the counter electrode 3 other than the specific counter electrode 4 is substantially zero (since V is zero at Q = CV), the capacitance is reduced. There is no potential difference. As a result, in addition to the capacitance generated between the electrode to be measured 2 and the specific counter electrode 4, the influence of the extra capacitance generated between the electrode to be measured 2 and the other counter electrode 3 can be suppressed and accurate. Can be measured.
〔静電容量式タッチパネルの検査方法〕
 上述した本発明の静電容量式タッチパネル1の検査装置100を用いることにより、本発明の静電容量式タッチパネル1の検査方法を実施することができる。以下、本発明の静電容量式タッチパネル1の検査方法の具体例として、被測定電極2の導通状態を判定する手順と被測定電極2と対抗電極3との短絡を判定する手順とを説明する。
[Inspection method for capacitive touch panel]
By using the inspection apparatus 100 for the capacitive touch panel 1 of the present invention described above, the inspection method for the capacitive touch panel 1 of the present invention can be implemented. Hereinafter, as a specific example of the inspection method of the capacitive touch panel 1 of the present invention, a procedure for determining the conduction state of the electrode 2 to be measured and a procedure for determining a short circuit between the electrode 2 to be measured and the counter electrode 3 will be described. .
<第1実施形態>
 図5は、被測定電極2の導通状態を判定する手順を示す模式図である。導通状態を判定する手順は、工程1から工程3によって実行される。図5において、(a)~(c)は、夫々工程1~工程3に対応する。また、図5において、リード線b6上の×印は、リード線b6の断線部分を示す。
<First Embodiment>
FIG. 5 is a schematic diagram showing a procedure for determining the conduction state of the electrode 2 to be measured. The procedure for determining the conduction state is executed by steps 1 to 3. In FIG. 5, (a) to (c) correspond to Step 1 to Step 3, respectively. In FIG. 5, the x mark on the lead wire b <b> 6 indicates a disconnected portion of the lead wire b <b> 6.
 工程1:静電容量検出回路10は、被測定電極2としてリード線b6、特定対抗電極4としてリード線a0を選択し、静電容量の両端間の電圧が所定時間内に基準電圧に達するか否かを監視する。監視結果に基づいて被測定電極2の状態を判定する。ここでは、所定時間内に基準電圧に達しないため、導通判定部30が、被測定電極2はリード線a0に対して導通状態にないと判定する。静電容量検出回路10は特定対抗電極4を他の対抗電極(リード線a1)に変更する。 Step 1: The capacitance detection circuit 10 selects the lead wire b6 as the electrode to be measured 2 and the lead wire a0 as the specific counter electrode 4, and determines whether the voltage across the capacitance reaches the reference voltage within a predetermined time. Monitor whether or not. The state of the electrode 2 to be measured is determined based on the monitoring result. Here, since the reference voltage is not reached within a predetermined time, the continuity determination unit 30 determines that the measured electrode 2 is not in a conductive state with respect to the lead wire a0. The capacitance detection circuit 10 changes the specific counter electrode 4 to another counter electrode (lead wire a1).
 工程2:静電容量検出回路10は、特定対抗電極4としてリード線a1を選択し、静電容量の両端間の電圧が所定時間内に基準電圧に達するか否かを監視する。ここでは、所定時間より早く基準電圧に達するため、導通判定部30が、被測定電極2はリード線a1に対して導通状態にないと判定する。静電容量検出回路10は特定対抗電極4を他の対抗電極(リード線a2)に変更する。 Step 2: The capacitance detection circuit 10 selects the lead wire a1 as the specific counter electrode 4, and monitors whether the voltage across the capacitance reaches the reference voltage within a predetermined time. Here, since the reference voltage is reached earlier than the predetermined time, the continuity determination unit 30 determines that the electrode under measurement 2 is not in a conductive state with respect to the lead wire a1. The capacitance detection circuit 10 changes the specific counter electrode 4 to another counter electrode (lead wire a2).
 工程3:静電容量検出回路10は、特定対抗電極4としてリード線a2を選択し、静電容量の両端間の電圧が所定時間内に基準電圧に達するか否かを監視する。ここで、所定時間内に基準電圧に達したため、導通判定部30が、被測定電極2はリード線a2に対して導通状態にあると判定する。 Step 3: The capacitance detection circuit 10 selects the lead wire a2 as the specific counter electrode 4, and monitors whether the voltage across the capacitance reaches the reference voltage within a predetermined time. Here, since the reference voltage is reached within a predetermined time, the continuity determination unit 30 determines that the electrode 2 to be measured is in a conductive state with respect to the lead wire a2.
