WO2011118549A1 - Vertnin gene that controls number of vertebrae in pigs, and use of same - Google Patents

Vertnin gene that controls number of vertebrae in pigs, and use of same Download PDF

Info

Publication number
WO2011118549A1
WO2011118549A1 PCT/JP2011/056711 JP2011056711W WO2011118549A1 WO 2011118549 A1 WO2011118549 A1 WO 2011118549A1 JP 2011056711 W JP2011056711 W JP 2011056711W WO 2011118549 A1 WO2011118549 A1 WO 2011118549A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
base sequence
dna
pigs
vertebrae
Prior art date
Application number
PCT/JP2011/056711
Other languages
French (fr)
Japanese (ja)
Inventor
智 美川
周史 佐藤
武司 林
崇 粟田
雅宏 新居
直樹 森
史雄 谷
静 柏岡
岳哉 両角
Original Assignee
独立行政法人農業生物資源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人農業生物資源研究所 filed Critical 独立行政法人農業生物資源研究所
Publication of WO2011118549A1 publication Critical patent/WO2011118549A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/124Animal traits, i.e. production traits, including athletic performance or the like

Definitions

  • the present invention relates to a method for determining the presence or absence of an inherited trait with increased vertebral number in pigs using as an index a polymorphic marker present on or near the Vertnin gene on chromosome 7 of pigs.
  • the pig is said to have been domesticated in several areas of the Eurasian continent, with wild boars as its ancestors. In Europe from the middle of the 19th century, pigs with good growth and physique were selected and bred, and the current commercial varieties were formed based on them.
  • Non-Patent Documents 3 to 10 various QTLs were detected.
  • QTLs related to the number of vertebrae shown by the sum of the number of thoracic vertebrae and the number of lumbar vertebrae (Fig. 1) were distributed in two genomic regions (first chromosome q It was detected at the end of the arm and the center of the chromosome 7 q arm, and its existence was judged to be probable (Table 2 (F2 experimental family and vertebral number QTL), FIG. 2).
  • the two vertebra number QTLs have alleles that increase the number of vertebrae, and the effects are almost equal, and the average of the results of each family increased about 0.5 to 0.6 vertebrae per allele.
  • the two QTLs worked independently of each other, and when all alleles were increased in vertebral number, the average number of vertebrae increased by about 2.3 (Table 3 (Effects of two QTLs on porcine vertebral number). ).
  • the number of cervical vertebrae in pigs is 7 as in other mammals, but the number of thoracic vertebrae and lumbar vertebrae varies, with 13 to 16 thoracic vertebrae and 5 to 7 lumbar vertebrae (non-patent literature). 11). The total number of these (vertebral vertebrae) is 19 in the boar ancestor wild boar, but in the current meat variety, it is 20 to 23. In pigs only ( Figure 1). Pigs were selected to grow in size to increase meat volume and improve fertility, and it is thought that the number of vertebrae increased in the process, and in fact, the increase in the number of vertebrae increased the body length on average by about 1.5 cm (Non-Patent Document 12).
  • Non-patent Document 13 a region of about 300 kb fixed by a western variety with an increased number of vertebrae was found, and the responsible gene NR6A1 located there was identified. In connection with this, a patent application was filed (Patent Document 1).
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a method for determining a pig having an increased vertebral number inheritance. More specifically, the present invention is to provide a method for determining the presence or absence of an inherited trait with increased vertebral number in pigs, using a polymorphism on or near the Vertnin (VRTN) gene on chromosome 7 of the pig as an index.
  • VRTN Vertnin
  • linkage disequilibrium analysis is used to identify the location of the causative gene from the range narrowed down by linkage analysis using F2 experimental family. Because livestock has a short generation interval and related and tabular values are recorded, a method of mapping common chromosomal regions derived from the same ancestor related to the difference in traits using the trait data of existing animals (identical by decent analysis) ; (IBD analysis) is commonly used. However, in quantitative traits, the relationship between traits and genotypes is not as great as qualitative traits such as genetic diseases, and it is difficult to elucidate responsible genes in IBD analysis using trait values, which is the responsibility of various QTLs. This is the cause of unidentified genes.
  • the present inventors tried the IBD analysis using the QTL type determined not by the trait value but by the half sibling analysis.
  • the QTL type and the genotype of the responsible gene are completely identical.
  • a strain pig was used as an individual to determine the QTL type. This is derived from 10 males and 65 females, and after being constructed by 7-generation closed group breeding, it is maintained in 9 males and 35 females, and is expected to have a large number of chromosome recombination.
  • the individuals introduced at the start of creation are independent of each other and are genetically distantly related. In other words, both mapping by homologous chromosome region recombination and searching for a small common genetic region that exists between independent individual samples are expected.
  • the present inventors determined the number of vertebrae QTL type in the sow of large Yorkshire breed pigs by semisidy analysis, and matched the QTL type using microsatellite markers arranged at high density. A genomic region having a haplotype was searched. In addition, in the vicinity of the found region, the genomic region having a haplotype that matches the QTL type was further narrowed down using F2 experimental parental pigs including other breeds that had previously been determined to have the QTL type. As a result, a novel gene VRTN that reaches the region of about 45 kb and controls the number of vertebrae located there was isolated.
  • the present inventors succeeded in identifying a novel Vertnin gene associated with an increase in the number of vertebrae in pigs on the seventh chromosome of pigs. Furthermore, the present inventors have found that by using a polymorphic marker present on or near the gene, it is possible to determine the presence or absence of an inherited trait with increased number of vertebrae in pigs, thereby completing the present invention.
  • the present invention relates to a method for determining the presence or absence of swine vertebral number-inherited genetic traits, using as a marker a polymorphic marker present on or near the Vertnin gene on chromosome 7 of swine, more specifically, [1]
  • a method for determining the presence or absence of an inherited trait of increased number of vertebrae in pigs, wherein one or more of the following (A) (1) to (25) present on the seventh chromosome of pigs A method of determining by the step (B) below using the polymorphic marker of (A) (1) Position 40 of the base sequence described in SEQ ID NO: 1 (2) Position 207 of the base sequence described in SEQ ID NO: 2 (3) Position 68 of the base sequence described in SEQ ID NO: 3 (4) SEQ ID NO: : Position 47 or 101 of the base sequence described in (5) Position 81 of the base sequence described in SEQ ID NO: 5 (6) Position 355 of the base sequence described in SEQ ID NO: 6 (7) SEQ ID NO: 7
  • Elucidation of the genes that control the number of vertebrae enables the control of the number of vertebrae, so that efficient improvement of pig meat production and reproduction is realized.
  • the number of vertebrae QTL in the center of chromosome 7 q is the cause of variability in the number of vertebrae in western varieties used for pork production, and the information provided by the elucidation of this responsible gene is directly related to today's pork production. And can contribute greatly to the efficiency improvement.
  • the number of vertebrae of each pig of homozygous pigs was multiple-tested with the number of vertebrae of piglets (Q: 371, q: 383) that were transmitted by heterozygous pigs with increased vertebral number and wild-type alleles. (Steel test) and vertebral number increased type or wild type was determined. It is a figure which shows the confidence interval (three prefectures joint, JD family) of the vertebra number QTL on the 7th chromosome. The 95% confidence interval where the QTL is located was obtained by Bootstrap method (10000 times). The 95% section is shown in black and the others in gray. The 95% confidence interval was 83 cM to 88 cM.
  • FIG. 1 It is a figure which shows development of the microsatellite marker in the vertebra number QTL vicinity region.
  • a BAC clone was isolated by porcine STS developed using human gene information, and a microsatellite marker was developed.
  • the developed microsatellite markers were compared with the ongoing pig genome draft sequence by SGSC (International Swine Genome Sequencing Consortium), and their chromosomal positions were confirmed. Underlined markers indicate those not yet found in the pig genome draft sequence.
  • SGSC International Swine Genome Sequencing Consortium
  • the haplotype of the microsatellite marker was analyzed for each chromosome of the sow whose QTL type was determined. Regions that are homoeologous (the same type of haplotype) are shown in the same color. The vertebral number increasing allele Q and the wild type allele wt are shown in red letters in the region that is transmitted to both loci. It was between SJ7106 and SJ7008 that the homologous chromosomal region did not transmit to both Q and wt. L and R represent any two chromosomal regions of each individual. It is a figure which shows the result of the genome structure analysis of the vertebra number QTL vicinity region.
  • A BAC clone whose base sequence is decoded by SGSC (International Swine Genome Sequencing Consortium).
  • B Gene map created from the base sequence of the BAC clone. The position of the microsatellite marker is shown. Those underlined were newly developed from the base sequence of the BAC clone.
  • C Polymorphic site near the VRTN gene. Polymorphic sites consistent with QTL in large Yorkshire pigs were shown. It is a figure which shows the QTL type and the homoeologous chromosomal region in a large Yorkshire breed pig and F2 experimental family parental pig. A newly developed microsatellite marker (underlined) was added from the BAC clone sequence, and haplotype analysis was performed.
  • L and R represent any two chromosomal regions of each individual. It is a figure which shows the result of the relevance analysis with the number of vertebrae using the polymorphism of the vertebra number QTL vicinity area, and the haplotype block analysis.
  • a polymorphic marker was developed in the area near the QTL of vertebrae. Using 199 heads sampled from the field, analysis of variance was performed on the relationship between the genotype and the number of vertebrae, and F values were plotted. Haplotype blocks were also analyzed for these polymorphisms. Numbers indicate R 2 values.
  • the present invention relates to a method for determining the presence or absence of a porcine vertebral number-increasing genetic trait using as an index a polymorphic marker present on or in the vicinity of the Vertnin (VRTN) gene on the seventh chromosome of pig (in the present specification, “ May be described as “the determination method of the present invention”).
  • VRTN Vertnin
  • nucleotide sequence of the Vertnin gene found by the present inventors and the amino acid sequence of the protein encoded by the gene are described in SEQ ID NOs: 88 and 89, respectively.
  • test pig pig used in the determination method of the present invention
  • vertebral number wild-type genetic trait a test pig (pig used in the determination method of the present invention) has or does not have a vertebral number wild-type genetic trait.
  • discrimination refers to discriminating between pigs having an increased vertebral number-inherited genetic trait and other pigs.
  • determination in the present invention is, for example, “appraisal”, “discrimination” or “discrimination”, “ It may be expressed as “inspection” or the like.
  • the determination method of the present invention is not necessarily limited to the method for determining a pig individual, for example, meat or processed meat (for example, ham), or a biological sample derived from a test pig. And a method for determining the presence or absence of an inherited trait with increased vertebral number.
  • polymorphism refers to, for example, single nucleotide polymorphism (SNP), deletion mutation, insertion mutation, microsatellite and the like.
  • a preferred embodiment of the determination method of the present invention is a method characterized by using a polymorphic marker present in the pig genome.
  • the polymorphic marker refers to a DNA site (polymorphic site) capable of determining the presence or absence of an inherited trait with increased vertebral number in pigs. Therefore, using a polymorphic marker in the method of the present invention usually means determining the presence or absence of an inherited trait of increased swine vertebral number based on the difference in DNA sequence (base species) at the polymorphic site of the present invention.
  • the polymorphic marker used in the present invention is a polymorphic marker present on porcine chromosome 7, which is a polymorphic marker at the following site (in the present specification, “polymorphic marker of the present invention”). May be indicated).
  • Position 40 of the base sequence described in SEQ ID NO: 1 (2) Position 207 of the base sequence described in SEQ ID NO: 2 (3) Position 68 of the base sequence described in SEQ ID NO: 3 (4) SEQ ID NO: : Position 47 or 101 of the base sequence described in (5) Position 81 of the base sequence described in SEQ ID NO: 5 (6) Position 355 of the base sequence described in SEQ ID NO: 6 (7) SEQ ID NO: 7 (8) 42nd position of the base sequence described in SEQ ID NO: 8 (9) 152th or 185th position of the base sequence described in SEQ ID NO: 9 (10) described in SEQ ID NO: 10 (11) Positions 95 to 385 of the base sequence set forth in SEQ ID NO: 11 (12) Position 49 of the base sequence set forth in SEQ ID NO:
  • the presence or absence of an inherited trait with increased vertebral number in pigs is determined by evaluating a polymorphic site in the polymorphic marker (for example, determining a base type (DNA sequence) in the polymorphic site). It is a method to do.
  • the determination method of the present invention uses each of the polymorphic markers described above using one or a plurality of polymorphic markers described in any one of (1) to (25) present in the porcine genome. Is a method for determining the presence or absence of an inherited trait with increased vertebral number of pigs based on the following determination table in which the base species (DNA sequence) is described.
  • the accuracy of determination usually increases as more polymorphic markers are used. Therefore, the method of the present invention is not necessarily essential, but a plurality of polymorphic markers may be used.
  • the polymorphic marker used in the method of the present invention is usually one or a small number (for example, about 1 to 9).
  • One embodiment of the method of the present invention is a method using the polymorphic marker in combination, that is, one selected from the group consisting of a plurality of polymorphic markers described in (1) to (25) above. Alternatively, a method characterized by using a plurality of polymorphic markers is also included in the present invention.
  • a preferred embodiment of the determination method of the present invention is a method characterized by detecting a mutation at a polymorphic site in the polymorphic markers (1) to (25).
  • the site for detecting a mutation is preferably a polymorphic site in the polymorphic marker described in any of (1) to (25) above.
  • the mutation is, for example, a mutation to the increased vertebral number type (Q) at the polymorphic site in the polymorphic markers (1) to (25).
  • the test pig when the polymorphic site in the polymorphic markers (1) to (25) is “increased Q” described in the determination table, the test pig is vertebral bone. It is determined to have a number-increasing genetic trait.
  • the polymorphic site in the polymorphic markers (1) to (25) is not “increased Q” described in the determination table, ”, It is determined that the test pig does not have an increased vertebral number inheritance.
  • a method for determining the presence or absence of a porcine vertebral number-increasing genetic trait which is one or more of the above (1) to (25) present in the porcine genome.
  • a plurality of polymorphic markers if the base type (DNA sequence) in the polymorphic marker is not “increased Q” in the above determination table, or “wild type wt”, the test pig has the number of vertebrae This is a method for determining that there is no increased genetic trait.
  • the number of vertebrae in pigs is increased by detecting the microsatellite sequence described in any of (a) to (d) below on the seventh chromosome of pigs:
  • the present invention relates to a method for determining the presence or absence of type inheritance.
  • the test pig when any one of the microsatellite sequences (a) to (d) above is detected in the chromosome of the test pig, the test pig is determined to have an increased vertebral number inheritance trait. . On the other hand, if the microsatellite sequence is not detected, it is determined that the test pig does not have an increased vertebral number inheritance. Details of the microsatellite arrangement are described in Tables 6-1 and 6-2 below.
  • porcine Vertnin gene is responsible for the increase in the number of vertebrae. Accordingly, the present invention provides a method for determining the presence or absence of an inherited trait with increased vertebral number in pigs, characterized by using the expression level of the Vertnin gene present on the seventh chromosome of pigs as an index.
  • gene expression includes transcription and translation.
  • the detection of the gene expression level is usually performed by comparing the amount of RNA transcribed from the Vertnin gene with a control.
  • Examples of such methods include Northern blotting using a probe that hybridizes to a polynucleotide encoding the Vertnin gene, or RT-PCR using a primer that hybridizes to the Vertnin gene (polynucleotide).
  • a DNA array new genetic engineering handbook, Masaaki Muramatsu, Masaru Yamamoto, Yodosha, p280-284 can be used for detection of the expression level of the Vertnin gene.
  • the expression level of the Vertnin gene by evaluating the translation level. The detection is performed by comparing the amount of the polypeptide transcribed and translated from the Vertnin gene with a control.
  • Such methods include SDS polyacrylamide electrophoresis and Western blotting, dot blotting, immunoprecipitation, enzyme linked immunoassay (ELISA), and antibodies that bind to Vertnin (polypeptide), and An immunofluorescence method can be exemplified.
  • the individual (test pig) from which the gene is derived has an increased number of vertebrae. Determined to have genetic traits.
  • various known methods can be used as a method for detecting a mutation (evaluating the base type (DNA sequence) of a polymorphic site in a polymorphic marker). That is, any method can be used in the determination method of the present invention as long as it can detect a mutation.
  • Examples of methods capable of detecting a mutation at a polymorphic site in the polymorphic marker of the present invention are illustrated below, but are not necessarily limited to these methods. A person skilled in the art can appropriately detect the mutation in consideration of the type and position of the mutation.
  • a method of directly determining a polymorphic mutation (base species) in the polymorphic marker of the present invention can be mentioned. That is, a method including the following steps, characterized in that a base sequence including a polymorphic site is directly determined.
  • A a step of preparing DNA from a test pig
  • b a step of amplifying a DNA region containing the polymorphic marker of the present invention
  • c a step of determining the base sequence of the amplified DNA
  • a DNA sample is prepared from a test pig.
  • the DNA sample can be prepared based on chromosomal DNA extracted from, for example, an organ or tissue of a test pig, cells, blood, oral mucosa, skin, hair, or the like.
  • a DNA region containing the polymorphic marker of the present invention is then isolated.
  • the DNA can also be isolated by PCR or the like using a primer that hybridizes to DNA containing the polymorphic marker of the present invention and using chromosomal DNA as a template.
  • the base sequence of the isolated DNA (base type of polymorphic site) is then determined.
  • the base sequence of the isolated DNA can be determined by a method known to those skilled in the art.
  • the presence or absence of porcine vertebral number-increasing genetic traits is then determined based on the determined DNA base sequence (base type of the polymorphic site) based on the determination table.
  • the determination method of the present invention can be performed by various methods capable of detecting the polymorphic mutation other than the method for directly determining the base sequence of DNA derived from the test pig as described above.
  • the detection of the polymorphic mutation in the present invention can also be performed by a method including the following steps.
  • A) Step of preparing DNA from test pig (b) Step of amplifying DNA region containing polymorphic marker of the present invention (c) Step of cleaving amplified DNA with restriction enzyme (d) Size of DNA fragment (E) a step of comparing the size of the detected DNA fragment with a control
  • DNA sample is prepared from the test pig.
  • DNA containing the polymorphic marker of the present invention is amplified.
  • the amplified DNA is cleaved with a restriction enzyme.
  • the DNA fragments are then separated according to their size. The size of the detected DNA fragment is then compared to a control.
  • Examples of such methods include a method using restriction enzyme fragment length polymorphism (Restriction Fragment Length Polymorphism / RFLP) and a PCR-RFLP method.
  • restriction enzyme fragment length polymorphism Restriction Fragment Length Polymorphism / RFLP
  • PCR-RFLP method a method using restriction enzyme fragment length polymorphism (Restriction Fragment Length Polymorphism / RFLP) and a PCR-RFLP method.
  • the restriction enzyme used in the above method is usually an enzyme that recognizes a DNA sequence containing the polymorphic marker of the present invention.
  • a restriction enzyme for example, a DNA fragment amplified using a forward primer and a reverse primer described in Tables 8-1 to 8-7 described later is treated with a restriction enzyme.
  • a person skilled in the art can appropriately select appropriate primers and restriction enzymes that can be used in the determination method of the present invention based on information such as the polymorphic site of the polymorphic marker and the base type of the site. It is.
  • the step of amplifying a DNA region containing the polymorphic marker according to any one of (1) to (25) present in the porcine genome and detecting the polymorphism of the amplified product is a method including.
  • the detection of polymorphism in the above method is preferably performed by treating the amplified product with a restriction enzyme.
  • the restriction enzyme to be used can be appropriately selected by those skilled in the art based on information on the base type of the target polymorphic marker and the base sequence of the surrounding DNA region.
  • Still another method includes a method including the following steps.
  • A a step of preparing DNA from a test pig
  • b a step of amplifying a DNA region containing the polymorphic marker of the present invention
  • c a step of dissociating the amplified DNA into single strands
  • d a dissociated one Step of separating single-stranded DNA on non-denaturing gel
  • e Step of comparing the mobility of the separated single-stranded DNA on the gel with the control
  • a DNA sample is prepared from the test pig.
  • a DNA region containing the polymorphic marker of the present invention is amplified.
  • the amplified DNA is dissociated into single-stranded DNA.
  • the dissociated single-stranded DNA is then separated on a non-denaturing gel. The mobility of the separated single-stranded DNA on the gel is compared with the control.
  • PCR-SSCP single-strand conformation polymorphism
  • PCR-SSCP single-strand conformation polymorphism
  • This method is suitable for screening a large number of DNA samples in particular because it is relatively easy to operate and has advantages such as a small amount of test sample.
  • the principle is as follows. When a double-stranded DNA fragment is dissociated into single strands, each strand forms a unique higher-order structure depending on its base sequence. When this dissociated DNA strand is electrophoresed in a polyacrylamide gel containing no denaturing agent, single-stranded DNA having the same complementary strand length moves to a different position according to the difference in each higher-order structure. The higher-order structure of this single-stranded DNA also changes by substitution of a single base, and shows different mobility in polyacrylamide gel electrophoresis. Therefore, by detecting this change in mobility, it is possible to detect the presence of mutation due to deletion or the like in the DNA fragment.
  • a DNA region containing the polymorphic marker of the present invention is amplified.
  • the amplification range is usually preferably about 200 to 400 bp.
  • Those skilled in the art can perform PCR by appropriately selecting reaction conditions and the like.
  • the amplified DNA product can be labeled by using a primer labeled with an isotope such as 32 P, a fluorescent dye, or biotin.
  • the amplified DNA product can be labeled by performing PCR by adding a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin to the PCR reaction solution.
  • labeling can also be performed by adding a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin to the amplified DNA fragment using Klenow enzyme or the like after the PCR reaction.
  • the labeled DNA fragment thus obtained is denatured by applying heat or the like and electrophoresed on a polyacrylamide gel containing no denaturing agent such as urea.
  • conditions for separating DNA fragments can be improved by adding an appropriate amount (about 5 to 10%) of glycerol to the polyacrylamide gel.
  • Electrophoretic conditions vary depending on the nature of each DNA fragment, but are usually performed at room temperature (20 to 25 ° C). If favorable separation cannot be obtained, the temperature at which the optimal mobility is obtained at temperatures from 4 to 30 ° C.
  • the mobility of the DNA fragments is detected and analyzed by autoradiography using an X-ray film, a scanner that detects fluorescence, or the like.
  • this band can be directly excised from the gel, amplified again by PCR, and directly sequenced to confirm the presence of the mutation.
  • the band can be detected by staining the gel after electrophoresis with ethidium bromide or silver staining.
  • Still another method includes a method including the following steps.
  • (A) Step of preparing DNA from test pig (b) Step of amplifying a DNA region containing the polymorphic marker of the present invention
  • (c) Step of providing a substrate on which a nucleotide probe is immobilized (d) Step (b)
  • (f) detecting the intensity detected in step (e) Process to compare with control
  • a DNA containing a polymorphic marker of the present invention prepared from a test pig and a substrate on which a nucleotide probe that hybridizes with the DNA is immobilized are provided.
  • the DNA is brought into contact with the substrate.
  • the “mutation” is detected by detecting DNA hybridized to the nucleotide probe immobilized on the substrate.
  • a DNA sample containing the polymorphic marker of the present invention can be prepared by a method well known to those skilled in the art. In a preferred embodiment of the preparation of the DNA sample, for example, it can be prepared based on chromosomal DNA extracted from tissues or cells of blood, skin, oral mucosa and the like of a test pig.
  • a DNA sample of the present method from chromosomal DNA, for example, using a primer that hybridizes to a DNA region containing the polymorphic marker of the present invention, PCR using chromosomal DNA as a template, etc. It is also possible to prepare DNA containing a marker.
  • the prepared DNA sample can be labeled for detection by a method well known to those skilled in the art, if necessary.
  • the “substrate” means a plate-like material capable of fixing nucleotides.
  • the nucleotide includes oligonucleotides and polynucleotides.
  • the substrate of the present invention is not particularly limited as long as nucleotides can be immobilized, but a substrate generally used in DNA array technology can be preferably used.
  • a DNA array is composed of thousands of nucleotides printed on a substrate at high density. Usually these DNAs are printed on the surface of a non-porous substrate.
  • the surface layer of the substrate is generally glass, but a porous membrane such as a nitrocellulose membrane can be used.
  • examples of the nucleotide immobilization (array) method include an oligonucleotide-based array developed by Affymetrix.
  • the oligonucleotides are usually synthesized in situ.
  • in-situ synthesis methods of oligonucleotides using photolithographic technology (Affymetrix) and ink-jet (RosettapharmaInpharmatics) technology for immobilizing chemical substances are already known. Can be used.
  • the nucleotide probe immobilized on the substrate is not particularly limited as long as it can detect the “mutation”. That is, the probe is, for example, a probe that specifically hybridizes with DNA containing the polymorphic marker of the present invention. If specific hybridization is possible, the nucleotide probe need not be completely complementary to the DNA containing the polymorphic marker to be detected.
  • the length of the nucleotide probe to be bound to the substrate is usually 10 to 100 bases, preferably 10 to 50 bases, more preferably 15 to 25 bases when oligonucleotides are immobilized.
  • the DNA sample is then brought into contact with the substrate.
  • the DNA sample is hybridized to the nucleotide probe.
  • the hybridization reaction solution and reaction conditions may vary depending on various factors such as the length of the nucleotide probe immobilized on the substrate, but can generally be performed by methods well known to those skilled in the art.
  • the presence / absence or intensity of hybridization between the DNA sample and the nucleotide probe immobilized on the substrate is then detected.
  • This detection can be performed, for example, by reading the fluorescence signal with a scanner or the like.
  • DNA array DNA fixed on a slide glass is generally called a probe, while labeled DNA in a solution is called a target. Therefore, the nucleotide immobilized on the substrate is referred to as a nucleotide probe in this specification.
  • Still another method includes a method including the following steps.
  • (A) Step of preparing DNA from test pig (b) Step of hybridizing with nucleotide hybridizing to DNA region containing polymorphic marker of the present invention
  • (c) Step of detecting degree of hybridization (d) Step Comparing the degree detected in (c) with a control
  • a DNA containing a polymorphic marker of the present invention prepared from a test pig and a nucleotide that hybridizes with the DNA are prepared.
  • the DNA and nucleotide are hybridized. Further, the mutation is detected by detecting the degree of hybridization and comparing to the control.
  • an allele-specific oligonucleotide (Aligonucleotide / ASO) hybridization method can be used.
  • an oligonucleotide containing a base sequence that is considered to have a polymorphic mutation is prepared and hybridized with the sample DNA, the efficiency of hybridization is reduced when the mutation is present. It can be detected by Southern blotting, a method using the property of quenching by intercalating a special fluorescent reagent into the hybrid gap, or the like.
  • Invader method detection by Invader method is possible. Specifically, two kinds of oligonucleotides (allelic oligo and Invader oligo) that hybridize to the polymorphic site in the polymorphic marker of the present invention are prepared. At this site, the Invader oligo invades only one base below the allele oligo. By cleaving the part that recognizes the invasion structure by an enzymatic reaction, an allele oligo fragment is released. The reaction is repeated with excess allele oligo and the amount of fragments is amplified. Mutation can be detected by detecting the amount of fragments using an oligonucleotide corresponding to the mutation.
  • the TaqMan probe method detection by the TaqMan probe method is possible. Specifically, an oligonucleotide that hybridizes to a DNA containing the polymorphic marker of the present invention, in which the 5 ′ end is modified with a special fluorescent substance (such as FAM) and the 3 ′ end is modified with a quencher substance (such as TAMRA) (In the presence of the TaqMan probe), the DNA containing the polymorphic marker of the present invention is amplified by PCR or the like.
  • the TaqMan probe hybridized to the template DNA is decomposed during the PCR extension reaction step, the fluorescent dye is released from the probe, and the suppression by the quencher is released and fluorescence is emitted. Mutations can be detected by measuring the amount of fluorescence using TaqMan TM probes that emit different fluorescence for different mutations.
  • Still another method includes a method including the following steps.
  • (A) a step of preparing DNA from a test pig (b) a step of amplifying a DNA region containing the polymorphic marker of the present invention
  • DNA is prepared from a test pig, and then a DNA region containing the polymorphic marker of the present invention is amplified.
  • the amplified DNA is then subjected to a mass analyzer and the molecular weight is measured.
  • the measured molecular weight is then compared to a control. Examples of such a method include the MALDI-TOF-MS method (Trends Biotechnol (2000): 18: 77-84).
  • the method of the present invention can be carried out using a PCR-SSP (sequence-specific primers) method.
  • the PCR-SSP method is a method in which a DNA site having a specific sequence is selectively amplified by PCR.
  • a primer capable of selectively amplifying the “enhanced Q” base species (DNA sequence) in the polymorphic marker of the present invention is set and PCR is performed. Based on the presence or absence of the PCR amplification product, it is possible to determine the presence or absence of an inherited trait with an increased number of vertebrae in pigs. For example, when an amplification product of the PCR is detected, it is determined that the test pig has an increased number of vertebrae. On the other hand, when the PCR amplification product is not detected, it is determined that the test pig does not have an increased vertebral number inheritance.
  • the primer is preferably designed so that the sequence to be detected (polymorphic marker of the present invention) is located on the 3 ′ end side.
  • a preferred embodiment of the above method includes a method including the following steps.
  • (A) Step of preparing DNA from test pig (b) DNA containing the polymorphic marker using the PCR-SSP primer designed so that the polymorphic marker of the present invention is located on the 3 ′ end side A step of amplifying the region by PCR (c) A step of detecting the amplified DNA
  • the present invention also provides a polymorphic marker according to any one of (1) to (25) above, which is a polymorphic marker present on porcine chromosome 7. More specifically, the present invention relates to the genetic marker described in any of (1) to (25) below.
  • Genetic marker (2) is a genetic marker comprising all or a partial sequence of the base sequence set forth in SEQ ID NO: 2, comprising a polymorphic site at position 207, and the base type of the polymorphic site is C
  • a genetic marker comprising the whole or a partial sequence of the base sequence set forth in SEQ ID NO: 9, characterized in that the base type of the polymorphic site is G, which is at position 152 or 185 A genetic marker comprising a polymorphic site, wherein the base type of the polymorphic site is C or C, respectively (10) a genetic marker comprising the entire or partial sequence of the base sequence set forth in SEQ ID NO: 10
  • a genetic marker comprising the polymorphic site at position 82 and the base type of the polymorphic site is A (11) consisting of all or a partial sequence of the base sequence set forth in SEQ ID NO: 11
  • a genetic marker comprising a whole or a partial sequence of the base sequence set forth in SEQ ID NO: 12 wherein the genetic marker comprises a polymorphic site at positions 95 to 385 A genetic marker comprising a polymorphic site at position 49 and the base type of the polymorphic site is G (13) consisting of all or a partial sequence of the base sequence set forth in SEQ ID NO
  • the length of the genetic marker is not particularly limited, but is, for example, 300 bp or less, preferably 100 bp or less, more preferably 50 bp or less, and further preferably 30 or 20 bp.
  • the average value 0.43 in the analysis of the F2 experimental family so far was used for the effect of increasing the number of vertebrae.
  • the number of vertebrae of the homozygous piglets was transferred to the piglets (Q; 371, wt; 383) transmitted by the heterozygous pigs with increased vertebral number (Q) and wild type alleles (wt) ) And multiple tests (Steel test), and Q / Q type or wt / wt type was determined (FIG. 4). As a result, 9 were shown to be Q / wt heterotype. Six were homozygous, 5 were QQ, and 1 was wt / wt (FIG. 4).
  • the isolated microsatellite sequences are compared with the pig genome draft sequence in progress by SGSC (International Swine Genome Sequecing Consortium, http://piggenome.org/), and the position of the BAC clones with these microsatellite sequences on the pig genome. Was confirmed by FPC (Finger Print Contig) map.
  • the development of 55 microsatellite markers derived from 39 genes is shown in Tables 5-1 to 5-2 (microsatellite markers developed in the QTL region of the number of vertebrae on chromosome 7), FIG.
  • Table 5-2 is a continuation of Table 5-1. [Table 5-2]
  • the candidate region is a region between the microsatellite markers SJ7088 and SJ7040 outside the candidate region.
  • haplotypes associated with increased vertebral number allele Q in large Yorkshire breed pigs were also detected in F2 experimental family parental pigs, and in F2 experimental family parental pigs, increased vertebral number increased
  • the conserved range in the chromosome to which allele Q is located was SJ7088 to SJ7114 (FIG. 9).
  • the common region was SJ7121 to SJ7114, and the QTL region was successfully narrowed down to the outer marker, SJ7126 to SJ7099. (Tables 6-1 to 6-2 (microsatellite sequence information)). It is possible to determine the number of vertebrae QTL by the haplotype consisting of these microsatellite markers.
  • Table 6-2 is a continuation table of Table 6-1. [Table 6-2]
  • the underline indicates the primer, the italic letters and the underline indicate the microsatellite sequences.
  • Example 3 Haplotype block analysis in the QTL vicinity region The polymorphism search of the QTL vicinity region is performed, and NV101, NV102, orf45-i2, orf45-i4, ALDH6A1-i11, LIN52-i4, LIN52-i5, LIN52- e6, NV103, ABCD4-i15, NV038, NV032, NV004, NV015, NV090, NV025, NV035, NV062, NV067, NV071, NV106, NV108, NV109, NV111, NPC2-i2, ISCA2-i3 were detected (FIG. 10).
  • haplotype block was analyzed by Bioinformatics 21: 263-265). As a result, about 60 kb from ABCD4-i15 to NV067 became the same haplotype block (FIG. 10). There are two major haplotypes of this haplotype block, which coincided with the haplotypes in the large vertebral allele Q and wild-type allele wt in Tokushima Prefecture, England pig (AY).
  • Example 4 Identification of genes governing the number of vertebrae There was no gene whose function was elucidated between SJ7126 and SJ7099, and there was a locus encoding hypothetical protein named LOC55237 in humans and LOC432677 in mice. Also in pigs, the transcript of this region was isolated, and the gene encoding it was named Vertnin (VRTN), which was the gene that controls the number of vertebrae (FIG. 8C). The VRTN gene consists of two exons ( Figure 8C) and encodes 698 amino acids. As a result of homology search, there was no similar gene. The cDNA sequence of the VRTN gene and the amino acid sequence encoded by the gene are shown in SEQ ID NOs: 88 and 89, respectively.
  • Example 5 Polymorphism analysis of porcine VRTN gene Regarding the region from SJ7126 to SJ7099 containing the VRTN gene, polymorphism in all regions except for the repeat sequence such as PRE1 sequence in the pig of the Tokushima prefecture large Yorkshire breed pig
  • the 42 polymorphisms shown in FIG. 8C and Tables 8-1 to 8-7 (SNP sequence information) coincided with the QTL type.
  • the 42 polymorphism patterns are shown in Table 9 (Haplotype of porcine VRTN gene).
  • NV064 is a non-synonymous substitution and the wild type is GAC (Asp), while the augmented type is substituted with GGC (Gly).
  • Table 8-2 is a continuation table of Table 8-1. [Table 8-2]
  • Table 8-3 is a continuation table of Table 8-2. [Table 8-3]
  • Table 8-4 is a continuation table of Table 8-3. [Table 8-4]
  • Table 8-5 is a continuation of Table 8-4. [Table 8-5]
  • Table 8-6 is a continuation table of Table 8-5. [Table 8-6]
  • Table 8-7 is a continuation of Table 8-6. [Table 8-7]
  • Example 6 Analysis of expression of responsible gene in pig embryo Since there is a polymorphism that matches QTL in the promoter region of VRTN gene, the difference in the expression pattern between alleles is considered to be the cause of QTL. It is done. Therefore, the promoter regions of the porcine VRTN gene increased vertebral number and wild type alleles were linked to a plasmid using luciferase as a reporter gene, and the promoter activity was compared using CGR8 cells and P19 cells. There was no difference. CGR8 cells are mouse ES cells and P19 cells are mouse embryonic tumor cells, both expressing the endogenous mouse VRTN gene.
  • the expression difference of VRTN gene in pig embryos due to alleles was analyzed.
  • a breeding pig with a VRTN gene of increased Q / Q and a breeding pig with a wild type wt / wt were crossed to produce a heterozygous Q / wt embryo.
  • the expressed mRNA can distinguish alleles derived from polymorphisms of NV062, NV064, MV065 located on exons.
  • VRTN gene controls the number of vertebrae in pigs.
  • the polymorphism information of VRTN gene has high utility value for breeding. This gene increases the number of vertebrae by about 0.6 per allele within the improved variety. Since the number of vertebrae correlates with carcass length, genetic diagnosis of VRTN gene is widely used for genetic improvement such as meat production and fertility (number of pups, number of nipples). In addition, it is possible to improve the breeding method using this genetic diagnosis. It is also possible to change the number of vertebrae and various traits associated therewith by using VRTN gene transcripts and proteins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a method for assessing the presence of a genotype that increases the number of vertebrae in pigs, which uses as an indicator the polymorphic marker on or in the proximity of the Vertnin (VRTN) gene on the 7th chromosome of pigs. The inventors successfully identified a novel Vertnin gene related to an increase in the number of vertebrae in pigs, on the seventh chromosome of pigs. The inventors also discovered that it is possible to assess the presence of a genotype that increases the number of vertebrae in pigs, by using a polymorphic marker on or in the proximity of said gene, thereby completing this invention.

