DE3506940A1 - Vorrichtung und verfahren zur entfernung unerwuenschter gasfoermiger bestandteile aus einem rauchgas - Google Patents

Vorrichtung und verfahren zur entfernung unerwuenschter gasfoermiger bestandteile aus einem rauchgas

Info

Publication number
DE3506940A1
DE3506940A1 DE19853506940 DE3506940A DE3506940A1 DE 3506940 A1 DE3506940 A1 DE 3506940A1 DE 19853506940 DE19853506940 DE 19853506940 DE 3506940 A DE3506940 A DE 3506940A DE 3506940 A1 DE3506940 A1 DE 3506940A1
Authority
DE
Germany
Prior art keywords
catalyst
flue gas
heat exchanger
heat exchangers
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19853506940
Other languages
English (en)
Inventor
Wolfgang Dr. 8023 Pullach Baldus
Jürgen Dipl.-Ing. 8021 Kleindingharting Kersten
Erhard Dipl.-Ing. 8190 Wolfratshausen Kliem
Gerhard Dr. 8022 Grünwald Linde
Hans-Peter Dr. 8023 Pullach Riquarts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to DE19853506940 priority Critical patent/DE3506940A1/de
Priority to DE8686101632T priority patent/DE3675788D1/de
Priority to AT86101632T priority patent/ATE58649T1/de
Priority to EP86101632A priority patent/EP0191441B1/de
Publication of DE3506940A1 publication Critical patent/DE3506940A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Chimneys And Flues (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