 上述のように、静電容量検出回路10は、被測定電極2と特定対抗電極4との間における静電容量の両端間の電圧が所定時間内に基準電圧に達するか否かを監視し、所定時間より早く基準電圧に達する場合は、導通判定部30が、被測定電極2は特定対抗電極4に対して導通状態にないと判定する。このように、導通状態にあるか否かを検査し得る。また、被測定電極2は導通状態にないと判定した場合、特定対抗電極4を他の対抗電極に順次変更し、所定時間内に基準電圧に達するか否かを監視することで、被測定電極2との間で導通状態にない対抗電極3と被測定電極2との間で導通状態にある対抗電極3とを判定できる。図5で示した手順によれば、被測定電極2と導通状態にない対抗電極はリード線a0とリード線a1であり、被測定電極2と導通状態にある対抗電極はリード線a2である。従って、リード線b6のうち、リード線a1と近接する部分とリード線a2と近接する部分との間で断線が生じているとして、断線位置を特定し得る。 As described above, the capacitance detection circuit 10 monitors whether the voltage between both ends of the capacitance between the measured electrode 2 and the specific counter electrode 4 reaches the reference voltage within a predetermined time, When the reference voltage is reached earlier than the predetermined time, the continuity determination unit 30 determines that the measured electrode 2 is not in a conductive state with respect to the specific counter electrode 4. In this way, it can be checked whether or not it is in a conductive state. Further, when it is determined that the measured electrode 2 is not in the conductive state, the specific counter electrode 4 is sequentially changed to another counter electrode, and whether or not the reference voltage is reached within a predetermined time is monitored. The counter electrode 3 that is not in conduction with the counter electrode 3 and the counter electrode 3 that is in conduction with the electrode 2 to be measured can be determined. According to the procedure shown in FIG. 5, the counter electrodes that are not in conduction with the electrode to be measured 2 are the lead wire a0 and the lead wire a1, and the counter electrodes that are in conduction with the electrode to be measured 2 are the lead wire a2. Therefore, the disconnection position can be specified on the assumption that a disconnection has occurred between the portion close to the lead wire a1 and the portion adjacent to the lead wire a2 in the lead wire b6.
<第2実施形態>
 図6は、被測定電極2と被測定電極2以外の電極との短絡を判定する手順を示す模式図である。導通状態を判定する手順は、工程1~工程3によって実行される。図6において、(a)~(c)は、夫々工程1~工程3に対応する。また、図6において、リード線b6上の黒丸印は、リード線a1とリード線b6との短絡部分を示す。
Second Embodiment
FIG. 6 is a schematic diagram illustrating a procedure for determining a short circuit between the measured electrode 2 and an electrode other than the measured electrode 2. The procedure for determining the conduction state is executed by steps 1 to 3. In FIG. 6, (a) to (c) correspond to Step 1 to Step 3, respectively. In FIG. 6, black circles on the lead wire b6 indicate a short-circuit portion between the lead wire a1 and the lead wire b6.
 工程1:静電容量検出回路10は、被測定電極2以外の電極を全て接地させる。被測定電極2がリード線a1と短絡している場合、接地時の静電容量には充電されず、被測定電極2の電位は基準電位(Vref)まで充電されない。従って、短絡判定部40は被測定電極2と被測定電極2以外の電極とが短絡しているか否かを判定し得る。 Step 1: The capacitance detection circuit 10 grounds all electrodes other than the electrode 2 to be measured. When the electrode 2 to be measured is short-circuited with the lead wire a1, the capacitance at the time of grounding is not charged, and the potential of the electrode 2 to be measured is not charged to the reference potential (Vref). Therefore, the short circuit determination unit 40 can determine whether or not the electrode 2 to be measured and an electrode other than the electrode 2 to be measured are short-circuited.
 工程2:短絡判定部40によって、被測定電極2が被測定電極2以外の電極の何れかと短絡していると判定された場合、静電容量検出回路10は被測定電極2以外の電極のうちの一つの電極(例えば、リード線a0)の接地を解除する。被測定電極2がリード線a1と短絡しているため、接地時の静電容量には充電されず、被測定電極2の電位は基準電位(Vref)まで充電されない。 Step 2: When the short-circuit determining unit 40 determines that the electrode 2 to be measured is short-circuited with any electrode other than the electrode 2 to be measured, the capacitance detection circuit 10 includes the electrodes other than the electrode 2 to be measured. The ground of one electrode (for example, lead wire a0) is released. Since the electrode 2 to be measured is short-circuited to the lead wire a1, the electrostatic capacitance at the time of grounding is not charged, and the potential of the electrode 2 to be measured is not charged to the reference potential (Vref).
