WO2011118897A1 - 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법 - Google Patents

센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법 Download PDF

Info

Publication number
WO2011118897A1
WO2011118897A1 PCT/KR2010/007692 KR2010007692W WO2011118897A1 WO 2011118897 A1 WO2011118897 A1 WO 2011118897A1 KR 2010007692 W KR2010007692 W KR 2010007692W WO 2011118897 A1 WO2011118897 A1 WO 2011118897A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
less
lead
powder
drying
Prior art date
Application number
PCT/KR2010/007692
Other languages
English (en)
French (fr)
Inventor
정순종
김민수
송재성
이대수
김인성
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100093777A external-priority patent/KR101198298B1/ko
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2011118897A1 publication Critical patent/WO2011118897A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2

Definitions

  • the present invention relates to a non-lead piezoelectric ceramic composition and a method for manufacturing the same, in particular, at least two or more phases, that is, a pure dielectric phase (phase dielectric phase) and a piezoelectric molded article manufactured from the non-lead piezoelectric ceramics for raw materials, respectively.
  • the present invention provides a composition in which a ferroelectric phase is represented by a core-cell structure, and relates to a non-lead piezoelectric ceramic composition for a sensor and an actuator having an increased dielectric constant due to a high strain rate and an improved piezoelectric constant (d 33 ) and a method of manufacturing the same.
  • piezoelectric actuators that control micro displacement or vibration are widely applied to precision optical devices, semiconductor equipment, gas flow control pumps, and valves.
  • the strain S of the piezoelectric body can be expressed by the relationship between the electric field E applied to the piezoelectric body and the piezoelectric constant d 33 , and is expressed by the following formula.
  • Amount of displacement (S) of the actuator is proportional to the piezoelectric constant (d 33) and electric field (E), a high piezoelectric constant (d 33) and electric field (E) is required in order to obtain a large displacement amount (S) of the piezoelectric body.
  • the displacement amount S is proportional to the thickness T of the piezoelectric material, and the increase in the thickness of the piezoelectric material for obtaining the large displacement amount S requires a high applied voltage E. This is undesirable due to the miniaturization and circuit configuration of the precision control system. Therefore, there is a demand for a stacked piezoelectric actuator that has a low power consumption and heat generation, a good response, a deformation amount can be adjusted according to the number of stacked layers, and a high generating force.
  • (Na 0.5 K 0.5 ) NbO 3 among the lead-free piezoelectric ceramics has characteristics of high phase transition temperature, low constant electric field, and high residual polarization, so it can replace piezoelectric ceramics based on lead. It is considered one of the substances.
  • due to the high hygroscopicity of the raw materials and volatilization during sintering it is known that it is difficult to produce a sintered body having high characteristics by a general conventional sintering method. Therefore, until now, sintering was carried out using expensive manufacturing processes such as hot press and spark plasma sintering. That is, there is a need to seek a more economical sintering method.
  • the piezoelectric constant (d 33 ) is 600 to 800pC / N (or pm / V) and the strain is 0.06% to 0.1%. Since lead-free ceramics have a very low performance compared to lead oxide-based ceramics, there are considerable difficulties in applying them as sensors or actuators.
  • each of the non-lead-based piezoelectric ceramics, respectively, at least two or more phases in the piezoelectric molded article produced therefrom is a composition It is to provide a non-lead-based piezoelectric ceramic composition for sensors and actuators excellent in the increase of the dielectric constant due to the high strain and the piezoelectric constant (d 33 ) and its manufacturing method.
  • the present invention in the non-lead piezoelectric ceramic composition for the sensor and the actuator, the non-lead-based piezoelectric ceramic for the raw material is prepared, respectively, and then mixed, pulverized, dried, and sintered, and the phase dielectric and ferroelectric phases are mixed.
  • the piezoelectric molding in which these phases exist in a core-cell structure, when the electric field is applied to the piezoelectric molding, phase transition from the cell dielectric to the ferroelectric phase and the domain rearrangement at the core region generate high strain.
  • the lead-free piezoelectric ceramic composition for a sensor and an actuator characterized by the above-mentioned is made into a technical summary.
  • the non-lead piezoelectric ceramic for the raw material is preferably formed by producing a material representing the phase dielectric phase and a material representing the ferroelectric phase.
  • the substance showing the above-mentioned dielectric phase is a group of Na 2 CO 3 , Nb 2 O 5 and Ta 2 O 5 , a group of K 2 CO 3 , Nb 2 O 5 and Ta 2 O 5 , and Li 2 CO 3 , Ta 2 O 5 is selected from one or two or more groups selected by mixing, calcining, pulverizing, drying, the material representing the ferroelectric phase, CaCO 3 and ZrO 2 group, CaCO 3 and TiO 2 It is preferably prepared by mixing, calcining, grinding and drying by selecting one or two or more groups from the group of and SrCO 3 and TiO 2 .
  • the material showing the ferroelectric phase of the non-lead piezoelectric ceramic for the raw material is any one or two or more of aNa (Nb 0.8 Ta 0.2 ) O 3 powder, bK (Nb 0.8 Ta 0.2 ) O 3 powder and cLiTaO 3 powder.
  • a is 0.49.
  • a non-lead piezoelectric ceramic for raw materials a ferroelectric phase is produced Na (Nb 0.8 Ta 0.2 ) O 3 powder, K (Nb 0.8 Ta 0.2 ) O 3 powder, LiTaO 3 powder to produce a material showing the phase dielectric phase Preparing CaZrO 3 powder, respectively; And Na (Nb 0.8 Ta 0.2 ) O 3 powder, K (Nb 0.8 Ta 0.2 ) O 3 powder, LiTaO 3 powder, and CaZrO 3 powder as a Na (Nb 0.8 Ta 0.2 ) O 3 ⁇ b K (Nb 0.8 Ta 0.2 ) O 3 -c LiTaO 3 -d CaZrO 3 is mixed, MnO 2 is mixed at a ratio of x mol to 1 mol of the mixed powder, and the piezoelectric powder is formed by grinding and drying, and the temperature is 900 ° C.
  • a and d are 0.49 and 0.04, and the sintering temperature is preferably 1050 ° C.
  • the Na (Nb 0.8 Ta 0.2 ) O 3 is prepared by mixing, calcining, grinding and drying Na 2 CO 3 , Nb 2 O 5 , and Ta 2 O 5
  • the K (Nb 0.8 Ta 0.2 ) O 3 Is prepared by mixing, calcining, pulverizing and drying K 2 CO 3 , Nb 2 O 5 , and Ta 2 O 5
  • LiTaO 3 is prepared by mixing, calcining, pulverizing and drying Li 2 CO 3 and Ta 2 O 5
  • the CaZrO 3 is preferably prepared by mixing, calcining, pulverizing and drying CaCO 3 and Zr 2 O 5 .
  • the material showing the ferroelectric phase of the non-lead piezoelectric ceramic for the raw material is (Na x K 0.98-x Li y ) (Nb 1-z Ta z ) O 3
  • the powder is used and the material showing the phase dielectric phase is ACaZrO. 3 , BCaTiO 3 , CSrTiO 3 And DCa (ZrTi) O 3 MnO in a ratio of k mol to 1 mol of a mixed powder in which one or two or more powders are used to mix the material representing the ferroelectric phase and the material representing the phase dielectric phase.
  • X is 0.47 or more and 0.53 or less
  • y is 0.01 or more and 0.055 or less
  • z is 0.01875 or more and 0.3 or less
  • A, B, C, D are 0.01 or more and 0.1 or less
  • k is 0.01 or more.
  • X is 0.47 or more and 0.53 or less
  • y is 0.01 or more and 0.055 or less
  • z is 0.3625-6.25y
  • A, B, C, and D are 0.01 or more and 0.1 or less
  • k The technical point of the lead-free piezoelectric ceramic composition for sensors and actuators, characterized in that 0.02.
  • x K 0.98-x Li y ) (Nb 1-z Ta z ) O 3 ACaZrO is prepared by preparing a powder and displaying a phase dielectric phase.
  • the (Na x K 0.98-x Li y ) (Nb 1-z Ta z ) O 3 is mixed with Na 2 CO 3 , K 2 CO 3 , Nb 2 O 5 , Li 2 CO 3 and Ta 2 O 5 , is prepared by calcination, pulverization and drying, the CaZrO 3 is CaCO 3, a ZrO 2 have been manufactured mixed, calcined, pulverized, and dried, the CaTiO 3 is prepared mixed, calcined, pulverized, and dried to a CaCO 3, TiO 2
  • the SrTiO 3 is prepared by mixing, calcining, pulverizing and drying SrCO 3 and TiO 2
  • the Ca (ZrTi) O 3 is prepared by mixing, calcining, grinding and drying CaCO 3 , ZrO 2 and TiO 2 . It is preferable.
  • the present invention improves the problems of the high firing temperature of the conventional lead-based piezoelectric ceramics, low piezoelectric constant of the non-lead-based piezoelectric ceramics, the composition in which at least two or more phases in the piezoelectric moldings appear as a core-cell structure
  • the electric field is applied, phase shift at the cell site and domain rearrangement at the core site are generated, so that the dielectric constant and piezoelectric constant (d 33 ) are excellent due to the high strain rate, so that the shock sensor, the acceleration sensor, and the ultrasonic sensor are excellent.
  • the laminated piezoelectric actuator, the piezoelectric transformer and the ultrasonic vibrator there is an effect that can be produced high-reliability piezoelectric components such as ignition elements.
  • the composition does not contain lead has the advantage of reducing the environmental pollution caused by lead.
  • Figure 2 - in 0.02LiTaO 3 -0.04CaZrO 3 + 2mol% MnO 2 - This is manufactured according to the first embodiment of the invention 0.49Na (Nb 0.8 Ta 0.2) O 3 - 0.45K (Nb 0.8 Ta 0.2) O 3 A graph showing the strain generated when an electric field is applied.
  • FIG. 4 is a schematic diagram illustrating a mechanism occurring when an electric field is applied to a piezoelectric molded article according to the present invention.
  • FIG. 6-XRD data for (Na 0.51 K 0.47 Li 0.02 ) (Nb 0.8 Ta 0.2 ) O 3 ⁇ 0.04CaZrO 3 + 2mol% MnO 2 which is an embodiment of the present invention.
  • the present invention relates to a lead-free non-lead piezoelectric ceramic composition and a method of manufacturing the same, wherein the dielectric constant is increased due to the excellent high strain that can be applied to the sensor and the actuator, and the piezoelectric constant (d 33 ) is free of lead.
  • a piezoelectric ceramic composition and a method for producing the same are provided.
  • At least two piezoelectric moldings manufactured by a method of preparing a material representing a phase dielectric material and a material representing a ferroelectric phase in a non-lead piezoelectric ceramic used as a raw material, and then mixing, grinding, drying, and sintering them are used.
  • the above-mentioned phases that is, a pure dielectric phase (phase dielectric phase) and a ferroelectric phase or a pure dielectric phase, a ferroelectric phase and a ferroelectric phase in which at least two ferroelectric phases 1 and ferroelectric phases are mixed are prepared.
  • the dielectric and ferroelectric phases are present in the core-cell structure as shown in FIG.
  • the materials representing the above-mentioned dielectric material and the materials representing the ferroelectric phase may be mixed, pulverized, dried, and sintered using one kind to produce a piezoelectric molded article, or may be mixed and used.
  • the material showing the phase dielectric phase is used after mixing, pulverizing and drying the materials showing the phase dielectric phase
  • the material showing the ferroelectric phase is the material showing the ferroelectric phase. It is used after mixing, grinding and drying. After the mixing, grinding, and drying processes, the mixture, the grinding, the drying, and the sintering process, respectively, can obtain a piezoelectric molded material in which the phase dielectric material and the ferroelectric phase are mixed.
  • the non-lead piezoelectric ceramic for raw materials is made of a material exhibiting a large dielectric material phase and a material representing a ferroelectric phase, respectively.
  • the material showing the phase dielectric phase is Na 2 CO 3 , Nb 2 O 5 and Ta 2 O 5 , K 2 CO 3 , Nb 2 O 5 and Ta 2 O 5 .
  • Li 2 CO 3 and Ta 2 O 5 by selecting one or more of the group selected by mixing, calcining, pulverizing, drying, the material representing the ferroelectric phase CaCO 3 and ZrO 2 group, CaCO 3 and it is presented to select one or more than one group was prepared by mixing, calcining, crushing, drying to the group of the group of TiO 2 and, SrCO 3 and TiO 2.
  • the group of Na 2 CO 3 , Nb 2 O 5 and Ta 2 O 5, the group of K 2 CO 3 , Nb 2 O 5 and Ta 2 O 5 as starting materials and , Li 2 CO 3 and Ta 2 O 5 It can be used to select one or more of the group.
  • CaCO 3 and ZrO 2 As a starting material, CaCO 3 and TiO 2 , SrCO 3 and TiO 2 may be used to select one or more.
  • a material representing a plurality of phase dielectric materials and a material representing a ferroelectric phase manufactured by a plurality of combinations described above may be used by selecting one or two or more of them.
  • the materials A, B, and C representing the ferroelectric phase and the materials a, b and c representing the ferroelectric phase were prepared from the starting materials, one or more of them were selected to again select the material and ferroelectric phase representing the phase dielectric phase.