  • Vorrichtung und Verfahren zur Entfernung
  • unerwünschter gasförmiger Bestandteile aus einem Rauchgas Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Entfernung unerwünschter gasförmiger Bestandteile aus einem bei einer Verbrennung anfallenden Rauchgas.
  • Das Problem der Entfernung unerwünschter gasförmiger Bestandteile aus Verbrennungsgasen gewinnt zunehmend an Bedeutung. Diese Verbrennungs- oder Rauchgase entstehen in der Regel durch Verbrennung von kohlenstoffhaltigen Brennstoffen, wie öl, Kohle oder-Erdgas, aber auch bei der Verbrennung von Wasserstoff, wenn diese in Gegenwart von Luft durchgeführt wird. Die Entfernung von gegebenenfalls vorhandenen Schwefelverbindungen, insbesondere Schwefeldioxid, kann dabei nach Abkühlung und - falls erforderlich - Vorreinigung (insbesondere Staub- und Rußabscheidung sowie gegebenenfalls Entfernung von HF und HCl) in günstiger Weise mittels eines physikalisch wirkenden Absorptionsmittels durchgeführt werden. Dabei wird nahezu das gesamte ursprünglich im Rauchgas enthaltene Schwefeldioxid ausgewaschen. Ein derartiges Verfahren ist beispielsweise in der DE-OS 32 37 387 beschrieben.
  • Dieses bekannte Verfahren dient jedoch nur zur Entfernung von Schwefeldioxid. In vielen Fällen enthält das Rauchgas aber noch weitere Bestandteile, die nicht in die Atmosphäre gelangen dürfen, wie insbesondere Stickoxide.
  • Zur Entfernung von Stickoxiden sind bereits katalytische Verfahren bekannt, bei denen NO2 und NO in Gegenwart von Ammoniak gemäß
    4 NH3 + 4NO2 + O2 Katalysator; 4 N2 + 6 H2O bzw.
    4 NH3 + 2N02 + O2 Katalysator 3 N2 + 6 H2O
    bei hohen Temperaturen zwischen ca. 2500C und 4500C zu unschädlichem N2 und Wasser reduziert werden, die an die Atmosphäre abgegeben werden dürfen.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung der eingangs genannten Art bereitzustellen, mit der auf kostengünstige und wirtschaftliche Weise eine Entstickung von gegebenenfalls vorgereinigtem Rauchgas durchgeführt werden kann.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß im Rauchgasstrom nacheinander mindestens ein ersterWärmetauscher, ein zur Umwandlung von Stickoxiden geeigneter Katalysator sowie mindestens ein weiterer Wärmetauscher angeordnet sind.
  • Die üblicherweise bei einer Verbrennung anfallenden Rauchgase enthalten Verunreinigungen, wie SO2, SO3, HCl, HF, Staub und Ruß. Diese Verunreinigungen. sollten, um die Lebensdauer der zur Umwandlung von Stickoxiden verwendeten Katalysatoren zur verlängern, vor den Katalysatoren entfernt werden. Insbesondere die SO2-Entfernung erfolgt gewöhnlich bei Temperaturen, die wesentlich unter denen zur katalytischen NOx-Umwandlung erforderlichen liegen. Mit der erfindungsgemäßen Vorrichtung wird nunmehr ermöglicht, das Rauchgas in Wärmetauschern anzuwärmen, sodann die katalytische Umsetzung durchzuführen und das gereinigte Rauchgas in mindestens einem weiteren Wärmetauscher wieder abzukühlen.
  • In vorteilhafter Weise wird dabei zur Abkühlung des Rauchein gases in einem vorangegangenen Schaltzyklus vom Rauchgas durchströmter Wärmetauscher zu dessen Anwärmung verwendet.
  • Somit kann die Anwärmung in Wärmetauschern erfolgen, die durch das heiße NOx-freie Rauchgas erwärmt werden und diese Wärme wiederum auf das anzuwärmende NO -haltige Rauchgas abgeben. Auf diese Weise kann ohne großen Energieaufwand eine ausreichende Aufheizung des Rauchgases gewährleistet werden.
  • Zur Umschaltung des Rauchgasstromes auf die verschiedenen Wärmetauscher ist es dabei von Vorteil, wenn im Rauchgasstrom eine Schalteinrichtung vorgesehen ist, die mit einer Zuführung für das Rauchgas, einer Ableitung für das behan delte Rauchgas sowie mit jedem der Wärmetauscher verbunden.
  • ist. Insbesondere kann dabei eine Vierwegklappe als Schalteinrichtung zur Anwendung gelangen.
  • Dabei ist es von Vorteil, wenn Wärmetauscher mit Wärmespeichermasse verwendet werden. Somit können neben-üblichen Wärmetauschern mit Rohren auch Wärmetauscher mit Schüttungen zur Anwendung gelangen, wie beispielsweise Regeneratoien oder Rekuperatoren. Besonders günstig ist es dabei, wenn als Wärmespeichermasse keramische Masse eingesetzt wird, die einen möglichst vollständigen Wärmeaustausch sicherstellt.
  • Das heiße Rauchgas wird nach Anwärmung über den Katalysator geleitet, so daß die bereits erwähnten Reaktionen stattfinden können. Dabei wird insbesondere die erstgenannte Reaktion auftreten, da in dem Rauchgas meist über 90% NO und der Rest NO2 enthalten sind. Das bei der katalytischen Umwandlung entstehende N2 und Wasser bzw. bei den hohen Temperaturen Wasserdampf sind ungefährlich und können ohne Bedenken in die Atmosphäre abgegeben werden.
  • Das heiße gereinigte Gas gibt dann seine Wärme an einen in einem vorangegangenen Zyklus zur Erwärmung von NOx-haltigem Rauchgas verwendeten Wärmetauscher ab, so daß dieser Wärmetauscher in einem weiteren Zyklus wieder zur Anwärmung des Rauchgases zur Verfügung steht. Der Rauchgasstrom kann dabei nach einer Zeit von etwa 1 bis 20 Minuten, vorzugsweise 3 bis 5 Minuten auf den anderen Wärmetauscher umgeschaltet werden.