Description

ブタの椎骨数を支配するVertnin遺伝子、およびその利用Vertnin gene that controls the number of vertebrae in pigs, and its use
 本発明は、ブタの第7染色体上のVertnin遺伝子上もしくはその近傍に存在する多型マーカーを指標とするブタの椎骨数増大型遺伝形質の有無の判定方法に関する。 The present invention relates to a method for determining the presence or absence of an inherited trait with increased vertebral number in pigs using as an index a polymorphic marker present on or near the Vertnin gene on chromosome 7 of pigs.
 ブタはイノシシを祖先とし、ユーラシア大陸の複数地域で家畜化されたと言われている。19世紀中頃からヨーロッパにおいて、成長・体格などの良い豚を選抜して育種するということが行われるようになり、それらがもとになり現在の商用品種が形成されている。 The pig is said to have been domesticated in several areas of the Eurasian continent, with wild boars as its ancestors. In Europe from the middle of the 19th century, pigs with good growth and physique were selected and bred, and the current commercial varieties were formed based on them.
 本発明者らはブタの改良を目的に経済形質に関与する遺伝子座の単離を進めてきた。肉質・成長といった経済形質の多くは量的形質でありそれを支配する遺伝子座は量的形質遺伝子座(quantitative trait locus; QTL)と呼ばれる。現在、ブタの様々なQTLについては約110の論文に約1800の報告がある(PigQTLdb, http://www.animalgenome.org/cgi-bin/QTLdb/SS/index)。しかしながら量的形質は複数の遺伝子座に支配され、また環境要因によっても大きく影響を受けるため、QTLの正確なマッピングは難しく、その責任遺伝子を同定すること、また多様性の原因となる多型を同定することは非常に困難である。ブタにおいて遺伝子レベルで解明されたQTLでは肉質(グリコーゲン量)に関与するPRKAG3遺伝子(非特許文献1)、肉量に関与するIGF2遺伝子(非特許文献2)がある。 The present inventors have been proceeding with the isolation of loci involved in economic traits for the purpose of improving pigs. Many of the economic traits such as meat quality and growth are quantitative traits, and the loci that govern them are called quantitative trait loci (QTL). Currently, there are about 1800 reports in about 110 articles on various QTLs in pigs (PigQTLdb, http://www.animalgenome.org/cgi-bin/QTLdb/SS/index). However, since quantitative traits are dominated by multiple loci and are also greatly influenced by environmental factors, accurate mapping of QTL is difficult, identifying the responsible gene, and polymorphisms that cause diversity It is very difficult to identify. In the QTL elucidated at the gene level in pigs, there are a PRKAG3 gene (non-patent document 1) involved in meat quality (glycogen content) and an IGF2 gene (non-patent document 2) involved in meat content.
 本発明者らは複数のF2実験家系を作製し、成長性、産肉性、肉質などの各種経済形質に関するQTL解析を行った(非特許文献3~10)。その結果、様々なQTLが検出されたが、その中で胸椎数と腰椎数の和で示される椎骨数(図1)に関与するQTLが複数の家系を通じて2カ所のゲノム領域(第1染色体q腕末端、第7染色体q腕中央)に検出され、その存在は確からしいと判断された(表2(F2実験家系と椎骨数QTL)、図2)。 The present inventors created a plurality of F2 experimental families and conducted QTL analysis on various economic traits such as growth, meat production, and meat quality (Non-Patent Documents 3 to 10). As a result, various QTLs were detected. Among them, QTLs related to the number of vertebrae shown by the sum of the number of thoracic vertebrae and the number of lumbar vertebrae (Fig. 1) were distributed in two genomic regions (first chromosome q It was detected at the end of the arm and the center of the chromosome 7 q arm, and its existence was judged to be probable (Table 2 (F2 experimental family and vertebral number QTL), FIG. 2).
〔表2〕
Figure JPOXMLDOC01-appb-I000002
[Table 2]
Figure JPOXMLDOC01-appb-I000002
 2つの椎骨数QTLにはそれぞれ椎骨数を増大させる対立遺伝子があり、その効果はほぼ等しく、各家系の結果を平均すると対立遺伝子あたり約0.5から0.6個の椎骨数を増大させた。また2つのQTLは互いに独立に働き、すべての対立遺伝子が椎骨数増大型になると平均で約2.3本の椎骨数が増大した(表3(ブタの椎骨数に関する2つのQTLの効果)、図3)。 The two vertebra number QTLs have alleles that increase the number of vertebrae, and the effects are almost equal, and the average of the results of each family increased about 0.5 to 0.6 vertebrae per allele. In addition, the two QTLs worked independently of each other, and when all alleles were increased in vertebral number, the average number of vertebrae increased by about 2.3 (Table 3 (Effects of two QTLs on porcine vertebral number). ).
〔表3〕
Figure JPOXMLDOC01-appb-I000003
[Table 3]
Figure JPOXMLDOC01-appb-I000003
 ブタの頸椎は他の哺乳類と同じく7個であるが、胸椎、腰椎の数には多様性があり、胸椎は13個から16個、腰椎は5個から7個とばらついている(非特許文献11)。これらを合計した数(椎骨数)はブタの祖先であるイノシシでは19個であるが、現在の肉用品種では20個から23個であり、このような種内での大きな多様性は、哺乳類ではブタでのみ見られる(図1)。ブタは肉量増大、繁殖性向上のために体が大きくなるように選抜され、その過程で椎骨数が増大したと考えられ、実際、一つの椎骨数の増大により、体長は平均約1.5 cm伸びることが示されている(非特許文献12)。 The number of cervical vertebrae in pigs is 7 as in other mammals, but the number of thoracic vertebrae and lumbar vertebrae varies, with 13 to 16 thoracic vertebrae and 5 to 7 lumbar vertebrae (non-patent literature). 11). The total number of these (vertebral vertebrae) is 19 in the boar ancestor wild boar, but in the current meat variety, it is 20 to 23. In pigs only (Figure 1). Pigs were selected to grow in size to increase meat volume and improve fertility, and it is thought that the number of vertebrae increased in the process, and in fact, the increase in the number of vertebrae increased the body length on average by about 1.5 cm (Non-Patent Document 12).
 これまでのF2実験家系の解析において、第1染色体q腕末端領域の椎骨数QTLでは、梅山豚、金華豚などのアジア在来種、および日本イノシシの対立遺伝子に増大効果は認められず野生型であり、ランドレース、大ヨークシャー、デュロック、バークシャーといった西洋品種の対立遺伝子のすべてに椎骨数増大効果が認められた(表2、表4(椎骨数QTLの遺伝子型))。 In the analysis of the F2 experimental family so far, the vertebral number QTL in the q-arm end region of chromosome 1 has not been observed to increase in alleles of Asian native species such as Umeyama pig and Kinka pig, and Japanese wild boar. In addition, all the alleles of Western varieties such as Landrace, Large Yorkshire, Duroc, and Berkshire had an effect of increasing the number of vertebrae (Table 2, Table 4 (vertebral number QTL genotype)).
〔表4〕
Figure JPOXMLDOC01-appb-I000004
[Table 4]
Figure JPOXMLDOC01-appb-I000004
 第1染色体上の椎骨数QTLについては、椎骨数が増大した西洋品種で固定された約300 kbの領域を発見し、そこに位置する責任遺伝子NR6A1を同定した(非特許文献13)。またそれに関して、特許出願を行った(特許文献1)。 Regarding the number of vertebrae on the first chromosome, QTL, a region of about 300 kb fixed by a western variety with an increased number of vertebrae was found, and the responsible gene NR6A1 located there was identified (Non-patent Document 13). In connection with this, a patent application was filed (Patent Document 1).
 第7染色体q腕中央部の椎骨数QTLでは、F2実験家系に用いた西洋品種に由来する一部の対立遺伝子に椎骨数を増大させる効果が認められた(表2、表4)(非特許文献14)。また徳島県の大ヨークシャー種系統豚を用い、その種豚について第7染色体の椎骨数QTLについて半きょうだい解析を行うことにより、QTLがヘテロ型である個体を検出した(図4)(非特許文献14)。これらから現在豚肉生産に用いられている西洋品種においても第7染色体の椎骨数QTLは多様性があることが明らかとなった。 In the QTL at the center of chromosome 7 q vertebrae number QTL, some alleles derived from Western varieties used in F2 experimental families had an effect of increasing the number of vertebrae (Tables 2 and 4) (non-patented) Reference 14). In addition, using a large Yorkshire breed pig in Tokushima Prefecture, we conducted a half sibling analysis of the number of vertebrae QTLs on chromosome 7 of the pig so that individuals with heterozygous QTL were detected (Fig. 4) (non-patented) Reference 14). From these results, it was clarified that the number of vertebrae QTL on chromosome 7 is also diverse in Western varieties currently used for pork production.
 なお、本出願の発明に関連する先行技術文献情報を以下に示す。 The prior art document information related to the invention of the present application is shown below.
特開2006-101871JP2006-101871
 本発明は、上記状況に鑑みてなされたものであり、その目的は椎骨数増大型遺伝形質を有するブタを判定する方法を提供することにある。より詳しくは、本発明は、ブタの第7染色体上のVertnin(VRTN)遺伝子上、またはその近傍の多型を指標とする、ブタの椎骨数増大型遺伝形質の有無の判定方法の提供を課題とする。 The present invention has been made in view of the above situation, and an object of the present invention is to provide a method for determining a pig having an increased vertebral number inheritance. More specifically, the present invention is to provide a method for determining the presence or absence of an inherited trait with increased vertebral number in pigs, using a polymorphism on or near the Vertnin (VRTN) gene on chromosome 7 of the pig as an index. And
 F2実験家系を用いた連鎖解析等により絞り込まれた範囲からさらに原因遺伝子の存在する位置を特定するには一般に連鎖不平衡解析が用いられる。家畜は世代間隔が短く、血縁、表形値が記録されるため、現存の動物の形質データを用いて、形質の差と関連する同一祖先由来の共通染色体領域をマッピングする方法(identical by decent解析; IBD解析)が一般的に用いられる。しかしながら量的形質では、形質と遺伝子型との関連性が遺伝病などの質的形質ほど大きくなく、形質値を用いたIBD解析での責任遺伝子の解明は困難であり、これが様々なQTLの責任遺伝子が未同定である原因である。 In general, linkage disequilibrium analysis is used to identify the location of the causative gene from the range narrowed down by linkage analysis using F2 experimental family. Because livestock has a short generation interval and related and tabular values are recorded, a method of mapping common chromosomal regions derived from the same ancestor related to the difference in traits using the trait data of existing animals (identical by decent analysis) ; (IBD analysis) is commonly used. However, in quantitative traits, the relationship between traits and genotypes is not as great as qualitative traits such as genetic diseases, and it is difficult to elucidate responsible genes in IBD analysis using trait values, which is the responsibility of various QTLs. This is the cause of unidentified genes.
 よって本発明者らは、形質値ではなく、半きょうだい解析によって判定したQTL型を用いたIBD解析を試行した。この場合、QTL型と責任遺伝子の遺伝子型は完全に一致する。またQTL型を判定する個体として、系統豚を用いた。これは雄10頭、雌65頭に由来し、7世代の閉鎖群育種により造成された後、雄9頭、雌35頭で維持されているもので、染色体の組み換えの数が多いと期待される。また造成開始時に導入された個体は互いに独立したもので、遺伝的に遠縁にある。つまり同祖染色体領域の組み換えによるマッピングと、独立した個体サンプル間に存在する小さな共通遺伝領域の探索の両方が期待される。 Therefore, the present inventors tried the IBD analysis using the QTL type determined not by the trait value but by the half sibling analysis. In this case, the QTL type and the genotype of the responsible gene are completely identical. A strain pig was used as an individual to determine the QTL type. This is derived from 10 males and 65 females, and after being constructed by 7-generation closed group breeding, it is maintained in 9 males and 35 females, and is expected to have a large number of chromosome recombination. The The individuals introduced at the start of creation are independent of each other and are genetically distantly related. In other words, both mapping by homologous chromosome region recombination and searching for a small common genetic region that exists between independent individual samples are expected.
 具体的には、本発明者らは、大ヨークシャー種系統豚の種豚における椎骨数QTL型を、半きょうだい解析により判定し、高密度に配置したマイクロサテライトマーカーを用いて、QTL型と一致するハプロタイプを有するゲノム領域を検索した。また見いだした領域の近傍においては、これまでにQTL型を判定していた他品種を含むF2実験家系親世代ブタを用いて、さらにQTL型と一致するハプロタイプを有するゲノム領域を絞り込んだ。その結果、約45 kbの領域に到達し、そこに位置する椎骨数を支配する新規遺伝子VRTNを単離した。 Specifically, the present inventors determined the number of vertebrae QTL type in the sow of large Yorkshire breed pigs by semisidy analysis, and matched the QTL type using microsatellite markers arranged at high density. A genomic region having a haplotype was searched. In addition, in the vicinity of the found region, the genomic region having a haplotype that matches the QTL type was further narrowed down using F2 experimental parental pigs including other breeds that had previously been determined to have the QTL type. As a result, a novel gene VRTN that reaches the region of about 45 kb and controls the number of vertebrae located there was isolated.
 VRTN遺伝子を含む45 kbの領域において、大ヨークシャー種系統豚を用いて多型検索を行った結果、QTL型と一致する42ヵ所の多型部位が明らかとなった。これら多型から構成されるハプロタイプは、この大ヨークシャー種系統豚では2種であり、またと場サンプル(ランドレース種、大ヨークシャー種、およびデュロック種の交雑種)によるハプロタイプ解析においてもこの2種がメジャーなハプロタイプであった。 In the 45-kb region containing the VRTN gene, a polymorphism search was performed using large Yorkshire breed pigs. As a result, 42 polymorphic sites corresponding to the QTL type were revealed. There are two haplotypes composed of these polymorphisms in this large Yorkshire breed pig, and these two haplotypes are also analyzed in haplotype analysis using field samples (Landrace, Large Yorkshire, and Duroc hybrids). Was a major haplotype.
 ヘテロ型のブタ胚においてVRTN遺伝子の発現解析を行った結果、野生型対立遺伝子は交配後8.5日目から10日目の限られた期間に発現しているのに対し、椎骨数増大型対立遺伝子は8日目から14日目まで発現が確認された。この結果から、VRTNの椎骨数増大型対立遺伝子は、発現時期の制御が変化することにより、椎骨数を増大させていると判断される。 As a result of the analysis of VRTN gene expression in heterozygous pig embryos, the wild type allele was expressed in the limited period from 8.5 to 10 days after mating, whereas the allele with increased vertebral number Expression was confirmed from day 8 to day 14. From these results, it is determined that the VRTN increased vertebral number allele increases the number of vertebrae by changing the control of the expression time.
 本発明者らは、ブタの第7染色体上に、ブタの椎骨数増大と関連する新規なVertnin遺伝子を同定することに成功した。さらに、該遺伝子上もしくはその近傍に存在する多型マーカーを用いることにより、ブタの椎骨数増大型遺伝形質の有無を判定可能であることを見出し、本発明を完成させた。 The present inventors succeeded in identifying a novel Vertnin gene associated with an increase in the number of vertebrae in pigs on the seventh chromosome of pigs. Furthermore, the present inventors have found that by using a polymorphic marker present on or near the gene, it is possible to determine the presence or absence of an inherited trait with increased number of vertebrae in pigs, thereby completing the present invention.
 即ち本発明は、ブタの第7染色体上のVertnin遺伝子上もしくはその近傍に存在する多型マーカーを指標とするブタの椎骨数増大型遺伝形質の有無の判定方法に関し、より具体的には、
〔1〕 ブタの椎骨数増大型遺伝形質の有無の判定方法であって、ブタの第7染色体上に存在する下記(A)の(1)~(25)のいずれかに記載の一もしくは複数の多型マーカーを用いて、下記(B)の工程によって判定する方法、
(A)
 (1)配列番号:1に記載の塩基配列の40位
 (2)配列番号:2に記載の塩基配列の207位
 (3)配列番号:3に記載の塩基配列の68位
 (4)配列番号:4に記載の塩基配列の47位または101位
 (5)配列番号:5に記載の塩基配列の81位
 (6)配列番号:6に記載の塩基配列の355位
 (7)配列番号:7に記載の塩基配列の87位
 (8)配列番号:8に記載の塩基配列の42位
 (9)配列番号:9に記載の塩基配列の152位または185位
 (10)配列番号:10に記載の塩基配列の82位
 (11)配列番号:11に記載の塩基配列の95~385位
 (12)配列番号:12に記載の塩基配列の49位
 (13)配列番号:13に記載の塩基配列の31位、116位、335位、または421位
 (14)配列番号:14に記載の塩基配列の127位
 (15)配列番号:15に記載の塩基配列の78位、154位、173位、または187位、217位、320位、433位
 (16)配列番号:16に記載の塩基配列の111位
 (17)配列番号:17に記載の塩基配列の71位または192位
 (18)配列番号:18に記載の塩基配列の80~82位
 (19)配列番号:19に記載の塩基配列の285位または300~301位
 (20)配列番号:20に記載の塩基配列の55位、65位、75位、または150位
 (21)配列番号:21に記載の塩基配列の99位または138位
 (22)配列番号:22に記載の塩基配列の75位
 (23)配列番号:23に記載の塩基配列の217位
 (24)配列番号:24に記載の塩基配列の91位
 (25)配列番号:25に記載の塩基配列の136位
(B)上記(A)のそれぞれの多型マーカーにおける塩基種が記載された下記〔表1〕の判定表に基づき、椎骨数増大型遺伝形質の有無を判定する工程
〔表1〕
Figure JPOXMLDOC01-appb-I000005
〔2〕 ブタの第7染色体上の、以下の(a)~(d)のいずれかに記載のマイクロサテライト配列を検出することを特徴とする、ブタの椎骨数増大型遺伝形質の有無の判定方法、
(a)配列番号:26に記載の塩基配列において、180~195位または196~216位のマイクロサテライト配列
(b)配列番号:27に記載の塩基配列において、311~323位、380~388位、389~396位、または400~406位のマイクロサテライト配列
(c)配列番号:28に記載の塩基配列において、393~413位のマイクロサテライト配列
(d)配列番号:29に記載の塩基配列において、96~107位または309~325位のマイクロサテライト配列
〔3〕 ブタの第7染色体上に存在する前記多型マーカーまたはマイクロサテライト配列を含むDNA領域を増幅し、その増幅産物の多型またはマイクロサテライト配列を検出する工程を含む、〔1〕または〔2〕に記載の方法、
〔4〕 ブタの第7染色体上に存在するVertnin遺伝子の発現量を指標とすることを特徴とする、ブタの椎骨数増大型遺伝形質の有無の判定方法、
を、提供する。
That is, the present invention relates to a method for determining the presence or absence of swine vertebral number-inherited genetic traits, using as a marker a polymorphic marker present on or near the Vertnin gene on chromosome 7 of swine, more specifically,
[1] A method for determining the presence or absence of an inherited trait of increased number of vertebrae in pigs, wherein one or more of the following (A) (1) to (25) present on the seventh chromosome of pigs A method of determining by the step (B) below using the polymorphic marker of
(A)
(1) Position 40 of the base sequence described in SEQ ID NO: 1 (2) Position 207 of the base sequence described in SEQ ID NO: 2 (3) Position 68 of the base sequence described in SEQ ID NO: 3 (4) SEQ ID NO: : Position 47 or 101 of the base sequence described in (5) Position 81 of the base sequence described in SEQ ID NO: 5 (6) Position 355 of the base sequence described in SEQ ID NO: 6 (7) SEQ ID NO: 7 (8) 42nd position of the base sequence described in SEQ ID NO: 8 (9) 152th or 185th position of the base sequence described in SEQ ID NO: 9 (10) described in SEQ ID NO: 10 (11) Positions 95 to 385 of the base sequence set forth in SEQ ID NO: 11 (12) Position 49 of the base sequence set forth in SEQ ID NO: 12 (13) Base sequence set forth in SEQ ID NO: 13 Position 31, 116, 335, or 421 of (14) SEQ ID NO: 127 of the base sequence described in 14 (15) 78, 154, 173, 187, 217, 320, 433 of the base sequence described in SEQ ID NO: 15 (16) SEQ ID NO: 16 111 of the base sequence described in (17) 71 or 192 of the base sequence described in SEQ ID NO: 17 (18) 80 to 82 of the base sequence described in SEQ ID NO: 18 (19) SEQ ID NO: 19 285 or 300 to 301 of the base sequence described in (20) 55th, 65th, 75th, or 150th position of the base sequence described in SEQ ID NO: 20 (21) The base sequence described in SEQ ID NO: 21 (22) 75th position of the base sequence described in SEQ ID NO: 22 (23) 217th position of the base sequence described in SEQ ID NO: 23 (24) 91 of the base sequence described in SEQ ID NO: 24 Rank (25) Based on the determination table of the following [Table 1] in which the base type of each polymorphic marker of (B) above (A) is described, position 136 of the base sequence described in column number 25: Step of determining presence / absence [Table 1]
Figure JPOXMLDOC01-appb-I000005
[2] Judgment of presence or absence of a genetic character with increased vertebral number in pigs characterized by detecting the microsatellite sequence described in any of (a) to (d) below on chromosome 7 of pigs Method,
(a) a microsatellite sequence at positions 180 to 195 or 196 to 216 in the base sequence set forth in SEQ ID NO: 26
(b) a microsatellite sequence at positions 311 to 323, 380 to 388, 389 to 396, or 400 to 406 in the nucleotide sequence set forth in SEQ ID NO: 27
(c) a microsatellite sequence at positions 393 to 413 in the nucleotide sequence set forth in SEQ ID NO: 28
(d) a microsatellite sequence at positions 96 to 107 or 309 to 325 in the nucleotide sequence set forth in SEQ ID NO: 29 [3] DNA comprising the polymorphic marker or microsatellite sequence present on pig chromosome 7 The method according to [1] or [2], comprising a step of amplifying a region and detecting a polymorphism or a microsatellite sequence of the amplification product,
[4] A method for determining the presence or absence of an inherited trait with increased vertebral number in pigs, characterized by using the expression level of a Vertnin gene present on pig chromosome 7 as an index,
I will provide a.
 椎骨数を支配する遺伝子の解明は、椎骨数の制御を可能とすることから、ブタの産肉性、繁殖性の効率的な改良が実現される。特に第7染色体q腕中央部の椎骨数QTLは、豚肉生産に用いられている西洋品種の椎骨数のバラツキの原因であり、この責任遺伝子の解明によりもたらされる情報は、今日の豚肉生産に直接的に利用され、その効率化に大きく貢献することができる。 Elucidation of the genes that control the number of vertebrae enables the control of the number of vertebrae, so that efficient improvement of pig meat production and reproduction is realized. In particular, the number of vertebrae QTL in the center of chromosome 7 q is the cause of variability in the number of vertebrae in western varieties used for pork production, and the information provided by the elucidation of this responsible gene is directly related to today's pork production. And can contribute greatly to the efficiency improvement.
