WO2011121720A1 - 光学フィルム、偏光板および液晶表示装置 - Google Patents

光学フィルム、偏光板および液晶表示装置 Download PDF

Info

Publication number
WO2011121720A1
WO2011121720A1 PCT/JP2010/055676 JP2010055676W WO2011121720A1 WO 2011121720 A1 WO2011121720 A1 WO 2011121720A1 JP 2010055676 W JP2010055676 W JP 2010055676W WO 2011121720 A1 WO2011121720 A1 WO 2011121720A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
resin
film
mma
cellulose ester
Prior art date
Application number
PCT/JP2010/055676
Other languages
English (en)
French (fr)
Inventor
瀧本 正高
笠原 健三
清水 啓
睦美 笠原
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012507947A priority Critical patent/JP5590116B2/ja
Priority to PCT/JP2010/055676 priority patent/WO2011121720A1/ja
Priority to PCT/JP2010/065390 priority patent/WO2011121817A1/ja
Publication of WO2011121720A1 publication Critical patent/WO2011121720A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to an optical film, a polarizing plate, and a liquid crystal display device, and more particularly to an optical film, a polarizing plate, and a liquid crystal display device that do not deteriorate heat resistance over time.
  • a liquid crystal display device is composed of a liquid crystal cell in which a transparent electrode, a liquid crystal layer, a color filter, etc. are sandwiched between glass plates, and two polarizing plates provided on both sides thereof.
  • the optical element polarizing plate protective film
  • a child also referred to as a polarizing film or a polarizing film.
  • a cellulose triacetate film is usually used as this polarizing plate protective film.
  • Patent Documents 1, 2, and 3 A method for improving heat resistance and further improving brittleness of acrylic resin by mixing cellulose resin with acrylic resin has been proposed (Patent Documents 1, 2, and 3). However, the heat resistance after long-term use was still insufficient.
  • an object of the present invention is to provide an optical film that improves heat resistance over time.
  • the acrylic resin (A) is represented by the following general formula (1), and has a weight average molecular weight.
  • General formula (1) -(MMA) p- (X) q- (Y) r- MMA represents methyl methacrylate
  • X represents a monomer unit copolymerizable with MMA having at least one amide group
  • Y represents a monomer unit copolymerizable with MMA and X.
  • the total substitution degree (T) of the acyl group of the cellulose ester resin (B) is 2.0 or more and 3.0 or less, and the substitution degree of the acyl group having 3 or more and 7 or less carbon atoms is 1.2 or more.
  • optical film according to 1 or 2 above wherein the optical film contains 0.5% by mass or more and 30% by mass or less of acrylic particles (D) with respect to the total mass of the resin constituting the film.
  • Optical film 1.
  • a polarizing plate comprising the optical film as described in any one of 1 to 3 above.
  • a liquid crystal display device comprising the optical film described in any one of 1 to 3 above.
  • an optical film that improves heat resistance over time can be provided, whereby a polarizing plate and a liquid crystal display device using the optical film can be provided.
  • the optical film of the present invention is an optical film containing an acrylic resin (A) and a cellulose ester resin (B) in a mass ratio of 95: 5 to 50:50, and the acrylic resin (A) is represented by the following general formula ( 1), wherein the weight average molecular weight Mw is 20,000 or more and 1,000,000 or less.
  • General formula (1) -(MMA) p- (X) q- (Y) r- MMA represents methyl methacrylate
  • X represents a monomer unit copolymerizable with MMA having at least one amide group
  • Y represents a monomer unit copolymerizable with MMA and X.
  • the acrylic resin used in the present invention includes a methacrylic resin.
  • the acrylic resin (A) of the present invention is represented by the following general formula (1), and has a weight average molecular weight Mw of 20,000 to 1,000,000.
  • General formula (1) -(MMA) p- (X) q- (Y) r- MMA represents methyl methacrylate
  • X represents a monomer unit copolymerizable with MMA having at least one amide group
  • Y represents a monomer unit copolymerizable with MMA and X.
  • X is a vinyl monomer having at least one amide group copolymerizable with MMA, and X may be one type or two or more types, and one monomer unit may have a plurality of functional groups.
  • Specific monomers for X include acrylamide, N-methylacrylamide, N-butylacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, acryloylmorpholine, N-hydroxyethylacrylamide, acryloylpyrrolidine, acryloylpiperidine, Methacrylamide, N-methylmethacrylamide, N-butylmethacrylamide, N, N-dimethylmethacrylamide, N, N-diethylmethacrylamide, methacryloylmorpholine, N-hydroxyethylmethacrylamide, methacryloylpyrrolidine, methacryloylpiperidine, N-vinyl Examples include formamide, N-vinylacetamide, and vinylpyrrolidone.
  • acryloyl morpholine and vinyl pyrrolidone are mentioned.
  • Q is 1 ⁇ q ⁇ 50 and is appropriately selected depending on the properties of the monomer, but preferably 5 ⁇ q ⁇ 30.
  • X may be a plurality of monomers.
  • the monomer X contributes to the improvement of heat resistance because the functional group has an electron loan pair and coordinates the water molecule, thereby causing the retardation of the optical film generated over time. It is speculated that the crystal orientation of a certain resin may be suppressed.
  • the functional group is non-dissociable, it is considered that it is physically stable without acid generation due to decomposition over time.
  • the weight average molecular weight is large, the self-supporting property as an optical film is also satisfied.
  • Y in the acrylic resin (A) of the present invention represents a monomer unit copolymerizable with MMA and X.
  • Examples of Y include monomers described in Patent Documents 1, 2, and 3, such as acrylic monomers other than MMA, methacrylic monomers, olefins, acrylonitrile, styrene, and vinyl acetate. Y may be two or more.
  • Y can be used as needed and is most preferably not used.
  • the acrylic resin (A) of the present invention has a weight average molecular weight (Mw) of 20000 or more from the viewpoint of improving transparency particularly when it is compatible with the cellulose ester resin (B).
  • the weight average molecular weight (Mw) of the acrylic resin (A) is more preferably in the range of 20,000 to 1,000,000, particularly preferably in the range of 50,000 to 600,000, and most preferably in the range of 100,000 to 400,000. preferable.
  • the upper limit value of the weight average molecular weight (Mw) of the acrylic resin (A) is preferably 1000000 or less from the viewpoint of production.
  • the weight average molecular weight of the acrylic resin of the present invention can be measured by gel permeation chromatography.
  • the measurement conditions are as follows.
  • any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • a polymerization initiator a normal peroxide type and an azo type can be used, and a redox type can also be used.
  • the polymerization temperature may be 30 to 100 ° C. for suspension or emulsion polymerization, and 80 to 160 ° C. for bulk or solution polymerization.
  • polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • ⁇ Cellulose ester resin (B)> The cellulose ester resin (B) of the present invention has a total acyl group substitution degree (T) of 2.0 to 3.3 from the viewpoint of transparency particularly when it is improved in brittleness and is compatible with the acrylic resin (A).
  • the substitution degree of the acyl group having 0 and 3 to 7 carbon atoms is preferably 1.2 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is preferably 2.0 to 3.0. .
  • the cellulose ester resin of the present invention is a cellulose ester resin substituted with an acyl group having 3 to 7 carbon atoms.
  • an acyl group having 3 to 7 carbon atoms Specifically, propionyl, butyryl and the like are preferably used, but a propionyl group is particularly preferably used. .
  • the acrylic ester When the total substitution degree of the acyl group of the cellulose ester resin (B) is less than 2.0, that is, when the residual degree of the hydroxyl groups at the 2, 3, and 6 positions of the cellulose ester molecule is more than 1.0, the acrylic ester When the resin (A) is not sufficiently compatible with the resin (A) and used as an optical film, haze becomes a problem.
  • the substitution degree of the acyl group having 2 carbon atoms that is, the acetyl group is high
  • the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.
  • it is less than 2 the compatibility is lowered and the haze is increased.
  • the total substitution degree (T) is 2.0 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3. If it is 0.0, there is no problem, but the total degree of substitution of acyl groups other than those having 3 to 7 carbon atoms, that is, acetyl groups or acyl groups having 8 or more carbon atoms, is preferably 1.3 or less.
  • the total substitution degree (T) of the acyl group of the cellulose ester resin (B) is more preferably in the range of 2.5 to 3.0.
  • the cellulose ester resin (B) of the present invention is preferably at least one selected from cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose propionate, and cellulose butyrate, that is, carbon Those having an acyl group having 3 or 4 atoms as a substituent are preferred.
  • particularly preferable cellulose ester resins are cellulose acetate propionate and cellulose propionate.
  • the portion not substituted with an acyl group usually exists as a hydroxyl group. These can be synthesized by known methods.
  • substitution degree of the acetyl group and the substitution degree of other acyl groups were determined by the method prescribed in ASTM-D817-96.
  • the weight average molecular weight (Mw) of the cellulose ester resin of the present invention is 75,000 or more, particularly from the viewpoint of improving compatibility with the acrylic resin (A) and brittleness, and is preferably in the range of 75,000 to 300,000. More preferably, it is within the range of 240000, particularly preferably from 160000 to 240000.
  • the weight average molecular weight (Mw) of the cellulose ester resin is less than 75,000, the effect of improving heat resistance and brittleness decreases. Moreover, when it exceeds 300,000, a viscosity becomes high and film formation becomes difficult.
  • two or more kinds of cellulose resins can be mixed and used.
  • the weight average molecular weight of the cellulose ester resin of the present invention can be measured by the GPC.
  • ⁇ Acrylic resin (A) and cellulose ester resin (B)> In the optical film of the present invention, the acrylic resin (A) and the cellulose ester resin (B) are preferably contained in a compatible state at a mass ratio of 95: 5 to 50:50, preferably 70:30. ⁇ 60: 40.
  • the mass ratio of the acrylic resin (A) and the cellulose ester resin (B) is more than 95: 5, the effect of the cellulose ester resin (B) cannot be sufficiently obtained, and the mass ratio is When the amount of acrylic resin is less than 50:50, the photoelastic coefficient is increased.
  • the acrylic resin (A) and the cellulose ester resin (B) are preferably contained in a compatible state.
  • the physical properties and quality required for an optical film are achieved by supplementing each other by dissolving different resins.
  • Whether the acrylic resin (A) and the cellulose ester resin (B) are in a compatible state can be determined by, for example, the glass transition temperature Tg.
  • the two resins have different glass transition temperatures
  • there are two or more glass transition temperatures for each resin because there is a glass transition temperature for each resin.
  • the glass transition temperature specific to each resin disappears and becomes one glass transition temperature, which is the glass transition temperature of the compatible resin.
  • the glass transition temperature referred to here is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min.
  • the point glass transition temperature (Tmg) is an intermediate value determined according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) at a heating rate of 20 ° C./min.
  • the point glass transition temperature (Tmg) The point glass transition temperature (Tmg).
  • the weight average molecular weight (Mw) of the acrylic resin (A), the weight average molecular weight (Mw) of the cellulose ester resin (B), and the degree of substitution are different in solubility in the solvent of both resins. It is obtained by measuring each after use.
  • the resin may be separated by combining two or more of these solvent combinations.
  • the dissolved resin and the resin remaining as an insoluble matter are filtered off, and the solution containing the extract can be separated by an operation of evaporating the solvent and drying.
  • fractionated resins can be identified by general structural analysis of polymers.
  • the optical film of the present invention contains a resin other than the acrylic resin (A) and the cellulose ester resin (B), it can be separated by the same method.
  • the weight average molecular weights (Mw) of the compatible resins are different, the high molecular weight substances are eluted earlier by gel permeation chromatography (GPC), and the lower molecular weight substances are eluted after a longer time. Therefore, it can be easily fractionated and the molecular weight can be measured.
  • GPC gel permeation chromatography
  • the molecular weight of the compatible resin is measured by GPC, and at the same time, the resin solution eluted every time is separated, the solvent is distilled off, and the dried resin is different by quantitatively analyzing the structure. By detecting the resin composition for each molecular weight fraction, it is possible to identify each compatible resin.
  • the total mass of the acrylic resin (A) and the cellulose ester resin (B) in the optical film of the present invention is preferably 55% by mass or more of the optical film, more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
  • ⁇ Other additive resins> When the resin other than the acrylic resin (A) and the cellulose ester resin (B) is used for the optical film of the present invention, it is preferable to adjust the addition amount within a range that does not impair the function of the optical film of the present invention.
  • a preferred resin is a low molecular acrylic resin obtained by polymerizing an ethylenically unsaturated monomer described in paragraphs (0072) to (0123) of JP 2010-32655 A (weight average molecular weight Mw is 500 or more and 30000 or less). Polymer).
  • Mw is 2000 to 30000. If it is 1000 or less, a problem occurs in bleed-out, and if it exceeds 30000, the transparency deteriorates.
  • the low molecular acrylic resin of the present invention and the vinyl polymer having an amide bond are 0 to 15% by mass, preferably 0 to 10% by mass, based on the total mass of the optical film.