  • Für die Anordnung der Wärmetauscher und des Katalysators ergeben sich mehrere Möglichkeiten. Nach einer vorteilhaften Variante sind der Wärmetauscher, der Katalysator und der weitere Wärmetauscher übereinander angeordnet. Alternativ können beide Wärmetauscher unmittelbar übereinander und der Katalysator oberhalb oder unterhalb der Wärmetauscher angeordnet sein. Schließlich besteht auch die Möglichkeit, die Wärmetauscher nebeneinander-und den Katalysator oberhalb oder unterhalb der Wärmetauscher anzuordnen. Welche der jeweiligen Möglichkeiten gewählt wird, hängt dabei jeweils insbesondere vom Platzangebot ab.
  • Bei den angegebenen Anordnungsmöglichkeiten für Wärmetauscher und Katalysatoren wird die Durchströmungsrichtung des Rauchgases durch den Katalysator umgekehrt, wenn das Rauchgas von dem einen auf den anderen Wärmetauscher umgeschaltet wird. Diese wechselnde Durchströmung des Katalysator kann zu großer Beanspruchung desselben führen.
  • Aus diesem Grunde ist erfindungsgemäß vorgesehen, daß im Rauchgasstrom zwischen den Wärmetauschern eine zusätzliche Schaltarmatur angeordnet ist, die einerseits mit dem Katalysator in Verbindung steht und andererseits wahlweise mit einem der beiden Wärmetauscher verbindbar ist. Somit besteht die Möglichkeit, das Rauchgas immer in derselben Richtung über den Katalysator zu leiten, unabhängig davon, welchem Wärmetauscher es zuerst zugeführt wird. Als Schaltarmatur kann hierbei eine Vierwegklappe dienen.
  • Der Katalysator kann somit also immer von oben nach unten oder immer von unten nach oben durchströmt werden. Die letztere Verfahrensführung bietet dabei folgenden zusätzlichen Vorteil: Bei horizontaler Katalysatoranordnung z.B.
  • auf einem Sieb oder Lochboden als Halterung erfolgt auf dem Sieb oder Lochboden eine grobe Staubabscheidung. Somit kann der Katalysator zusätzlich eine Reinigungswirkung erfüllen.
  • Zum Ausgleich von Wärmeverlusten bei nicht vollständigem Wärmeaustausch ist weiterhin vorgesehen, daß der Katalysator mit einer Wärmequelle verbunden ist. Diese Wärmequelle kann strömungseingangs- und/oder strömungsausgangsseitig vom Katalysator angeordnet sein. Die alternative Anordnung ist insbesondere dann möglich, wenn der Katalysator grundsätzlich einseitig durchströmt wird. Als Wärmequelle kommt hier insbesondere heißes Rauchgas in Frage. Das Rauchgas kann dabei z.B. durch Verbrennung hochkalorischer Brennstoffe in einer Brennkammer erzeugt und von außen über eine Heißgaszuleitung dem Katalysator zugeführt oder direkt durch Verbrennung hochkalorischer Brennstoffe im Reaktor erzeugt werden. Dabei reicht meist eine kleine Rauchgasmenge aus, um die Verluste zu decken. Natürlich können die Wärmeverluste auch durch andere Wärmequellen, wie elektrische Beheizung oder durch in einem Wärmetauscher kondensierenden Dampf gedeckt werden. Uberdies besteht die Möglichkeit, daß der Katalysator mit einer beheizten Bypass- Leitung für das Rauchgas verbunden ist.
  • Gemäß einer sehr vorteilhaften Ausgestaltungsform des Erfindungsgedankens sind Wärmetauscher und Katalysator in einem gemeinsamen Behälter, der bevorzugt einen rechteckigen, insbesondere quadratischen Querschnitt aufweist, angeordnet.
  • Es ist jedoch auch ein Behälter mit kreisrundem Querschnitt denkbar.
  • Nach einer äußerst zweckmäßigen Ausführungsform weist der Behälter dabei eine Wärmeisolierung auf. Der Wandaufbau des Behälters besteht danach aus einer ein- oder mehrschichtigen Zustellung keramischer Materialien. Das Material-Engineering wird den wärme- und betriebstechnischen Bedingungen angepaßt. Je nach Zustellungsart kann es erforderlich sein, die heißgehende Schicht mit dem Behältermantel zu verankern. Die Zustellung kann dabei eine Gesamtdicke von 20 bis 250 mm, bevorzugt 100 bis 140 mm aufweisen.
  • Als Materialien kommen feuerfeste und wärmedämmende Baustoffe in Frage, insbesondere Beton, Stein bzw. Steinwolle oder Faserisolierung. Falls erforderlich, ist die Wärmedämmung nicht nur auf der Behälterinnenseite sondern auch auf der Außenseite aufgebracht.
  • Um die katalytische Umwandlung der Stickoxide zu ermöglichen, ist es überdies notwendig, daß der Strömungsweg zwischen dem ersten Wärmetauscher und dem Katalysator eine Zuleitung für ein Hilfsfluid, insbesondere Ammoniak, aufweist.
  • Gemäß einer besonders vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung ist der Katalysator in mehrere Schichten unterteilt. Dies kommt insbesondere dann zur Anwendung, wenn bei engen Platzverhältnissen die erforderliche Fläche für das Katalysatorbett bei gegebener Raumgeschwindigkeit und Lineargeschwindigkeit nicht zur Verfügung steht.
  • Dann vergrößert die erfindungsgemäße Aufteilung des Katalysators in mehrere Schichten den Anströmquerschnitt, d.h.
  • die Oberfläche des Bettes, da die Summe der Oberflächen der einzelnen Schichten größer als die Querschnittsflhen des Strömungsweges ist. Durch die Aufteilung des Katalysators in mehrere Schichten werden außerdem geringere Schütthöhen erreicht, wodurch weniger Verschleiß durch Abrieb des Katalysators auftritt. Die Aufteilung des Katalysators in mehrere Schichten vergrößert überdies die Flexibilität hinsichtlich der Anordnung der\"atalysatormasse.
  • Es erweist sich als zweckmäßig, wenn die Katalysatorschichten in Durchströmungsrichtung betrachtet einander mindestens zum Teil überlagern. Bei dieser Anordnung liegen die Katalysatorschichten mit Abstand zueinander in verschiedenen Ebenen senkrecht zur Durchströmungsrichtuig des Rauchgases, wobei zumindest Abschnitte der Katalysatorschichten miteinander zur Deckung kommen.
