WO2011121831A1 - 燃焼器及びガスタービン - Google Patents
燃焼器及びガスタービン Download PDFInfo
- Publication number
- WO2011121831A1 WO2011121831A1 PCT/JP2010/068686 JP2010068686W WO2011121831A1 WO 2011121831 A1 WO2011121831 A1 WO 2011121831A1 JP 2010068686 W JP2010068686 W JP 2010068686W WO 2011121831 A1 WO2011121831 A1 WO 2011121831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- combustor
- nozzle
- inflow portion
- oil chamber
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/232—Fuel valves; Draining valves or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/222—Fuel flow conduits, e.g. manifolds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/40—Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23K—FEEDING FUEL TO COMBUSTION APPARATUS
- F23K5/00—Feeding or distributing other fuel to combustion apparatus
- F23K5/02—Liquid fuel
- F23K5/06—Liquid fuel from a central source to a plurality of burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
Definitions
- the present invention relates to a combustor and a gas turbine.
- Combustors used for gas turbines include a gas combustion type, an oil combustion type, and a dual type that combines these gas combustion type and oil combustion type.
- the oil combustion type or dual type combustor includes a fuel oil supply system for supplying fuel oil to a plurality of nozzles arranged around the central axis of the combustor.
- the fuel oil supply system includes a plurality of oil supply pipes and an oil chamber. Each oil supply pipe connects the base end of each nozzle and the oil chamber.
- the oil chamber is formed inside a nozzle tube base that supports the base end of each nozzle, and communicates with each nozzle through each supply pipe.
- the fuel oil In this type of oil combustion type or dual type combustor, the fuel oil must be sufficiently removed from the oil chamber when oil combustion is stopped or when switching from oil combustion to gas combustion in the dual type. This is because if the fuel oil remains in the oil chamber, the fuel oil in the oil chamber is carbonized (coking) due to heat transfer from the vehicle compartment, and the carbonized fuel oil passes through the fuel oil discharge section and the oil supply pipe at the tip of the nozzle. This is because there is a possibility of blockage. When these are blocked, the operation of the gas turbine must be stopped and the cleaning operation must be performed. Therefore, the operation efficiency of the gas turbine is reduced.
- the cross-sectional shape of the oil chamber viewed from the axial direction is a star cross shape
- the fuel is transmitted to the supply path on the curved surface constituting the inner wall of the oil chamber, and this fuel is blown off with compressed air.
- the amount of fuel remaining in the oil chamber is reduced.
- the conventional technology has a problem that when the fuel oil is discharged from the oil chamber, the fuel oil cannot be sufficiently removed from the oil chamber.
- the present invention has been made in view of such circumstances, and an object of the present invention is to sufficiently remove the fuel oil from the oil chamber when the fuel oil is discharged from the oil chamber.
- the present invention employs the following means. That is, the combustor according to the present invention includes a plurality of nozzles arranged around the central axis of the combustor, each base end connected to an oil supply pipe, and the plurality of nozzles, and each oil supply pipe
- a nozzle pedestal having an oil chamber that relays fuel to the nozzle through an oil inflow portion provided in the oil chamber, and facing the center of the combustor inside the oil chamber and flowing residual oil in the oil chamber into the oil inflow
- the guide portion is located between adjacent oil inflow portions, and the first inclined surface that inclines in a direction away from the center of the combustor as it approaches one oil inflow portion, and the combustion as it approaches the other oil inflow portion.
- a second inclined surface inclined in a direction away from the center of the vessel, and the second guide portion is Than the inflow portion located near the tip end of the combustor, having a third inclined surface inclined in a direction away from the center of the combustor closer to the oil inlet.
- the fuel oil between the two adjacent oil inflow portions is guided toward at least one of the two oil inflow portions, and the fuel oil that has reached the second guide portion is directed toward the oil inflow portion. invite.
- the fuel oil is collected and discharged at the oil inflow portion, so that the fuel oil can be sufficiently removed.
- the central axis of the combustor is inclined with respect to the horizontal direction and the oil inflow portion (upstream) of the oil supply pipe is higher than the downstream, it is higher than the oil inflow portion in the axial direction of the combustor.
- the fuel oil tends to remain downstream, the fuel oil is guided to the oil inflow portion by the second guide portion, so that the fuel oil can be sufficiently removed.
- An angle formed between the third inclined surface and the central axis of the combustor may be larger than an angle formed between the central axis of the combustor and a horizontal line.
- the angle formed by the third inclined surface of the second guide portion and the central axis of the combustor is larger than the angle formed by the central axis of the combustor and the horizontal line, the fuel oil is more reliably supplied. It can be removed.
- the oil inflow portion may be a part of the inner surface of the oil chamber and may be in contact with a region farthest from the center of the combustor.
- the oil inflow portion since the oil inflow portion is a part of the inner surface of the oil chamber and is in contact with the region farthest from the center of the combustor, the oil inflow portion and a part of the inner surface of the oil chamber in the radial direction It is possible to prevent the fuel oil from remaining in the gap between the region farthest from the center of the combustor.
- the oil inflow portion may have a base end opening formed in the oil supply pipe and opening toward the base end of the combustor.
- the oil inflow portion since the oil inflow portion has the base end opening that opens toward the base end of the combustor, the fuel oil can be flowed into the oil supply pipe with a simple configuration.
- the oil inflow portion may have a perforation formed in a pipe wall of the oil supply pipe.
- the fuel oil can be allowed to flow into the oil supply pipe from the perforations.
- the oil chamber is located inside the oil chamber, faces the outer periphery of the combustor, is formed to protrude outward in the radial direction of the combustor, and guides residual oil in the oil chamber to the oil inflow portion. You may provide the guide part.
- the third guide portion is inside the oil chamber and faces the outer periphery of the combustor and is formed to protrude outward in the radial direction of the combustor, the residual oil in the oil chamber is guided to the oil inflow portion.
- the fuel oil is guided downward along the third guide portion. As a result, the fuel oil is finally collected and discharged at the oil inflow portion, so that the fuel oil can be sufficiently removed.
- the nozzle nozzle may include a plurality of the oil chambers.
- the fuel oil is supplied to one oil chamber and the supply of the fuel oil to the other oil chambers is stopped, thereby corresponding to the oil chamber to which the fuel oil is supplied.
- the partial load operation can be facilitated by discharging the fuel oil only from the nozzle. Furthermore, since the fuel oil is prevented from remaining in each of the plurality of oil chambers, mutual switching between the partial load operation and the rated load operation, and the partial load operation and the operation stop can be performed quickly.
- the nozzle nozzle is a combination of a first member having the first guide part and a second member having the second guide part, and the second member is connected to the first member, They may be stacked side by side in the central axis direction.
- the nozzle base since the nozzle base includes the first member having the first guide portion and the second member having the second guide portion, the structure becomes simple and the assemblability and workability can be improved.
- the base end opening of the oil inflow portion may face the first member, and the oil supply pipe may penetrate the second member.
- the first member opposes the oil inflow portion and the oil supply pipe is inserted through the second member, the structure becomes simple and the assemblability and workability can be improved.
- a gas turbine according to the present invention includes a compressor that compresses a working fluid, the combustor according to any one of the above that burns the working fluid compressed by the compressor, and the working fluid burned by the combustor. Driven by the turbine.