ヒト、馬、牛・羊・兎、豚における、頸椎、胸椎、腰椎、仙椎、尾椎の数を示す図である。西洋品種(ランドレース、大ヨークシャー、デュロック、バークシャー)の椎骨数は20、21、22、23、アジア在来品種(梅山豚、金華豚)は19、イノシシは19である。It is a figure which shows the number of the cervical vertebrae, the thoracic vertebrae, the lumbar vertebrae, the sacral vertebrae, and the caudal vertebrae in humans, horses, cows / sheeps / pigs, and pigs. Western varieties (Landlace, Great Yorkshire, Duroc, Berkshire) have 20, 21, 22, 23 vertebrae, 19 Asian varieties (Umeyama and Kinka) and 19 wild boar. 椎骨数に関するQTL解析(JD家系)の結果を示す図である。第1染色体q腕末端領域と第7染色体q腕中央部に2つの椎骨数に関するQTLが検出された。It is a figure which shows the result of the QTL analysis (JD family line) regarding the number of vertebrae. QTLs related to the number of two vertebrae were detected in the end region of chromosome 1 q arm and the center of chromosome 7 q arm. JD家系における2つの椎骨数QTLの効果を示す図である。2つのQTLのそれぞれの遺伝子型を持つF2個体の椎骨数の平均値を示した。異なるアルファベット(a, b, c, d)間で有意差がある。それぞれのQTLは主に相加的効果を持ち、また2つのQTLは独立に働く。It is a figure which shows the effect of two vertebra number QTL in a JD family. The average number of vertebrae of F2 individuals with the respective genotypes of the two QTLs is shown. There are significant differences between different alphabets (a, b, c, d). Each QTL has mainly additive effects, and the two QTLs work independently. 徳島県大ヨークシャー種系統豚(AY)の種豚を用いた第7染色体上の椎骨数QTLの半きょうだい解析の結果を示す図である。種豚の相同染色体上のQTL領域の子豚への伝達を、マイクロサテライトマーカーを用いて解析した。由来する種豚のQTL領域により2つの群に分け(任意に黒、白で示す。)、それぞれの椎骨数の平均値をプロットした。また子豚の頭数と標準誤差を示した。t検定においてP < 0.01 (**)において種豚のQTLがヘテロ型であると判断した。Z検定は椎骨数増大効果を0.43としてNezerらの方法で行ない、Z <-2.0をホモ型とした。またホモ型種豚それぞれの子豚の椎骨数を、ヘテロ型種豚の椎骨数増大型アリルおよび野生型アリルが伝達した子豚(Q;371頭、q;383頭)の椎骨数と多重検定(Steel検定)し、椎骨数増大型または野生型を判定した。It is a figure which shows the result of the half sibling analysis of the number of vertebrae QTL on the 7th chromosome using the pig of Tokushima Prefecture large Yorkshire breed (AY). The transmission of the QTL region on the homologous chromosome of the pig to piglets was analyzed using microsatellite markers. Divided into two groups (arbitrarily indicated in black and white) according to the QTL region of the sow derived pigs, the average value of the number of vertebrae for each was plotted. The number of piglets and the standard error were also shown. In the t-test, the QTL of the sow was judged to be heterozygous at P <0.01 (**). The Z test was performed according to the method of Nezer et al. With an effect of increasing the number of vertebrae of 0.43, and Z <−2.0 was made homozygous. In addition, the number of vertebrae of each pig of homozygous pigs was multiple-tested with the number of vertebrae of piglets (Q: 371, q: 383) that were transmitted by heterozygous pigs with increased vertebral number and wild-type alleles. (Steel test) and vertebral number increased type or wild type was determined. 第7染色体上の椎骨数QTLの信頼区間(三県合同、JD家系)を示す図である。Bootstrap法(10000回)により、QTLが位置する95%信頼区間を求めた。95%の区間において黒色、それ以外を灰色で示した。95%信頼区間は83 cMから88 cMであった。It is a figure which shows the confidence interval (three prefectures joint, JD family) of the vertebra number QTL on the 7th chromosome. The 95% confidence interval where the QTL is located was obtained by Bootstrap method (10000 times). The 95% section is shown in black and the others in gray. The 95% confidence interval was 83 cM to 88 cM. 椎骨数QTL近傍領域におけるマイクロサテライトマーカーの開発を示す図である。ヒト遺伝子情報を利用して開発したブタSTSによりBACクローンを単離し、マイクロサテライトマーカーを開発した。開発したマイクロサテライトマーカーは、SGSC(International Swine Genome Sequencing Consortium)によって進行中のブタゲノムドラフト配列と比較し、それらの染色体上の位置を確認した。下線で示したマーカーはブタゲノムドラフト配列に未だ見出されないものを示す。It is a figure which shows development of the microsatellite marker in the vertebra number QTL vicinity region. A BAC clone was isolated by porcine STS developed using human gene information, and a microsatellite marker was developed. The developed microsatellite markers were compared with the ongoing pig genome draft sequence by SGSC (International Swine Genome Sequencing Consortium), and their chromosomal positions were confirmed. Underlined markers indicate those not yet found in the pig genome draft sequence. 徳島県大ヨークシャー種系統豚(AY)の種豚におけるQTLタイプと同祖染色体領域を示す図である。図4においてQTLタイプを判定した種豚の各染色体についてマイクロサテライトマーカーのハプロタイプを解析した。同祖である領域(同じタイプのハプロタイプ)についてそれぞれ同色で示した。椎骨数増大型対立遺伝子Q、野生型対立遺伝子wtが座位する両方の染色体に伝達している領域は赤文字で示した。同祖の染色体領域が、Qおよびwtの両方に伝達していないのはSJ7106からSJ7008の間であった。L、Rは各個体の任意の2つの染色体領域を示す。It is a figure which shows the QTL type and the homoeologous chromosomal area | region in the pig of Tokushima Prefecture large Yorkshire breed pig (AY). In FIG. 4, the haplotype of the microsatellite marker was analyzed for each chromosome of the sow whose QTL type was determined. Regions that are homoeologous (the same type of haplotype) are shown in the same color. The vertebral number increasing allele Q and the wild type allele wt are shown in red letters in the region that is transmitted to both loci. It was between SJ7106 and SJ7008 that the homologous chromosomal region did not transmit to both Q and wt. L and R represent any two chromosomal regions of each individual. 椎骨数QTL近傍領域のゲノム構造解析の結果を示す図である。(A)SGSC(International Swine Genome Sequencing Consortium)により塩基配列が解読されているBACクローン。(B)BACクローンの塩基配列より作成した遺伝子地図。マイクロサテライトマーカーの位置を示した。下線で示したものは、BACクローンの塩基配列より新規に開発した。(C)VRTN遺伝子近傍の多型部位。大ヨークシャー種系統豚におけるQTLと一致する多型部位を示した。It is a figure which shows the result of the genome structure analysis of the vertebra number QTL vicinity region. (A) BAC clone whose base sequence is decoded by SGSC (International Swine Genome Sequencing Consortium). (B) Gene map created from the base sequence of the BAC clone. The position of the microsatellite marker is shown. Those underlined were newly developed from the base sequence of the BAC clone. (C) Polymorphic site near the VRTN gene. Polymorphic sites consistent with QTL in large Yorkshire pigs were shown. 大ヨークシャー種種豚およびF2実験家系親世代ブタにおけるQTLタイプと同祖染色体領域を示す図である。BACクローンの配列より新規に開発したマイクロサテライトマーカー(下線)を加え、ハプロタイプ解析を行った。L:ランドレース、W:大ヨークシャー、B:バークシャー、D:デュロック、Wb:猪、M:梅山豚、J:金華豚、C:クラウンミニ豚。L、Rは各個体の任意の2つの染色体領域を示す。It is a figure which shows the QTL type and the homoeologous chromosomal region in a large Yorkshire breed pig and F2 experimental family parental pig. A newly developed microsatellite marker (underlined) was added from the BAC clone sequence, and haplotype analysis was performed. L: Land Race, W: Large Yorkshire, B: Berkshire, D: Duroc, Wb: Amber, M: Umeyama Pig, J: Jinhua Pig, C: Crown Mini Pig. L and R represent any two chromosomal regions of each individual. 椎骨数QTL近傍領域の多型を用いた椎骨数との関連性解析とハプロタイプブロック解析の結果を示す図である。椎骨数QTL近傍領域に多型マーカーを開発し、と場よりサンプリングした199頭を用いて、それらの遺伝子型と椎骨数との関連性について分散分析を行い、F値をプロットした。またそれらの多型についてハプロタイプブロックを解析した。数字はR2値を示した。It is a figure which shows the result of the relevance analysis with the number of vertebrae using the polymorphism of the vertebra number QTL vicinity area, and the haplotype block analysis. A polymorphic marker was developed in the area near the QTL of vertebrae. Using 199 heads sampled from the field, analysis of variance was performed on the relationship between the genotype and the number of vertebrae, and F values were plotted. Haplotype blocks were also analyzed for these polymorphisms. Numbers indicate R 2 values. ヘテロ型ブタ胚を用いたVRTN遺伝子の対立遺伝子間の発現比較解析を示す図である。交配後、8日、8.5日、10日、12日、14日においてヘテロ型(Q/wt)胚を子宮より回収し、トータルRNAを調製した。NV062をRT-PCRにより増幅し、TAクローニングを行った。クローン化した192個のコロニーについて、塩基配列を決定し、NV062の多型パターンの頻度を計測することにより各対立遺伝子の発現量の評価を行った。It is a figure which shows the expression comparison analysis between the alleles of the VRTN gene using a hetero pig pig. After mating, heterozygous (Q / wt) embryos were collected from the uterus on the 8th, 8.5th, 10th, 12th, and 14th days, and total RNA was prepared. NV062 was amplified by RT-PCR and TA cloning was performed. The nucleotide sequence of the cloned 192 colonies was determined, and the expression level of each allele was evaluated by measuring the frequency of the polymorphic pattern of NV062.
 本発明は、ブタの第7染色体上のVertnin(VRTN)遺伝子上もしくはその近傍に存在する多型マーカーを指標とするブタの椎骨数増大型遺伝形質の有無の判定方法(本明細書において、「本発明の判定方法」と記載する場合あり)を提供する。 The present invention relates to a method for determining the presence or absence of a porcine vertebral number-increasing genetic trait using as an index a polymorphic marker present on or in the vicinity of the Vertnin (VRTN) gene on the seventh chromosome of pig (in the present specification, “ May be described as “the determination method of the present invention”).
 本発明者らによって見出されたVertnin遺伝子の塩基配列、および該遺伝子によってコードされるタンパク質のアミノ酸配列を、それぞれ、配列番号:88、89へ記載する。 The nucleotide sequence of the Vertnin gene found by the present inventors and the amino acid sequence of the protein encoded by the gene are described in SEQ ID NOs: 88 and 89, respectively.
 本発明において「判定」とは、通常、被検ブタ(本発明の判定方法に供するブタ)が椎骨数野生型遺伝形質を有する、もしくは有さないと判定することを言う。 In the present invention, “determination” usually means that a test pig (pig used in the determination method of the present invention) has or does not have a vertebral number wild-type genetic trait.
 また、椎骨数増大型遺伝形質を有するブタと、その他の豚とを判別すること等をいい、本発明における「判定」の用語は、例えば、「鑑定」、「鑑別」あるいは「判別」、「検査」等と表現してもよい。 Further, it refers to discriminating between pigs having an increased vertebral number-inherited genetic trait and other pigs. The term “determination” in the present invention is, for example, “appraisal”, “discrimination” or “discrimination”, “ It may be expressed as “inspection” or the like.
 また、本発明の判定方法は、必ずしもブタ個体を対象として判定する方法に限定されず、例えば、食肉もしくは精肉加工品(例えば、ハム等)、あるいは、被検ブタに由来する生体試料等を対象として、椎骨数増大型遺伝形質の有無を判定する方法も含まれる。 In addition, the determination method of the present invention is not necessarily limited to the method for determining a pig individual, for example, meat or processed meat (for example, ham), or a biological sample derived from a test pig. And a method for determining the presence or absence of an inherited trait with increased vertebral number.
 本発明において「多型」とは、例えば、一塩基多型(SNP)、欠失変異(deletion)、挿入変異(insertion)、マイクロサテライト等を指す。 In the present invention, “polymorphism” refers to, for example, single nucleotide polymorphism (SNP), deletion mutation, insertion mutation, microsatellite and the like.
 本発明の判定方法の好ましい態様としては、ブタゲノム中に存在する多型マーカーを用いることを特徴とする方法である。 A preferred embodiment of the determination method of the present invention is a method characterized by using a polymorphic marker present in the pig genome.
 本発明における多型マーカーとは、ブタの椎骨数増大型遺伝形質の有無を判定可能なDNA部位(多型部位)をいう。従って、本発明の方法において多型マーカーを用いるとは、通常、本発明の多型部位におけるDNA配列(塩基種)の違いに基づきブタの椎骨数増大型遺伝形質の有無の判定を行うことをいう。 In the present invention, the polymorphic marker refers to a DNA site (polymorphic site) capable of determining the presence or absence of an inherited trait with increased vertebral number in pigs. Therefore, using a polymorphic marker in the method of the present invention usually means determining the presence or absence of an inherited trait of increased swine vertebral number based on the difference in DNA sequence (base species) at the polymorphic site of the present invention. Say.
 本発明において用いる多型マーカーとしては、具体的には、ブタ第7染色体上に存在する多型マーカーであって、以下の部位の多型マーカー(本明細書において「本発明の多型マーカー」と記載する場合あり)を示すことができる。
 (1)配列番号:1に記載の塩基配列の40位
 (2)配列番号:2に記載の塩基配列の207位
 (3)配列番号:3に記載の塩基配列の68位
 (4)配列番号:4に記載の塩基配列の47位または101位
 (5)配列番号:5に記載の塩基配列の81位
 (6)配列番号:6に記載の塩基配列の355位
 (7)配列番号:7に記載の塩基配列の87位
 (8)配列番号:8に記載の塩基配列の42位
 (9)配列番号:9に記載の塩基配列の152位または185位
 (10)配列番号:10に記載の塩基配列の82位
 (11)配列番号:11に記載の塩基配列の95~385位
 (12)配列番号:12に記載の塩基配列の49位
 (13)配列番号:13に記載の塩基配列の31位、116位、335位、または421位
 (14)配列番号:14に記載の塩基配列の127位
 (15)配列番号:15に記載の塩基配列の78位、154位、173位、または187位、217位、320位、433位
 (16)配列番号:16に記載の塩基配列の111位
 (17)配列番号:17に記載の塩基配列の71位または192位
 (18)配列番号:18に記載の塩基配列の80~82位
 (19)配列番号:19に記載の塩基配列の285位または300~301位
 (20)配列番号:20に記載の塩基配列の55位、65位、75位、または150位
 (21)配列番号:21に記載の塩基配列の99位または138位
 (22)配列番号:22に記載の塩基配列の75位
 (23)配列番号:23に記載の塩基配列の217位
 (24)配列番号:24に記載の塩基配列の91位
 (25)配列番号:25に記載の塩基配列の136位
Specifically, the polymorphic marker used in the present invention is a polymorphic marker present on porcine chromosome 7, which is a polymorphic marker at the following site (in the present specification, “polymorphic marker of the present invention”). May be indicated).
(1) Position 40 of the base sequence described in SEQ ID NO: 1 (2) Position 207 of the base sequence described in SEQ ID NO: 2 (3) Position 68 of the base sequence described in SEQ ID NO: 3 (4) SEQ ID NO: : Position 47 or 101 of the base sequence described in (5) Position 81 of the base sequence described in SEQ ID NO: 5 (6) Position 355 of the base sequence described in SEQ ID NO: 6 (7) SEQ ID NO: 7 (8) 42nd position of the base sequence described in SEQ ID NO: 8 (9) 152th or 185th position of the base sequence described in SEQ ID NO: 9 (10) described in SEQ ID NO: 10 (11) Positions 95 to 385 of the base sequence set forth in SEQ ID NO: 11 (12) Position 49 of the base sequence set forth in SEQ ID NO: 12 (13) Base sequence set forth in SEQ ID NO: 13 Position 31, 116, 335, or 421 of (14) SEQ ID NO: 127 of the base sequence described in 14 (15) 78, 154, 173, 187, 217, 320, 433 of the base sequence described in SEQ ID NO: 15 (16) SEQ ID NO: 16 111 of the base sequence described in (17) 71 or 192 of the base sequence described in SEQ ID NO: 17 (18) 80 to 82 of the base sequence described in SEQ ID NO: 18 (19) SEQ ID NO: 19 285 or 300 to 301 of the base sequence described in (20) 55th, 65th, 75th, or 150th position of the base sequence described in SEQ ID NO: 20 (21) The base sequence described in SEQ ID NO: 21 (22) 75th position of the base sequence described in SEQ ID NO: 22 (23) 217th position of the base sequence described in SEQ ID NO: 23 (24) 91 of the base sequence described in SEQ ID NO: 24 Rank (25) Column number: 136 of the nucleotide sequence of 25
 本発明の好ましい態様としては、上記多型マーカーにおける多型部位を評価(例えば、多型部位における塩基種(DNA配列)を決定)することにより、ブタの椎骨数増大型遺伝形質の有無を判定する方法である。 In a preferred embodiment of the present invention, the presence or absence of an inherited trait with increased vertebral number in pigs is determined by evaluating a polymorphic site in the polymorphic marker (for example, determining a base type (DNA sequence) in the polymorphic site). It is a method to do.
 より具体的には、本発明の判定方法は、ブタゲノム中に存在する上記(1)~(25)のいずれかに記載の一もしくは複数の多型マーカーを用いて、上記のそれぞれの多型マーカーにおける塩基種(DNA配列)が記載された下記の判定表に基づき、ブタの椎骨数増大型遺伝形質の有無を判定する方法である。 More specifically, the determination method of the present invention uses each of the polymorphic markers described above using one or a plurality of polymorphic markers described in any one of (1) to (25) present in the porcine genome. Is a method for determining the presence or absence of an inherited trait with increased vertebral number of pigs based on the following determination table in which the base species (DNA sequence) is described.
〔表1〕
Figure JPOXMLDOC01-appb-I000006
[Table 1]
Figure JPOXMLDOC01-appb-I000006
 上記表1において、delとは欠失変異(deletion)、insとは挿入変異(insertion)を表す。 In Table 1 above, “del” represents a deletion mutation and “ins” represents an insertion mutation.
 本発明の方法においては、通常、多くの多型マーカーを用いるほど判定精度が向上する。従って、本発明の方法は、必ずしも必須ではないが、複数の多型マーカーを用いてもよい。本発明の方法において用いる多型マーカーは、通常、1もしくは少数(例えば1~9程度)である。本発明の方法の一つの態様としては、上記多型マーカーを組み合わせて用いる方法であり、即ち、上記(1)~(25)に記載された複数の多型マーカーからなる群より選択される1もしくは複数の多型マーカーを用いることを特徴とする方法もまた本発明に含まれる。 In the method of the present invention, the accuracy of determination usually increases as more polymorphic markers are used. Therefore, the method of the present invention is not necessarily essential, but a plurality of polymorphic markers may be used. The polymorphic marker used in the method of the present invention is usually one or a small number (for example, about 1 to 9). One embodiment of the method of the present invention is a method using the polymorphic marker in combination, that is, one selected from the group consisting of a plurality of polymorphic markers described in (1) to (25) above. Alternatively, a method characterized by using a plurality of polymorphic markers is also included in the present invention.
 本発明の判定方法の好ましい態様としては、上記(1)~(25)の多型マーカーにおける多型部位の変異を検出することを特徴とする方法である。
 本発明において変異を検出する部位は、好ましくは、上記(1)~(25)のいずれかに記載の多型マーカーにおける多型部位である。
A preferred embodiment of the determination method of the present invention is a method characterized by detecting a mutation at a polymorphic site in the polymorphic markers (1) to (25).
In the present invention, the site for detecting a mutation is preferably a polymorphic site in the polymorphic marker described in any of (1) to (25) above.
 本発明において変異とは、例えば、上記(1)~(25)の多型マーカーにおける多型部位において、椎骨数増大型(Q)への変異である。
 具体的には、被検ブタにおいて、上記(1)~(25)の多型マーカーにける多型部位が、上記判定表に記載の「増大型Q」である場合に、被検ブタは椎骨数増大型遺伝形質を有すると判定される。
 また、本発明の方法は、被検ブタについて上記(1)~(25)の多型マーカーにおける多型部位が、上記判定表に記載の「増大型Q」でない場合、あるいは、「野生型wt」である場合に被検ブタは椎骨数増大型遺伝形質を有さないと判定される。
In the present invention, the mutation is, for example, a mutation to the increased vertebral number type (Q) at the polymorphic site in the polymorphic markers (1) to (25).
Specifically, in the test pig, when the polymorphic site in the polymorphic markers (1) to (25) is “increased Q” described in the determination table, the test pig is vertebral bone. It is determined to have a number-increasing genetic trait.
In the method of the present invention, when the polymorphic site in the polymorphic markers (1) to (25) is not “increased Q” described in the determination table, ”, It is determined that the test pig does not have an increased vertebral number inheritance.
 即ち、本発明の方法の好ましい態様としては、ブタの椎骨数増大型遺伝子形質の有無の判定方法であって、ブタゲノム中に存在する上記(1)~(25)のいずれかに記載の一もしくは複数の多型マーカーを用いて、当該多型マーカーにおける塩基種(DNA配列)が上記判定表の「増大型Q」でない場合、あるいは「野生型wt」である場合に、被検ブタは椎骨数増大型遺伝子形質を有さないと判定する方法である。 That is, as a preferred embodiment of the method of the present invention, there is provided a method for determining the presence or absence of a porcine vertebral number-increasing genetic trait, which is one or more of the above (1) to (25) present in the porcine genome. Using a plurality of polymorphic markers, if the base type (DNA sequence) in the polymorphic marker is not “increased Q” in the above determination table, or “wild type wt”, the test pig has the number of vertebrae This is a method for determining that there is no increased genetic trait.
 また、本発明の好ましい態様としては、ブタの第7染色体上の、以下の(a)~(d)のいずれかに記載のマイクロサテライト配列を検出することを特徴とする、ブタの椎骨数増大型遺伝形質の有無の判定方法に関する。
(a)配列番号:26に記載の塩基配列において、180~195位または196~216位のマイクロサテライト配列
(b)配列番号:27に記載の塩基配列において、311~323位、380~388位、389~396位、または400~406位のマイクロサテライト配列
(c)配列番号:28に記載の塩基配列において、393~413位のマイクロサテライト配列
(d)配列番号:29に記載の塩基配列において、96~107位または309~325位のマイクロサテライト配列
In a preferred embodiment of the present invention, the number of vertebrae in pigs is increased by detecting the microsatellite sequence described in any of (a) to (d) below on the seventh chromosome of pigs: The present invention relates to a method for determining the presence or absence of type inheritance.
(a) a microsatellite sequence at positions 180 to 195 or 196 to 216 in the base sequence set forth in SEQ ID NO: 26
(b) a microsatellite sequence at positions 311 to 323, 380 to 388, 389 to 396, or 400 to 406 in the nucleotide sequence set forth in SEQ ID NO: 27
(c) a microsatellite sequence at positions 393 to 413 in the nucleotide sequence set forth in SEQ ID NO: 28
(d) a microsatellite sequence at positions 96 to 107 or 309 to 325 in the nucleotide sequence set forth in SEQ ID NO: 29
 この方法においては、被検ブタの染色体において、上記(a)~(d)のいずれかのマイクロサテライト配列が検出された場合に、被検ブタは椎骨数増大型遺伝形質を有すると判定される。一方、上記マイクロサテライト配列が検出されない場合に、被検ブタは椎骨数増大型遺伝形質を有さないと判定される。
 上記マイクロサテライト配列の詳細を、後述の表6-1~6-2に記載する。
In this method, when any one of the microsatellite sequences (a) to (d) above is detected in the chromosome of the test pig, the test pig is determined to have an increased vertebral number inheritance trait. . On the other hand, if the microsatellite sequence is not detected, it is determined that the test pig does not have an increased vertebral number inheritance.
Details of the microsatellite arrangement are described in Tables 6-1 and 6-2 below.
 また、後述の実施例において、ブタのVertnin遺伝子の発現が、椎骨数の増大する原因であることが示された。従って、本発明はブタの第7染色体上に存在するVertnin遺伝子の発現量を指標とすることを特徴とする、ブタの椎骨数増大型遺伝形質の有無の判定方法を提供する。ここで遺伝子の発現には、転写および翻訳が含まれる。 Also, in the examples described later, it was shown that the expression of porcine Vertnin gene is responsible for the increase in the number of vertebrae. Accordingly, the present invention provides a method for determining the presence or absence of an inherited trait with increased vertebral number in pigs, characterized by using the expression level of the Vertnin gene present on the seventh chromosome of pigs as an index. Here, gene expression includes transcription and translation.
 遺伝子の発現量の検出は、通常、Vertnin遺伝子から転写されたRNAの量を対照と比較することで行われる。このような方法としては、Vertnin遺伝子をコードするポリヌクレオチドにハイブリダイズするプローブを用いたノーザンブロッティング法、またはVertnin遺伝子(ポリヌクレオチド)にハイブリダイズするプライマーを用いたRT-PCR法等を例示することができる。また、Vertnin遺伝子の発現量の検出においては、DNAアレイ(新遺伝子工学ハンドブック、村松正實・山本雅、羊土社、p280-284)を利用することもできる。 The detection of the gene expression level is usually performed by comparing the amount of RNA transcribed from the Vertnin gene with a control. Examples of such methods include Northern blotting using a probe that hybridizes to a polynucleotide encoding the Vertnin gene, or RT-PCR using a primer that hybridizes to the Vertnin gene (polynucleotide). Can do. In addition, a DNA array (new genetic engineering handbook, Masaaki Muramatsu, Masaru Yamamoto, Yodosha, p280-284) can be used for detection of the expression level of the Vertnin gene.
 さらに、Vertnin遺伝子の発現量を、翻訳レベルを評価することによって検出することも可能である。当該検出においては、Vertnin遺伝子から転写・翻訳されたポリペプチドの量を対照と比較することで行われる。このような方法としては、SDSポリアクリルアミド電気泳動法、並びにVertnin(ポリペプチド)に結合する抗体を用いた、ウェスタンブロッティング法、ドットブロッティング法、免疫沈降法、酵素結合免疫測定法(ELISA)、および免疫蛍光法を例示することができる。 Furthermore, it is also possible to detect the expression level of the Vertnin gene by evaluating the translation level. The detection is performed by comparing the amount of the polypeptide transcribed and translated from the Vertnin gene with a control. Such methods include SDS polyacrylamide electrophoresis and Western blotting, dot blotting, immunoprecipitation, enzyme linked immunoassay (ELISA), and antibodies that bind to Vertnin (polypeptide), and An immunofluorescence method can be exemplified.
 上記の方法において、対照(野生型)と比較して、Vertnin遺伝子由来のRNAまたはポリペプチドの発現量が上昇していた場合、該遺伝子が由来する個体(被検ブタ)は、椎骨数増大型遺伝形質を有すると判定される。 In the above method, when the expression level of the RNA or polypeptide derived from the Vertnin gene is increased as compared to the control (wild type), the individual (test pig) from which the gene is derived has an increased number of vertebrae. Determined to have genetic traits.
 本発明の判定方法において、変異を検出する(多型マーカーにおける多型部位の塩基種(DNA配列)を評価する)方法は、公知の種々の方法を利用することが可能である。即ち、変異を検出可能な方法であれば任意の方法を本発明の判定方法において用いることができる。 In the determination method of the present invention, various known methods can be used as a method for detecting a mutation (evaluating the base type (DNA sequence) of a polymorphic site in a polymorphic marker). That is, any method can be used in the determination method of the present invention as long as it can detect a mutation.
 以下に本発明の多型マーカーにおける多型部位の変異の検出が可能な方法を例示するが、必ずしもこれらの方法に限定されない。当業者であれば、変異の種類や位置等を考慮して、適宜当該変異を検出することが可能である。 Examples of methods capable of detecting a mutation at a polymorphic site in the polymorphic marker of the present invention are illustrated below, but are not necessarily limited to these methods. A person skilled in the art can appropriately detect the mutation in consideration of the type and position of the mutation.
 まず、本発明の多型マーカーにおける多型変異(塩基種)を直接決定する方法が挙げられる。即ち、多型部位を含む塩基配列を直接決定することを特徴とする、以下の工程を含む方法が挙げられる。
(a)被検ブタからDNAを調製する工程
(b)本発明の多型マーカーを含むDNA領域を増幅する工程
(c)増幅したDNAの塩基配列を決定する工程
First, a method of directly determining a polymorphic mutation (base species) in the polymorphic marker of the present invention can be mentioned. That is, a method including the following steps, characterized in that a base sequence including a polymorphic site is directly determined.
(A) a step of preparing DNA from a test pig (b) a step of amplifying a DNA region containing the polymorphic marker of the present invention (c) a step of determining the base sequence of the amplified DNA
 この方法においてはまず、被検ブタからDNA試料を調製する。DNA試料は、例えば被検ブタの臓器、または組織、あるいは細胞や血液、口腔粘膜、皮膚、毛等から抽出した染色体DNAを基に調製することができる。 In this method, first, a DNA sample is prepared from a test pig. The DNA sample can be prepared based on chromosomal DNA extracted from, for example, an organ or tissue of a test pig, cells, blood, oral mucosa, skin, hair, or the like.
 本方法においては、次いで、本発明の多型マーカーを含むDNA領域を単離する。該DNAの単離は、本発明の多型マーカーを含むDNAにハイブリダイズするプライマーを用いて、染色体DNAを鋳型としたPCR等によって行うことも可能である。本方法においては、次いで、単離したDNAの塩基配列(多型部位の塩基種)を決定する。単離したDNAの塩基配列の決定は、当業者に公知の方法で行うことができる。 In this method, a DNA region containing the polymorphic marker of the present invention is then isolated. The DNA can also be isolated by PCR or the like using a primer that hybridizes to DNA containing the polymorphic marker of the present invention and using chromosomal DNA as a template. In this method, the base sequence of the isolated DNA (base type of polymorphic site) is then determined. The base sequence of the isolated DNA can be determined by a method known to those skilled in the art.
 本方法においては、次いで、決定したDNAの塩基配列(多型部位の塩基種)を、上記判定表に基づいて、ブタの椎骨数増大型遺伝形質の有無の判定を行う。 In this method, the presence or absence of porcine vertebral number-increasing genetic traits is then determined based on the determined DNA base sequence (base type of the polymorphic site) based on the determination table.
 本発明の判定方法は、上述のように直接被検ブタ由来のDNAの塩基配列を決定する方法以外に、上記多型変異の検出が可能な種々の方法によって行うことができる。 The determination method of the present invention can be performed by various methods capable of detecting the polymorphic mutation other than the method for directly determining the base sequence of DNA derived from the test pig as described above.
 例えば、本発明における上記多型変異の検出は、以下の工程を含む方法によっても行うことができる。
(a)被検ブタからDNAを調製する工程
(b)本発明の多型マーカーを含むDNA領域を増幅する工程
(c)増幅したDNAを制限酵素により切断する工程
(d)DNA断片をその大きさに応じて分離する工程
(e)検出されたDNA断片の大きさを対照と比較する工程
For example, the detection of the polymorphic mutation in the present invention can also be performed by a method including the following steps.
(A) Step of preparing DNA from test pig (b) Step of amplifying DNA region containing polymorphic marker of the present invention (c) Step of cleaving amplified DNA with restriction enzyme (d) Size of DNA fragment (E) a step of comparing the size of the detected DNA fragment with a control
 まず、被検ブタからDNA試料を調製する。次いで、本発明の多型マーカーを含むDNAを増幅する。さらに、増幅したDNAを制限酵素により切断する。次いで、DNA断片をその大きさに応じて分離する。次いで、検出されたDNA断片の大きさを、対照と比較する。 First, a DNA sample is prepared from the test pig. Next, DNA containing the polymorphic marker of the present invention is amplified. Furthermore, the amplified DNA is cleaved with a restriction enzyme. The DNA fragments are then separated according to their size. The size of the detected DNA fragment is then compared to a control.
 このような方法としては、例えば、制限酵素断片長多型(Restriction Fragment Length Polymorphism/RFLP)を利用した方法やPCR-RFLP法等が挙げられる。具体的には、制限酵素の認識部位に変異が存在する場合、制限酵素処理後に生じる断片の大きさが対照と比較して変化する。この変異を含む部分をPCR法によって増幅し、それぞれの制限酵素で処理することによって、これらの変異を電気泳動後のバンドの移動度の差として検出することができる。あるいは、染色体DNAをこれらの制限酵素によって処理し、電気泳動した後、本発明のプローブDNAを用いてサザンブロッティングを行うことにより、変異の有無を検出することができる。用いられる制限酵素は、それぞれの変異に応じて適宜選択することができる。さらに、ゲノムDNAを蛍光ラベルしたプライマーを用いてPCR増幅し、制限酵素切断の後、シークエンサー等のディテクターで変異を検出することも可能である。 Examples of such methods include a method using restriction enzyme fragment length polymorphism (Restriction Fragment Length Polymorphism / RFLP) and a PCR-RFLP method. Specifically, when a mutation is present in the recognition site of a restriction enzyme, the size of the fragment generated after the restriction enzyme treatment changes compared to the control. By amplifying a portion containing this mutation by PCR and treating with each restriction enzyme, these mutations can be detected as a difference in mobility of bands after electrophoresis. Alternatively, the presence or absence of mutation can be detected by treating chromosomal DNA with these restriction enzymes, performing electrophoresis, and performing Southern blotting using the probe DNA of the present invention. The restriction enzyme used can be appropriately selected according to each mutation. Furthermore, it is also possible to amplify the genomic DNA by PCR using a fluorescently labeled primer, cleave the restriction enzyme, and then detect the mutation with a detector such as a sequencer.
 なお、上記方法において使用する制限酵素は、通常、本発明の多型マーカーを含むDNA配列を認識する酵素である。
 制限酵素を利用した上記方法の好ましい態様としては、例えば、後述の表8-1~8-7に記載されたフォワードプライマーおよびリバースプライマーを用いて増幅されるDNA断片を、制限酵素で処理することによって行うPCR-RFLP法が挙げられる。
The restriction enzyme used in the above method is usually an enzyme that recognizes a DNA sequence containing the polymorphic marker of the present invention.
As a preferred embodiment of the above method using a restriction enzyme, for example, a DNA fragment amplified using a forward primer and a reverse primer described in Tables 8-1 to 8-7 described later is treated with a restriction enzyme. The PCR-RFLP method carried out by
 当業者であれば、上記多型マーカーの多型部位および当該部位の塩基種等の情報を基に、本発明の判定方法において使用可能な適切なプライマーおよび制限酵素を、適宜選択することが可能である。 A person skilled in the art can appropriately select appropriate primers and restriction enzymes that can be used in the determination method of the present invention based on information such as the polymorphic site of the polymorphic marker and the base type of the site. It is.
 本発明の方法の好ましい態様としては、ブタゲノム中に存在する上記(1)~(25)のいずれかに記載の多型マーカーを含むDNA領域を増幅し、その増幅産物の多型を検出する工程を含む方法である。 In a preferred embodiment of the method of the present invention, the step of amplifying a DNA region containing the polymorphic marker according to any one of (1) to (25) present in the porcine genome and detecting the polymorphism of the amplified product It is a method including.
 上記方法における多型の検出は、好ましくは、増幅産物を制限酵素で処理することによって行う。使用する制限酵素は、対象の多型マーカーの塩基種および周辺DNA領域の塩基配列に関する情報に基づいて、当業者であれば適宜選択することができる。 The detection of polymorphism in the above method is preferably performed by treating the amplified product with a restriction enzyme. The restriction enzyme to be used can be appropriately selected by those skilled in the art based on information on the base type of the target polymorphic marker and the base sequence of the surrounding DNA region.
 さらに別の方法としては、以下の工程を含む方法が挙げられる。
(a)被検ブタからDNAを調製する工程
(b)本発明の多型マーカーを含むDNA領域を増幅する工程
(c)増幅したDNAを一本鎖に解離させる工程
(d)解離させた一本鎖DNAを非変性ゲル上で分離する工程
(e)分離した一本鎖DNAのゲル上での移動度を対照と比較する工程
Still another method includes a method including the following steps.
(A) a step of preparing DNA from a test pig (b) a step of amplifying a DNA region containing the polymorphic marker of the present invention (c) a step of dissociating the amplified DNA into single strands (d) a dissociated one Step of separating single-stranded DNA on non-denaturing gel (e) Step of comparing the mobility of the separated single-stranded DNA on the gel with the control
 まず、被検ブタからDNA試料を調製する。次いで、本発明の多型マーカーを含むDNA領域を増幅する。さらに、増幅したDNAを一本鎖DNAに解離させる。次いで、解離させた一本鎖DNAを非変性ゲル上で分離する。分離した一本鎖DNAのゲル上での移動度を対照と比較する。 First, a DNA sample is prepared from the test pig. Next, a DNA region containing the polymorphic marker of the present invention is amplified. Furthermore, the amplified DNA is dissociated into single-stranded DNA. The dissociated single-stranded DNA is then separated on a non-denaturing gel. The mobility of the separated single-stranded DNA on the gel is compared with the control.
 該方法としては、例えばPCR-SSCP(single-strand conformation polymorphism、一本鎖高次構造多型)法(Cloning and polymerase chain reaction-single-strand conformation polymorphism analysis of anonymous Alu repeats on chromosome 11. Genomics. 1992 Jan 1; 12(1): 139-146.、Detection of p53 gene mutations in human brain tumors by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene. 1991 Aug 1; 6(8): 1313-1318.、Multiple fluorescence-based PCR-SSCP analysis with postlabeling. 、PCR Methods Appl. 1995 Apr 1; 4(5): 275-282.)が挙げられる。この方法は操作が比較的簡便であり、また被検試料の量も少なくて済む等の利点を有するため、特に多数のDNA試料をスクリーニングするのに好適である。その原理は次の通りである。二本鎖DNA断片を一本鎖に解離すると、各鎖はその塩基配列に依存した独自の高次構造を形成する。この解離したDNA鎖を、変性剤を含まないポリアクリルアミドゲル中で電気泳動すると、それぞれの高次構造の差に応じて、相補的な同じ鎖長の一本鎖DNAが異なる位置に移動する。一塩基の置換によってもこの一本鎖DNAの高次構造は変化し、ポリアクリルアミドゲル電気泳動において異なる移動度を示す。従って、この移動度の変化を検出することによりDNA断片に欠損等による変異が存在することを検出することができる。 Examples of the method include PCR-SSCP (single-strand conformation polymorphism) method (Cloning and polymerase chain reaction-single-strand conformation polymorphism analysis of anonymous Alu repeats on chromosome 11. Genomics. 1992 Jan 1; 12 (1): 139-146., Detection of p53 gene mutations in human brain tumors by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene. 1991 Aug 1; 6 (8): 1313-1318. , Multiple fluorescence-based PCR-SSCP analysis with postlabeling. PCR, Methods Appl. 1995 Apr 1; 4 (5): 275-282.). This method is suitable for screening a large number of DNA samples in particular because it is relatively easy to operate and has advantages such as a small amount of test sample. The principle is as follows. When a double-stranded DNA fragment is dissociated into single strands, each strand forms a unique higher-order structure depending on its base sequence. When this dissociated DNA strand is electrophoresed in a polyacrylamide gel containing no denaturing agent, single-stranded DNA having the same complementary strand length moves to a different position according to the difference in each higher-order structure. The higher-order structure of this single-stranded DNA also changes by substitution of a single base, and shows different mobility in polyacrylamide gel electrophoresis. Therefore, by detecting this change in mobility, it is possible to detect the presence of mutation due to deletion or the like in the DNA fragment.
 具体的には、まず、本発明の多型マーカーを含むDNA領域を増幅する。増幅される範囲としては、通常200~400 bp程度の長さが好ましい。PCRは、当業者においては反応条件等を適宜選択して行うことができる。PCRの際に、32P等のアイソトープ、蛍光色素、またはビオチン等によって標識したプライマーを用いることにより、増幅DNA産物を標識することができる。あるいはPCR反応液に32P等のアイソトープ、蛍光色素、またはビオチン等によって標識された基質塩基を加えてPCRを行うことにより、増幅DNA産物を標識することも可能である。さらに、PCR反応後にクレノウ酵素等を用いて、32P等のアイソトープ、蛍光色素、またはビオチン等によって標識された基質塩基を、増幅DNA断片に付加することによっても標識を行うことができる。こうして得られた標識DNA断片を、熱を加えること等により変性させ、尿素などの変性剤を含まないポリアクリルアミドゲルによって電気泳動を行う。この際、ポリアクリルアミドゲルに適量(5から10%程度)のグリセロールを添加することにより、DNA断片の分離の条件を改善することができる。また、泳動条件は各DNA断片の性質により変動するが、通常、室温(20から25℃)で行い、好ましい分離が得られないときには4から30℃までの温度で最適の移動度を与える温度の検討を行う。電気泳動後、DNA断片の移動度を、X線フィルムを用いたオートラジオグラフィーや、蛍光を検出するスキャナー等で検出し、解析を行う。移動度に差があるバンドが検出された場合、このバンドを直接ゲルから切り出し、PCRによって再度増幅し、それを直接シークエンシングすることにより、変異の存在を確認することができる。また、標識したDNAを使わない場合においても、電気泳動後のゲルをエチジウムブロマイドや銀染色法などによって染色することによって、バンドを検出することができる。 Specifically, first, a DNA region containing the polymorphic marker of the present invention is amplified. The amplification range is usually preferably about 200 to 400 bp. Those skilled in the art can perform PCR by appropriately selecting reaction conditions and the like. During PCR, the amplified DNA product can be labeled by using a primer labeled with an isotope such as 32 P, a fluorescent dye, or biotin. Alternatively, the amplified DNA product can be labeled by performing PCR by adding a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin to the PCR reaction solution. Furthermore, labeling can also be performed by adding a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin to the amplified DNA fragment using Klenow enzyme or the like after the PCR reaction. The labeled DNA fragment thus obtained is denatured by applying heat or the like and electrophoresed on a polyacrylamide gel containing no denaturing agent such as urea. At this time, conditions for separating DNA fragments can be improved by adding an appropriate amount (about 5 to 10%) of glycerol to the polyacrylamide gel. Electrophoretic conditions vary depending on the nature of each DNA fragment, but are usually performed at room temperature (20 to 25 ° C). If favorable separation cannot be obtained, the temperature at which the optimal mobility is obtained at temperatures from 4 to 30 ° C. Review. After electrophoresis, the mobility of the DNA fragments is detected and analyzed by autoradiography using an X-ray film, a scanner that detects fluorescence, or the like. When a band with a difference in mobility is detected, this band can be directly excised from the gel, amplified again by PCR, and directly sequenced to confirm the presence of the mutation. Even when the labeled DNA is not used, the band can be detected by staining the gel after electrophoresis with ethidium bromide or silver staining.
 さらに別の方法としては、以下の工程を含む方法が挙げられる。
(a)被検ブタからDNAを調製する工程
(b)本発明の多型マーカーを含むDNA領域を増幅する工程
(c)ヌクレオチドプローブが固定された基板を提供する工程
(d)工程(b)のDNAと工程(c)の基板を接触させる工程
(e)該DNAと該基板に固定されたヌクレオチドプローブとのハイブリダイズの強度を検出する工程
(f)工程(e)で検出された強度を対照と比較する工程
Still another method includes a method including the following steps.
(A) Step of preparing DNA from test pig (b) Step of amplifying a DNA region containing the polymorphic marker of the present invention (c) Step of providing a substrate on which a nucleotide probe is immobilized (d) Step (b) (E) contacting the DNA of step (c) with the substrate in step (c) (e) detecting the strength of hybridization between the DNA and the nucleotide probe immobilized on the substrate (f) detecting the intensity detected in step (e) Process to compare with control
 まず、被検ブタから調製した本発明の多型マーカーを含むDNA、および該DNAとハイブリダイズするヌクレオチドプローブが固定された基板、を提供する。次いで、該DNAと該基板を接触させる。さらに、基板に固定されたヌクレオチドプローブにハイブリダイズしたDNAを検出することにより、上記「変異」を検出する。 First, a DNA containing a polymorphic marker of the present invention prepared from a test pig and a substrate on which a nucleotide probe that hybridizes with the DNA is immobilized are provided. Next, the DNA is brought into contact with the substrate. Furthermore, the “mutation” is detected by detecting DNA hybridized to the nucleotide probe immobilized on the substrate.
 このような方法としては、DNAアレイ法が例示できる。本発明の多型マーカーを含むDNA試料の調製は、当業者に周知の方法で行うことができる。該DNA試料の調製の好ましい態様においては、例えば被検ブタの血液、皮膚、口腔粘膜等の組織または細胞から抽出した染色体DNAを基に調製することができる。染色体DNAから本方法のDNA試料を調製するには、例えば、本発明の多型マーカーを含むDNA領域にハイブリダイズするプライマーを用いて、染色体DNAを鋳型としたPCR等によって、本発明の多型マーカーを含むDNAを調製することも可能である。調製したDNA試料には、必要に応じて、当業者に周知の方法によって検出のための標識を施すことができる。 An example of such a method is a DNA array method. A DNA sample containing the polymorphic marker of the present invention can be prepared by a method well known to those skilled in the art. In a preferred embodiment of the preparation of the DNA sample, for example, it can be prepared based on chromosomal DNA extracted from tissues or cells of blood, skin, oral mucosa and the like of a test pig. In order to prepare a DNA sample of the present method from chromosomal DNA, for example, using a primer that hybridizes to a DNA region containing the polymorphic marker of the present invention, PCR using chromosomal DNA as a template, etc. It is also possible to prepare DNA containing a marker. The prepared DNA sample can be labeled for detection by a method well known to those skilled in the art, if necessary.
 本発明において「基板」とは、ヌクレオチドを固定することが可能な板状の材料を意味する。本発明においてヌクレオチドには、オリゴヌクレオチドおよびポリヌクレオチドが含まれる。本発明の基板は、ヌクレオチドを固定することが可能であれば特に制限はないが、一般にDNAアレイ技術で使用される基板を好適に用いることができる。 In the present invention, the “substrate” means a plate-like material capable of fixing nucleotides. In the present invention, the nucleotide includes oligonucleotides and polynucleotides. The substrate of the present invention is not particularly limited as long as nucleotides can be immobilized, but a substrate generally used in DNA array technology can be preferably used.
 一般にDNAアレイは、高密度に基板にプリントされた何千ものヌクレオチドで構成されている。通常これらのDNAは非透過性(non-porous)の基板の表層にプリントされる。基板の表層は、一般的にはガラスであるが、透過性(porous)の膜、例えばニトロセルロースメンブレムを使用することができる。 Generally, a DNA array is composed of thousands of nucleotides printed on a substrate at high density. Usually these DNAs are printed on the surface of a non-porous substrate. The surface layer of the substrate is generally glass, but a porous membrane such as a nitrocellulose membrane can be used.
 本発明において、ヌクレオチドの固定(アレイ)方法として、Affymetrix社開発によるオリゴヌクレオチドを基本としたアレイが例示できる。オリゴヌクレオチドのアレイにおいて、オリゴヌクレオチドは通常インサイチュ(in situ)で合成される。例えば、photolithographicの技術(Affymetrix社)、および化学物質を固定させるためのインクジェット(Rosetta Inpharmatics社)技術等によるオリゴヌクレオチドのインサイチュ合成法が既に知られており、いずれの技術も本発明の基板の作製に利用することができる。 In the present invention, examples of the nucleotide immobilization (array) method include an oligonucleotide-based array developed by Affymetrix. In an array of oligonucleotides, the oligonucleotides are usually synthesized in situ. For example, in-situ synthesis methods of oligonucleotides using photolithographic technology (Affymetrix) and ink-jet (RosettapharmaInpharmatics) technology for immobilizing chemical substances are already known. Can be used.
 基板に固定するヌクレオチドプローブは、上記「変異」を検出することができるものであれば、特に制限されない。即ち該プローブは、例えば、本発明の多型マーカーを含むDNAと特異的にハイブリダイズするようなプローブである。特異的なハイブリダイズが可能であれば、ヌクレオチドプローブは、検出する多型マーカーを含むDNAに対し、完全に相補的である必要はない。 The nucleotide probe immobilized on the substrate is not particularly limited as long as it can detect the “mutation”. That is, the probe is, for example, a probe that specifically hybridizes with DNA containing the polymorphic marker of the present invention. If specific hybridization is possible, the nucleotide probe need not be completely complementary to the DNA containing the polymorphic marker to be detected.
 本発明において基板に結合させるヌクレオチドプローブの長さは、オリゴヌクレオチドを固定する場合は、通常10~100ベースであり、好ましくは10~50ベースであり、さらに好ましくは15~25ベースである。 In the present invention, the length of the nucleotide probe to be bound to the substrate is usually 10 to 100 bases, preferably 10 to 50 bases, more preferably 15 to 25 bases when oligonucleotides are immobilized.
 本発明においては、次いで、該DNA試料と該基板を接触させる。本工程により、上記ヌクレオチドプローブに対し、DNA試料をハイブリダイズさせる。ハイブリダイゼーションの反応液および反応条件は、基板に固定するヌクレオチドプローブの長さ等の諸要因により変動しうるが、一般的に当業者に周知の方法により行うことができる。 In the present invention, the DNA sample is then brought into contact with the substrate. By this step, the DNA sample is hybridized to the nucleotide probe. The hybridization reaction solution and reaction conditions may vary depending on various factors such as the length of the nucleotide probe immobilized on the substrate, but can generally be performed by methods well known to those skilled in the art.
 本発明においては、次いで、該DNA試料と基板に固定されたヌクレオチドプローブとのハイブリダイズの有無または強度を検出する。この検出は、例えば、蛍光シグナルをスキャナー等によって読み取ることによって行うことができる。なお、DNAアレイにおいては、一般的にスライドガラスに固定したDNAをプローブといい、一方溶液中のラベルしたDNAをターゲットという。従って、基板に固定された上記ヌクレオチドを、本明細書においてヌクレオチドプローブと記載する。 In the present invention, the presence / absence or intensity of hybridization between the DNA sample and the nucleotide probe immobilized on the substrate is then detected. This detection can be performed, for example, by reading the fluorescence signal with a scanner or the like. In a DNA array, DNA fixed on a slide glass is generally called a probe, while labeled DNA in a solution is called a target. Therefore, the nucleotide immobilized on the substrate is referred to as a nucleotide probe in this specification.
 さらに別の方法としては、以下の工程を含む方法が挙げられる。
(a)被検ブタからDNAを調製する工程
(b)本発明の多型マーカーを含むDNA領域にハイブリダイズするヌクレオチドとハイブリダイゼーションさせる工程
(c)ハイブリッド形成の程度を検出する工程
(d)工程(c)で検出された程度を対照と比較する工程
Still another method includes a method including the following steps.
(A) Step of preparing DNA from test pig (b) Step of hybridizing with nucleotide hybridizing to DNA region containing polymorphic marker of the present invention (c) Step of detecting degree of hybridization (d) Step Comparing the degree detected in (c) with a control
 まず、被検ブタから調製した本発明の多型マーカーを含むDNA、および該DNAとハイブリダイズするヌクレオチドを用意する。次いで、該DNAとヌクレオチドとをハイブリダイゼーションさせる。さらに、ハイブリッド形成の程度を検出し、対照と比較することにより、上記変異を検出する。 First, a DNA containing a polymorphic marker of the present invention prepared from a test pig and a nucleotide that hybridizes with the DNA are prepared. Next, the DNA and nucleotide are hybridized. Further, the mutation is detected by detecting the degree of hybridization and comparing to the control.
 具体的には、特定位置の欠損のみを検出する目的にはアレル特異的オリゴヌクレオチド(Allele Specific Oligonucleotide/ASO)ハイブリダイゼーション法が利用できる。多型変異が存在すると考えられる塩基配列を含むオリゴヌクレオチドを作製し、これと試料DNAでハイブリダイゼーションを行わせると、変異が存在する場合、ハイブリッド形成の効率が低下する。それをサザンブロット法や、特殊な蛍光試薬がハイブリッドのギャップにインターカレーションすることにより消光する性質を利用した方法、等により検出することができる。 Specifically, for the purpose of detecting only a defect at a specific position, an allele-specific oligonucleotide (Aligonucleotide / ASO) hybridization method can be used. When an oligonucleotide containing a base sequence that is considered to have a polymorphic mutation is prepared and hybridized with the sample DNA, the efficiency of hybridization is reduced when the mutation is present. It can be detected by Southern blotting, a method using the property of quenching by intercalating a special fluorescent reagent into the hybrid gap, or the like.
 またInvader法による検出も可能である。具体的には、本発明の多型マーカーにおける多型部位にハイブリダイズする2種類のオリゴヌクレオチド(アレルオリゴ及びInvaderオリゴ)を用意する。該部位においてInvaderオリゴがアレルオリゴの下に1塩基のみ侵入する。侵入構造を認識する部分を酵素反応で切断することによりアレルオリゴの断片が放出される。過剰なアレルオリゴにより反応が繰り返され、断片の量が増幅される。変異に対応したオリゴヌクレオチドを用い、断片量を検出することにより、変異を検出することができる。 Also, detection by Invader method is possible. Specifically, two kinds of oligonucleotides (allelic oligo and Invader oligo) that hybridize to the polymorphic site in the polymorphic marker of the present invention are prepared. At this site, the Invader oligo invades only one base below the allele oligo. By cleaving the part that recognizes the invasion structure by an enzymatic reaction, an allele oligo fragment is released. The reaction is repeated with excess allele oligo and the amount of fragments is amplified. Mutation can be detected by detecting the amount of fragments using an oligonucleotide corresponding to the mutation.
 またTaqMan probe法による検出も可能である。具体的には、5’末端を特殊な蛍光物質(FAMなど)で、3’末端をクエンチャー物質(TAMRAなど)で修飾した、本発明の多型マーカーを含むDNAにハイブリダイズするオリゴヌクレオチド(TaqManプローブ)の存在下で、本発明の多型マーカーを含むDNAをPCR法等によって増幅する。PCRの伸長反応ステップのときに、鋳型DNAにハイブリダイズしたTaqManプローブが分解されると、蛍光色素がプローブから遊離し、クエンチャーによる抑制が解除されて蛍光が発せられる。異なる変異ごとに異なる蛍光を発するTaqMan probeを用い、蛍光の量を測定することにより、変異を検出することができる。 Also, detection by the TaqMan probe method is possible. Specifically, an oligonucleotide that hybridizes to a DNA containing the polymorphic marker of the present invention, in which the 5 ′ end is modified with a special fluorescent substance (such as FAM) and the 3 ′ end is modified with a quencher substance (such as TAMRA) ( In the presence of the TaqMan probe), the DNA containing the polymorphic marker of the present invention is amplified by PCR or the like. When the TaqMan probe hybridized to the template DNA is decomposed during the PCR extension reaction step, the fluorescent dye is released from the probe, and the suppression by the quencher is released and fluorescence is emitted. Mutations can be detected by measuring the amount of fluorescence using TaqMan ™ probes that emit different fluorescence for different mutations.
 さらに別の方法としては、以下の工程を含む方法が挙げられる。
(a)被検ブタからDNAを調製する工程
(b)本発明の多型マーカーを含むDNA領域を増幅する工程
(c)工程(b)で増幅したDNAを質量分析器にかけ、分子量を測定する工程
(d)工程(c)で測定した分子量を対照と比較する工程
Still another method includes a method including the following steps.
(A) a step of preparing DNA from a test pig (b) a step of amplifying a DNA region containing the polymorphic marker of the present invention (c) a step of applying the DNA amplified in step (b) to a mass spectrometer and measuring the molecular weight Step (d) Step of comparing the molecular weight measured in step (c) with a control
 まず、被検ブタからDNAを調製し、次いで、本発明の多型マーカーを含むDNA領域を増幅する。次いで、増幅したDNAを質量分析器にかけ、分子量を測定する。次いで、測定した分子量を対照と比較する。このような方法としては、例えば、MALDI-TOF MS法(Trends Biotechnol (2000):18:77-84)等が挙げられる。 First, DNA is prepared from a test pig, and then a DNA region containing the polymorphic marker of the present invention is amplified. The amplified DNA is then subjected to a mass analyzer and the molecular weight is measured. The measured molecular weight is then compared to a control. Examples of such a method include the MALDI-TOF-MS method (Trends Biotechnol (2000): 18: 77-84).
 また、本発明の方法は、PCR-SSP(sequence specific primers)法を用いて実施することが可能である。PCR-SSP法は、特定の配列をもったDNA部位を選択的にPCRによって増幅する方法である。 In addition, the method of the present invention can be carried out using a PCR-SSP (sequence-specific primers) method. The PCR-SSP method is a method in which a DNA site having a specific sequence is selectively amplified by PCR.
 例えば、本発明の多型マーカーにおける「増大型Q」の塩基種(DNA配列)を選択的に増幅し得るプライマーを設定し、PCRを行う。当該PCRの増幅産物の有無により、ブタの椎骨数増大型遺伝形質の有無の判定を行うことが可能である。例えば、当該PCRの増幅産物が検出された場合に、被検ブタは椎骨数増大型遺伝形質を有すると判定される。一方、当該PCRの増幅産物が検出されない場合に、被検ブタは椎骨数増大型遺伝形質を有さないと判定される。
 PCR-SSPを行う場合、プライマーは3'末端側に検出したい配列(本発明の多型マーカー)がくるように設計することが好ましい。
For example, a primer capable of selectively amplifying the “enhanced Q” base species (DNA sequence) in the polymorphic marker of the present invention is set and PCR is performed. Based on the presence or absence of the PCR amplification product, it is possible to determine the presence or absence of an inherited trait with an increased number of vertebrae in pigs. For example, when an amplification product of the PCR is detected, it is determined that the test pig has an increased number of vertebrae. On the other hand, when the PCR amplification product is not detected, it is determined that the test pig does not have an increased vertebral number inheritance.
When PCR-SSP is performed, the primer is preferably designed so that the sequence to be detected (polymorphic marker of the present invention) is located on the 3 ′ end side.
 上記方法の好ましい態様としては、以下の工程を含む方法が挙げられる。
(a)被検ブタからDNAを調製する工程
(b)本発明の多型マーカーが3'末端側に位置するように設計されたPCR-SSP用プライマーを用いて、当該多型マーカーを含むDNA領域をPCRにて増幅する工程
(c)増幅したDNAを検出する工程
A preferred embodiment of the above method includes a method including the following steps.
(A) Step of preparing DNA from test pig (b) DNA containing the polymorphic marker using the PCR-SSP primer designed so that the polymorphic marker of the present invention is located on the 3 ′ end side A step of amplifying the region by PCR (c) A step of detecting the amplified DNA
 また本発明は、ブタ第7染色体上に存在する多型マーカーであって、上記(1)~(25)のいずれかに記載の多型マーカーを提供する。より具体的には、本発明は、下記(1)~(25)のいずれかに記載の遺伝マーカーに関する。
(1)配列番号:1に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、40位の多型部位を含み、かつ該多型部位の塩基種がTであることを特徴とする遺伝マーカー
(2)配列番号:2に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、207位の多型部位を含み、かつ該多型部位の塩基種がCであることを特徴とする遺伝マーカー
(3)配列番号:3に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、68位の多型部位を含み、かつ該多型部位の塩基種がAであることを特徴とする遺伝マーカー
(4)配列番号:4に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、47位または101位の多型部位を含み、かつ該多型部位の塩基種がそれぞれAまたはGであることを特徴とする遺伝マーカー
(5)配列番号:5に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、81位の多型部位を含み、かつ該多型部位の塩基種がTであることを特徴とする遺伝マーカー
(6)配列番号:6に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、355位の多型部位を含み、かつ該多型部位の塩基種がTであることを特徴とする遺伝マーカー
(7)配列番号:7に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、87位の多型部位を含み、かつ該多型部位の塩基種がAであることを特徴とする遺伝マーカー
(8)配列番号:8に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、42位の多型部位を含み、かつ該多型部位の塩基種がGであることを特徴とする遺伝マーカー
(9)配列番号:9に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、152位または185位の多型部位を含み、かつ該多型部位の塩基種がそれぞれCまたはCであることを特徴とする遺伝マーカー
(10)配列番号:10に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、82位の多型部位を含み、かつ該多型部位の塩基種がAであることを特徴とする遺伝マーカー
(11)配列番号:11に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、95~385位の多型部位を含むことを特徴とする遺伝マーカー
(12)配列番号:12に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、49位の多型部位を含み、かつ該多型部位の塩基種がGであることを特徴とする遺伝マーカー
(13)配列番号:13に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、31位、116位、335位、または421位の多型部位を含み、かつ該多型部位の塩基種がそれぞれA、T、C、またはTであることを特徴とする遺伝マーカー
(14)配列番号:14に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、127位の多型部位を含み、かつ該多型部位の塩基種がCであることを特徴とする遺伝マーカー
(15)配列番号:15に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、78位、154位、173位、187位、217位、320位、または433位の多型部位を含み、かつ該多型部位の塩基種がそれぞれ欠失変異(Aの欠失変異)、A、A、G、G、C、またはTであることを特徴とする遺伝マーカー
(16)配列番号:16に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、111位の多型部位を含み、かつ該多型部位の塩基種がAであることを特徴とする遺伝マーカー
(17)配列番号:17に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、71位または192位の多型部位を含み、かつ該多型部位の塩基種がそれぞれTまたはCであることを特徴とする遺伝マーカー
(18)配列番号:18に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、80~82位の多型部位を含み、かつ該多型部位の塩基種がAAAであることを特徴とする遺伝マーカー
(19)配列番号:19に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、285位または300~301位の多型部位を含み、かつ該多型部位の塩基種がそれぞれTまたはGAであることを特徴とする遺伝マーカー
(20)配列番号:20に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、55位、65位、75位、または150位の多型部位を含み、かつ該多型部位の塩基種がそれぞれT、T、G、またはGであることを特徴とする遺伝マーカー
(21)配列番号:21に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、99位または138位の多型部位を含み、かつ該多型部位の塩基種がCまたはGであることを特徴とする遺伝マーカー
(22)配列番号:22に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、75位の多型部位を含み、かつ該多型部位の塩基種がGであることを特徴とする遺伝マーカー
(23)配列番号:23に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、217位の多型部位を含み、かつ該多型部位の塩基種がCであることを特徴とする遺伝マーカー
(24)配列番号:24に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、91位の多型部位を含み、かつ該多型部位が欠失変異(Cの欠失変異)であることを特徴とする遺伝マーカー
(25)配列番号:25に記載の塩基配列の全部もしくは部分配列からなる遺伝マーカーであって、136位の多型部位を含み、かつ該多型部位の塩基種がCであることを特徴とする遺伝マーカー
The present invention also provides a polymorphic marker according to any one of (1) to (25) above, which is a polymorphic marker present on porcine chromosome 7. More specifically, the present invention relates to the genetic marker described in any of (1) to (25) below.
(1) A genetic marker comprising all or a partial sequence of the base sequence set forth in SEQ ID NO: 1, comprising a polymorphic site at position 40, and the base type of the polymorphic site is T Genetic marker (2) is a genetic marker comprising all or a partial sequence of the base sequence set forth in SEQ ID NO: 2, comprising a polymorphic site at position 207, and the base type of the polymorphic site is C (3) A genetic marker comprising all or a partial sequence of the base sequence set forth in SEQ ID NO: 3, comprising a polymorphic site at position 68, wherein the base type of the polymorphic site is A (4) a genetic marker comprising all or a partial sequence of the base sequence set forth in SEQ ID NO: 4, comprising a polymorphic site at position 47 or 101, and the polymorphism The base type of the site is A genetic marker characterized by being A or G (5) A genetic marker comprising the whole or a partial sequence of the base sequence set forth in SEQ ID NO: 5, comprising a polymorphic site at position 81, and the polymorphism (6) a genetic marker comprising all or a partial sequence of the base sequence set forth in SEQ ID NO: 6, comprising a polymorphic site at position 355; Genetic marker (7) characterized in that the base type of the polymorphic site is T, a genetic marker consisting of all or a partial sequence of the base sequence set forth in SEQ ID NO: 7, wherein the polymorphic site at position 87 is A genetic marker comprising all or a partial sequence of the base sequence set forth in SEQ ID NO: 8, wherein the polymorphic site is A and the base type of the polymorphic site is A. Including mold part And a genetic marker (9) comprising the whole or a partial sequence of the base sequence set forth in SEQ ID NO: 9, characterized in that the base type of the polymorphic site is G, which is at position 152 or 185 A genetic marker comprising a polymorphic site, wherein the base type of the polymorphic site is C or C, respectively (10) a genetic marker comprising the entire or partial sequence of the base sequence set forth in SEQ ID NO: 10 A genetic marker comprising the polymorphic site at position 82 and the base type of the polymorphic site is A (11) consisting of all or a partial sequence of the base sequence set forth in SEQ ID NO: 11 A genetic marker comprising a whole or a partial sequence of the base sequence set forth in SEQ ID NO: 12, wherein the genetic marker comprises a polymorphic site at positions 95 to 385 A genetic marker comprising a polymorphic site at position 49 and the base type of the polymorphic site is G (13) consisting of all or a partial sequence of the base sequence set forth in SEQ ID NO: 13 A genetic marker comprising a polymorphic site at position 31, 116, 335, or 421, and the base type of the polymorphic site is A, T, C, or T, respectively Genetic marker (14) A genetic marker comprising the whole or a partial sequence of the base sequence set forth in SEQ ID NO: 14, comprising a polymorphic site at position 127, and the base type of the polymorphic site is C Characteristic genetic marker (15) A genetic marker comprising all or a partial sequence of the base sequence described in SEQ ID NO: 15, which is the 78th, 154th, 173th, 187th, 217th, 320th, or 433 Place A genetic marker comprising a polymorphic site and wherein the base type of the polymorphic site is a deletion mutation (deletion mutation of A), A, A, G, G, C, or T, respectively (16 ) A genetic marker comprising all or a partial sequence of the base sequence set forth in SEQ ID NO: 16, comprising a polymorphic site at position 111, and the base type of the polymorphic site is A Marker (17) A genetic marker comprising the entire or partial sequence of the base sequence set forth in SEQ ID NO: 17, comprising a polymorphic site at position 71 or 192, and the base type of the polymorphic site is T or Genetic marker (18), characterized in that it is a genetic marker consisting of all or a partial sequence of the base sequence set forth in SEQ ID NO: 18, comprising a polymorphic site at positions 80 to 82, and the polymorphism The base type of the site is AA (19) A genetic marker comprising the whole or a partial sequence of the nucleotide sequence set forth in SEQ ID NO: 19, comprising a polymorphic site at position 285 or positions 300 to 301, and Genetic marker (20) characterized in that the base type of the polymorphic site is T or GA, respectively, which is a genetic marker consisting of all or a partial sequence of the base sequence set forth in SEQ ID NO: 20, A genetic marker (21) comprising a polymorphic site at positions 75, 150, and 150, and the base type of the polymorphic site is T, T, G, or G, respectively, A genetic marker comprising all or a partial sequence of the nucleotide sequence, comprising a polymorphic site at position 99 or 138, and the base type of the polymorphic site is C or G Genetic marker (22) A genetic marker comprising the whole or a partial sequence of the base sequence set forth in SEQ ID NO: 22, comprising a polymorphic site at position 75, and the base type of the polymorphic site is G Characteristic genetic marker (23) A genetic marker comprising all or a partial sequence of the base sequence set forth in SEQ ID NO: 23, comprising a polymorphic site at position 217, and the base type of the polymorphic site is C A genetic marker (24) comprising a whole or a partial sequence of the nucleotide sequence set forth in SEQ ID NO: 24, comprising a polymorphic site at position 91, wherein said polymorphic site is deleted Genetic marker (25) characterized by being a mutation (deletion mutation of C), a genetic marker comprising the whole or a partial sequence of the nucleotide sequence set forth in SEQ ID NO: 25, comprising a polymorphic site at position 136 , Genetic markers One polymorphic site nucleotide species characterized in that it is a C
 上記遺伝マーカーの長さは特に制限されないが、例えば、300 bp以下であり、好ましくは100 bp以下であり、より好ましくは50 bp以下であり、さらに好ましくは30もしくは20 bp以下である。 The length of the genetic marker is not particularly limited, but is, for example, 300 bp or less, preferably 100 bp or less, more preferably 50 bp or less, and further preferably 30 or 20 bp.
 なお本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。 Note that all prior art documents cited in the present specification are incorporated herein by reference.
 以下本発明を実施例により具体的に説明するが、本発明はこれら実施例に制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
〔実施例1〕 大ヨークシャー種系統豚を用いたQTLのファインマッピング
(1) 徳島県大ヨークシャー種系統豚(AY)の種豚のQTL型の判定
 徳島県大ヨークシャー種系統豚(AY)は、1987年に雄10頭、雌65頭を導入し、以後7世代にわたって閉鎖群で育種された。その間の雄、雌の数は8~11、および28~36である。その後、雄9頭、雌35頭で維持された。大ヨークシャー種の種雄豚9頭、種雌豚6頭について、それぞれの子豚(18頭から167頭)の椎骨数を測定し、マイクロサテライトマーカーを用いて半きょうだい解析を行った。QTLはマイクロサテライトマーカーSW252をピークとして検出されており(図2)、その近傍のSW263、S0115とともに種豚と子豚すべてをタイピングし、種豚の2本の染色体上のどちらのQTL領域が子豚に伝達されたかを判別した。各種豚について、2つのQTL領域がそれぞれ伝達された子豚グループ間の椎骨数の平均値の差をt検定により検討し、有意な差が見られた場合は種豚のQTLがヘテロ型であるとした。差が見られなかった場合にはZ検定(Nezer C. 2003 Genetics 165: 277-285)により、Z<-2.0においてホモ型であると判定した。その際、椎骨数増大効果はこれまでのF2実験家系の解析における平均値0.43を用いた。またホモ型種豚の子豚の椎骨数を、ヘテロ型種豚の椎骨数増大型対立遺伝子(Q)および野生型対立遺伝子(wt)が伝達した子豚(Q;371頭、wt;383頭)の椎骨数と多重検定(Steel検定)し、Q/Q型またはwt/wt型を判定した(図4)。その結果、9頭においてQ/wtのヘテロ型であると示された。6頭についてはホモ型であり、5頭がQQ型、1頭がwt/wtであることが示された(図4)。
[Example 1] Fine mapping of QTLs using large Yorkshire pigs
(1) Judgment of QTL type for large pigs from the Yorkshire breed (AY) in Tokushima Prefecture The Great Yorkshire breed (AY) in Tokushima Prefecture introduced 10 males and 65 females in 1987, followed by 7 generations. Breeded in a closed group. The number of males and females between them is 8-11 and 28-36. Thereafter, 9 males and 35 females were maintained. The number of vertebrae in each piglet (18 to 167) was measured for 9 large Yorkshire breed male pigs and 6 breed sows, and a half sibling analysis was performed using microsatellite markers. QTL was detected with the microsatellite marker SW252 as a peak (Fig. 2), and all swine and piglets were typed together with SW263 and S0115 in the vicinity, and which QTL region on the two piglets of the pig was It was determined whether it was transmitted to the pig. For each pig, the difference in the average value of the number of vertebrae between the piglet groups to which the two QTL regions were transmitted was examined by t-test. If a significant difference was found, the QTL of the pig was heterozygous It was. When no difference was observed, it was determined to be homozygous at Z <−2.0 by Z test (Nezer C. 2003 Genetics 165: 277-285). At that time, the average value 0.43 in the analysis of the F2 experimental family so far was used for the effect of increasing the number of vertebrae. In addition, the number of vertebrae of the homozygous piglets was transferred to the piglets (Q; 371, wt; 383) transmitted by the heterozygous pigs with increased vertebral number (Q) and wild type alleles (wt) ) And multiple tests (Steel test), and Q / Q type or wt / wt type was determined (FIG. 4). As a result, 9 were shown to be Q / wt heterotype. Six were homozygous, 5 were QQ, and 1 was wt / wt (FIG. 4).
(2) QTL領域におけるマイクロサテライトマーカーの開発
 第7染色体の椎骨数QTLの95%信頼区間はQTL express (Seaton G. 2002 Bioinformatics 18: 339-340)を用いて解析した結果、マイクロサテライトマーカーSW263とSW632にはさまれた83 cMから88 cMまでの領域となった(図5)。次にこの領域に新規マイクロサテライトマーカーを開発するため、まずヒトゲノム上の遺伝子配列を用いて相同性検索を行い、相同性のあるブタ配列(主にEST配列)を得た。これらについてPCRプライマーを作製し、PCRを用いたスクリーニングシステムにより得られたBACクローン(Suzuki K. 2000 Anim. Genet. 31: 8-12)からマイクロサテライト配列を単離した。単離したマイクロサテライト配列は、SGSC(International Swine Genome Sequecing Consortium、http://piggenome.org/)によって進行中のブタゲノムドラフト配列と比較し、それらマイクロサテライト配列を有するBACクローンのブタゲノム上の位置をFPC(Finger Print Contig)地図により確認した。39の遺伝子に由来する55個のマイクロサテライトマーカーの開発について表5-1~5-2(第7染色体上の椎骨数QTL領域に開発したマイクロサテライトマーカー)、図6に示した。
(2) Development of microsatellite markers in the QTL region The 95% confidence interval of the number 7 vertebrae QTL was analyzed using QTL express (Seaton G. 2002 Bioinformatics 18: 339-340). The region was between 83 cM and 88 cM between SW632 (Fig. 5). Next, in order to develop a new microsatellite marker in this region, a homology search was first performed using gene sequences on the human genome, and homologous porcine sequences (mainly EST sequences) were obtained. PCR primers were prepared for these, and microsatellite sequences were isolated from a BAC clone (Suzuki K. 2000 Anim. Genet. 31: 8-12) obtained by a screening system using PCR. The isolated microsatellite sequences are compared with the pig genome draft sequence in progress by SGSC (International Swine Genome Sequecing Consortium, http://piggenome.org/), and the position of the BAC clones with these microsatellite sequences on the pig genome. Was confirmed by FPC (Finger Print Contig) map. The development of 55 microsatellite markers derived from 39 genes is shown in Tables 5-1 to 5-2 (microsatellite markers developed in the QTL region of the number of vertebrae on chromosome 7), FIG.
〔表5-1〕
Figure JPOXMLDOC01-appb-I000007
[Table 5-1]
Figure JPOXMLDOC01-appb-I000007
 表5-2は表5-1の続きの表である。
〔表5-2〕
Figure JPOXMLDOC01-appb-I000008
Table 5-2 is a continuation of Table 5-1.
[Table 5-2]
Figure JPOXMLDOC01-appb-I000008
(3) 徳島県大ヨークシャー種系統豚(AY)の種豚の各染色体上のマイクロサテライトマーカーのハプロタイプの解析
 大ヨークシャー種種豚およびそれらの子豚について上記のマイクロサテライトマーカーのジェノタイピングを行い、種豚におけるハプロタイプを決定した。種豚間においてハプロタイプの比較を行い共通祖先由来(同祖)のゲノム領域、それらの染色体上での組み換え位置を解析した。大ヨークシャー種種豚の各染色体上のマイクロサテライトマーカーのハプロタイプと、QTLの対立遺伝子(Qまたはwt)との関連性を解析した結果、SJ7106、SJ7101、J7008の範囲においてのみ、椎骨数増大型対立遺伝子Q、野生型対立遺伝子wtが座位する両方の染色体に、共通ハプロタイプ(同祖ゲノム領域)が存在しなかった(図7)。よって候補領域はその外側のマイクロサテライトマーカーSJ7088とSJ7040との間の領域となった。
(3) Analysis of the haplotypes of microsatellite markers on each chromosome of the pigs of the Tokushima prefecture large Yorkshire breed pig (AY) Genotyping of the above microsatellite markers for large Yorkshire breed pigs and their piglets The haplotype in pigs was determined. Haplotypes were compared between sows, and the genomic regions derived from common ancestors (homologous) and their recombination positions on the chromosomes were analyzed. As a result of analyzing the relationship between the haplotype of the microsatellite marker on each chromosome of a large Yorkshire breed pig and the allele (Q or wt) of QTL, only in the range of SJ7106, SJ7101, and J7008, the vertebral augmentation type allele Q, there was no common haplotype (homogeneous genomic region) in both chromosomes where the wild type allele wt was located (FIG. 7). Therefore, the candidate region is a region between the microsatellite markers SJ7088 and SJ7040 outside the candidate region.
(4) QTL領域の遺伝子地図の作成と新規マイクロサテライトマーカーの開発
 SGSCにより解読が行われた5つのBACクローン、CH242-31K14、CH242-238O9、CH242-92H3、CH242-154M12、CH242-313I6の塩基配列を用い(図8A)、QTL近傍領域の遺伝子地図を作成した(図8B)。またCH242-92H3、CH242-154M12の塩基配列を用い、新規マイクロサテライト配列を検索し、SJ7099、SJ7103、SJ7107、SJ7113、SJ7114、SJ7121、SJ7126、SJ7136、SJ7139の9つのマイクロサテライトマーカーを開発した。
(4) Creation of genetic map of QTL region and development of new microsatellite marker Bases of 5 BAC clones, CH242-31K14, CH242-238O9, CH242-92H3, CH242-154M12, CH242-313I6, which were decoded by SGSC Using the sequence (FIG. 8A), a genetic map of the region near the QTL was created (FIG. 8B). In addition, using the nucleotide sequences of CH242-92H3 and CH242-154M12, we searched for new microsatellite sequences and developed nine microsatellite markers SJ7099, SJ7103, SJ7107, SJ7113, SJ7114, SJ7121, SJ7126, SJ7136, and SJ7139.
(5) 大ヨークシャー種系統豚の種豚を用いたファインマッピング
 上記徳島県大ヨークシャー種系統豚(AY)の種豚を用い、新規マイクロサテライトマーカーSJ7099、SJ7103、SJ7107、SJ7113、SJ7114、SJ7121、SJ7126、SJ7136、SJ7139を加えて解析した結果、同祖ゲノム領域を示す共通ハプロタイプが、椎骨数増大型対立遺伝子Qおよび野生型対立遺伝子wtが座位する両方の染色体に存在しない領域はSJ7121からSJ7008の間であり、また椎骨数増大型Qにおいてハプロタイプが保存された領域はSJ7121からSJ7103の範囲であった(図9)。
(5) Fine mapping using pigs from the large Yorkshire breed pigs Using the above-mentioned Tokushima prefecture pig breeds (AY), new microsatellite markers SJ7099, SJ7103, SJ7107, SJ7113, SJ7114, SJ7121, SJ7126 , SJ7136, SJ7139, and the result of analysis was that the common haplotype indicating the homoeologous genomic region is between SJ7121 and SJ7008, where the vertebral number increasing allele Q and the wild type allele wt are not present on both chromosomes. The region where the haplotype was conserved in the vertebral number increasing type Q was in the range of SJ7121 to SJ7103 (FIG. 9).
〔実施例2〕F2実験家系親世代ブタを用いたファインマッピング
 9つのF2実験家系の親世代ブタについて、椎骨数QTLの遺伝子型が決定され(表2)、既報(Mikawa S. 2005 J Anim. Sci. 83: 2247)において公開されている。徳島県大ヨークシャー種系統豚により絞り込まれたQTL領域近傍のマイクロサテライトマーカーを用いて、F2実験家系親世代ブタについてもハプロタイプ解析を行い、QTLと一致する領域を検索した。その結果、大ヨークシャー種系統豚において椎骨数増大型対立遺伝子Qに関連して見られたハプロタイプは、F2実験家系の親世代ブタにおいても検出され、F2実験家系親世代ブタにおいて、椎骨数増大型対立遺伝子Qが座位する染色体において保存された範囲は、SJ7088からSJ7114であった(図9)。徳島県大ヨークシャー種系統豚(AY)とF2実験家系親世代ブタの両方の解析をあわせると共通する領域はSJ7121からSJ7114となり、その外側のマーカー、SJ7126からSJ7099にQTL領域を絞り込むことに成功した(表6-1~6-2(マイクロサテライト配列情報))。これらのマイクロサテライトマーカーからなるハプロタイプにより椎骨数QTL型を判定することが可能である。
[Example 2] Fine mapping using F2 experimental family parent generation pigs For nine generation F2 experimental family parent generation pigs, the vertebral number QTL genotype was determined (Table 2), and a previous report (Mikawa S. 2005 J Anim. Sci. 83: 2247). Using the microsatellite marker near the QTL region narrowed down by the Tokushima prefecture large Yorkshire breed pigs, haplotype analysis was also conducted on F2 experimental family parent generation pigs to search for regions matching the QTL. As a result, haplotypes associated with increased vertebral number allele Q in large Yorkshire breed pigs were also detected in F2 experimental family parental pigs, and in F2 experimental family parental pigs, increased vertebral number increased The conserved range in the chromosome to which allele Q is located was SJ7088 to SJ7114 (FIG. 9). When combining the analysis of both the Tokushima prefecture large Yorkshire breed pig (AY) and the F2 experimental family parent generation pig, the common region was SJ7121 to SJ7114, and the QTL region was successfully narrowed down to the outer marker, SJ7126 to SJ7099. (Tables 6-1 to 6-2 (microsatellite sequence information)). It is possible to determine the number of vertebrae QTL by the haplotype consisting of these microsatellite markers.
〔表6-1〕
Figure JPOXMLDOC01-appb-I000009
[Table 6-1]
Figure JPOXMLDOC01-appb-I000009
 表6-2は表6-1の続きの表である。
〔表6-2〕
Figure JPOXMLDOC01-appb-I000010
Table 6-2 is a continuation table of Table 6-1.
[Table 6-2]
Figure JPOXMLDOC01-appb-I000010
 上記表6-1、6-2において、下線がプライマー、斜体文字および波下線がマイクロサテライト配列を示す。 In Tables 6-1 and 6-2 above, the underline indicates the primer, the italic letters and the underline indicate the microsatellite sequences.
〔実施例3〕QTL近傍領域のハプロタイプブロック解析
 椎骨数QTL近傍領域の多型検索を行い、NV101、NV102、orf45-i2、orf45-i4、ALDH6A1-i11、LIN52-i4、LIN52-i5、LIN52-e6、NV103、ABCD4-i15、NV038、NV032、NV004、NV015、NV090、NV025、NV035、NV062、NV067、NV071、NV106、NV108、NV109、NV111、NPC2-i2、ISCA2-i3の多型部位を検出した(図10)。これらについて、と場より無作為に選抜した199頭の肉豚(ランドレース種、大ヨークシャー種、およびデュロック種の交雑豚)のDNAを用いてジェノタイピングを行い、Haploview 4.0 (Barrett et al. 2005 Bioinformatics 21: 263-265)により、ハプロタイプブロックを解析した。その結果、ABCD4-i15からNV067までの、約60 kbが同一ハプロタイプブロックとなった(図10)。このハプロタイプブロックのメジャーなハプロタイプは2種類であり、徳島県大ヨークシャー種系統豚(AY)での、椎骨数増大型対立遺伝子Qおよび野生型対立遺伝子wtにおけるハプロタイプに一致した。また肉豚の椎骨数との関連性はABCD4遺伝子の下流に位置する多型(NV004、NV015、NV090、NV025、NV035、NV062)が周辺の多型部位よりも高いことが確認された(図10)。これらの多型はSJ7126からSJ7099の間に位置する(図8C)。と場サンプルでの遺伝子型による椎骨数増大に対する相加効果は0.53であり、これまでに認められていた効果にほぼ等しかった(表7(と場サンプル(西洋品種)における椎骨数の分布))。また椎骨数増大型対立遺伝子の頻度は、55.5%であった。
[Example 3] Haplotype block analysis in the QTL vicinity region The polymorphism search of the QTL vicinity region is performed, and NV101, NV102, orf45-i2, orf45-i4, ALDH6A1-i11, LIN52-i4, LIN52-i5, LIN52- e6, NV103, ABCD4-i15, NV038, NV032, NV004, NV015, NV090, NV025, NV035, NV062, NV067, NV071, NV106, NV108, NV109, NV111, NPC2-i2, ISCA2-i3 were detected (FIG. 10). These were subjected to genotyping using the DNA of 199 beef pigs (Landrace, Large Yorkshire, and Duroc cross) randomly selected from the field, and Haploview 4.0 (Barrett et al. 2005). The haplotype block was analyzed by Bioinformatics 21: 263-265). As a result, about 60 kb from ABCD4-i15 to NV067 became the same haplotype block (FIG. 10). There are two major haplotypes of this haplotype block, which coincided with the haplotypes in the large vertebral allele Q and wild-type allele wt in Tokushima Prefecture, Yorkshire pig (AY). In addition, it was confirmed that the polymorphisms (NV004, NV015, NV090, NV025, NV035, NV062) located downstream of the ABCD4 gene were higher than the surrounding polymorphic sites in relation to the number of vertebrae in beef pigs (Fig. 10). ). These polymorphisms are located between SJ7126 and SJ7099 (FIG. 8C). The additive effect on the increase in the number of vertebrae due to genotype in the field sample was 0.53, which was almost equal to the effect observed so far (Table 7 (Distribution of the number of vertebrae in the field sample (Western variety))) . The frequency of the increased vertebral allele was 55.5%.
〔表7〕
Figure JPOXMLDOC01-appb-I000011
[Table 7]
Figure JPOXMLDOC01-appb-I000011
〔実施例4〕椎骨数を支配する遺伝子の同定
 SJ7126からSJ7099の間には機能解明された遺伝子はなく、ヒトにおいてLOC55237、マウスではLOC432677と名付けられたhypothetical proteinをコードする遺伝子座が存在した。ブタにおいてもこの領域の転写産物を単離し、それをコードする遺伝子をVertnin (VRTN)と命名し、椎骨数を支配する遺伝子とした(図8C)。VRTN遺伝子は2つのエキソンからなり(図8C)、698アミノ酸をコードする。また相同性検索の結果、類似した遺伝子は存在しなかった。VRTN遺伝子のcDNA配列および該遺伝子によってコードされるアミノ酸配列をそれぞれ配列番号:88、89に示す。
[Example 4] Identification of genes governing the number of vertebrae There was no gene whose function was elucidated between SJ7126 and SJ7099, and there was a locus encoding hypothetical protein named LOC55237 in humans and LOC432677 in mice. Also in pigs, the transcript of this region was isolated, and the gene encoding it was named Vertnin (VRTN), which was the gene that controls the number of vertebrae (FIG. 8C). The VRTN gene consists of two exons (Figure 8C) and encodes 698 amino acids. As a result of homology search, there was no similar gene. The cDNA sequence of the VRTN gene and the amino acid sequence encoded by the gene are shown in SEQ ID NOs: 88 and 89, respectively.
〔実施例5〕ブタVRTN遺伝子の多型解析
 VRTN遺伝子を含むSJ7126からSJ7099までの領域について、徳島県大ヨークシャー種系統豚の種豚についてPRE1配列等の繰り返し配列を除いたすべての領域で多型解析を行った結果、図8Cおよび表8-1~8-7(SNP等配列情報)に示した42個の多型がQTL型と一致した。42個の多型パターンは表9(ブタVRTN遺伝子のハプロタイプ型)に示した。この中ではNV064が非同義置換であり、野生型がGAC(Asp)であるのに対し、増大型ではGGC(Gly)に置換している。
[Example 5] Polymorphism analysis of porcine VRTN gene Regarding the region from SJ7126 to SJ7099 containing the VRTN gene, polymorphism in all regions except for the repeat sequence such as PRE1 sequence in the pig of the Tokushima prefecture large Yorkshire breed pig As a result of the analysis, the 42 polymorphisms shown in FIG. 8C and Tables 8-1 to 8-7 (SNP sequence information) coincided with the QTL type. The 42 polymorphism patterns are shown in Table 9 (Haplotype of porcine VRTN gene). Among these, NV064 is a non-synonymous substitution and the wild type is GAC (Asp), while the augmented type is substituted with GGC (Gly).
〔表8-1〕
Figure JPOXMLDOC01-appb-I000012
[Table 8-1]
Figure JPOXMLDOC01-appb-I000012
 表8-2は表8-1の続きの表である。
〔表8-2〕
Figure JPOXMLDOC01-appb-I000013
Table 8-2 is a continuation table of Table 8-1.
[Table 8-2]
Figure JPOXMLDOC01-appb-I000013
 表8-3は表8-2の続きの表である。
〔表8-3〕
Figure JPOXMLDOC01-appb-I000014
Table 8-3 is a continuation table of Table 8-2.
[Table 8-3]
Figure JPOXMLDOC01-appb-I000014
 表8-4は表8-3の続きの表である。
〔表8-4〕
Figure JPOXMLDOC01-appb-I000015
Table 8-4 is a continuation table of Table 8-3.
[Table 8-4]
Figure JPOXMLDOC01-appb-I000015
 表8-5は表8-4の続きの表である。
〔表8-5〕
Figure JPOXMLDOC01-appb-I000016
Table 8-5 is a continuation of Table 8-4.
[Table 8-5]
Figure JPOXMLDOC01-appb-I000016
 表8-6は表8-5の続きの表である。
〔表8-6〕
Figure JPOXMLDOC01-appb-I000017
Table 8-6 is a continuation table of Table 8-5.
[Table 8-6]
Figure JPOXMLDOC01-appb-I000017
 表8-7は表8-6の続きの表である。
〔表8-7〕
Figure JPOXMLDOC01-appb-I000018
Table 8-7 is a continuation of Table 8-6.
[Table 8-7]
Figure JPOXMLDOC01-appb-I000018
 上記表8-1~8-7において、四角で囲った文字が多型部位を示す。 In the above Tables 8-1 to 8-7, the letters enclosed in squares indicate the polymorphic sites.
〔表9〕
Figure JPOXMLDOC01-appb-I000019
[Table 9]
Figure JPOXMLDOC01-appb-I000019
 上記表9において、delとは欠失変異(deletion)、insとは挿入変異(insertion)を表す。 In Table 9, “del” represents a deletion mutation and “ins” represents an insertion mutation.
〔実施例6〕責任遺伝子のブタ胚での発現解析
 VRTN遺伝子のプロモーター領域にQTLと一致する多型が存在することから、対立遺伝子間での発現様式の差異がQTLの原因であることも考えられる。そこでブタVRTN遺伝子の椎骨数増大型対立遺伝子と野生型対立遺伝子のプロモーター領域を、ルシフェラーゼをレポーター遺伝子とするプラスミドに連結し、CGR8細胞、P19細胞を用いて、プロモーター活性を比較したが、有意な差は認められなかった。CGR8細胞はマウスES細胞、P19細胞はマウス胚性腫瘍細胞であり、ともに内因性のマウスVRTN遺伝子を発現している。
[Example 6] Analysis of expression of responsible gene in pig embryo Since there is a polymorphism that matches QTL in the promoter region of VRTN gene, the difference in the expression pattern between alleles is considered to be the cause of QTL. It is done. Therefore, the promoter regions of the porcine VRTN gene increased vertebral number and wild type alleles were linked to a plasmid using luciferase as a reporter gene, and the promoter activity was compared using CGR8 cells and P19 cells. There was no difference. CGR8 cells are mouse ES cells and P19 cells are mouse embryonic tumor cells, both expressing the endogenous mouse VRTN gene.
 またブタでの内因性VRTN遺伝子の発現様式を解析するため、ブタ胚でのVRTN遺伝子の対立遺伝子による発現の差異を解析した。VRTN遺伝子が増大型Q/Qである種豚と野生型wt/wtである種豚を交配し、ヘテロ型Q/wtの胚を生産した。発現するmRNAはエキソン上に位置するNV062、NV064、MV065の多型により由来する対立遺伝子を区別することができる。交配後、8日、8.5日、10日、12日、14日において子宮より胚を回収し、VRTN遺伝子についてRT-PCRを行い、NV062を含む領域を増幅し、TOPO TAクローニングキット(インビトロジェン)を用いてクローニングを行った。それぞれクローン化した192個のコロニーについて、塩基配列を決定し、NV062の多型パターンの頻度を計測することにより各対立遺伝子の発現量の評価を行った(図11)。その結果、椎骨数増大型対立遺伝子Qと野生型対立遺伝子wtの相対的頻度は交配後10日においてほぼ等しいが、それ以外では椎骨数増大型が多く発現し、12日、14日では野生型の発現は認められなかった(表10(ブタ胚におけるVRTN遺伝子の発現解析))。椎骨数が増大する原因としてVRTN遺伝子の発現時期の変化の関与が示唆された。 Also, in order to analyze the expression pattern of endogenous VRTN gene in pigs, the expression difference of VRTN gene in pig embryos due to alleles was analyzed. A breeding pig with a VRTN gene of increased Q / Q and a breeding pig with a wild type wt / wt were crossed to produce a heterozygous Q / wt embryo. The expressed mRNA can distinguish alleles derived from polymorphisms of NV062, NV064, MV065 located on exons. After mating, embryos are collected from the uterus on the 8th, 8.5th, 10th, 12th, 14th, RT-PCR is performed on the VRTN gene, the region containing NV062 is amplified, and the TOPO TA cloning kit (Invitrogen) is used. Were used for cloning. For each of 192 colonies cloned, the nucleotide sequence was determined and the frequency of NV062 polymorphism pattern was measured to evaluate the expression level of each allele (FIG. 11). As a result, the relative frequency of the increased vertebral number allele Q and the wild type allele wt was almost the same on day 10 after mating, but in other cases, the increased number of vertebral numbers was frequently expressed, and on the 12th and 14th days, the wild type Was not observed (Table 10 (VRTN gene expression analysis in pig embryo)). It was suggested that the change in the expression time of the VRTN gene was responsible for the increase in the number of vertebrae.
〔表10〕
Figure JPOXMLDOC01-appb-I000020
[Table 10]
Figure JPOXMLDOC01-appb-I000020
 これらの結果より、ブタにおいてはVRTN遺伝子が椎骨数を支配することが明らかとなった。VRTN遺伝子の多型情報は育種への利用価値が高い。この遺伝子は改良品種内で椎骨数を1対立遺伝子あたり約0.6個増大させる。椎骨数は屠体長と相関することから、VRTN遺伝子の遺伝子診断は、産肉性、繁殖性(産子数、乳頭数)などの遺伝的改良に広く利用される。またこの遺伝子診断を利用した飼養方法の改善が可能である。またVRTN遺伝子の転写産物、タンパク質を利用して、椎骨数およびそれに関連する各種形質を変化させることが可能である。 These results revealed that the VRTN gene controls the number of vertebrae in pigs. The polymorphism information of VRTN gene has high utility value for breeding. This gene increases the number of vertebrae by about 0.6 per allele within the improved variety. Since the number of vertebrae correlates with carcass length, genetic diagnosis of VRTN gene is widely used for genetic improvement such as meat production and fertility (number of pups, number of nipples). In addition, it is possible to improve the breeding method using this genetic diagnosis. It is also possible to change the number of vertebrae and various traits associated therewith by using VRTN gene transcripts and proteins.

Claims (4)

  1.  ブタの椎骨数増大型遺伝形質の有無の判定方法であって、ブタの第7染色体上に存在する下記(A)の(1)~(25)のいずれかに記載の一もしくは複数の多型マーカーを用いて、下記(B)の工程によって判定する方法。
    (A)
     (1)配列番号:1に記載の塩基配列の40位
     (2)配列番号:2に記載の塩基配列の207位
     (3)配列番号:3に記載の塩基配列の68位
     (4)配列番号:4に記載の塩基配列の47位または101位
     (5)配列番号:5に記載の塩基配列の81位
     (6)配列番号:6に記載の塩基配列の355位
     (7)配列番号:7に記載の塩基配列の87位
     (8)配列番号:8に記載の塩基配列の42位
     (9)配列番号:9に記載の塩基配列の152位または185位
     (10)配列番号:10に記載の塩基配列の82位
     (11)配列番号:11に記載の塩基配列の95~385位
     (12)配列番号:12に記載の塩基配列の49位
     (13)配列番号:13に記載の塩基配列の31位、116位、335位、または421位
     (14)配列番号:14に記載の塩基配列の127位
     (15)配列番号:15に記載の塩基配列の78位、154位、173位、または187位、217位、320位、433位
     (16)配列番号:16に記載の塩基配列の111位
     (17)配列番号:17に記載の塩基配列の71位または192位
     (18)配列番号:18に記載の塩基配列の80~82位
     (19)配列番号:19に記載の塩基配列の285位または300~301位
     (20)配列番号:20に記載の塩基配列の55位、65位、75位、または150位
     (21)配列番号:21に記載の塩基配列の99位または138位
     (22)配列番号:22に記載の塩基配列の75位
     (23)配列番号:23に記載の塩基配列の217位
     (24)配列番号:24に記載の塩基配列の91位
     (25)配列番号:25に記載の塩基配列の136位
    (B)上記(A)のそれぞれの多型マーカーにおける塩基種が記載された下記〔表1〕の判定表に基づき、椎骨数増大型遺伝形質の有無を判定する工程
    〔表1〕
    Figure JPOXMLDOC01-appb-I000001
    One or more polymorphisms according to any one of (1) to (25) in the following (A), which is a method for determining the presence or absence of an inherited trait with increased number of vertebrae in pigs The method of determining by the process of the following (B) using a marker.
    (A)
    (1) Position 40 of the base sequence described in SEQ ID NO: 1 (2) Position 207 of the base sequence described in SEQ ID NO: 2 (3) Position 68 of the base sequence described in SEQ ID NO: 3 (4) SEQ ID NO: : Position 47 or 101 of the base sequence described in (5) Position 81 of the base sequence described in SEQ ID NO: 5 (6) Position 355 of the base sequence described in SEQ ID NO: 6 (7) SEQ ID NO: 7 (8) 42nd position of the base sequence described in SEQ ID NO: 8 (9) 152th or 185th position of the base sequence described in SEQ ID NO: 9 (10) described in SEQ ID NO: 10 (11) Positions 95 to 385 of the base sequence set forth in SEQ ID NO: 11 (12) Position 49 of the base sequence set forth in SEQ ID NO: 12 (13) Base sequence set forth in SEQ ID NO: 13 Position 31, 116, 335, or 421 of (14) SEQ ID NO: 127 of the base sequence described in 14 (15) 78, 154, 173, 187, 217, 320, 433 of the base sequence described in SEQ ID NO: 15 (16) SEQ ID NO: 16 111 of the base sequence described in (17) 71 or 192 of the base sequence described in SEQ ID NO: 17 (18) 80 to 82 of the base sequence described in SEQ ID NO: 18 (19) SEQ ID NO: 19 285 or 300 to 301 of the base sequence described in (20) 55th, 65th, 75th, or 150th position of the base sequence described in SEQ ID NO: 20 (21) The base sequence described in SEQ ID NO: 21 (22) 75th position of the base sequence described in SEQ ID NO: 22 (23) 217th position of the base sequence described in SEQ ID NO: 23 (24) 91 of the base sequence described in SEQ ID NO: 24 Rank (25) Based on the determination table of the following [Table 1] in which the base type of each polymorphic marker of (B) above (A) is described, position 136 of the base sequence described in column number 25: Step of determining presence / absence [Table 1]
    Figure JPOXMLDOC01-appb-I000001
  2.  ブタの第7染色体上の、以下の(a)~(d)のいずれかに記載のマイクロサテライト配列を検出することを特徴とする、ブタの椎骨数増大型遺伝形質の有無の判定方法。
    (a)配列番号:26に記載の塩基配列において、180~195位または196~216位のマイクロサテライト配列
    (b)配列番号:27に記載の塩基配列において、311~323位、380~388位、389~396位、または400~406位のマイクロサテライト配列
    (c)配列番号:28に記載の塩基配列において、393~413位のマイクロサテライト配列
    (d)配列番号:29に記載の塩基配列において、96~107位または309~325位のマイクロサテライト配列
    A method for determining the presence or absence of an inherited trait with increased vertebral number in pigs, comprising detecting the microsatellite sequence according to any one of the following (a) to (d) on the seventh chromosome of pigs.
    (a) a microsatellite sequence at positions 180 to 195 or 196 to 216 in the base sequence set forth in SEQ ID NO: 26
    (b) a microsatellite sequence at positions 311 to 323, 380 to 388, 389 to 396, or 400 to 406 in the nucleotide sequence set forth in SEQ ID NO: 27
    (c) a microsatellite sequence at positions 393 to 413 in the nucleotide sequence set forth in SEQ ID NO: 28
    (d) a microsatellite sequence at positions 96 to 107 or 309 to 325 in the nucleotide sequence set forth in SEQ ID NO: 29
  3.  ブタの第7染色体上に存在する前記多型マーカーまたはマイクロサテライト配列を含むDNA領域を増幅し、その増幅産物の多型またはマイクロサテライト配列を検出する工程を含む、請求項1または2に記載の方法。 The method comprises the steps of amplifying a DNA region containing the polymorphic marker or microsatellite sequence present on pig chromosome 7, and detecting the polymorphism or microsatellite sequence of the amplified product. Method.
  4.  ブタの第7染色体上に存在するVertnin遺伝子の発現量を指標とすることを特徴とする、ブタの椎骨数増大型遺伝形質の有無の判定方法。 A method for determining the presence or absence of an inherited trait with increased vertebral number in pigs, characterized in that the expression level of the Vertnin gene present on the seventh chromosome of the pig is used as an index.
PCT/JP2011/056711 2010-03-23 2011-03-22 Vertnin gene that controls number of vertebrae in pigs, and use of same WO2011118549A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-065451 2010-03-23
JP2010065451A JP5717272B2 (en) 2010-03-23 2010-03-23 Vertin gene that controls the number of vertebrae in swine and use thereof

Publications (1)

Publication Number Publication Date
WO2011118549A1 true WO2011118549A1 (en) 2011-09-29

Family

ID=44673102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056711 WO2011118549A1 (en) 2010-03-23 2011-03-22 Vertnin gene that controls number of vertebrae in pigs, and use of same

Country Status (2)

Country Link
JP (1) JP5717272B2 (en)
WO (1) WO2011118549A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105219873A (en) * 2015-11-04 2016-01-06 中国农业科学院北京畜牧兽医研究所 A kind of method and primer special identifying pig vertebra data/coherency shape
CN109371146A (en) * 2018-12-24 2019-02-22 中国农业科学院北京畜牧兽医研究所 SNP marker, primer pair, detection kit and its application of the more thoracic vertebrae number characters of sheep
CN112126690A (en) * 2020-10-10 2020-12-25 华南农业大学 SNP molecular marker influencing thoracic vertebra number character of sheep and application
WO2021207993A1 (en) * 2020-04-16 2021-10-21 聊城大学 Detection kit of snp site related to dezhou donkey multiple lumbar vertebral trait and use method therefor
CN115725745A (en) * 2022-09-30 2023-03-03 中国科学院遗传与发育生物学研究所 SNP molecular marker related to sheep multi-thoracic vertebra number, amplification primer group and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021207992A1 (en) * 2020-04-16 2021-10-21 聊城大学 Dezhou donkey's multi-thoracic vertebral trait-related snp site detection kit and use method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101871A (en) * 2004-09-08 2006-04-20 National Institute Of Agrobiological Sciences Dna marker for determining potential for increasing number of vertebrae of swine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101871A (en) * 2004-09-08 2006-04-20 National Institute Of Agrobiological Sciences Dna marker for determining potential for increasing number of vertebrae of swine

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MIKAWA S. ET AL.: "Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6Al)", GENOME RESEARCH, vol. 17, 2007, pages 586 - 593 *
MIKAWA S. ET AL.: "Identification of a second gene associated with variation in vertebral number in domestic pigs", BMC GENETICS, vol. 12, no. 5, 14 January 2011 (2011-01-14) *
SATOSHI MIKAWA ET AL.: "Buta no Tsuikotsusu o Shihai suru Shinki Idenshi vertnin(VRTN) no Tanri", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, 7 December 2010 (2010-12-07), pages IP-0944 *
SHUJI SATO ET AL.: "(12) Buta Dai 7 Senshokutai no Tsuikotsusu QTL no Sekinin Idenshi no Dotei Oyobi Tsuikotsusu to Kanren suru Tagata no Kenshutsu", YUYO IDENSHI KATSUYO NO TAMENO SHOKUBUTSU (INE) DOBUTSU GENOME KENKYU -CHIKUSAN GENOME KENKYU NO KASOKUKA, 18 February 2011 (2011-02-18), pages 97 - 100 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105219873A (en) * 2015-11-04 2016-01-06 中国农业科学院北京畜牧兽医研究所 A kind of method and primer special identifying pig vertebra data/coherency shape
CN105219873B (en) * 2015-11-04 2018-07-27 中国农业科学院北京畜牧兽医研究所 A kind of method and primer special of identification pig vertebra data/coherency shape
CN109371146A (en) * 2018-12-24 2019-02-22 中国农业科学院北京畜牧兽医研究所 SNP marker, primer pair, detection kit and its application of the more thoracic vertebrae number characters of sheep
CN109371146B (en) * 2018-12-24 2021-09-21 中国农业科学院北京畜牧兽医研究所 SNP molecular marker, primer pair, detection kit and application of SNP molecular marker and primer pair for sheep multi-thoracic vertebra number character
WO2021207993A1 (en) * 2020-04-16 2021-10-21 聊城大学 Detection kit of snp site related to dezhou donkey multiple lumbar vertebral trait and use method therefor
CN112126690A (en) * 2020-10-10 2020-12-25 华南农业大学 SNP molecular marker influencing thoracic vertebra number character of sheep and application
CN115725745A (en) * 2022-09-30 2023-03-03 中国科学院遗传与发育生物学研究所 SNP molecular marker related to sheep multi-thoracic vertebra number, amplification primer group and application
CN115725745B (en) * 2022-09-30 2024-01-26 中国科学院遗传与发育生物学研究所 SNP molecular marker related to sheep multi-thoracic vertebrae and amplification primer set and application

Also Published As

Publication number Publication date
JP5717272B2 (en) 2015-05-13
JP2011193825A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5176248B2 (en) Methods for detecting genetic mutations related to eggshell strength of chicken eggs
JP5717272B2 (en) Vertin gene that controls the number of vertebrae in swine and use thereof
KR101929391B1 (en) Novel SNP marker for discriminating increasedthe number of nipples of pigs and use thereof
JP2008526252A (en) DNA markers for bovine growth
KR102235340B1 (en) SNP marker set for predicting growth traits of Korean native chicken and uses thereof
US20080010696A1 (en) Method of Determining Gene Relating to Favorable Beef Taste and Texture
Guðmundsdóttir Genome-wide association study of muscle traits in Icelandic sheep
KR102019997B1 (en) Composition for predicting meat quality of pork and method for simple and rapid predicting of meat quality using thereof
Cho et al. Whole-genome association study for the roan coat color in an intercrossed pig population between Landrace and Korean native pig
KR101472000B1 (en) SNP for determination of meat quantity in Hanwoo and diagnosis method of meat quantity using the same
US20090203020A1 (en) Bovine polymorphisms and methods of predicting bovine traits
AU2007292202B2 (en) Method of determining an amount of fatty acid contents in bovine intramuscular fat on the basis of genotype of fatty acid synthase gene and method of determining goodness of eating quality of beef on the basis of the results thereof
KR102001528B1 (en) Gene marker for discrimination of Korean Native pig and use thereof
JP6683642B2 (en) Method for determining inosin acid content in meat after slaughter in bovine individuals
KR101444414B1 (en) Composition for predicting of meat quality in Hanwoo
EP1660675B1 (en) Polymorphism of the igf2 gene and improving production characteristics of cattle
JP5736655B2 (en) Pig vertebral number gene diagnostic kit
WO2007068936A2 (en) Diagnostic method
JP4776037B2 (en) A method for assessing fat accumulation capacity in porcine muscle from genetic information
Guo et al. Genome-wide association study for rib eye muscle area in a Large White× Minzhu F2 pig resource population
US20090148844A1 (en) Dna marker for meat tenderness in cattle
Sun Wu et al. Investigation of NELFE polymorphism and their association with litter size in two Chinese indigenous sheep breeds.
JP5196390B2 (en) Identification method of Jinhua pig by polymorphism of EDNRB (endothelin receptor type B)
WO2004070055A1 (en) Dna markers for marbling
JP4430063B2 (en) Method for testing congenital eye disease detecting mutation in WFDC1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759354

Country of ref document: EP

Kind code of ref document: A1