  • Besonders vorteilhaft ist es, wenn, wie weiter vorgeschlagen wird, die Katalysatorschichten horizontal angeordnet sind.
  • Bei dieser Anordnung ist der Katalysatorabrieb am geringsten.
  • Bei einer bevorzugten Ausgestaltung des Erfindungsgedankens ist zumindest ein Teil der Katalysatorschichten stufenartig versetzt übereinander angeordnet. Alternativ kann zumindest ein Teil der Katalysatorschichten auch deckungsgleich übereinander angeordnet sein. Dabei können die Katalysatorschichten in einem Strömungsweg von kreisförmigem oder rechteckigem Querschnitt symmetrisch zu dessen Längsachse angeordnet sein.
  • Die erfindungsgemäße Vorrichtung bietet den Vorteil, daß ein kostengünstiger Katalysator bei optimal wählbarer Reaktionstemperatur verwendet werden kann, dessen Lebensdauer erhöht ist, da keine schädigenden Verunreinigungen im Gasstrom mehr vorhanden sind. Bei Lastschwankungen ist die NH3-Zuspeisung regulierbar, wobei der Temperatureinfluß klein gehalten werden kann.
  • Zur Umwandlung von Stickoxiden kommen die an sich bekannten Katalysatoren zur Anwendung, wie z.B. Zeolithe oder Vanadiumoxid/Titanoxid auf Träger oder Edelmetallkatalysatoren auf Träger. Je nach verwendetem Katalysator wird dabei das Rauchgas auf die für die Umsetzung auf dem Katalysator notwendige Temperatur in dem Wärmetauscher angewärmt. Bevorzugt liegt diese Temperatur zwischen 2500C und 4000C. Diese Temperaturen sind aus dem Grund ausreichend, da der Katalysator nichts von seiner Aktivität durch andere Verunreinigungen einbüßt.
  • Die Katalysatorschichten können als Schüttungen ausgebildet sein, wobei die Katalysatormasse teilchenförmig, z.B. ring-, zylinder-, kugel- oder sternförmig ist. Es besteht aber auch die Möglichkeit, wabenförmige Katalysatoren einzusetzen.
  • Die Erfindung betrifft überdies ein Verfahren zur Entfernung unerwünschter gasförmiger Bestandteile aus einem bei einer Verbrennung anfallenden Rauchgas mit einer Vorrichtung der vorgenannten Art. Dieses Verfahren ist dadurch gekennzeichnet, daß das Rauchgas über einen ersten Wärmetauscher zur Anwärmung und sodann über einen zur Umwandlung von Stickoxiden geeigneten Katalysator geleitet wird, woraufhin das gereinigte Rauchgas über mindestens einen weiteren Wärmetauscher geleitet und gekühlt abgegeben wird. Nach Anwärmung wird das Rauchgas vorzugsweise mit NH3 versetzt. Besonders vorteilhaft ist es dabei, wenn der weitere Wärmetauscher in einem vorangegangenen Zyklus vom Rauchgas durchströmt wird.
  • Die erfindungsgemäße Vorrichtung und das Verfahren lassen sich allgemein bei allen Rauchgasreinigungsanlagen einsetzen.
  • Im folgenden seien weitere Vorteile und Ausführungsformen der Erfindung anhand eines in acht Figuren dargestellten Ausführungsbeispiels näher erläutern.
  • Es zeigen: Figur 1 Anordnung Wärmetauscher, Katalysator, Wärmetauscher Figur 2 Anordnung Wärmetauscher, einseitig durchströmter Katalysator, Wärmetauscher Figur 3 Wärmetauscher, Katalysator mit Teillastanpassung, Wärmetauscher Figur 4 Anordnung Wärmetauscher, Wärmetauscherkatalysator Figur 5 Wärmetauscher, Wärmetauscher, einseitig durchströmter Katalysator Figur 6 einseitig durchströmter Katalysator, Wärmetauscher, Wärmetauscher Figur 7 nebeneinander angeordnete Wärmetauscher mit darüberliegendem Katalysator.
  • Figur 8 Anordnung wie bei Fig.7, jedoch mit Lastanpassung.
  • In Figur 1 ist eine Vorrichtung zur Entfernung von Stickoxiden aus einem Rauchgas dargestellt. Ein Reaktor 1 weist in seinem unteren und seinem oberen Bereich jeweils eine Schüttung 2 aus einem wärmespeichernden Material, beispielsweise Keramiksättel auf. Die SchüttuiOgen 2 bilden dabei Regeneratoren. Zwischen den beiden Regeneratoren ist ein Katalysator angeordnet, der sich aus vier stufenförmig übereinander angeordneten Katalysatorschichten 3 zusammensetzt. Jede der Katalysatorschichten 3 weist einen Katalysator zur Umwandlung von Stickoxiden auf. Die Katalysatorschichten 3 liegen horizontal, wobei sich benachbarte Katalysatorschichten 3 mit etwa 2/3 ihrer Fläche überlappen.
  • Die Summe der Oberflächen der Katalysatorschichten 3 ist somit doppelt so groß wie der Querschnitt des Reaktors 1.
  • Zwischen den Katalysatorschichten 3 sind Trennwände 4 vorgesehen, die sich jeweils vom Innenrand der einen zum Außenrand der nächsthöheren Katalysatorschicht 3 erstrecken.
  • Der Reaktor weist an seiner Ober- und seiner Unterseite Zu- bzw. Abführungsleitungen 5, 6, auf welche in eine Vierwege-Schalteinrichtung 7 münden, die außerdem einen Anschluß 8 zur Zuführung von- Rauchgas soie einen Anschluß 9 zur Abführung von gereinigtem Rauchgas aufweist.
  • Das Rauchgas wird über die Leitung 5 in den Reaktor 1 eingeleitet und durchströmt den unteren Regenerator 2, in dem es erwärmt wird. Nach Verlassen des Regenerators 2 wird das angewärmte Rauchgas mit über eine Zuleitung 10 zugeführtem Ammoniak vermischt und das Gemisch durch die Katalysatorschichten 3 geleitet. Dabei werden im Rauchgas enthaltene Stickoxide katalytisch umgewandelt. Anschließend wird das gereinigte heiße Rauchgas über den oberen Regenerator 2 geleitet und abgekühlt. Das gekühlte Rauchgas verläßt den Reaktor 1 über Leitung 6.
  • Nach einiger Zeit wird die Vierweg-Schalteinrichtung 7 umgeschaltet (gestrichelte Darstellung), so daß das Rauchgas dem Reaktor 1 über die obere Leitung 6 zugeführt wird. Das Rauchgas wird beim Durchströmen des im vorhergehenden Zyklus erwärmten oberen Regenerators 2 angewärmt und anschließend mit über eine Zuleitung 11 zugeführten Ammoniak vermischt.
  • Das Gemisch durchströmt die Katalysatorschichten 3, wobei wiederum im Rauchgas enthaltene Stickoxide umgewandelt werden. Anschließend wird das gereinigte Rauchgas durch den im vorhergehenden Zyklus abgekühlten unteren Regenerator 2 geleitet, abgekühlt und über Leitung 5 abgezogen.
  • Neben Ammoniak kann dem Reaktor außerdem Wärme in Form eines Heißgases über Leitungen 12 zugeführt werden.
  • Figur 2 zeigt in vereinfachter Form eine ähnliche Vorrichtung wie Figur 1, wobei gleiche Teile mit gleichen Bezugseichen versehen sind. Dabei sind die Zuleitungen 5 und 6 nur angedeutet, sowie die Vierwegeschalteinrichtung 7 nicht dargestellt.
  • Im Unterschied zu Figur 1 wird bei Figur 2 der Katalysator, bzw. die Katalysatorschichten 3 einseitig drchströmt.
  • Hierzu ist es erforderlich, daß im Reaktor eine Schaltarmatur 13, beispielsweise eine Heißklappe vorgesehen ist.
  • Das Rauchgas tritt über Leitung 5 ein, durchströmt den unteren Regenerator 2 zur Anwärmung und wird dann in Pfeilrichtung an einem Leitblech 14 vorbeigeleitet, mit Ammoniak, der über eine Zuleitung 10 und ein Verteilersystem in den Reaktor eingeführt wird, vermischt und in Pfeilrichtung über die Katalysatorschichten 3 geführt. Schließlich wird das Rauchgas über den oberen Regenerator 2 zur Abkühlung geleitet und über Leitung 6 abgezogen. Gegebenenfalls kann das angewärmte Rauchgas bei Umströmen des Leitbleches 14 mittels eines über Leitung 12 herangeführten Heißgases weiter erwärmt werden.
  • Im nächsten Zyklus wird das Rauchgas sodann über Leitung 6 herangeführt, zur Anwärmung über den oberen Regenerator 2 geleitet und ebenfalls um das Leitblech 14 geleitet, wobei die Heißklappe 13 um 900 gedreht worden ist, so daß sie senkrecht steht. Das Rauchgas wird sodann ebenfalls von unten nach oben über die Katalysatorschichten 3 geführt und weiter zur Abkühlung über den unteren Regenerator, so daß es gekühlt über Leitung 5 abgezogen werden kann.
  • Im Gegensatz zu der Vorrichtung gemäß Figur 1 werden nach Figur 2 keine im Reaktor direkt angeordneten Brenner, wie beispielsweise Jetbrenner, verwendet, sondern ein in einem äußeren Kanal (zwischen Reaktorwand und Leitblech 14) liegendes Brennersystem.
  • Figur 3 zeigt ebenfalls eine Vorrichtung ähnlich der von Figur 1, wobei wieder gleiche Teile mit gleichen Bezugsziffern versehen sind. Wie gemäß Figur 1 werden auch hier die Katalysatorschichten wechselseitig durchströmt, weshalb keine zusätzliche Klappe wie in Figur 2 nötig ist.
  • Im Unterschied zu Figur 1 weist die Vorrichtung nach Figur 3 einen Schieber 15 bei jeder Katalysatorschicht 3 auf, mit dem bei Teillast die Rauchgasmenge einstellbar ist, d.h. die Raumgeschwindigkeit in der Katalysatorschicht 3 angepaßt werden kann.
  • Die durchgezogenen Pfeile zeigen die Rauchgasströmung bei Eintritt über Zuführung 5 an, während die gestrichelten Pfeile die Rauchgasströmung bei Eintritt über Leitung 6 darstellen.
  • In Figur 4 ist eine Vorrichtung dargestellt, bei der als wesentliche Unterscheidung zu der Vorrichtung gemäß Figur 1 die Regeneratoren 2 übereinander und darüber die Katalysatorschichten 3 angeordnet sind. Auch hier ist der Übersichtlichkeit halber die Verrohrung zu Leitungen 5 und 6 sowie die Vierwegeschalteinrichtung 7 nicht dargestellt. Diese Anordnung ertnglicht, daß die Regeneratoren ohne Schwierigkeiten gewaschen werden können.
  • Rauchgas tritt über Leitung 5 ein, wird im oberen Regenerator 2 angewärmt und nach gegebenenfalls weiterer Erwärmung mittels eines Heißgases, das über Leitung 12 zugeführt wird, mit Ammoniak aus Leitung 10 vermischt und über die Katalysatorschichten 3 geführt. Das gereinigte Rauchgas verläßt den Reaktor 1 im oberen Bereich über eine Leitung 16 in Pfeilrichtung und wird über Zuführung 17 in den unteren Bereich des Reaktors wieder eingeführt, über den unteren Regenerator 2 geleitet und über Leitung 6 gekühlt aus dem Reaktor 1 abgezogen.
  • Im nächsten Zyklus wird das Rauchgas sodann über Leitung 6 eingeführt, und in Richtung der gestrichelt dargestellten Pfeile über den unteren Regenerator 2, Leitung 17 und 16, sowie die Katalysatorschichten 3 und oberen Regenerator 2 geleitet und über Leitung 5 wieder abgezogen.
  • Figur 5 zeigt eine Vorrichtung, in der die Regeneratoren 2 übereinander und darüber einseitig durchströmte Katalysatorschichten 3 angeordnet sind. Ahnlich wie in Figur 2 wird bei dieser Vorrichtung das Rauchgas, das über Leitung 5 eintritt und in dem oberen Regenerator 2 erwärmt wurde bei horizontal stehender warmer Klappe 13 um das Leitblech 14 geleitet und dann in Pfeilrichtung (durchgezogene Pfeile) über die Katalysatorschichten 3 geführt und über Leitung 16 abgezogen. Das Rauchgas tritt über Leitung 17 wieder in den unteren Teil des Reaktors 1 ein und wird nach Abkühlung im unteren Regenerator 2 über Leitung 6 abgezogen. Bei Eintritt über Leitung 6 gilt die gestrichelt dargestellte Strömungsrichtung, wobei dann die Klappe 13 um 900 gedreht ist, so daß sie senkrecht steht. Wie zu erkennen ist, wird dabei der Katalysator immer von unten nach oben durchströmt.