  • the substance which shows can be manufactured.
  • the phase dielectric material is phase-transformed to the ferroelectric phase or is present.
  • the ferroelectric two or more phase shifts and domain rearrangements are generated such that domains are rearranged, thereby providing a lead-free piezoelectric ceramic composition having excellent piezoelectric properties due to high strain and a method of manufacturing the same.
  • the composition does not contain lead has the advantage of reducing the environmental pollution caused by lead.
  • aNa (Nb 0.8 Ta 0.2 ) O 3 powder, bK (Nb 0.8 Ta 0.2 ) O 3 powder, cLiTaO 3 powder are used as a material exhibiting a ferroelectric phase in a non-lead piezoelectric ceramic for raw materials.
  • dCaZrO 3 powder as the material representing the phase dielectric phase
  • MnO 2 is added in a ratio of x mol to 1 mol of the mixed powder in which all of the materials showing the ferroelectric phase and the material showing the phase dielectric phase are mixed.
  • A is 0.45 or more and 0.51 or less, b is 0.43 or more and 0.47 or less, c is 0.01 or more and 0.03 or less, d is 0.005 or more and 0.1 or less, a + b + c + d is 1 and x is 0.005 or more Sensor or actuator having a range of 0.04 or less, or wherein a is 0.45 or more and 0.51 or less, b is 0.98-a, c is 0.02, d is 0.005 or more and 0.1 or less, and x is 0.02. It is a lead-free piezoelectric ceramic composition for.
  • MnO 2 is present in a ratio of 0.02 mol (2 mol%) to 1 mol of a mixed powder having a composition containing aNa (Nb 0.8 Ta 0.2 ) O 3 powder, bK (Nb 0.8 Ta 0.2 ) O 3 powder, cLiTaO 3 powder, and dCaZrO 3 powder.
  • the lead-free piezoelectric ceramic composition having the added composition was carried out.
  • the starting materials were mixed using ethanol and zirconia balls, and the alumina crucible was mixed at 5 ° C. at 850 ° C. It was prepared by calcining for an hour, then milling and grinding with alcohol for 24 hours and drying at 80 ° C. for 24 hours. The grinding, calcining and drying were repeated twice for more complete phase synthesis.
  • a is 0.45 or more and 0.51 or less
  • b is 0.98-a
  • c is 0.02
  • d is 0.005 or more and 0.1 or less
  • x 0.02. That is, c and x values were fixed, b was fixed by a value, and the samples which changed only a and d values as shown in following Table 1 were prepared, respectively, and the test was continued.
  • the mixed piezoelectric powder was milled and pulverized with alcohol for 24 hours, dried at 80 ° C. for 24 hours, molded into a disk form, and sintered at 1050 to 1100 ° C. for 2 hours to 24 hours using an alumina crucible. Due to the high hygroscopicity of the raw material powder, contact with water was suppressed as much as possible in all processes.
  • the final powder and the sintered specimens were identified by XRD analysis, and the microstructure was observed using SEM.
  • Ag electrode was applied to the specimen polished to a thickness of 1 mm and heat-treated, and then polarized with a 2.8 kV / cm DC electric field at 130 ° C. for 30 minutes. Subsequently, the amount of deformation ( ⁇ L) in the thickness direction of the specimen was measured with a capacitive sensor while applying voltage across the specimen, and the amount of deformation ( ⁇ L) was calculated as the strain ( ⁇ ) and the piezoelectric constant (d 33 ) from the strain. was calculated using the following equation.
  • DELTA L is the amount of deformation in the specimen thickness direction
  • L is the thickness of the specimen
  • Table 1 is a table showing the strain and piezoelectric constant according to the chemical composition of each specimen.
  • specimen number 1 is mixed in the ratio of aNa (Nb 0.8 Ta 0.2 ) O 3 -bK (Nb 0.8 Ta 0.2 ) O 3 -cLiTaO 3 -dCaZrO 3 , and MnO in a ratio of x mol to 1 mol of the mixed powder.
  • a powder of 2 was sintered at 1050 ° C., which means that a was 0.46, b was 0.42, c was 0.02, d was 0.1, and x was 0.01.
  • the optimal sintering temperature can be referred to as 1050 °C
  • Table 1 is sintered at 1050 °C.
  • the optimal value of a can be said to be 0.49.
  • Na (Nb 0.8 Ta 0.2 ) O 3 powder, K (Nb 0.8 Ta 0.2 ) O 3 powder, LiTaO 3 powder, CaZrO 3 powder are prepared and mixed, and then crushed, dried and sintered. At least two phases appear in the final piezoelectric molding, and in particular, these two phases are arranged in a core-cell structure as shown in FIG. 1, and Na (Nb 0.8 Ta 0.2 ) O 3 and K (Nb 0.8 Ta 0.2 ) O 3 are LiTaO 3 and CaZrO 3 appear in the cell on the core as ferroelectric phase.
  • two or more ferroelectric phases such as the phase dielectric and the ferroelectric phase or the ferroelectric phase 1 and the ferroelectric phase 2 are present.
  • the phase transition from the cell site to the dielectric to the ferroelectric phase and the domain rearrangement of the ferroelectric at the core site appear upon application of the electric field to the final piezoelectric molding. That is, domain rearrangement occurs in the Na (Nb 0.8 Ta 0.2 ) O 3 , K (Nb 0.8 Ta 0.2 ) O 3 material representing the ferroelectric phase of the core region (cubic crystal), and the LiTaO 3 , CaZrO 3 phase transition (cubic crystal from tetragonal) will occur.
  • phase shifts and domain rearrangements occur, such as phase change of the ferroelectric phase to ferroelectric phase, or rearrangement of domains on the existing ferroelectric phase. Piezoelectric properties are exhibited.
  • a material exhibiting a ferroelectric phase in a non-lead piezoelectric ceramic for raw materials Na x K 0.98-x Li y ) (Nb 1-z Ta z ) O 3 ACaZrO is used as a substance that uses a powder and exhibits a phase dielectric phase 3 , BCaTiO 3 , CSrTiO 3 And DCa (ZrTi) O 3 MnO in a ratio of 1 mol of a mixed powder in which one or two or more powders are used to mix the material representing the ferroelectric phase and the material representing the phase dielectric phase.
  • X is 0.47 or more and 0.53 or less
  • y is 0.01 or more and 0.055 or less
  • z is 0.01875 or more and 0.3 or less
  • A, B, C, and D are 0.01 or more and 0.1 or less
  • k is 0.01 or more.
  • X is 0.47 or more and 0.53 or less
  • y is 0.01 or more and 0.055 or less
  • z is 0.3625-6.25y
  • A, B, C, and D are 0.01 or more and 0.1 or less
  • k Is a lead-free piezoelectric ceramic composition for sensors and actuators, characterized in that 0.02.
  • ACaZrO 3 , BCaTiO 3 , CSrTiO 3 And DCa (ZrTi) O 3 MnO in a ratio of 2 mol% (0.02 mol) to 1 mol of mixed powder having a composition in which one is mixed in the powder 2
  • the lead-free piezoelectric ceramic composition having the added composition was carried out.
  • the CaZrO 3 is CaCO 3, a ZrO 2 as starting materials
  • the CaTiO 3 is CaCO 3
  • SrTiO 3 are SrCO 3, from the TiO 2 material, wherein the Ca (ZrTi) O 3 is CaCO 3 , ZrO 2 and TiO 2 were prepared by mixing, calcining, grinding and drying in the same manner as described above.
  • x is 0.47 or more and 0.53 or less
  • y is 0.01 or more and 0.055 or less
  • z is 0.01875 or more and 0.3625 or less
  • A, B, C, D are 0.01 or more and 0.1 or less
  • k is 0.02.
  • the mixed piezoelectric powder was milled and pulverized with alcohol for 24 hours, dried at 80 ° C. for 24 hours, molded into a disk shape, and sintered at 1050 to 1100 ° C. for 2 hours to 24 hours using an alumina crucible. Due to the high hygroscopicity of the raw material powder, contact with water was suppressed as much as possible in all processes.
  • Table 2-1 and Table 2-2 show the strains according to the chemical composition of each specimen using (Na x K 0.98-x Li y ) (Nb 1-z Ta z ) O 3 powder and ACaZrO 3 powder. to be.
  • Specimen No. 1 was mixed with (Na 0.47 K 0.51 Li 0.01 ) (Nb 0.7 Ta 0.3 ) O 3 powder and 0.01CaZrO 3 powder, and mixed with MnO 2 in a ratio of 0.01 mol to 1 mol of the mixed powder. Is a specimen sintered at 1050 °C.
  • Table 3 is a table showing the strain according to the chemical composition of each specimen using (Na x K 0.98-x Li y ) (Nb 1-z Ta z ) O 3 powder and BCaTiO 3 powder.
  • Table 4-1 and Table 4-2 show the strains according to the chemical composition of each specimen using (Na x K 0.98-x Li y ) (Nb 1-z Ta z ) O 3 powder and CSrTiO 3 powder. to be.
  • (Na 0.51 K 0.47 Li 0.02 ) (Nb 0.8 Ta 0.2 ) O 3 -0.02CaTiO 3 shows high strain of 0.25% or more when 20kV / cm is applied, and (Na 0.51 K 0.47 Li 0.02 ) (Nb 0.8 Ta 0.2 ) O 3 -0.02SrTiO 3 shows high strain of 0.4% when 20kV / cm is applied, and (Na 0.51 K 0.47 Li 0.02 ) (Nb 0.8 Ta 0.2 ) O 3 -0.03 (CaSr) (ZrTi) O 3 is 20kV Applying / cm shows a high strain of 0.3% or more.
  • CaZrO 3 , CaTiO 3 , SrTiO 3 And Ca (ZrTi) O 3 Each powder is prepared, one or more of which are mixed and subjected to a process of grinding, drying and sintering, so that at least two phases appear in the final piezoelectric molding in a core-cell structure, in particular at the core site (Na x K 0.98-x Li y ) (Nb 1-z Ta z ) O 3 Exhibits a ferroelectric phase, and CaZrO at the cell site 3 , CaTiO 3 , SrTiO 3 And Ca (ZrTi) O 3
  • the materials such as these exhibit a phase dielectric phase, so that a phase dielectric and a ferroelectric phase exist simultaneously in a core-cell structure in the final piezoelectric molding.
  • the material is CaZrO at the cell site depending on experimental variables such as sintering temperature and specimen composition. 3 , CaTiO 3 , SrTiO 3 And Ca (ZrTi) O 3 It may be combined with a material such as a part of the diffusion and appear in the cell site, in particular Ta has a strong bonding force with Ca, Zr, Ti, etc.
  • x K 0.98-x Li y NbO 3 Exhibits a ferroelectric phase, and CaZrO at the cell site 3 , CaTiO 3 , SrTiO 3 And Ca (ZrTi) O 3 With diffused from the core (Na x K 0.98-x Li y TaO 3 An ordinary dielectric phase may also be shown. But overall (Na x K 0.98-x Li y ) (Nb 1-z Ta z ) O 3 Material shows ferroelectric phase, CaZrO 3 , CaTiO 3 , SrTiO 3 And Ca (ZrTi) O 3 Substances such as these exhibit an ordinary dielectric phase. Depending on the sintering temperature and the composition of the specimen, two or more ferroelectric phases exist, such as a phase dielectric and a ferroelectric phase or a phase dielectric and a ferroelectric phase 1 and a ferroelectric phase 2.
  • phase transition from the dielectric to the ferroelectric phase at the cell site and the rearrangement of the ferroelectric domain at the core site appear when the electric field is applied to the final piezoelectric molding.
  • CaZrO exhibiting an epigenetic phase with domain rearrangement (cubic crystal) in the material 3
  • FIG. 4 is a schematic view of the above description.
  • an initial dielectric phase and a ferroelectric phase of a core portion exist in a shell portion in an initial state.
  • the cell site and the core phase differ only in composition and the two phases maintain consistency (Fig. 4 (a)).
  • a phase change due to the electric field in the shell region (perielectric phase-> ferroelectric phase) and a total volume change due to domain rearrangement occur in the ferroelectric phase of the core region (FIG. 4 (b)).
  • This volume change results in field organic modification.
  • the deformation rate which is the degree of such deformation, is much higher than that of existing materials.
  • FIG. 5 shows an electron micrograph of (Na 0.51 K 0.47 Li 0.02 ) (Nb 0.8 Ta 0.2 ) O 3 ⁇ 0.04CaZrO 3 as an embodiment of the present invention.
  • the other two phases forming the core-cell structure appear as (Na 0.51 K 0.47 Li 0.02 ) (Nb 0.8 Ta 0.2 ) O 3 and the white cell portion 0.04CaZrO 3 .
  • FIG. 6 shows XRD data for (Na 0.51 K 0.47 Li 0.02 ) (Nb 0.8 Ta 0.2 ) O 3 ⁇ 0.04CaZrO 3, which is an example of the present invention, and shows (200) and (002) peaks.
  • Applying an electric field to the sample externally reduces the intensity of the (200) peak and increases the (002) peak intensity, which is the result of domain rearrangement. 4
  • the peak of the (002) peak moves toward the lower diffraction angle as the electric field intensity increases.
  • This change is a result of the phase change phenomenon.
  • the composition according to the present invention causes phase shift and domain rearrangement upon electric field application. As a result, this improves the piezoelectric properties due to the high strain rate.
  • the present invention is applicable to a non-lead piezoelectric ceramic composition and a method of manufacturing the same, in particular, at least two or more phases, i.e., a pure dielectric phase (phase dielectric phase), in piezoelectric moldings prepared by manufacturing non-lead piezoelectric ceramics for raw materials, respectively.
  • a composition in which the ferroelectric phase and the ferroelectric phase are present in the core-cell structure the non-lead piezoelectric ceramic composition for sensors and actuators having an increased dielectric constant due to high strain and an improved piezoelectric constant (d 33 ) and a method of manufacturing the same can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 비납계 압전 세라믹 조성물과 그의 제조방법에 관한 것으로서, 센서 및 액추에이터용 비납계 압전 세라믹 조성물에 있어서, 원료용 비납계 압전 세라믹을 각각 제조한 후 혼합, 분쇄, 건조, 소결시켜, 상유전체상 및 강유전체상이 혼합되고 이러한 상들이 코어-셀 구조로 존재하는 압전 성형물을 제조함으로써, 상기 압전 성형물에 전계 인가시 셀 부위에서 상유전체상에서 강유전체상으로의 상변이와 코어 부위에서 강유전체상의 도메인 재배열이 발생되어 고변형율을 나타내는 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물을 기술적 요지로 한다. 이에 의해 최종 압전 성형물이 최소 두 가지 이상을 상을 가지면서, 전계 인가시 상변이와 도메인 재배열이 발생되어 고변형율에 의한 유전율의 증가와 압전상수(d33)가 우수하여, 충격 센서, 가속도센서, 초음파 센서, 적층형 압전액추에이터, 압전변압기 및 초음파 진동자, 착화소자와 같은 고신뢰성 압전부품을 제조할 수 있으며, 납에 의한 환경 오염을 감소시킬 수 있는 이점이 있다.

Description

센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법
본 발명은 비납계 압전 세라믹 조성물과 그의 제조방법에 관한 것으로서, 특히 원료용 비납계 압전 세라믹을 각각 제조하여 이로부터 제작된 압전 성형물에서 최소 두 가지 이상의 상 즉, 순수 유전체상(상유전체상)과 강유전체상이 코어-셀 구조로 나타나는 조성물을 제공하여, 고변형율에 의한 유전율의 증가와 압전상수(d33)가 향상된 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법에 관한 것이다.
최근 정밀 기계산업과 정보산업의 발달에 따라 미소변위를 제어하거나 진동을 제어하는 압전 액추에이터가 정밀광학기기, 반도체 장비, 기체유량제어 펌프, 밸브 등에 폭 넓게 응용되고 있다.
이는 종래의 기계식 구동소자에 비하여 압전 액추에이터가 소형화 및 정밀제어가 가능하며, 응답속도가 빠른 장점이 있기 때문이다. 따라서 메카트로닉스의 발전과 더불어 미소변위제어 부품은 종래의 스텝모터를 이용하는 방식에서 압전 액추에이터를 이용하는 방식으로 전환될 것이다. 압전 세라믹스의 압전 액추에이터 응용에 있어 고변위를 발생하는 재료가 필요하다. 압전체의 변형율 S는 압전체에 인가된 전계 E와 압전상수 d33의 관계로 나타낼 수 있으며, 다음과 같은 수식으로 표현된다.
Figure PCTKR2010007692-appb-I000001
----------------------- (1)
액추에이터의 변위량(S)은 압전상수(d33) 및 전계(E)에 비례하므로, 압전체의 큰 변위량(S)을 얻기 위해서는 높은 압전 상수(d33) 및 전계(E)가 요구된다. 또한, 변위량(S)은 압전재료의 두께(T)에 비례하고, 큰 변위량(S)을 얻기 위한 압전재료의 두께 증가는 높은 인가전압(E)이 요구된다. 이는 소형화 및 정밀제어 시스템의 회로구성상 바람직하지 않다. 따라서 소비 전력 및 발열량이 적고 응답성도 양호함과 동시에 적층수에 따라 변형량을 조절할 수 있으며, 높은 발생력도 가능한 적층형 압전 액추에이터가 요구되고 있는 실정이다.
또한, 세라믹 조성물을 살펴보면 비납계 압전 세라믹스 중 (Na0.5K0.5)NbO3은 높은 상전이온도, 낮은 항전계, 높은 잔류분극들의 특성을 가지고 있어 납을 기본조성으로 하는 압전 세라믹스를 대체할 수 있는 대표적인 물질 중의 하나로 여겨지고 있다. 그러나 원료 물질들의 높은 흡습성과 소결 중의 휘발로 인하여 일반 통상적인 소결 방법으로는 높은 특성을 지닌 소결체를 제조하기가 어려운 것으로 알려져 있다. 따라서 지금까지는 Hot Press, Spark Plasma Sintering 등과 같은 고가의 제조공정을 이용하여 소결하였다. 즉, 보다 경제적인 소결법을 강구해야 하는 당위성이 있다.
그리고 개발되는 비납계 압전 세라믹스는 대부분 압전 상수(d33) 및 이에 관련된 변형율이 각각 300 ~ 400 pC/N(혹은 pm/V), 0.03 ~ 0.04%에 불과하다. 이에 비하여 기존 납 산화물에서는 압전상수(d33) 600 ~ 800pC/N(혹은 pm/V), 변형율 0.06% ~ 0.1%로 매우 크다. 무연 세라믹이 납산화물계 세라믹에 비하여 성능이 매우 낮다는 단점이 있으므로, 센서나 액추에이터로 적용하는데 상당한 애로점이 있다. 이러한 문제점을 해결하기 위해서는 기존의 MPB(morphotrophic boundary) 영역의 강유전 특성이 아니라 높은 변형율을 나타낼 수 있는 상변이 특성과 강유전 특성이 혼합되어 있는 새로운 조성물을 찾아야 한다.
본 발명은 이상과 같은 사항을 감안하여 창출된 것으로서, 납계 압전 세라믹스의 문제점을 개선하여, 비납계 압전 세라믹을 각각 제조하여 이로부터 제작된 압전 성형물에서 최소 두 가지 이상의 상이 코어-셀 구조로 나타나는 조성물을 제공하여, 고변형율에 의한 유전율의 증가와 압전상수(d33)가 우수한 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법의 제공을 그 목적으로 한다.
상기 목적을 달성하기 위해 본 발명은, 센서 및 액추에이터용 비납계 압전 세라믹 조성물에 있어서, 원료용 비납계 압전 세라믹을 각각 제조한 후 혼합, 분쇄, 건조, 소결시켜, 상유전체상 및 강유전체상이 혼합되고 이러한 상들이 코어-셀 구조로 존재하는 압전 성형물을 제조함으로써, 상기 압전 성형물에 전계 인가시 셀 부위에서 상유전체상에서 강유전체상으로의 상변이와 코어 부위에서 강유전체상의 도메인 재배열이 발생되어 고변형율을 나타내는 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물을 기술적 요지로 한다.
여기에서, 상기 원료용 비납계 압전 세라믹은 상유전체상을 나타내는 물질과 강유전체상을 나타내는 물질을 각각 제조하여 형성되는 것이 바람직하다.
특히, 상기 상유전체상을 나타내는 물질은, Na2CO3, Nb2O5 및 Ta2O5의 군과, K2CO3, Nb2O5 및 Ta2O5의 군과, Li2CO3 및 Ta2O5의 군 중에 하나 또는 둘 이상의 군을 선택하여 혼합, 하소, 분쇄, 건조하여 제조되고, 상기 강유전체상을 나타내는 물질은, CaCO3 및 ZrO2의 군과, CaCO3및 TiO2의 군과, SrCO3 및 TiO2의 군 중에 하나 또는 둘 이상의 군을 선택하여 혼합, 하소, 분쇄, 건조하여 제조되는 것이 바람직하다.
여기에서, 상기 상유전체상을 나타내는 물질 중에 하나 또는 둘 이상을 선택하여 사용하고, 상기 강유전체상을 나타내는 물질 중에 하나 또는 둘 이상을 선택하여 사용하는 것이 바람직하다.
또한, 상기 원료용 비납계 압전 세라믹 중 강유전체상을 나타내는 물질은 aNa(Nb0.8Ta0.2)O3 분말, bK(Nb0.8Ta0.2)O3 분말 및 cLiTaO3 분말 중 어느 하나 또는 둘 이상을 사용하며, 상유전체상을 나타내는 물질은 dCaZrO3 분말을 사용하여, 상기 강유전체상을 나타내는 물질과 상유전체상을 나타내는 물질을 혼합한 혼합분말 1mol대비 x mol의 비율로 MnO2가 첨가된 조성을 갖되, 상기 a는 0.45 이상 0.51 이하이고, b는 0.43 이상 0.47 이하이고, c는 0.01이상 0.03 이하이고, 상기 d는 0.005 이상 0.1 이하이고, a + b + c + d = 1이며, 상기 x는 0.005 이상 0.04 이하의 범위를 갖거나, 또한, 상기 a는 0.45 이상 0.51 이하이고, b는 0.98-a이고, c는 0.02이고, d는 0.005 이상 0.1 이하이며, 상기 x는 0.02인 것이 바람직하다.
여기에서, 상기 a는 0.49인 것이 더욱 바람직하다.
또한, 원료용 비납계 압전 세라믹 중 강유전체상을 나타내는 물질로 Na(Nb0.8Ta0.2)O3 분말, K(Nb0.8Ta0.2)O3 분말, LiTaO3 분말을 제조하고, 상유전체상을 나타내는 물질로 CaZrO3 분말을 각각 제조하는 단계; 및 상기 Na(Nb0.8Ta0.2)O3 분말, K(Nb0.8Ta0.2)O3 분말, LiTaO3 분말 및 CaZrO3 분말을 a Na(Nb0.8Ta0.2)O3 - b K(Nb0.8Ta0.2)O3 - c LiTaO3 - d CaZrO3의 비율로 혼합하고, 혼합분말 1mol 대비 x mol의 비율로 MnO2를 혼합하여, 분쇄, 건조의 과정으로 압전 분말을 성형하여 이를 900℃ ~ 1100℃ 온도 범위에서 소결하는 단계;를 포함하되, 상기 a는 0.45 이상 0.51 이하이고, b는 0.43 이상 0.47 이하이고, c는 0.01 이상 0.03 이하이고, 상기 d는 0.005 이상 0.1 이하이고, a + b + c + d = 1이며, 상기 x는 0.005 이상 0.04 이하의 범위를 갖거나, 또한, 상기 a는 0.45 이상 0.51 이하이고, b=0.98-a이고, c는 0.02이고, d는 0.005 이상 0.1 이하이며, 상기 x는 0.02인 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물의 제조방법을 기술적 요지로 한다.
여기에서, 상기 a와 d는 0.49 와 0.04이며, 소결온도는 1050℃인 것이 바람직하다.
또한, 상기 Na(Nb0.8Ta0.2)O3는 Na2CO3, Nb2O5, 및 Ta2O5을 혼합, 하소, 분쇄, 건조하여 제조되고, 상기 K(Nb0.8Ta0.2)O3 는 K2CO3, Nb2O5, 및 Ta2O5을 혼합, 하소, 분쇄, 건조하여 제조되고, 상기 LiTaO3 는 Li2CO3 및 Ta2O5을 혼합, 하소, 분쇄, 건조하여 제조되며, 상기 CaZrO3 는 CaCO3, Zr2O5를 혼합, 하소, 분쇄, 건조하여 제조되는 것이 바람직하다.
또한, 상기 원료용 비납계 압전 세라믹 중 강유전체상을 나타내는 물질은 (NaxK0.98-xLiy)(Nb1-zTaz)O3분말을 사용하고, 상유전체상을 나타내는 물질은 ACaZrO3, BCaTiO3, CSrTiO3 및 DCa(ZrTi)O3 분말 중에 하나 또는 둘 이상을 사용하여, 상기 강유전체상을 나타내는 물질과 상유전체상을 나타내는 물질을 혼합한 혼합분말 1mol 대비 k mol의 비율로 MnO2가 첨가된 조성을 갖되, 상기 x는 0.47 이상 0.53 이하이고, y는 0.01 이상 0.055 이하이고, z는 0.01875이상 0.3 이하이고, 상기 A, B, C, D는 0.01 이상 0.1 이하이며, k는 0.01 이상 0.05 이하의 범위를 갖거나, 또한, 상기 x는 0.47 이상 0.53 이하이고, y는 0.01 이상 0.055 이하이고, z는 0.3625-6.25y이고, A, B, C, D는 0.01 이상 0.1 이하이며, k는 0.02인 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물을 기술적 요지로 한다.
또한, 원료용 비납계 압전 세라믹 중 강유전체상을 나타내는 물질로 (NaxK0.98-xLiy)(Nb1-zTaz)O3 분말을 제조하고, 상유전체상을 나타내는 물질로 ACaZrO3 분말, BCaTiO3 분말, CSrTiO3 분말 및 DCa(ZrTi)O3 분말 중에 어느 하나 또는 둘 이상을 제조하는 단계; 상기 분말들을 혼합한 혼합분말 1mol 대비 k mol의 비율로 MnO2를 혼합하여, 분쇄, 건조의 과정으로 압전분말을 성형하여 1050℃~1100℃ 온도 범위에서 소결하는 단계;를 포함하되, 상기 x는 0.47 이상 0.53 이하이고, y는 0.01 이상 0.055 이하이고, z는 0.01875이상 0.3 이하이고, 상기 A, B, C, D는 0.01 이상 0.1 이하이며, k는 0.01 이상 0.05 이하의 범위를 갖거나, 또한, 상기 x는 0.47 이상 0.53 이하이고, y는 0.01 이상 0.055 이하이고, z는 0.3625-6.25y이고, A, B, C, D는 0.01 이상 0.1 이하이며, k는 0.02인 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물의 제조방법을 기술적 요지로 한다.
또한, 상기 (NaxK0.98-xLiy)(Nb1-zTaz)O3 는 Na2CO3, K2CO3, Nb2O5, Li2CO3 및 Ta2O5을 혼합, 하소, 분쇄, 건조하여 제조되고, 상기 CaZrO3는 CaCO3, ZrO2를 혼합, 하소, 분쇄, 건조하여 제조되고, 상기 CaTiO3는 CaCO3, TiO2를 혼합, 하소, 분쇄, 건조하여 제조되고, 상기 SrTiO3는 SrCO3, TiO2를 혼합, 하소, 분쇄, 건조하여 제조되며, 상기 Ca(ZrTi)O3는 CaCO3, ZrO2, TiO2를 혼합, 하소, 분쇄, 건조하여 제조되는 것이 바람직하다.
상기 과제 해결 수단에 의해 본 발명은, 종래의 납계 압전 세라믹스가 가지는 높은 소성온도, 비납계 압전 세라믹스의 낮은 압전상수의 문제점을 개선하여, 압전 성형물에서 최소 두 가지 이상의 상이 코어-셀 구조로 나타나는 조성물을 제공하여, 전계 인가시 셀 부위에서의 상변이와 코어 부위에서의 도메인 재배열이 발생되어 고변형율에 의한 유전율의 증가와 압전상수(d33)가 우수하여, 충격 센서, 가속도센서, 초음파 센서, 적층형 압전액추에이터, 압전변압기 및 초음파 진동자, 착화소자와 같은 고신뢰성 압전부품을 제조할 수 있는 효과가 있다.
특히 납을 함유하지 않은 조성으로써 납으로 인한 환경 오염을 감소시킬 수 있는 효과도 있다는 장점이 있다.
도 1 - 본 발명에 따른 압전 성형물의 코어-셀 구조에 대한 모식도.
도 2 - 본 발명의 제 1 실시예에 따라 제조된 0.49Na(Nb0.8Ta0.2)O3 - 0.45K(Nb0.8Ta0.2)O3 - 0.02LiTaO3 -0.04CaZrO3 + 2mol%MnO2에서의 전계 인가시 발생되는 변형율을 나타낸 그래프.
도 3 - 기존의 납계 압전 세라믹 및 본 발명의 제 2 실시예에 따라 제조된 (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3-0.04CaZrO3 + 2mol%MnO2, (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3-0.02CaTiO3 + 2mol%MnO2, (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3-0.02SrTiO3 + 2mol%MnO2, (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3-0.03(CaSr)(ZrTi)O3 + 2mol%MnO2에서의 전계 인가시 발생되는 변형율을 나타낸 그래프.
도 4 - 본 발명에 따른 압전 성형물에 전계 인가시 발생하는 메카니즘을 설명한 모식도.
도 5 - 본 발명의 일실시예인 (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3-0.04CaZrO3 + 2mol%MnO2 에 대한 전자현미경 사진을 나타낸 도.
도 6 - 본 발명의 일실시예인 (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3-0.04CaZrO3 + 2mol%MnO2에 대한 XRD 데이타를 나타낸 도.
본 발명은 납이 함유되지 않은 비납계 압전 세라믹 조성물과 그의 제조방법에 관한 것으로서, 센서 및 액추에이터에 적용될 수 있는 우수한 고변형율에 의한 유전율의 증가와 압전상수(d33)가 우수한 납이 함유되지 않은 압전 세라믹 조성물 및 그 제조방법에 관한 것이다.
특히, 원료용으로 사용되는 비납계 압전 세라믹 중 상유전체상을 나타내는 물질과 강유전체상을 나타내는 물질을 각각 제조한 후 이들을 혼합, 분쇄, 건조, 소결시키는 방법에 의해 제작된 압전 성형물에서, 최소 두 가지 이상의 상 즉, 순수 유전체상(상유전체상)과 강유전체상 혹은 순수 유전체상, 강유전체상 1과 강유전체상 2 이상이 혼합된 상유전체상 및 강유전체상을 나타내는 조성물을 제조하고자 하는 것이다. 이러한 상유전체상 및 강유전체상들은 도 1과 같이 코어-셀 구조로 존재하게 되는데, 상기 압전 성형물에 전계 인가시 셀 부위에서 상유전체상에서 강유전체상으로의 상변이가 일어나고, 코어 부위에서 강유전체상의 도메인 재배열이 발생되어 압전 성형물의 전체적인 부피 변화가 발생되게 되며, 이는 고변형율을 유도하여 높은 압전특성을 가지게 한다.
여기에서, 상기 상유전체상을 나타내는 물질과 강유전체상을 나타내는 물질은 한 종류를 사용하여 이들을 혼합, 분쇄, 건조, 소결시켜 압전 성형물을 제작해도 되며, 여러 종류를 혼합하여 사용하여도 무방하다. 단, 여러 종류를 혼합하여 사용하는 경우에는 상유전체상을 나타내는 물질은 상유전체상을 나타내는 물질끼리 혼합, 분쇄, 건조의 과정을 거친 후에 사용되어지며, 강유전체상을 나타내는 물질은 강유전체상을 나타내는 물질끼리 혼합, 분쇄, 건조의 과정을 거친 후에 사용되게 된다. 이렇게 각각 혼합, 분쇄, 건조의 과정을 거친 후 다시 혼합, 분쇄, 건조, 소결 과정을 거치게 되면 상유전체상과 강유전체상이 혼합된 압전 성형물을 얻을 수 있게 된다.
이와 같이 원료용 비납계 압전 세라믹은 크게 상유전체상을 나타내는 물질과, 강유전체상을 나타내는 물질로 각각 제조되어 하나 또는 둘 이상씩 혼합되어 제조되게 된다. 이러한 원료용 비납계 압전 세라믹 중에 상유전체상을 나타내는 물질은 Na2CO3, Nb2O5 및 Ta2O5의 군과, K2CO3, Nb2O5 및 Ta2O5의 군과, Li2CO3 및 Ta2O5의 군 중에 하나 또는 둘 이상의 군을 선택하여 혼합, 하소, 분쇄, 건조하여 제조되고, 상기 강유전체상을 나타내는 물질은 CaCO3 및 ZrO2의 군과, CaCO3및 TiO2의 군과, SrCO3 및 TiO2의 군 중에 하나 또는 둘 이상의 군을 선택하여 혼합, 하소, 분쇄, 건조하여 제조되게 된다.
즉, 상유전체상을 나타내는 물질을 제조하기 위해서는 출발물질로 Na2CO3, Nb2O5 및 Ta2O5의 군과, K2CO3, Nb2O5 및 Ta2O5의 군과, Li2CO3 및 Ta2O5의 군 중에서 하나 이상 선택하여 사용할 수 있으며, 강유전체상을 나타내는 물질을 제조하기 위해서는 출발물질로 CaCO3 및 ZrO2의 군과, CaCO3및 TiO2의 군과, SrCO3 및 TiO2의 군 중에서 하나 이상 선택하여 사용할 수 있다.
또한, 상기의 여러가지 조합에 의해 다수개로 제조된 상유전체상을 나타내는 물질과 강유전체상을 나타내는 물질은 이들 중에 하나 또는 둘 이상을 선택하여 사용할 수 있다. 다시 말하면, 상유전체상을 나타내는 물질 A,B,C와 강유전체상을 나타내는 물질 a,b,c가 출발물질로부터 제작되었다면, 이들 중에서 또 하나 이상 선택하여 다시 상유전체상을 나타내는 물질과 강유전체상을 나타내는 물질을 제조할 수 있는 것이다.
이와 같이 상유전체를 나타내는 물질과 강유전체를 나타내는 물질로 각각 제조되어 혼합, 분쇄, 건조, 소결 과정을 거친 압전 세라믹의 압전 성형물에 전계를 인가하면 상유전체상이 강유전체상으로 상변이하거나, 원래 존재하여 있는 강유전체상에서는 도메인이 재배열되는 등 2가지 이상의 상변이와 도메인 재배열이 발생되어서 고변형율에 의한 우수한 압전특성을 지닌 납이 함유되지 않은 압전 세라믹 조성물과 그 제조방법을 제공할 수 있게 된다. 특히 납을 함유하지 않은 조성으로써 납으로 인한 환경 오염을 감소시킬 수 있는 장점이 있다.
이하에서는 본 발명의 실시예에 대해 설명하고자 한다.
제 1 실시예
본 발명의 제 1 실시예로, 원료용 비납계 압전 세라믹 중 강유전체상을 나타내는 물질로 aNa(Nb0.8Ta0.2)O3 분말, bK(Nb0.8Ta0.2)O3 분말, cLiTaO3 분말을 사용하고, 상유전체상을 나타내는 물질로 dCaZrO3 분말을 사용하여, 상기 강유전체상을 나타내는 물질 모두와 상기 상유전체상을 나타내는 물질을 혼합한 혼합분말 1mol대비 x mol의 비율로 MnO2가 첨가된 조성을 갖되, 상기 a는 0.45 이상 0.51 이하이고, b는 0.43 이상 0.47 이하이고, c는 0.01 이상 0.03 이하이고, 상기 d는 0.005 이상 0.1 이하이고, a + b + c + d 는 1이며, 상기 x는 0.005 이상 0.04 이하의 범위를 갖거나, 또는 상기 a는 0.45 이상 0.51 이하이고, b는 0.98-a이고, c는 0.02이고, d는 0.005 이상 0.1 이하이며, 상기 x는 0.02인 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물이다.
aNa(Nb0.8Ta0.2)O3 분말, bK(Nb0.8Ta0.2)O3 분말, cLiTaO3 분말, dCaZrO3 분말이 혼합된 조성을 갖는 혼합분말 1mol 대비 0.02 mol의 비율(2mol%)로 MnO2가 첨가된 조성을 갖는 비납계 압전 세라믹 조성물에 대해서 실시하였다.
우선, Li2CO3, Ta2O5 의 시료를 출발물질로 LiTaO3 조성의 분말을 제조하기 위하여, 에탄올과 지르코니아 볼을 이용하여 상기 출발물질을 혼합하고, 알루미나 도가니를 이용하여 850℃에서 5시간 동안 하소한 다음, 알코올로 24시간 밀링 분쇄한 후 80℃에서 24시간 건조하여 제조하였다. 보다 완벽한 상 합성을 위하여 분쇄, 하소, 건조를 두 번 반복하였다.
동일한 방법으로 Na2CO3, Nb2O5, Ta2O5의 시료로 Na(Nb0.8Ta0.2)O3를, Na2CO3, Nb2O5,Ta2O5 의 시료로 K(Nb0.8Ta0.2)O3를, Ca2CO3, Zr2O5 의 시료로 CaZrO3 분말을 제조하였다.
제조한 4종류의 분말을 aNa(Nb0.8Ta0.2)O3 - bK(Nb0.8Ta0.2)O3 - cLiTaO3 - dCaZrO3의 비율로 혼합하고, 혼합된 분말 1mol 대비 xmol의 비율로 MnO2를 혼합한다. 여기서, a는 0.45 이상 0.51 이하이고, b는 0.98-a이고, c는 0.02이고, d는 0.005 이상 0.1이하이며, x는 0.02이다. 즉, c, x값은 고정하고, b는 a값에 의해 고정되도록 정하고, a 와 d 값만을 다음 표 1과 같이 변화시킨 시료를 각각 준비하여 시험을 계속하였다.
혼합된 압전분말을 알코올로 24시간 밀링 분쇄한 후에 80℃에서 24시간 건조하고, disk 형태로 성형한 후, 알루미나 도가니를 이용하여 1050~1100℃에서 2시간~24시간 동안 소결하였다. 원료분말의 흡습성이 높기 때문에 모든 공정에서 수분과의 접촉을 최대한 억제하였다.
최종분말 및 소결된 시편을 XRD분석을 통하여 상을 확인하였고, SEM을 이용하여 미세조직을 관찰하였다. 전기적 특성을 측정하기 위하여 1mm 두께로 연마한 시편에 Ag 전극을 도포하여 열처리 한 후, 130℃에서 30분간 2.8kV/cm 직류 전계로 분극처리 하였다. 이후, 시편 양단에 전압을 인가하면서 정전용량 센서로 시편의 두께 방향으로의 변형량(△L)을 측정하였고, 이러한 변형량(△L)을 변형율(ε)로 계산하고 변형율로부터 압전 상수(d33)는 각각 다음과 같은 수식을 이용하여 계산하였다.
ε = △L/L -------------- (2)
d33 = ε/E ------------------ (3)
여기서, △L은 시편 두께 방향으로의 변형량, L은 시편의 두께, E는 시편 두께방향으로 인가한 전계(=V/L, V: 두께방향으로 인가한 전압)이다.
이하, 표 1은 각 시편의 화학조성에 따른 변형율 및 압전상수를 나타낸 표이다. 예를 들어, 시편번호 1은 aNa(Nb0.8Ta0.2)O3 - bK(Nb0.8Ta0.2)O3 - cLiTaO3 - dCaZrO3의 비율로 혼합하고, 혼합된 분말 1mol 대비 x mol의 비율로 MnO2를 혼합한 분말을 1050℃에서 소결한 시편인데, a가 0.46이고, b가 0.42이고, c가 0.02이고, d가 0.1이며 x가 0.01인 시편을 의미한다.
<표 1>
Figure PCTKR2010007692-appb-I000002
상기 표 1 을 참조하면, 모든 시편에서 500pm/V 이상의 우수한 압전특성을 가짐을 확인할 수 있다. 이는 센서 및 액추에이터용 비납계 압전 세라믹스에 적용될 수 있는 우수한 특성이다.
각 조성별로는 소결온도가 증가할수록 변형율 및 압전상수가 증가하다가 1100℃에서는 변형율이 낮아졌다. 따라서 최적의 소결온도는 1050℃라 할 수 있으며, 상기 표 1은 1050℃에서 소결한 것이다. 한편, 전 소결온도에 걸쳐서 조성의 a값이 증가할수록 변형율 및 압전상수가 증가하다가, 0.51에서는 점차적으로 줄어듦을 확인할 수 있다. 따라서 최적의 a 값은 0.49이라 할 수 있다.
특히, 14번 시편에서 가장 우수한 특성을 나타내는 데, 즉, 0.49Na(Nb0.8Ta0.2)O3 - 0.45K(Nb0.8Ta0.2)O3 - 0.02LiTaO3 -0.04CaZrO3 + 2mol%MnO2 조성 분말을 1050℃에서 4시간 동안 소결하였을 때에 압전상수 2000 pm/V로써 매우 우수한 특성을 보였다(도 2). 이러한 특성은 단결정 PMN-PT의 변형율 특성과 거의 유사한 결과로 상당히 획기적인 결과이다.
이와 같이, Na(Nb0.8Ta0.2)O3 분말, K(Nb0.8Ta0.2)O3 분말, LiTaO3 분말, CaZrO3 분말을 각각 제조하여 이를 혼합하여, 분쇄, 건조 및 소결의 과정을 거침으로써, 최소한 두 가지 상이 최종 압전 성형물에 나타나게 되며, 특히 이러한 두 가지 상은 도 1과 같이 코어-셀 구조로 배열되어 있으며, Na(Nb0.8Ta0.2)O3, K(Nb0.8Ta0.2)O3는 강유전체상으로 코어에, LiTaO3, CaZrO3는 상유전체상으로 셀에 나타나게 된다. 또한, 소결온도 및 시편의 조성 등에 따라서는 상유전체상과 강유전체상 또는 강유전체상 1 및 강유전체상 2와 같이 두 개 이상의 강유전체상이 존재하게 된다.
이러한 두 개 이상의 상이 코어-셀 형태로 존재하게 되면, 최종 압전 성형물에 전계 인가시에 셀 부위에서 상유전체상에서 강유전체상으로의 상변이와 코어 부위에서의 강유전체상의 도메인 재배열이 나타나게 된다. 즉, 코어 부위의 강유전체상을 나타내는 Na(Nb0.8Ta0.2)O3, K(Nb0.8Ta0.2)O3 물질에서 도메인 재배열이 일어나며(입방정), 셀 부위의 상유전체상을 나타내는 LiTaO3, CaZrO3는 상변이(정방정에서 입방정)가 일어나게 된다. 즉, 최종 압전 성형물에 전계를 인가하면 상유전체상이 강유전체상으로 상변이하거나, 원래 존재하여 있는 강유전체상에서는 도메인이 재배열되게 되는 등 2가지 이상의 상변이와 도메인 재배열이 발생되어서 고변형율에 의한 높은 압전특성을 나타내게 된다.
제 2 실시예
본 발명의 제 2 실시예로, 원료용 비납계 압전 세라믹 중 강유전체상을 나타내는 물질로 (NaxK0.98-xLiy)(Nb1-zTaz)O3분말을 사용하고, 상유전체상을 나타내는 물질로 ACaZrO3, BCaTiO3, CSrTiO3 및 DCa(ZrTi)O3 분말 중에 하나 또는 두 개 이상을 사용하여, 상기 강유전체상을 나타내는 물질과 상유전체상을 나타내는 물질을 혼합한 혼합분말 1mol 대비 k mol의 비율로 MnO2가 첨가된 조성을 갖되, 상기 x는 0.47 이상 0.53 이하이고, y는 0.01 이상 0.055 이하이고, z는 0.01875이상 0.3 이하이고, 상기 A, B, C, D는 0.01 이상 0.1 이하이며, k는 0.01 이상 0.05 이하의 범위를 갖거나, 또한, 상기 x는 0.47 이상 0.53 이하이고, y는 0.01 이상 0.055 이하이고, z는 0.3625-6.25y이고, A, B, C, D는 0.01 이상 0.1 이하이며, k는 0.02인 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물이다.
본 발명의 일실시예로, (NaxK0.98-xLiy)(Nb1-zTaz)O3분말과, ACaZrO3, BCaTiO3, CSrTiO3 및 DCa(ZrTi)O3 분말 중에 하나가 혼합된 조성을 갖는 혼합분말 1mol 대비 0.02 mol의 비율(2mol%)로 MnO2가 첨가된 조성을 갖는 비납계 압전 세라믹 조성물에 대해서 실시하였다.
우선, Na2CO3, K2CO3, Nb2O5, Li2CO3 및 Ta2O5의 시료를 출발물질로 (NaxK0.98-xLiy)(Nb1-zTaz)O3 조성의 분말을 제조하기 위하여, 에탄올과 지르코니아 볼을 이용하여 상기 출발물질을 혼합하고, 알루미나 도가니를 이용하여 850℃에서 5시간 동안 하소한 다음, 알코올로 24시간 밀링 분쇄한 후 80℃에서 24시간 건조하여 제조하였다. 보다 완벽한 상 합성을 위하여 분쇄, 하소, 건조를 두 번 반복하였다.
그리고, 상기 CaZrO3는 CaCO3, ZrO2를 출발물질로, 상기 CaTiO3는 CaCO3, TiO2를 출발물질로, SrTiO3는 SrCO3, TiO2를 출발물질, 상기 Ca(ZrTi)O3는 CaCO3, ZrO2, TiO2를 출발물질로 하여 상기와 동일한 방법으로 혼합, 하소, 분쇄, 건조하여 제조하였다.
상기와 같이 제조된 (NaxK0.98-xLiy)(Nb1-zTaz)O3 분말과, ACaZrO3 분말, BCaTiO3 분말, CSrTiO3 분말, DCa(ZrTi)O3 분말 중의 어느 하나를 소정 비율로 혼합하고, 혼합된 분말 1mol 대비 xmol의 비율로 MnO2를 혼합한다. 여기서, x는 0.47 이상 0.53 이하이고, y는 0.01 이상 0.055 이하이고, z는 0.01875 이상 0.3625 이하이고, A, B, C, D는 0.01 이상 0.1이하이며, k는 0.02이다. 이때, x, y값은 고정하고, z는 y값에 의해 고정되도록 정하고(z = 0.3625-6.25y), x 와 y 값만을 다음 표 2와 같이 변화시킨 시료를 각각 준비하여 시험을 계속하였다.
혼합된 압전분말을 알코올로 24시간 밀링 분쇄한 후에 80℃에서 24시간 건조하고, disk 형태로 성형한 후, 알루미나 도가니를 이용하여 1050~1100℃에서 2시간~24시간 동안 소결하였다. 원료분말의 흡습성이 높기 때문에 모든 공정에서 수분과의 접촉을 최대한 억제하였다.
이하, 표 2-1, 표 2-2는 (NaxK0.98-xLiy)(Nb1-zTaz)O3 분말과 ACaZrO3 분말을 이용한 각 시편의 화학조성에 따른 변형율을 나타낸 표이다. 예를 들어, 시편번호 1은 (Na0.47K0.51Li0.01)(Nb0.7Ta0.3)O3 분말과 0.01CaZrO3 분말로 혼합하고, 혼합된 분말 1mol 대비 0.01 mol의 비율로 MnO2를 혼합한 분말을 1050℃에서 소결한 시편이다.
<표 2-1>
Figure PCTKR2010007692-appb-I000003
<표 2-2 >
Figure PCTKR2010007692-appb-I000004
이하, 표 3은 (NaxK0.98-xLiy)(Nb1-zTaz)O3 분말과 BCaTiO3 분말을 이용한 각 시편의 화학조성에 따른 변형율을 나타낸 표이다.
<표 3>
Figure PCTKR2010007692-appb-I000005
이하, 표 4-1, 표 4-2는 (NaxK0.98-xLiy)(Nb1-zTaz)O3 분말과 CSrTiO3 분말을 이용한 각 시편의 화학조성에 따른 변형율을 나타낸 표이다.
<표 4-1>
Figure PCTKR2010007692-appb-I000006
<표 4-2>
Figure PCTKR2010007692-appb-I000007
상기 표를 참조하면, 모든 시편에서 500 pm/V 이상의 우수한 압전특성을 가짐을 확인할 수 있다. 이는 센서 및 액추에이터용 비납계 압전 세라믹에 적용될 수 있는 우수한 특성이다.
도 3은 전계 인가시 발생되는 변형율을 나타내는 것으로서, 기존의 납계 압전 세라믹, Pb(MgNb)O3-PbTiO3(PMN-PT), 의 변형율은 고전계인 50kV/cm를 인가하여도 0.3%이하이다. 그러나 본 발명의 일실시예에 의해 제조된 물질을 이용하면, 예로 (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3-0.04CaZrO3는 30kV/cm를 인가하면 0.5%이상의 높은 변형율을 보여준다. (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3-0.02CaTiO3는 20kV/cm를 인가하면 0.25%이상의 높은 변형율을 보여주고, (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3-0.02SrTiO3는 20kV/cm를 인가하면 0.4%의 높은 변형율을 보여주며, (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3-0.03(CaSr)(ZrTi)O3는 20kV/cm를 인가하면 0.3%이상의 높은 변형율을 보여준다.
이러한 결과는 기존의 납계 압전 세라믹 PMN-PT보다 월등히 우수하며, 납계 PMN-PT 단결정의 변형율 결과(기존 최고 성능)와 대등한 결과이다.
종래의 납 성분이 포함되지 않은 NaKNbO3 세라믹에서는 20kV/cm를 인가하여도 0.1%이하이다. 이러한 이전 결과와 비교해보면 아주 우수한 결과임을 알 수 있다. 조성 분말을 1050℃에서 4시간 동안 소결하였을 때에 압전상수 2000 pm/V로써 매우 우수한 특성을 보였다. 이러한 특성은 단결정 PMN-PT의 변형율 특성과 거의 유사한 결과로 상당히 획기적인 결과이다.
이와 같이, (NaxK0.98-xLiy)(Nb1-zTaz)O3분말과, CaZrO3, CaTiO3, SrTiO3 및 Ca(ZrTi)O3 분말을 각각 제조하여, 이 중에 하나 또는 둘 이상을 혼합하여, 분쇄, 건조 및 소결의 과정을 거침으로써, 최소한 두 가지 상이 코어-셀 구조로 최종 압전 성형물에 나타나게 되며, 특히, 코어 부위에서 (NaxK0.98-xLiy)(Nb1-zTaz)O3가 강유전체상을 나타내게 되며, 셀 부위에서 CaZrO3, CaTiO3, SrTiO3 및 Ca(ZrTi)O3 등의 물질은 상유전체상을 나타내게 되어, 최종 압전 성형물에 코어-셀 구조로 상유전체상 및 강유전체상이 동시에 존재하게 된다. 여기에서, 코어 부위에서의 (NaxK0.98-xLiy)(Nb1-zTaz)O3 물질은 소결온도나 시편의 조성 등의 실험적 변수에 따라 셀 부위에서의 CaZrO3, CaTiO3, SrTiO3 및 Ca(ZrTi)O3 등의 물질과 결합되어 일부가 확산되어 셀 부위에 나타날 수도 있으며, 특히 Ta는 Ca, Zr, Ti 등과의 결합력이 강해서 코어 부위에서 (NaxK0.98-xLiy)NbO3가 강유전체상을 나타내게 되며, 셀 부위에서 CaZrO3, CaTiO3, SrTiO3 및 Ca(ZrTi)O3 와 더불어 코어 부위에서 확산된 (NaxK0.98-xLiy)TaO3도 상유전체상을 나타낼 수도 있다. 하지만, 전체적으로 (NaxK0.98-xLiy)(Nb1-zTaz)O3 물질은 강유전체상을 나타내며, CaZrO3, CaTiO3, SrTiO3 및 Ca(ZrTi)O3 등의 물질은 상유전체상을 나타내게 된다. 소결온도 및 시편의 조성 등에 따라 상유전체상 및 강유전체상 또는 상유전체상과 강유전체상 1 및 강유전체상 2와 같이 두 개 이상의 강유전체상이 존재하게 된다.
이러한 두 개 이상의 상이 존재하게 되면, 최종 압전 성형물에 전계 인가시에 셀 부위에서는 상유전체상에서 강유전체상으로의 상변이 및 코어 부위에서는 강유전체상의 도메인 재배열이 나타나게 되는데, 강유전체상을 나타내는 (NaxK0.98-xLiy)(Nb1-zTaz)O3 물질에서 도메인 재배열이 일어나며(입방정), 상유전체상을 나타내는 CaZrO3, CaTiO3, SrTiO3 및 Ca(ZrTi)O3는 상변이(정방정에서 입방정)가 일어나게 된다. 즉, 최종 압전 성형물에 전계를 인가하면 상유전체상이 강유전체상으로 상변이하거나, 원래 존재하여 있는 강유전체상에서는 도메인이 재배열되게 되는 등 2가지 이상의 상변이와 도메인 재배열이 발생되어서 고변형율에 의한 높은 압전특성을 나타내게 된다.
도 4는 상기의 설명에 대한 모식도를 나타낸 것으로써, 전계를 인가하기 전에는 초기 상태에서는 셀(shell) 부위에서 상유전체상 및 코어(core) 부위의 강유전체상이 존재한다. 셀 부위와 코어 상은 조성만 다르며 두 상은 정합성을 유지하고 있다(도 4(a)). 전계 인가시, 셀(shell) 부위에서 전계에 의한 상변이(상유전체상 -> 강유전체상) 및 코어 부위의 강유전체상에서 도메인 재배열에 의한 전체 부피 변화가 발생된다(도 4(b)). 이러한 부피 변화로 인하여 전계 유기 변형이 발생된다. 이러한 변형의 정도인 변형율은 기존 소재에 비하여 월등히 높다. 전계 제거시, 셀(shell) 부위에서 전계에 의해 발생되었던 상변이가 역변이가 발생되며 (강유전상 -> 상유전상) 및 코어 부위의 강유전체상에서 원래 도메인 구조로 이동되어 전체 부피가 원래 형상으로 돌아오게 된다. 이러한 부피의 되돌림으로 인하여 전계 유기된 변형이 원래 형상으로 되돌아 오게 된다(도 4(c)).
도 5는 본 발명의 일실시예인 (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3-0.04CaZrO3에 대한 전자현미경 사진을 나타낸 것이다. 검은색 코어 부분인 (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3 및 하얀색 셀 부분인 0.04CaZrO3로 코어-셀 구조를 이루는 다른 두 상이 나타남을 확인할 수 있었다.
도 6은 본 발명의 일실시예인 (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3-0.04CaZrO3에 대한 XRD 데이타를 나타낸 것으로, (200) 및 (002) 피크를 나타낸 도면이다. 외부에서 시료에 전계를 인가하면 (200)피크의 강도는 감소하며 (002) 피크 강도는 증가하게 되며, 이것은 도메인 재배열에 의한 결과이다. 또한, 도 4를 자세히 보면 (002) 피크의 최고점이 전계 강도가 증가하면서 회절 각도가 낮은 쪽으로 이동함을 알 수 있다. 이러한 변화는 상변이 현상에 의한 결과이다. 즉, XRD 데이타로 본 발명에 따른 조성물이 전계 인가시 상변이 및 도메인 재배열을 발생시키는 것을 확인할 수 있다. 결과적으로 이는 고변형율에 의한 압전특성을 향상시키게 된다.
본 발명은 비납계 압전 세라믹 조성물과 그의 제조방법에 이용 가능한 것으로서, 특히 원료용 비납계 압전 세라믹을 각각 제조하여 이로부터 제작된 압전 성형물에서 최소 두 가지 이상의 상 즉, 순수 유전체상(상유전체상)과 강유전체상이 코어-셀 구조로 나타나는 조성물을 제공하여, 고변형율에 의한 유전율의 증가와 압전상수(d33)가 향상된 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법에 이용 가능한 것이다.

Claims (14)

  1. 센서 및 액추에이터용 비납계 압전 세라믹 조성물에 있어서,
    원료용 비납계 압전 세라믹을 각각 제조한 후 혼합, 분쇄, 건조, 소결시켜, 상유전체상 및 강유전체상이 혼합되고 이러한 상들이 코어-셀 구조로 존재하는 압전 성형물을 제조함으로써, 상기 압전 성형물에 전계 인가시 셀 부위에서 상유전체상에서 강유전체상으로의 상변이와 코어 부위에서 강유전체상의 도메인 재배열이 발생되어 고변형율을 나타내는 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물.
  2. 제 1항에 있어서, 상기 원료용 비납계 압전 세라믹은 상유전체상을 나타내는 물질과 강유전체상을 나타내는 물질을 각각 제조하여 형성됨을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물.
  3. 제 2항에 있어서, 상기 상유전체상을 나타내는 물질은,
    Na2CO3, Nb2O5 및 Ta2O5의 군과, K2CO3, Nb2O5 및 Ta2O5의 군과, Li2CO3 및 Ta2O5의 군 중에 하나 또는 둘 이상의 군을 선택하여 혼합, 하소, 분쇄, 건조하여 제조되고, 상기 강유전체상을 나타내는 물질은, CaCO3 및 ZrO2의 군과, CaCO3및 TiO2의 군과, SrCO3 및 TiO2의 군 중에 하나 또는 둘 이상의 군을 선택하여 혼합, 하소, 분쇄, 건조하여 제조되는 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물.
  4. 제 3항에 있어서, 상기 상유전체상을 나타내는 물질 중에 하나 또는 둘 이상을 선택하여 사용하고, 상기 강유전체상을 나타내는 물질 중에 하나 또는 둘 이상을 선택하여 사용하는 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물.
  5. 제 3항에 있어서, 상기 원료용 비납계 압전 세라믹 중 강유전체상을 나타내는 물질은 aNa(Nb0.8Ta0.2)O3 분말, bK(Nb0.8Ta0.2)O3 분말 및 cLiTaO3 분말 중 어느 하나 또는 둘 이상을 사용하며, 상유전체상을 나타내는 물질은 dCaZrO3 분말을 사용하여, 상기 강유전체상을 나타내는 물질과 상유전체상을 나타내는 물질을 혼합한 혼합분말 1mol대비 x mol의 비율로 MnO2가 첨가된 조성을 갖되,
    상기 a는 0.45 이상 0.51 이하이고, b는 0.43 이상 0.47 이하이고, c는 0.01이상 0.03 이하이고, 상기 d는 0.005 이상 0.1 이하이고, a + b + c + d = 1이며, 상기 x는 0.005 이상 0.04 이하의 범위를 갖거나,
    또한, 상기 a는 0.45 이상 0.51 이하이고, b는 0.98-a이고, c는 0.02이고, d는 0.005 이상 0.1 이하이며, 상기 x는 0.02인 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물.
  6. 제 4항에 있어서,
    상기 a는 0.49인 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물.
  7. 제 4항 또는 제 5항에 있어서,
    상기 Na(Nb0.8Ta0.2)O3는 Na2CO3, Nb2O5, 및 Ta2O5을 혼합, 하소, 분쇄, 건조하여 제조되고,
    상기 K(Nb0.8Ta0.2)O3 는 K2CO3, Nb2O5, 및 Ta2O5을 혼합, 하소, 분쇄, 건조하여 제조되고,
    상기 LiTaO3 는 Li2CO3 및 Ta2O5을 혼합, 하소, 분쇄, 건조하여 제조되며,
    상기 CaZrO3 는 CaCO3, ZrO2를 혼합, 하소, 분쇄, 건조하여 제조되는 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물.
  8. 원료용 비납계 압전 세라믹 중 강유전체상을 나타내는 물질로 Na(Nb0.8Ta0.2)O3 분말, K(Nb0.8Ta0.2)O3 분말, LiTaO3 분말을 제조하고, 상유전체상을 나타내는 물질로 CaZrO3 분말을 각각 제조하는 단계; 및
    상기 Na(Nb0.8Ta0.2)O3 분말, K(Nb0.8Ta0.2)O3 분말, LiTaO3 분말 및 CaZrO3 분말을 a Na(Nb0.8Ta0.2)O3 - b K(Nb0.8Ta0.2)O3 - c LiTaO3 - d CaZrO3의 비율로 혼합하고, 혼합분말 1mol 대비 x mol의 비율로 MnO2를 혼합하여, 분쇄, 건조의 과정으로 압전 분말을 성형하여 이를 900℃ ~ 1100℃ 온도 범위에서 소결하는 단계;를 포함하되,
    상기 a는 0.45 이상 0.51 이하이고, b는 0.43 이상 0.47 이하이고, c는 0.01 이상 0.03 이하이고, 상기 d는 0.005 이상 0.1 이하이고, a + b + c + d = 1이며, 상기 x는 0.005 이상 0.04 이하의 범위를 갖거나,
    또한, 상기 a는 0.45 이상 0.51 이하이고, b=0.98-a이고, c는 0.02이고, d는 0.005 이상 0.1 이하이며, 상기 x는 0.02인 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물의 제조방법.
  9. 제 8항에 있어서,
    상기 a와 d는 0.49 와 0.04이며, 소결온도는 1050℃인 것을 특징으로 하는 비납계 압전 세라믹 조성물의 제조 방법.
  10. 제 8항 또는 제 9항에 있어서,
    상기 Na(Nb0.8Ta0.2)O3는 Na2CO3, Nb2O5, 및 Ta2O5을 혼합, 하소, 분쇄, 건조하여 제조되고,
    상기 K(Nb0.8Ta0.2)O3 는 K2CO3, Nb2O5, 및 Ta2O5을 혼합, 하소, 분쇄, 건조하여 제조되고,
    상기 LiTaO3 는 Li2CO3 및 Ta2O5 을 혼합, 하소, 분쇄, 건조하여 제조되며,
    상기 CaZrO3 는 CaCO3, Zr2O5를 혼합, 하소, 분쇄, 건조하여 제조되는 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물의 제조방법.
  11. 제 3항에 있어서, 상기 원료용 비납계 압전 세라믹 중 강유전체상을 나타내는 물질은 (NaxK0.98-xLiy)(Nb1-zTaz)O3분말을 사용하고, 상유전체상을 나타내는 물질은 ACaZrO3, BCaTiO3, CSrTiO3 및 DCa(ZrTi)O3 분말 중에 하나 또는 둘 이상을 사용하여, 상기 강유전체상을 나타내는 물질과 상유전체상을 나타내는 물질을 혼합한 혼합분말 1mol 대비 k mol의 비율로 MnO2가 첨가된 조성을 갖되,
    상기 x는 0.47 이상 0.53 이하이고, y는 0.01 이상 0.055 이하이고, z는 0.01875이상 0.3 이하이고, 상기 A, B, C, D는 0.01 이상 0.1 이하이며, k는 0.01 이상 0.05 이하의 범위를 갖거나,
    또한, 상기 x는 0.47 이상 0.53 이하이고, y는 0.01 이상 0.055 이하이고, z는 0.3625-6.25y이고, A, B, C, D는 0.01 이상 0.1 이하이며, k는 0.02인 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물.
  12. 제 11항에 있어서,
    상기 (NaxK0.98-xLiy)(Nb1-zTaz)O3 는 Na2CO3, K2CO3, Nb2O5, Li2CO3 및 Ta2O5을 혼합, 하소, 분쇄, 건조하여 제조되고,
    상기 CaZrO3는 CaCO3, ZrO2를 혼합, 하소, 분쇄, 건조하여 제조되고,
    상기 CaTiO3는 CaCO3, TiO2를 혼합, 하소, 분쇄, 건조하여 제조되고,
    상기 SrTiO3는 SrCO3, TiO2를 혼합, 하소, 분쇄, 건조하여 제조되며,
    상기 Ca(ZrTi)O3는 CaCO3, ZrO2, TiO2를 혼합, 하소, 분쇄, 건조하여 제조되는 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물.
  13. 원료용 비납계 압전 세라믹 중 강유전체상을 나타내는 물질로 (NaxK0.98-xLiy)(Nb1-zTaz)O3 분말을 제조하고, 상유전체상을 나타내는 물질로 ACaZrO3 분말, BCaTiO3 분말, CSrTiO3 분말 및 DCa(ZrTi)O3 분말 중에 어느 하나 또는 둘 이상을 제조하는 단계; 상기 분말들을 혼합한 혼합분말 1mol 대비 k mol의 비율로 MnO2를 혼합하여, 분쇄, 건조의 과정으로 압전분말을 성형하여 1050℃~1100℃ 온도 범위에서 소결하는 단계;를 포함하되,
    상기 x는 0.47 이상 0.53 이하이고, y는 0.01 이상 0.055 이하이고, z는 0.01875이상 0.3 이하이고, 상기 A, B, C, D는 0.01 이상 0.1 이하이며, k는 0.01 이상 0.05 이하의 범위를 갖거나,
    또한, 상기 x는 0.47 이상 0.53 이하이고, y는 0.01 이상 0.055 이하이고, z는 0.3625-6.25y이고, A, B, C, D는 0.01 이상 0.1 이하이며, k는 0.02인 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물의 제조방법.
  14. 제 13항에 있어서, 상기 (NaxK0.98-xLiy)(Nb1-zTaz)O3는 Na2CO3, K2CO3, Nb2O5, Li2CO3 및 Ta2O5을 혼합, 하소, 분쇄, 건조하여 제조되고,
    상기 CaZrO3는 CaCO3, ZrO2를 혼합, 하소, 분쇄, 건조하여 제조되고,
    상기 CaTiO3는 CaCO3, TiO2를 혼합, 하소, 분쇄, 건조하여 제조되고,
    상기 SrTiO3는 SrCO3, TiO2를 혼합, 하소, 분쇄, 건조하여 제조되며,
    상기 Ca(ZrTi)O3는 CaCO3, ZrO2, TiO2를 혼합, 하소, 분쇄, 건조하여 제조되는 것을 특징으로 하는 센서 및 액추에이터용 비납계 압전 세라믹 조성물의 제조방법.
PCT/KR2010/007692 2010-03-23 2010-11-03 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법 WO2011118897A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100025742 2010-03-23
KR10-2010-0025742 2010-03-23
KR1020100093777A KR101198298B1 (ko) 2010-03-23 2010-09-28 센서나 액추에이터로 사용되는 비납계 압전 세라믹 조성물 및 그 제조방법
KR10-2010-0093777 2010-09-28

Publications (1)

Publication Number Publication Date
WO2011118897A1 true WO2011118897A1 (ko) 2011-09-29

Family

ID=44673413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007692 WO2011118897A1 (ko) 2010-03-23 2010-11-03 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2011118897A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325242A (zh) * 2021-05-27 2021-08-31 四川亚美电陶科技有限公司 适用于不同条件下原位实测压电陶瓷d33的温控激振系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342070A (ja) * 2002-03-20 2003-12-03 Toyota Central Res & Dev Lab Inc 圧電磁器組成物及びその製造方法並びに圧電素子
JP2008156210A (ja) * 2006-12-22 2008-07-10 Ngk Insulators Ltd (Li,Na,K)(Nb,Ta)O3系圧電材料の製造方法
KR20080108781A (ko) * 2007-06-11 2008-12-16 한국전기연구원 비납계 압전 세라믹스 조성물 및 그 제조방법
KR20090010446A (ko) * 2007-07-23 2009-01-30 한국전기연구원 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342070A (ja) * 2002-03-20 2003-12-03 Toyota Central Res & Dev Lab Inc 圧電磁器組成物及びその製造方法並びに圧電素子
JP2008156210A (ja) * 2006-12-22 2008-07-10 Ngk Insulators Ltd (Li,Na,K)(Nb,Ta)O3系圧電材料の製造方法
KR20080108781A (ko) * 2007-06-11 2008-12-16 한국전기연구원 비납계 압전 세라믹스 조성물 및 그 제조방법
KR20090010446A (ko) * 2007-07-23 2009-01-30 한국전기연구원 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325242A (zh) * 2021-05-27 2021-08-31 四川亚美电陶科技有限公司 适用于不同条件下原位实测压电陶瓷d33的温控激振系统及方法

Similar Documents

Publication Publication Date Title
Ning et al. Achieving both large piezoelectric constant and high Curie temperature in BiFeO3-PbTiO3-BaTiO3 solid solution
KR101306419B1 (ko) 온도안정성이 우수한 전왜성 무연 세라믹 조성물 및 이의 제조방법
KR100790407B1 (ko) 무연 압전 세라믹스 조성물 및 그의 제조방법
CN105884350A (zh) 一种锆钛酸钡钙无铅压电陶瓷材料及其制备方法
Song et al. Antiferroelectricity and ferroelectricity in A-site doped silver niobate lead-free ceramics
Chang et al. The effects of sintering temperature on the properties of (Na0. 5K0. 5) NbO3–CaTiO3 based lead-free ceramics
EP1351320A2 (en) Piezoelectric ceramic composition, its production method, and piezoelectric device and dielectric device
KR20120136143A (ko) 저온 소결용 압전체의 제조방법 및 이를 이용한 압전체
KR20180128776A (ko) 변형율이 높은 삼성분계 무연 압전 세라믹 조성물
Bian et al. Low-temperature sintered PMnS–PZT multilayer-ceramic for nano-step piezomotor application
KR101198298B1 (ko) 센서나 액추에이터로 사용되는 비납계 압전 세라믹 조성물 및 그 제조방법
WO2017203211A1 (en) Temperature stable lead-free piezoelectric/electrostrictive materials with enhanced fatigue resistance
KR100901463B1 (ko) 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그제조방법
Chung et al. Microstructural, dielectric and piezoelectric properties of low-temperature sintering Pb (Co1/2W1/2) O3–Pb (Mn1/2Nb2/3) O3–Pb (Zr, Ti) O3 ceramics with the addition of Li2CO3 and Bi2O3
KR101349335B1 (ko) 센서 및 액추에이터용 비납계 압전 세라믹
WO2011118897A1 (ko) 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법
KR102540032B1 (ko) 압전 세라믹 적층체
KR20110043339A (ko) 저온 소성용 무연 압전세라믹 조성물 및 제조방법
JP2000272963A (ja) 圧電体磁器組成物
KR101493142B1 (ko) 무연 압전 세라믹 조성물
KR101012143B1 (ko) 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법
Zeb Lead-free dielectric and piezoelectric ceramics
WO2016159633A1 (ko) 적층형 액츄에이터 및 이의 제조 방법
KR100250207B1 (ko) 바이모프 액츄에이터용 압전 세라믹스 조성물
Xia et al. Large strain with broad temperature insensitivity in PZT-PNN multilayer piezoactuators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848539

Country of ref document: EP

Kind code of ref document: A1