 工程3:短絡判定部40によって、被測定電極2と被測定電極2以外の電極とが短絡していると判定された場合、静電容量検出回路10は電極(例えば、リード線a1)の接地を解除する。被測定電極2がリード線a1と短絡しているため、接地時の静電容量には充電され、被測定電極2の電位は基準電位(Vref)まで充電される。その結果、被測定電極2がリード線a1と短絡していることを確認することができる Step 3: When the short-circuit determining unit 40 determines that the electrode 2 to be measured and an electrode other than the electrode 2 to be measured are short-circuited, the capacitance detection circuit 10 grounds the electrode (for example, the lead wire a1). Is released. Since the electrode 2 to be measured is short-circuited to the lead wire a1, the electrostatic capacity at the time of grounding is charged, and the potential of the electrode 2 to be measured is charged to the reference potential (Vref). As a result, it can be confirmed that the electrode 2 to be measured is short-circuited with the lead wire a1.
 このように、本発明の静電容量式タッチパネルの検査方法を実行すれば、被測定電極2以外の電極を全て接地させる。従って、被測定電極2が被測定電極2以外の電極と短絡している場合は被測定電極2と被測定電極2以外の電極との間における静電容量に電荷が充電されず、被測定電極2が被測定電極2以外の電極と短絡していない場合は被測定電極2と被測定電極2以外の電極との間における静電容量に電荷が充電される。その結果、被測定電極2が被測定電極2以外の電極と短絡しているか否かを判定することができる。更に、被測定電極2と被測定電極2以外の電極とが短絡していると判定した場合、電極の接地を1つずつ解除し、被測定電極2と被測定電極2以外の電極との間に静電容量が発生するまで繰り返すため、被測定電極2と短絡状態にある電極を特定できる。その結果、被測定電極2と短絡している電極を特定することが出来る。 Thus, when the inspection method for the capacitive touch panel of the present invention is executed, all the electrodes other than the electrode to be measured 2 are grounded. Therefore, when the electrode 2 to be measured is short-circuited with an electrode other than the electrode 2 to be measured, the electrostatic charge between the electrode 2 to be measured and the electrode other than the electrode 2 to be measured is not charged, and the electrode to be measured When 2 is not short-circuited with an electrode other than the electrode to be measured 2, electric charge is charged to the capacitance between the electrode to be measured 2 and an electrode other than the electrode to be measured 2. As a result, it can be determined whether the electrode 2 to be measured is short-circuited with an electrode other than the electrode 2 to be measured. Further, when it is determined that the electrode to be measured 2 and the electrode other than the electrode to be measured 2 are short-circuited, the electrodes are grounded one by one and between the electrode to be measured 2 and the electrode other than the electrode to be measured 2. Therefore, it is possible to identify an electrode in a short-circuited state with the electrode 2 to be measured. As a result, an electrode that is short-circuited with the electrode 2 to be measured can be specified.
〔別実施形態〕
<1>本発明の実施形態では、リード線a0~a8(対抗電極)とリード線b0~b6(被測定電極)とが平面視で直交した状態で近接する静電容量式タッチパネル1に対する検査装置100を説明した。しかし、リード線a0~a8とリード線b0~b6とが接近する限りは静電容量が発生し得ることから、例えば、リード線a0~a8とリード線b0~b6とが平面視で鋭角に交差する静電容量式タッチパネルについても検査は可能である。従って、このような平面視で鋭角に交差する静電容量式タッチパネルに対して行う検査装置及び検査方法も、当然本発明に含まれる。
[Another embodiment]
<1> In the embodiment of the present invention, the inspection device for the capacitive touch panel 1 in which the lead wires a0 to a8 (counter electrodes) and the lead wires b0 to b6 (measurement electrodes) are close to each other in a state of being orthogonal to each other in plan view 100 explained. However, as long as the lead wires a0 to a8 and the lead wires b0 to b6 are close to each other, capacitance can be generated. For example, the lead wires a0 to a8 and the lead wires b0 to b6 intersect at an acute angle in plan view. Inspection is also possible for the capacitive touch panel. Therefore, the present invention also includes an inspection apparatus and an inspection method performed on such a capacitive touch panel that intersects at an acute angle in plan view.