  • the optical film of the present invention may contain acrylic particles (D) described in Patent Document 1.
  • Examples of such a commercial product of a multilayer structure acrylic granular composite include, for example, “Metablene W-341” manufactured by Mitsubishi Rayon Co., “Kaneace” manufactured by Kaneka Chemical Co., Ltd., “Paraloid” manufactured by Kureha Chemical Co., Ltd. Examples include “Acryloid” manufactured by Rohm and Haas, “Staffroid” manufactured by Gantz Kasei Kogyo, Chemisnow MR-2G, MS-300X (manufactured by Soken Chemical Co., Ltd.), and "Parapet SA” manufactured by Kuraray. These can be used alone or in combination of two or more.
  • the optical film of the present invention preferably contains 0 to 30% by mass of acrylic particles (D) with respect to the total mass of the resin constituting the film, and is contained in the range of 1.0 to 15% by mass. More preferably.
  • the optical film of the present invention includes a retardation control agent for controlling retardation, a plasticizer for imparting processability to the film, an antioxidant for preventing deterioration of the film, and an ultraviolet ray for imparting an ultraviolet absorbing function. It is preferable to contain additives such as fine particles (matting agent) that impart slipperiness to the absorbent and film.
  • polyester polyol of glycol and dibasic acid examples include a dehydration condensation reaction between a glycol having an average carbon number of 2 to 3.5 and a dibasic acid having an average carbon number of 4 to 5.5, or the glycol. It is preferably one produced by a conventional method by addition of a dibasic anhydride having an average carbon number of 4 to 5.5 and a dehydration condensation reaction.
  • an aromatic terminal polyester represented by the following general formula (I) can be used as the retardation control agent of the present invention.
  • B is a benzene monocarboxylic acid residue
  • G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms
  • A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms
  • n represents an integer of 1 or more.
  • aromatic terminal polyester of the present invention include paragraphs (0183) to (0186) of JP-A 2010-32655.
  • the content of the aromatic terminal polyester of the present invention is preferably 0 to 20% by mass, more preferably 1 to 11% by mass in the optical film.
  • the optical film of the present invention can contain a polyhydric alcohol ester compound.
  • Examples of the polyhydric alcohol ester compound include paragraphs (0218) to (0170) of JP-A 2010-32655.
  • sugar ester compound of the present invention it is possible to use a sugar ester compound having at least one pyranose structure or at least one furanose structure and esterifying all or part of the OH groups of the structure. preferable.
  • sugar ester compound used in the present invention examples include glucose, galactose, mannose, fructose, xylose, arabinose, lactose, sucrose, cellobiose, cellotriose, maltotriose, raffinose, etc. What has is preferable.
  • An example is sucrose.
  • the sugar ester compound used in the present invention is one in which part or all of the hydroxyl groups of the sugar compound are esterified or a mixture thereof.
  • sugar ester compound of the present invention include paragraphs (0060) to (0070) of JP-A 2010-32655.
  • a plasticizer In the optical film of the present invention, a plasticizer, a retardation control agent, an antioxidant, an ultraviolet absorber, matte particles, and the like can be used in combination.
  • plasticizer examples include phthalate ester, fatty acid ester, trimellitic ester, phosphate ester, polyester, and epoxy.
  • phosphate plasticizers triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc.
  • phthalate ester plasticizers diethyl phthalate, dimethoxy Ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate and the like can be used.
  • polyester-based and phthalate-based plasticizers are preferably used.
  • Polyester plasticizers are superior in non-migration and extraction resistance compared to phthalate ester plasticizers such as dioctyl phthalate, but are slightly inferior in plasticizing effect and compatibility.
  • the polyester plasticizer is a reaction product of a monovalent or tetravalent carboxylic acid and a monovalent or hexavalent alcohol, and is mainly obtained by reacting a divalent carboxylic acid with a glycol.
  • Representative divalent carboxylic acids include glutaric acid, itaconic acid, adipic acid, phthalic acid, azelaic acid, sebacic acid and the like.
  • glycol examples include glycols such as ethylene, propylene, 1,3-butylene, 1,4-butylene, 1,6-hexamethylene, neopentylene, diethylene, triethylene, and dipropylene. These divalent carboxylic acids and glycols may be used alone or in combination.
  • the ester plasticizer may be any of ester, oligoester and polyester types, and the molecular weight is preferably in the range of 100 to 10000, but preferably in the range of 600 to 3000, the plasticizing effect is large.
  • the viscosity of the plasticizer has a correlation with the molecular structure and molecular weight, but in the case of an adipic acid plasticizer, the range of 200 to 5000 mPa ⁇ s (25 ° C.) is preferable because of compatibility and plasticization efficiency. Furthermore, some polyester plasticizers may be used in combination.
  • the plasticizer is preferably added in an amount of 0.5 to 30 parts by mass with respect to 100 parts by mass of the composition containing an acrylic resin. If the added amount of the plasticizer exceeds 30 parts by mass, the surface becomes sticky, which is not preferable for practical use.
  • These plasticizers may be used alone or in combination of two or more.
  • ⁇ Other phase difference control agents> Other than the above retardation control agent of the present invention, those containing bisphenol A in the molecule are preferred. A compound in which ethylene oxide or propylene oxide is added to both ends of bisphenol A can be used.
  • BP series such as New Paul BP-2P, BP-3P, BP-23P, BP-5P, BPE-20 (F), BPE-20NK, BPE-20T, BPE-40, BPE-60, BPE-100
  • BPE series manufactured by Sanyo Chemical Co., Ltd.
  • BPX series manufactured by Adeka Co., Ltd.
  • Adeka Polyether BPX-11, BPX-33, BPX-55 Adeka Polyether BPX-11, BPX-33, BPX-55.
  • Diallyl bisphenol A dimethallyl bisphenol A, tetrabromobisphenol A in which bisphenol A is substituted with bromine, oligomers and polymers obtained by polymerizing this, bisphenol A bis (diphenyl phosphate) substituted with diphenyl phosphate, etc. Can be used.
  • Polycarbonate obtained by polymerizing bisphenol A polyarylate obtained by polymerizing bisphenol A with a dibasic acid such as terephthalic acid, and an epoxy oligomer or polymer polymerized with an epoxy-containing monomer can also be used.
  • Modiper CL130D or L440-G obtained by graft polymerization of bisphenol A and styrene or styrene acrylic can also be used.
  • Antioxidant> in this invention, what is generally known can be used as an antioxidant.
  • lactone, sulfur, phenol, double bond, hindered amine, and phosphorus compounds can be preferably used.
  • the phenolic compound preferably has a 2,6-dialkylphenol structure.
  • trade names of Ciba Japan Co., Ltd. “Irganox 1076”, “Irganox 1010”, and ADEKA “ADEKA STAB AO-50” And those commercially available.
  • the phosphorus compounds are, for example, from Sumitomo Chemical Co., Ltd., “Sumilizer GP”, ADEKA Co., Ltd., “ADK STAB PEP-24G”, “ADK STAB PEP-36” and “ADK STAB 3010”, “IRGAFOS P-EPQ”, commercially available from Sakai Chemical Industry Co., Ltd. under the trade name “GSY-P101” is preferable.
  • the above-mentioned hindered amine compounds are preferably those commercially available from Ciba Japan Co., Ltd. under the trade names of “Tinuvin 144” and “Tinvin 770” and from ADEKA Co., Ltd. “ADK STAB LA-52”.
  • the above-mentioned sulfur compounds are preferably those commercially available from Sumitomo Chemical Co., Ltd. under the trade names “Sumilizer TPL-R” and “Sumilizer TP-D”.
  • the above-mentioned double bond compound is preferably commercially available from Sumitomo Chemical Co., Ltd. under the trade names of “Sumilizer GM” and “Sumilizer GS”.
  • the amount of these antioxidants and the like to be added is appropriately determined in accordance with the process for recycling and use, but generally 0.05 to 20% by mass, preferably with respect to the resin as the main raw material of the film Is added in the range of 0.1 to 1% by mass.
  • antioxidants can obtain a synergistic effect by using several different types of compounds in combination rather than using only one kind.
  • the combined use of lactone, phosphorus, phenol and double bond compounds is preferred.
  • a colorant means a dye or a pigment.
  • the colorant refers to a colorant having an effect of making the color tone of a liquid crystal screen a blue tone, adjusting a yellow index, and reducing haze.
  • dyes and pigments can be used as the colorant, but anthraquinone dyes, azo dyes, phthalocyanine pigments and the like are effective.
  • UV absorber used in the present invention is not particularly limited, for example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders Examples include the body. It is good also as a polymer type ultraviolet absorber.
  • ⁇ Matting agent> it is preferable to add a matting agent in order to impart film slipperiness.
  • the matting agent used in the present invention may be either an inorganic compound or an organic compound as long as it does not impair the transparency of the obtained film and has heat resistance during melting. These matting agents can be used alone or in combination of two or more.
  • High transparency and slipperiness can be achieved at the same time by using particles having different particle sizes and shapes (for example, needle shape and spherical shape).
  • silicon dioxide is particularly preferably used since it has a refractive index close to that of cellulose ester and is excellent in transparency (haze).
  • silicon dioxide examples include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (manufactured by Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP- 30, Seahoster KEP-50 (above, manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), Nip Seal E220A (manufactured by Nippon Silica Kogyo), Admafine SO (manufactured by Admatechs), etc. Goods etc. can be preferably used.
  • the shape of the particles can be used without particular limitation, such as indefinite shape, needle shape, flat shape, spherical shape, etc. However, the use of spherical particles is preferable because the transparency of the resulting film can be improved.
  • the particle size is preferably smaller than the wavelength of visible light, and more preferably 1 ⁇ 2 or less of the wavelength of visible light. . If the size of the particles is too small, the slipperiness may not be improved, so the range of 80 nm to 180 nm is particularly preferable.
  • the particle size means the size of the aggregate when the particle is an aggregate of primary particles. Moreover, when a particle is not spherical, it means the diameter of a circle corresponding to the projected area.
  • a hydrogen bonding solvent can be added for the purpose of reducing the melt viscosity.
  • Hydrogen-bonding solvent refers to J.I. N. As described in Israel Ativili, “Intermolecular Forces and Surface Forces” (Takeshi Kondo, Hiroyuki Oshima, Maglow Hill Publishing, 1991) and electrically negative atoms (oxygen, nitrogen, fluorine, chlorine)
  • the glass transition temperature of the cellulose resin used alone is higher than that.
  • the melting temperature of the cellulose resin composition can be lowered by the addition of a hydrogen bonding solvent, or the melt viscosity of the cellulose resin composition containing a hydrogen bonding solvent can be lowered at the same melting temperature as the cellulose resin. . (Physical properties of optical film)
  • the characteristics of the optical film according to the present invention will be described.
  • haze value As an index for judging the transparency of the optical film in the present invention, haze value (turbidity) is used.
  • the haze value is required to be 1.0% or less, and 0.5% or less. More preferably.
  • the total light transmittance is preferably 90% or more, and more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%.
  • the optical film of the present invention containing the acrylic resin (A) and the cellulose ester resin (B), high transparency can be obtained, but when using acrylic particles for the purpose of improving another physical property, By reducing the difference in refractive index between the resin (acrylic resin (A) and cellulose ester resin (B)) and acrylic particles (D), an increase in haze value can be prevented.
  • the optical film of the present invention preferably has a defect with a diameter of 5 ⁇ m or more in the film plane of 1 piece / 10 cm square or less. More preferably, it is 0.5 piece / 10 cm square or less, more preferably 0.1 piece / 10 cm square or less.
  • the diameter of the defect indicates the diameter when the defect is circular, and when it is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
  • the range of the defect is the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope when the defect is a bubble or a foreign object. If the defect is a change in surface shape, such as transfer of a roll flaw or an abrasion, the size is confirmed by observing the defect with the reflected light of a differential interference microscope.
  • the film When the number of defects is more than 1/10 cm square, for example, when a tension is applied to the film during processing in a later process, the film may be broken with the defect as a starting point and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
  • ⁇ Retardation> For the retardation, a 35 mm ⁇ 35 mm sample was cut from the produced optical film, conditioned for 2 hours at 25 ° C. and 55% RH, and measured from the vertical direction at 590 nm with an automatic birefringence meter (KOBRA WR, Oji Scientific Co., Ltd.). Ro and Rt at each wavelength were calculated from the measured values and the extrapolated values of the retardation values measured in the same manner while tilting the film surface.
  • KOBRA WR automatic birefringence meter
  • the optical film of the present invention has an in-plane retardation value Ro (590) defined by the following formula (I) in the range of 0 to 100 nm, and a retarder in the thickness direction defined by the following formula (II). It is preferable to adjust so that the foundation value Rt (590) is in the range of ⁇ 100 to 100 nm.
  • Ro (590) (nx ⁇ ny) ⁇ d (nm)
  • Rt (590) ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d (nm)
  • Ro (590) represents the in-plane retardation value in the film at a measurement wavelength of 590 nm
  • Rt (590) represents the retardation value in the thickness direction in the film at 590 nm.
  • D represents the thickness (nm) of the optical film
  • nx represents the maximum refractive index in the plane of the film at 590 nm, and is also referred to as the refractive index in the slow axis direction.
  • ny represents the refractive index in the direction perpendicular to the slow axis in the film plane at 590 nm, and
  • nz represents the refractive index of the film in the thickness direction at 590 nm.
  • the in-plane retardation value Ro (590) is preferably in the range of 0 to 250 nm.
  • the retardation value Rt (590) in the thickness direction is preferably in the range of ⁇ 50 to 50 nm.
  • the composition of the acrylic resin and the cellulose ester resin is adjusted within a mass ratio of 95: 5 to 50:50, and the ratio of each resin is adjusted. This is done by adjusting the amount to be added.
  • the retardation value can be set to a desired value.
  • the viewing angle of the liquid crystal display device using the film of the present invention can be widened and the front contrast can be improved.
  • Front contrast (brightness of white display measured from normal direction of display device) / (brightness of black display measured from normal direction of display device)
  • the viewing angle is an angle at which a certain level of contrast can be maintained when the viewing direction of the liquid crystal display device is tilted from the normal direction.
  • Uniformity in the slow axis direction is also important, and the angle is preferably ⁇ 5 to + 5 ° with respect to the film width direction, more preferably in the range of ⁇ 1 to + 1 °, particularly ⁇ 0.
  • a range of 5 to + 0.5 ° is preferable, and a range of ⁇ 0.1 to + 0.1 ° is particularly preferable.
  • the height from the top of the adjacent mountain to the bottom of the valley is 300 nm or more, and there is no streak continuous in the longitudinal direction with an inclination of 300 nm / mm or more.
  • the shape of the streaks was measured using a surface roughness meter. Specifically, using a SV-3100S4 manufactured by Mitutoyo, a stylus (diamond needle) with a tip shape of 60 ° cone and a tip curvature radius of 2 ⁇ m was used. The film is scanned in the width direction of the film at a measurement speed of 1.0 mm / sec while applying a load of 0.75 mN, and a cross-sectional curve is measured with a Z-axis (thickness direction) resolution of 0.001 ⁇ m.
  • the height of the streak reads the vertical distance (H) from the top of the mountain to the bottom of the valley.
  • the slope of the streak is obtained by reading the horizontal distance (L) from the top of the mountain to the bottom of the valley and dividing the vertical distance (H) by the horizontal distance (L).
  • the thickness of the optical film of the present invention is preferably 20 ⁇ m or more and 150 ⁇ m or less. More preferably, it is 30 ⁇ m or more and 80 ⁇ m or less.
  • the optical film of the present invention can be particularly preferably used as a polarizing plate protective film for a large-sized liquid crystal display device or a liquid crystal display device for outdoor use as long as the above physical properties are satisfied.
  • the optical film of the present invention is preferably produced by a melt casting coextrusion film forming method from the viewpoint of flatness and thinning.
  • the method for producing an optical film of the present invention is a method for producing an optical film in which at least an acrylic resin (A) and a cellulose ester resin (B) are melted and coextruded from a die and cast on a cooling roll.
  • the mixture of acrylic resin (A), cellulose ester (including cellulose ester resin (B)), plasticizer and other additives used for melt extrusion is usually preferably kneaded in advance and pelletized.
  • Pelletization may be performed by a known method. For example, dry acrylic resin (A), dry cellulose ester, plasticizer, and other additives are fed to an extruder with a feeder and kneaded using a single or twin screw extruder. Then, it can be extruded from a die into a strand, cooled with water or air, and cut.
  • dry acrylic resin (A) dry cellulose ester, plasticizer, and other additives are fed to an extruder with a feeder and kneaded using a single or twin screw extruder. Then, it can be extruded from a die into a strand, cooled with water or air, and cut.
  • cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
  • Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders.
  • a small amount of an additive such as an antioxidant is preferably mixed in advance in order to mix uniformly.
  • Mixing of the antioxidants may be performed by mixing solids, and if necessary, the antioxidant may be dissolved in a solvent and mixed by impregnating the acrylic resin (A) and cellulose ester, or You may spray and mix.
  • a vacuum nauter mixer is preferable because it can dry and mix simultaneously. Moreover, when touching with air, such as an exit from a feeder part or die
  • the extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
  • a line for introducing the acrylic resin (A) from the molten mixture to the casting die and a line for introducing the cellulose tellur resin from the molten mixture to the casting die are provided side by side, and each molten mixture is laminated in the casting die. .
  • the pellets produced are extruded using a single-screw or twin-screw type extruder, the melting temperature Tm when being extruded is about 200 to 300 ° C., filtered through a leaf disk type filter or the like to remove foreign matters, and then the T-die The film is coextruded into a film, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
  • Tm is the temperature of the die exit portion of the extruder.
  • defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
  • the inner surface that comes into contact with the molten resin is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy.
  • a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
  • the cooling roll of the present invention is not particularly limited, but is a roll having a structure in which a heat medium or a coolant that can be controlled in temperature flows with a highly rigid metal roll, and the size is not limited. It is sufficient that the film is large enough to cool the film, and the diameter of the cooling roll is usually about 100 mm to 1 m.
  • the surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the surface hardness or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
  • the surface roughness of the cooling roll surface is preferably 0.1 ⁇ m or less in terms of Ra, and more preferably 0.05 ⁇ m or less.
  • the smoother the roll surface the smoother the surface of the resulting film.
  • the surface processed is further polished to have the above-described surface roughness.
  • Examples of the elastic touch roll of the present invention include JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97-028950, JP-A-11-235747, JP-A-11-235747.
  • a thin-film metal sleeve-covered silicon rubber roll can be used.
  • the film obtained as described above is further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll.
  • the sharpness of the streaks becomes gentle by stretching and can be highly corrected.
  • the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
  • the stretching method a known roll stretching machine or tenter can be preferably used.
  • the optical film is a retardation film that also serves as a polarizing plate protective film
  • the slow axis of the optical film becomes the width direction by stretching in the width direction.
  • the draw ratio is 1.1 to 3.0 times, preferably 1.2 to 1.5 times
  • the draw temperature is usually Tg to Tg + 50 ° C. of the resin constituting the film, preferably Tg to Tg + 40 ° C. Performed in the temperature range.
  • the stretching is preferably performed under a uniform temperature distribution controlled in the width direction.
  • the temperature is preferably within ⁇ 2 ° C, more preferably within ⁇ 1 ° C, and particularly preferably within ⁇ 0.5 ° C.
  • the film may be contracted in the longitudinal direction or the lateral direction for the purpose of adjusting the retardation of the optical film produced by the above method and reducing the dimensional change rate.
  • the amount of the solvent contained is 0.01% by mass or less when wound up as a roll film.
  • the amount of the solvent can be measured by the following method.
  • the return material is a product obtained by finely pulverizing the optical film, which is generated when the optical film is formed, and is obtained by cutting off both sides of the film, or by using an optical film original that has been speculated out due to scratches, etc. .
  • an acrylic resin, a cellulose ester resin, and in some cases, acrylic particles kneaded into pellets can be preferably used.
  • the optical film of the present invention is preferably a long film. Specifically, the optical film has a thickness of about 100 m to 5000 m, and is usually in the form of a roll.
  • the width of the long film is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • the film thickness of the optical film of the present invention is not particularly limited, but when used for a polarizing plate protective film described later, it is preferably 20 to 200 ⁇ m, more preferably 25 to 100 ⁇ m, and 30 to 80 ⁇ m. It is particularly preferred.
  • a polarizing plate can be produced by a general method.
  • an adhesive layer is provided on the back side of the optical film of the present invention, and is bonded to at least one surface of a polarizer produced by immersion and stretching in an iodine solution.
  • the optical film of the present invention may be used, or another polarizing plate protective film may be used.
  • a commercially available cellulose ester film for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, KC4FR-4, KC4FR-3, KC4FR-3, KC4FR-4 -1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
  • a polarizer which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass.
  • a typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol.
  • iodine is dyed on a system film and one in which dichroic dye is dyed.
  • the polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
  • a pressure-sensitive adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 ⁇ 10 4 Pa to 1.0 ⁇ 10 9 Pa in at least a part of the pressure-sensitive adhesive layer is used. It is preferable to use a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded.
  • urethane adhesives examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • anaerobic pressure-sensitive adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-component instantaneous pressure-sensitive adhesives.
  • the above-mentioned pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use.
  • the pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solvent type.
  • the concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
  • ⁇ Liquid crystal display device> By incorporating the polarizing plate bonded with the optical film of the present invention into a liquid crystal display device, it is possible to produce various liquid crystal display devices with excellent visibility, but particularly outdoors such as large liquid crystal display devices and digital signage. It is preferably used for a liquid crystal display device for use.
  • the polarizing plate of the present invention is bonded to a liquid crystal cell via the adhesive layer or the like.
  • the polarizing plate of the present invention includes various types such as a reflective type, a transmissive type, a transflective type LCD, a TN type, an STN type, an OCB type, a HAN type, a VA type (PVA type, MVA type), and an IPS type (including an FFS type). It is preferably used in a drive type LCD.
  • a VA type PVA type, MVA type
  • IPS type including an FFS type
  • Acrylic resins A-1 to 74 in Tables 1 and 2 were prepared by a known method.
  • ACMO is acryloylmorpholine
  • MACMO methacryloylmorpholine
  • AAm is acrylamide
  • VP vinylpyrrolidone
  • DMAAm is N, N-dimethylacrylamide
  • HEAAm is N-hydroxyethylacrylamide
  • VFAAm is N-vinylformamide
  • ACPIPE is acryloylpiperidine
  • HEMA is hydroxymethacrylate.
  • the cellulose ester film was produced using the production apparatus shown in FIG.
  • the above pellets were melt extruded from a T die onto a first cooling roll having a surface temperature of 90 ° C. at a melting temperature of 240 ° C. using a single screw extruder to obtain a 120 ⁇ m cast film. At this time, the film was pressed on the first cooling roll with an elastic touch roll having a 2 mm thick metal surface.
  • the obtained film was stretched 60% in the transport direction at 175 ° C. by a stretching machine using a difference in peripheral speed of the roll.
  • a tenter having a preheating zone, a stretching zone, a holding zone, and a cooling zone (there is also a neutral zone for ensuring thermal insulation between the zones), and is 70 ° C at 175 ° C in the width direction.
  • the film was cooled to 30 ° C., then released from the clip, and the clip gripping part was cut off to obtain an optical film sample 1 having a film thickness of 40 ⁇ m and a film width of 2500 mm.
  • acrylic resin A and cellulose ester resin B were mixed as shown in Table 3 to prepare optical film samples 2 to 133.
  • Samples 16, 31, 39, 47, 55, 63, 71, 79, 89, 94, 99 had high melt viscosity, and it was difficult to obtain a cast film by melt extrusion.
  • the melting temperature was set for each resin mixture as a temperature at which the melt viscosity becomes 1000 Pa ⁇ s.
  • the optical film sample was cut out at 120 mm (length) x 10 mm (width) and heated at a rate of 30 ° C / min while being pulled with a tension of 10 N. Subsequently, the temperature at 9 N was measured three times, and the average temperature was obtained. Practically 125 ° C. or higher is considered good.
  • A beautifully round hole is opened. ⁇ : There is a slight crack at the cut. ⁇ : A crack with a length of more than half of the hole diameter is formed.
  • The tear surface is very smooth and is torn straight.
  • The tear surface has some burrs, but it is torn straight.
  • ⁇ Preparation of polarizing plate> Using the optical film samples 1 to 133 prepared as described above, the alkali saponification treatment described below was performed to prepare a polarizing plate.
  • the KC4UY manufactured by Konica Minolta Opto Co., Ltd. was similarly saponified on one side of the polarizer, and the optical film sample of the present invention subjected to the alkali saponification treatment was bonded to the opposite side with a completely saponified polyvinyl alcohol 5% aqueous solution.
  • the polarizer was bonded to each other so that the transmission axis of the polarizer and the in-plane slow axis of the film were parallel, and dried to prepare a polarizing plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明は、光漏れが発生しにくく、偏光子との密着性のよい光学フィルム、偏光板および液晶表示装置を提供することを目的とする。 本発明の目的は、アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5~50:50の質量比で含有する光学フィルムにおいて、該アクリル樹脂(A)が下記一般式(1)で表され、重量平均分子量Mwが20000以上1000000以下であることを特徴とする光学フィルム、によって達成された。 一般式(1) -(MMA)p-(X)q-(Y)r- MMAはメチルメタクリレートを、Xはアミド基を少なくとも一種有するMMAと共重合可能なモノマー単位を、YはMMA、Xと共重合可能なモノマー単位を表す。p、q、rはモル%であり、50≦p≦99、1≦q≦50、p+q+r=100である。

Description

光学フィルム、偏光板および液晶表示装置
 本発明は、光学フィルム、偏光板および液晶表示装置に関し、より詳しくは、経時による耐熱性が劣化しない光学フィルム、偏光板および液晶表示装置に関する。
 液晶表示装置は、液晶テレビやパソコンの液晶ディスプレイ等の用途で、需要が拡大している。通常、液晶表示装置は、透明電極、液晶層、カラーフィルター等をガラス板で挟み込んだ液晶セルと、その両側に設けられた2枚の偏光板で構成されており、それぞれの偏光板は、偏光子(偏光膜、偏光フィルムともいう)を2枚の光学フィルム(偏光板保護フィルム)で挟まれた構成となっている。この偏光板保護フィルムとしては、通常、セルローストリアセテートフィルムが用いられている。
 しかし、近年の技術の進歩により、液晶表示装置の大型化が加速するとともに、バックライトの光量が増加し、液晶表示装置における耐熱性が問題となり、その改善が求められていた。
 アクリル樹脂にセルロース樹脂を混合することで、耐熱性を向上させ、さらにアクリル樹脂の脆さを改良する方法が提案された(特許文献1、2、3)。しかしながら長時間使用での耐熱性はいまだ不十分であった。
 一方、セルロースエステル樹脂を主成分としアクリル樹脂を混合する光学フィルムも知られているが、セルロースエステル樹脂の性質を使用するものであり、アクリル樹脂の優れた性質(特に透明性=ヘーズの低さ)は充分に発揮されていなかった(特許文献4、5)。
国際公開第2009/047924号明細書 特開2009-1744号公報 特開2009-179731号公報 国際公開第2009/130969号明細書 特開2009-271510号公報
 本発明は、上記の課題に鑑み、経時での耐熱性を改善する光学フィルムを提供することを目的とする。
 本発明の上記目的は、以下の構成により達成することができる。
 1.アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5~50:50の質量比で含有する光学フィルムにおいて、該アクリル樹脂(A)が下記一般式(1)で表され、重量平均分子量Mwが20000以上1000000以下であることを特徴とする光学フィルム。
一般式(1)
 -(MMA)p-(X)q-(Y)r-
 MMAはメチルメタクリレートを、Xはアミド基を少なくとも一種有するMMAと共重合可能なモノマー単位を、YはMMA、Xと共重合可能なモノマー単位を表す。p、q、rはモル%であり、55≦p≦99、1≦q≦50、p+q+r=100である。
 2.前記セルロースエステル樹脂(B)のアシル基の総置換度(T)が2.0以上、3.0以下、炭素数が3以上、7以下のアシル基の置換度が1.2以上、3.0以下であり、該セルロースエステル樹脂(B)の重量平均分子量Mwが75000以上300000以下であることを特徴とする前記1に記載の光学フィルム。
 3.前記光学フィルムが、該フィルムを構成する樹脂の総質量に対して、0.5質量%以上、30質量%以下のアクリル粒子(D)を含有することを特徴とする前記1または2に記載の光学フィルム。
 4.前記1~3に記載の光学フィルムを有することを特徴とする偏光板。
 5.前記1~3に記載の光学フィルムを有することを特徴とする液晶表示装置。
 本発明では、経時での耐熱性を改善する光学フィルムを提供し、それによって、その光学フィルムを使用した偏光板および液晶表示装置を提供することができる。
本発明に好ましい溶液流延製膜方法の工程を模式的に示した図である。
 以下、本発明を実施するための最良の形態について詳細に説明する。
<本発明の光学フィルム>
 本発明の光学フィルムは、アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5~50:50の質量比で含有する光学フィルムであって、該アクリル樹脂(A)が下記一般式(1)で表され、重量平均分子量Mwが20000以上1000000以下であることを特徴とする。
一般式(1)
 -(MMA)p-(X)q-(Y)r-
 MMAはメチルメタクリレートを、Xはアミド基を少なくとも一種有するMMAと共重合可能なモノマー単位を、YはMMA、Xと共重合可能なモノマー単位を表す。p、q、rはモル%であり、50≦p≦99、1≦q≦50、p+q+r=100である。
<アクリル樹脂(A)>
 本発明に用いられるアクリル樹脂には、メタクリル樹脂も含まれる。
 本発明のアクリル樹脂(A)は、下記一般式(1)で表され、重量平均分子量Mwが20000以上1000000以下であることを特徴とする。
一般式(1)
 -(MMA)p-(X)q-(Y)r-
 MMAはメチルメタクリレートを、Xはアミド基を少なくとも一種有するMMAと共重合可能なモノマー単位を、YはMMA、Xと共重合可能なモノマー単位を表す。p、q、rはモル%であり、50≦p≦99、1≦q≦50、p+q+r=100である。
 Xは、MMAと共重合可能なアミド基を少なくとも一種有するビニルモノマーであり、Xは一種でも2種以上でもよく、1モノマー単位中に複数の官能基を有していてもよい。
 Xの具体的なモノマーとしては、アクリルアミド、N-メチルアクリルアミド、N-ブチルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、アクリロイルモルホリン、N-ヒドロキシエチルアクリルアミド、アクリロイルピロリジン、アクリロイルピペリジン、メタクリルアミド、N-メチルメタクリルアミド、N-ブチルメタクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルメタクリルアミド、メタクリロイルモルホリン、N-ヒドロキシエチルメタクリルアミド、メタクリロイルピロリジン、メタクリロイルピペリジン、N-ビニルホルムアミド、N-ビニルアセトアミド、ビニルピロリドン等が挙げられる。
 好ましくは、アクリロイルモルホリン、ビニルピロリドン、が挙げられる。
 これらのモノマーは市販のものをそのまま使用することができる。
 qは、1≦q≦50であり、モノマーの性質により適宜選択されるが、好ましくは5≦q≦30である。また、Xは複数のモノマーであってもよい。
 モノマーXが耐熱性の改善に寄与するのは、その官能基が電子のローンペアを有しておりそれが水分子を配位することにより、経時で発生する光学フィルムの位相差発現の原因である樹脂の結晶配向を抑制しているのではないかと推測している。
 また官能基が非解離性であることから、経時での分解による酸発生もなく、物理的にも安定しているものと考えている。
 さらに重量平均分子量が大きいことから、光学フィルムとしての自立性も満足するものである。
 本発明のアクリル樹脂(A)におけるYはMMA、Xと共重合可能なモノマー単位を表す。
 Yとしては、MMA以外のアクリルモノマー、メタクリルモノマー、オレフィン、アクリロニトリル、スチレン、酢酸ビニル等特許文献1、2、3に記載のモノマーが挙げられる。Yは2種以上であってもよい。
 Yは必要に応じて使用できるものであり、使用しないことが最も好ましい。
 本発明のアクリル樹脂(A)は、特にセルロースエステル樹脂(B)と相溶した際の透明性の改善の観点で、重量平均分子量(Mw)が20000以上である。
 アクリル樹脂(A)の重量平均分子量(Mw)は、20000~1000000の範囲内であることが更に好ましく、50000~600000の範囲内であることが特に好ましく、100000~400000の範囲であることが最も好ましい。
 アクリル樹脂(A)の重量平均分子量(Mw)の上限値は、製造上の観点から1000000以下とされることが好ましい形態である。
 本発明のアクリル樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は以下の通りである。
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=2,800,000~500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
 本発明におけるアクリル樹脂(A)の製造方法としては、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系およびアゾ系のものを用いることができ、また、レドックス系とすることもできる。
 重合温度については、懸濁または乳化重合では30~100℃、塊状または溶液重合では80~160℃で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。
<セルロースエステル樹脂(B)>
 本発明のセルロースエステル樹脂(B)は、特に脆性の改善やアクリル樹脂(A)と相溶させたときに透明性の観点から、アシル基の総置換度(T)が2.0~3.0、炭素数が3~7のアシル基の置換度が1.2~3.0であり、炭素数3~7のアシル基の置換度は、2.0~3.0であることが好ましい。
 即ち、本発明のセルロースエステル樹脂は炭素数が3~7のアシル基により置換されたセルロースエステル樹脂であり、具体的には、プロピオニル、ブチリル等が好ましく用いられるが、特にプロピオニル基が好ましく用いられる。
 セルロースエステル樹脂(B)の、アシル基の総置換度が2.0を下回る場合、即ち、セルロースエステル分子の2,3,6位の水酸基の残度が1.0を上回る場合には、アクリル樹脂(A)と十分に相溶せず光学フィルムとして用いる場合にヘーズが問題となる。
 また、アシル基の総置換度が2.0以上であっても、炭素数が3~7のアシル基の置換度が1.2を下回る場合は、やはり十分な相溶性が得られない。
 例えば、アシル基の総置換度が2.0以上の場合であっても、炭素数2のアシル基、即ちアセチル基の置換度が高く、炭素数3~7のアシル基の置換度が1.2を下回る場合は、相溶性が低下しヘーズが上昇する。
 また、アシル基の総置換度が2.0以上の場合であっても、炭素数8以上のアシル基の置換度が高く、炭素数3~7のアシル基の置換度が1.2を下回る場合は、脆性が劣化し、所望の特性が得られない。
 本発明のセルロースエステル樹脂(B)のアシル置換度は、総置換度(T)が2.0~3.0であり、炭素数が3~7のアシル基の置換度が1.2~3.0であれば問題ないが、炭素数が3~7以外のアシル基、即ち、アセチル基や炭素数が8以上のアシル基の置換度の総計が1.3以下とされることが好ましい。
 また、セルロースエステル樹脂(B)のアシル基の総置換度(T)は、2.5~3.0の範囲であることが更に好ましい。
 本発明のセルロースエステル樹脂(B)としては、特にセルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、セルロースプロピオネート、セルロースブチレートから選ばれる少なくとも一種であることが好ましく、即ち、炭素原子数3または4のアシル基を置換基として有するものが好ましい。
 これらの中で特に好ましいセルロースエステル樹脂は、セルロースアセテートプロピオネートやセルロースプロピオネートである。
 アシル基で置換されていない部分は通常水酸基として存在しているものである。これらは公知の方法で合成することができる。
 なお、アセチル基の置換度や他のアシル基の置換度は、ASTM-D817-96に規定の方法により求めたものである。
 本発明のセルロースエステル樹脂の重量平均分子量(Mw)は、特にアクリル樹脂(A)との相溶性、脆性の改善の観点から75000以上であり、75000~300000の範囲であることが好ましく、100000~240000の範囲内であることが更に好ましく、160000~240000のものが特に好ましい。
 セルロースエステル樹脂の重量平均分子量(Mw)が75000を下回る場合は、耐熱性や脆性の改善効果が落ちてくる。また、300000を超える場合は、粘度が高くなり製膜が難しくなる。
 本発明では2種以上のセルロース樹脂を混合して用いることもできる。
 本発明のセルロースエステル樹脂の重量平均分子量は、上記GPCによって測定することができる。
<アクリル樹脂(A)とセルロースエステル樹脂(B)>
 本発明の光学フィルムにおいて、アクリル樹脂(A)とセルロースエステル樹脂(B)は、95:5~50:50の質量比で、相溶状態で含有されることが好ましいが、好ましくは70:30~60:40である。
 アクリル樹脂(A)とセルロースエステル樹脂(B)の質量比が、95:5よりもアクリル樹脂(A)が多くなると、セルロースエステル樹脂(B)による効果が十分に得られず、同質量比が50:50よりもアクリル樹脂が少なくなると、光弾性係数が大きくなってしまう。
 本発明の光学フィルムにおいては、アクリル樹脂(A)とセルロースエステル樹脂(B)が相溶状態で含有されることが好ましい。光学フィルムとして必要とされる物性や品質を、異なる樹脂を相溶させることで相互に補うことにより達成している。
 アクリル樹脂(A)とセルロースエステル樹脂(B)が相溶状態となっているかどうかは、例えばガラス転移温度Tgにより判断することが可能である。
 例えば、両者の樹脂のガラス転移温度が異なる場合、両者の樹脂を混合したときは、各々の樹脂のガラス転移温度が存在するため混合物のガラス転移温度は2つ以上存在するが、両者の樹脂が相溶したときは、各々の樹脂固有のガラス転移温度が消失し、1つのガラス転移温度となって相溶した樹脂のガラス転移温度となる。
 なお、ここでいうガラス転移温度とは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)とする。
 本発明の光学フィルムにおけるアクリル樹脂(A)の重量平均分子量(Mw)やセルロースエステル樹脂(B)の重量平均分子量(Mw)や置換度は、両者の樹脂の溶媒に対して溶解性の差を用いて、分別した後に、それぞれ測定することにより得られる。
 樹脂を分別する際には、いずれか一方にのみ溶解する溶媒中に相溶された樹脂を添加することで、溶解する樹脂を抽出して分別することができ、このとき加熱操作や環流を行ってもよい。
 これらの溶媒の組み合わせを2工程以上組み合わせて、樹脂を分別してもよい。溶解した樹脂と、不溶物として残った樹脂を濾別し、抽出物を含む溶液については、溶媒を蒸発させて乾燥させる操作によって樹脂を分別することができる。
 これらの分別した樹脂は、高分子の一般の構造解析によって特定することができる。本発明の光学フィルムが、アクリル樹脂(A)やセルロースエステル樹脂(B)以外の樹脂を含有する場合も同様の方法で分別することができる。
 また、相溶された樹脂の重量平均分子量(Mw)がそれぞれ異なる場合は、ゲルパーミエーションクロマトグラフィー(GPC)によって、高分子量物は早期に溶離され、低分子量物であるほど長い時間を経て溶離されるために、容易に分別可能であるとともに分子量を測定することも可能である。
 また、相溶した樹脂をGPCによって分子量測定を行うと同時に、時間毎に溶離された樹脂溶液を分取して溶媒を留去し乾燥した樹脂を、構造解析を定量的に行うことで、異なる分子量の分画毎の樹脂組成を検出することで、相溶されている樹脂をそれぞれ特定することができる。
 事前に溶媒への溶解性の差で分取した樹脂を、各々GPCによって分子量分布を測定することで、相溶されていた樹脂をそれぞれ検出することもできる。
 本発明の光学フィルムにおけるアクリル樹脂(A)とセルロースエステル樹脂(B)の総質量は、光学フィルムの55質量%以上であることが好ましく、さらに好ましくは60質量%以上であり、特に好ましくは、70質量%以上である。
<その他の添加樹脂>
 本発明の光学フィルムには、アクリル樹脂(A)とセルロースエステル樹脂(B)以外の樹脂を用いる際には、本発明の光学フィルムの機能を損なわない範囲で添加量を調整することが好ましい。
 好ましい樹脂としては、特開2010-32655号明細書段落(0072)~(0123)に記載のエチレン性不飽和モノマーを重合して得られた低分子アクリル樹脂(重量平均分子量Mwが500以上30000以下である重合体)を挙げることができる。
 特に好ましくは、Mwが2000~30000である。1000以下ではブリードアウトに問題が生じ、30000を超えると透明性が悪くなる。
 また、特許第4138954号記載のアミド結合を有するビニルポリマーも使用することができる。
 本発明の低分子アクリル樹脂、アミド結合を有するビニルポリマーは、光学フィルムの全質量に対して0~15質量%であり、0~10質量%であることが好ましい。
<アクリル粒子(D)>
 本発明の光学フィルムは、特許文献1に記載のアクリル粒子(D)を含有してもよい。
 このような多層構造アクリル系粒状複合体の市販品の例としては、例えば、三菱レイヨン社製“メタブレンW-341”、鐘淵化学工業社製“カネエース”、呉羽化学工業社製“パラロイド”、ロームアンドハース社製“アクリロイド”、ガンツ化成工業社製“スタフィロイド”、ケミスノーMR-2G、MS-300X(綜研化学(株)製)およびクラレ社製“パラペットSA”などが挙げられ、これらは、単独ないし2種以上を用いることができる。
 本発明の光学フィルムにおいて、該フィルムを構成する樹脂の総質量に対して、0~30質量%のアクリル粒子(D)を含有することが好ましく、1.0~15質量%の範囲で含有することがさらに好ましい。
<その他の添加剤>
 本発明の光学フィルムには、リターデーションを制御することを目的とした位相差制御剤、フィルムに加工性を付与する可塑剤、フィルムの劣化を防止する酸化防止剤、紫外線吸収機能を付与する紫外線吸収剤、フィルムに滑り性を付与する微粒子(マット剤)等の添加剤を含有させることが好ましい。
 〈グリコールと二塩基酸のポリエステルポリオール〉
 本発明において使用され得るポリエステルポリオールとしては、炭素数の平均が2~3.5であるグリコールと炭素数の平均が4~5.5である二塩基酸との脱水縮合反応、又は該グリコールと炭素数の平均が4~5.5である無水二塩基酸の付加及び脱水縮合反応による常法により製造されるものであることが好ましい。
 〈芳香族ジカルボン酸とアルキレングリコールのポリエステル〉
 本発明の位相差制御剤として、下記一般式(I)で表される芳香族末端ポリエステルを用いることができる。
 一般式(I) B-(G-A)n-G-B
(式中、Bはベンゼンモノカルボン酸残基、Gは炭素数2~12のアルキレングリコール残基または炭素数6~12のアリールグリコール残基または炭素数が4~12のオキシアルキレングリコール残基、Aは炭素数4~12のアルキレンジカルボン酸残基または炭素数6~12のアリールジカルボン酸残基を表し、またnは1以上の整数を表す。)
 一般式(I)中、Bで示されるベンゼンモノカルボン酸残基とGで示されるアルキレングリコール残基またはオキシアルキレングリコール残基またはアリールグリコール残基、Aで示されるアルキレンジカルボン酸残基またはアリールジカルボン酸残基とから構成されるものであり、通常のポリエステルと同様の反応により得られる。
 本発明の芳香族末端ポリエステルの具体的な化合物としては、特開2010-32655号明細書段落(0183)~(0186)を挙げることができる。
 本発明の芳香族末端ポリエステルの含有量は、光学フィルム中に0~20質量%含有することが好ましく、特に1~11質量%含有することが好ましい。
 〈多価アルコールエステル系化合物〉
 本発明の光学フィルムには、多価アルコールエステル系化合物を含有させることができる。
 多価アルコールエステル系化合物としては、特開2010-32655号明細書段落(0218)~(0170)を挙げることができる。
 〈糖エステル化合物〉
 本発明の糖エステル化合物しては、ピラノース構造またはフラノース構造の少なくとも1種を1個以上12個以下有しその構造のOH基のすべてもしくは一部をエステル化した糖エステル化合物を使用することが好ましい。
 本発明に用いられる糖エステル化合物としては、グルコース、ガラクトース、マンノース、フルクトース、キシロース、アラビノース、ラクトース、スクロース、セロビオース、セロトリオース、マルトトリオース、ラフィノースなどが挙げられるが、特にフラノース構造とピラノース構造を両方有するものが好ましい。例としてはスクロースが挙げられる。
 本発明に用いられる糖エステル化合物は、糖化合物の有する水酸基の一部または全部がエステル化されているものまたはその混合物である。
 本発明の糖エステル化合物の具体的化合物としては、特開2010-32655号明細書段落(0060)~(0070)を挙げることができる。
 〈その他の添加剤〉
 本発明の光学フィルムにおいては、可塑剤、位相差制御剤、酸化防止剤、紫外線吸収剤、マット粒子等を併用することも可能である。
 可塑剤としては、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系、あるいはエポキシ系等が挙げられる。
 リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート等を用いることができる。
 この中で、ポリエステル系とフタル酸エステル系の可塑剤が好ましく用いられる。ポリエステル系可塑剤は、フタル酸ジオクチルなどのフタル酸エステル系の可塑剤に比べて非移行性や耐抽出性に優れるが、可塑化効果や相溶性にはやや劣る。
 従って、用途に応じてこれらの可塑剤を選択、あるいは併用することによって、広範囲の用途に適用できる。
 ポリエステル系可塑剤は、一価ないし四価のカルボン酸と一価ないし六価のアルコールとの反応物であるが、主に二価カルボン酸とグリコールとを反応させて得られたものが用いられる。代表的な二価カルボン酸としては、グルタル酸、イタコン酸、アジピン酸、フタル酸、アゼライン酸、セバシン酸などが挙げられる。
 特に、アジピン酸、フタル酸などを用いると可塑化特性に優れたものが得られる。グリコールとしてはエチレン、プロピレン、1,3-ブチレン、1,4-ブチレン、1,6-ヘキサメチレン、ネオペンチレン、ジエチレン、トリエチレン、ジプロピレンなどのグリコールが挙げられる。これらの二価カルボン酸およびグリコールはそれぞれ単独で、あるいは混合して使用してもよい。
 このエステル系の可塑剤はエステル、オリゴエステル、ポリエステルの型のいずれでもよく、分子量は100~10000の範囲が良いが、好ましくは600~3000の範囲が可塑化効果が大きい。
 また、可塑剤の粘度は分子構造や分子量と相関があるが、アジピン酸系可塑剤の場合相溶性、可塑化効率の関係から200~5000mPa・s(25℃)の範囲が良い。さらに、いくつかのポリエステル系可塑剤を併用してもかまわない。
 可塑剤はアクリル樹脂を含有する組成物100質量部に対して、0.5~30質量部を添加するのが好ましい。可塑剤の添加量が30質量部を越えると、表面がべとつくので、実用上好ましくない。またこれらの可塑剤は単独或いは2種以上混合して用いることもできる。
 〈その他の位相差制御剤〉
 本発明の上記位相差制御剤以外としては、分子内にビスフェノールAを含有しているものが好ましい。ビスフェノールAの両端にエチレンオキサイド、プロピレンオキサイドを付加した化合物などを用いることができる。
 例えばニューポールBP-2P、BP-3P、BP-23P、BP-5PなどのBPシリーズ、BPE-20(F)、BPE-20NK、BPE-20T、BPE-40、BPE-60、BPE-100、BPE-180などのBPEシリーズ(三洋化成(株)製)などやアデカポリエーテルBPX-11、BPX-33、BPX-55などのBPXシリーズ((株)アデカ製)がある。
 ジアリルビスフェノールA、ジメタリルビスフェノールAや、ビスフェノールAを臭素などで置換したテトラブロモビスフェーノールAやこれを重合したオリゴマーやポリマー、ジフェニルフォスフェイトなどで置換したビスフェノールAビス(ジフェニルフォスフェイト)なども用いることができる。
 ビスフェノールAを重合したポリカーボネートやビスフェノールAをテレフタル酸などの二塩基酸と重合したポリアリレート、エポキシを含有するモノマーと重合したエポキシオリゴマーやポリマーなども用いることができる。
 ビスフェノールAとスチレンやスチレンアクリルなどをグラフト重合させたモディパーCL130DやL440-Gなども用いることができる。
 またトリアジン構造をもつものも好ましい。特開2001-166144号公報等に記載の化合物を使用することができる。
 〈酸化防止剤〉
 本発明では、酸化防止剤としては、通常知られているものを使用することができる。特に、ラクトン系、イオウ系、フェノール系、二重結合系、ヒンダードアミン系、リン系化合物のものを好ましく用いることができる。
 例えば、チバ・ジャパン株式会社から、“IrgafosXP40”、“IrgafosXP60”という商品名で市販されているものを含むものが好ましい。
 上記フェノール系化合物としては、2,6-ジアルキルフェノールの構造を有するものが好ましく、例えば、チバ・ジャパン株式会社、“Irganox1076”、“Irganox1010”、(株)ADEKA“アデカスタブAO-50”という商品名で市販されているものが好ましい。
 上記リン系化合物は、例えば、住友化学株式会社から、“SumilizerGP”、株式会社ADEKAから“ADK STAB PEP-24G”、“ADK STAB PEP-36”および“ADK STAB 3010”、チバ・ジャパン株式会社から“IRGAFOS P-EPQ”、堺化学工業株式会社から“GSY-P101”という商品名で市販されているものが好ましい。
 上記ヒンダードアミン系化合物は、例えば、チバ・ジャパン株式会社から、“Tinuvin144”および“Tinuvin770”、株式会社ADEKAから“ADK STAB LA-52”という商品名で市販されているものが好ましい。
 上記イオウ系化合物は、例えば、住友化学株式会社から、”Sumilizer TPL-R”および“Sumilizer TP-D”という商品名で市販されているものが好ましい。
 上記二重結合系化合物は、住友化学株式会社から、“Sumilizer GM”および“Sumilizer GS”という商品名で市販されているものが好ましい。
 さらに、酸捕捉剤として米国特許第4,137,201号明細書に記載されているような、エポキシ基を有する化合物を含有させることも可能である。
 これらの酸化防止剤等は、再生使用される際の工程に合わせて適宜添加する量が決められるが、一般には、フィルムの主原料である樹脂に対して、0.05~20質量%、好ましくは0.1~1質量%の範囲で添加される。
 これらの酸化防止剤は、一種のみを用いるよりも数種の異なった系の化合物を併用することで相乗効果を得ることができる。例えば、ラクトン系、リン系、フェノール系および二重結合系化合物の併用は好ましい。
 〈着色剤〉
 本発明においては、着色剤を使用することが好ましい。着色剤と言うのは染料や顔料を意味するが、本発明では、液晶画面の色調を青色調にする効果またはイエローインデックスの調整、ヘーズの低減を有するものを指す。
 着色剤としては各種の染料、顔料が使用可能だが、アントラキノン染料、アゾ染料、フタロシアニン顔料などが有効である。
 〈紫外線吸収剤〉
 本発明に用いられる紫外線吸収剤は特に限定されないが、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。高分子型の紫外線吸収剤としてもよい。
 〈マット剤〉
 本発明では、フィルムの滑り性を付与するためにマット剤を添加することが好ましい。
 本発明で用いられるマット剤としては、得られるフィルムの透明性を損なうことがなく、溶融時の耐熱性があれば無機化合物または有機化合物どちらでもよい。これらのマット剤は、単独でも二種以上併用しても使用できる。
 粒径や形状(例えば針状と球状など)の異なる粒子を併用することで高度に透明性と滑り性を両立させることもできる。
 これらの中でも、セルロースエステルと屈折率が近いので透明性(ヘーズ)に優れる二酸化珪素が特に好ましく用いられる。
 二酸化珪素の具体例としては、アエロジル200V、アエロジルR972V、アエロジルR972、R974、R812、200、300、R202、OX50、TT600、NAX50(以上日本アエロジル(株)製)、シーホスターKEP-10、シーホスターKEP-30、シーホスターKEP-50(以上、株式会社日本触媒製)、サイロホービック100(富士シリシア製)、ニップシールE220A(日本シリカ工業製)、アドマファインSO(アドマテックス製)等の商品名を有する市販品などが好ましく使用できる。
 粒子の形状としては、不定形、針状、扁平、球状等特に制限なく使用できるが、特に球状の粒子を用いると得られるフィルムの透明性が良好にできるので好ましい。
 粒子の大きさは、可視光の波長に近いと光が散乱し、透明性が悪くなるので、可視光の波長より小さいことが好ましく、さらに可視光の波長の1/2以下であることが好ましい。粒子の大きさが小さすぎると滑り性が改善されない場合があるので、80nmから180nmの範囲であることが特に好ましい。
 なお、粒子の大きさとは、粒子が1次粒子の凝集体の場合は凝集体の大きさを意味する。また、粒子が球状でない場合は、その投影面積に相当する円の直径を意味する。
 〈粘度低下剤〉
 本発明において、溶融粘度を低減する目的として、水素結合性溶媒を添加することができる。
 水素結合性溶媒とは、J.N.イスラエルアチビリ著、「分子間力と表面力」(近藤保、大島広行訳、マグロウヒル出版、1991年)に記載されるように、電気的に陰性な原子(酸素、窒素、フッ素、塩素)と電気的に陰性な原子と共有結合した水素原子間に生ずる、水素原子媒介「結合」を生ずることができるような有機溶媒、すなわち、結合モーメントが大きく、かつ水素を含む結合、例えば、O-H(酸素水素結合)、N-H(窒素水素結合)、F-H(フッ素水素結合)を含むことで近接した分子同士が配列できるような有機溶媒をいう。
 これらは、セルロース樹脂の分子間水素結合よりもセルロースとの間で強い水素結合を形成する能力を有するもので、本発明で行う溶融流延法においては、用いるセルロース樹脂単独のガラス転移温度よりも、水素結合性溶媒の添加によりセルロース樹脂組成物の溶融温度を低下することができる、または同じ溶融温度においてセルロース樹脂よりも水素結合性溶媒を含むセルロース樹脂組成物の溶融粘度を低下することができる。
(光学フィルムの物性)
 以下、本発明の光学フィルムの物性等についての特徴について説明する。
 〈透明性〉
 本発明における光学フィルムの透明性を判断する指標としては、ヘーズ値(濁度)を用いる。
 特に屋外で用いられる液晶表示装置においては、明るい場所でも十分な輝度や高いコントラストが得られることが求められる為、ヘーズ値は1.0%以下であることが必要とされ、0.5%以下であることがさらに好ましい。
 また、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。
 アクリル樹脂(A)とセルロースエステル樹脂(B)を含有する本発明の光学フィルムによれば、高い透明性を得ることができるが、別の物性を改善する目的でアクリル粒子を使用する場合は、樹脂(アクリル樹脂(A)とセルロースエステル樹脂(B))とアクリル粒子(D)との屈折率差を小さくすることで、ヘーズ値の上昇を防ぐことができる。
 また、本発明の光学フィルムは、フィルム面内の直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。さらに好ましくは0.5個/10cm四方以下、一層好ましくは0.1個/10cm四方以下である。
 ここで欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさである。欠点が、ロール傷の転写や擦り傷など、表面形状の変化の場合は、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。
 なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。
 かかる欠点頻度にて表される品位に優れたフィルムを生産性よく得るには、ポリマー溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率よくかつ発泡を抑えて乾燥させることが有効である。
 欠点の個数が1個/10cm四方より多いと、例えば後工程での加工時などでフィルムに張力がかかると、欠点を基点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察などにより目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。
 〈リターデーション〉
 リターデーションは作製した光学フィルムから試料35mm×35mmを切り出し、25℃,55%RHで2時間調湿し、自動複屈折計(KOBRA WR、王子計測(株))で、590nmにおける垂直方向から測定した値とフィルム面を傾けながら同様に測定したレターデーション値の外挿値より各波長におけるRo、Rtを算出した。
 本発明の光学フィルムは、下記式(I)により定義される面内リターデーション値Ro(590)が0~100nmの範囲内であり、下記式(II)により定義にされる厚さ方向のリターデーション値Rt(590)が-100~100nmの範囲内であるように調整することが好ましい。
式(I):Ro(590)=(nx-ny)×d(nm)
式(II):Rt(590)={(nx+ny)/2-nz}×d(nm)
〔上式中、Ro(590)は測定波長590nmにおけるフィルム内の面内リターデーション値を表し、Rt(590)は590nmにおけるフィルム内の厚さ方向のリターデーション値を表す。
 また、dは光学フィルムの厚さ(nm)を表し、nxは590nmにおけるフィルムの面内の最大の屈折率を表し、遅相軸方向の屈折率ともいう。nyは590nmにおけるフィルム面内で遅相軸に直角な方向の屈折率を表し、nzは590nmにおける厚み方向におけるフィルムの屈折率を表す。〕
 面内リターデーション値Ro(590)は、好ましくは、0~250nmの範囲内である。
 一方、厚さ方向のリターデーション値Rt(590)については、好ましくは、-50~50nmの範囲内である。
 所望のリターデーションは組成をアクリル樹脂とセルロースエステル樹脂を95:5~50:50の質量比の範囲内でそれぞれの樹脂の比率を調整し、場合に応じて、位相差制御剤の組み合わせとその添加する量を調整することで行う。
 さらに、このフィルムの組成に応じて、延伸の温度(それぞれの区画の温度の組み合わせ)、倍率、延伸する速度、延伸する順序、延伸する時のフィルムの残留溶媒量などを調整、制御することでリターデーション値を所望の値にすることができる。
 リターデーションをこのような範囲に調整することにより本発明フィルムを使用した液晶表示装置の視野角を広げ、正面コントラストを改善することができる。
 正面コントラスト=(表示装置の法線方向から測定した白表示の輝度)/(表示装置の法線方向から測定した黒表示の輝度)
 視野角は液晶表示装置の観察方向を法線方向から傾けていった場合に一定レベルのコントラストを維持できる角度のことである。
 遅相軸方向の均一性も重要であり、フィルム巾方向に対して、角度が-5~+5°であることが好ましく、さらに-1~+1°の範囲にあることが好ましく、特に-0.5~+0.5°の範囲にあることが好ましく、特に-0.1~+0.1°の範囲にあることが好ましい。これらのばらつきは延伸条件を最適化することで達成できる。
 本発明の光学フィルムは、隣接する山の頂点から谷の底点までの高さが300nm以上であり、傾きが300nm/mm以上の長手方向に連続するスジがないことが好ましい。
 スジの形状は、表面粗さ計を用いて測定したもので、具体的には、ミツトヨ製SV-3100S4を使用して、先端形状が円錐60°、先端曲率半径2μmの触針(ダイヤモンド針)に測定力0.75mNの加重をかけながら、測定速度1.0mm/secでフィルムの巾方向に走査し、Z軸(厚み方向)分解能0.001μmとして断面曲線を測定する。
 この曲線から、スジの高さは、山の頂点から谷の底点までの垂直距離(H)を読み取る。スジの傾きは、山の頂点から谷の底点までの水平距離(L)を読み取り、垂直距離(H)を水平距離(L)で除して求める。
 また本発明の光学フィルムの厚みは、20μm以上150μm以下であることが好ましい。より好ましくは30μm以上80μm以下である。
 本発明の光学フィルムは、上記のような物性を満たしていれば、大型の液晶表示装置や屋外用途の液晶表示装置用の偏光板保護フィルムとして特に好ましく用いることができる。
<光学フィルムの製造方法>
 本発明の光学フィルムは、平面性、薄膜化の観点から、溶融流延共押出製膜方法によって製造することが好ましい。
<溶融流延共押出製膜方法による光学フィルムの製造方法>
 本発明の光学フィルムの製造方法は、少なくとも、アクリル樹脂(A)およびセルロースエステル樹脂(B)を溶融してダイから共押出しし冷却ロール上に流延する光学フィルムの製造方法である。
 以下、製造方法の全体について述べる。
 〈溶融ペレット製造工程〉
 溶融押出に用いるアクリル樹脂(A)、セルロースエステル(セルロースエステル樹脂(B)も含む)、可塑剤およびその他の添加剤の混合物は、通常あらかじめ混錬してペレット化しておくことが好ましい。
 ペレット化は、公知の方法でよく、例えば、乾燥アクリル樹脂(A)、乾燥セルロースエステルや可塑剤、その他添加剤をフィーダーで押出機に供給し1軸や2軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングすることでできる。
 原材料は、押出する前に乾燥しておくことが原材料の分解を防止する上で重要である。特にセルロースエステルは吸湿しやすいので、除湿熱風乾燥機や真空乾燥機で70~140℃で3時間以上乾燥し、水分率を200ppm以下、さらに100ppm以下にしておくことが好ましい。
 添加剤は、押出機に供給押出機合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。
 酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、アクリル樹脂(A)、セルロースエステルに含浸させて混合してもよく、あるいは噴霧して混合してもよい。
 真空ナウターミキサーなどが乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口など空気と触れる場合は、除湿空気や除湿したN2ガスなどの雰囲気下にすることが好ましい。
 押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。
 以上のようにして得られたペレットを用いてフィルム製膜を行う。ペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。
 〈溶融混合物をダイから冷却ロールへ押し出す工程〉
 アクリル樹脂(A)を溶融混合物としてから流延ダイまで導入するラインと、セルローステル樹脂を溶融混合物としてから流延ダイまで導入するラインとは併設され、各溶融混合物が流延ダイにおいて積層される。
 まず、作製したペレットを1軸や2軸タイプの押出機を用いて、押し出す際の溶融温度Tmを200~300℃程度とし、リーフディスクタイプのフィルターなどでろ過し異物を除去した後、Tダイからフィルム状に共押出し、冷却ロール上で固化し、弾性タッチロールと押圧しながら流延する。
 供給ホッパーから押出機へ導入する際は真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。なお、Tmは、押出機のダイ出口部分の温度である。
 ダイに傷や可塑剤の凝結物等の異物が付着するとスジ状の欠陥が発生する場合がある。このような欠陥のことをダイラインとも呼ぶが、ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力無いものを用いることが好ましい。
 押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。
 本発明の冷却ロールには特に制限はないが、高剛性の金属ロールで内部に温度制御可能な熱媒体または冷媒体が流れるような構造を備えるロールであり、大きさは限定されないが、溶融押し出されたフィルムを冷却するのに十分な大きさであればよく、通常冷却ロールの直径は100mmから1m程度である。
 冷却ロールの表面材質は、炭素鋼、ステンレス、アルミニウム、チタンなどが挙げられる。さらに表面の硬度をあげたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。
 冷却ロール表面の表面粗さは、Raで0.1μm以下とすることが好ましく、さらに0.05μm以下とすることが好ましい。ロール表面が平滑であるほど、得られるフィルムの表面も平滑にできるのである。もちろん表面加工した表面はさらに研磨し上述した表面粗さとすることが好ましい。
 本発明の弾性タッチロールとしては、特開平03-124425号、特開平08-224772号、特開平07-100960号、特開平10-272676号、WO97-028950、特開平11-235747号、特開2002-36332号、特開2005-172940号や特開2005-280217号に記載されているような表面が薄膜金属スリーブ被覆シリコンゴムロールを使用することができる。
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。
 〈延伸工程〉
 本発明では、上記のようにして得られたフィルムは冷却ロールに接する工程を通過後、さらに少なくとも1方向に1.01~3.0倍延伸することが好ましい。延伸によりスジの鋭さが緩やかになり高度に矯正することができるのである。
 好ましくは縦(フィルム搬送方向)、横(巾方向)両方向にそれぞれ1.1~2.0倍延伸することが好ましい。
 延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。特に光学フィルムが、偏光板保護フィルムを兼ねる位相差フィルムの場合は、延伸方向を巾方向とすることで偏光フィルムとの積層がロール形態でできるので好ましい。
 巾方向に延伸することで光学フィルムの遅相軸は巾方向になる。
 通常、延伸倍率は1.1~3.0倍、好ましくは1.2~1.5倍であり、延伸温度は通常、フィルムを構成する樹脂のTg~Tg+50℃、好ましくはTg~Tg+40℃の温度範囲で行われる。
 延伸は、幅手方向で制御された均一な温度分布下で行うことが好ましい。好ましくは±2℃以内、さらに好ましくは±1℃以内、特に好ましくは±0.5℃以内である。
 上記の方法で作製した光学フィルムのレターデーション調整や寸法変化率を小さくする目的で、フィルムを長手方向や幅手方向に収縮させてもよい。
 長手方向に収縮するには、例えば、巾延伸を一時クリップアウトさせて長手方向に弛緩させる、または横延伸機の隣り合うクリップの間隔を徐々に狭くすることによりフィルムを収縮させるという方法がある。
 本発明の光学フィルムは、溶融流延共押出製膜方法によって作製することから、ロール状フィルムとして巻き取った時点で、含有している溶媒量が0.01質量%以下である。含有溶媒量は、下記の方法によって測定することができる。
 〈含有溶媒量〉
 各試料を20mlの密閉ガラス容器に入れ、下記ヘッドスペース加熱条件にて処理したあと、下記ガスクロマトグラフィーにて予め使用した溶媒について検量線を作成し測定を行った。含有溶媒量は、光学フィルムの全体の質量に対する質量部で表した。
機器:HP社 5890SERIES II
カラム:J&W社 DB-WAX(内径0.32mm、長さ30m)
検出:FID
GC昇温条件:40℃で5分間保持したあと、80℃/分で100℃まで昇温
ヘッドスペース加熱条件:120℃で20min
 返材とは、光学フィルムを細かく粉砕した物で、光学フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトした光学フィルム原反が使用される。
 また、予めアクリル樹脂、セルロースエステル樹脂、場合によってアクリル粒子を混練してペレット化したものも、好ましく用いることができる。
 本発明の光学フィルムは、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。
 また、長尺フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。
 本発明の光学フィルムの膜厚に特に制限はないが、後述する偏光板保護フィルムに使用する場合は20~200μmであることが好ましく、25~100μmであることがより好ましく、30~80μmであることが特に好ましい。
<偏光板>
 本発明の光学フィルムを偏光板用保護フィルムとして用いる場合、偏光板は一般的な方法で作製することができる。
 本発明の光学フィルムの裏面側に粘着層を設け、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、貼り合わせることが好ましい。
 もう一方の面には本発明の光学フィルムを用いても、別の偏光板保護フィルムを用いてもよい。例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC8UE、KC4UE、KC4FR-3、KC4FR-4、KC4HR-1、KC8UY-HA、KC8UX-RHA、以上コニカミノルタオプト(株)製)等が好ましく用いられる。
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。
 上記粘着層に用いられる粘着剤としては、粘着層の少なくとも一部分において25℃での貯蔵弾性率が1.0×10Pa~1.0×10Paの範囲である粘着剤が用いられていることが好ましく、粘着剤を塗布し、貼り合わせた後に種々の化学反応により高分子量体または架橋構造を形成する硬化型粘着剤が好適に用いられる。
 具体例としては、例えば、ウレタン系粘着剤、エポキシ系粘着剤、水性高分子-イソシアネート系粘着剤、熱硬化型アクリル粘着剤等の硬化型粘着剤、湿気硬化ウレタン粘着剤、ポリエーテルメタクリレート型、エステル系メタクリレート型、酸化型ポリエーテルメタクリレート等の嫌気性粘着剤、シアノアクリレート系の瞬間粘着剤、アクリレートとペルオキシド系の2液型瞬間粘着剤等が挙げられる。
 上記粘着剤としては1液型であっても良いし、使用前に2液以上を混合して使用する型であっても良い。
 また上記粘着剤は有機溶剤を媒体とする溶剤系であってもよいし、水を主成分とする媒体であるエマルジョン型、コロイド分散液型、水溶液型などの水系であってもよいし、無溶剤型であってもよい。上記粘着剤液の濃度は、粘着後の膜厚、塗布方法、塗布条件等により適宜決定されれば良く、通常は0.1~50質量%である。
<液晶表示装置>
 本発明の光学フィルムを貼合した偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することができるが、特に大型の液晶表示装置やデジタルサイネージ等の屋外用途の液晶表示装置に好ましく用いられる。本発明の偏光板は、前記粘着層等を介して液晶セルに貼合する。
 本発明の偏光板は反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型(FFS方式も含む)等の各種駆動方式のLCDで好ましく用いられる。特にVA型の画面が30型以上、特に30型~54型の大画面の表示装置では、画面周辺部での白抜け等もなく、その効果が長期間維持される。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 表1、2中のアクリル樹脂A-1~74を公知の方法によって作製した。表中ACMOは、アクリロイルモルホリン、MACMOは、メタクリロイルモルホリン、AAmはアクリルアミド、VPはビニルピロリドン、DMAAmは、N,N-ジメチルアクリルアミド、HEAAmは、N-ヒドロキシエチルアクリルアミド、VFAAmは、N-ビニルホルムアミド、ACPIPEは、アクリロイルピペリジン、HEMAは、ヒドロキシメタクリレートである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<光学フィルム試料の作成>
 下記素材を真空ナウターミキサーで80℃、1Torrで3時間混合しながらさらに乾燥し、得られた混合物を、2軸式押し出し機を用いて235℃で溶融混合しペレット化した。
 アクリル樹脂A-1(90℃で3時間乾燥し水分率1000ppm)
                            70質量部
 セルロースエステル樹脂(セルロースアセテートプロピオネート:アシル基総置換度2.75、アセチル基置換度0.19、プロピオニル基置換度2.56、Mw=200000、100℃で3時間乾燥し水分率500ppm)                           30質量部
 Tinuvin928(チバ・ジャパン(株)製)   1.1質量部
 GSY-P101(堺化学工業(株)製)      0.25質量部
 Irganox1010(チバ・ジャパン(株)製)  0.5質量部
 SumilizerGS(住友化学(株)製)    0.24質量部
 アエロジルNAX50(日本アエロジル(株)製)   0.2質量部
 シーホスターKEP-30((株)日本触媒製)   0.02質量部
 得られたペレットを、70℃の除湿空気を5時間以上循環させて乾燥を行い、100℃の温度を保ったまま、次工程の1軸押出機に導入した。このときのペレットを少量取りだし、水分量を測定したところ120ppmであった。
 セルロースエステルフィルムの製膜は図1に示す製造装置で行った。
 上記ペレットを、1軸押出機を用いてTダイから表面温度が90℃の第1冷却ロール上に溶融温度240℃でフィルム状に溶融押し出し、120μmのキャストフィルムを得た。この際第1冷却ロール上でフィルムを2mm厚の金属表面を有する弾性タッチロールで押圧した。
 得られたフィルムをまずロール周速差を利用した延伸機によって175℃で搬送方向に60%延伸した。次に予熱ゾーン、延伸ゾーン、保持ゾーン、冷却ゾーン(各ゾーン間には各ゾーン間の断熱を確実にするためのニュートラルゾーンも有する)を有するテンターに導入し、幅手方向に175℃で70%延伸した後、30℃まで冷却し、その後クリップから開放し、クリップ把持部を裁ち落として、膜厚40μm、フィルム幅2500mmの光学フィルム試料1を得た。
 これと同様にして表3記載のようにアクリル樹脂Aとセルロースエステル樹脂Bとを混合し、光学フィルム試料2~133を作製した。
 なお、試料132、133においては、アクリル樹脂70質量部のうち5質量部を、アクリル樹脂粒子メタブレンW-341(三菱レイヨン(株)製)に置き換えた。
 試料16、31、39、47、55、63、71、79、89、94、99は溶融粘度が高く、溶融押し出しでキャストフィルムを得ることが困難であったため、以降の評価に進めなかった。
 試料116、131は溶融粘度が高めだったため、溶融温度を高く設定したところ、得られたキャストフィルムの平面性がやや悪かった。
 また、溶融温度は、溶融粘度が1000Pa・sになる温度として樹脂混合物ごとに設定した。
<光学フィルム試料の評価>
 評価は、特に定めの無い限り、全て23℃55%RHの雰囲気下で行った。また試料は、予め同雰囲気下24時間保存したものを使用した。結果を表3~7に示す。
 〈耐熱性評価(張力軟化点)〉
 光学フィルムの耐熱性は、張力軟化点によって下記の通り評価した。張力軟化点が高いほど、耐熱性が高いと判断できる。
 テンシロン試験機(ORIENTEC社製、RTC-1225A)を用いて、光学フィルム試料を120mm(縦)×10mm(幅)で切り出し、10Nの張力で引っ張りながら30℃/minの昇温速度で昇温を続け、9Nになった時点での温度を3回測定し、その平均温度℃を出した。実用上125℃以上が良好とされている。
 〈ヘーズ%〉
 光学フィルム試料1枚をJIS K-7136に従って、ヘーズメーター(NDH2000型、日本電色工業(株)製)を使用して測定した。
 〈脆性〉
 光学フィルム試料を、打ち抜きパンチで円形の穴をあけ、切り口の形状を目視で観察した。以下の基準で判断した。
 ○:きれいに円く穴が開いている
 △:切り口に若干の亀裂がある
 ×:穴の径に対し半分以上の長さの亀裂が入る。
 〈カッティング性:製造工程での脆性代替評価〉
 軽荷重引き裂き試験機(東洋精機社製)を用いて光学フィルム試料を引き裂き、目視により以下の判断基準で評価した。
 ○:引き裂き面が非常に滑らかで、かつ、真っ直ぐに裂けている
 △:引き裂き面にややバリがあるが、真っ直ぐに裂けている
 ×:引き裂き面にバリがかなりあり、真っ直ぐに裂けていない。
<偏光板の作製>
 上記作製した光学フィルム試料1~133を使って、下記に記載するアルカリケン化処理をし、偏光板の作製を行った。
 〈アルカリケン化処理〉
  ケン化工程  2M-NaOH  50℃  90秒
  水洗工程   水        30℃  45秒
  中和工程   10質量%HCl 30℃  45秒
  水洗工程   水        30℃  45秒
  ケン化処理後、水洗、中和、水洗の順に行い、次いで80℃で乾燥を行った。
 〈偏光子の作製〉
 厚さ120μmの長尺ロールポリビニルアルコールフィルムを沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で6倍に搬送方向に延伸して偏光子を作った。
 上記偏光子の片面に同様にケン化処理したコニカミノルタオプト(株)製KC4UY、その反対面側に前記アルカリケン化処理した本発明の光学フィルム試料を完全ケン化型ポリビニルアルコール5%水溶液を接着剤として、偏光子の透過軸とフィルムの面内遅相軸が平行になるように各々貼り合わせ、乾燥して偏光板を作製した。
<液晶表示装置の作製>
 得られた偏光板は、IPS型液晶表示装置である日立(株)製液晶表示装置Wooo W32L-H90にあらかじめ貼合されていた視認側偏光板を注意深く剥がし、もともと貼ってあった偏光板の透過軸にあわせて、粘着剤を介して作製した本発明の光学フィルムが視認側となるように偏光板を貼り付け、液晶表示装置を作製した。
 その後、23℃55%RHの環境下において、バックライトを1000時間連続点灯し、全面黒表示状態を暗室にて目視で観察して、画面ムラを目視で官能評価した。結果を表2、3に示す。
 ◎:明室、暗室ともにムラが全く観察されない
 ○:明室では全く観察されないが、暗室で若干ムラが観察される
 △:明室では気にならないが、暗室でムラが観察される
 ×:明室でもムラが観察される
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本発明の光学フィルム試料を用いた場合に、画面ムラが大幅に改善されることが確認できた。
 1 押出し機
 2 フィルター
 3 スタチックミキサー
 4 流延ダイ
 5 回転支持体(第1冷却ロール)
 6 挟圧回転体(タッチロール)
 7 回転支持体(第2冷却ロール)
 8 回転支持体(第3冷却ロール)
 9、11、13、14、15 搬送ロール
 10 光学フィルム
 16 巻取り装置

Claims (5)

  1.  アクリル樹脂(A)とセルロースエステル樹脂(B)を95:5~50:50の質量比で含有する光学フィルムにおいて、該アクリル樹脂(A)が下記一般式(1)で表され、重量平均分子量Mwが20000以上1000000以下であることを特徴とする光学フィルム。
    一般式(1)
     -(MMA)p-(X)q-(Y)r-
     MMAはメチルメタクリレートを、Xはアミド基を少なくとも一種有するMMAと共重合可能なモノマー単位を、YはMMA、Xと共重合可能なモノマー単位を表す。p、q、rはモル%であり、55≦p≦99、1≦q≦50、p+q+r=100である。
  2.  前記セルロースエステル樹脂(B)のアシル基の総置換度(T)が2.0以上、3.0以下、炭素数が3以上、7以下のアシル基の置換度が1.2以上、3.0以下であり、該セルロースエステル樹脂(B)の重量平均分子量Mwが75000以上300000以下であることを特徴とする請求項1に記載の光学フィルム。
  3.  前記光学フィルムが、該フィルムを構成する樹脂の総質量に対して、0.5質量%以上、30質量%以下のアクリル粒子(D)を含有することを特徴とする請求項1または2に記載の光学フィルム。
  4.  請求項1~3に記載の光学フィルムを有することを特徴とする偏光板。
  5.  請求項1~3に記載の光学フィルムを有することを特徴とする液晶表示装置。
PCT/JP2010/055676 2010-03-30 2010-03-30 光学フィルム、偏光板および液晶表示装置 WO2011121720A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012507947A JP5590116B2 (ja) 2010-03-30 2010-03-30 光学フィルム、偏光板および液晶表示装置
PCT/JP2010/055676 WO2011121720A1 (ja) 2010-03-30 2010-03-30 光学フィルム、偏光板および液晶表示装置
PCT/JP2010/065390 WO2011121817A1 (ja) 2010-03-30 2010-09-08 光学フィルム、偏光板および液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055676 WO2011121720A1 (ja) 2010-03-30 2010-03-30 光学フィルム、偏光板および液晶表示装置

Publications (1)

Publication Number Publication Date
WO2011121720A1 true WO2011121720A1 (ja) 2011-10-06

Family

ID=44711514

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/055676 WO2011121720A1 (ja) 2010-03-30 2010-03-30 光学フィルム、偏光板および液晶表示装置
PCT/JP2010/065390 WO2011121817A1 (ja) 2010-03-30 2010-09-08 光学フィルム、偏光板および液晶表示装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065390 WO2011121817A1 (ja) 2010-03-30 2010-09-08 光学フィルム、偏光板および液晶表示装置

Country Status (2)

Country Link
JP (1) JP5590116B2 (ja)
WO (2) WO2011121720A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022145436A1 (ja) * 2021-01-04 2022-07-07

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120596A1 (ja) * 2007-04-03 2008-10-09 Konica Minolta Opto, Inc. セルロースエステル光学フィルム、該セルロースエステル光学フィルムを用いた偏光板及び液晶表示装置、セルロースエステル光学フィルムの製造方法、及び共重合ポリマー
JP2009299075A (ja) * 2007-10-13 2009-12-24 Konica Minolta Opto Inc 光学フィルム
WO2010016369A1 (ja) * 2008-08-05 2010-02-11 コニカミノルタオプト株式会社 光学フィルム、該光学フィルムの製造方法、偏光板及び液晶表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096955A (ja) * 2007-10-19 2009-05-07 Konica Minolta Opto Inc 光学フィルム、偏光板、液晶表示装置
US20100297366A1 (en) * 2007-11-05 2010-11-25 Konica Minolta Opto, Inc. Optical compensation film, and polarizing plate and liquid crystal display employing the same
WO2010082397A1 (ja) * 2009-01-19 2010-07-22 コニカミノルタオプト株式会社 光学フィルム、偏光板及び液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120596A1 (ja) * 2007-04-03 2008-10-09 Konica Minolta Opto, Inc. セルロースエステル光学フィルム、該セルロースエステル光学フィルムを用いた偏光板及び液晶表示装置、セルロースエステル光学フィルムの製造方法、及び共重合ポリマー
JP2009299075A (ja) * 2007-10-13 2009-12-24 Konica Minolta Opto Inc 光学フィルム
WO2010016369A1 (ja) * 2008-08-05 2010-02-11 コニカミノルタオプト株式会社 光学フィルム、該光学フィルムの製造方法、偏光板及び液晶表示装置

Also Published As

Publication number Publication date
JP5590116B2 (ja) 2014-09-17
WO2011121817A1 (ja) 2011-10-06
JPWO2011121720A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
KR101677777B1 (ko) 편광판의 제조 방법, 그 제조 방법으로 제조한 편광판 및 그 편광판을 사용한 액정 표시 장치
JP5754445B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP5397382B2 (ja) 光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置
JP5671832B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
JP5200876B2 (ja) 光学フィルム、それを用いた偏光板及び液晶表示装置
JP5888040B2 (ja) 偏光板保護フィルムおよびその製造方法、並びにそれを用いた偏光板および表示装置
JP5609427B2 (ja) 偏光子保護フィルム、ロール状偏光板、及び液晶表示装置
WO2011138887A1 (ja) 光学フィルム、光学フィルムの製造方法、偏光板、及び液晶表示装置
JP2011248094A (ja) 光学フィルム
WO2012023331A1 (ja) 光学フィルム、偏光板および液晶表示装置
JP5760844B2 (ja) 光学フィルム
JP5549397B2 (ja) 光学フィルム、及びそれを用いた偏光板、液晶表示装置
WO2010082397A1 (ja) 光学フィルム、偏光板及び液晶表示装置
KR101597854B1 (ko) 편광판용 광학 필름, 그의 제조 방법, 그것을 사용한 편광판 및 액정 표시 장치
WO2011055603A1 (ja) 光学フィルム、偏光板および液晶表示装置
JP5590116B2 (ja) 光学フィルム、偏光板および液晶表示装置
JP2011241264A (ja) 光学フィルム、光学フィルムの製造方法
JP5381924B2 (ja) 光学フィルム
JP2013024963A (ja) 光学フィルムとその製造方法、及び偏光板
JP5691865B2 (ja) 光学フィルム、及び光学フィルムの製造方法
JP2014132042A (ja) 樹脂組成物の製造方法、光学フィルム、偏光板、及び液晶表示装置
WO2012144016A1 (ja) 光学フィルム、偏光板および液晶表示装置
JP2012118091A (ja) 散乱フィルム、偏光板、液晶表示装置および散乱フィルムの製造方法
WO2010050287A1 (ja) 光学フィルム、その製造方法、それを用いた偏光板及び液晶表示装置
JP5263299B2 (ja) 光学フィルム、偏光板、液晶表示装置、および光学フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848900

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507947

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848900

Country of ref document: EP

Kind code of ref document: A1