- the gas turbine of the present invention since any one of the above combustors is provided, from the oil chamber of the combustor when oil combustion is stopped or when switching from oil combustion to gas combustion is performed in the dual type. Fuel oil can be sufficiently removed. This can prevent the fuel oil supply system from being blocked by the carbonized fuel oil.
- the oil combustion can be performed quickly and stably at the time of start-up and when the supply of gas fuel is unstable, backup operation, etc., and the operational stability of the gas turbine can be improved.
- the fuel oil can be sufficiently removed from the oil chamber when the fuel oil is discharged from the oil chamber. Moreover, according to the gas turbine which concerns on this invention, fuel oil can fully be removed from an oil chamber, and driving
- FIG. 1 is a schematic cross-sectional view showing an overall configuration of a gas turbine 1 according to a first embodiment of the present invention. It is an expanded sectional view of combustor 10 concerning a first embodiment of the present invention. It is a disassembled perspective view of the nozzle nozzle stand 20 which concerns on 1st embodiment of this invention. It is a longitudinal section of nozzle nozzle stand 20 concerning a first embodiment of the present invention. It is the schematic which shows the nozzle head main body 30 which concerns on 1st embodiment of this invention, Comprising: It is I arrow view in FIG. It is the schematic which shows the cover body 40 which concerns on 1st embodiment of this invention, Comprising: It is the II arrow directional view in FIG. FIG.
- FIG. 3 is a first operation explanatory view according to the first embodiment of the present invention, and a posture in which the direction of a line drawn from the central axis P2 to the highest point of the first guide portion 33c in the oil chamber 21 and the direction of gravity coincide with each other.
- the combustor 10 is shown.
- FIG. 5 is a second action explanatory diagram according to the first embodiment of the present invention, and a posture in which the direction of the line drawn from the central axis P2 to the highest point of the first guide portion 33c in the oil chamber 21 coincides with the direction of gravity.
- the combustor 10 is shown.
- FIG. 9 is a third action explanatory view according to the first embodiment of the present invention, and is a cross-sectional view taken along line VI-VI in FIG. 7.
- FIG. 9 is a fourth action explanatory view according to the first embodiment of the present invention, and is a posture in which the direction of the line drawn from the central axis P2 to the highest point of the first guide portion 33c in the oil chamber 21 does not coincide with the direction of gravity.
- 1 shows a first combustor 10.
- FIG. 10 is a fifth action explanatory diagram according to the first embodiment of the present invention, and is a posture in which the direction of the line drawn from the central axis P2 to the highest point of the first guide portion 33c in the oil chamber 21 does not coincide with the direction of gravity.
- the second combustor 10 is shown. It is a schematic block diagram of the nozzle nozzle stand 50 concerning 2nd embodiment of this invention. It is a schematic block diagram of 50 A of nozzle nozzles which are the modifications of the nozzle nozzle 50 which concerns on 2nd embodiment of this invention.
- FIG. 1 is a schematic cross-sectional view showing the overall configuration of the gas turbine 1 according to the first embodiment of the present invention.
- the gas turbine 1 has a rotation axis P ⁇ b> 1 of a rotor 1 a oriented in the horizontal direction, and is schematically configured by a compressor 2, a plurality of combustors 10, and a turbine 3.
- the compressor 2 takes in air as a working fluid and generates compressed air A.
- the plurality of combustors 10 communicate with the outlet of the compressor 2.
- the plurality of combustors 10 mix fuel with the compressed air A supplied from the compressor 2 and burn it to generate high-temperature and high-pressure combustion gas B.
- the turbine 3 converts the thermal energy of the combustion gas B sent out from the combustor 10 into rotational energy of the rotor 1a.
- the rotational energy is transmitted to a generator (not shown) connected to the rotor 1a.
- Each combustor 10 is separated from the rotation axis P1 of the rotor 1a in the gas turbine 1 so that the center axis P2 of each combustor is separated from the outlet of the combustor 10 in the radial direction of the rotation axis P1 rather than the outlet. They are arranged radially in an inclined state.
- an angle formed by the center axis P2 of the combustor and the rotation axis P1 (horizontal direction) is C.
- FIG. 2 is an enlarged cross-sectional view of the combustor 10.
- Each combustor 10 is a dual type capable of both gas combustion and oil combustion. As shown in FIG. 2, each combustor 10 includes an outer cylinder 11, an inner cylinder 12, a pilot nozzle 13, a main nozzle 14, and a tail cylinder 15.
- the dual-type combustor 10 having the pilot nozzle 13 and the main nozzle 14 is described as an example. However, the configuration is not particularly limited as long as the configuration is a fuel nozzle capable of oil combustion. It is not something.
- the central axis direction of the combustor 10 (combustor central axis P2 direction) is simply “axial direction”, and the circumference of the combustor central axis P2 is simply “circumferential direction”.
- the radial direction of the combustor 10 is simply referred to as “radial direction”.
- the outer cylinder 11 has its central axis superimposed on the central axis P2 of the combustor, and a flange 11f extending radially outward from the outer periphery of one axial end is fixed to the casing 1b.
- a base end portion 11 a at the other axial end of the outer cylinder 11 is provided with a fuel supply portion 10 a for supplying fuel gas and fuel oil to the main nozzle 14, and a nozzle tube base 20 for supporting the main nozzle 14. ing.
- the diameter of the inner cylinder 12 is formed smaller than the diameter of the outer cylinder 11, and its central axis is overlapped with the central axis P2 of the combustor.
- the inner cylinder 12 is fixed to the outer cylinder 11 through support portions 12f and the like extending radially from the vicinity of the proximal end opening 12b.
- the gap between the outer cylinder 11 and the inner cylinder 12 serves as a flow path for the compressed air A, and the compressed air A is introduced into the interior from the proximal end opening 12 b near the proximal end 11 a of the outer cylinder 11.
- the pilot nozzle 13 is formed in a long shape and is disposed on the central axis P2 of the combustor.
- the pilot nozzle 13 has a base end 13 b supported by the nozzle nozzle 20 and the like, and the vicinity of the tip 13 a is surrounded by the inner cylinder 12.
- Such a pilot nozzle 13 forms a pilot flame at the tip 13a from the fuel gas or fuel oil supplied from the fuel supply unit 10a to the base end 13b.
- the main nozzles 14 are formed in a long shape, and a plurality of (for example, eight) main nozzles 14 are arranged at intervals in the circumferential direction.
- Each of the plurality of main nozzles 14 has a base end 14b supported by the nozzle pedestal 20 and extends in the axial direction with a radial interval from the central axis P2 of the combustor.
- Each main nozzle 14 is supplied with fuel from the base end 14b and discharges fuel from the tip 14a to generate a premixed mixture of compressed air and fuel.
- a gas supply pipe (not shown) and an oil supply pipe 19 are connected to the main nozzle 14, and fuel gas and fuel oil are supplied to the main nozzle 14 via the gas supply pipe (not shown) and the oil supply pipe 19. 14, fuel gas and fuel oil flow from the base end 14b to the tip end 14a.
- the tail cylinder 15 has a proximal end opening 15 b connected to the distal end opening 12 a of the inner cylinder 12, and the distal end opening 15 a communicates with the turbine 3.
- the tail cylinder 15 burns the premixed gas generated by the main nozzle 14 to form a flame (not shown).
- FIG. 3 is an exploded perspective view of the nozzle nozzle 20, and FIG. 4 is a longitudinal sectional view of the nozzle nozzle 20.
- the nozzle pedestal 20 includes a pedestal main body (first member) 30 and a lid 40 (second member) formed in a disk shape.
