WO2011120595A1 - Front surface mirror for reflecting sunlight, method for manufacturing the mirror and use of the mirror - Google Patents

Front surface mirror for reflecting sunlight, method for manufacturing the mirror and use of the mirror Download PDF

Info

Publication number
WO2011120595A1
WO2011120595A1 PCT/EP2010/060800 EP2010060800W WO2011120595A1 WO 2011120595 A1 WO2011120595 A1 WO 2011120595A1 EP 2010060800 W EP2010060800 W EP 2010060800W WO 2011120595 A1 WO2011120595 A1 WO 2011120595A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
front surface
range
surface mirror
mirror according
Prior art date
Application number
PCT/EP2010/060800
Other languages
English (en)
French (fr)
Inventor
Menashe Barkai
Yishay Diamant
Alexander Gette
Original Assignee
Siemens Concentrated Solar Power Ltd.
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Concentrated Solar Power Ltd., Siemens Aktiengesellschaft filed Critical Siemens Concentrated Solar Power Ltd.
Priority to CN201080066007.3A priority Critical patent/CN102812385B/zh
Publication of WO2011120595A1 publication Critical patent/WO2011120595A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3615Coatings of the type glass/metal/other inorganic layers, at least one layer being non-metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/3663Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties specially adapted for use as mirrors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/86Arrangements for concentrating solar-rays for solar heat collectors with reflectors in the form of reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • This invention relates to a front surface mirror (FSM) for reflecting sunlight and a method for manufacturing the mirror. Moreover a use of the front surface mirror is provided.
  • FSM front surface mirror
  • a base FSM comprises a multi layer stack on a substrate surface of a substrate with following stacking sequence: An adhesion layer with Chromium (Cr) , a binding layer with a Nickel Chromium alloy (NiCr) , a reflection layer with Silver (Ag) and a passivation layer with Zink Sulfide (ZnS) or Zink Oxide (ZnO) . Scratch resistance of the front surface mirror for an application in a sun field power plant application is one of the crucial features of the mirror.
  • the method should be implementable in a high production machine.
  • a front surface mirror for reflecting sunlight comprises a multi layer stack on a substrate surface of a substrate, the multi layer stack comprising following stacking sequence: At least one adhesion layer arranged on the substrate surface of the substrate; at least one intermediate binding layer; at least one reflective layer with at least one reflective material for the reflecting the sunlight; at least one passivation layer that makes the reflective material inert to at least one outdoor environmental condition; and at least one scratch resist protection layer.
  • the passivation layer combined with the scratch resist layer is used for environmental protection of the multi layer stack.
  • the layers are directly stacked to one another. Adjacent layers of the stack cover each other at least partially. In particular a layer covers the subjacent layer completely.
  • Inert to at least one outdoor environmental condition means that no or nearly no degradation process of the reflective material of the reflective layer occurs while the front surface mirror is exposed to the outdoor environmental condition.
  • the reflective material is Silver and the outdoor environmental condition is an Oxygen partial pressure. A probability for the appearance of the degradation process (an oxidation of Silver) is reduced.
  • the method comprises following steps: a) providing a substrate with a substrate surface; b) arranging the adhesion layer on the substrate surface; c) arranging the intermediate binding layer on the adhesion layer; d) arranging the reflective layer on the intermediate binding layer; e) arranging the passivation layer on the reflective layer; and f) arranging the scratch resist protection layer on the passivation layer.
  • the front surface mirror e.g. a parabolic front surface mirror, is a part of a sunlight collecting device of the power plant.
  • the heat transfer fluid is a thermo-oil or a thermo-liquid salt.
  • a front (first) surface mirror (also commonly abbreviated FS mirror) is a mirror with a reflective surface being above a backing, as opposed to a conventional, second surface mirror with the reflective surface behind a substrate which is transparent for sunlight.
  • the transparent substrate consists of a glass or an acrylic glass.
  • the front surface mirror leads to a strict reflection without a ghosting effect.
  • Sunlight in the sense of this invention means in particular electromagnetic radiation of the visible spectrum of the sunlight (about 350 nm to about 780 nm) and electromagnetic radiation of the infrared spectrum. Especially radiation of the near infrared spectrum of the sunlight (about 780 nm to 2.500 nm) is meant. But radiation with longer wavelengths is possible, too.
  • a substrate material can be an organic material like polyethylene
  • PET terephthalate
  • inorganic material like glass.
  • glass e.g. window glass, or hardened glass is used.
  • substrate material is a metal.
  • the metal is Aluminum (Al) or stainless steel.
  • the surface of the substrate can be flat or bended. Additionally the surface can be polished and/or lacquered.
  • the thin film deposition technique is preferably selected from the group consisting of atomic layer deposition (ALD) , chemical vapor deposition (CVD) and physical vapor deposition (PVD) .
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the physical vapor deposition is sputtering.
  • a reactive sputtering is used. It is advantageous to use the same thin film deposition technique for all the steps b) to f ) . But it is also possible, to use different thin film techniques for the different steps.
  • the heat treatment comprises a heating to a temperature selected from the range between 50°C to 350°C and particularly selected from the range between 50°C to 250°C.
  • the heat treatment comprises a plasma glow discharge treatment.
  • the heat treatment and in particular the plasma glow discharge treatment is carried out in the presence of Argon, Nitrogen and/or Oxygen.
  • the heat in general and the plasma glow discharge treatment in particular can be necessary for the used thin film technique.
  • a cleaning of the substrate and/or the arranged layers can be carried out.
  • the adhesion layer can consist of different materials.
  • the adhesion layer comprises at least one adhesion material selected from the group consisting of Chromium (Cr) and Nickel (Ni) .
  • the adhesion layer e.g. with Chromium
  • the reflective layer e.g. with Silver
  • the intermediate binding layer leads to a smearing the galvanic potential. By that a galvanic corrosion effect is reduced.
  • the intermediate binding layer comprises at least one intermediate material selected from the group consisting of Nickel and Chromium.
  • the adhesion layer comprises an adhesion layer thickness selected from the range between 0,5 nm and 20 nm, particularly selected from the range between 1 nm and 15 nm and more particularly selected from the range between 5 nm and 10 nm.
  • the intermediate binding layer comprises preferably an intermediate layer thickness selected from the range between 5 nm and 80 nm, particularly selected from the range between 10 nm and 60 nm and more particularly selected from the range between 30 nm and 50 nm.
  • the reflective layer any reflective material like a metal like Aluminium or Copper is possible.
  • the reflective material is Silver.
  • a reflective layer with such a reflective material show high reflectivity for the sunlight.
  • the reflective layer consists of Silver or a Silver alloy.
  • the passivation layer which covers the reflective layer the Silver of the reflective layer is protected against severe outdoor reactivity, e.g. oxidation of Silver.
  • the reflective layer comprises a reflective layer thickness selected from the range between 50 nm and 250 nm, particularly selected from the range between 70 nm and 200 nm and more particularly selected from the range between 100 nm and 150 nm. With these reflective layer thicknesses a high reflectivity is ensured. Additionally in view of the used thin film technique the thickness is economically manageable.
  • At least one transition zone layer is arranged between the adhesion layer and the intermediate binding layer and the transition zone layer comprises both the adhesion material of the adhesion layer and the intermediate material of the intermediate binding layer.
  • the adhesion layer consists of Chromium.
  • the intermediate binding layer consists of an alloy of Nickel and Chromium.
  • the transition zone layer consists of an excess of Chromium compared to the composition of the intermediate binding layer.
  • at least one further transition zone layer is arranged between the intermediate binding layer and the reflective layer. Thereby the further transition zone layer comprises both the intermediate layer material of the
  • the reflective material is Silver.
  • the further transition zone layer contains Silver. These transition zone layers are quite thin.
  • the transition zone layer and/or the further transition zone layer comprise a transition layer thickness selected from the range between 0,5 nm and 20 nm, particularly selected from the range between 1 nm and 15 nm and more particularly selected from the range between 5 nm and 10 nm.
  • the passivation layer has the function of protection of the reflective layer and the reflective material, respectively.
  • the reflective material is Silver.
  • the passivation layer comprises at least one passivation material selected from the group consisting of Zink Oxide (ZnO), Zink Selenide (ZnSe) and Zink Sulfide (ZnS) . Theses passivation materials show very good characteristics concerning the protection function.
  • the thickness of the passivation layer can be very low.
  • the passivation layer comprises a passivation layer thickness selected from the range between 0,1 nm and 20 nm, particularly selected from the range between 0,5 nm and 15 nm and more particularly selected from the range between 1,0 nm and 10 nm.
  • ZnS can be sputtered only by using RF power supply. It means that the width of the machine, for the best, is limited to -2.5 m. To overcome that limitation one can evaporate the sublimatic ZnS material downwards by using a long thermal evaporating boat. Alternatively pulse DC generator is used to sputter conductive ZnO as substitutional protective material.
  • the scratch resist protection layer comprises Silicon Oxide as a scratch resist protection material.
  • Other components can be contained, e.g. Aluminium Oxide.
  • Silicon Oxide (Si0 2 ) has a good scratch resistivity.
  • Silicon Oxide can be sputtered.
  • reactive sputtering of Si to deposit the S1O 2 layer, enough heating power is possible which effects and satisfies interfacial reaction between Silver of the reflective layer and the S1O 2 layer.
  • the reactive sputtering of S1O 2 can be implemented on large scale production machine. The using of reactive sputtering with a target comprising Si and Al leads a scratch protection layer with these elements showing very good results.
  • the amount of Al is selected from the range between 1 wt% to 20 wt% and preferably from the range between 5 wt% and 15 wt%.
  • An amount of 10 wt% of Al (and 90 wt% of Si) is preferred from the durability point of view, because the resulting scratch protection layer (comprising Si and Al) is almost free of mechanical surface stress.
  • the protection layer comprises a protection layer thickness selected from the range between 200 nm and 3000 nm, particularly selected from the range between 500 nm and 2500 nm and more particularly selected from the range between 1000 nm and 2000 nm. Thicknesses below (e.g. 100 nm) or above (e.g. 4000 nm) the mentioned ranges are possible, too.
  • at least one enhancement layer is arranged between the passivation layer and the scratch resist protection layer. Two or more enhancement layers are possible, too.
  • the enhancement layer comprises at least one enhancement material selected from the group consisting of Silicon Oxide, Titanium Oxide (Ti0 2 ) and Zirconium Oxide (Zr0 2 ) .
  • enhancement layer leads to a higher reflectivity.
  • Very good results are achieved by an enhancement layer which comprises an enhancement layer thickness selected from the range between 10 nm and 150 nm, particularly selected from the range between 20 nm and 100 nm and more particularly selected from the range between 30 nm and 80 nm.
  • enhancement layer thickness selected from the range between 10 nm and 150 nm, particularly selected from the range between 20 nm and 100 nm and more particularly selected from the range between 30 nm and 80 nm.
  • S1O 2 70 nm
  • T1O 2 (30 nm)
  • the front surface mirror is arranged in a box.
  • the mirror is arranged in the box such that sunlight can be reflected by the mirror.
  • the box is a weather chamber or a salt fog chamber.
  • the box can be designed such that the mirror is hermetically (completely) insulated from the environment of the box. A partially insulation is possible, too.
  • the box is designed such that the covering of the mirror by dust is prevented, but an exposure of the mirror by humidity is possible.
  • the box consists preferably of a box material with high quality steel. But depending on the environmental conditions a box with other metal alloys or even with a pure (or nearly pure) metal is possible, too.
  • the box comprises a window through which the mirror can be irradiated by the sunlight or by a range of the sunlight.
  • the window is transparent for the sunlight or for the range of the sunlight.
  • the box comprises a cover with glass or acrylic glass. Sunlight with special wavelengths passes the cover of the box and attains a reflective surface of mirror.
  • the front surface mirror shows a high reflectivity (96% - 98%) and a high durability (more than 20 years) against different environmental conditions.
  • the complete multi layer stack can be manufactured by sputtering.
  • the use of different thin film deposition techniques is not necessary.
  • the sputtering can easily be implemented in a high production machine .
  • Figure shows a cross section of a front surface mirror.
  • the front surface mirror 1 has a multi layer stack 10 arranged on a substrate surface 111 of a substrate 11.
  • the multi layer stack comprises following stacking sequence: at least adhesion layer (101) arranged on the substrate surface of the substrate; at least one intermediate binding layer (102) ; at least one reflective layer (103) for the reflecting the sunlight; at least one passivation layer (104) that makes Ag inert to severe outdoor environmental conditions; and at least one scratch resist protection layer (105) for scratch resist and environmental protection the multi layer stack.
  • the substrate is a window glass.
  • the substrate surface 111 is either flat or bended. I one embodiment the bended substrate surface is parabolic.
  • the adhesion layer comprises Chromium.
  • the adhesion layer thickness is about 10 nm.
  • the intermediate binding layer comprises an alloy of Nickel and Chromium.
  • the intermediate layer thickness is about 40 nm.
  • a transition zone layer 112 is arranged between the adhesion layer 101 and the intermediate binding layer 102 . This transition zone layer comprises an alloy of Nickel and Chromium, too. But the content of Chromium of the transition zone layer is higher than the content for Chromium of the intermediate binding layer.
  • the transition layer thickness is about 10 nm.
  • the reflective layer 103 comprises Silver as reflective material.
  • the reflective layer thickness is about 150 nm.
  • a further transition zone layer 123 is arranged between the intermediate binding layer 102 and the reflective layer 103 .
  • This further transition zone layer comprises an alloy of Nickel and Chromium. Additionally comprises the further transition zone layer the reflective material of the reflective layer, namely Silver.
  • a passivation layer with Zink Oxide as passivation material is arranged over the reflective layer. In an alternative embodiment the passivation material is Zink Oxide.
  • the passivation layer thickness is about 5 nm.
  • Competed is the multi layer stack by a scratch resist protection layer with the scratch resist protection material Silicon Oxide.
  • the protection layer thickness of the scratch resist protection layer is about 2000 nm.
  • steps b) to f) sputtering is used.
  • sputtering a reactive sputtering is used.
  • the front surface mirror is used in a power plant for converting solar energy into electrical energy. Thereby a concentrating of sunlight by the front surface mirror is carried out.
  • a concentrating of sunlight by the front surface mirror is carried out.
  • the heat transfer fluid is a thermo-oil or a melted thermo-salt.
  • a heat transfer exchanger steam is produced for operating a turbine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
PCT/EP2010/060800 2010-03-29 2010-07-26 Front surface mirror for reflecting sunlight, method for manufacturing the mirror and use of the mirror WO2011120595A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080066007.3A CN102812385B (zh) 2010-03-29 2010-07-26 用于反射阳光的前表面镜及其制备方法和应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31842010P 2010-03-29 2010-03-29
US61/318,420 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011120595A1 true WO2011120595A1 (en) 2011-10-06

Family

ID=43033039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/060800 WO2011120595A1 (en) 2010-03-29 2010-07-26 Front surface mirror for reflecting sunlight, method for manufacturing the mirror and use of the mirror

Country Status (2)

Country Link
CN (1) CN102812385B (zh)
WO (1) WO2011120595A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014134105A1 (en) * 2013-02-28 2014-09-04 Corning Incorporated Enhanced, durable silver coating stacks for highly reflective mirrors
JP2014194469A (ja) * 2013-03-28 2014-10-09 Fujifilm Corp 太陽光集光用フィルムミラー及びその製造方法、並びに太陽光反射板
WO2014191485A3 (en) * 2013-05-30 2015-02-05 Agc Glass Europe Solar control glazing
EP2998112A4 (en) * 2013-05-14 2017-01-04 Asahi Glass Company, Limited Protective film, reflective member, and production method for protective film
JPWO2016009745A1 (ja) * 2014-07-14 2017-04-27 富士フイルム株式会社 太陽熱発電用反射板
DE102018203010A1 (de) * 2018-02-28 2019-08-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Reflektor, Solarkollektor sowie Solarkraftwerk

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106660864A (zh) * 2014-07-07 2017-05-10 斯基恩特-X公司 薄膜反射器的生产
CN108149197B (zh) * 2017-12-22 2020-06-09 武汉大学 一种激光发生器反射板制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3486217A (en) * 1964-03-16 1969-12-30 Hughes Aircraft Co Method of fabricating laser cavities
US5019458A (en) * 1988-05-12 1991-05-28 Luz Industries Israel, Ltd. Protected silvered substrates and mirrors containing the same
US20060141272A1 (en) * 2004-11-23 2006-06-29 The Regents Of The University Of California Durable silver mirror with ultra-violet thru far infra-red reflection

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368470B1 (en) * 1999-12-29 2002-04-09 Southwall Technologies, Inc. Hydrogenating a layer of an antireflection coating
WO2005048253A1 (ja) * 2003-11-12 2005-05-26 Mitsubishi Kagaku Media Co., Ltd. 光記録媒体の製造方法及び光透過性スタンパ
JP2005174700A (ja) * 2003-12-10 2005-06-30 Toyota Industries Corp 電界発光デバイス
DE102005034892A1 (de) * 2005-07-26 2007-02-08 Hexal Ag Cycloolefin-Copolymer-Flasche mit einem kratzfesten Überzug
CN101078493A (zh) * 2007-06-13 2007-11-28 张永宏 Rc水晶灯片

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3486217A (en) * 1964-03-16 1969-12-30 Hughes Aircraft Co Method of fabricating laser cavities
US5019458A (en) * 1988-05-12 1991-05-28 Luz Industries Israel, Ltd. Protected silvered substrates and mirrors containing the same
US20060141272A1 (en) * 2004-11-23 2006-06-29 The Regents Of The University Of California Durable silver mirror with ultra-violet thru far infra-red reflection

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014134105A1 (en) * 2013-02-28 2014-09-04 Corning Incorporated Enhanced, durable silver coating stacks for highly reflective mirrors
US10955594B2 (en) 2013-02-28 2021-03-23 Corning Incorporated Enhanced, durable silver coating stacks for highly reflective mirrors
US9488760B2 (en) 2013-02-28 2016-11-08 Corning Incorporated Enhanced, durable silver coating stacks for highly reflective mirrors
US10761247B2 (en) 2013-02-28 2020-09-01 Corning Incorporated Enhanced, durable silver coating stacks for highly reflective mirrors
US9995860B2 (en) 2013-02-28 2018-06-12 Corning Incorporated Enhanced, durable silver coating stacks for highly reflective mirrors
JP2014194469A (ja) * 2013-03-28 2014-10-09 Fujifilm Corp 太陽光集光用フィルムミラー及びその製造方法、並びに太陽光反射板
EP2998112A4 (en) * 2013-05-14 2017-01-04 Asahi Glass Company, Limited Protective film, reflective member, and production method for protective film
JPWO2014185420A1 (ja) * 2013-05-14 2017-02-23 旭硝子株式会社 保護膜、反射性部材、および保護膜の製造方法
US10634887B2 (en) 2013-05-14 2020-04-28 AGC Inc. Protective film, reflective member, and method for producing protective film
US10358385B2 (en) 2013-05-30 2019-07-23 Agc Glass Europe Solar control glazing
US10562813B2 (en) 2013-05-30 2020-02-18 Agc Glass Europe Solar control glazing
EA029123B1 (ru) * 2013-05-30 2018-02-28 Агк Гласс Юроп Солнцезащитное остекление
WO2014191485A3 (en) * 2013-05-30 2015-02-05 Agc Glass Europe Solar control glazing
JPWO2016009745A1 (ja) * 2014-07-14 2017-04-27 富士フイルム株式会社 太陽熱発電用反射板
DE102018203010A1 (de) * 2018-02-28 2019-08-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Reflektor, Solarkollektor sowie Solarkraftwerk

Also Published As

Publication number Publication date
CN102812385A (zh) 2012-12-05
CN102812385B (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2011120595A1 (en) Front surface mirror for reflecting sunlight, method for manufacturing the mirror and use of the mirror
JP6490810B2 (ja) 耐温度性及び耐腐食性の表面反射体
US9140832B2 (en) Reflective article having multiple reflective coatings
Jamali Investigation and review of mirrors reflectance in parabolic trough solar collectors (PTSCs)
US6159621A (en) Glass substrate provided with a thin-film stack having reflective properties in the infrared and/or in the region of solar radiation
US9397240B2 (en) Corrosion resistant solar mirror
CN113683315B (zh) 太阳能镜以及制成具有改进的特性的太阳能镜的方法
JP2000233947A5 (zh)
CN101660117B (zh) 一种太阳能选择性吸收涂层及其制备方法
EP3240978A1 (en) Self-cleaning high temperature resistant solar selective structure
US9857099B2 (en) Solar energy absorptive coating, arrangement of the coating on a substrate, method for manufacturing the arrangement and use of the arrangement
DK2969994T3 (en) TITAN-NICKEL NIOBLING BARRIERS FOR COATINGS WITH A LOW EMISSION RATE
CN108351442B (zh) 具有铝衬底和银反射层的反射性的复合材料
KR20180021675A (ko) 저방사율 코팅용 티타늄 니켈 니오브 합금 배리어
CN104654639B (zh) 具有渐变性复合涂层形式的亚吸收层及其制法
Kumar Oxide and Metal rich-Oxide Based Spectrally Selective Absorber Coatings for Solar Thermal Applications
Medwick et al. Corrosion resistant solar mirror
EP1654398B1 (en) Emision enhancing coating, article to which the coating is applied and method for applying the coating to a surface
CN204494880U (zh) 一种提高热吸收效率的太阳能选择性吸收涂层
CN204513832U (zh) 用于平板太阳能集热器的选择太阳能吸收涂层
JP2019136954A (ja) 積層体
JP2019006035A (ja) 積層体
JP2019147277A (ja) 積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066007.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10739335

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6807/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10739335

Country of ref document: EP

Kind code of ref document: A1