WO2011120059A2 - Verfahren und vorrichtung zur entstickung von rauchgasen - Google Patents

Verfahren und vorrichtung zur entstickung von rauchgasen Download PDF

Info

Publication number
WO2011120059A2
WO2011120059A2 PCT/AT2011/000115 AT2011000115W WO2011120059A2 WO 2011120059 A2 WO2011120059 A2 WO 2011120059A2 AT 2011000115 W AT2011000115 W AT 2011000115W WO 2011120059 A2 WO2011120059 A2 WO 2011120059A2
Authority
WO
WIPO (PCT)
Prior art keywords
flue gases
oxidation
catalyst
denitrification
catalytic
Prior art date
Application number
PCT/AT2011/000115
Other languages
English (en)
French (fr)
Other versions
WO2011120059A3 (de
Inventor
Manfred Lisberger
Original Assignee
Scheuch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scheuch Gmbh filed Critical Scheuch Gmbh
Publication of WO2011120059A2 publication Critical patent/WO2011120059A2/de
Publication of WO2011120059A3 publication Critical patent/WO2011120059A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8656Successive elimination of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/912HC-storage component incorporated in the catalyst

Definitions

  • the invention relates to a method for denitrification of carbon monoxide and / or gaseous organic substances containing flue gases by selective catalytic reduction of nitrogen oxides in at least one Entstickungskatalysator, the flue gases before the catalytic reduction by heat exchange of the Norwichge ⁇ recovered residual heat of the denitrified flue gases on a katalyti ⁇ reaction temperature are heated.
  • the invention relates to a device for denitrification of carbon monoxide and / or gaseous organic substances containing flue gases, with at least one denitrification catalyst for the catalytic reduction of nitrogen oxides, and at least one heat exchanger for heating the flue gases from recovery of the residual heat of the denitrified flue gases before the catalytic reduction to a catalytic reaction temperature.
  • the present invention relates in principle to the denitrification of any flue gases, which carbon monoxide
  • gaseous organic substances for example flue gases, which are produced in cement clinker production, in brick manufacture, in the glass industry, in the insulation industry or in sintering plants in the steel industry.
  • the selective catalytic denitrification is arranged after dedusting.
  • the exhaust gases usually have a temperature below the reaction temperature of the catalyst and therefore must be reheated.
  • For a catalytic denitrification reaction temperatures are necessary depending on the gas composition of at least> 160 ° C to> 300 ° C.
  • the exhaust gases must be heated to at least 240 ° C.
  • This heating of the flue gases is standard by a heat exchanger or regenerator, which extracts the heat from the denitrified flue gases and the
  • AT 505 542 Bl describes a plant for purifying the flue gases in cement production, the flue gases having at least one incinerator
  • Power generation such as a gas turbine or a gas engine, which is operated in particular with natural gas, are heated.
  • the object of the present invention is to provide a method and a device of the abovementioned type, by means of which the use of external energy can be minimized or avoided and nevertheless a high degree of denitration can be achieved. Disadvantages of known methods or devices should be reduced or avoided.
  • the object of the invention is achieved in terms of the method in that the losses of the heat exchange are at least partially compensated by catalytic oxidation of the carbon monoxide and / or the gaseous organic substances.
  • the carbon monoxide and / or the gaseous organic substances in the flue gases are post-oxidized by means of an oxidation catalyst.
  • the heat of reaction liberated in this oxidation can be used to increase the temperature of the flue gases to the catalytic reaction temperature.
  • the POWER SAVE ⁇ leaders form the heating of the flue gases for catalytic reduction and the carbon contained in the flue gases monoxide and / or reduce the gaseous organic substances.
  • the necessary amount of energy for example in the form of thermal or electrical energy, can be significantly reduced by the method according to the invention or the supply of external energy only when starting and stopping
  • the flue gases are thus not only de-embroidered, but also reduces their carbon monoxide content and their content of gaseous organic substances.
  • VOCs Volatile Organic Compounds
  • the catalysts used also act as heat exchangers, since they also contain ceramic or mineral materials.
  • the flue gases are passed ckungskatalysator in alternating direction through at least one channel having at least two therein is arrange ⁇ th heat storage masses and at least one is arranged between the heat storage masses oxidation catalyst and at least one is arranged between the heat storage masses denitrification.
  • ⁇ th heat storage masses at least one is arranged between the heat storage masses oxidation catalyst and at least one is arranged between the heat storage masses denitrification.
  • the flue gases are regeneratively heated to the temperature required for the catalytic reduction. Due to the oxidation, the process can proceed with sufficient contents of carbon monoxide and / or organic compounds without external energy supply.
  • the temperatures in this embodiment of the denitrification catalyst are usually between 160 ° C and 600 ° C, preferably between 200 ° C and 600 ° C and the temperatures of the oxidation catalyst between 150 ° C and 700 ° C, preferably between 200 ° C and 600 ° C. ,
  • the flue gases are passed through the at least one channel with the at least one oxidation catalyst and at least one denitrification catalyst having at least one heat storage mass between the at least one oxidation catalyst and the at least one denitrification catalyst.
  • a heat storage mass is provided between each of the catalysts, so that they work at different temperature levels.
  • the temperatures in this embodiment of the denitrification catalyst are usually between 160 ° C and 600 ° C, preferably between 200 ° C and 500 ° C and the temperatures of the oxidation catalyst between 150 ° C and 700 ° C, preferably between 350 ° C and 600 ° C.
  • catalysts can to separate oxidation and Entstickungskataly- the flue gases also in alternating direction through the at least one channel with at least one combined oxidation and denitrification catalyst for combined catalytic, ⁇ tables oxidation and denitrification. be directed.
  • the catalytic oxidation is carried out in a channel in at least one oxidation catalytic converter downstream of the at least one denitrification catalyst.
  • the flue gases are brought through a heat exchanger, such as plate heat exchanger, to the necessary reaction temperatures of 160 ° C to 550 ° C, preferably 250 ° C to 450 ° C.
  • the flue gases are passed into a channel with at least one oxidation catalyst and at least one denitrification catalyst arranged therein, and the flue gases are recuperatively heated by the purified flue gases through a heat exchanger, for example a plate heat exchanger.
  • a heat exchanger for example a plate heat exchanger.
  • Flue gas contained organic substances at least partially removed before the catalytic oxidation by adsorption from the flue gas.
  • the catalyst used for the catalytic oxidation is relatively quickly inoperative.
  • the adsorption step may include beispielswei ⁇ se activated carbon as an adsorbent, thus preventing the entry of organic compounds, which would poison the oxidation catalyst or block the active sites.
  • the fumes may be a combined oxidation and Entsti ⁇ ckungskatalysator oxidized catalytically denitrified and also in at least.
  • This external heat energy can be supplied, for example, by burning petroleum or natural gas or by electrical energy.
  • the content of carbon monoxide and / or gaseous organic substances in the flue gases can be purposefully increased by control measures. For example, in cement production by reducing the air supply in the rotary kiln, the content of carbon monoxide can be increased and thus the energy production by the post-oxidation can be improved.
  • the object of the invention is also achieved by an above-mentioned device for denitrification of carbon monoxide and / or gaseous organic substances containing flue gases, to compensate for the losses of heat exchange at least one oxidation catalyst for the catalytic oxidation of carbon monoxide and / or gaseous organic substances is provided.
  • the advantages of the device according to the invention can be taken from the abovementioned advantages of the denitrification process.
  • the at least one oxidation catalytic converter and the at least one denitrification catalyst are arranged in at least one channel with at least two heat storage masses arranged therein and a control device is provided for guiding the flue gases in an alternating direction through the at least one channel.
  • the at least one oxidation catalyst and the at least one denitrification catalyst can be arranged separately between the at least two heat storage masses arranged in the at least one channel, wherein at least one heat storage mass can be arranged between the at least one oxidation catalyst and the at least one denitrification catalyst.
  • at least one combined oxidation and denitrification catalyst can be provided for the combined catalytic oxidation and denitrification in the at least one channel.
  • the at least one oxidation catalyst may be connected downstream of the at least one Entstickungskata ⁇ lyst.
  • a stage for the adsorption of organic substances from the flue gases can be provided.
  • Activated carbon e.g. Activated carbon
  • bag filter with a supply line for a corresponding adsorbent is also conceivable.
  • At least one combined oxidation and denitrification catalyst for the combined catalytic oxidation and denitrification can be provided.
  • the at least one oxidation catalyst may be formed, for example, by a metal-doped zeolite catalyst.
  • the at least one denitrification catalyst can be formed, for example, by a vanadium-tungsten-titanium oxide catalyst.
  • the oxidation catalyst, the denitrification catalyst or the combined oxidation and denitrification catalyst can be formed at ⁇ example by a zeolite catalyst, for example doped with copper or iron, with a catalytic reaction temperature in the range of 160 ° C to 700 ° C.
  • the heat storage masses of the regenerators are preferably formed by ceramic honeycomb bodies.
  • the catalysts are preferably likewise honeycomb-shaped.
  • a device for supplying external heat energy for starting and / or maintaining the catalytic reaction temperature is provided.
  • the external heat energy can be dissipated by thermal energy, e.g. Natural gas or petroleum or generated by electrical energy.
  • the energy yield of the post-oxidation can be increased.
  • these agents can be used to specifically increase the content of carbon monoxide and / or gaseous organic substances, for example by means of a throttle
  • the control device for the alternating conduction of the flue gases can be formed by corresponding flaps.
  • Fig. 1 is a schematic view of a first embodiment of a device according to the present invention
  • Fig. 2 is a schematic view of a second embodiment of a device according to the present invention.
  • Fig. 3 is a schematic view of a third embodiment of a device according to the present invention.
  • Fig. 4 is a schematic view of a fourth embodiment of a device according to the present invention.
  • Fig. 5 is a schematic view of a fifth embodiment of a device according to the present invention.
  • Fig. 1 shows a first possible embodiment of the device according to Inventive ⁇ .
  • the device according to Inventive ⁇ .
  • the flow direction is alternated periodically and so can the
  • the additional necessary heat can be supplied, which is indicated by the line 5.
  • Gaseous fuel for example natural gas
  • the control of the alternating flow direction is effected by appropriate control means, which are realized here by flaps 8-11.
  • the heat storage masses 1 may be formed by ceramic honeycomb body. In this variant, the denitrification catalysts 3 and oxidation catalysts 4 operate on similar
  • Fig. 2 shows another possible embodiment of the device according to the invention. This embodiment is similar to the first embodiment of FIG. 1 and differs by the additional heat storage masses 2.
  • the denitrification catalysts 3 and the oxidation catalysts 4 operate at a significantly different temperature level. For example, the inlet temperature of the
  • Oxidation catalysts 4 are 100 ° C to 2-00 ° C higher than the inlet temperatures of denitrification 3.
  • FIG. 3 A third embodiment of a Vorrich ⁇ device according to the invention is shown in FIG. 3.
  • the flue gases A are directed in an alternating direction through a channel 7.
  • two heat storage masses ⁇ 1 are in turn arranged therebetween ckungs- or a combined denitrification oxidation catalyst 12 is provided.
  • FIG. 1 A fourth embodiment of the device according to the invention is shown in FIG.
  • the flue gas A is freed from the organic compounds by an adsorber 14 and then further treated as described in FIG.
  • FIG. 1 A fifth embodiment of the device according to the invention is shown in FIG.
  • the flue gas A is brought by means of heat exchanger 13 through the hotter, purified flue gas to a temperature level which corresponds approximately to the reaction temperature T R.
  • the heat exchanger 13 may be formed by a plate heat exchanger or tube bundle heat exchanger. The necessary further increase of the temperature level on the
  • Reaction temperature T R can be partially or completely by the oxidation of the carbon monoxide CO and / or the gaseous organic compounds. Should the concentration of carbon monoxide in the flue gases A not be sufficient to carry the rest of the temperature increase in full, additional thermal or electrical energy must be supplied via line 5. Via line 5a in turn fuel can be supplied.
  • ammonia-releasing compounds for example ammonia water, are introduced via the line 6 into the channel 7. After the ammonia task, the flue gases A flow through the denitrification catalyst 3 and then the downstream oxidation catalyst 4. The hotter cleaned flue gas B then releases the heat energy in the heat exchanger 13 to the colder uncleaned flue gas A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Entstickung von Kohlenstoffmonoxid (CO) und/oder gasförmige organische Stoffe enthaltenden Rauchgasen (A) mit zumindest einem Entstickungskatalysator (3) zur katalytischen Reduktion der Stickoxide (NOx) und zumindest einem Wärmetauscher zur Erwärmung der Rauchgase (A) aus Rückgewinnung der Restwärme der entstickten Rauchgase (A) vor der katalytischen Reduktion auf eine katalytische Reaktionstemperatur (TR). Zur Schaffung eines Verfahrens und einer Vorrichtung, durch welche der Einsatz externer Energie minimiert oder vermieden werden kann und dennoch ein hoher Entstickungsgrad erreicht werden kann, ist zum Ausgleich der Verluste des Wärmetauschs zumindest ein Oxidationskatalysator (4) zur katalytischen Oxidation des Kohlenstoffmonoxids (CO) und/oder der gasförmigen organischen Stoffe vorgesehen.

Description

Verfahren und Vorrichtung zur Entstickung von Rauchgasen
Die Erfindung betrifft ein Verfahren zur Entstickung von Kohlen- stoffmonoxid und/oder gasförmige organische Stoffe enthaltenden Rauchgasen durch selektive katalytische Reduktion der Stickoxide in zumindest einem Entstickungskatalysator , wobei die Rauchgase vor der katalytischen Reduktion durch Wärmeaustausch der rückge¬ wonnenen Restwärme der entstickten Rauchgase auf eine katalyti¬ sche Reaktionstemperatur erwärmt werden.
Weiters betrifft die Erfindung eine Vorrichtung zur Entstickung von Kohlenstoffmonoxid und/oder gasförmige organische Stoffe enthaltenden Rauchgasen, mit zumindest einem Entstickungskatalysator zur katalytischen Reduktion der Stickoxide, und zumindest einem Wärmetauscher zur Erwärmung der Rauchgase aus Rückgewinnung der Restwärme der entstickten Rauchgase vor der katalyti- schen Reduktion auf eine katalytische Reaktionstemperatur.
Die vorliegende Erfindung bezieht sich prinzipiell auf die Entstickung beliebiger Rauchgase, welche Kohlenstoffmonoxid
und/oder gasförmige organische Stoffe enthalten, beispielsweise Rauchgase, die bei der Zementklinkerherstellung, in der Ziegelherstellung, Glasindustrie, DämmstoffIndustrie oder bei Sinteranlagen in der Stahlindustrie anfallen.
Vorteilhafter Weise wird die selektive katalytische Entstickung nach der Entstaubung angeordnet. Die Abgase weisen üblicherweise eine Temperatur unter der Reaktionstemperatur des Katalysators auf und müssen daher wieder aufgeheizt werden. Für eine katalytische Entstickung sind Reaktionstemperaturen je nach Gaszusammensetzung von mindestens > 160°C bis > 300°C notwendig.
Beispielsweise müssen bei 10 mg/Nm3 S02 die Abgase auf mindestens 240°C aufgeheizt werden. Diese Erwärmung der Rauchgase wird standardmäßig durch einen Wärmetauscher bzw. Regenerator, welcher den entstickten Rauchgasen die Wärme entzieht und den
Rauchgasen vor der katalytischen Reduktion zuführt. Die Wärmeverluste des Wärmeaustauschs bei der rekuperativen bzw. regene¬ rativen Entstickung werden durch Zufuhr von zusätzlicher Energie ausgeglichen. Diese zusätzliche Energie kann beispielsweise durch einen Gasbrenner oder ein Elektroheizregister zugeführt werden .
Die AT 505 542 Bl beschreibt beispielsweise eine Anlage zur Reinigung der Rauchgase bei der Zementherstellung, wobei die Rauchgase mit zumindest einer Verbrennungseinrichtung zur
Stromerzeugung, beispielsweise einer Gasturbine oder einem Gasmotor, die bzw. der insbesondere mit Erdgas betrieben wird, erhitzt werden.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren und eine Vorrichtung der oben genannten Art zu schaffen, durch welche der Einsatz externer Energie minimiert oder vermieden werden kann und dennoch ein hoher Entstickungsgrad erreicht werden kann. Nachteile bekannter Verfahren bzw. Vorrichtungen sollen reduziert bzw. vermieden werden.
Gelöst wird die erfindungsgemäße Aufgabe in verfahrensmäßiger Hinsicht dadurch, dass die Verluste des Wärmeaustauschs zumindest teilweise durch katalytische Oxidation des Kohlenstoffmon- oxids und/oder der gasförmigen organischen Stoffe ausgeglichen werden. Erfindungsgemäß ist also vorgesehen, dass das Kohlen- stoffmonoxid und/oder die gasförmigen organischen Stoffe in den Rauchgasen mittels eines Oxidationskatalysators nachoxidiert werden. Die bei dieser Oxidation freiwerdende Reaktionswärme kann zur Erhöhung der Temperatur der Rauchgase auf die katalytische Reaktionstemperatur verwendet werden. Neben der energiespa¬ renden Form der Erwärmung der Rauchgase für die katalytische Reduktion werden auch das in den Rauchgasen enthaltene Kohlen- stoffmonoxid und/oder die gasförmigen organischen Stoffe gesenkt. Die notwendige Energiemenge, beispielsweise in Form von thermischer oder elektrischer Energie, kann durch das erfindungsgemäße Verfahren erheblich gesenkt werden bzw. ist die Zufuhr von externer Energie nur beim Anfahren und Abfahren
notwendig. Der Aufwand für die Umsetzung des erfindungsgemäßen Verfahrens ist relativ gering und das Verfahren somit kostengünstig durchführbar. Bei der vorliegenden Erfindung werden die Rauchgase somit nicht nur entstickt, sondern auch deren Kohlenstoffmonoxidgehalt und deren Gehalt an gasförmigen organischen Stoffen reduziert. Durch die Reduktion der gasförmigen organischen Stoffe, insbesondere organischer Verbindungen sogenannter „Volatile Organic Compounds" (VOCs) , kann die Geruchsbelastung durch die Rauchgase reduziert werden. Bei regenerativen Verfahren arbeiten neben den eigentlichen Wärmespeichermassen auch die eingesetzten Katalysatoren als Wärmetauscher, da sie ebenfalls keramische oder mineralische Materialien beinhalten.
Gemäß einer Ausführungsvariante des erfindungsgemäßen Verfahrens ist vorgesehen, dass die Rauchgase in alternierender Richtung durch zumindest einen Kanal mit zumindest zwei darin angeordne¬ ten Wärmespeichermassen und zumindest einem zwischen den Wärmespeichermassen angeordneten Oxidationskatalysator und zumindest einem zwischen den Wärmespeichermassen angeordneten Entsti- ckungskatalysator geleitet werden. Bei dieser Variante des erfindungsgemäßen Entstickungsverfahrens werden
Wärmespeichermassen, Oxidationskatalysator und Entstickungskata- lysator zur katalytischen Reduktion in einem Kanal kombiniert und durch die alternierende Richtung der Rauchgase werden die Rauchgase regenerativ auf die für die katalytische Reduktion erforderliche Temperatur aufgeheizt. Durch die Oxidation kann das Verfahren bei ausreichenden Gehalten an Kohlenstoffmonoxid und/oder organischen Verbindungen ohne externe Energiezuführung ablaufen. Die Temperaturen liegen bei dieser Ausführungsvariante beim Entstickungskatalysator üblicherweise zwischen 160°C und 600°C, vorzugsweise zwischen 200°C und 600°C und die Temperaturen des Oxidationskatalysators zwischen 150°C und 700°C, vorzugsweise zwischen 200°C und 600°C.
Gemäß einer weiteren Ausführungsvariante werden die Rauchgase durch den zumindest einen Kanal mit dem zumindest einen Oxidationskatalysator und- zumindest einen Entstickungskatalysator mit zumindest einer Wärmespeichermasse zwischen dem zumindest einen Oxidationskatalysator und dem zumindest einen Entstickungskatalysator geleitet. Bei diesem Ausführungsbeispiel ist zwischen den Katalysatoren jeweils eine Wärmespeichermasse vorgesehen, damit diese auf unterschiedlichen Temperaturniveaus arbeiten. Die Temperaturen liegen bei dieser Ausführungsvariante beim Entstickungskatalysator üblicherweise zwischen 160°C und 600°C, vorzugsweise zwischen 200°C und 500°C und die Temperaturen des Oxidationskatalysators zwischen 150°C und 700°C, vorzugsweise zwischen 350°C und 600°C. Alternativ zu den getrennten Oxidations- und Entstickungskataly- satoren können die Rauchgase auch in alternierender Richtung durch den zumindest einen Kanal mit zumindest einem kombinierten Oxidations- und Entstickungskatalysator zur kombinierten kataly¬ tischen Oxidation und Entstickung. geleitet werden.
Gemäß einer weiteren Ausführungsvariante wird die katalytische Oxidation in einem Kanal in zumindest einem dem zumindest einen Entstickungskatalysator nachgeschalteten Oxidationskatalysator durchgeführt. Die Rauchgase werden durch einen Wärmetauscher, beispielsweise Plattenwärmetauscher, auf die notwendigen Reaktionstemperaturen von 160°C bis 550°C, vorzugsweise 250°C bis 450°C, gebracht.
Bei einer Variante des Verfahrens werden die Rauchgase in einen Kanal mit darin angeordnetem zumindest einen Oxidationskatalysator und zumindest einen Entstickungskatalysator geleitet und die Rauchgase durch die gereinigten Rauchgase durch einen Wärmetauscher, beispielsweise Plattenwärmetauscher, rekuperativ erwärmt.
Gemäß einer weiteren Ausführungsvariante werden die in dem
Rauchgas enthaltenen organischen Stoffe zumindest teilweise vor der katalytischen Oxidation mittels Adsorption aus dem Rauchgas entfernt. Im Rauchgas enthaltene organische Stoffe führen dazu, dass der für die katalytische Oxidation eingesetzte Katalysator relativ schnell betriebsunfähig ist. Durch das Vorsehen einer Adsorptionsstufe können diese störenden organischen Stoffe vor der katalytischen Oxidation aus dem Rauchgas entfernt werden, wodurch die Einsatzfähigkeit des Oxidationskatalysators vorteilhaft erhöht werden kann. Die Adsorptionsstufe kann beispielswei¬ se Aktivkohle als Adsorbens enthalten und verhindert somit den Eintritt der organischen Verbindungen, welche den Oxidationskatalysator vergiften bzw. die aktiven Zentren blockieren würden.
Gemäß einer weiteren Ausführungsvariante können die Rauchgase auch in zumindest einem kombinierten Oxidations- und Entsti¬ ckungskatalysator katalytisch oxidiert und entstickt werden.
Zum Starten und/oder zum Aufrechterhalten der katalytischen Re- aktionstemperatur kann externe Wärmeenergie zugeführt werden. Diese externe Wärmeenergie kann beispielsweise durch Verbrennung von Erdöl oder Erdgas oder durch elektrische Energie zugeführt werden .
Zur Erhöhung der bei der Nachoxidation erzielbaren Energie kann gemäß einer weiteren Ausführungsvariante der vorliegenden Erfindung der Gehalt an Kohlenstoffmonoxid und/oder gasförmigen organischen Stoffen in den Rauchgasen durch steuerungstechnische Maßnahmen gezielt erhöht werden. Beispielsweise kann bei der Zementherstellung durch Reduktion der Luftzufuhr im Drehrohrofen der Gehalt an Kohlenstoffmonoxid erhöht und somit die Energiegewinnung durch die Nachoxidation verbessert werden.
Gelöst wird die erfindungsgemäße Aufgabe auch durch eine oben genannte Vorrichtung zur Entstickung von Kohlenstoffmonoxid und/oder gasförmige organische Stoffe enthaltenden Rauchgasen, wobei zum Ausgleich der Verluste des Wärmeaustauschs zumindest ein Oxidationskatalysator zur katalytischen Oxidation des Kohlenstoffmonoxids und/oder der gasförmigen organischen Stoffe vorgesehen ist. Die Vorteile der erfindungsgemäßen Vorrichtung können den bereits oben genannten Vorteilen des Entstickungsver- fahrens entnommen werden.
Bei einer Ausführungsvariante der erfindungsgemäßen Vorrichtung ist der zumindest eine Oxidationskatalysator und der zumindest eine Entstickungskatalysator in zumindest einem Kanal mit zumindest zwei darin angeordneten Wärmespeichermassen angeordnet und eine Steuerungseinrichtung, zur Leitung der Rauchgase in alternierender Richtung durch den zumindest einen Kanal vorgesehen.
Alternativ können der zumindest eine Oxidationskatalysator und der zumindest eine Entstickungskatalysator getrennt voneinander zwischen den zumindest zwei in dem zumindest einen Kanal angeordneten Wärmespeichermassen angeordnet sein, wobei zwischen dem zumindest einen Oxidationskatalysator und dem zumindest einen Entstickungskatalysator zumindest eine Wärmespeichermasse angeordnet sein kann. Alternativ dazu kann auch zumindest ein kombinierter Oxidations- und Entstickungskatalysator zur kombinierten katalytischen Oxi- dation und Entstickung in dem zumindest einen Kanal vorgesehen sein .
Gemäß einer alternativen Ausführungsvariante kann der zumindest eine Oxidationskatalysator dem zumindest einen Entstickungskata¬ lysator nachgeschaltet sein.
Wie bereits oben erwähnt, kann eine Stufe zur Adsorption von organischen Stoffen aus den Rauchgasen vorgesehen sein.
Für die Adsorption kann z.B. Aktivkohle verwendet werden. Gemäß einem weiteren Merkmal der vorliegenden Erfindung ist auch der Einsatz eines Schlauchfilters mit einer Zuleitung für ein entsprechendes Adsorbens denkbar.
Auch bei der Variante ohne alternierender Strömung der Rauchgase durch den Kanal kann zumindest ein kombinierter Oxidations- und Entstickungskatalysator zur kombinierten katalytischen Oxidation und Entstickung vorgesehen sein.
Der zumindest eine Oxidationskatalysator kann beispielsweise durch einen Metall-dotierten Zeolith-Katalysator gebildet sein.
Der zumindest eine Entstickungskatalysator kann beispielsweise durch einen Vanadium-Wolfram-Titanoxid-Katalysator gebildet sein .
Der Oxidationskatalysator, der Entstickungskatalysator oder der kombinierte Oxidations- und Entstickungskatalysator kann bei¬ spielsweise durch einen Zeolith-Katalysator, beispielsweise mit Kupfer oder Eisen dotiert, mit einer katalytischen Reaktionstemperatur im Bereich von 160°C bis 700°C gebildet sein. Die Wärmespeichermassen der Regeneratoren sind vorzugsweise durch keramische Wabenkörper gebildet. Die Katalysatoren sind vorzugsweise ebenfalls wabenförmig aufgebaut.
Gemäß einem weiteren Merkmal der Erfindung ist eine Vorrichtung zur Zuführung von externer Wärmeenergie zum Starten und/oder zum Aufrechterhalten der katalytischen Reaktionstemperatur vorgesehen. Wie bereits oben erwähnt, kann die externe Wärmeenergie durch thermische Energie wie z.B. Erdgas oder Erdöl oder durch elektrische Energie erzeugt werden.
Durch Mittel zur gezielten Erhöhung des Gehalts an Kohlenstoff- monoxid und/oder gasförmigen organischen Stoffen in den Rauchgasen kann die Energieausbeute der Nachoxidation erhöht werden. Wie bereits oben erwähnt können diese Mittel zur gezielten Erhöhung des Gehalts an Kohlenstoffmonoxid und/oder gasförmigen organischen Stoffen, beispielsweise durch eine Drossel zur
Reduktion der Luftzufuhr in einem Ofen, in welchem die Rauchgase erzeugt werden, gebildet sein. Durch diese verschlechterten Verbrennungsbedingungen im Ofen kann somit der Kohlenstoffmonoxid- gehalt und/oder der Gehalt an gasförmigen organischen Stoffen mit geringem technischen Aufwand erhöht werden.
Die Steuereinrichtung zur alternierenden Leitung der Rauchgase kann durch entsprechende Klappen gebildet sein.
Die vorliegende Erfindung wird anhand der beigefügten Zeichnun¬ gen näher erläutert. Darin zeigen:
Fig. 1 eine schematische Ansicht einer ersten Ausführungsform einer Vorrichtung gemäß der vorliegenden Erfindung;
Fig. 2 eine schematische Ansicht einer zweiten Ausführungsform einer Vorrichtung gemäß der vorliegenden Erfindung;
Fig. 3 eine schematische Ansicht einer dritten Ausführungsform einer Vorrichtung gemäß der vorliegenden Erfindung;
Fig. 4 eine schematische Ansicht einer vierten Ausführungsform einer Vorrichtung gemäß der vorliegenden Erfindung; und Fig. 5 eine schematische Ansicht einer fünften Ausführungsform einer Vorrichtung gemäß der vorliegenden Erfindung.
Fig. 1 zeigt eine erste mögliche Ausführungsform der erfindungs¬ gemäßen Vorrichtung. Bei dieser Ausführungsform werden die
Rauchgase A in alternierender Richtung durch zumindest einen Ka¬ nal 7 mit darin angeordneten Wärmespeichermassen 1, 2 und dazwi¬ schen angeordnetem Oxidationskatalysator 4 zur Nachoxidation des Kohlenstoffmonoxids CO und/oder der gasförmigen organischen Stoffe sowie Entstickungskatälysatoren 3 zur katalytischen Reduktion der Stickoxide der Rauchgase A geleitet. Durch die alternierende Durchströmungsrichtung wird den Wärmespeichermassen 1 beim Aufwärtsströmen den Rauchgasen A die Wärmeenergie periodisch entzogen, welche erforderlich ist, um die Rauchgase A auf die Reaktionstemperatur TR der Entstickungskatälysatoren 3 und des Oxidationskatalysators 4 zu bringen. Nach dem Erreichen der notwendigen Reaktionstemperatur TR und den erfolgten chemischen Reaktionen geben die Rauchgase beim Abwärtsströmen die Wärmeenergie periodisch an die Wärmespeicher 1 wieder ab. Die Strömungsrichtung wird periodisch alterniert und so können die
Regeneratoren nie zu stark abkühlen oder überhitzt werden. Über eine externe Beheizung kann die zusätzlich notwendige Wärme zugeführt werden, was anhand der Leitung 5 angedeutet wird. Über eine Leitung 5a kann gasförmiger Brennstoff, beispielsweise Erdgas, zugeführt werden. Über entsprechende Leitungen 6 werden die für die katalytische Reduktion in den Entstickungskatälysatoren 3 erforderlichen Ammoniak abgebenden Verbindungen, vorzugsweise Ammoniakwasser, zugesetzt. Die Steuerung der alternierenden Durchströmungsrichtung erfolgt durch entsprechende Steuereinrichtungen, welche hier durch Klappen 8-11 realisiert sind. Die Wärmespeichermassen 1 können durch keramische Wabenkörper gebildet sein. Bei dieser Variante arbeiten die Entstickungskatälysatoren 3 und Oxidationskatalysatoren 4 auf ähnlichem
Temperaturniveau .
Fig. 2 zeigt eine weitere mögliche Ausführungsform der erfindungsgemäßen Vorrichtung. Diese Ausführungsvariante ist der ersten Ausführungsvariante gemäß Fig. 1 ähnlich und unterscheidet sich durch die zusätzlichen Wärmespeichermassen 2. Bei dieser Variante arbeiten die Entstickungskatalysatoren 3 und die Oxidationskatalysatoren 4 auf deutlich unterschiedlichem Temperaturniveau. Beispielsweise kann die Eintrittstemperatur der
Oxidationskatalysatoren 4 100°C bis 2-00°C höher liegen als die Eintrittstemperaturen der Entstickungskatalysatoren 3.
Eine dritte Ausführungsform für eine erfindungsgemäße Vorrich¬ tung ist in der Fig. 3 dargestellt. Gemäß dieser Ausführungsform werden die Rauchgase A in alternierender Richtung durch einen Kanal 7 geleitet. Im Kanal 7 sind wiederum zwei Wärmespeicher¬ massen 1 angeordnet und dazwischen ein kombinierter Entsti- ckungs- bzw. Oxidationskatalysator 12 vorgesehen.
Eine vierte Ausführungsform der erfindungsgemäßen Vorrichtung ist in Fig. 4 dargestellt. Das Rauchgas A wird durch einen Ad- sorber 14 von den organischen Verbindungen befreit und anschließend, wie in Fig. 1 beschrieben, weiter behandelt.
Eine fünfte Ausführungsform der erfindungsgemäßen Vorrichtung ist in Fig. 5 dargestellt. Das Rauchgas A wird mittels Wärmetauscher 13 durch das heißere, gereinigte Rauchgas auf ein Temperaturniveau gebracht, das annähernd der Reaktionstemperatur TR entspricht. Der Wärmetauscher 13 kann durch einen Plattenwärmetauscher oder Rohrbündelwärmetauscher gebildet sein. Die notwendige weitere Erhöhung des Temperaturniveaus auf die
Reaktionstemperatur TR kann teilweise oder aber auch zur Gänze durch die Oxidation des Kohlenstoffmonoxids CO und/oder der gasförmigen organischen Verbindungen erfolgen. Sollte die Konzentration des Kohlenstoffmonoxids in den Rauchgasen A nicht ausreichend sein, um die restliche Temperaturerhöhung zur Gänze zu tragen, muss zusätzlich thermische oder elektrische Energie über Leitung 5 zugeführt werden. Über Leitung 5a kann wiederum Brennstoff zugeführt werden. Zur Entstickung werden über die Leitung 6 in den Kanal 7 Ammoniak abgebende Verbindungen, beispielsweise Ammoniakwasser, eingebracht. Nach der Ammoniakaufgabe durchströmen die Rauchgase A den Entstickungskatalysator 3 und anschließend den nachgeschalteten Oxidationskatalysator 4. Das heißere gereinigte Rauchgas B gibt dann die Wärmeenergie im Wärmetauscher 13 an das kältere ungereinigte Rauchgas A ab.

Claims

Patentansprüche :
1. Verfahren zur Entstickung von Kohlenstoffmonoxid (CO)
und/oder gasförmige organische Stoffe enthaltenden Rauchgasen (A) durch selektive katalytische Reduktion der Stickoxide (NOJ in zumindest einem Entstickungskatalysator (3), wobei die Rauchgase (A) vor der katalytischen Reduktion durch Wärmeaustausch der rückgewonnenen Restwärme der entstickten Rauchgase (A) auf eine katalytische Reaktionstemperatur (TR) erwärmt werden, da¬ durch gekennzeichnet, dass die Verluste des Wärmeaustauschs zumindest teilweise durch katalytische Oxidation des
Kohlenstoffmonoxids (CO) und/oder der gasförmigen organischen Stoffe in zumindest einem Oxidationskatalysator (4) ausgeglichen werden .
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Rauchgase (A) in alternierender Richtung durch zumindest einen Kanal (7) mit zumindest zwei darin angeordneten Wärmespeichermassen (1) und zumindest einem zwischen den Wärmespeichermassen (1) angeordneten Oxidationskatalysator (4) und zumindest einem zwischen den Wärmespeichermassen (1) angeordneten Entstickungskatalysator (3) geleitet werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Rauchgase (A) durch den zumindest einen Kanal (7) mit dem zumin¬ dest einen Oxidationskatalysator (4) und zumindest einen Entstickungskatalysator (3) mit zumindest einer Wärmespeichermasse (2) zwischen dem zumindest einen Oxidationskatalysator (4) und dem zumindest einen Entstickungskatalysator (3) geleitet werden.
4'. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Rauchgase (A) in alternierender Richtung durch den zumindest einen Kanal (7) mit zumindest einem kombinierten Oxidations- und Entstickungskatalysator (12) geleitet werden.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die katalytische Oxidation in zumindest einem dem zumindest einen Entstickungskatalysator (3) nachgeschaltetem Oxidationskatalysator (4) durchgeführt wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Rauchgase (A) in einen Kanal (7) mit darin angeordnetem zumin¬ dest einen Oxidationskatalysator (4) und zumindest einen Entsti¬ ckungskatalysator (.3) geleitet werden und die Rauchgase (A) durch die gereinigten Rauchgase (B) durch einen Wärmetauscher (13) rekuperativ erwärmt werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in den Rauchgasen (A) enthaltene organische Stof¬ fe vor der katalytischen Oxidation mittels Adsorption zumindest teilweise entfernt werden.
8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Rauchgase (A) in zumindest einem kombinierten Oxidations- und Entstickungskatalysator (12) katalytisch oxi- diert und entstickt werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekenn¬ zeichnet, dass zum Starten und/oder zum Aufrechterhalten der katalytischen Reaktionstemperatur (TR) externe Wärmeenergie
zugeführt wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekenn¬ zeichnet, dass der Gehalt an Kohlenstoffmonoxid (CO) und/oder gasförmigen organischen Stoffen in den Rauchgasen (A) durch steuerungstechnische Maßnahmen gezielt erhöht wird.
11. Vorrichtung zur Entstickung von Kohlenstoffmonoxid (CO) und/oder gasförmige organische Stoffe enthaltenden Rauchgasen (A) , mit zumindest einem Entstickungskatalysator (3) zur kataly¬ tischen Reduktion der Stickoxide (NOx) , und zumindest einem Wär¬ metauscher zur Erwärmung der Rauchgase (A) aus Rückgewinnung der Restwärme der entstickten Rauchgase (A) vor der katalytischen Reduktion auf eine katalytische Reaktionstemperatur (TR) , dadurch gekennzeichnet, dass zum Ausgleich der Verluste des Wärmeaus- tauschs zumindest ein Oxidationskatalysator (4) zur katalytischen Oxidation des Kohlenstoffmonoxids (CO) und/oder der gasförmigen organischen Stoffe vorgesehen ist.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der zumindest eine Oxidationskatalysator (4) und der zumindest eine Entstickungskatalysator (3) in zumindest einem Kanal (7)mit zumindest zwei darin angeordneten Wärmespeichermassen (1, 2) angeordnet sind, und eine Steuerungseinrichtung zur Leitung der Rauchgase (A) in alternierender Richtung durch den zumindest einen Kanal (7) vorgesehen ist.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass der zumindest eine Oxidationskatalysator (4) und der zumindest eine Entstickungskatalysator (3) getrennt voneinander zwischen den zumindest zwei Wärmespeichermassen (1, 2) in dem zumindest einen Kanal (7) angeordnet sind.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass zwischen dem zumindest einen Oxidationskatalysator (4) und dem zumindest einen Entstickungskatalysator (3) zumindest eine Wärmespeichermasse (2) in dem zumindest einen Kanal (7) angeordnet ist .
15. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass zumindest ein kombinierter Oxidations- und Entstickungskatalysator (12) zur kombinierten katalytischen Oxidation und Entsti- ckung in dem zumindest einen Kanal (7) vorgesehen ist.
16. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der zumindest eine Oxidationskatalysator (4) dem zumindest einen Entstickungskatalysator (3) nachgeschaltet ist und als Wärmetauscher ein Wärmetauscher (13) zur rekuperativen Erwärmung der Rauchgase (A) durch die gereinigten Rauchgase (B) angeordnet ist .
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass eine Stufe (14) zur Adsorption von organischen Stoffen aus den Rauchgasen (A) vorgesehen ist.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die Adsorptionsstufe (14) durch ein Schlauchfilter mit einer Zuleitung für das Adsorbens gebildet ist.
19. Vorrichtung nach einem der Ansprüche 16 bis 18, dadurch ge- kennzeichnet, dass zumindest ein kombinierter Oxidations- und Entstickungskatalysator (12) zur kombinierten katalytischen Oxi- dation und Entstickung vorgesehen ist.
20. Vorrichtung nach einem der Ansprüche 11 bis 19, dadurch gekennzeichnet, dass der zumindest eine Oxidationskatalysator (4) durch einen Metall-dotierten Zeolith-Katalysator gebildet ist.
21. Vorrichtung nach einem der Ansprüche 11 bis 20, dadurch gekennzeichnet, dass der zumindest eine Entstickungskatalysator (3) durch einen Vanadium-Wolfram-Titanoxid-Katalysator gebildet ist .
22. Vorrichtung nach einem der Ansprüche 11 bis 21, dadurch gekennzeichnet, dass der zumindest eine Oxidationskatalysator (4) und/oder der zumindest eine Entstickungskatalysator (3) und/oder der zumindest eine kombinierte Oxidations- und Entstickungskatalysator (12) durch einen Zeolith-Katalysator, beispielsweise mit Kupfer oder Eisen dotiert, mit einer katalytischen Reaktionstemperatur (TR) im Bereich von 160°C bis 700°C gebildet ist.
23. Vorrichtung nach einem der Ansprüche 11 bis 22, dadurch gekennzeichnet, dass die Wärmespeichermassen (1, 2) durch keramische Wabenkörper gebildet sind.
24. Vorrichtung nach einem der Ansprüche 11 bis 23, dadurch gekennzeichnet, dass eine Vorrichtung (5) zur Zuführung externer Wärmeenergie zum Starten und/oder Aufrechterhalten der katalytischen Reaktionstemperatur (TR) vorgesehen ist.
25. Vorrichtung nach einem der Ansprüche 11 bis 24, dadurch gekennzeichnet, dass Mittel zur gezielten Erhöhung des Gehalts an Kohlenstoffmonoxid (CO) und/oder gasförmigen organischen Stoffen in den Rauchgasen (A) vorgesehen sind.
26. Vorrichtung nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass die Steuereinrichtung zur alternierenden Leitung der Rauchgase (A) durch Klappen (8-11) gebildet ist.
PCT/AT2011/000115 2010-04-02 2011-03-09 Verfahren und vorrichtung zur entstickung von rauchgasen WO2011120059A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA541/2010 2010-04-02
AT5412010A AT508921B1 (de) 2010-04-02 2010-04-02 Verfahren und vorrichtung zur entstickung von rauchgasen

Publications (2)

Publication Number Publication Date
WO2011120059A2 true WO2011120059A2 (de) 2011-10-06
WO2011120059A3 WO2011120059A3 (de) 2011-12-01

Family

ID=43969178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2011/000115 WO2011120059A2 (de) 2010-04-02 2011-03-09 Verfahren und vorrichtung zur entstickung von rauchgasen

Country Status (2)

Country Link
AT (1) AT508921B1 (de)
WO (1) WO2011120059A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107952363A (zh) * 2017-10-17 2018-04-24 上海交通大学 一种低温烟气rt-scr蓄热催化还原脱硝系统及方法
WO2018073239A1 (de) * 2016-10-17 2018-04-26 Thyssenkrupp Industrial Solutions Ag Verfahren und anlage zur reinigung von vorwärmerabgasen einer anlage der zement- und/oder mineralsindustrie

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012018629A1 (de) * 2012-09-21 2014-03-27 Clariant International Ltd. Verfahren zur Reinigung von Abgas und zur Regenerierung eines Oxidationskatalysators
DE102014108153A1 (de) * 2014-06-10 2015-12-17 Elex Cemcat Ag Anlage mit einer ein Abgas erzeugenden Behandlungsvorrichtung, einem Oxidations- und einem Reduktionskatalysator sowie Verfahren zur Behandlung des Abgases in einer solchen Anlage
DE102014108152A1 (de) * 2014-06-10 2015-12-17 Thyssenkrupp Ag Abgasbehandlungsvorrichtung und Verfahren zur Abgasbehandlung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505542B1 (de) 2008-03-06 2009-02-15 Kirchdorfer Zementwerk Hofmann Anlage zur reinigung der rauchgase eines ofens

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT399828B (de) * 1993-07-23 1995-07-25 Kvt Verfahrenstech Gmbh Verfahren und anlage zur reinigung von abgasen
US5589142A (en) * 1994-07-27 1996-12-31 Salem Englehard Integrated regenerative catalytic oxidation/selective catalytic reduction abatement system
DE19720205B4 (de) * 1997-05-14 2006-05-18 Johannes Schedler Anlage zur Reinigung von mit Stickoxiden beladenen Abgasen
US7758831B2 (en) * 2004-09-30 2010-07-20 Babcock Power Environmental Inc. Systems and methods for removing materials from flue gas via regenerative selective catalytic reduction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505542B1 (de) 2008-03-06 2009-02-15 Kirchdorfer Zementwerk Hofmann Anlage zur reinigung der rauchgase eines ofens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073239A1 (de) * 2016-10-17 2018-04-26 Thyssenkrupp Industrial Solutions Ag Verfahren und anlage zur reinigung von vorwärmerabgasen einer anlage der zement- und/oder mineralsindustrie
CN107952363A (zh) * 2017-10-17 2018-04-24 上海交通大学 一种低温烟气rt-scr蓄热催化还原脱硝系统及方法

Also Published As

Publication number Publication date
AT508921B1 (de) 2011-05-15
WO2011120059A3 (de) 2011-12-01
AT508921A4 (de) 2011-05-15

Similar Documents

Publication Publication Date Title
AT507773B1 (de) Verfahren und vorrichtung zur entstickung von rauchgasen
EP2408541B1 (de) Kombinierte abgasbehandlung ammoniak- und stickoxid-haltiger abgasströme in industrieanlagen
EP0472605B1 (de) Anlage und verfahren zur thermischen abgasbehandlung
EP2569076B1 (de) Verfahren zur reinigung von abgasen mittels regenerativer thermischer nachverbrennung
AT508921B1 (de) Verfahren und vorrichtung zur entstickung von rauchgasen
US8404200B2 (en) Cold selective catalytic reduction
DE2636374C2 (de) Verfahren und Vorrichtung zur Reinigung von Abgas
WO2014117934A1 (de) Verfahren und vorrichtung zur reinigung von abgasen
EP3043889A1 (de) Verfahren und anlage zur reinigung von abgasen mit einer regenerativen nachverbrennungsanlage
EP3155322B1 (de) Abgasbehandlungsvorrichtung und verfahren zur abgasbehandlung
WO2014106533A1 (de) Beseitigung von ammoniak und niederen alkanen und/oder wasserstoff in abgasströmen in industrieanlagen
WO2009108983A1 (de) Anlage zur reinigung der rauchgase eines ofens
WO2018073239A1 (de) Verfahren und anlage zur reinigung von vorwärmerabgasen einer anlage der zement- und/oder mineralsindustrie
AT513851B1 (de) Vorrichtung zur katalytischen Entstickung und regenerativen thermischen Nachverbrennung
WO2002092195A1 (de) Verfahren zum behandeln von ammoniakhaltigen rauchgasen
DE102010048040B4 (de) Verfahren und Vorrichtung zur Reinigung lachgashaltiger Abgase
EP0191441B1 (de) Vorrichtung zur Entfernung unerwünschter Bestandteile aus einem Rauchgas
DE10036496B4 (de) Verfahren zur katalytisch gestützten thermischen Entsorgung von schwach methanhaltigen Deponiegasen
DE4422730A1 (de) Verfahren und Anlage zur Entfernung von Schadstoffen aus vorgereinigten Abgasen von Verbrennungs- insbesondere Müllverbrennungsanlagen
DE2918505C2 (de) Verfahren zur Verminderung des Stickstoffoxidgehaltes in Abgasen von Salpetersäurebetrieben
DE3506940A1 (de) Vorrichtung und verfahren zur entfernung unerwuenschter gasfoermiger bestandteile aus einem rauchgas
AT17227U1 (de) Verfahren zur Reinigung eines Rauchgases
DE102004025965A1 (de) Abgasreinigungsanlage zur Reinigung eines Abgases einer Brennkraftmaschine
DD242965A5 (de) Vorrichtung und verfahren zur entfernung unerwuenschter gasfoermiger bestandteile aus einem rauchgas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11708976

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct app. not ent. europ. phase

Ref document number: 11708976

Country of ref document: EP

Kind code of ref document: A2