- the nozzle pedestal 20 is disposed in the outer cylinder 11 (see FIG. 2) with its central axis overlapping the central axis P2 of the combustor, and has an annular shape surrounded by the pedestal main body 30 and the lid 40.
- An oil chamber 21 is provided.
- FIG. 5 is a view taken in the direction of arrow I in FIG. In FIG. 5, a line corresponding to the cross section of FIG. 4 is indicated by a line III-III.
- the nozzle body 30 includes a central through hole 31 through which the pilot nozzle 13 is inserted, and an inner peripheral groove 32 that is concentric with the central through hole 31 and surrounds the central through hole 31.
- the oil groove 33 and the outer peripheral groove 34 are formed.
- the oil groove 33 is formed in a gear shape in a plan view. Specifically, the inner end surface 33d of the oil groove 33 in the radial direction of the nozzle body 30 is formed in an annular shape, and the outer end surface 33a of the oil groove 33 is formed in an uneven shape.
- the outer end surface 33 a has a tube disposition portion 33 b formed concave toward the radially outer side of the nozzle body 30, and is convex toward the radially inner side of the nozzle body 30.
- the formed first guide portion 33 c is continuous with the circumferential direction of the nozzle body 30.
- the first guide portion 33c is located between the adjacent pipe arrangement portions 33b, and the first inclined surface 33f that inclines in a direction away from the center of the combustor as the one pipe arrangement portion 33b is approached, and the other It has the 2nd inclined surface 33g which inclines in the direction which leaves
- the pipe disposition portion 33 b is recessed in an arc shape in the radial direction outward direction of the nozzle body 30 in a plan view, and the radius of curvature is substantially the same as the outer radius of the oil supply pipe 19. It has become.
- Eight pipe arrangement portions 33 b are formed at an equal pitch in the circumferential direction of the nozzle body 30.
- the first guide portion 33 c protrudes in an arc shape radially inward in plan view.
- the radius of curvature of the first guide portion 33c is formed larger than the radius of curvature of the tube arrangement portion 33b.
- the first guide portion 33c is smoothly continuous with the two pipe arrangement portions 33b adjacent to each other.
- the bottom surface 33 e of the oil groove 33 extends in the circumferential direction at a certain position in the axial direction.
- the wall 30a between the oil groove 33 and the outer circumferential groove 34 is formed with an arcuate receiving portion 30b formed one step lower at the edge of the tube arrangement portion 33b.
- the protrusion part 42 of the cover body 40 mentioned later can be received.
- a surface 30c on the back side of the nozzle body 30 where the oil groove 33 is formed communicates with the oil groove 33 and is connected to the fuel supply unit 10a (see FIG. 2).
- An oil filler opening 30d is formed.
- FIG. 6 is a view taken in the direction of arrow II in FIG. 3, and FIG. 7 is a cross-sectional view taken along line VV in FIG. In FIG. 6, a IV-IV line is shown in a portion corresponding to the cross section of FIG. 4.
- the lid body 40 is provided on the plate portion 41 formed in a similar shape to the oil groove 33 and the wall surface 41 a of the plate portion 41 in a plan view, and outward in the radial direction of the lid body 40. And a projecting portion 42 projecting in the axial direction at the projecting portion.
- the entire circumferential length of the outer end surface 40 a on the radially outer side of the lid body 40 is larger than the entire circumferential length of the outer end surface 33 a of the oil groove 33, and the entire circumferential length of the inner end surface 40 d on the radially inner side is larger.
- the oil groove 33 is formed smaller than the entire circumferential length of the inner end surface 33 d.
- the protruding portion 42 is formed in a substantially fan shape in plan view.
- the projecting portion 42 has a cylindrical portion 42 b that is formed with a constant thickness on the outer side in the radial direction of the lid 40, and a cylindrical portion that spreads in an arc shape radially inward of the cylindrical portion 42 b.
- a second guide portion 42a whose thickness gradually decreases as the distance from 42b increases.
- the angle D formed by the third inclined surface 42e which is the inclined surface of the second guide portion 42a in the longitudinal section, and the central axis P2 of the combustor is equal to the central axis P2 of the combustor.
- the lid body 40 covers the oil groove 33 with the projecting portion 42 facing the nozzle body 30, and is fixed to the nozzle body 30 by welding. More specifically, the cylindrical portion 42b is abutted against the receiving portion 30b of the nozzle body 30 (see FIG. 4), and the second guide portion 42a is fitted into two first guide portions 33c (see FIG. 5) adjacent in the circumferential direction. In combination (see FIG. 6), the inclined end surface 42d of the second guide portion 42a is brought into close contact with the first guide portion 33c. That is, the nozzle pedestal 20 is a combination of a nozzle body 30 (first member) having the first guide portion 33c and a lid body 40 (second member) having the second guide portion 42a. 40 is superposed on the nozzle body 30 side by side in the direction of the central axis of the combustor.
- the first guide portion 33 c and the second guide portion 42 a are continuous in the circumferential direction of the nozzle body 30. Further, in the axial direction of the nozzle body 30, a part of the peripheral edge of the through hole of the cylindrical portion 42 b in the protruding portion 42 of the lid body 40 is formed on the tube arrangement portion 33 b of the nozzle body 30 as shown in FIG. 5. It is located so as to overlap.
- the oil chamber 21 is formed by the nozzle body 30 and the lid body 40. In other words, the oil chamber is surrounded by the radially outer outer end surface 33a, the radially inner inner end surface 33d, and both axial wall surfaces (33e, 41a) in the nozzle pedestal 20, and from the fuel filler port. Accumulate the supplied fuel oil.
- the eight through holes 42 c of the nozzle nozzle base 20 are liquid-tightly inserted through the oil supply pipes 19 of the eight main nozzles 14, O-rings and the like (not shown).
- An oil inflow portion 19 a is formed at the base end portion of each oil supply pipe 19 that reaches the oil chamber 33.
- the oil inflow portion 19 a has a base end opening 19 b that opens in the axial direction, and a large number of perforations 19 c formed in the tube wall of the oil supply pipe 19 on the outer surface of the oil supply pipe 19.
- Each oil inflow portion 19 a is inserted to a position where the base end opening 19 b is close to and faces the bottom surface 33 e of the nozzle body 30.
- the oil supply pipe 19 is inserted into the through hole 42c that overlaps the pipe arrangement portion 33b when viewed in the axial direction, so that the outer peripheral surface of the oil inflow portion 19a is brought into contact with the pipe arrangement portion 33b. ing.
- the downstream side of the oil inflow portion 19a in the oil supply pipe 19 is surrounded by the cylindrical portion 42b. That is, the oil inflow portion 19a is a part of the inner surface of the oil chamber 21 and is in contact with a region farthest from the center of the combustor.
- eight oil inflow portions 19 a are inserted into the oil chamber 21, and a fuel oil supply system is configured by each oil supply pipe 19 and the oil chamber 21.
- the 3rd inclined surface 42e is located near the front-end
- the first guide portion 33c protruding toward the inner end surface 33d is between the two oil inflow portions 19a adjacent to each other in the circumferential direction on the outer end surface 33a. It is located and inclines in the peripheral direction so that it may go to these two oil inflow parts 19a. That is, the first guide portion 33c is formed in the oil chamber 21 so as to face the center of the combustor and guide the residual oil in the oil chamber 21 to the oil inflow portion 19a.
- the 1st guide part 33c is located between the adjacent oil inflow parts 19a, and the 1st inclined surface 33f which inclines in the direction away from the center of a combustor, so that one oil inflow part 19a is approached, and the other oil It has the 2nd inclined surface 33g which inclines in the direction which leaves
- the second guide portion 42a of the oil chamber 21 protrudes toward the nozzle body 30 in the axial direction around the oil inflow portion 19a when viewed in the axial direction, and extends in the axial direction toward the oil inflow portion 19a.
- An inclined surface is formed.
- the second guide portion 42a is formed inside the oil chamber 21 so as to face the base end of the combustor and guide the residual oil in the oil chamber 21 to the oil inflow portion 19a.
- the 2nd guide part 42a is located near the front-end
- the inner end surface 33 d of the oil chamber 21 is convex toward the outer end surface 33 a and is inclined in the circumferential direction of the nozzle body 30.
- the third guide portion that is located inside the oil chamber 21, faces the outer periphery of the combustor, is formed to protrude outward in the radial direction of the combustor, and guides the remaining oil in the oil chamber 21 to the fuel inflow portion 19a. It is formed on the end face 33d.
- the plurality of combustors 10 are radially arranged with the central axis P2 of each combustor tilted with respect to the rotation axis P1.
- Each nozzle pedestal 20 has a similar posture with respect to the rotation axis P1 (inclination of the center axis P2 with respect to the rotation axis P1, the rotation axis P1 of each tube arrangement portion 33b and each first guide portion 33c and the center axis P2. In a positional relationship).
- the combustors 10 arranged radially do not necessarily have the same posture with respect to the direction of gravity depending on the arranged positions. That is, the postures of the nozzle nozzles 20 with respect to the gravity direction do not match.
- the first guide portion 33c located at the lowermost position is located above the oil level, and as shown in FIGS. 7 and 8, the circumference of the first guide portion 33c is increased.
- Two oil reservoirs O are formed on both sides in the direction (oil level L2).
- the circumferential length of the oil surface of the oil reservoir O gradually decreases as the amount of oil in the oil reservoir O decreases. . Further, since a part of the bottom of the oil reservoir O is partitioned by the second guide portion 42a, the axial length of the oil surface of the oil reservoir O gradually decreases as the oil amount of the oil reservoir O decreases. (See FIG. 9). That is, as the amount of oil in the oil reservoir O decreases, the area of the oil level gradually decreases.
- the fuel oil F collected in the vicinity of the oil inflow portion 19a sequentially flows into the oil supply pipe 19 from the base end opening 19b (see FIG. 4) and the perforations 19c, and is discharged from the oil chamber 21. Is done. After the amount of oil in the oil reservoir O becomes sufficiently small, high-pressure air or the like is supplied from the fuel supply unit 10a or the like to blow the fuel oil F into the oil supply pipe 19, and is discharged from the fuel discharge unit at the tip. At this time, since the outer peripheral surface of the oil inflow portion 19a is in contact with the inner peripheral surface of the pipe arrangement portion 33b, a gap between the outer peripheral surface of the oil inflow portion 19a and the inner peripheral surface of the pipe arrangement portion 33b is formed. Fuel oil F hardly remains.
- each combustor 10 in a posture in which the direction of the line drawn from the central axis P2 to the highest point of the first guide portion 33c in the oil chamber 21 does not coincide with the direction of gravity.
- the fuel oil F is sufficiently removed. That is, an oil reservoir O is formed in the oil chamber 21 of each nozzle nozzle base 20, and the fuel oil F is collected in the oil inflow portion 19 a in the circumferential direction and the axial direction, and the oil chamber 21 through the oil supply pipe 19. Discharged from. In this way, the fuel oil F is sufficiently removed from the oil chamber 21 of the nozzle nozzle 20 in each combustor 10.
- the oil chamber 21 includes the first guide portion 33c, when the fuel oil F is discharged from the oil chamber 21, the first guide is provided.
- the portion 33c guides the fuel oil F (f2) to at least one of the two oil inflow portions 19a adjacent in the circumferential direction.
- the second guide portion 42a guides the fuel oil F (f2) on the second guide portion 42a toward the axial oil inflow portion 19a.
- the fuel oil F (f2) between the two oil inflow portions 19a adjacent to each other in the circumferential direction is guided toward at least one of the two oil inflow portions 19a and reaches the second guide portion 42a.
- the fuel oil F (f2) is guided toward the oil inflow portion 19a.
- the fuel oil F (f2) is collected and discharged at the oil inflow portion 19a, so that the fuel oil F in the oil chamber 21 can be sufficiently removed.
- the posture of each combustor 10 with respect to the direction of gravity is different. Even in such a case, according to the combustor 10 according to the first embodiment, the fuel oil F can be sufficiently removed in all postures.
- the axial direction is higher than the oil inflow portion 19a.
- the fuel oil F tends to remain on the downstream side.
- the angle D formed by the inclined surface of the second guide portion 42a and the axial direction is larger than the angle C formed by the central axis P2 of the combustor and the rotation axis P1. Therefore, the fuel oil F can be more reliably removed without guiding the fuel oil F to the oil inflow portion 19a by the second guide portion 42a and accumulating the fuel oil F downstream in the axial direction.
- the angle D formed by the inclined surface of the second guide portion 42a and the center axis P2 of the combustor is the same as the center axis P2 of the combustor and the horizontal direction. If the angle C is larger than the angle C, the fuel oil F can be removed more reliably.
- the outer peripheral surface of the oil inflow portion 19a is in contact with the inner peripheral surface of the pipe arrangement portion 33b of the oil chamber 21, the outer peripheral surface of the oil inflow portion 19a and the inner peripheral surface of the pipe arrangement portion 33b in the radial direction It is possible to prevent the fuel oil F from remaining in the gap between the two.
- the oil inflow portion 19a has the base end opening 19b that opens in the axial direction, the fuel oil F can be introduced into the oil supply pipe 19 with a simple configuration.
- the oil inflow portion 19a has a perforation 19c formed in a direction crossing the axial direction. Therefore, it becomes possible to allow the fuel oil F to flow into the oil supply pipe 19 from the downstream of the oil supply pipe 19 with respect to the base end opening 19b.
- the central axis P2 of the combustor 10 may be inclined with respect to the horizontal direction, and the oil inflow portion 19a of the oil supply pipe 19 may be higher than the downstream side.
- the fuel oil F tends to remain downstream from the oil inflow portion 19a in the axial direction, but the fuel oil F can be caused to flow into the oil supply pipe 19 from the downstream of the oil supply pipe 19. .
- the fuel oil F can be sufficiently removed without accumulating the fuel oil F downstream in the axial direction.
- the inner end surface 33d of the oil chamber 21 is formed so as to protrude toward the outer end surface 33a and is inclined in the circumferential direction. Therefore, the fuel oil F (f1) on the inner end surface 33d of the oil chamber 21 is guided downward along the inner end surface 33d. As a result, the fuel oil F (f1) is finally collected and discharged at the oil inflow portion 19a, so that the fuel oil F (f1) can be sufficiently removed.
- the nozzle pedestal 20 includes the pedestal main body 30 having the first guide portion 33c and the lid body 40 having the second guide portion 42a, the structure becomes simple and excellent in assemblability and workability.
- the structure is simple and excellent in assemblability and workability.
- the fuel oil F in the oil chamber 21 of the combustor 10 is changed when switching from oil combustion to gas combustion or when oil combustion is stopped. It can be removed sufficiently. As a result, the fuel oil supply system can be prevented from being blocked by the carbonized fuel oil F. In addition, oil combustion can be performed quickly and stably during startup, when the fuel supply of the dual-type gas fuel is unstable, during backup operation, and the operational stability of the gas turbine 1 can be improved.
- FIG. 12 is a schematic configuration diagram of a nozzle pedestal 50 according to the second embodiment of the present invention.
- the same components as those in FIGS. 1 to 11 are denoted by the same reference numerals and description thereof is omitted.
- the nozzle nozzle base 50 includes oil chambers 51 formed for five main nozzles 14 (see FIG. 2) and oil chambers 52 formed for three main nozzles 14. Yes.
- the oil chamber 51 is formed on the rotating shaft P ⁇ b> 1 side, and extends in a semicircular arc shape in the circumferential direction of the nozzle nozzle 20.
- the oil chamber 51 is provided with five pipe arrangement portions 33b on the outer end surface 51a on the radially outer side, and the first guide portions 33c are smoothly connected between the pipe arrangement portions 33b.
- the radially inner end surface 51d is formed in a substantially semicircular arc shape toward the outer end surface 51a, and two tube disposing portions at both circumferential ends of the five tube disposing portions 33b. 33b is continuous.
- the oil chamber 52 is formed at a position that is a pair of the oil chamber 51 across the center axis P ⁇ b> 2 of the combustor, and extends in the tangential direction of the nozzle nozzle 50.
- the oil chamber 52 includes three pipe arrangement portions 33b on an outer end surface 52a radially outward, and the first guide portions 33c are smoothly connected between the pipe arrangement portions 33b. Further, the radially inner inner end surface 52d is formed to be slightly bent so as to protrude toward the outer end surface 52a, and two tubes at both circumferential ends of the three tube disposing portions 33b. It continues to the arrangement part 33b.
- the protruding portions 43 at both ends of the oil chambers 51 and 52 are formed so that the width of the second guide portion 42a is narrow, and are engaged with the oil chambers 51 and 52, respectively.
- the same effect as the nozzle pedestal 20 described above can be obtained, and in the inner end face 51d of the oil chamber 51, it remains primarily above the oil level.
- the fuel oil F (f1) is guided to the lower protrusion 43 along the surface of the inner end face 51d, and the fuel oil F (f1) reaching the second guide part 42a of the protrusion 43 is the oil inflow part 19a.
- the fuel oil F (f1) that remains primarily above the oil surface on the inner end surface 52d.
- FIG. 13 is an enlarged cross-sectional view of a main part of a nozzle tube base 50A that is a modified example of the nozzle tube base 20 described above.
- the same components as those in FIGS. 1 to 12 are denoted by the same reference numerals, and description thereof is omitted.
- the nozzle nozzle base 50 ⁇ / b> A has oil chambers 51 and 52 formed corresponding to the four main nozzles 14 (see FIG. 2).
- An oil inflow portion 19a is provided. Also with this configuration, the same effect as that of the nozzle nozzle base 50 of the second embodiment described above can be obtained.
- the first guide portion 33c is formed in an arc shape, but may be formed in a bent shape like the inner end face 52d in the oil chamber 52 of the second embodiment.
- the inner end surface 52 d in the oil chamber 52 of the second embodiment may be formed in an arc shape like the inner end surface 51 d of the oil chamber 51.
- the first guide portion 33c and the inner end surfaces 33d, 51d, and 52d may be formed in a polygonal shape in plan view and inclined in the circumferential direction.
- the second guide portion 42a is formed in a straight line shape in a sectional view, but may be formed in a curved shape or a bent shape. May be.
- the second guide portion 42 a is formed in an arc shape in a plan view, but other shapes (for example, a triangular shape or a polygonal shape in a plan view). You may form in.
- the oil inflow portion 19a is configured by the base end opening 19b and the perforations 19c, but may be configured by only one of them.
- the oil inflow portion 19a is inserted to a position close to the bottom surface 33e of the nozzle body 30.
- the oil inflow portion 19a may be disposed close to the lid body 40.