  • Diese Vorrichtung hat gegenüber den bislang beschriebenen Vorrichtungen noch einen weiteren Unterschied. Das Rauchgas kann nämlich nicht nur in dem Bereich zwischen dem Leitblech 14 und dem äußeren Reaktorrand mittels eines Heißgases, das über Leitung 12 zugeführt wird, erwärmt werden, sondern auch in dem Rohr 18. Hierzu kann über Leitung 19 Brenngas direkt in das Rohr 18 eingeführt werden, um dort verbrannt zu werden. Alternativ kann über Leitung 19 auch Heißgas eingeführt werden. Weiterhin besteht die Möglichkeit, das Rohr 18 indirekt zu beheizen. Dabei könnte auch lediglich ein Teilstrom des Rauchgases in einer Baypass-Leitung angewärmt werden. Diese Ausführungsform der zusätzlichen Anwärmung des Rauchgases außerhalb des Reaktors 1 ist bei allen vorangegangenen und noch zu beschreibenden Ausfuhrungsformen ebenfalls denkbar.
  • Bei der Vorrichtung gemäß Figur 6 ist der Katalysator ebenerdig angeordnet und die Regeneratoren sind oberhalb des Katalysators in dem Reaktor 1 untergebracht. Zur Verdeutlichung ist bei diesem Beispiel die Vierwegklappe 7 mit Anschlüssen 5 und 6 sowie einem Anschlußrohr 20 nochmals getrennt neben dem Reaktor 1 dargestellt.
  • Rauchgas gelangt über Leitung 5 und Vierwegklappe 7 (durchgezogene Stellung) über Anschlußteil 20 zum oberen Regenerator 2, wird dort angewärmt und über Vierwegklappe 13 (durchgezogene Stellung der Klappe) in das Rohr 18 geführt.
  • Dort kann das Rauchgas zusätzlich über 19 erwärmt werden.
  • In das Rohr 18 wird über Leitung 10 NH3 eingeführt, das in einem Mischer 21 mit dem Rauchgas vermischt wird.
  • Das Gasgemisch wird sodann in Pfeilrichtung über die Katalysatorschichten 3 geführt und weiter in Pfeilrichtung über eine Leitung 22 und Vierwegklappe 13 zum unteren Regenerator 2 zur Abkühlung geleitet. Von dort aus gelangt das Gas über die Klappe 7 in Leitung , über die es aus dem Reaktor 1 abgezogen wird.
  • In dem nächsten Zyklus wird das Gas über die gestrichelt dargestellte Stellung der Klappe 7 zuerst auf den unteren Regenerator und dann über die gestrichelt dargestellte Lage der Klappe 13 über Rohr 18 über die Katalysatorschichten geführt, woraufhin es nach Durchströmen des oberen Regenerators 2 abgekühlt abgezogen wird.
  • In der Darstellung der Figur 6 sind mit 2a jeweils die Füllöffnung für die Regeneratorschüttungen bezeichnet. Um an die Füllöffnung des unteren Regenerators 2 zu kommen, ist das Kanalstück 22a seitlich versetzt angeordnet. Mit 3a ist weiterhin eine Montageöffnung für den Katalysator bezeichnet. Diese Ausführungsform hat den großen Vorteil, daß der Katalysator ohne große Schwierigkeiten auswechselbar ist. Die Klappen 7 und 13 sind symmetrisch eingebaut, wodurch kurze Leitungen ermöglicht werden.
  • In Figur 7 ist schließlich eine Vorrichtung dargestellt, bei der die beiden Regeneratoren 2 nebeneinander und der Katalysator über den Regeneratoren angeordnet ist. Das Rauchgas strömt über Leitung 5 heran, wird im linken Regenerator 2 angewärmt, gegebenenfalls mittels eines über Leitung 12 zugeführten Heizgases weiter angewärmt, mit NH3 aus Leitung 10 vermischt und in Pfeilrichtung über die Katalysatorschicht 3 geführt. Das gereinigte Gas wird sodann in Pfeilrichtung über den rechten Regenerator 2 zur Abkühlung geleitet und über Leitung 6 abgezogen. Die gestrichelt dargestellten Pfeile geben die Strömungsrichtung des Rauchgases für den Fall an, daß es über Leitung 6 zugeführt und über Leitung 5 abgezogen wird.
  • Die Anordnung gemäß Figur 7 hat den Vorteil, daß die Bauhöhe wesentlich geringer wird, jedoch erhöht sich gleichzeitig der Druckverlust innerhalb des Reaktors etwas.
  • Als weiterer Vorteil ist anzusehen, daß die Regeneratoren, wie auch bei den Anordnungen der Figuren 4 und 5 ohne große Schwierigkeiten gewaschen werden können.
  • Die Anordnung gemäß Figur 8 entspricht weitgehend der von Figur 6, jedoch ist eine Lastanpassung vorgesehen.
  • Hierzu ist im Rauchgasströmungsweg eine Klappe 25 angeordnet.
  • Bei voller Last ist diese Klappe geöffnet, so daß das Rauchgas parallel ber die beiden Katalysatorschichten 3 in Pfeilrichtung strömt. Bei halber Last ist die Klappe geschlossen und es wird nur die obere Katalysatorschicht durchströmt.
  • Es ist klar, daß die Lastanpassung mit unterschiedlicher Anzahl von Katalysatorschichten und Klappen (immer eine Klappe weniger als Katalysatorschichten) durchgeführt werden kann. In sinnvoller Weise erfolgt die Lastanpassung jedoch mit 2 oder 3 Katalysatorschichten, d.h. einer oder zwei Klappen. Damit sind Anpassungen an 1/3, 1/2, 2/3, volle Last möglich.
  • In der Tabelle sind nochmals die Anordnungen gemäß den vor beschriebenen Figuren 1 bis 8 schematisch dargestellt, wobei die Durchströmungsrichtungen des Katalysators die Anzahl der Klappen sowie ein- bzw. zweistufige Aufheizung und NH3-Zudosierung angegeben sind.
  • T a b e l l e
    Entsprechend Figur Nr. 1 2 3 4 5 6 7 8
    # # # # # # #
    Gesamtanordnung von Reaktor # # # # # # # #
    und Regeneratoren # # # # # # # #
    Durchströmung Katalysator # # # # # # # #
    Aufheizung + NH3-Dosierung 2- 1- 2- 2- 1- 1- 2- 1-
    seitig seitig seitig seitig seitig seitig seitig seitig
    Anzahl der Klappen 1 2 1 1 2 2 1 2
    - Leerseite -

Claims (22)

  1. Patentansprüche 1. Vorrichtung zur Entfernung unerwünschter gasförmiger Bestandteile aus einem bei einer Verbrennung anfallenden Rauchgas, dadurch gekennzeichnet, daß im Rauchgasstrom nacheinander mindestens ein erster Wärmetauscher, ein zur Umwandlung von Stickoxiden geeigneter Katalysator sowie mindestens ein weiterer Wärmetauscher angeordnet sind.
  2. 2. Vorrichtung nach Anspruch 1, dadurcH gekennzeichnet, daß im Rauchgasstrom eine Schalteinrichtung vorgesehen ist, die mit einer Zuführung für das Rauchgas, einer Ableitung für das behandelte Rauchgas sowie mit jedem der Wärmetauscher verbunden ist.
  3. 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Wärmetauscher, der Katalysator und der weitere Wärmetauscher übereinander angeordnet sind.
  4. 4. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß beide Wärmetauscher unmittelbar übereinander und der Katalysator oberhalb oder unterhalb der Wärmetauscher angeordnet sind.
  5. 5. Vorrichtung nach Anspruch 1 oder 2, dadurchkennzeichnet, daß die Wärmetauscher nebeneinander und der Katalysator oberhalb oder unterhalb der Wärmetauscher angeordnet sind.
  6. 6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß im Rauchgasstrom zwischen den Wärmetauschern eine zusätzliche Schaltarmatur angeordnet ist, die einerseits mit dem Katalysator in Verbindung steht und andererseits wahlweise mit einem der beiden Wärmetauscher verbindbar ist.
  7. 7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Katalysator mit einer Wärmequelle verbunden ist.
  8. 8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Wärmequelle strömungseingangs- und/oder strömungsausgangsseitig vom Katalysator vorgesehen ist.
  9. 9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der Katalysator über eine Heißgaszuleitung mit der Wärmequelle verbunden ist.
  10. 10. Vorrichtung nach Anspruch 7 oder 8, dadurch gekflennzeichnet, daß der Katalysator mit einer beheizten Bypassleitung für das Rauchgas verbunden ist.
  11. 11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß Wärmetauscher und Katalysator in einem gemeinsamen Behälter angeordnet sind.
  12. 12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Wärmetauscher als Regeneratoren oder Rekuperatoren ausgebildet sind.
  13. 13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß der Behälter einen rechteckigen Querschnitt aufweist.
  14. 14. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß der Behälter eine Wärmeisolierung aufweist.
  15. 15. Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß der Strömungsweg zwischen dem ersten Wärmetauscher und dem Katalysator eine Zuleitung für ein Hilfsfluid aufweist.
  16. 16. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der Katalysator in mehrere Schichten unterteilt ist.
  17. 17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß die Katalysatorschichten horizontal angeordnet sind.
  18. 18. Vorrichtung nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß zumindest ein Teil der Katalysatorschichten stufenartig versetzt übereinander angeordnet ist.
  19. 19. Vorrichtung nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß zumindest ein Teil der Katalysatorschichten deckungsgleich übereinander angeordnet ist.
  20. 20. Verfahren zur Entfernung unerwünschter gasförmiger Bestandteile aus einem bei einer Verbrennung anfallenden Rauchgas mit einer Vorrichtung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß das Rauchgas über einen ersten Wärmetauscher zur Anwärmung und sodann über einen zur Umwandlung von Stickoxiden geeigneten Katalysator geleitet wird, woraufhin das gereinigte Rauchgas über mindestens einen weiteren Wärmetauscher geleitet und gekühlt abgegeben wird.
  21. 21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß das Rauchgas nach Anwärmung mit NH3 versetzt wird.
  22. 22. Verfahren nach Anspruch 20 oder 21, dadurch gekennzeichnet, daß der weitere Wärmetauscher in einem vorangegangenen Zyklus vom Rauchgas durchströmt wird.
DE19853506940 1985-02-15 1985-02-27 Vorrichtung und verfahren zur entfernung unerwuenschter gasfoermiger bestandteile aus einem rauchgas Withdrawn DE3506940A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19853506940 DE3506940A1 (de) 1985-02-15 1985-02-27 Vorrichtung und verfahren zur entfernung unerwuenschter gasfoermiger bestandteile aus einem rauchgas
DE8686101632T DE3675788D1 (de) 1985-02-15 1986-02-08 Vorrichtung zur entfernung unerwuenschter bestandteile aus einem rauchgas.
AT86101632T ATE58649T1 (de) 1985-02-15 1986-02-08 Vorrichtung zur entfernung unerwuenschter bestandteile aus einem rauchgas.
EP86101632A EP0191441B1 (de) 1985-02-15 1986-02-08 Vorrichtung zur Entfernung unerwünschter Bestandteile aus einem Rauchgas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE8504348 1985-02-15
DE19853506940 DE3506940A1 (de) 1985-02-15 1985-02-27 Vorrichtung und verfahren zur entfernung unerwuenschter gasfoermiger bestandteile aus einem rauchgas

Publications (1)

Publication Number Publication Date
DE3506940A1 true DE3506940A1 (de) 1986-08-21

Family

ID=25829811

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19853506940 Withdrawn DE3506940A1 (de) 1985-02-15 1985-02-27 Vorrichtung und verfahren zur entfernung unerwuenschter gasfoermiger bestandteile aus einem rauchgas

Country Status (1)

Country Link
DE (1) DE3506940A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8711112U1 (de) * 1987-08-15 1988-12-15 Ltg Lufttechnische Gmbh, 7000 Stuttgart, De
WO2002068097A1 (en) * 2001-02-26 2002-09-06 Abb Lummus Global Inc. Reactor and method for reducing the nitrogen oxide content of a gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8711112U1 (de) * 1987-08-15 1988-12-15 Ltg Lufttechnische Gmbh, 7000 Stuttgart, De
WO2002068097A1 (en) * 2001-02-26 2002-09-06 Abb Lummus Global Inc. Reactor and method for reducing the nitrogen oxide content of a gas
US6821490B2 (en) 2001-02-26 2004-11-23 Abb Lummus Global Inc. Parallel flow gas phase reactor and method for reducing the nitrogen oxide content of a gas
EP2260924A1 (de) * 2001-02-26 2010-12-15 Lummus Technology Inc. Reaktor und Verfahren zur Reduktion von Stickstoffoxiden in Gasen

Similar Documents

Publication Publication Date Title
EP3095505B1 (de) Verfahren und anlage zur reinigung von mit stickoxiden beladenen abgasen
EP0472605B1 (de) Anlage und verfahren zur thermischen abgasbehandlung
EP0504719B1 (de) Abgasfilter und/oder Katalysator
DE60308728T2 (de) VORRICHTUNG UND VERFAHREN ZUR REGELUNG DER NOx-EMISSIONEN AUS KOHLENSTOFFHALTIGEN BRENNSTOFFBETRIEBENEN KESSELN OHNE BENUTZUNG EINES EXTERNEN REAGENTEN
DE102012023257B4 (de) Verfahren und Vorrichtung zur thermischen Nachverbrennung von Kohlenwasserstoffe enthaltenden Gasen
EP2501462B1 (de) Verfahren zur reduzierung von stickoxiden aus dem abgas eines koksofens
DE3805791C2 (de)
EP0257024B1 (de) Verfahren zur selektiven beseitigung von stickoxiden aus abgasen
DE3614385A1 (de) Verfahren und vorrichtung zum reinigen von abgasen
EP0748647A1 (de) Verfahren und Vorrichtung zur Reduktion des Staubgehaltes der Abgase eines Dampferzeugers
DE102017101507B4 (de) Verfahren und Vorrichtung zur Abgasreinigung
DE19720205A1 (de) Verfahren und Anlage zur Reinigung von mit Stickoxiden beladenen Abgasen
DD231742A5 (de) Verfahren und vorrichtung zur entfernung unerwuenschter gasfoermiger bestandteile aus einem rauchgas
DE2752131A1 (de) Verfahren und vorrichtung zur erzeugung von dampf
AT505542B1 (de) Anlage zur reinigung der rauchgase eines ofens
DE102014106991B4 (de) Vorrichtungen und Verfahren zur katalytischen Entstickung und regenerativen thermischen Nachverbrennung
DE3505354A1 (de) Verfahren und vorrichtung zur entfernung unerwuenschter gasfoermiger bestandteile aus einem rauchgas
CH698991B1 (de) Abgasreinigung.
EP0191441B1 (de) Vorrichtung zur Entfernung unerwünschter Bestandteile aus einem Rauchgas
EP0161470B1 (de) Verfahren und Vorrichtung zur Entfernung unerwünschter gasförmiger Bestandteile aus einem Rauchgas
AT508921B1 (de) Verfahren und vorrichtung zur entstickung von rauchgasen
DE19905733A1 (de) Verfahren und Anlage zur Reinigung von mit Stickoxiden beladenen Abgasen
DE3506940A1 (de) Vorrichtung und verfahren zur entfernung unerwuenschter gasfoermiger bestandteile aus einem rauchgas
DE10123402A1 (de) Verfahren zum Behandeln von ammoniakhaltigen Rauchgasen
DE3505349A1 (de) Vorrichtung und verfahren zur entfernung unerwuenschter gasfoermiger bestandteile aus einem rauchgas

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee