WO2011118695A1 - 抗菌作用を持つタングステン酸化物二次構造体 - Google Patents

抗菌作用を持つタングステン酸化物二次構造体 Download PDF

Info

Publication number
WO2011118695A1
WO2011118695A1 PCT/JP2011/057146 JP2011057146W WO2011118695A1 WO 2011118695 A1 WO2011118695 A1 WO 2011118695A1 JP 2011057146 W JP2011057146 W JP 2011057146W WO 2011118695 A1 WO2011118695 A1 WO 2011118695A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten oxide
secondary structure
tungsten
activity
antibacterial activity
Prior art date
Application number
PCT/JP2011/057146
Other languages
English (en)
French (fr)
Inventor
佐山 和弘
由也 小西
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2011118695A1 publication Critical patent/WO2011118695A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Definitions

  • the present invention relates to a tungsten oxide secondary structure excellent in antibacterial activity and photocatalytic activity, and a method for preparing the same.
  • Titanium oxide is a typical example and exhibits strong photocatalytic activity.
  • titanium oxide has a large band gap and is active in ultraviolet light, it does not absorb visible light, which occupies most of sunlight, and does not show catalytic activity for visible light.
  • studies on improvement of titanium oxide such as allowing visible light to be absorbed by nitrogen, sulfur, metal dope, etc., and research on compound semiconductors that are active as a photocatalyst by visible light are being conducted.
  • Tungsten oxide particularly tungsten oxide, is a very attractive photocatalytic material that can completely oxidize various organic substances to CO 2 by supporting an appropriate promoter such as a copper compound or a noble metal (Patent Documents 1-3). reference).
  • these tungsten oxide semiconductors may not yet have sufficient visible photocatalytic activity, and improvement of photocatalytic activity has been a problem.
  • As a method for improving the photocatalytic activity there is use of an effect of increasing light absorption. It has been reported that the photocatalytic activity increases when a peroxide is added to a precursor solution when preparing a tungsten oxide semiconductor powder, and this is thermally decomposed to synthesize a tungsten oxide powder. (See Patent Document 4).
  • Patent Document 5 describes the physical properties of the powder in a wide range.
  • the description of the method of applying the powder to the member is limited, and there is described a method of preparing a specific tungsten oxide fine particle and then applying the particle to the member.
  • the present invention provides a structure of tungsten oxide that increases both photocatalytic activity and antibacterial activity at the same time, and the applied tungsten oxide adheres with a certain degree of strength, facilitates synthesis on a large area, and exhibits excellent photocatalytic activity and antibacterial activity.
  • the object is to provide a tungsten coating technique.
  • the present inventors have not prepared a tungsten oxide powder and then applied the tungsten oxide precursor solution in which the tungsten-containing material and the peroxide are dissolved.
  • the structure of tungsten oxide produced by the above production method has photocatalytic activity and antibacterial activity.
  • a tungsten oxide secondary structure excellent in antibacterial activity characterized by comprising: (2) The tungsten oxide secondary structure according to (1), which has excellent photocatalytic activity simultaneously by supporting a promoter on tungsten oxide. (3) The tungsten oxide secondary structure according to (1) or (2), wherein the tungsten oxide is tungsten trioxide. (4) The tungsten oxide secondary structure according to (2) or (3), wherein the promoter is at least one selected from a copper compound, platinum, palladium, rhodium, ruthenium, silver, and nickel. body.
  • An antibacterial characterized in that a tungsten oxide precursor solution prepared from a tungsten-containing material and hydrogen peroxide is applied to a member, and the applied precursor is decomposed to attach tungsten oxide to the member.
  • Activity grant method (7) The method for imparting antibacterial activity according to (6), wherein photocatalytic activity is imparted by supporting a promoter on tungsten oxide.
  • Antibacterial activity characterized in that the tungsten oxide secondary structure according to any one of (1) to (5) is generated on the surface of the member by the method according to (6) or (7) Grant method.
  • the member is made of a porous material and is manufactured by coating the surface thereof with tungsten oxide, or a porous structure is formed by coating tungsten oxide (6)
  • An antibacterial member comprising the tungsten secondary structure according to any one of (1) to (5).
  • the present invention provides a structure of tungsten oxide excellent in both photocatalytic activity and antibacterial activity and a practical method for simultaneously imparting both photocatalytic activity and antibacterial activity to various daily necessities and industrial products.
  • the antibacterial activity lasts even in the dark, which is a characteristic not found in conventional photocatalysts. It does not flow out like silver ions or copper ions or cause allergies.
  • the member surface can be kept clean with both photocatalytic activity and antibacterial activity. For example, it is most suitable for an air purifier filter using a photocatalyst.
  • Example 6 is a graph showing CO 2 generation time-dependent change of acetaldehyde decomposition of a WO 3 photocatalytic filter for Example 8 and Comparative Example 3. It is a conceptual diagram which shows structures, such as a surface part in the various scales of the tungsten oxide secondary structure of this invention.
  • 4 is a SEM photograph of a member on which the tungsten oxide secondary structure of Example 1 was generated. 4 is a SEM photograph of a member on which tungsten oxide is formed by the IE method of Comparative Example 2.
  • the tungsten oxide secondary structure excellent in antibacterial activity of the present invention (hereinafter sometimes abbreviated as “secondary structure”) is formed by aggregation of primary particles of tungsten oxide.
  • the tungsten oxide precursor solution prepared from a tungsten-containing material and hydrogen peroxide (hereinafter, sometimes abbreviated as “precursor solution”) may be formed by decomposition.
  • the tungsten-containing material a material that dissolves in hydrogen peroxide can be used.
  • the tungsten-containing material that dissolves in hydrogen peroxide include one or more of tungsten metal, H 2 WO 4 , WO 3 , NaWO 4, and the like. It is considered that the tungsten-containing material is dissolved in hydrogen peroxide and a tungsten peroxide is generated.
  • a solvent used for the precursor solution either an aqueous solvent or an organic solvent can be used, but an aqueous solvent is preferable.
  • the organic solvent include alcohols and organic acids. An organic substance may be mixed in an aqueous solvent.
  • tungsten oxide secondary structure as a semiconductor photocatalyst having high photocatalytic activity
  • a self-organizing orange metastable composition is also formed in the solution. Aging is allowed to stand or stir for about several hours, or heated below the boiling point of the solvent.
  • the method for generating the secondary structure from the precursor solution may be any method as long as the surface properties as described below can be obtained.
  • a method of forming a film-like secondary structure on the surface of the member by adhering the precursor solution to the surface of the member by a wet method and heating or firing can be exemplified.
  • the member on which the secondary structure is formed on the surface is required to impart antibacterial activity and / or photocatalytic activity, and if a secondary structure having a surface property as described below is formed, The shape and structure are not ask
  • Examples of such a member include a flat plate such as a substrate having a smooth surface, a plate having a large uneven surface such as a corrugated plate, a rod or wire, a spherical, cylindrical or dome-shaped inner surface. And / or those having a curved surface on the outer surface, screens, filters, porous metals such as porous metals, and the like.
  • various coating methods such as spin coating can be used, and for a porous member, the precursor solution is attached to the inner surface of the hole using a method of soaking the precursor solution. It can also be made.
  • the heating or firing temperature for drying and decomposing the precursor solution attached to the member to produce a secondary structure is higher than the temperature at which the gas decomposition component is almost released, and the semiconductor crystal is a normal X-ray. More than the temperature observed by diffraction (XRD) measurement is required. 300 ° C or higher is desirable in air.
  • the semiconductor photocatalyst preferably has a high specific surface area, but if it is too high, the crystallinity is insufficient and defects and amorphousness increase, causing a decrease in activity.
  • a photocatalyst with high crystallinity and a high specific surface area is desirable, but the optimum value of the specific surface area varies somewhat depending on the catalyst density and the reaction substrate.
  • the specific surface area is larger for organic oxidative decomposition, and smaller for oxygen generation.
  • hydrocarbon decomposition of tungsten oxide (WO 3 ) it is preferably 1-50 m 2 / g, more preferably 2-40 m 2 / g, and still more preferably 4-35 m 2 / g.
  • the crystallinity inferred from XRD or TEM observation is preferably as high as possible when compared with the same specific surface area.
  • the performance of semiconductor photocatalysts usually increases when a cocatalyst is supported. You may carry
  • the semiconductor photocatalyst may coexist with a substance having high adsorption characteristics such as activated carbon.
  • the secondary structure of the present invention is formed by agglomeration of primary particles of tungsten oxide, and may have any shape and structure as long as the surface properties described below are satisfied. For example, it may be particulate or porous.
  • the primary particles of the tungsten oxide are not particularly limited as long as the surface properties of the secondary structure described later can be obtained, and the average particle diameter is 200 nm or less, preferably 60 nm or less.
  • the surface structure of the secondary structure of the present invention is important for antibacterial properties.
  • the mechanism of antibacterial action by tungsten oxide is not clear, but since the effect of direct interaction between tungsten oxide and the surface of bacteria is large, it is preferable that bacteria adhere to the surface of tungsten oxide widely.
  • it is important that the surface of the secondary structure of tungsten oxide is smooth on the scale of the bacteria to be antibacterial, and the unevenness of the tungsten oxide is enough to cover the surface by the flexibility of the bacteria surface. Small is desirable.
  • the scale of many antibacterial bacteria is about 0.5 ⁇ m to 1 ⁇ m in the short direction (width of the contact surface), and about 1 ⁇ m to 15 ⁇ m in the long direction (length of the contact surface).
  • the unevenness of the tungsten oxide surface is at least 10% or less of the scale in the short direction of the contact surface of the bacteria, so the smoothness is preferably 100 nm or less, more The irregularities of preferably 50 nm or less, and still more preferably 25 nm or less are required.
  • the smoothness of the tungsten oxide secondary structure on the above-mentioned scale of bacteria to be antibacterial can be defined as follows. That is, with respect to the surface of the secondary structure of tungsten oxide, the arithmetic mean roughness Ra is preferably at most 100 nm, more preferably at most 50 nm, even more preferably at least 25 nm in the range of the reference length l of at least 0.25 ⁇ m. It is as follows.
  • the reference length l is determined according to the size of the target bacteria, and is generally 0.25 ⁇ m, 0.50 ⁇ m, 1.0 ⁇ m, 1.5 ⁇ m, 2.0 ⁇ m, 3.0 ⁇ m, etc. can do.
  • the smoothness condition becomes more severe, so that not only bacteria having a size corresponding to the numerical value but also smaller bacteria can be targeted.
  • the smoothness according to such a definition allows the presence of protrusions with a height exceeding the Ra value, but in other parts than the protrusions, there are small irregularities less than the Ra value, leading to the surface of the bacterial secondary structure.
  • needle-like protrusions that is, having a small bottom area
  • Such a definition was adopted as a measure of the smoothness of the secondary structure.
  • the smooth region defined by the arithmetic average roughness Ra at the reference length l may be as small as possible on the surface of the secondary structure, but the higher the occupation ratio on the surface, the more antibacterial For example, 10% or more is preferable, 20% or more is more preferable, 30% or more is more preferable, and 50% or more is more preferable.
  • Such an occupation ratio is, for example, the total straight line of the reference length l that satisfies the definition of smoothness described above when Ra is obtained for each reference length l along an arbitrary straight line on the secondary structure surface. It can be determined as a percentage of the total length.
  • the secondary structure of the present invention preferably has a macroscopic scale (scale larger than 1 ⁇ m) larger than the scale of bacteria to be antibacterial and has a porous structure and / or a surface uneven structure (see FIG. 2A).
  • a porous structure allows more bacteria to contact the surface.
  • organic substances that decompose due to photocatalysis can also be adsorbed and decomposed more in this porous structure and / or surface uneven structure.
  • Such a macro-scale porous structure and / or surface uneven structure is formed by forming tungsten oxide in the form of a film on a substrate that already has a porous structure and / or surface uneven structure of this scale such as a ceramic filter. Can be formed.
  • the secondary structure has a porous structure and / or a surface uneven structure even on a scale smaller than the scale of bacteria to be antibacterial (scale smaller than about 0.25 ⁇ m) (see FIG. 2C). If the scale of bacteria to be antibacterial is smoother than a certain level, the average unevenness (arithmetic mean roughness Ra) on a smaller scale is smaller than that on the scale of smooth bacteria. Therefore, in this scale, the influence of the unevenness on the contact area with the tungsten oxide is small due to the flexibility of the bacterial surface, and the porous and / or surface unevenness is considered to have little influence on the antibacterial activity.
  • This scale is desirable because a large adsorption area is desirable in order for much finer organic matter to be adsorbed and decomposed more effectively by photocatalysis than the bacterial scale, including those produced by bacterial degradation. In the case of porous and / or surface irregularities, the photocatalytic activity is increased.
  • the secondary structure of the present invention simultaneously increases the antibacterial activity and the photocatalytic activity by providing a multi-stage porous and / or surface uneven structure depending on the scale of bacteria to be antibacterial. Can do.
  • the conceptual diagram is shown in FIG.
  • a secondary structure having such a multi-stage porous and / or surface irregularity hierarchical structure and the above-described surface properties is prepared by preparing a tungsten oxide precursor solution from hydrogen peroxide and a tungsten-containing material. It can be produced by the method of the present invention characterized in that it is decomposed after being applied and tungsten oxide is adhered to the member. It can be known from the observation of the surface that such a desirable structure is formed. It is desirable to compare the unevenness with the size of bacteria mainly by observation with an electron microscope. If the substrate is smooth, it can be evaluated by AFM or roughness meter.
  • Example 1 WO 3 fine particles were prepared by a thermal decomposition method of a peroxide of tungstic acid (H 2 WO 4 manufactured by Wako).
  • 2.5 g of tungstic acid was dissolved in 30 ml of hydrogen peroxide (H 2 O 2, 30% aqueous solution) in a beaker with strong stirring at 300 rpm or more for about 2 hours.
  • the resulting clear solution is slowly heated on a hot stirrer with stirring to evaporate moisture and hydrogen peroxide. Recycle ripening until the solution concentrated to about 1/5 becomes a clear yellow solution.
  • This solution was uniformly dropped on a quartz glass filter on a hot plate and dried. This was fired in air at 450 ° C.
  • Example 1 This filter with WO 3 photocatalyst is referred to as Example 1 (PA method).
  • the antibacterial activity test was conducted by a JIS R 1702 accredited organization. Antibacterial activity was compared by viable count and bacteriostatic activity (R) at 8 hours. R is the logarithm of the decrease in the number of viable bacteria. As the bacterial species, Staphylococcus aureus was used. Table 1 shows the viable cell count and R results. The number of viable bacteria was below the detection limit regardless of the presence or absence of ultraviolet (UV) light irradiation.
  • UV ultraviolet
  • Staphylococcus aureus has a spherical shape with a diameter of 0.5 to 1.5 ⁇ m, and the contact surface with the surface is considered to be a circle with a diameter of about 0.5 to 1.5 ⁇ m.
  • the surface smoothness (Ra) in Example 1 is mostly in a region of 50 nm or less in consideration of the size range of the contact surface of Staphylococcus aureus. It is porous when viewed (see FIG. 3).
  • Example 2 An aqueous copper nitrate solution was dropped onto the WO 3 photocatalyst filter of Example 1 and calcined at 300 ° C. to support 0.1 wt% of the CuO promoter. Table 1 shows the viable cell count and R results. The number of viable bacteria was below the detection limit regardless of the presence or absence of light irradiation. Even when the cocatalyst was supported, the region where the surface smoothness (Ra) was 50 nm or less did not change much.
  • Example 3 An aqueous palladium ammine complex solution was dropped onto the WO 3 photocatalyst filter of Example 1 and calcined at 300 ° C. to support 0.01 wt% of the Pd promoter. Table 1 shows the viable cell count and R results. The number of viable bacteria was below the detection limit regardless of the presence or absence of light irradiation.
  • Example 4 The antibacterial test of Example 1 was performed with Klebsiella pneumoniae. Table 1 shows the viable cell count and R results. The number of viable bacteria was below the detection limit regardless of the presence or absence of light irradiation.
  • Klebsiella pneumoniae has a rod shape with a diameter (thickness) of 0.5 to 1.0 ⁇ m and a length of about 2.0 ⁇ m, and the contact surface with the surface is an elliptical shape with a width of 0.5 to 1.0 ⁇ m and a length of about 2.0 ⁇ m. It is thought that it becomes.
  • the smoothness (Ra) of the surface in Example 4 is 50 nm or less considering the range of the size of the contact surface of Klebsiella pneumoniae, and the surface is porous when viewed in detail (see FIG. 3).
  • Example 5 The antibacterial test of Example 2 was performed with Klebsiella pneumoniae. Table 1 shows the viable cell count and R results. The number of viable bacteria was below the detection limit regardless of the presence or absence of light irradiation.
  • Example 6 The antibacterial test of Example 3 was performed with Klebsiella pneumoniae. Table 1 shows the viable cell count and R results. The number of viable bacteria was below the detection limit regardless of the presence or absence of light irradiation.
  • Example 7 The antimicrobial test of Example 1 was conducted in 4 hours instead of 8 hours.
  • Table 2 shows the viable cell count and R results. The number of viable bacteria was 27 with light irradiation, 40 without light irradiation, and the R value was 3.9.
  • Comparative Example 1 A commercially available WO 3 powder (Wako Pure Chemical Industries) was suspended in water, applied to a glass substrate, and dried at 100 ° C. However, the antibacterial test could not be performed because it was peeled off from the substrate immediately.
  • Example 2 The preparation method of the filter with the WO 3 photocatalyst of Example 1 was changed.
  • An aqueous solution of tungstic acid was prepared by passing an aqueous Na 2 WO 4 solution through an ion exchange resin. Polyethylene glycol 300 was added to this. This solution was uniformly dropped on a quartz glass filter on a hot plate and dried. This was fired in air at 550 ° C. for 0.5 hours in an electric furnace to produce yellow-green WO 3 fine particles on the surface of the quartz glass filter.
  • the specific surface area of the WO 3 fine particles was 18 m 2 / g. It is known that this method is easy to prepare a stable tungsten precursor coating solution and has excellent photoelectrode characteristics when applied on conductive glass (IE method).
  • IE method photoelectrode characteristics when applied on conductive glass
  • Example 8 Were photocatalytic activity test acetaldehyde decomposed with CuO- WO 3 photocatalyst with filter of Example 2.
  • 1800 ppm of acetaldehyde was introduced, and light irradiation was performed with a solar simulator (0.5 Sun condition).
  • FIG. 1 shows the time course of CO 2 generation due to acetaldehyde decomposition. CO 2 generation is saturated at approximately 120 minutes, it was found that completely oxidized.
  • FIG. 1 shows the time course of CO 2 generation. It could not be completely oxidized even after 240 minutes, indicating that the activity was lower than that of the photocatalyst of Example 8.
  • the tungsten oxide secondary structure of the present invention is excellent in both photocatalytic activity and antibacterial activity, it can be applied to various daily necessities and industrial products that require photocatalytic activity and antibacterial activity.
  • the surface of the product can be kept clean. For example, it is most suitable for an air purifier filter using a photocatalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

 光触媒活性及び抗菌活性の両方を同時に増大させる酸化タングステンの構造と塗布した酸化タングステンがある程度の強度で付着し、大面積合成しやすく、且つ優れた光触媒活性及び抗菌活性を発揮する部材に対する抗菌活性付与手法を提供することを課題とし、タングステン含有材料及び過酸化水素から調製されたタングステン酸化物前駆体溶液を部材に塗布し、塗布された該前駆体を分解してタングステン酸化物を部材に付着させることにより、タングステン酸化物の一次粒子が凝集した二次構造体を形成すること、及び、二次構造体表面の算術平均粗さRaが、少なくとも0.25μmの基準長さの範囲において50nm以下である領域を有するよう構成することを特徴とする。

Description

抗菌作用を持つタングステン酸化物二次構造体
 本発明は、抗菌活性及び光触媒活性に優れたタングステン酸化物二次構造体及びその調製方法に関するものである。
 近年、環境汚染物質を吸着し太陽光や室内光によって分解除去する半導体光触媒が注目され、その研究が精力的に行われている。酸化チタンはその代表的なものであり強力な光触媒活性を示す。しかし、酸化チタンはバンドギャップが大きく、紫外光には活性を示すが太陽光の大部分を占める可視光には吸収性がなく、可視光に対する触媒活性を示さないため、太陽光を十分に利用することができず、また紫外光が極めて弱い室内では機能しないことなどの問題があった。このための対策として、窒素や硫黄、金属ドープなどで可視光を吸収できるようにするなどの酸化チタンの改良研究や可視光で光触媒として活性を示す化合物半導体の探索研究などが行われている。
 酸化チタン系よりも可視光での光触媒活性が高い半導体としてタングステン酸化物系が報告されている。タングステン酸化物、特に酸化タングステンは銅化合物や貴金属など適切な助触媒を担持することで様々な有機物をCO2に完全酸化することができる非常に魅力的な光触媒材料である(特許文献1-3参照)。
 しかしながら、これらのタングステン酸化物系半導体は、可視光触媒活性がまだ十分ではない場合があり、光触媒活性の向上が課題であった。光触媒活性の向上方法として、光吸収の増大効果の利用がある。タングステン酸化物系半導体の粉末を調製する時の前駆体溶液に過酸化物を添加し、これを熱分解してタングステン酸化物の粉末を合成するとその光触媒活性は増大することが報告されている(特許文献4参照)。
 一方、抗菌活性については、酸化チタン系では光触媒作用によるため光照射が必須であるが、酸化タングステンは光が無くても抗菌活性を示すことが報告されている(特許文献5参照)。酸化タングステン粉末の抗菌活性はその物性と調製法に依存することが知られており、特許文献5ではその粉末の物性が広い範囲で記載されている。しかしその粉末を部材に塗布する手法の記載は限定されており、ある特定の酸化タングステン微粒子を調製してから、次に部材にその粒子を塗布する方法が述べられている。塗布する前の粉末の調製法としては、昇華法又はタングステン酸アンモニウムの熱分解で調製した粉末について実施例があり、昇華法の粉末が特に優れているという結果であった。さらに粉末粒子が大きいと塗布しても成膜できないことも記載がある。この抗菌活性に関してはその発現機構は明らかでなく、そのために酸化タングステンのどのような構造が有効なのかなどについては詳細な情報はほとんどない。
 酸化タングステンの光触媒活性や抗菌活性を実用的に活かす場合、粉末でそのまま使うことはほとんど無く、酸化タングステンを抗菌性が必要とされる部材に塗布する手法の開発は非常に重要である。しかし、塗布した酸化タングステンがある程度の強度で付着し、且つ優れた光触媒活性及び抗菌活性を発揮する手法は知られていない。
特開2007-273463号公報 特開2008-149312号公報 特開2009-061426号公報 特開2009-189952号公報 WO2009/110233
 本発明は、光触媒活性及び抗菌活性の両方を同時に増大させる酸化タングステンの構造と塗布した酸化タングステンがある程度の強度で付着し、大面積合成しやすく、且つ優れた光触媒活性及び抗菌活性を発揮する酸化タングステン塗布手法を提供することを目的とする。
 
 本発明者らは、上記課題を解決するために鋭意検討した結果、酸化タングステンの粉末を調製してから塗布するのではなく、タングステン含有材料と過酸化物が溶解したタングステン酸化物前駆体溶液を部材に塗布してからタングステン含有材料を分解するという、付着強度や光触媒活性及び抗菌活性の面で優れた手法を見出し、さらに上記の製造方法により製造される酸化タングステンの構造が光触媒活性と抗菌活性を同時に促進することを見出し、本発明を完成するに至った。
 すなわち、この出願は、以下の発明を提供するものである。
(1) タングステン酸化物の一次粒子が凝集した二次構造体であって、その二次構造体表面の算術平均粗さRaが、少なくとも0.25μmの基準長さの範囲において50nm以下である領域を有することを特徴とする抗菌活性に優れたタングステン酸化物二次構造体。
(2)タングステン酸化物に助触媒を担持することで優れた光触媒活性を同時に有することを特徴とする(1)に記載のタングステン酸化物二次構造体。
(3)タングステン酸化物が三酸化タングステンであることを特徴とする(1)又は(2)に記載のタングステン酸化物二次構造体。
(4)助触媒が、銅化合物、白金、パラジウム、ロジウム、ルテニウム、銀、ニッケルから選ばれる少なくとも一つであることを特徴とする(2)又は(3)に記載のタングステン酸化物二次構造体。
(5)多孔質であることを特徴とする(1)~(4)のいずれか1項に記載のタングステン酸化物二次構造体。
(6)タングステン含有材料及び過酸化水素から調製されたタングステン酸化物前駆体溶液を部材に塗布し、塗布された該前駆体を分解してタングステン酸化物を部材に付着させることを特徴とする抗菌活性付与方法。
(7)タングステン酸化物に助触媒を担持することで光触媒活性を付与することを特徴とする(6)に記載の抗菌活性付与方法。
(8)(6)又は(7)に記載の方法により部材表面に(1)~(5)のいずれか1項に記載のタングステン酸化物二次構造体を生成させることを特徴とする抗菌活性付与方法。
(9)部材が多孔質素材であり、その表面にタングステン酸化物をコートすることにより製造するか、又は、タングステン酸化物をコートすることによって多孔質構造を生成することを特徴とする(6)~(8)のいずれか1項に記載の抗菌活性付与方法。
(10)(1)~(5)のいずれか1項に記載のタングステン二次構造体を具備することを特徴とする抗菌部材。
 
 本発明は、光触媒活性と抗菌活性の両方に優れる酸化タングステンの構造とさまざまな日用品や工業製品に光触媒活性と抗菌活性の両方を同時に付与する実用的な方法を提供するものである。特に抗菌活性が暗時でも持続することは従来の光触媒にはない特性である。銀イオンや銅イオンのように流れ出たり、アレルギーの原因になることはない。光触媒活性と抗菌活性の両方で部材表面をクリーンに保つことができる。例えば光触媒を利用した空気清浄機のフィルターには最適である。
 
実施例8及び比較例3についてのWO3光触媒フィルターのアセトアルデヒド分解のCO2発生経時変化を示すグラフである。 本発明のタングステン酸化物二次構造体の各種スケールにおける表面部等の構造を示す概念図である。 実施例1のタングステン酸化物二次構造体が生成された部材のSEM写真である。 比較例2のIE法によりタングステン酸化物が形成された部材のSEM写真である。
 本発明の抗菌活性に優れたタングステン酸化物二次構造体(以下では、「二次構造体」と略記することがある。)は、タングステン酸化物の一次粒子が凝集して形成されたものであり、タングステン含有材料及び過酸化水素から調製されたタングステン酸化物前駆体溶液(以下では、「前駆体溶液」と略記することがある。)の分解により形成することができる。
 タングステン含有材料としては、過酸化水素に溶解するものを用いることができる。そのような過酸化水素に溶解するタングステン含有材料としては、例えば、タングステンメタル、H2WO4、WO3、NaWO4などの1種以上を挙げることができる。タングステン含有材料は、過酸化水素に溶解し、タングステンの過酸化物が生成していると考えられる。前駆体溶液に用いる溶媒としては、水溶媒、有機溶媒のどちらも用いることができるが、水溶媒が好ましい。有機溶媒としては、アルコール、有機酸等が挙げられる。水溶媒に有機物を混合しても良い。
 光触媒活性の高い半導体光触媒としてのタングステン酸化物二次構造体を調製するには、前駆体溶液を長時間熟成することが望ましい。熟成期間中に自己組織的にオレンジ色の準安定な組成が溶液中にも形成される。熟成は数時間程度、静置又は撹拌したり、溶媒の沸点以下で加熱する。
 前駆体溶液から二次構造体を生成する方法は、後述のような表面性状が得られるものであればいかなるものでも良い。好適な方法としては、湿式法で前駆体溶液を部材表面に付着させ、加熱乃至焼成することにより部材表面に膜状の二次構造体を形成する方法を挙げることができる。
 表面に二次構造体が形成される部材は、抗菌活性及び/又は光触媒活性付与が必要とされるものであり、後述のような表面性状の二次構造体が形成されるものであれば、その形状や構造は問わない。そのような部材としては、平滑面を具備する基板等の平板状のもの、波板等の大きな凸凹の表面を具備するもの、棒状乃至ワイヤ状のもの、球状、円筒状、ドーム状等の内面及び/又は外面に曲面を具備するもの、スクリーン、フィルター、ポーラスメタル等の網状乃至多孔状のものなどが挙げられる。
 前駆体溶液を部材に付着する方法としては、スピンコート等の各種の塗布方法を用いることができるし、多孔性の部材に対しては、前駆体溶液を染み込ませる方法を用いて孔内面に付着させることもできる。部材に付着された前駆体溶液を乾燥、分解し二次構造体を生成する際の加熱乃至焼成温度としては、ガス分解成分がほぼ放出される温度以上であり、かつ半導体結晶が通常のX線回折(XRD)測定で観測される温度以上が必要である。空気中で300℃以上が望ましい。
 半導体光触媒は比表面積が高い方が好ましいが、高すぎると結晶性が不十分で欠陥やアモルファスが多くなり、活性低下の原因となる。結晶性が高く且つ比表面積が高い光触媒が望ましいが、その比表面積の最適値は触媒密度や反応基質により多少異なる。有機物酸化分解では比表面積は多め、酸素発生では少なめが良い。酸化タングステン(WO3)の炭化水素分解の場合、好ましくは1-50m2/g、より好ましくは2-40m2/g、更に好ましくは4-35m2/gである。XRDやTEM観察から推察される結晶性は、同じ比表面積で比べれば結晶性ができるだけ高い方が望ましい。
 半導体光触媒は通常助触媒を担持すると性能は大きくなる場合が多い。白金やパラジウム、ルテニウムなどの貴金属や銅化合物等を半導体粒子に担持しても良い。助触媒を半導体光触媒に担持させる方法としては、どのようなものでも良いが、例えば、助触媒前駆体溶液を二次構造体の表面に付着させ、焼成する方法が挙げられる。そのような助触媒前駆体溶液としては、硝酸銅水溶液、パラジウムアンミン錯体水溶液等が挙げられる。また、半導体光触媒は、活性炭のような吸着特性の高い物質と共存させても良い。
 本発明の二次構造体は、タングステン酸化物の一次粒子が凝集して形成されたものであり、後述の表面性状を満足する限り、いかなる形状、構造のものでも良く、上述のような膜状のものの外、例えば、粒子状であっても、また、多孔質のものであっても良い。
 タングステン酸化物の一次粒子は、後述の二次構造体の表面性状が得られるものであれば良く、平均粒子径が200nm以下、好ましくは60nm以下である。
 本発明の二次構造体は、その表面性状が抗菌性に重要である。タングステン酸化物による抗菌作用のメカニズムは明確でないが、タングステン酸化物と細菌表面との直接的な相互作用の効果が大きいので、細菌がタングステン酸化物の表面に広く密着することが好ましい。そのためにはタングステン酸化物の二次構造体の表面が抗菌対象の細菌のスケールで平滑であることが重要であり、細菌表面の柔軟性によって密着して覆える程度にまでタングステン酸化物の凹凸が小さいことが望ましい。多くの抗菌対象の細菌のスケールは、短い方向(接触面の幅)で0.5μmから1μm、長い方向(接触面の長さ)は1μmから15μm程度である。それで細菌のスケール程度の範囲を考えたときにタングステン酸化物表面の凹凸が少なくとも細菌の接触面の短い方向のスケールの10%以下であることが望ましいため、その平滑さは好ましくは100nm以下、より好ましくは50nm以下、さらにより好ましくは25nm以下の凹凸であることが必要である。
 上記した抗菌対象の細菌のスケール(およそ0.25μmから1μmの範囲)でのタングステン酸化物二次構造体の平滑さは以下のように定義できる。すなわち、タングステン酸化物の二次構造体の表面について、その算術平均粗さRaが、少なくとも0.25μmの基準長さlの範囲において、好ましくは100nm以下、より好ましくは50nm以下、さらにより好ましくは25nm以下である。ここで、基準長さlは、対象とする細菌の大きさに応じて決定されるものであり、一般的には、0.25μm、0.50μm、1.0μm、1.5μm、2.0μm、3.0μm等とすることができる。この基準長さlの数値を大きくすると、平滑さの条件がより厳しくなるので、その数値に対応する大きさの細菌だけでなく、それより小さい細菌も対象とすることができる。
 なお、このような定義による平滑さは、Raの数値を超える高さの突起の存在を許容するが、該突起以外の部分ではRaの値未満の小さな凹凸となり、細菌の二次構造体表面への密着にあまり影響しないと考えられるし、また、Raの数値にあまり影響を及ぼさない針状の(すなわち、底面積の小さい)突起は、タングステン酸化物においてはあまり考えられないので、本発明では、二次構造体の平滑さの目安としてそのような定義を採用した。
 このような基準長さlにおける算術平均粗さRaで定義される平滑な領域は、二次構造体の表面に少しでもあれば良いが、表面におけるその占有割合が高ければ高いほど抗菌性の点で望ましく、例えば、10%以上であれば好ましく、20%以上であればより好ましく、30%以上であれば更に好ましく、50%以上であれば更に好ましい。そのような占有割合は、例えば、二次構造体表面について任意の直線に沿って基準長さlごとにRaを求めたとき、前述の平滑さの定義を満足する基準長さlの合計の直線長さ全体に占める割合として求めることができる。
 本発明の二次構造体は、抗菌対象の細菌のスケールより大きなマクロのスケール(1μmより大きいスケール)で多孔質構造及び/又は表面凹凸構造であることが望ましい(図2(A)参照)。そのような多孔質構造では細菌をより多く表面に接触させることができる。また光触媒作用による分解する有機物もこの多孔質構造及び/又は表面凹凸構造でより多く吸着して分解することができる。このようなマクロなスケールの多孔質構造及び/又は表面凹凸構造はセラミックスフィルターなどのすでにこのスケールの多孔質構造及び/又は表面凹凸構造を持った基質にタングステン酸化物を膜状に生成させることで形成できる。
 また抗菌対象の細菌のスケールより小さなスケール(およそ0.25μmより小さいスケール)においても、二次構造体は多孔質構造及び/又は表面凹凸構造であることが望ましい(図2(C)参照)。抗菌対象の細菌のスケールで一定以上に平滑であれば、それより小さなスケールでの平均の凹凸(算術平均粗さRa)は平滑である細菌のスケールにおけるものより小さくなる。そのためこのスケールでは細菌表面の柔軟性によりタングステン酸化物との接触面積に関してその凹凸の影響が少なく、多孔質及び/又は表面凹凸であることが抗菌活性に対してはあまり影響しないと考えられる。細菌が分解して生じるものを含めて細菌のスケールよりもはるかに微細な有機物がより多く吸着されて光触媒作用でより効果的に分解されるためには吸着面積が大きいことが望ましいので、このスケールにおいて多孔質及び/又は表面凹凸であることが光触媒活性を増大させる。
 以上のように抗菌対象の細菌のスケールに依存した多段階の多孔質及び/又は表面凹凸の階層構造を具備することにより本発明の二次構造体は、抗菌活性及び光触媒活性を同時に増大させることができる。その概念図を図2に示す。このような多段階の多孔質及び/又は表面凹凸階層構造及び前述の表面性状を具備する二次構造体は、過酸化水素及びタングステン含有材料からタングステン酸化物前駆体溶液を調製し、これを部材に塗布後に分解してタングステン酸化物を部材に付着させることを特徴とする本発明の方法によって製造することができる。このような望ましい構造が形成されていることは表面の観察から知ることができる。凹凸について主に電子顕微鏡観測により細菌の大きさとの比較を行うのが望ましい。また基板が平滑ならば、AFMや荒さ計によっても評価できる。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこの実施例によって何ら限定されるものではない。
(実施例1)
 WO3微粒子はタングステン酸(H2WO4、Wako製)の過酸化物の熱分解法で調製した。タングステン酸2.5gを過酸化水素(H2O2,30%水溶液)30mlにビーカー中で300rpm以上で2時間程度強く撹拌しながら溶解させた。得られた透明溶液を撹拌しながらゆっくりホットスターラー上で加熱し、水分と過酸化水素を蒸発させる。1/5程度に濃縮した溶液が透明な黄色溶液になるまで環流熟成させる。この溶液をホットプレート上の石英ガラスフィルターに均一に滴下して、乾燥させた。これを電気炉で空気中450℃で0.5時間焼成して石英ガラスフィルター表面に黄緑色のWO3微粒子を作製した。WO3微粒子の比表面積は22m/gであった。このWO3光触媒付きフィルターを実施例1とする(PA法)。抗菌活性試験はJIS R 1702の認定機関で行った。抗菌活性は8時間での生菌数と静菌活性値(R)で比較した。Rは生菌数の減少量を対数で表したものである。菌種は黄色ブドウ球菌を用いた。表1に生菌数とRの結果を示す。紫外線(UV)光照射の有無に関わらず生菌数は検出限界以下になった。黄色ブドウ球菌は直径が0.5~1.5μmの球状をしており、表面への接触面は直径が0.5~1.5μm程度の円形になると考えられる。SEM観察によると、実施例1における表面の平滑さ(Ra)は、黄色ブドウ球菌の接触面の大きさの範囲を考えると50nm以下となっている領域が大部分であり、さらにその表面を細かく見ると多孔質である(図3参照)。
(実施例2)
 実施例1のWO3光触媒付きフィルターに硝酸銅水溶液を滴下し、300℃で焼成してCuO助触媒を0.1wt%担持させた。表1に生菌数とRの結果を示す。光照射の有無に関わらず生菌数は検出限界以下になった。なお、助触媒を担持させても、表面の平滑さ(Ra)が50nm以下となっている領域はあまり変化がなかった。
(実施例3)
実施例1のWO3光触媒付きフィルターにパラジウムアンミン錯体水溶液を滴下し、300℃で焼成してPd助触媒を0.01wt%担持させた。表1に生菌数とRの結果を示す。光照射の有無に関わらず生菌数は検出限界以下になった。
(実施例4)
 実施例1の抗菌試験を肺炎かん菌で行った。表1に生菌数とRの結果を示す。光照射の有無に関わらず生菌数は検出限界以下になった。肺炎かん菌は直径(太さ)が0.5~1.0μm、長さが2.0μm程度の棒状をしており、表面への接触面は幅が0.5~1.0μm、長さが2.0μm程度の楕円形状になると考えられる。SEM観察によると、実施例4における表面の平滑さ(Ra)は、肺炎かん菌の接触面の大きさの範囲を考えると50nm以下であり、さらにその表面を細かく見ると多孔質である(図3参照)。
(実施例5)
 実施例2の抗菌試験を肺炎かん菌で行った。表1に生菌数とRの結果を示す。光照射の有無に関わらず生菌数は検出限界以下になった。
(実施例6)
 実施例3の抗菌試験を肺炎かん菌で行った。表1に生菌数とRの結果を示す。光照射の有無に関わらず生菌数は検出限界以下になった。
(実施例7)
実施例1の抗菌試験を8時間ではなく4時間で行った。表2に生菌数とRの結果を示す。生菌数は光照射ありで27、光照射無しで40、R値は3.9であった。
(比較例1)
 市販のWO3粉末(和光純薬)を水に懸濁してガラス基板に塗布し、100℃で乾燥させた。しかし、すぐに基板から剥離したため、抗菌試験を行うことができなかった。
(比較例2)
 実施例1のWO3光触媒付きフィルターの調製法を変更した。Na2WO4水溶液をイオン交換樹脂に通してタングステン酸水溶液を調製した。これにポリエチレングリコール300を添加した。この溶液をホットプレート上の石英ガラスフィルターに均一に滴下して、乾燥させた。これを電気炉で空気中550℃で0.5時間焼成して石英ガラスフィルター表面に黄緑色のWO3微粒子を作製した。WO3微粒子の比表面積は18m/gであった。この手法は、安定なタングステン前駆体のコーティング溶液が調製しやすく、導電性ガラス上に塗布したときの光電極特性が優れていることが知られている(IE法)。この比較例2については、実施例7と同じく、黄色ブドウ球菌を用いて抗菌試験を4時間で行い、生菌数と静菌活性値(R)で比較した。表2に生菌数とRの結果を示す。生菌数は光照射ありで2100、光照射無しで7000、R値は2.0であり、実施例7より抗菌活性が低かった。SEM観察によると、この比較例2では40nm程度の球状の一次粒子がむき出しで無秩序に表面を覆い、表面の平滑さ(Ra)は、黄色ブドウ球菌の接触面の大きさの範囲を考えると50nm以上である(図4参照)。
(実施例8)
 実施例2のCuO- WO3光触媒付きフィルターでアセトアルデヒド分解の光触媒活性試験を行った。実験はアセトアルデヒドを1800ppm導入し、光照射はソーラーシミュレーター(0.5Sun条件)で行った。図1にアセトアルデヒド分解によるCO2発生の経時変化を示す。およそ120分でCO2発生が飽和し、完全酸化することがわかった。
(比較例3)
 比較例2のWO3光触媒付きフィルターにCuO助触媒を担持し、光触媒活性試験を実施例8と同一条件で行った。図1にCO2発生の経時変化を示す。240分でも完全酸化できず、実施例8の光触媒より活性が低いことがわかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明のタングステン酸化物二次構造体は、光触媒活性と抗菌活性の両方に優れるため、光触媒活性や抗菌活性の必要な各種日用品や工業製品に適用でき、光触媒活性と抗菌活性の両面でそれらの品物の表面をクリーンに保つことができる。例えば光触媒を利用した空気清浄機のフィルターには最適である。
 

Claims (10)

  1.  タングステン酸化物の一次粒子が凝集した二次構造体であって、その二次構造体表面の算術平均粗さRaが、少なくとも0.25μmの基準長さの範囲において50nm以下である領域を有することを特徴とする抗菌活性に優れたタングステン酸化物二次構造体。
  2.  タングステン酸化物に助触媒を担持することで優れた光触媒活性を同時に有することを特徴とする請求項1に記載のタングステン酸化物二次構造体。
  3.  タングステン酸化物が三酸化タングステンであることを特徴とする請求項1又は2に記載のタングステン酸化物二次構造体。
  4.  助触媒が、銅化合物、白金、パラジウム、ロジウム、ルテニウム、銀、ニッケルから選ばれる少なくとも一つであることを特徴とする請求項2又は3に記載のタングステン酸化物二次構造体。
  5.  多孔質であることを特徴とする請求項1~4のいずれか1項に記載のタングステン酸化物二次構造体。
  6.  タングステン含有材料及び過酸化水素から調製されたタングステン酸化物前駆体溶液を部材に塗布し、塗布された該前駆体を分解してタングステン酸化物を部材に付着させることを特徴とする抗菌活性付与方法。
  7.  タングステン酸化物に助触媒を担持することで光触媒活性を付与することを特徴とする請求項6に記載の抗菌活性付与方法。
  8.  請求項6又は7に記載の方法により部材表面に請求項1~5のいずれか1項に記載のタングステン酸化物二次構造体を生成させることを特徴とする抗菌活性付与方法。
  9.  部材が多孔質素材であり、その表面にタングステン酸化物をコートすることにより製造するか、又は、タングステン酸化物をコートすることによって多孔質構造を生成することを特徴とする請求項6~8のいずれか1項に記載の抗菌活性付与方法。
  10.  請求項1~5のいずれか1項に記載のタングステン二次構造体を具備することを特徴とする抗菌部材。
     
     
PCT/JP2011/057146 2010-03-25 2011-03-24 抗菌作用を持つタングステン酸化物二次構造体 WO2011118695A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-069170 2010-03-25
JP2010069170A JP5544618B2 (ja) 2010-03-25 2010-03-25 抗菌作用を持つタングステン酸化物二次構造体

Publications (1)

Publication Number Publication Date
WO2011118695A1 true WO2011118695A1 (ja) 2011-09-29

Family

ID=44673241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057146 WO2011118695A1 (ja) 2010-03-25 2011-03-24 抗菌作用を持つタングステン酸化物二次構造体

Country Status (2)

Country Link
JP (1) JP5544618B2 (ja)
WO (1) WO2011118695A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014138568A1 (en) * 2013-03-07 2014-09-12 Arch Chemicals, Inc. Activated peroxide compositions for anti-microbial applications

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164668B2 (ja) * 2013-12-06 2017-07-19 国立研究開発法人産業技術総合研究所 ビスマスを添加した酸化タングステン光触媒を含む抗かび及び抗菌材料
EP3302796B1 (en) * 2015-05-29 2021-12-01 Nitto Denko Corporation Use of a photocatalytic composition in the removal of trimethylamine
JP6804879B2 (ja) * 2016-06-23 2020-12-23 国立大学法人信州大学 三酸化タングステンナノ繊維の製造方法
US11173480B2 (en) 2017-09-29 2021-11-16 Sng Inc. Catalyst in which metal is carried on inorganic porous body having hierarchical porous structure, and method for manufacturing said catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093630A (ja) * 2006-10-16 2008-04-24 Sumitomo Chemical Co Ltd 光触媒分散体の製造方法
WO2009110236A1 (ja) * 2008-03-04 2009-09-11 株式会社 東芝 親水性部材とそれを用いた親水性製品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093630A (ja) * 2006-10-16 2008-04-24 Sumitomo Chemical Co Ltd 光触媒分散体の製造方法
WO2009110236A1 (ja) * 2008-03-04 2009-09-11 株式会社 東芝 親水性部材とそれを用いた親水性製品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014138568A1 (en) * 2013-03-07 2014-09-12 Arch Chemicals, Inc. Activated peroxide compositions for anti-microbial applications

Also Published As

Publication number Publication date
JP5544618B2 (ja) 2014-07-09
JP2011200774A (ja) 2011-10-13

Similar Documents

Publication Publication Date Title
Weon et al. Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation
Boppella et al. Facile synthesis of face oriented ZnO crystals: tunable polar facets and shape induced enhanced photocatalytic performance
Liu et al. A facile preparation of TiO2/ACF with CTi bond and abundant hydroxyls and its enhanced photocatalytic activity for formaldehyde removal
Zhou et al. Enhancement of Visible‐Light Photocatalytic Activity of Mesoporous Au‐TiO2 Nanocomposites by Surface Plasmon Resonance
Huang et al. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NO x
JP6457301B2 (ja) 光触媒構造体およびその製造方法および光触媒分散液
Wu et al. Enhanced photocatalytic activity of TiO 2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H 2 generation from ethanol-water mixtures
CN102198405B (zh) 一种净化室内甲醛用的复合催化剂及其制备方法
US7846864B2 (en) Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same
Mamaghani et al. Photocatalytic oxidation of MEK over hierarchical TiO2 catalysts: Effect of photocatalyst features and operating conditions
KR100688428B1 (ko) 금속 나노입자가 분산된 콜로이드를 이용한 촉매물질 및 연료전지 전극재료 제조 방법
Haghighatmamaghani et al. Performance of various commercial TiO2 in photocatalytic degradation of a mixture of indoor air pollutants: Effect of photocatalyst and operating parameters
JP2017100923A (ja) 脱臭用金属複合化窒化炭素とその製造方法
US9636660B2 (en) Photocatalyst, manufacturing method therefor, and photocatalyst apparatus
Allaedini et al. Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation
JP5544618B2 (ja) 抗菌作用を持つタングステン酸化物二次構造体
CA2710266A1 (en) Co-doped titanium oxide foam and water disinfection device
JP6815893B2 (ja) 金属含有ナノ粒子担持触媒および二酸化炭素還元装置
Sohrabi et al. Surface investigation and catalytic activity of iron-modified TiO 2
JP2004160327A (ja) MOx−ZnO複合酸化亜鉛光触媒とその製造方法
JP2002320862A (ja) 金属を酸化チタン薄膜に担持した光触媒薄膜
Wang et al. Growth of Ag/g-C3N4 nanocomposites on nickel foam to enhance photocatalytic degradation of formaldehyde under visible light
CN110893341A (zh) 光催化剂分散液、光催化剂复合材料及光催化剂装置
CN108654614A (zh) 一种净化室内甲醛用的复合催化剂及其制备方法
Widiyandari et al. Synthesis of ZnO-Cdots nanoflower by hydrothermal method for antibacterial agent and dye photodegradation catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759500

Country of ref document: EP

Kind code of ref document: A1