WO2011118731A1 - チオスルホナート化合物、タンパク質及び/又はペプチドの可逆的カチオン化剤並びに可溶化方法 - Google Patents

チオスルホナート化合物、タンパク質及び/又はペプチドの可逆的カチオン化剤並びに可溶化方法 Download PDF

Info

Publication number
WO2011118731A1
WO2011118731A1 PCT/JP2011/057238 JP2011057238W WO2011118731A1 WO 2011118731 A1 WO2011118731 A1 WO 2011118731A1 JP 2011057238 W JP2011057238 W JP 2011057238W WO 2011118731 A1 WO2011118731 A1 WO 2011118731A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
proteins
reversible
peptide
peptides
Prior art date
Application number
PCT/JP2011/057238
Other languages
English (en)
French (fr)
Inventor
二見 淳一郎
山田 秀徳
豪 久良木
恵一郎 矢木
Original Assignee
国立大学法人 岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学 filed Critical 国立大学法人 岡山大学
Priority to EP11759536.3A priority Critical patent/EP2551263B1/en
Priority to JP2012507073A priority patent/JP5713006B2/ja
Priority to US13/636,789 priority patent/US8653240B2/en
Priority to CA2794217A priority patent/CA2794217C/en
Publication of WO2011118731A1 publication Critical patent/WO2011118731A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/04Thiosulfonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/145Extraction; Separation; Purification by extraction or solubilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2/00Peptides of undefined number of amino acids; Derivatives thereof

Definitions

  • the present invention relates to a thiosulfonate compound, a reversible cationizing agent and a solubilization method for proteins and / or peptides. More specifically, the present invention relates to a novel thiosulfonate compound, a reversible cationizing agent and a solubilization method for proteins and / or peptides using the same.
  • Proteins and peptides often undergo three-dimensional structure collapse (denaturation) under non-physiological conditions, resulting in precipitation that is insoluble in water.
  • the molecular mechanism of insolubilization of proteins is caused by aggregation of hydrophobic interactions between molecules by exposing hydrophobic amino acid residues embedded in the interior of proteins with native structure as a result of denaturation. (Refer to the left in FIG. 1).
  • a technique for introducing a highly hydrophilic functional group using a chemical modification method has been developed.
  • this highly hydrophilic functional group those having a charge are preferable, and a functional group having a positive charge (cation) is particularly advantageous (see FIG. 1, right, Non-Patent Document 1).
  • (A) on the right side of FIG. 1 is an example using an irreversible cationizing reagent, but in this case, it cannot be reconstituted (refolded) after solubilization.
  • a positive charge is applied to Cys (cysteine) residues in the protein via a reversible disulfide bond (SS bond).
  • SS bond reversible disulfide bond
  • TAPS-sulfonate trimethylammoniopropylmethanethiosulfonate bromide
  • This reagent can add a monovalent quaternary ammonium ion to the denatured protein via an SS bond.
  • a derivative of a polymer having a cationic group such as polyethyleneimine (PEI) is disclosed (for example, see Patent Documents 1 to 3).
  • Patent Documents 1 and 2 disclose PEI-SPDP (mixed reaction reagent of polyethyleneimine and N-succinimidyl-3- (2-pyridylthio) propionate) and the like.
  • TAPS-sulfonate (see FIG. 3) is a monovalent cationization reagent and only one cation can be introduced into one Cys residue, it is more in terms of the solubility index (SI) shown in FIG. In some cases, the solubility of the protein could not be made sufficient.
  • the PEI derivatives described in Patent Documents 1 and 2 and the like are considered useful for cationization of highly hydrophobic (slightly soluble) proteins because a large number of cations can be introduced.
  • reagents such as PEI-SPDP are very useful for introducing a multivalent positive charge, but because they are derivatives of polymer compounds, their molecular weight and structure (degree of branching) are not uniform, and the cation There have been problems such as the heterogeneous charge distribution of the protein after conversion, and the cation cannot completely cationize due to steric hindrance and a trace amount of SH groups remain. In addition to the difficulty of quantitative cationization, there is also a problem of tendency to condense when lyophilized.
  • reversibly denatured cationized proteins obtained by conventional methods dissolve well in pure water, but are physiological salt solutions that can be used for cell culture. There is also a problem that the solubility in the medium is low, and the solution is desired.
  • efficient solubilization methods such as recombinant proteins expressed in bacterial hosts, total proteins extracted from living cells (cancer cells, etc.) and tissues in a denatured state are required. Not yet established. Particularly in cancer immunotherapy, it is desirable to efficiently solubilize cancer antigen proteins, but it is not easy to solubilize all of them by conventional freeze-thaw methods.
  • the present invention has been made in view of the above-described situation, and can be used for novel purification and recovery, which can accurately and reversibly cationize a wider range of proteins and peptides with high quality stability. It is an object of the present invention to provide a sulfonate compound, a reversible cationizing agent for proteins and / or peptides, and a method for solubilizing proteins and / or peptides using the same.
  • the novel compound of the present invention is structurally clear in the number of cations per molecule, is structurally resistant to steric hindrance, etc., and can react with all Cys residues. Is clear and quantitative, can be cationized by accurately introducing a cation into a cysteine residue of a protein or peptide, and can be solubilized. (3) Although the denatured protein reversibly cationized by the conventional method shows relatively high solubility in pure water, it does not show sufficient solubility as the ionic strength of the solvent increases.
  • the cationized and denatured protein obtained using the novel compound of the present invention exhibits high solubility in physiological salt solutions such as physiological saline, and can withstand a concentration step such as lyophilization.
  • the total intracellular protein preferably denatured intracellular total protein
  • the cationized protein exhibits high solubility in physiological saline, it is possible to purify and collect the protein with high purity under physiological conditions. It can also withstand operations such as reversible hydration after lyophilization.
  • the present inventors have also found that these functions and effects are exhibited not only when applied to proteins but also to peptides, and the novel compounds of the present invention allow reagents to reversibly cationize proteins and / or peptides. That is, it has been found useful as a reversible cationizing agent for proteins and / or peptides. Among them, it is particularly useful as a reversible cationizing agent for highly hydrophobic denatured proteins and / or peptides, specifically, recombinant proteins produced by Escherichia coli or the like, or all proteins and peptides of animal cells.
  • the reversible cationizing agent is useful as a solubilizing agent for proteins and / or peptides, and a method for solubilizing proteins and / or peptides using the solubilizing agents deals with proteins and / or peptides.
  • This is a very useful technology in the field.
  • Such a technique of the present invention is useful in both basic research and clinical fields such as analysis of intracellular proteins and application to cancer immunotherapy using dendritic cells. Chemistry research, medical and other applications The range is considered wide.
  • the target dendritic cell vaccine can be prepared more efficiently and contribute to the improvement of therapeutic effect, etc. It can be said that this technology has great potential and developability.
  • the present invention is a thiosulfonate compound having three or more cations derived from a quaternary ammonium group in one molecule.
  • the present invention is also a reversible cationizing agent for reversibly cationizing a protein and / or peptide, wherein the reversible cationizing agent is a reversible protein and / or peptide comprising the thiosulfonate compound. It is also an active cationizing agent.
  • the present invention further relates to a method for solubilizing proteins and / or peptides, which is also a method for solubilizing proteins and / or peptides using a reversible cationizing agent for the proteins and / or peptides.
  • the present invention is also a method for solubilizing a mixture of denatured total proteins extracted from cultured cells and / or living tissue in a physiological salt solution, the solubilization method comprising the above-mentioned protein and / or peptide. It is also a solubilization method using a reversible cationizing agent.
  • the present invention is described in detail below.
  • the thiosulfonate compound of the present invention is a compound having three or more cations derived from a quaternary ammonium group and having a thiosulfonate group in one molecule. Moreover, the form which has a halogen ion etc. as a counter anion is suitable. The structure of the compound of the present invention can be confirmed by NMR or elemental analysis.
  • the thiosulfonate compound is preferably the following general formula (1):
  • R 1 is the same or different and represents an alkylene group having 2 to 20 carbon atoms; R 2 represents a lower alkyl group; n is an integer of 3 or more).
  • N in the general formula (1) represents the number of cations derived from a quaternary ammonium group. If the number of cations is too large, it may be difficult to quantitatively cationize proteins and / or peptides due to steric hindrance or the like. Therefore, when the thiosulfonate compound of the present invention is used as a reversible cationizing agent or solubilizing agent for protein and / or peptide, the quantitative property of the reaction with the protein and / or peptide and the solubilized protein In view of the relationship with the application range of the peptide, n is preferably 3 to 10. More preferably, n is 3 to 8, more preferably 3 to 5, and particularly preferably 3.
  • R 1 in the general formula (1) is the same or different and represents an alkylene group having 2 to 20 carbon atoms.
  • Such an alkylene group may be a linear alkylene group or an alkylene group having a branched chain or a cyclic chain.
  • the thiosulfonate compound of the present invention is used as a reversible cationizing agent or solubilizing agent for proteins and / or peptides, it is preferably a linear alkylene group or a branched lower alkylene group. It is. This is because the steric hindrance increases the reactivity between the thiosulfonate compound and the protein and / or peptide, and the usability may be affected (for example, a process such as lyophilization cannot be used). ).
  • the alkylene group represented by R 1 is used as a reversible cationizing agent or solubilizing agent for proteins and / or peptides since the hydrophobicity of the thiosulfonate compound increases as the number of carbon atoms increases. Since it is contrary to the purpose of the case, that is, the purpose of improving the hydrophilicity by cationization, it is preferably 10 or less. In consideration of stability, the number of carbon atoms of the alkylene group represented by R 1 is selected from 2 to 10, preferably 2 to 6, and more preferably 2 to 4. R 1 is preferably a linear alkylene, particularly preferably a propylene group. When R 1 is different from each other, their bonding order in the structure of the compound represented by the general formula (1) is arbitrary.
  • the lower alkyl group represented by R 2 is preferably a methyl group.
  • the molecular weight of the thiosulfonate compound is preferably 300 to 3000, for example. Among them, when used as a reversible cationizing agent or solubilizing agent for proteins and / or peptides, it is more preferably 300 to 2000 in consideration of steric hindrance and the like. More preferably, it is 300 to 1000.
  • the molecular weight here is a value calculated as the sum of the atomic weights of the constituent elements.
  • Examples of the production method (synthesis method) of the thiosulfonate compound include ammonioalkyl halides (for example, (3-bromopropyl) trimethylammonium having one or more cations derived from a quaternary ammonium group in one molecule. It is obtained by reacting a trialkyldiamine such as trimethyldiamine or triethyldiamine with a dihaloalkane such as dibromopropane and then reacting with a thiosulfonate salt such as sodium methanethiosulfonate. be able to. In addition, you may make it react by changing the number of cations of an ammonioalkyl halide according to the number of the quaternary ammonium group origin cations in the target thiosulfonate compound.
  • ammonioalkyl halides for example, (3-bromopropyl) trimethylammonium having one or more cations derived from a
  • the reversible cationizing agent for the protein and / or peptide of the present invention contains the above-described thiosulfonate compound of the present invention. That is, the thiosulfonate compound of the present invention is used as a reversible cationizing agent for proteins and / or peptides.
  • a reversible cationizing agent is very effective for reversible cationization of highly hydrophobic denatured proteins and peptides as compared with conventional reagents.
  • the reversible cationizing agent of the present invention has a clear charge and can be quantitatively processed, it can be cationized and solubilized by accurately introducing a cation into a cysteine residue of a protein or peptide. Is possible. Furthermore, perhaps in connection with these advantages, it can be solubilized even under conditions where it is difficult to solubilize denatured proteins such as physiological saline other than water, highly hydrophobic peptides, etc.
  • tissue proteins and peptides in a denatured state free of nucleic acids can be solubilized, purified and recovered in physiological saline. That is, if necessary, the protein or peptide of interest can be isolated and purified by refolding in a test tube or in a cell. For this reason, biochemical research, medical care, and other fields of application are considered wide.
  • the target dendritic cells can be prepared more efficiently and contribute to the improvement of the therapeutic effect. it is conceivable that.
  • cancer immunotherapy it is desirable to efficiently solubilize cancer antigen proteins, but it is not easy to solubilize all of them by conventional freeze-thaw methods.
  • the model was used as a model, and it was confirmed that about 50% of the cancer antigen protein gp100 became insoluble after freeze-thaw (see FIG. 9).
  • the solubilization technology developed by the present invention is utilized, the total protein in the cell can be solubilized, and the EGF receptor, TRP2 and gp100 proteins that can actually become cancer antigens are quantified.
  • the reversible cationizing agent for the protein and / or peptide of the present invention may further contain one or more other components other than the thiosulfonate compound as long as it contains the thiosulfonate compound of the present invention. It does not have to be included.
  • reversibly cationizing a protein and / or peptide in the present invention means introducing a positive charge through a reversible bond.
  • a mercapto group possessed by a protein and / or peptide is disulfide. And a positive charge is introduced.
  • protein and / or peptide means a compound formed by binding two or more amino acids by peptide bonds, for example, a complex protein and / or a sugar chain, a lipid, a phosphate group, etc. bound thereto. It may be a peptide.
  • proteins and / or peptides include peptides, enzymes, antibodies, and other functionalities (physiological activities such as pharmacological activity), and proteins and / or peptides that are useful as pharmaceuticals and drugs.
  • the molecular weight is preferably 100 to 1,000,000.
  • the reversible cationizing agent can be used to solubilize proteins and / or peptides in any form, but is preferably used to solubilize denatured proteins and / or peptides. That is, the protein and / or peptide to be reversibly cationized by the reversible cationizing agent is preferably a denatured protein and / or peptide (denatured protein and / or denatured peptide). Thereby, the expression of the above-described effect can be further confirmed.
  • Examples of the denatured state include a state in which a specific three-dimensional structure corresponding to a natural state (native state) exhibited by a protein and / or peptide molecule under almost physiological conditions is lost without covalent bond breakage. It is done.
  • Examples of proteins and / or peptides in such a state include proteins and / or peptides that are difficult to obtain in the native state; denaturation and precipitation in the process of cationizing proteins and / or peptides for introduction into cells.
  • the reversible cationizing agent for the protein and / or peptide is used.
  • the solubilization method is particularly preferably a method of solubilizing a denatured protein and / or peptide. That is, the protein and / or peptide to be solubilized by the solubilization method is preferably a denatured protein and / or peptide (denatured protein and / or denatured peptide).
  • the modifying agent for example, urea or guanidine hydrochloride can be used.
  • the protein and / or peptide target protein and / or peptide
  • the reversible cationizing agent used in this reversible cationization reaction is such that the reversible cationizing agent has a molar concentration of 1 to 100 times the molar concentration of the mercapto group of the target protein and / or peptide. It is preferable to set so that. More preferably, it is 1.1 to 2 times.
  • the reversible cationization reaction in the presence of a denaturing agent and a reducing agent, or to react the reducing agent after the reversible cationization reaction.
  • a denaturing agent and a reducing agent for example, DTT (dithiothreitol) or ⁇ -mercaptoethanol is preferably used.
  • the reversible cationizing agent is taken into consideration in consideration of the total molar concentration of the reducing agent and the mercapto group of the protein and / or peptide contained in the reaction solution. It is preferable to react by adding 1.1 to 2 times the amount.
  • the temperature at which the reversible cationization reaction is performed is preferably 5 to 40 ° C. More preferably, it is 25 degreeC.
  • reversibly cationized proteins and / or peptides can be purified by a conventional method such as dialysis or column chromatography.
  • the purification is preferably performed under acidic conditions.
  • dialysis under acidic conditions, disulfide bonds are sufficiently stabilized, and the solubility and yield of the resulting reversible cationized protein and / or peptide are improved.
  • reversible cationized protein and / or When the peptide is introduced into the cell it can be easily activated in the cell.
  • coli are used, contaminants (nucleic acid, sugar, lipid) derived from E. coli are easily insolubilized under acidic conditions, and subsequent purification can be performed more easily. . More preferably, purification is performed under conditions of pH 6 or less.
  • the total protein derived from living tissue or cultured cells is solubilized as a material
  • the total protein from which nucleic acids have been removed in advance using Trizol reagent manufactured by Invitrogen, phenol / guanidine isothiocyanate
  • Trizol reagent manufactured by Invitrogen, phenol / guanidine isothiocyanate
  • the solubilization procedure is in accordance with the above reversible modification cationization method.
  • the solvent of these reversibly denatured cationized proteins is preferably pure water. However, if it is necessary to replace with a physiological salt solution, high solubility can be maintained by devising a dialysis procedure or purification method. .
  • solubility in the target salt solution can be improved.
  • solubility can also be improved by refine
  • protocols can be applied by applying a multi-step protocol combining a plurality of protocols used for solubilization, purification, etc. (for example, dialysis, HPLC, etc.). It becomes possible to solubilize proteins and the like in a salt solution.
  • protocols and conditions are known to those skilled in the art. Further, the number and combination of protocols are not particularly limited.
  • the product may be concentrated by lyophilization or the like during or after the solubilization.
  • the obtained product When freeze-dried, the obtained product can be stably stored as it is in a reconstituted state.
  • the lyophilized product can be used after reconstitution with an appropriate solvent, if necessary, or further purified.
  • the solubilizer of the present invention it has been confirmed that there is almost no deterioration in quality due to lyophilization (data not shown).
  • the reversible cationizing agent may be further dissociated from the reversibly cationized protein and / or peptide as necessary.
  • the dissociation of the reversible cationizing agent can be carried out using an SH / SS exchange reaction in the presence of a catalyst, or may be spontaneously dissociated in a reducing environment in the cytoplasm.
  • the reversible cationizing agent is dissociated in the course of this SH / SS exchange reaction.
  • the “rewinding rate” in Experimental Example 1 described later is evaluated by the lysis activity (enzyme activity) exhibited by lysozyme.
  • the present invention provides a method for solubilizing a mixture of denatured total proteins extracted from cultured cells and / or living tissue in a physiological salt solution.
  • a solubilization method it is preferable to use a reversible cationizing agent for proteins and / or peptides containing a thiosulfonate compound having a group represented by the general formula (1). That is, a method of solubilizing a mixture of denatured total proteins extracted from cultured cells and / or living tissue in a physiological salt solution, the solubilization method comprising reversible protein and / or peptide.
  • a solubilization method using a cationizing agent is also one aspect of the present invention.
  • the thiosulfonate compound is preferably a thiosulfonate compound in which R 2 in the general formula (1) is a methyl group. Moreover, it is suitable for the said solubilization method to use combining the said 1 or 2 or more said purification protocol as needed.
  • novel thiosulfonate compound of the present invention is configured as described above, it can reversibly cationize a wider range of proteins and peptides with high quality stability and accuracy, and can be used for advanced purification and recovery. It is a useful compound and an extremely excellent compound as a reversible cationizing agent for proteins and / or peptides.
  • Methods for solubilizing proteins and / or peptides using such reversible cationizing agents include analysis of intracellular proteins, research reagents and pharmaceuticals characterized by introducing proteins into cells, It is useful in both basic research and clinical fields, such as the use of cells with artificial functions by introducing proteins by the method, and application to cancer immunotherapy that introduces antigen proteins into dendritic cells and in vivo. , Chemical research, medical and other applications are considered wide.
  • FIG. It is a figure which shows the example of the process conditions which can maintain the high water solubility of the total protein extracted from the cell with a denatured state. It is a figure which shows the example of the two-step dialysis protocol which highly solubilizes the intracellular protein of a denatured state in a physiological saline.
  • FIG. 1 It is a figure which shows the solubility of the intracellular total protein of a denatured state by the two-step dialysis protocol of FIG. Included in lysate in physiological saline prepared by cationization of total protein contained in human epithelioid cell carcinoma-derived cell line A431 and mouse melanoma B16-F10 cells using TAP3S-Sulfonate by the procedure shown in FIG. 1 is a graph showing the results of Western blotting (WB) using an anti- ⁇ -tubulin antibody, an anti-EGF receptor antibody, an anti-TRP2 antibody, and an anti-gp100 antibody.
  • WB Western blotting
  • TAP3S-Sulfonate Synthesis of Novel Cationizing Reagent (TAP3S-Sulfonate) Synthesis of TAP3S-Sulfonate, which is a novel compound of the present invention, was carried out according to the following schemes (i) to (iii). This will be specifically described below.
  • the demonstration experiment was conducted as follows. Human ⁇ -actin expressed in Escherichia coli is recovered as an insoluble fraction (inclusion body) by centrifugation after lysis by ultrasonic disruption. The analysis by SDS-PAGE has a purity of 90% or more at this point in time. It was confirmed. This human ⁇ -actin was dissolved in 6M guanidine hydrochloride, and DTT was added to a final concentration of 30 mM, followed by treatment at 37 ° C. for 2 hours to completely reduce the protein. Next, TAPS-sulfate and TAP3S-Sulfonate were added to a final concentration of 90 mM, reacted at 37 ° C. for 30 minutes, sufficiently dialyzed against pure water, and reversibly denatured cationized ⁇ Actin and did.
  • Table 4 summarizes the evaluation of the solubility of the reversibly denatured cationized ⁇ Actin protein prepared under the above-described purification conditions A to C in physiological saline.
  • the intracellular total protein treated by the two-stage dialysis protocol exhibits high solubility even in physiological saline by the reversible denaturation cationization method (see FIG. 7).
  • the protein cationized with TAP3S-Sulfonate has almost no decrease in solubility in physiological saline, and is very useful when it is necessary to maintain the physiological conditions of the cells, such as when added to cultured cells. was confirmed to be high.
  • mice melanoma B16-F10 cells were frozen and thawed in phosphate buffered saline (PBS) at ⁇ 80 ° C. and thawed at 37 ° C. five times. After crushing, it was fractionated into a soluble fraction and an insoluble fraction by centrifugation, and the amount of gp100 protein contained in each fraction was determined by Western blotting using an anti-gp100 antibody (Santa cruz biotechnology: SC-33590). B.). As a result, it was confirmed that about 50% of gp100, which is a cancer antigen protein, became insoluble after freeze-thawing (see FIG. 9).
  • PBS phosphate buffered saline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

より広範囲のタンパク質やペプチドを、品質安定性高く、かつ正確に可逆的カチオン化することができ、高度な精製及び回収に有用な新規チオスルホナート化合物、タンパク質及び/又はペプチドの可逆的カチオン化剤、並びに、それを用いるタンパク質及び/又はペプチドの可溶化方法を提供する。1分子内に、第4級アンモニウム基に由来するカチオンを3個以上有するチオスルホナート化合物。

Description

チオスルホナート化合物、タンパク質及び/又はペプチドの可逆的カチオン化剤並びに可溶化方法
本発明は、チオスルホナート化合物、タンパク質及び/又はペプチドの可逆的カチオン化剤並びに可溶化方法に関する。より詳しくは、新規なチオスルホナート化合物、これを用いたタンパク質及び/又はペプチドの可逆的カチオン化剤並びに可溶化方法に関する。
タンパク質やペプチドは、非生理的な条件下ではしばしば立体構造が崩壊(変性)し、水に不溶性の沈殿を生じることがある。例えばタンパク質の不溶化の分子機構は、Native構造のタンパク質では分子の内部に埋もれていた疎水性のアミノ酸残基が、変性に伴って露出することで、分子間の疎水的相互作用が強まることで凝集するものと考えられる(図1左参照)。変性状態のタンパク質等、水溶性の低いタンパク質に高い溶解性を付与するための1つの手段として、化学修飾法を用いて親水性の高い官能基を導入する手法が開発されている。この親水性の高い官能基としては、電荷を保有するものがよく、特に正電荷(カチオン)を保有する官能基が有利である(図1右、非特許文献1参照)。
図1右の(a)は、不可逆なカチオン化試薬を使用した例であるが、この場合、可溶化後に再構成(リフォールディング)することができない。これに対し、図1右の点線内((b)、(c))のように、タンパク質中のCys(システイン)残基に対し、可逆的なジスルフィド結合(SS結合)を介して正電荷を付与する‘可逆的(変性)カチオン化’手法を用いれば、必要に応じて還元剤でカチオン化に用いた試薬を解離させることも可能である(非特許文献2参照)。
タンパク質を可逆的にカチオン化するための試薬としては、例えば、TAPS-sulfonate(トリメチルアンモニオプロピルメタンチオスルホナート・ブロミド)が開発され、上市されている(非特許文献3、4参照)。この試薬は、変性状態のタンパク質にSS結合を介して1価の第4級アンモニウムイオンを付加することができる。また、ポリエチレンイミン(PEI)等のカチオン性の基を有する重合体(カチオン性ポリマー)の誘導体が開示されている(例えば、特許文献1~3参照。)。PEI誘導体として、例えば、特許文献1~2に、PEI-SPDP(ポリエチレンイミンと、N-スクシニミジル-3-(2-ピリジルチオ)プロピオネートとの混合反応試薬)等が開示されている。
特開2005-120017号公報 特開2004-049214号公報 特開2008-115150号公報
Journal of Biochemistry、英国、Oxford Univ.Press、1994年、第116号、p.852 Biotechnology and Applied Biochemistry、米国、Academic Press Inc.、1998年、第28号、p.207 山田秀徳、「新規カチオン性SH保護試薬TAPS-sulfonateの蛋白質工学への応用-大腸菌に生産させたSS結合を持つ外来性タンパク質の精製と巻き戻し-」、和光純薬時報、和光純薬工業株式会社、2000年、第68巻、第1号、p.28-30 "封入体からのタンパク質可溶化と巻き戻し補助剤「TAPS-sulfonate」"、[online]、片山化学工業株式会社、[平成22年2月17日検索]、インターネット<URL:http://katayamakagaku.co.jp/products/lifescience/>
上述したように、タンパク質を可逆的にカチオン化するための試薬が種々開発されている。
しかし、TAPS-sulfonate(図3参照)は1価のカチオン化試薬であり、1ヶ所のCys残基に1つのカチオンしか導入できないため、図2に示すSolubility Index(SI)の点から、より多くのタンパク質の溶解性を充分なものとし得ない場合もあった。
また、特許文献1~2等に記載のPEI誘導体は、多数のカチオンを導入できることから、疎水性の高い(難溶性)タンパク質のカチオン化に有用と考えられている。しかし、PEI-SPDP等の試薬は、多価の正電荷を導入するのに非常に有用であるが、高分子化合物の誘導体であるために、分子量・構造(分岐度)が均一でなく、カチオン化後のタンパク質の電荷分布がヘテロになる、立体障害により完全にカチオン化することができず微量のSH基が残存する、等の問題があった。また、定量的なカチオン化が困難であることに加えて、凍結乾燥した際に凝縮傾向があるという問題もあった。
また従来法で得られる可逆的変性カチオン化タンパク質(すなわち、可逆的にカチオン化された変性タンパク質)は、純水にはよく溶解するが、細胞培養に用いることが可能な生理的な塩溶液や培地中での溶解度が低い、といった課題もあり、その解決が望まれている。更に、細菌宿主で発現させた組換えタンパク質や、生体細胞(癌細胞等)や組織から変性状態で抽出した総タンパク質等の効率の良い可溶化法が求められているが、そのような方法は未だ確立されていない。特に癌の免疫治療においては、癌抗原タンパク質を効率的に可溶化することが望ましいが、従来の凍結融解法ではその全てを可溶化することは容易ではない。
本発明は、上記現状に鑑みてなされたものであり、より広範囲のタンパク質やペプチドを、品質安定性高く、かつ正確に可逆的カチオン化することができ、高度な精製及び回収に有用な新規チオスルホナート化合物、タンパク質及び/又はペプチドの可逆的カチオン化剤、並びに、それを用いるタンパク質及び/又はペプチドの可溶化方法を提供することを目的とするものである。
本発明者等は、タンパク質を可逆的にカチオン化しうる試薬について種々検討したところ、1分子内に第4級アンモニウム基に由来するカチオンを3個以上有するチオスルホナート化合物が、これまでにない新規な化合物であって、上記課題をみごとに解決することができることを見いだした。このような化合物は、タンパク質が有する1ヶ所のCys残基に、第4級アンモニウム基に由来する3個以上のカチオンを導入することができることに起因して、主に、次の4つの作用効果を発現することができる。
(1)疎水性のタンパク質の可溶化が容易になり、より広範な変性状態のタンパク質にも高い溶解性を付与することができる。
(2)本発明の新規化合物は、構造上、一分子あたりのカチオンの数が明確であり、かつ構造上立体障害等を受けにくく、全Cys残基と反応することが可能であるため、電荷が明確で定量的な処理が可能で、タンパク質やペプチドのシステイン残基に正確にカチオンを導入してカチオン化でき、可溶化することが可能である。
(3)従来法により可逆的にカチオン化された変性タンパク質は、純水中では比較的高い溶解性を示すが、溶媒のイオン強度が上がると充分な溶解性を示さなかった。しかし、本発明の新規化合物を用いて得られるカチオン化変性タンパク質は、生理食塩水等の生理的な塩溶液中でも高い溶解性を示し、かつ、凍結乾燥等の濃縮工程にも耐え得る。
(4)本発明の新規化合物を用いることにより(好ましくは、更に逆相HPLC等の高度可溶化プロトコルと組み合わせて)、核酸を含まない細胞内総タンパク質(好ましくは変性状態の細胞内総タンパク質)を可逆的に可溶化することが可能である。また、上記(3)に記載のとおり、カチオン化タンパク質は生理食塩水中でも高い溶解性を示すため、生理的な条件下でのタンパク質の高純度な精製、回収等が可能である。また、凍結乾燥後の可逆的な水和等の操作にも耐え得る。
本発明者等はまた、これらの作用効果が、タンパク質のみならずペプチドに適用した場合にも発揮されることを見いだし、本発明の新規化合物がタンパク質及び/又はペプチドを可逆的にカチオン化させる試薬、すなわちタンパク質及び/又はペプチドの可逆的カチオン化剤として有用であることを見いだした。中でも特に、疎水性の高い変性状態のタンパク質及び/又はペプチド、具体的には大腸菌等により生産された組み換えタンパク質や動物細胞の全タンパク質・ペプチド等の可逆的カチオン化剤として有用である。また、この可逆的カチオン化剤は、タンパク質及び/又はペプチドの可溶化剤として有用であり、該可溶化剤を用いてタンパク質及び/又はペプチドを可溶化する方法は、タンパク質及び/又はペプチドを扱う分野で極めて有用な技術である。このような本発明の技術は、細胞内のタンパク質の解析や、樹状細胞を用いる癌免疫療法への応用等、基礎研究及び臨床の両分野で有用であり、化学の研究、医療その他の応用範囲は広いと考えられる。例えば、脊髄等の組織への投与、癌細胞又は癌組織と樹状細胞を用いる癌の免疫療法等において、より効率よく目的の樹状細胞ワクチンを調製し、治療効果の向上に寄与し得る等、多大な可能性・発展性を持つ技術といえる。
すなわち本発明は、1分子内に、第4級アンモニウム基に由来するカチオンを3個以上有するチオスルホナート化合物である。
本発明はまた、タンパク質及び/又はペプチドを可逆的にカチオン化するための可逆的カチオン化剤であって、該可逆的カチオン化剤は、上記チオスルホナート化合物を含むタンパク質及び/又はペプチドの可逆的カチオン化剤でもある。
本発明は更に、タンパク質及び/又はペプチドを可溶化する方法であって、該可溶化方法は、上記タンパク質及び/又はペプチドの可逆的カチオン化剤を用いるタンパク質及び/又はペプチドの可溶化方法でもある。
本発明はそして、培養細胞及び/又は生体組織から抽出した変性状態の総タンパク質の混合物を生理的な塩溶液中に可溶化する方法であって、該可溶化方法は、上記タンパク質及び/又はペプチドの可逆的カチオン化剤を用いる可溶化方法でもある。
以下に本発明を詳述する。
<チオスルホナート化合物>
本発明のチオスルホナート化合物は、1分子内に、第4級アンモニウム基に由来するカチオンを3個以上有し、かつ、チオスルホナート基を有する化合物である。また、対アニオンとして、ハロゲンイオン等を有する形態が好適である。なお、本発明の化合物の構造は、NMRや元素分析等により確認することができる。
上記チオスルホナート化合物は、好ましくは、下記一般式(1):
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、同一又は異なって、炭素原子数2~20のアルキレン基を表す。Rは、低級アルキル基を表す。nは、3以上の整数である。)で表される。
上記一般式(1)中のnは、第4級アンモニウム基に由来するカチオンの数を表す。このカチオンの数が多すぎると、立体障害等によってタンパク質及び/又はペプチドを定量的にカチオン化することが難しくなると考えられる。従って、本発明のチオスルホナート化合物をタンパク質及び/又はペプチドの可逆的カチオン化剤や可溶化剤等として用いる場合には、タンパク質及び/又はペプチドとの反応の定量性と、可溶化可能なタンパク質及び/又はペプチドの適用範囲との関係から、nは3~10が好ましい。より好ましくは、nは3~8であり、更に好ましくは3~5、特に好ましくは3である。
また上記一般式(1)中のRは、同一又は異なって、炭素原子数2~20のアルキレン基を表す。このようなアルキレン基は直鎖アルキレン基であってもよいし、分岐鎖又は環状鎖を有するアルキレン基のいずれであってもよい。本発明のチオスルホナート化合物をタンパク質及び/又はペプチドの可逆的カチオン化剤や可溶化剤等として用いる場合には、直鎖アルキレン基か、又は、分岐鎖を有する低級アルキレン基であることが好適である。これは、立体障害が大きくなることによって上記チオスルホナート化合物とタンパク質及び/又はペプチドとの反応性が不充分になり、使い勝手が影響を受ける可能性(例えば、凍結乾燥等の過程が使えない等)を考慮したものである。
上記Rで表されるアルキレン基は、炭素原子数が大きくなればなるほど上記チオスルホナート化合物の疎水性が向上するため、タンパク質及び/又はペプチドの可逆的カチオン化剤や可溶化剤等として用いる場合の目的、すなわちカチオン化で親水性を向上させるという目的と相反することから、10以下であることが好適である。また、安定性をも考慮して、上記Rで表されるアルキレン基の炭素数は2~10、好ましくは2~6、より好ましくは2~4から選択される。Rとしては直鎖状アルキレンが好ましく、プロピレン基が特に好ましい。Rが互いに異なる場合、上記一般式(1)で表される化合物の構造中におけるそれらの結合順序は任意である。
上記Rで表される低級アルキル基としては、メチル基が好ましい。
上記チオスルホナート化合物の分子量としては、例えば、300~3000であることが好適である。中でも、タンパク質及び/又はペプチドの可逆的カチオン化剤や可溶化剤として使用する場合は、立体障害等を考慮して、300~2000であることがより好ましい。更に好ましくは300~1000である。
ここでいう分子量は、構成する元素の原子量の総和として計算された値である。
上記チオスルホナート化合物の製造方法(合成方法)としては、例えば、1分子内に第4級アンモニウム基に由来するカチオンを1個以上有するアンモニオアルキルハライド(例えば、(3-ブロモプロピル)トリメチルアンモニウム ブロマイド等)に、トリメチルジアミンやトリエチルジアミン等のトリアルキルジアミンを反応させた後、ジブロモプロパン等のジハロアルカンを反応させ、次いで、メタンチオスルホン酸ナトリウム塩等のチオスルホネート塩を反応させることにより得ることができる。なお、目的とするチオスルホナート化合物中の第4級アンモニウム基由来カチオンの数に応じて、アンモニオアルキルハライドのカチオンの数を変えて反応させてもよい。
<タンパク質及び/又はペプチドの可逆的カチオン化剤>
本発明のタンパク質及び/又はペプチドの可逆的カチオン化剤は、上述した本発明のチオスルホナート化合物を含む。すなわち、本発明のチオスルホナート化合物をタンパク質及び/又はペプチドの可逆的カチオン化剤に用いることになる。このような可逆的カチオン化剤は、従来の試薬に比べ、疎水性の高い変性タンパク質やペプチドの可逆的カチオン化に非常に有効である。また、構造上、一分子あたりのカチオンの数が明確であり、かつ立体障害等を受けにくいことから、全Cys残基と反応することが可能である。このように、本発明の可逆的カチオン化剤は電荷が明確で定量的な処理が可能であることから、タンパク質やペプチドのシステイン残基に正確にカチオンを導入してカチオン化し、可溶化することが可能となる。更に、おそらくこれらの利点に関連して、水以外の生理食塩水のような変性状態のタンパク質や疎水性の高いペプチド等の可溶化が困難な条件下でも可溶化させることができるうえ、細胞や組織の、核酸不含の変性状態の全タンパク質やペプチドを、生理食塩水中で可溶化、精製、回収することができる。つまり、必要に応じて、試験管内又は細胞内でリフォールディングし、目的のタンパク質又はペプチドを単離、精製することができる。そのため、生化学の研究、医療、その他、応用範囲は広いと考えられる。例えば、脊髄等の組織への投与、癌細胞又は癌組織と樹状細胞を用いる癌の免疫療法等において、より効率よく目的の樹状細胞を調製し、治療効果の向上に寄与することができると考えられる。特に癌の免疫治療においては、癌抗原タンパク質を効率的に可溶化することが望ましいが、従来の凍結融解法ではその全てを可溶化することは容易ではない。例えば、マウスメラノーマ細胞を凍結融解法で処理した場合、をモデルとして実施した例では、癌抗原タンパク質であるgp100の約50%が凍結融解後に不溶性となることが確認されている(図9参照)。この課題に対し、本発明により開発した可溶化技術を活用すれば、細胞内の総タンパク質の可溶化が可能で、実際にがん抗原となり得るEGF受容体、TRP2及びgp100の各タンパク質を、定量的に、生理食塩水中に可溶化できることが確認されている(図8参照)。
なお、本発明のタンパク質及び/又はペプチドの可逆的カチオン化剤は、本発明のチオスルホナート化合物を含む限り、更に該チオスルホナート化合物以外の他の成分を1種又は2種以上含んでもよく、含まなくてもよい。
ここで、本発明においてタンパク質及び/又はペプチドを可逆的にカチオン化するとは、可逆的な結合を介して正電荷を導入することを意味し、例えば、タンパク質及び/又はペプチドが有するメルカプト基をジスルフィド化して正電荷を導入する形態が挙げられる。
また本発明において、タンパク質及び/又はペプチドとは、2個以上のアミノ酸がペプチド結合により結合して生じる化合物を意味し、例えば、糖鎖、脂質、リン酸基等が結合した複合タンパク質及び/又はペプチドであってもよい。このようなタンパク質及び/又はペプチドとしては、例えば、ペプチド、酵素、抗体、その他機能性(薬理作用等の生理活性)を有し、医薬・薬物として有用なタンパク質及び/又はペプチド等を用いることができ、その分子量としては、100~1000000であることが好ましい。
上記可逆的カチオン化剤は任意の態様のタンパク質及び/又はペプチドの可溶化に用いることができるが、変性状態のタンパク質及び/又はペプチドの可溶化に用いることが好適である。すなわち、上記可逆的カチオン化剤が可逆的にカチオン化しようとするタンパク質及び/又はペプチドが、変性状態のタンパク質及び/又はペプチド(変性タンパク質及び/又は変性ペプチド)であることが好ましい。これによって、上述した効果の発現をより確認することができる。
上記変性状態としては、タンパク質及び/又はペプチド分子がほぼ生理的条件下で示す、天然状態(ネイティブ状態)に相当する固有の立体構造が、共有結合の切断を伴わずに失われた状態が挙げられる。このような状態のタンパク質及び/又はペプチドとしては、例えば、ネイティブ状態のものの取得が困難なタンパク質及び/又はペプチド;細胞内に導入するためにタンパク質及び/又はペプチドをカチオン化する過程で変性・沈殿を生じてしまうタンパク質及び/又はペプチド;大腸菌等によりインクルージョンボディとして発現されたタンパク質及び/又はペプチド等が挙げられる。中でも、メルカプト基を有するものであることが好ましく、システイン残基を有するものが好適である。
<タンパク質及び/又はペプチドの可溶化方法>
本発明のタンパク質及び/又はペプチドの可溶化方法では、上記タンパク質及び/又はペプチドの可逆的カチオン化剤を用いることになる。上記可溶化方法は特に、変性状態のタンパク質及び/又はペプチドを可溶化する方法であることが好適である。すなわち、上記可溶化方法が可溶化しようとするタンパク質及び/又はペプチドが、変性状態のタンパク質及び/又はペプチド(変性タンパク質及び/又は変性ペプチド)であることが好ましい。これによって、上述した効果の発現をより確認することができる。なお、変性剤として、例えば、尿素、塩酸グアニジンを用いることができる。
上記可溶化方法では、可溶化しようとするタンパク質及び/又はペプチド(目的とするタンパク質及び/又はペプチド)と、上記可逆的カチオン化剤とを反応させることが好適である。この可逆的カチオン化反応における可逆的カチオン化剤の使用量としては、目的とするタンパク質及び/又はペプチドが有するメルカプト基のモル濃度に対して、可逆的カチオン化剤が1~100倍のモル濃度となるように設定することが好ましい。より好ましくは、1.1~2倍である。
上記可溶化方法において、可逆的カチオン化反応を変性剤及び還元剤の存在下で行うこと、又は、該可逆的カチオン化反応の後に還元剤を反応させることも好ましい。還元剤としては、例えば、DTT(ジチオトレイトール)、β-メルカプトエタノールを用いることが好適である。ただし、還元剤存在下で上記可逆的カチオン化反応を行う場合は、反応液中に含まれる還元剤とタンパク質及び/又はペプチドが有するメルカプト基の総モル濃度を考慮して、可逆的カチオン化剤を1.1~2倍量添加して反応させることが好ましい。また、可逆的カチオン化反応を行う際の温度としては、5~40℃とすることが好適である。より好ましくは25℃である。
上記可溶化方法ではまた、上記可逆的カチオン化反応後に、透析やカラムクロマトグラフィー等の常法により可逆的にカチオン化したタンパク質及び/又はペプチドを精製することができる。精製は、酸性条件下で行うことが好ましい。酸性条件下で透析を行うことにより、ジスルフィド結合は充分に安定化され、得られる可逆的カチオン化タンパク質及び/又はペプチドの溶解性・収率が向上するため、例えば可逆的カチオン化タンパク質及び/又はペプチドを細胞内に導入する場合に、細胞内での活性化が容易に行える。また大腸菌により発現させたタンパク質及び/又はペプチドを用いる場合は、大腸菌由来の夾雑物(核酸、糖、脂質)が酸性条件下で不溶化しやすく、その後の精製を更に容易に行うことが可能となる。より好ましくはpH6以下の条件下で精製することである。
また、生体組織や培養細胞に由来する総タンパク質を材料として可溶化する場合は、Trizol試薬(Invitrogen社製、フェノール/グアニジンイソチオシアナート)等を活用して、予め核酸を除去した総タンパク質を材料とすることが望ましく、その可溶化手順は上記可逆的変性カチオン化法に準ずる。これらの可逆的変性カチオン化タンパク質の溶媒は純水が好ましいが、生理的な塩溶液に置換する必要がある場合は、透析手順や精製方法を工夫することで高い溶解性を維持することができる。例えば、純水中に溶解した可逆的変性カチオン化タンパク質の溶媒に生理的な濃度の塩を添加して沈殿を生じた場合は、これを再び尿素、グアニジン塩酸塩等の変性剤に溶解し、置換したい生理的な塩溶液対して透析することにより、目的の塩溶液に対する溶解度を向上させることができる。また、逆相HPLC等を用いて高純度に精製することにより、溶解性を向上させることもできる。
このように、本発明のカチオン化剤を用いれば、複数のタンパク質の可溶化、精製等に用いられるプロトコル(例えば、透析、HPLC等)を組み合わせてなる多段階プロトコルを適用することにより、種々の塩溶液中でタンパク質等を可溶化することが可能になる。そのようなプロトコルや条件は当業者に既知である。また、プロトコルの数や組み合わせは特に限定されない。
本発明の可溶化方法においては、可溶化の途中で又は可溶化終了後に、生成物を凍結乾燥等により濃縮してもよい。凍結乾燥した場合、得られた生成物はそのまま、再構成可能な状態で安定的に保存することが可能である。凍結乾燥品は、必要に応じて適当な溶媒で再構成して使用するか、さらに精製することができる。本発明の可溶化剤を使用すると、凍結乾燥による品質の低下がほとんど無いことが確認されている(データ示さず)。
上記可溶化方法では更に、必要に応じて、可逆的にカチオン化されたタンパク質及び/又はペプチドから上記可逆的カチオン化剤を解離してもよい。可逆的カチオン化剤の解離は、触媒の存在下、SH/SS交換反応を利用して行うこともできるし、また、細胞質内の還元的な環境等では自発的に解離することもある。
例えば、タンパク質及び/又はペプチドとして卵白リゾチームを用いる場合は、酸化型グルタチオン:還元型グルタチオン=1:4(モル量比)で混合した溶媒中で、SH/SS交換反応を行うことが好ましいが、このSH/SS交換反応の過程で可逆的カチオン化剤は解離することになる。活性構造の卵白リゾチームは1分子内に4組のSS結合が存在し、正しい組み合わせに巻き戻す必要があるが、活性構造の卵白リゾチームは自由エネルギーが最も低い(=安定な)構造になるため、最終的に可逆的カチオン化剤が解離して正しい4組のSS結合を形成した分子が生理活性を発現することになる。なお、後述する実験例1での「巻き戻し率」は、リゾチームが示す溶菌活性(酵素活性)で評価している。
上記のように、本発明は、培養細胞及び/又は生体組織から抽出した変性状態の総タンパク質の混合物を生理的な塩溶液中に可溶化する方法を提供する。このような可溶化方法においては、上記一般式(1)で表される基を有するチオスルホナート化合物を含むタンパク質及び/又はペプチドの可逆的カチオン化剤を用いることが好ましい。
すなわち、培養細胞及び/又は生体組織から抽出した変性状態の総タンパク質の混合物を生理的な塩溶液中に可溶化する方法であって、該可溶化方法は、上記タンパク質及び/又はペプチドの可逆的カチオン化剤を用いる可溶化方法もまた、本発明の1つである。
上記チオスルホナート化合物は、一般式(1)中のRがメチル基であるチオスルホナート化合物であることが好ましい。また、上記可溶化方法は、必要に応じて1又は2以上の上記精製プロトコルを組み合わせて用いることが好適である。
本発明の新規チオスルホナート化合物は、上述のような構成であるので、より広範囲のタンパク質やペプチドを、品質安定性高く、かつ正確に可逆的カチオン化することができ、高度な精製及び回収に有用なものであり、タンパク質及び/又はペプチドの可逆的カチオン化剤として極めて優れた化合物である。このような可逆的カチオン化剤を用いたタンパク質及び/又はペプチドを可溶化する方法は、細胞内のタンパク質の解析や、細胞内にタンパク質を導入することを特徴とする研究用試薬や医薬品、本法でタンパク質を導入して人工的な機能が付与された細胞の利用、抗原タンパク質を樹状細胞や生体内に導入する癌免疫療法への応用等、基礎研究及び臨床の両分野で有用であり、化学の研究、医療その他の応用範囲は広いと考えられる。
従来の技術の一例を示した概念図であり、変性剤中で溶解したタンパク質(図1左上)は、変性剤非存在下では水中で会合し不溶化する(図1左下)一方で、カチオン化により変性タンパク質の疎水性を上回る親水性を付与すれば、水中で高い溶解性が付与される(図1右)ことを示している。 カチオン化変性タンパク質の溶解性を予測するSolubility Indexを説明する図である。 従来の可逆的カチオン化試薬の一例であるTAPS-Sulfonateの化学構造式を示す図である。 従来の可逆的カチオン化試薬であるTAPS-Sulfonate(T1)、及び、本発明の新規スルホネート化合物であるTAP3S-Sulfonate(T3)それぞれで可逆的変性カチオン化したニワトリ卵白リゾチーム(HEL)の解析結果を示す図である。 細胞より抽出した総タンパク質が変性状態のまま高い水溶性を保持させることが可能な処理条件の例を示す図である。 変性状態の細胞内総タンパク質を生理食塩水中で高度に可溶化する2段階透析プロトコルの例を示す図である。 図6記載の2段階透析プロトコルによる変性状態の細胞内総タンパク質の溶解度を示す図である。 図6に示した手順で、TAP3S-Sulfonateを用いてヒト上皮様細胞がん由来細胞株A431とマウスメラノーマB16-F10細胞が含有する総タンパク質をカチオン化して調製した生理食塩水中のライセート中に含まれるタンパク質を、抗β-tubulin抗体、抗EGF受容体抗体、抗TRP2抗体及び抗gp100抗体を用いたウエスタンブロッティング(W.B.)で定量した結果を示す図である。 マウスメラノーマB16-F10細胞をリン酸緩衝生理食塩水(PBS)中で凍結融解により破砕し、分画して得られた可溶性画分及び不溶性画分が含有するgp100タンパク質の量を、抗gp100抗体を用いたウエスタンブロッティング(W.B.)により定量した結果を示す図である。図中の(1)~(4)は、W.B.のレーン1~4に対応する。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明は実施例のみに限定されるものではない。なお、特に断りのない限り、「%」は「モル%」を意味するものとする。
実施例1:新規カチオン化試薬(TAP3S-Sulfonate)の合成
本発明の新規化合物であるTAP3S-Sulfonateの合成は、下記式(i)~(iii)示すスキームに従って行った。以下に具体的に説明する。
Figure JPOXMLDOC01-appb-C000003
上記式(i)の反応は以下のとおりである。
TAP-Br((3-bromopropyl)trimethylammonium bromide,J.Biochem.,116,852-857(1994))を35.1g(134mmol)量りとり、500mlのエタノールに溶解し、N,N,N’,N’-tetramethyl-1,3-diaminopropaneを87.5g(672mmol)加え、85℃で20時間還流しながら反応し(CH NCHCHCH(CHCHCHCHN(CH・2Brを得た。収量113mmol(収率86%)。
上記式(ii)の反応は以下のとおりである。
(CH NCHCHCH(CHCHCHCHN(CH・2Brを40.89g(104.5mmol)量り500mlのエタノールに溶かし、100ml(979mmol)の1,3-dibromopropaneを加え85℃で還流させながら2日反応させTAP3-Brを得た。収量68.8mmol(収率66%)。
上記式(iii)の反応は以下のとおりである。
TAP3-Brを31.37g(52.9mmol)量りとり、500mlのエタノールに溶かし、CHSOSNaを7.096g(52.9mmol)加え85℃で還流させながら2日反応させTAP3S-Sulfonateを得た。生成物はNMRにより確認した。
H-NMR(300MHz,D2O):δ 3.57-3.33(m,10H),3.50(s,3H),3.30(t,J=6.8Hz,2H),3.15(s,6H),3.14(ds,15H),2.40-2.18(m,6H)
収量30mmol(収率56%)
実験例1:TAP3S-Sulfonateのタンパク質との反応性及び物性評価
ニワトリ卵白リゾチーム(HEL、分子量14.3kDa、8Cys残基/mol)をモデルタンパク質とし、TAPS-sulfonate(非特許文献3~4等に記載の従来のカチオン化試薬)と、実施例1で調製したTAP3S-Sulfonate(新規カチオン化剤)との性能比較を行った。
10mgのHELを1mlの6Mグアニジン塩酸塩、0.1M Tris-HCl、1mM EDTA pH8.5に溶解し、脱気、窒素置換を行った。次に、5mg(0.03 mmol)のDithiothreitol(DTT)を添加し、37℃で90分間の還元反応後、TAPS-sulfonate又はTAP3S-Sulfonateを、DTTの3倍モル量になるようにそれぞれ添加し、37℃で30分間反応した。得られた反応液は純水に対して充分に透析を行い、可溶性画分に得られた可逆的変性カチオン化HELを用いて物性評価を行った。各サンプルをSDS-PAGEにより解析を行った結果、TAPS-sulfonate及びTAP3S-Sulfonateともに、SS結合を介して定量的にタンパク質と結合していることが確認された(図4A参照)。
また、逆相HPLC(C18カラム)を用いてアセトニトリルの直線濃度勾配で溶出を行ったところ、TAP3S-Sulfonateでカチオン化した場合は、溶出時間が短縮されており、親水性が向上していることが確認された(図4B参照)。更に、両者の可逆的変性カチオン化HELをグルタチオンを用いた酸化還元系で巻き戻しを行うと、両者とも90%程度の再活性化率(※1)が得られたことから、本試薬ではSS結合を介した化学修飾以外の副反応は進行していないことが示唆された(図4C参照)。
※1:活性構造の卵白リゾチームは1分子内に4組のSS結合が存在し、正しい組み合わせに巻き戻す必要があるが、活性構造の卵白リゾチームは自由エネルギーが最も低い(=安定な)構造になるため、最終的にカチオン化剤が解離して正しい4組のSS結合を形成した分子が生理活性を発現する。なお、本実験での「巻き戻し率」は、リゾチームが示す溶菌活性(酵素活性)で評価した。
実験例2:難溶性タンパク質の可溶化技術への実証実験
図2に記載のSolubility Indexからも予想されるとおり、疎水性残基が多数含まれるタンパク質は、変性状態での溶解性が極めて低い。このようなモデルタンパク質の1つとして、ヒトβActin(表1参照)モデルとして可逆的変性カチオン化による可溶化の検証実験を進めた。表1に、ヒトβActinタンパク質のアミノ酸組成を示す。
Figure JPOXMLDOC01-appb-T000004
ここで、pH5におけるヒトβActinのSolubility Index(SI)を計算すると、以下のとおりとなり、負又は正の大きな値を示せば溶解しやすくなる性質から、TAP3S-Sulfonateでカチオン化した場合が最も優位な溶解性となることが予測される。
未修飾:SI=(48-49)/72=-0.014
T1(TAPS化):SI(TAPS化)=(48-49+6)/72=+0.07
T3(TAP3化):SI(TAP3化)=(48-49+18)/72=+0.236
実証実験は以下のとおり行った。
大腸菌で発現させたヒトβActinは超音波破砕による溶菌の後、遠心分離を行うと、不溶性画分(インクルージョンボディ)として回収され、SDS-PAGEによる解析では、この時点で90%以上の純度であることが確認された。このヒトβActinを6M塩酸グアニジン中で溶解し、終濃度30mMになるようにDTTを添加して37℃で2時間処理することでタンパク質を完全に還元した。次にTAPS-sulfonate及びTAP3S-Sulfonateを、それぞれ終濃度が90mMになるように添加し、37℃で30分反応した後、純水に対して充分に透析を行い、可逆的変性カチオン化βActinとした。
それぞれのサンプルの溶解度を280nm及び320nmにおける吸光度を測定することで評価した(表2参照)。その結果、両者の可逆的変性カチオン化βActinは純水中で可溶性に存在していたが、TAPS化βActinタンパク質は、相対的に320nmにおける吸光度が高く、溶媒中で凝集が進んでいることが示唆された。表2に、可逆的変性カチオン化βActinタンパク質の純水中での溶解度(4倍希釈後の吸光度)を示す。
Figure JPOXMLDOC01-appb-T000005
次に、純水中に溶解している各可逆的変性カチオン化βActinタンパク質を、生理食塩水(0.15M NaCl)中で溶解するための次のA~Cの条件下で実験を行った。表3に、このA~Cの条件を示す。
Figure JPOXMLDOC01-appb-T000006
上記のA~Cの精製条件で調製した可逆的変性カチオン化βActinタンパク質の生理食塩水中での溶解性の評価を表4にまとめた。この結果からも明らかなとおり、従来型のTAPS化ではほとんど可溶化できなかったが、本発明の新規試薬を用いたTAP3S化ではよく可溶化できることが確認された。また、逆相HPLCを用いて高純度に精製すれば、凍結乾燥後の個体からも容易に水和できることや、溶液中での凝集も極めて低レベルに抑制されており、理想的な溶解状態にあることが確認された。表4に、可逆的変性カチオン化βActinタンパク質の生理食塩水中での溶解度とサンプル調製方法との関係を示す。
Figure JPOXMLDOC01-appb-T000007
逆相カラム精製を経て溶解性が大幅に向上する機構は解析中であるが、カウンターイオンの種類や低分子夾雑物(メタンスルフィン酸等)の除去が鍵と考えられ、可逆的変性カチオン化タンパク質の大幅な溶解度の向上が可能となった。
実験例3:細胞内総タンパク質の可溶化技術への応用―1
がん細胞等の含まれる総タンパク質を丸ごと可溶化するための手法を開発するために、本試薬の有効性を検証した。がん細胞等の生体組織を材料として、その中に含まれるタンパク質をカチオン化する場合には、生体組織内に多量に含まれる核酸が強い負電荷を持つため、カチオン化タンパク質と静電的に会合して不溶化することは明白であった。
そこで、生体組織から定量的に核酸とタンパク質を分離・精製することが可能なTrizol試薬(Invitrogen社製、フェノール/グアニジンイソチオシアナート)を活用して核酸フリーの総タンパク質を抽出することとした。この手法で取得した変性タンパク質の可溶化条件を検討するため、図5に示した手法で総タンパク質を処理したところ、未修飾の変性タンパク質の混合物が、水中でよく溶解することが判明した。このような変性タンパク質の溶解性に関する知見は報告されていないと思われるが、真核生物の細胞内タンパク質が示す本質的な性質であるものと推定され、タンパク質科学的にも非常に興味深い知見である。なお、図5の培養細胞として、マウスB16メラノーマを使用したが、他のヒトのがん細胞(HeLa、A431等)を用いた場合も結果はほぼ同じであった。
Trizol試薬を用いて抽出した細胞内総タンパク質は、6M塩酸グアニジンで溶解した後に、前述の方法でTAPS-sulfonate及びTAP3S-Sulfonateでそれぞれカチオン化反応を行ったが、それぞれのカチオン化タンパク質は生理食塩水中では高い溶解性を示すことができなかった。そこで、前述のβActinタンパク質の可溶化条件の検討において、逆相カラム精製により夾雑物を除去する過程が溶解性向上に寄与したことを参考として、図6に示す2段階透析プロトコルを開発した。
これらの検討の結果、2段階透析プロトコルにより処理した細胞内総タンパク質は、可逆的変性カチオン化法により、生理食塩水中においても高い溶解性を示すことが確認された(図7参照)。特に、TAP3S-Sulfonateでカチオン化したタンパク質は、生理食塩水中でもほとんど溶解性が低下せず、培養細胞等に添加する際等、細胞の生理条件を維持する必要がある場合には非常に有用性が高いことが確認された。
実験例4:細胞内総タンパク質の可溶化技術への応用-2
(1)ヒト上皮様細胞がん由来細胞株A431とマウスメラノーマB16-F10細胞に含有する総タンパク質を、図6に示した手順でTAP3S-Sulfonateを用いてカチオン化し、生理食塩水中で溶解したライセートを調製した。それぞれのライセート中に含まれるタンパク質を抗β-tubulin抗体(Cell signaling Technology:#2146)、抗EGF受容体抗体(Sigma社製:E2760)、抗TRP2抗体(Santa cruz biotechnology社製:SC-25544)、抗gp100抗体(Santa cruz biotechnology社製:SC-33590)を用いたウエスタンブロッティング(W.B.)により定量した。その結果、これらの抗体に対応する抗原タンパク質が溶解していることが確認された(図8参照)。本手法を活用して、がん細胞内に含まれる総タンパク質を生理食塩水中に完全溶解させることが可能で、実際に癌抗原タンパク質として知られているEGF受容体、TRP2、gp100の各抗原が溶解していることが確認された。本手法はがん細胞からがん治療用のワクチンを調製する上でも強力な手法と言える。
(2)比較のために、マウスメラノーマB16-F10細胞内をリン酸緩衝生理食塩水(PBS)中で-80℃での凍結と37℃での融解とを5回繰り返す凍結融解法により細胞を破砕した後、遠心分離により可溶性画分と不溶性画分に分画し、それぞれが含有するgp100タンパク質の量を、抗gp100抗体(Santa cruz biotechnology社製:SC-33590)を用いたウエスタンブロッティング(W.B.)により定量した。その結果、癌抗原タンパク質であるgp100の約50%は凍結融解後に不溶性となることが確認された(図9参照)。

Claims (10)

  1. 1分子内に、第4級アンモニウム基に由来するカチオンを3個以上有することを特徴とするチオスルホナート化合物。
  2. 下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、同一又は異なって、炭素原子数2~20のアルキレン基を表す。Rは、低級アルキル基を表す。nは、3~10の整数である。)で表されることを特徴とする請求項1に記載のチオスルホナート化合物。
  3. 前記一般式(1)中のRが、炭素原子数2~6の直鎖状アルキレン基であることを特徴とする請求項2に記載のチオスルホナート化合物。
  4. 前記Rが、プロピレン基であることを特徴とする請求項3に記載のチオスルホナート化合物。
  5. 前記一般式(1)中のnが3であることを特徴とする請求項2~4のいずれかに記載のチオスルホナート化合物。
  6. 前記一般式(1)中のRがメチル基であることを特徴とする請求項2~5のいずれかに記載のチオスルホナート化合物。
  7. タンパク質及び/又はペプチドを可逆的にカチオン化するための可逆的カチオン化剤であって、該可逆的カチオン化剤は、請求項1~6のいずれかに記載のチオスルホナート化合物を含むことを特徴とするタンパク質及び/又はペプチドの可逆的カチオン化剤。
  8. 請求項7に記載の可逆的カチオン化剤を用いることを特徴とするタンパク質及び/又はペプチドの可溶化方法。
  9. 前記タンパク質及び/又はペプチドは、変性状態のタンパク質及び/又はペプチドであることを特徴とする請求項8に記載のタンパク質及び/又はペプチドの可溶化方法。
  10. 培養細胞及び/又は生体組織から抽出した変性状態の総タンパク質の混合物を生理的な塩溶液中に可溶化する方法であって、
    該可溶化方法は、請求項7に記載の可逆的カチオン化剤を用いることを特徴とする可溶化方法。
PCT/JP2011/057238 2010-03-25 2011-03-24 チオスルホナート化合物、タンパク質及び/又はペプチドの可逆的カチオン化剤並びに可溶化方法 WO2011118731A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11759536.3A EP2551263B1 (en) 2010-03-25 2011-03-24 Thiosulfonate compound, reversibly cationizing agent for proteins and/or peptides, and method for solubilization
JP2012507073A JP5713006B2 (ja) 2010-03-25 2011-03-24 チオスルホナート化合物、タンパク質及び/又はペプチドの可逆的カチオン化剤並びに可溶化方法
US13/636,789 US8653240B2 (en) 2010-03-25 2011-03-24 Thiosulfonate compound, reversible cationization agent for protein and/or peptide, and method for solubilization
CA2794217A CA2794217C (en) 2010-03-25 2011-03-24 Thiosulfonate compound, reversible cationization agent for protein and/or peptide, and method for solubilization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010070804 2010-03-25
JP2010-070804 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118731A1 true WO2011118731A1 (ja) 2011-09-29

Family

ID=44673276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057238 WO2011118731A1 (ja) 2010-03-25 2011-03-24 チオスルホナート化合物、タンパク質及び/又はペプチドの可逆的カチオン化剤並びに可溶化方法

Country Status (5)

Country Link
US (1) US8653240B2 (ja)
EP (1) EP2551263B1 (ja)
JP (1) JP5713006B2 (ja)
CA (1) CA2794217C (ja)
WO (1) WO2011118731A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147233A1 (ja) 2012-03-30 2013-10-03 国立大学法人岡山大学 抗体検出用試薬の製造方法、及びその用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1156386A (ja) * 1997-08-08 1999-03-02 Sumitomo Pharmaceut Co Ltd 組換えbdnfの再生方法
JP2004049214A (ja) 2001-11-29 2004-02-19 Nippon Shokubai Co Ltd 蛋白質またはペプチドの細胞内導入方法
JP2005120017A (ja) 2003-10-16 2005-05-12 Nippon Shokubai Co Ltd 可逆的カチオン化による変性タンパク質の細胞内導入と活性化の方法
JP2007314526A (ja) * 2006-04-27 2007-12-06 Ai Bio Chips:Kk 膜タンパク質可溶化剤および膜タンパク質可溶化方法
WO2008001888A1 (fr) * 2006-06-30 2008-01-03 National University Corporation Hokkaido University Méthode de prétraitement de sérum pour analyse d'une chaîne sucrée
JP2008115150A (ja) 2006-10-13 2008-05-22 Nippon Shokubai Co Ltd タンパク質の細胞内導入剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1156386A (ja) * 1997-08-08 1999-03-02 Sumitomo Pharmaceut Co Ltd 組換えbdnfの再生方法
JP2004049214A (ja) 2001-11-29 2004-02-19 Nippon Shokubai Co Ltd 蛋白質またはペプチドの細胞内導入方法
JP2005120017A (ja) 2003-10-16 2005-05-12 Nippon Shokubai Co Ltd 可逆的カチオン化による変性タンパク質の細胞内導入と活性化の方法
JP2007314526A (ja) * 2006-04-27 2007-12-06 Ai Bio Chips:Kk 膜タンパク質可溶化剤および膜タンパク質可溶化方法
WO2008001888A1 (fr) * 2006-06-30 2008-01-03 National University Corporation Hokkaido University Méthode de prétraitement de sérum pour analyse d'une chaîne sucrée
JP2008115150A (ja) 2006-10-13 2008-05-22 Nippon Shokubai Co Ltd タンパク質の細胞内導入剤

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Biotechnology and Applied Biochemistry, USA", 1998, ACADEMIC PRESS INC., pages: 207
"Journal of Biochemistry, UK", 1994, OXFORD UNIV. PRESS, pages: 852
"TAPS-sulfonate", 17 February 2010, KATAYAMA CHEMICAL INDUSTRIES, CO., LTD.
HIDENORI YAMADA: "Wako Pure Chemical Newsletter", vol. 68, 2000, WAKO PURE CHEMICAL INDUSTRIES, LTD., article "Application to protein engineering of TAPS-sulfonate, a novel cationic SH protection reagent -purification and refolding of an exogenous protein having an SS bond produced by Escherichia coli", pages: 28 - 30
J. BIOCHEM., vol. 116, 1994, pages 852 - 857

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147233A1 (ja) 2012-03-30 2013-10-03 国立大学法人岡山大学 抗体検出用試薬の製造方法、及びその用途
CN104380106A (zh) * 2012-03-30 2015-02-25 二见淳一郎 用于生产抗体检测试剂的方法及其用途
US20150064801A1 (en) * 2012-03-30 2015-03-05 Junichiro Futami Method for producing reagent for antibody detection and use thereof
JPWO2013147233A1 (ja) * 2012-03-30 2015-12-14 国立大学法人 岡山大学 抗体検出用試薬の製造方法、及びその用途
TWI582424B (zh) * 2012-03-30 2017-05-11 Junichiro Futami A method for producing a reagent for detecting an antibody, and a use thereof
US10822384B2 (en) * 2012-03-30 2020-11-03 Junichiro Futami Method for producing reagent for antibody detection and use thereof

Also Published As

Publication number Publication date
US8653240B2 (en) 2014-02-18
US20130096278A1 (en) 2013-04-18
CA2794217C (en) 2018-01-02
EP2551263A4 (en) 2015-08-12
JPWO2011118731A1 (ja) 2013-07-04
JP5713006B2 (ja) 2015-05-07
EP2551263B1 (en) 2017-07-12
CA2794217A1 (en) 2011-09-29
EP2551263A1 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
Rodrigues et al. Functionalizing ferritin nanoparticles for vaccine development
Cattani et al. Structure of a PEGylated protein reveals a highly porous double-helical assembly
Romanini et al. Attachment of peptide building blocks to proteins through tyrosine bioconjugation
Sohma et al. Design and folding of [GluA4 (OβThrB30)] insulin (“ester insulin”): a minimal proinsulin surrogate that can be chemically converted into human insulin
ES2590679T3 (es) Glicopolisialilación de proteínas diferentes a proteínas de coagulación de la sangre
TWI335920B (en) Sugar chain asparagine derivatives, sugar chain asparagine and sugar chain and manufacture thereof
US20180259513A1 (en) Facile laboratory method for localising biomolecules to the surface of cells and viruses
Chalker Prospects in the total synthesis of protein therapeutics
Wu et al. Effects of glycosylation and D-amino acid substitution on the antitumor and antibacterial activities of bee venom peptide HYL
Zhang et al. Site-selective glycosylation of hemoglobin on Cys β93
Meng et al. Mechanistic insights into the stabilization of srcSH3 by PEGylation
ES2813501T3 (es) Métodos de replegado de proteínas basados en filtración de flujo tangencial
JP5713006B2 (ja) チオスルホナート化合物、タンパク質及び/又はペプチドの可逆的カチオン化剤並びに可溶化方法
US11219690B2 (en) Method for thioether conjugation of proteins
CA2908475C (en) Use of antibody-urease conjugates for diagnostic and therapeutic purposes
Askin et al. NMR solution structure of a cytoplasmic surface loop of the human red cell anion transporter, band 3
Yang et al. Chemical Modification of Cysteine with 3-Arylpropriolonitrile Improves the In Vivo Stability of Albumin-Conjugated Urate Oxidase Therapeutic Protein
Huppelschoten et al. Total Chemical Synthesis of LC3A and LC3B Activity-Based Probes
WO1992014832A1 (en) Processes for purifying human bcdf
JP5892648B2 (ja) Ddsカプセル用タンパク質およびそれを用いた薬剤とその調整方法
EP2725104A1 (en) Method for preparing polymeric protein composed of monomeric protein produced by fusing protein having immunoglobulin fold structure to protein capable of serving as subunit structure
Ramakrishnan et al. In vitro folding of β-1, 4galactosyltransferase and polypeptide-α-N-acetylgalactosaminyltransferase from the inclusion bodies
Strainienė Studies of the refolding processes of recombinant growth hormones
ElSohly et al. Antibody Modification of p-Aminophenylalanine-Containing Proteins
Kowalska Biochemical and biophysical characterization of CD44 and its binding partner, hyaluronic acid and structural investigations of the ubiquitin-like protein 5

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759536

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507073

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2794217

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011759536

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011759536

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13636789

Country of ref document: US