- the second guide portion 42a may be provided on the nozzle body 30 side.
- nozzle nozzles 20, 50, 50A are formed in a disk shape, any configuration may be used as long as an oil chamber can be formed.
- the shape may be formed in a rectangular shape, or may be divided for each oil chamber when a plurality of oil chambers are provided.
- the fuel oil can be sufficiently removed from the oil chamber. Moreover, according to the gas turbine which concerns on this invention, fuel oil can fully be removed from an oil chamber, and driving
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
- Feeding And Controlling Fuel (AREA)
- Nozzles For Spraying Of Liquid Fuel (AREA)
- Combustion Of Fluid Fuel (AREA)
Abstract
Description
すなわち、本発明に係る燃焼器は、燃焼器の中心軸の周りに配列され、それぞれの基端が油供給管に接続された複数のノズルと、前記複数のノズルを支持し、各油供給管に設けられた油流入部を通じて前記ノズルに燃料を中継する油室を有するノズル管台と、前記油室の内部にあって前記燃焼器の中心を向き、前記油室内の残油を前記油流入部に導く第一案内部と、前記油室の内部にあって前記燃焼器の基端を向き、前記油室内の残油を前記油流入部に導く第二案内部とを備え、前記第一案内部は、隣接する油流入部の間に位置し、一方の油流入部に近づくほど前記燃焼器の中心から離れる方向に傾斜する第一傾斜面と、他方の油流入部に近づくほど前記燃焼器の中心から離れる方向に傾斜する第二傾斜面とを有し、前記第二案内部は、前記油流入部よりも前記燃焼器の先端寄りに位置し、前記油流入部に近づくほど前記燃焼器の中心から離れる方向に傾斜する第三傾斜面を有する。
この構成によれば、油室が第一案内部を具備するので、油室から燃料油を排出する際に、第一案内部の第一傾斜面が一方の油流入部に、第二傾斜面が他方の油流入部に燃料油を案内する。また、油室が第二案内部を具備するので、第二案内部の第三傾斜面が第二案内部上の燃料油を油流入部に向けて案内する。換言すれば、隣接する二つの油流入部の間の燃料油を、これら二つの油流入部のうち少なくとも一方に向けて案内し、第二案内部に到達した燃料油を油流入部に向けて案内する。これにより、燃料油が油流入部に集められて排出されるので、燃料油を十分に除去することが可能となる。
特に、燃焼器の中心軸が水平方向に対して傾いており、油供給管の油流入部(上流)が下流よりも高くなっている場合には、燃焼器の軸方向において油流入部よりも下流に燃料油が残存し易くなるが、第二案内部によって油流入部に燃料油を案内するので、燃料油を十分に除去することが可能となる。
この場合、第二案内部の第三傾斜面と前記燃焼器の中心軸とのなす角度が、燃焼器の中心軸と水平線とのなす角度よりも大きくなっているので、燃料油をより確実に除去することが可能となる。
この場合、油流入部が油室の内面の一部であって前記燃焼器の中心から最も遠い領域に接しているので、径方向において油流入部と油室の内面の一部であって前記燃焼器の中心から最も遠い領域との間のギャップに燃料油が残存することを抑止することができる。
この場合、油流入部が前記燃焼器の基端に向けて開口する基端開口を有するので、簡素な構成で油供給管の内部に燃料油を流入させることが可能となる。
この場合、油流入部が管壁に形成された穿孔を有するので、穿孔から油供給管の内部に燃料油を流入させることが可能となる。
この場合、第三案内部が油室の内部にあって燃焼器の外周を向き、燃焼器の半径方向外方に凸に形成され、油室内の残油を油流入部に導くので、油室の燃料油が第三案内部に沿って下方に案内される。これにより、最終的に燃料油が油流入部に集められて排出されるので、燃料油を十分に除去することが可能となる。
この場合、ノズル管台は油室を複数有するので、一の油室に燃料油を供給すると共に他の油室に燃料油の供給を停止することにより、燃料油を供給した油室に対応するノズルからのみ燃料油を吐出させて、部分負荷運転を容易にすることができる。さらに、複数の油室のそれぞれにおいて燃料油が残存することを抑止するので、部分負荷運転と定格負荷運転、部分負荷運転と運転停止の相互切替を迅速に行うことができる。
この場合、ノズル管台が第一案内部を有する第一部材と第二案内部を有する第二部材とを備えるので、簡素な構造となって組立性及び加工性を良好にすることができる。
この場合、第一部材が油流入部に対向すると共に、第二部材に油供給管が挿通しているので、簡素な構造となって組立性及び加工性を良好にすることができる。
本発明に係るガスタービンによれば、上記のうちいずれかの燃焼器を備えるので、油燃焼の停止時や、デュアル式では、油燃焼からガス燃焼への切替時において、燃焼器の油室から燃料油を十分に除去することができる。これにより、炭化した燃料油によって燃料油供給系が閉塞してしまうことを防止することができる。また、起動時、およびデュアル式では、ガス燃料の供給不安定時、バックアップ運転時等において油燃焼を迅速かつ安定して行うができると共に、ガスタービンの運転安定性を高めることができる。
また、本発明に係るガスタービンによれば、油室から燃料油を十分に除去することができ、運転安定性を高めることができる。
(第一実施形態)
図1は、本発明の第一実施形態に係るガスタービン1の全体構成を示す概略構成断面図である。
図1に示すように、このガスタービン1は、ロータ1aの回転軸P1が水平方向に向けられており、圧縮機2と、複数の燃焼器10と、タービン3とで概略構成されている。
複数の燃焼器10は、図1に示すように、圧縮機2の出口に連通している。これら複数の燃焼器10は、圧縮機2から供給された圧縮空気Aに燃料を混合して、これを燃焼させて高温・高圧の燃焼ガスBを生成する。
タービン3は、燃焼器10から送り出された燃焼ガスBの熱エネルギをロータ1aの回転エネルギに変換する。そして、この回転エネルギは、ロータ1aに連結された発電機(不図示)に伝達される。
各燃焼器10は、ガスタービン1におけるロータ1aの回転軸P1に対して、それぞれの燃焼器の中心軸P2を、燃焼器10の入口が出口よりも、回転軸P1の径方向に離れるように傾けた状態で放射状に配設されている。なお、図2において、燃焼器の中心軸P2と回転軸P1(水平方向)とのなす角度をCとする。
各燃焼器10は、ガス燃焼および油燃焼の両方が可能であるデュアル式のものである。各燃焼器10は、図2に示すように、外筒11と、内筒12と、パイロットノズル13と、メインノズル14と、尾筒15とを備えている。なお、第一実施形態では、例示的にパイロットノズル13とメインノズル14とを有するデュアル式の燃焼器10について説明しているが、油燃焼が可能な燃料ノズルの構成であれば、特に限定されるものではない。
以下の説明においては、特に言及しない限り、燃焼器10の中心軸方向(燃焼器の中心軸P2方向)を単に「軸方向」と、燃焼器の中心軸P2周りを単に「周方向」と、燃焼器10の径方向を単に「径方向」という。
図2に示すように、外筒11と内筒12との間隙は圧縮空気Aの流路となり、外筒11の基端部11a近傍の基端開口部12bから圧縮空気Aが内部に導入される。
図3に示すように、ノズル管台20は、円盤状に形成された管台本体(第一部材)30と、蓋体40(第二部材)とを備えている。このノズル管台20は、その中心軸を燃焼器の中心軸P2に重ねて外筒11(図2参照)に配設されており、管台本体30と蓋体40とによって囲まれた環状の油室21を備えている。
油溝33の底面33eは、図4に示すように、軸方向におけるある位置において周方向に延在している。
また、図4に示すように、管台本体30において油溝33の形成されている面の裏側の面30cには、油溝33に連通し、燃料供給部10a(図2参照)に接続される給油口30dが形成されている。
より詳細には、管台本体30の受け部30bに筒部42bを突き合わせ(図4参照)、周方向に隣接する二つの第一案内部33c(図5参照)に第二案内部42aを嵌合させて(図6参照)、第二案内部42aの傾斜端面42dを第一案内部33cに密着させている。つまり、ノズル管台20は、第一案内部33cを有する管台本体30(第一部材)と、第二案内部42aを有する蓋体40(第二部材)との組み合わせであって、蓋体40は管台本体30に、燃焼器の中心軸方向に並べて重ねられる。
このような構成により、管台本体30と蓋体40とで油室21が形成されている。つまり、油室は、ノズル管台20の内部において径方向外方の外端面33aと径方向内方の内端面33dと軸方向の両側の壁面(33e,41a)とに囲まれ、給油口から供給された燃料油を溜める。
各油流入部19aは、基端開口19bが管台本体30の底面33eに近接対向する位置まで挿入されている。図5に示すように、軸方向に見て管配設部33bに重なる貫通孔42cに油供給管19が挿入されることで、油流入部19aの外周面を管配設部33bに接触させている。換言すれば、油供給管19のうち油流入部19aよりも下流は、筒部42bによって囲繞されている。つまり、油流入部19aは、油室21の内面の一部であって燃焼器の中心から最も遠い領域に接している。
このような構成により、油室21には、八つの油流入部19aが挿入されており、各油供給管19と油室21とによって燃料油供給系が構成されている。ここで、第三傾斜面42eは、油流入部19aよりも燃焼器の先端寄りに位置し、油流入部19aに近づくほど燃焼器の中心から離れる方向に傾斜する。
また、油室21の第二案内部42aが、軸方向に見て油流入部19aの周囲において軸方向の管台本体30に向けて突出しており、油流入部19aに向かうように軸方向に傾斜する面が形成されている。つまり、第二案内部42aは、油室21の内部にあって燃焼器の基端を向き、油室21内の残油を油流入部19aに導くように形成されている。そして、第二案内部42aは、油流入部19aよりも燃焼器の先端寄りに位置し、油流入部19aに近づくほど燃焼器の中心から離れる方向に傾斜する第三傾斜面42eを有する。