<2>本発明の実施形態では、静電容量式タッチパネルの連続検査を行うにあたり、検査対象を一つのリード線から隣接する方向に順番に移動させて全てのリード線について検査を行っているが、予め検査対象となるリード線をコンピュータに登録しておき、コンピュータプログラムの実行に従って、特定のリード線のみの検査を行うようにすることも可能である。この場合、例えば、不良の確率が低いリード線については検査を省略し、必要なリード線のみの検査を行えるので、一定の信頼性を担保しつつ検査スピードを向上させることができる。 <2> In the embodiment of the present invention, when conducting a continuous inspection of a capacitive touch panel, the inspection object is sequentially moved from one lead wire in an adjacent direction to inspect all lead wires. It is also possible to register in advance a lead wire to be inspected in a computer and inspect only a specific lead wire according to the execution of the computer program. In this case, for example, inspection of lead wires with a low probability of failure can be omitted and only necessary lead wires can be inspected, so that the inspection speed can be improved while ensuring certain reliability.
<3>本発明の静電容量式タッチパネルの検査装置、及び検査方法においては、複数のFPGAを使用し、これらを同期させることにより、複数の静電容量式タッチパネルを組み合わせた大型の静電容量式タッチパネルの検査を行うことも可能である。 <3> In the inspection apparatus and the inspection method for the capacitive touch panel according to the present invention, a large capacitance combining a plurality of capacitive touch panels by using a plurality of FPGAs and synchronizing them. It is also possible to inspect the touch panel.
<4>本発明の静電容量式タッチパネルの検査装置、及び検査方法は、静電容量式タッチパネルの検査に好適に適用し得るものであるが、静電容量の変化を利用する他の電子機器の検査においても利用可能である。 <4> The capacitive touch panel inspection device and inspection method of the present invention can be suitably applied to the inspection of a capacitive touch panel, but other electronic devices utilizing changes in capacitance. It can also be used in other inspections.
 本発明の静電容量式タッチパネルの検査装置、検査方法、及び検査シートは、例えば、銀行ATM、携帯型情報端末、カーナビゲーションシステム、複合機等の電子機器の入力装置の検査において利用可能である。 The inspection device, the inspection method, and the inspection sheet of the capacitive touch panel of the present invention can be used in the inspection of input devices of electronic devices such as bank ATMs, portable information terminals, car navigation systems, and multifunction devices. .
 1   静電容量式タッチパネル
 2   被測定電極
 3   対抗電極
 4   特定対抗電極
 10  静電容量検出回路(監視手段、信号入力手段、接地手段)
 20  状態判定部(判定手段)
 30  導通判定部
 40  短絡判定部
 100 静電容量式タッチパネルの検査装置
DESCRIPTION OF SYMBOLS 1 Capacitance type touch panel 2 Electrode to be measured 3 Counter electrode 4 Specific counter electrode 10 Capacitance detection circuit (monitoring means, signal input means, grounding means)
20 State determination unit (determination means)
DESCRIPTION OF SYMBOLS 30 Continuity determination part 40 Short circuit determination part 100 Inspection apparatus of electrostatic capacitance type touch panel

Claims (12)

  1.  複数の電極を備えた静電容量式タッチパネルの検査装置であって、
     検査対象となる被測定電極と当該被測定電極に対抗する対抗電極のうちの特定対抗電極との間における静電容量の両端間の電圧を監視する監視手段と、
     監視結果に基づいて前記被測定電極の状態を判定する判定手段と、
    を備えた静電容量式タッチパネルの検査装置。
    An inspection apparatus for a capacitive touch panel having a plurality of electrodes,
    Monitoring means for monitoring the voltage between both ends of the capacitance between the measured electrode to be inspected and a specific counter electrode of the counter electrodes opposed to the measured electrode;
    Determination means for determining the state of the electrode under measurement based on a monitoring result;
    Capacitance type touch panel inspection device.
  2.  前記複数の電極に対して信号を個別に入力可能な信号入力手段を備え、
     前記信号入力手段は、前記被測定電極に対して検査パターン信号を入力するとともに、前記被測定電極及び前記特定対抗電極以外の電極に対して前記検査パターン信号と同期したパルス信号を入力する請求項1に記載の静電容量式タッチパネルの検査装置。
    Comprising signal input means capable of individually inputting signals to the plurality of electrodes;
    The signal input means inputs a test pattern signal to the electrode to be measured and inputs a pulse signal synchronized with the test pattern signal to an electrode other than the electrode to be measured and the specific counter electrode. 1. The inspection apparatus for a capacitive touch panel according to 1.
  3.  前記判定手段は、前記被測定電極の導通状態を判定する導通判定部を備え、
     静電容量の両端間の電圧が基準電圧に達する時間の変化に基づいて、前記導通判定部が前記被測定電極は導通状態にないと判定した場合、前記監視手段は前記特定対抗電極を他の対抗電極に変更する請求項1又は2に記載の静電容量式タッチパネルの検査装置。
    The determination unit includes a conduction determination unit that determines a conduction state of the electrode to be measured.
    When the continuity determining unit determines that the measured electrode is not in a conductive state based on a change in time when the voltage across the capacitance reaches the reference voltage, the monitoring means sets the specific counter electrode to another 3. The capacitance touch panel inspection device according to claim 1, wherein the inspection device is changed to a counter electrode.
  4.  前記複数の電極を個別に接地させる接地手段と、
     前記複数の電極に対して信号を個別に入力可能な信号入力手段とを備え、
     前記接地手段が前記被測定電極以外の電極を接地させるとともに、前記信号入力手段が前記被測定電極に対して検査パターン信号を入力する請求項1に記載の静電容量式タッチパネルの検査装置。
    Grounding means for individually grounding the plurality of electrodes;
    Signal input means capable of individually inputting signals to the plurality of electrodes,
    The inspection apparatus for a capacitive touch panel according to claim 1, wherein the grounding means grounds electrodes other than the electrode to be measured, and the signal input means inputs an inspection pattern signal to the electrode to be measured.
  5.  前記判定手段は、前記被測定電極と前記被測定電極以外の電極との短絡を判定する短絡判定部を備え、
     前記接地手段は、前記被測定電極以外の電極を全て接地させ、
     接地時の静電容量の両端間の電圧の変化に基づいて、前記短絡判定部が前記被測定電極と前記被測定電極以外の電極とが短絡しているか否かを判定する請求項4に記載の静電容量式タッチパネルの検査装置。
    The determination unit includes a short circuit determination unit that determines a short circuit between the electrode to be measured and an electrode other than the electrode to be measured.
    The grounding means grounds all electrodes other than the electrode to be measured,
    5. The short circuit determination unit determines whether or not the electrode to be measured and an electrode other than the electrode to be measured are short-circuited based on a change in voltage between both ends of the capacitance at the time of grounding. Inspection device for capacitive touch panel.
  6.  前記短絡判定部が、前記被測定電極と前記被測定電極以外の電極とが短絡していると判定した場合、電極の接地を1つずつ解除し、前記被測定電極と前記被測定電極以外の電極との間に静電容量が発生するまで繰り返す請求項5に記載の静電容量式タッチパネルの検査装置。 When the short-circuit determining unit determines that the electrode to be measured and an electrode other than the electrode to be measured are short-circuited, the grounding of the electrodes is released one by one, and the electrodes other than the electrode to be measured and the electrode to be measured are released. The inspection apparatus for a capacitive touch panel according to claim 5, which is repeated until capacitance is generated between the electrodes.
  7.  複数の電極を備えた静電容量式タッチパネルの検査方法であって、
     検査対象となる被測定電極と当該被測定電極に対抗する対抗電極のうちの特定対抗電極との間における静電容量の両端間の電圧を監視する監視工程と、
     監視結果に基づいて前記被測定電極の状態を判定する判定工程と、
    を包含する静電容量式タッチパネルの検査方法。
    An inspection method for a capacitive touch panel having a plurality of electrodes,
    A monitoring step of monitoring the voltage between both ends of the capacitance between the measured electrode to be inspected and a specific counter electrode of the counter electrodes opposed to the measured electrode;
    A determination step of determining the state of the electrode under measurement based on a monitoring result;
    Inspection method for capacitive touch panel including
  8.  前記複数の電極に対して信号を個別に入力する信号入力工程を包含し、
     前記信号入力工程において、前記被測定電極に対して検査パターン信号を入力するとともに、前記被測定電極及び前記特定対抗電極以外の電極に対して前記検査パターン信号と同期したパルス信号を入力する請求項7に記載の静電容量式タッチパネルの検査方法。
    Including a signal input step of individually inputting signals to the plurality of electrodes,
    In the signal input step, a test pattern signal is input to the electrode to be measured, and a pulse signal synchronized with the test pattern signal is input to an electrode other than the electrode to be measured and the specific counter electrode. 8. The inspection method of the capacitive touch panel according to 7.
  9.  前記判定工程において、前記被測定電極の導通状態を判定する導通判定工程を実行し、
     静電容量の両端間の電圧が基準電位に達する時間の変化に基づいて、前記導通判定工程において、前記被測定電極は導通状態にないと判定した場合、前記監視工程において、前記特定対抗電極を他の対抗電極に変更する請求項7又は8に記載の静電容量式タッチパネルの検査方法。
    In the determination step, a conduction determination step for determining a conduction state of the electrode to be measured is performed,
    Based on the change in the time at which the voltage across the capacitance reaches the reference potential, in the continuity determination step, when it is determined that the measured electrode is not in the continuity state, the specific counter electrode is The method for inspecting a capacitive touch panel according to claim 7 or 8, wherein the method is changed to another counter electrode.
  10.  前記複数の電極を個別に接地させる接地工程と、
     前記複数の電極に対して信号を個別に入力する信号入力工程とを包含し、
     前記接地工程において、前記被測定電極以外の電極を接地させるとともに、前記信号入力工程において、前記被測定電極に対して検査パターン信号を入力する請求項7に記載の静電容量式タッチパネルの検査方法。
    A grounding step of individually grounding the plurality of electrodes;
    Including a signal input step of individually inputting signals to the plurality of electrodes,
    8. The method for inspecting a capacitive touch panel according to claim 7, wherein an electrode other than the electrode to be measured is grounded in the grounding step, and an inspection pattern signal is input to the electrode to be measured in the signal input step. .
  11.  前記判定工程において、前記被測定電極と前記被測定電極以外の電極との短絡を判定する短絡判定工程を実行し、
     前記接地工程において、前記被測定電極以外の電極を全て接地させ、
     接地時の静電容量の両端間の電圧の変化に基づいて、前記短絡判定工程において、前記被測定電極と前記被測定電極以外の電極とが短絡しているか否かを判定する請求項10に記載の静電容量式タッチパネルの検査方法。
    In the determination step, a short-circuit determination step for determining a short-circuit between the measured electrode and an electrode other than the measured electrode is performed,
    In the grounding step, all the electrodes other than the electrode to be measured are grounded,
    The method according to claim 10, wherein in the short-circuit determination step, it is determined whether or not the electrode to be measured and an electrode other than the electrode to be measured are short-circuited based on a change in voltage between both ends of the capacitance at the time of grounding. Inspection method of the electrostatic capacitance type touch panel of description.
  12.  前記短絡判定工程において、前記被測定電極と前記被測定電極以外の電極とが短絡していると判定した場合、電極の接地を1つずつ解除し、前記被測定電極と前記被測定電極以外の電極との間に静電容量が発生するまで繰り返す請求項11に記載の静電容量式タッチパネルの検査方法。 In the short-circuit determining step, when it is determined that the electrode to be measured and an electrode other than the electrode to be measured are short-circuited, the grounding of the electrodes is released one by one, and other than the electrode to be measured and the electrode to be measured The inspection method for a capacitive touch panel according to claim 11, which is repeated until a capacitance is generated between the electrodes and the electrode.
PCT/JP2010/072952 2010-03-29 2010-12-21 Inspection device of capacitive touch panel and method of inspection WO2011121862A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011533029A JP4889833B2 (en) 2010-03-29 2010-12-21 Capacitive touch panel inspection device and inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-074251 2010-03-29
JP2010074251 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011121862A1 true WO2011121862A1 (en) 2011-10-06

Family

ID=44711635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072952 WO2011121862A1 (en) 2010-03-29 2010-12-21 Inspection device of capacitive touch panel and method of inspection

Country Status (3)

Country Link
JP (1) JP4889833B2 (en)
TW (1) TW201142681A (en)
WO (1) WO2011121862A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866317A (en) * 2012-09-24 2013-01-09 广东欧珀移动通信有限公司 Method and system for quick test of mobile terminal capacitive touch screen
JP2014006662A (en) * 2012-06-22 2014-01-16 Tokai Rika Co Ltd Capacitance detection device
JP2014240810A (en) * 2013-06-12 2014-12-25 中国電力株式会社 Fault point survey device and fault point survey method
JP2015503791A (en) * 2012-11-09 2015-02-02 ジェイディー カンパニー リミテッドJd Co.,Ltd. Touch screen panel capacity measuring device
JP2015035200A (en) * 2013-07-10 2015-02-19 日本電産リード株式会社 Touch panel inspection device
KR20150097417A (en) 2014-02-18 2015-08-26 니혼덴산리드가부시키가이샤 Apparatus and method of inspecting object of single layer type
WO2016067709A1 (en) * 2014-10-29 2016-05-06 日本電産リード株式会社 Substrate inspection device and substrate inspection method
JP2016149120A (en) * 2015-02-09 2016-08-18 日本電産リード株式会社 Connection inspection device
WO2016136293A1 (en) * 2015-02-27 2016-09-01 シャープ株式会社 Touch panel control substrate inspection method, and touch panel controller
WO2017033759A1 (en) * 2015-08-21 2017-03-02 シャープ株式会社 Display device
JPWO2020202832A1 (en) * 2019-03-29 2020-10-08
CN112513531A (en) * 2018-08-07 2021-03-16 株式会社电装 Heater device
WO2021079945A1 (en) * 2019-10-25 2021-04-29 日本電産リード株式会社 Substrate inspection method, substrate inspection program, and substrate inspection device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103926496B (en) * 2013-01-10 2017-07-28 上海东软载波微电子有限公司 The test device and method and touch-screen module of touch-screen module
CN103926497A (en) * 2013-01-10 2014-07-16 上海海尔集成电路有限公司 Test apparatus and method for touch screen module, and touch screen module
CN104252259B (en) * 2013-06-27 2017-04-12 群嘉精密股份有限公司 Input-device detecting method
CN103529354B (en) 2013-10-31 2016-10-05 京东方科技集团股份有限公司 A kind of circuit testing method and circuit test system
CN105021913B (en) * 2014-04-30 2017-10-13 晶宏半导体股份有限公司 The detection method of touch-control display panel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242069A (en) * 1985-08-20 1987-02-24 Fujitsu Ltd Method for detecting short-circuit defect on matrix substrate and short-position detector applied to said method
JPH0312564A (en) * 1989-06-10 1991-01-21 Kyoei Seigyo Kiki Kk Insulation/short circuit detecting device for electrode
JPH09264919A (en) * 1996-03-28 1997-10-07 Okano Hightech Kk Method and device for inspecting board
JPH10288640A (en) * 1997-04-16 1998-10-27 Arata Denshi Kk Method and apparatus for measuring bare board circuit pattern
JPH11344575A (en) * 1998-06-02 1999-12-14 Nec Home Electron Ltd Occupant detection system
JP2005274225A (en) * 2004-03-23 2005-10-06 Kawaguchiko Seimitsu Co Ltd Touch panel inspection device
JP2008310374A (en) * 2007-06-12 2008-12-25 Mitsubishi Electric Corp Method and apparatus for checking touch panel function
JP2010039816A (en) * 2008-08-06 2010-02-18 Hitachi Displays Ltd Display
JP2010044730A (en) * 2008-07-17 2010-02-25 Nec Corp Touch panel inspection device and touch panel inspection method
JP2010266338A (en) * 2009-05-14 2010-11-25 Nidec-Read Corp Touch panel inspection apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242069A (en) * 1985-08-20 1987-02-24 Fujitsu Ltd Method for detecting short-circuit defect on matrix substrate and short-position detector applied to said method
JPH0312564A (en) * 1989-06-10 1991-01-21 Kyoei Seigyo Kiki Kk Insulation/short circuit detecting device for electrode
JPH09264919A (en) * 1996-03-28 1997-10-07 Okano Hightech Kk Method and device for inspecting board
JPH10288640A (en) * 1997-04-16 1998-10-27 Arata Denshi Kk Method and apparatus for measuring bare board circuit pattern
JPH11344575A (en) * 1998-06-02 1999-12-14 Nec Home Electron Ltd Occupant detection system
JP2005274225A (en) * 2004-03-23 2005-10-06 Kawaguchiko Seimitsu Co Ltd Touch panel inspection device
JP2008310374A (en) * 2007-06-12 2008-12-25 Mitsubishi Electric Corp Method and apparatus for checking touch panel function
JP2010044730A (en) * 2008-07-17 2010-02-25 Nec Corp Touch panel inspection device and touch panel inspection method
JP2010039816A (en) * 2008-08-06 2010-02-18 Hitachi Displays Ltd Display
JP2010266338A (en) * 2009-05-14 2010-11-25 Nidec-Read Corp Touch panel inspection apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014006662A (en) * 2012-06-22 2014-01-16 Tokai Rika Co Ltd Capacitance detection device
US9261547B2 (en) 2012-06-22 2016-02-16 Kabushiki Kaisha Tokai Rika Denki Seisakusho Electrostatic capacitance detection device
CN102866317A (en) * 2012-09-24 2013-01-09 广东欧珀移动通信有限公司 Method and system for quick test of mobile terminal capacitive touch screen
JP2015503791A (en) * 2012-11-09 2015-02-02 ジェイディー カンパニー リミテッドJd Co.,Ltd. Touch screen panel capacity measuring device
JP2014240810A (en) * 2013-06-12 2014-12-25 中国電力株式会社 Fault point survey device and fault point survey method
JP2015035200A (en) * 2013-07-10 2015-02-19 日本電産リード株式会社 Touch panel inspection device
KR20150097417A (en) 2014-02-18 2015-08-26 니혼덴산리드가부시키가이샤 Apparatus and method of inspecting object of single layer type
KR102247987B1 (en) 2014-02-18 2021-05-03 니혼덴산리드가부시키가이샤 Apparatus and method of inspecting object of single layer type
WO2016067709A1 (en) * 2014-10-29 2016-05-06 日本電産リード株式会社 Substrate inspection device and substrate inspection method
US10761654B2 (en) 2014-10-29 2020-09-01 Nidec-Read Corporation Circuit board inspection device and circuit board inspection method
JPWO2016067709A1 (en) * 2014-10-29 2017-10-05 日本電産リード株式会社 Substrate inspection apparatus and substrate inspection method
JP2016149120A (en) * 2015-02-09 2016-08-18 日本電産リード株式会社 Connection inspection device
JPWO2016136293A1 (en) * 2015-02-27 2017-10-26 シャープ株式会社 Touch panel control board inspection method and touch panel controller
WO2016136293A1 (en) * 2015-02-27 2016-09-01 シャープ株式会社 Touch panel control substrate inspection method, and touch panel controller
CN107924651A (en) * 2015-08-21 2018-04-17 夏普株式会社 Display device
JPWO2017033759A1 (en) * 2015-08-21 2018-06-21 シャープ株式会社 Display device
WO2017033759A1 (en) * 2015-08-21 2017-03-02 シャープ株式会社 Display device
CN112513531A (en) * 2018-08-07 2021-03-16 株式会社电装 Heater device
JPWO2020202832A1 (en) * 2019-03-29 2020-10-08
WO2020202832A1 (en) * 2019-03-29 2020-10-08 日本電産リード株式会社 Measurement method and inspection device
CN113728240A (en) * 2019-03-29 2021-11-30 日本电产理德股份有限公司 Measurement method and inspection apparatus
CN113728240B (en) * 2019-03-29 2024-03-29 日本电产理德股份有限公司 Measuring method and inspection device
JP7472903B2 (en) 2019-03-29 2024-04-23 ニデックアドバンステクノロジー株式会社 Measurement method and inspection device
WO2021079945A1 (en) * 2019-10-25 2021-04-29 日本電産リード株式会社 Substrate inspection method, substrate inspection program, and substrate inspection device
JP7559764B2 (en) 2019-10-25 2024-10-02 ニデックアドバンステクノロジー株式会社 Substrate inspection method, substrate inspection program, and substrate inspection device

Also Published As

Publication number Publication date
JP4889833B2 (en) 2012-03-07
JPWO2011121862A1 (en) 2013-07-04
TW201142681A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP4889833B2 (en) Capacitive touch panel inspection device and inspection method
KR101413087B1 (en) Method and apparatus for inspecting touch sensor
KR100799161B1 (en) Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof
TWI629629B (en) Inspection apparatus, calibration and inspection method of the inspection apparatus
JP5391819B2 (en) Touch panel inspection device
JP2011060021A (en) Inspection device, inspection method and inspection sheet for capacitance type touch panel
KR20050004046A (en) Device for inspecting conductive pattern
TWI512308B (en) Inspecting method and inspecting apparatus
JP2011090358A (en) Inspection device of capacitive touch panel, and inspection method
TWI427302B (en) Circuit pattern inspection device
JP6368927B2 (en) Single layer inspection object inspection apparatus and inspection method
JP5533169B2 (en) Inspection device
KR101430040B1 (en) Insulation inspection device and insulation inspection method
CN103364678B (en) insulation inspecting device and insulation inspecting method
JP6095735B2 (en) Printed circuit board inspection apparatus and inspection method
JP6221145B2 (en) Touch panel inspection device
KR101342171B1 (en) Substrate inspection apparatus and substrate inspection method
KR101713184B1 (en) Method for detecting short defection of self-capacitance type touch sensor
KR20160110021A (en) Method for detecting short defection of touch sensor
JP4885765B2 (en) Inspection apparatus and inspection method
JP5944121B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP5425709B2 (en) Insulation inspection device and insulation inspection method
CN103543374A (en) Substrate checking device and substrate checking method
KR101376841B1 (en) Substrate inspection apparatus and substrate inspection method
KR101750446B1 (en) test apparatus and method for pin miss

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011533029

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849032

Country of ref document: EP

Kind code of ref document: A1