さらに、油室21の内端面33dが外端面33aに向けて凸になって管台本体30の周方向に傾斜している。つまり、油室21の内部にあって燃焼器の外周を向き、燃焼器の半径方向外方に凸に形成され、油室21内の残油を燃料流入部19aに導く第三案内部が内端面33dに形成されている。
油燃焼運転の際、パイロットノズル13及びメインノズル14への燃料ガスの供給が停止され、それぞれに燃料供給部10aから燃料油(以下、符号Fを付す。)が供給される。
メインノズル14においては、給油口30d(図4参照)から燃料油Fが油室21に充填され、この油室21に配設された油流入部19aから各メインノズル14の油供給管19内に燃料油Fが流入する。
油燃焼運転の停止又はガス燃焼運転への切替時においては、油室21への燃料油Fの供給を停止する。そうすると、各油供給管19を介して燃料油Fが排出されて、図7に示すように、油室21における燃料油Fの油面レベルLが下がっていく(油面レベルL1)。
このようにして燃料油Fが油流入部19aに向けて集められる。
油溜まりOの油量が十分に少なくなった後に、燃料供給部10a等から高圧の空気等を供給して燃料油Fを油供給管19の内部に吹き飛ばし、先端の燃料吐出部から排出する。この際、油流入部19aの外周面が管配設部33bの内周面に接していることから、油流入部19aの外周面と管配設部33bの内周面との間のギャップに燃料油Fが残存し難い。
このようにして各燃焼器10におけるノズル管台20の油室21から燃料油Fを十分に除去する。
なお、回転軸P1が水平方向に向けられていないガスタービンにおいても、第二案内部42aの傾斜面と燃焼器の中心軸P2とのなす角度Dが、燃焼器の中心軸P2と水平方向とのなす角度Cよりも大きくなっていれば、燃料油Fをより確実に除去することが可能である。
図12は、本発明の第二実施形態に係るノズル管台50の概略構成図である。なお、図12において、図1~図11と同様の構成要素については、同一の符号を付して説明を省略する。
この油室51は、径方向外方の外端面51aに五つの管配設部33bを備えており、各管配設部33bの間を第一案内部33cが滑らかに接続している。
また、径方向内方の内端面51dは、外端面51aに向けて略半円弧状に凸に形成されており、五つの管配設部33bのうちの周方向両端における二つの管配設部33bに連続している。
この油室52は、径方向外方の外端面52aに三つの管配設部33bを備えており、各管配設部33bの間を第一案内部33cが滑らかに接続している。
また、径方向内方の内端面52dは、外端面52aに向けて突出するように、僅かに屈曲して形成されており、三つの管配設部33bのうちの周方向両端における二つの管配設部33bに連続している。
また、重力方向に対する姿勢が異なる燃焼器10において、油室52よりも油室51が上方側に位置したとしても、内端面52dにおいて油面よりも上方に一次的に残存した燃料油F(f1)が、内端面52dの表面に沿って下方の突出部43に案内され、この突出部43の第二案内部42aに到達した燃料油Fが油流入部19aに向けて案内される。これにより、燃料油Fが油流入部19a付近に集められて排出されるので、油室51の燃料油Fを十分に除去することが可能となる。
これらにより、重力方向に対する姿勢によらず、燃料油Fが油流入部19a付近に集められて排出されるので、油室51,52の燃料油Fを十分に除去することが可能となる。
図14に示すように、ノズル管台50Aは、油室51,52が共に四つのメインノズル14(図2参照)に対応して形成されたものであり、油室51,52にそれぞれ四つの油流入部19aが配設されている。
この構成によっても上述した第二実施形態のノズル管台50と同様の効果を得ることができる。
例えば、上述した第一、第二実施形態においては、油流入部19aを八つ設ける構成とした。しかし、油流入部19aは、複数であればその他の数であっても構わない。
また、第二実施形態の油室52における内端面52dを、油室51の内端面51dのように円弧状に形成しても構わない。さらに、第一案内部33cや内端面33d,51d,52dを平面視において多角形状に形成して周方向に傾斜させる構成にしても構わない。
また、本発明に係るガスタービンによれば、油室から燃料油を十分に除去することができ、運転安定性を高めることができる。
2…圧縮機
3…タービン
10…燃焼器
11…外筒
14…メインノズル
14a…先端
14b…基端
19…油供給管
19a…油流入部
19b…基端開口
19c…穿孔
20…ノズル管台
21…油室
30…管台本体(第一部材)
33a…外端面
33c…第一案内部
33d…内端面
33f…第一傾斜面
33g…第二傾斜面
40…蓋体(第二部材)
42a…第二案内部
43e…第三傾斜面
50,50A…ノズル管台
51…油室
51a…外端面
51d…内端面
52…油室
52a…外端面
52d…内端面
F,f1,f2…燃料油
P2…燃焼器の中心軸
Claims (10)
- 燃焼器の中心軸の周りに配列され、それぞれの基端が油供給管に接続された複数のノズルと、
前記複数のノズルを支持し、各油供給管に設けられた油流入部を通じて前記ノズルに燃料を中継する油室を有するノズル管台と、
前記油室の内部にあって前記燃焼器の中心を向き、前記油室内の残油を前記油流入部に導く第一案内部と、
前記油室の内部にあって前記燃焼器の基端を向き、前記油室内の残油を前記油流入部に導く第二案内部とを備え、
前記第一案内部は、隣接する油流入部の間に位置し、一方の油流入部に近づくほど前記燃焼器の中心から離れる方向に傾斜する第一傾斜面と、他方の油流入部に近づくほど前記燃焼器の中心から離れる方向に傾斜する第二傾斜面とを有し、
前記第二案内部は、前記油流入部よりも前記燃焼器の先端寄りに位置し、前記油流入部に近づくほど前記燃焼器の中心から離れる方向に傾斜する第三傾斜面を有する燃焼器。 - 前記第三傾斜面と前記燃焼器の中心軸とのなす角度が、前記燃焼器の中心軸と水平線とのなす角度よりも大きい請求項1に記載の燃焼器。
- 前記油流入部は、前記油室の内面の一部であって前記燃焼器の中心から最も遠い領域に接している請求項1に記載の燃焼器。
- 前記油流入部は、前記油供給管に形成されて前記燃焼器の基端に向けて開口する基端開口を有する請求項1に記載の燃焼器。
- 前記油流入部は、前記油供給管の管壁に形成された穿孔を有する請求項1に記載の燃焼器。
- 前記油室は、前記油室の内部にあって前記燃焼器の外周を向き、前記燃焼器の半径方向外方に凸に形成され、前記油室内の残油を前記油流入部に導く第三案内部を備える請求項1に記載の燃焼器。
- 前記ノズル管台は、前記油室を複数有する請求項1に記載の燃焼器。
- 前記ノズル管台は、前記第一案内部を有する第一部材と、前記第二案内部を有する第二部材との組み合わせであって、前記第二部材は前記第一部材に、前記燃焼器の中心軸方向に並べて重ねられる請求項1に記載の燃焼器。
- 前記油流入部の基端開口は前記第一部材に対向し、
前記油供給管は前記第二部材を貫通している請求項8に記載の燃焼器。 - 作動流体を圧縮する圧縮機と、前記圧縮機によって圧縮された作動流体を燃焼させる請求項1から9のいずれか一項に記載の燃焼器と、前記燃焼器によって燃焼された作動流体によって駆動されるタービンとを備えるガスタービン。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10849004.6A EP2554907B1 (en) | 2010-03-30 | 2010-10-22 | Combustor and gas turbine |
CN201080062695.6A CN102741614B (zh) | 2010-03-30 | 2010-10-22 | 燃烧器及燃气轮机 |
KR1020127019960A KR101442935B1 (ko) | 2010-03-30 | 2010-10-22 | 연소기 및 가스 터빈 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-079007 | 2010-03-30 | ||
JP2010079007A JP5558168B2 (ja) | 2010-03-30 | 2010-03-30 | 燃焼器及びガスタービン |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011121831A1 true WO2011121831A1 (ja) | 2011-10-06 |
Family
ID=44708010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/068686 WO2011121831A1 (ja) | 2010-03-30 | 2010-10-22 | 燃焼器及びガスタービン |
Country Status (6)
Country | Link |
---|---|
US (1) | US8695348B2 (ja) |
EP (1) | EP2554907B1 (ja) |
JP (1) | JP5558168B2 (ja) |
KR (1) | KR101442935B1 (ja) |
CN (1) | CN102741614B (ja) |
WO (1) | WO2011121831A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2597374A1 (de) * | 2011-11-28 | 2013-05-29 | Siemens Aktiengesellschaft | Brenneranordnung für eine Gasturbine |
US10465907B2 (en) * | 2015-09-09 | 2019-11-05 | General Electric Company | System and method having annular flow path architecture |
JP6779097B2 (ja) * | 2016-10-24 | 2020-11-04 | 三菱パワー株式会社 | ガスタービン燃焼器及びその運転方法 |
WO2018118466A1 (en) * | 2016-12-22 | 2018-06-28 | Siemens Aktiengesellschaft | Fuel manifold in a combustor for a gas turbine engine |
US10598380B2 (en) | 2017-09-21 | 2020-03-24 | General Electric Company | Canted combustor for gas turbine engine |
JP6546334B1 (ja) * | 2018-12-03 | 2019-07-17 | 三菱日立パワーシステムズ株式会社 | ガスタービンの燃焼器及びこれを備えたガスタービン |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003307309A (ja) | 2002-04-15 | 2003-10-31 | Mitsubishi Heavy Ind Ltd | ガスタービンの燃焼器 |
JP2004068997A (ja) * | 2002-08-08 | 2004-03-04 | Mitsubishi Heavy Ind Ltd | 管部材接合構造及びこれを適用した燃焼器の燃料ノズル取付構造 |
JP2010079007A (ja) | 2008-09-26 | 2010-04-08 | Casio Computer Co Ltd | データ出力装置、データ表示システム、データ表示方法及びプログラム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01114623A (ja) | 1987-10-27 | 1989-05-08 | Toshiba Corp | ガスタービン燃焼器 |
JP2000039147A (ja) * | 1998-07-21 | 2000-02-08 | Mitsubishi Heavy Ind Ltd | フレキシブルジョイントを備えた燃焼器パイロットノズル |
US6622488B2 (en) | 2001-03-21 | 2003-09-23 | Parker-Hannifin Corporation | Pure airblast nozzle |
FR2832493B1 (fr) | 2001-11-21 | 2004-07-09 | Snecma Moteurs | Systeme d'injection multi-etages d'un melange air/carburant dans une chambre de combustion de turbomachine |
DE50211068D1 (de) * | 2001-12-20 | 2007-11-22 | Alstom Technology Ltd | Verfahren zum Eindüsen eines Brennstoff-/Luftgemisches in eine Brennkammer |
US6898938B2 (en) * | 2003-04-24 | 2005-05-31 | General Electric Company | Differential pressure induced purging fuel injector with asymmetric cyclone |
JP4326324B2 (ja) | 2003-12-26 | 2009-09-02 | 三菱重工業株式会社 | メインノズル及び燃焼器 |
US7377036B2 (en) * | 2004-10-05 | 2008-05-27 | General Electric Company | Methods for tuning fuel injection assemblies for a gas turbine fuel nozzle |
EP1724454A1 (de) * | 2005-05-11 | 2006-11-22 | Siemens Aktiengesellschaft | Brennstoffzuführung für eine Gasturbine mit einem Umlenkbereich |
JP4764392B2 (ja) * | 2007-08-29 | 2011-08-31 | 三菱重工業株式会社 | ガスタービン燃焼器 |
-
2010
- 2010-03-30 JP JP2010079007A patent/JP5558168B2/ja active Active
- 2010-10-22 KR KR1020127019960A patent/KR101442935B1/ko active IP Right Grant
- 2010-10-22 EP EP10849004.6A patent/EP2554907B1/en active Active
- 2010-10-22 CN CN201080062695.6A patent/CN102741614B/zh active Active
- 2010-10-22 WO PCT/JP2010/068686 patent/WO2011121831A1/ja active Application Filing
- 2010-10-27 US US12/913,114 patent/US8695348B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003307309A (ja) | 2002-04-15 | 2003-10-31 | Mitsubishi Heavy Ind Ltd | ガスタービンの燃焼器 |
JP2004068997A (ja) * | 2002-08-08 | 2004-03-04 | Mitsubishi Heavy Ind Ltd | 管部材接合構造及びこれを適用した燃焼器の燃料ノズル取付構造 |
JP2010079007A (ja) | 2008-09-26 | 2010-04-08 | Casio Computer Co Ltd | データ出力装置、データ表示システム、データ表示方法及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
US20110239619A1 (en) | 2011-10-06 |
EP2554907A4 (en) | 2017-11-08 |
JP5558168B2 (ja) | 2014-07-23 |
US8695348B2 (en) | 2014-04-15 |
JP2011208912A (ja) | 2011-10-20 |
CN102741614A (zh) | 2012-10-17 |
EP2554907A1 (en) | 2013-02-06 |
EP2554907B1 (en) | 2019-03-13 |
KR101442935B1 (ko) | 2014-09-22 |
KR20120099297A (ko) | 2012-09-07 |
CN102741614B (zh) | 2014-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011121831A1 (ja) | 燃焼器及びガスタービン | |
JP6824620B2 (ja) | 予混合パイロットノズル | |
RU2632073C2 (ru) | Узел впрыска топлива и установка, содержащая узел впрыска топлива | |
CN106051825B (zh) | 包括引导喷嘴的燃料喷嘴组件 | |
JP5615008B2 (ja) | スワーラおよび少なくとも1つのスワーラを備えたバーナ | |
US8756934B2 (en) | Combustor cap assembly | |
EP2741005B1 (en) | A fuel nozzle for a combustor of a gas turbine engine | |
JP2006112776A (ja) | 低コスト二元燃料燃焼器及び関連する方法 | |
JP6877926B2 (ja) | 予混合燃料ノズル組立体カートリッジ | |
WO2003006887A1 (fr) | Buse de premelange, bruleur et turbine a gaz | |
JP6340075B2 (ja) | 燃料ノズル用の液体燃料カートリッジ | |
JP2010223577A5 (ja) | ||
JP2008286199A (ja) | タービンエンジンを冷却する方法及び装置 | |
US20180363551A1 (en) | System and method for combusting liquid fuel in a gas turbine combustor | |
JP2012057929A (ja) | ガスタービンノズル内で燃料を混合する装置及び方法 | |
CN102844622A (zh) | 一种多燃料燃烧系统 | |
US20230136865A1 (en) | Methods of operating a turbomachine combustor on hydrogen | |
JP2008274774A (ja) | ガスタービン燃焼器およびガスタービン | |
WO2013128572A1 (ja) | 燃焼器及びガスタービン | |
JP6595010B2 (ja) | 予混合保炎器を有する燃料ノズルアセンブリ | |
CN108626748A (zh) | 具有液体燃料末梢的双燃料型燃料喷嘴 | |
JP2017161087A (ja) | バーナアセンブリ、燃焼器、及びガスタービン | |
EP2515041B1 (en) | Fuel Nozzle And Method For Operating A Combustor | |
JP5281685B2 (ja) | ガスタービン燃焼器およびガスタービン | |
US20170321606A1 (en) | Airflow manipulation device for compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080062695.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10849004 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010849004 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127019960 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |