WO2011118015A1 - 組電池の製造方法 - Google Patents

組電池の製造方法 Download PDF

Info

Publication number
WO2011118015A1
WO2011118015A1 PCT/JP2010/055309 JP2010055309W WO2011118015A1 WO 2011118015 A1 WO2011118015 A1 WO 2011118015A1 JP 2010055309 W JP2010055309 W JP 2010055309W WO 2011118015 A1 WO2011118015 A1 WO 2011118015A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembled battery
discharge
manufacturing
voltage
battery
Prior art date
Application number
PCT/JP2010/055309
Other languages
English (en)
French (fr)
Inventor
貞雄 藤崎
大下 浩司
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2010539655A priority Critical patent/JP5299434B2/ja
Priority to US13/258,001 priority patent/US8673026B2/en
Priority to PCT/JP2010/055309 priority patent/WO2011118015A1/ja
Priority to CN201080013767.8A priority patent/CN102365782B/zh
Publication of WO2011118015A1 publication Critical patent/WO2011118015A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a method for manufacturing an assembled battery having a plurality of unit cells.
  • secondary batteries such as lithium ion batteries have attracted attention as power sources for vehicles such as hybrid vehicles and electric vehicles as well as electronic devices such as portable PCs and mobile phones.
  • a secondary battery such as this lithium ion battery, a desired output voltage is obtained by connecting a plurality of single cells (single cells) in series to form an assembled battery.
  • each single cell constituting the assembled battery must be normal. Therefore, prior to assembling the assembled battery, each cell is inspected. Inspected cells are adjusted to a value close to the minimum charge percentage (SOC: State of Charge) by discharging in consideration of safety in storage and shipping.
  • SOC State of Charge
  • FIG. 11 shows a manufacturing process of a conventional assembled battery.
  • a single cell is manufactured (S11).
  • each unit cell is adjusted to a predetermined SOC, and the unit cell is inspected (S12).
  • the inspected unit cell is discharged and adjusted so that the SOC becomes the minimum use% (30% in this embodiment) (S13).
  • the discharged single cells are stacked to form a stack (S14).
  • the unit cells constituting the stack body are electrically connected in series to form an assembled battery (S16).
  • each single cell constituting the stack body after forming the stack body is known.
  • a technique for inspecting each single cell constituting the stack body after forming the stack body is known. For example, in the method of manufacturing an assembled battery disclosed in Patent Document 1, first, in the state of a single cell, each cell is inspected by adjusting the SOC to less than the minimum usage%. Thereafter, the inspected unit cells are assembled, the assembled unit cells are charged until the SOC reaches the intermediate use value, and each unit cell is inspected again in that state. Then, inspect the battery as an assembled battery.
  • the conventional method for manufacturing an assembled battery has the following problems.
  • the cell voltage varies depending on the individual cell voltage (internal resistance difference), the discharge equipment, the environment such as temperature and humidity, and the elapsed time since discharge. Variation occurs.
  • the voltage variation of the unit cell is one of the factors that deteriorate the performance of the assembled battery.
  • Patent Document 1 it can be expected that variations in the voltage after discharge can be reduced by charging all the cells under the same conditions (equipment, environment, time, etc.) after the cells are assembled.
  • a power source is required for filling, and the device itself is expensive.
  • an object of the present invention is to provide a method of manufacturing an assembled battery in which the voltage variation of each unit cell constituting the assembled battery is safely suppressed.
  • An assembled battery manufacturing method for solving this problem is a method of manufacturing an assembled battery having a plurality of unit cells, wherein the unit cell is adjusted so that its charging rate becomes the first charging rate. 1 adjusting step, assembling a plurality of single cells whose charging rates are adjusted to the first charging rate, and assembling steps in which each single cell forms an electrically non-connected stack body, and at least two constituting the stack body And a second adjustment step of collectively discharging the single cells so that the charging rate becomes a second charging rate lower than the first charging rate.
  • the unit cell after adjustment is assembled to form a stack body. Then, in the state of the stack body, the plurality of single cells constituting the stack body are adjusted to the second charging rate by collective discharge.
  • the discharge conditions (equipment, time, environment, etc.) of the single cells constituting the stack body are the same. Therefore, the voltage variation of each single cell constituting the stack body is reduced.
  • the power source required for charging is not required for the equipment after the stack body is configured.
  • each cell is arranged with the 2nd charge rate lower than a 1st charge rate, and it is safe at the time of storage or shipment.
  • all the single cells constituting the stack body may be collectively discharged so that the second charging rate is obtained.
  • the second charging rate in the above manufacturing method may be a minimum use value of the unit cell. That is, it is most desirable in terms of safety that the second charging rate, which is the charging rate after collective discharge, is a minimum use value.
  • the minimum use value (use minimum%) does not have to be exact, and may be a value that approximates the use minimum% even if it is larger than the use minimum%. For example, in consideration of the voltage drop due to self-discharge, the value may be slightly larger than the minimum usage%.
  • the amount of voltage change due to discharge in the second adjustment step in the above manufacturing method is preferably larger than the amount of voltage variation before discharge of each unit cell.
  • the voltage change amount due to the collective discharge is larger than the voltage variation amount before the discharge, it is possible to effectively reduce the voltage variation.
  • the voltage change amount due to the discharge in the second adjustment step is larger than the value obtained by adding the voltage change amount from the stack body formation time in the assembling step.
  • the amount of voltage change due to the discharge in the second adjustment step is larger than the value obtained by adding the amount of voltage variation after the collective discharge of each unit cell.
  • a method for manufacturing an assembled battery is realized in which voltage variations among the individual cells constituting the assembled battery are safely suppressed.
  • the present invention is applied to a method of manufacturing a lithium ion assembled battery mounted on a hybrid vehicle or the like.
  • the assembled battery 100 of this embodiment includes a plurality of single cells 1 and two end plates (first end plate 12 and second end plate 13) that are metal plates.
  • the first end plate 12 and the second end plate 13 are arranged on both ends of the assembled battery 100 in the stacking direction of the plurality of single cells 1 (the direction of the arrow D1 in FIG. 1), and the stacking direction of the single cells 1
  • the dimensional change is suppressed.
  • the first end plate 12 and the second end plate 13 use a plurality of rod bolts (not shown) through which the end plates 12 and 13 themselves are inserted in the stacking direction D1, and the unit cell 1 stacked in the stacking direction D1 is predetermined.
  • the dimensional change is suppressed by clamping with pressure.
  • a battery group in which the single cells 1 are stacked from the first end plate 12 to the second end plate 13 is arranged in two rows in the stacking direction D1. Further, the adjacent unit cells 1 and 1 are connected to a copper bus bar (a groove-type bus bar connecting the adjacent unit cells 1 and 1 in the stacking direction D1 of the unit cells 1 is “bus bar 50”, and the row direction D2 of the battery group) Are connected in series with each other by “bus bar 51”.
  • a copper bus bar a groove-type bus bar connecting the adjacent unit cells 1 and 1 in the stacking direction D1 of the unit cells 1 is “bus bar 50”, and the row direction D2 of the battery group
  • the unit cell 1 has a belt-like positive electrode plate 2, a negative electrode plate 3, and a separator 4, and a power generation element 10 formed by superimposing them and a battery that houses the power generation element 10 inside.
  • the lithium ion secondary battery includes a case 8.
  • the positive electrode plate 2 carries a positive electrode active material layer (not shown) on both surfaces of a strip-shaped aluminum foil.
  • the positive electrode active material layer includes, for example, lithium nickel oxide (LiNiO 2 ) as a positive electrode active material, acetylene black as a conductive agent, and polytetrafluoroethylene (PTFE) and carboxymethyl cellulose (CMC) as a binder.
  • the negative electrode plate 3 carries a negative electrode active material layer (not shown) on both sides of a strip-shaped copper foil. This negative electrode active material layer contains, for example, graphite and a binder.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 LiPF 6
  • the materials used for the positive electrode plate 2, the positive electrode active material layer, the negative electrode plate 3, the negative electrode active material layer, and the electrolytic solution are merely examples, and those generally used for lithium ion batteries can be selected as appropriate. That's fine.
  • the battery case 8 of the unit cell 1 has a battery case body 81 and a sealing lid 88 both made of aluminum.
  • An insulating member (not shown) such as an insulating film is interposed between the battery case 8 and the power generation element 10 to insulate each other.
  • the sealing lid 88 closes the opening of the battery case body 81 and is welded to the battery case body 81.
  • the positive electrode terminal portion 21 ⁇ / b> A and the negative electrode terminal portion 31 ⁇ / b> A located at the distal end pass through the sealing lid 88, respectively. In FIG. 2, it protrudes from the sealing lid 88.
  • An insulating member 89 made of an insulating resin is interposed between the positive terminal portion 21A and the negative terminal portion 31A and the sealing lid 88 to insulate each other.
  • a safety valve 87 is also sealed on the sealing lid 88.
  • FIG. 3 shows the relationship between the charging rate (SOC) and voltage of the unit cell 1 which is a lithium ion secondary battery.
  • the unit cell 1 maintains a substantially constant voltage value (about 3.6 V in this embodiment) with little change in voltage value when the SOC is in the range of 30% to 60%.
  • the SOC is lower than 30% (overdischarge state)
  • the voltage value drops rapidly and the required battery output cannot be obtained.
  • an overdischarge state with an SOC of 30% or less is left, cobalt on the positive electrode side and copper on the negative electrode side begin to elute, and the function as a secondary battery is significantly degraded.
  • the SOC is higher than 60% (overcharged state)
  • the voltage value increases rapidly and the battery output becomes unstable.
  • the single cell 1 has a minimum SOC value (30% in the present embodiment) and a maximum use value (60% in the present embodiment), and is controlled to be within the range when used.
  • the cell 1 is manufactured (S01). Thereafter, the unit cell 1 is inspected (S02). In the inspection of the unit cell 1, for example, the SOC is adjusted to an intermediate value (45% in this embodiment) of the usage range.
  • a known technique may be used for the manufacture in S01 and the inspection in S02.
  • FIG. 5 shows the stack 90 after the unit cell 1 is assembled in S04.
  • the individual cells 1 are not connected by the bus bars 50 and 51 (see FIG. 1), and the individual cells 1 are not electrically connected.
  • the voltage value of each unit cell 1 assembled as the stack body 90 When the voltage of each unit cell 1 assembled as the stack body 90 is measured, the voltage value varies. There are several possible reasons why the voltage value varies. Here, the reason why the voltage value varies will be described with reference to the graph of FIG. FIG. 6 shows a voltage transition after the cell 1 is discharged.
  • the voltage value of the single cell 1 decreases when the discharge is performed by the discharge device.
  • resistance such as wiring resistance of the discharge device disappears and the voltage value increases. And it is stabilized at a predetermined voltage value. After that, the voltage value gradually decreases over time due to self-discharge.
  • the reason for the variation in the voltage after the discharge of the unit cell 1 is, for example, the elapsed time from the end of the discharge.
  • the voltage drop is different.
  • the voltage value varies slightly due to the difference in the elapsed time from the end of the discharge (measurement of individual A in FIG. 6).
  • Time a1 and measurement time a2) In addition, for example, differences in discharge facilities (differences in wiring resistance, etc.) and differences in environments (differences in temperature, humidity, etc.) also cause voltage variations.
  • the unit cell 1 has individual differences in internal resistance.
  • the voltage variation of each unit cell 1 constituting the stack body 90 as described above may cause a decrease in performance or a decrease in life as the assembled battery 100.
  • the assembled battery 100 is controlled so that the SOC of each unit cell 1 is within the use range.
  • FIG. 7 shows a control range of the assembled battery (set A) having a small voltage variation and the assembled battery (set B) having a large voltage variation.
  • the plot in FIG. 7 shows the range of voltage variation of the single cells constituting the assembled battery.
  • the position of the set Amax is the maximum and the position of the set Amin is the minimum.
  • the position of the battery set Bmax is the maximum
  • the position of the battery set Bmin is the minimum.
  • the assembled battery B has a smaller degree of freedom than the assembled battery A (DB ⁇ DA) as shown in FIG. Therefore, it is necessary to frequently charge or discharge in order to keep the SOC within the use range, so that the control becomes complicated and the progress of deterioration becomes faster.
  • the individual cells 1 constituting the stack body 90 are adjusted so that the SOC is changed from 40% to 30% by discharge (S05). ). That is, all the cells 1 are adjusted to the same SOC by discharging in the same equipment, the same environment, and the same time. Thereby, the voltage of each single battery 1 which comprises the stack body 90 is arrange
  • the discharge device 60 of the present embodiment includes a work table 61 on which a work 90 (stack body 90) is placed, and a rib 62 that protrudes from the upper surface of the work table 61 (the face on which the work 90 is placed).
  • a pressing member 63 that presses the work 90 placed on the work table 61 against the rib 62 side to fix the work 90 and a plurality of contact portions 65 are arranged at equal intervals, and the vertical direction in FIG.
  • Contact table 64A, 64B provided movably in the left-right direction and the depth direction is provided.
  • the contactor tables 64A and 64B are arranged on the left side of the pressing direction of the pressing member 63 (left and right direction in FIG. 8, hereinafter, the pressing member 63 side is referred to as “left side” and the rib 62 side is referred to as “right side”).
  • a contact table 64A is arranged on the right side, and a contact table 64B is arranged on the right side.
  • the contactor tables 64A and 64B have a contact part 65 protruding from the lower surface, and the contact part 65 is arranged at a position facing the terminal part 91 (the positive terminal part 21A or the negative terminal part 31A) of the work 90. Yes.
  • the contact part 65a of the left end of the contactor table 64A is positioned so that the position of the terminal part 91a of the cell 1 of the left end of the workpiece
  • work 90 may match the position of the left-right direction and a depth direction.
  • the contact portion 65b at the right end of the contact table 64B is positioned so that the positions in the left and right direction and the depth direction coincide with the terminal portion 91b of the unit cell 1 at the right end of the work 90.
  • each contact portion 65 accommodates a contact 67 in a cylindrical guide portion 66.
  • the guide portion 66 is open at the end facing the workpiece 90, and the opening diameter is designed to be a size that can accommodate the terminal portion 91 of the workpiece 90.
  • the terminal portion 91 of the work 90 is guided by the guide portion 66 and can be smoothly connected to the contact 67 of the discharge device.
  • the assembled battery 100 is formed by electrically connecting the single cells 1 in series by the bus bars 50 and 51 (S06).
  • the series connection of the cells 1 in S06 may be immediately after the collective discharge in S05, may be immediately before shipment, or may be immediately before in-vehicle.
  • the single battery 1 is discharged alone (discharge in S03; hereinafter referred to as “discharge before assembly”) and then discharged even after each single battery 1 is assembled. (Discharge in S05, hereinafter referred to as “collective discharge”).
  • the SOC adjusted by this collective discharge shall be the minimum usage% within the usage range. Note that the minimum usage% does not need to be strict, and even a value larger than the minimum usage% may be a value that approximates the minimum usage%. For example, it may be adjusted to a value slightly larger than the minimum usage% in consideration of the voltage being lowered by natural discharge or the like.
  • the target SOC (or voltage value) after discharge before assembly is determined based on the target SOC (or voltage value) after collective discharge.
  • the voltage value (discharge amount due to collective discharge) fluctuated by collective discharge is determined by the voltage variation amount X after assembly discharge, the voltage variation amount Y ( ⁇ X) after collective discharge, and the assembly. It is set to be larger than the total value (X + Y + Z) of the voltage value Z that fluctuates by self-discharge with the elapsed time from pre-attachment discharge to collective discharge.
  • the voltage of SOC 30% which is the minimum usage%, is 3.500 V
  • the voltage variation X after discharge before assembly is ⁇ 0.025 V
  • the voltage variation after collective discharge It is assumed that Y is 0.005V
  • the voltage value Z that varies due to self-discharge accompanying the elapsed time from discharge before assembly to collective discharge is 0.010V.
  • the total value (X + Y + Z) is 0.070V. Therefore, what is necessary is just to set the voltage after discharge before assembly to be 3.570V or more.
  • the target value after discharge before assembly is 3.600 V (40% in terms of SOC).
  • FIG. 10 exemplifies the transition of the variation in the voltage of the unit cell 1 when the pre-assembly discharge and the collective discharge are performed.
  • A in FIG. 10 shows the voltage variation immediately after the unit cell 1 is assembled as the stack body 90. At this stage, the SOC of each unit cell 1 was 40%, and the voltage variation was ⁇ 0.025V. After assembling, the cells were left for 20 days, and each unit cell 1 was self-discharged.
  • (B) in FIG. 10 shows the voltage variation of each unit cell 1 after 20 days and immediately before the collective discharge. By this self-discharge, the voltage of each unit cell 1 decreased by about 0.010V. Thereafter, collective discharge was performed until the SOC reached 30%.
  • C in FIG. 10 shows the voltage variation of the unit cell 1 immediately after the collective discharge. Due to this collective discharge, the voltage variation of the single cell 1 was reduced and reduced to a voltage variation of 0.005V.
  • the single battery 1 is once adjusted to 40% SOC (an example of the first charging rate), and then the single battery 1 with 40% SOC is assembled and stacked.
  • a body 90 is formed.
  • Each cell 1 at this stage has a large voltage variation.
  • the plurality of single cells 1 constituting the stack body 90 are adjusted to SOC 30% (an example of the second charge rate) by collective discharge.
  • the discharge conditions (equipment, time, environment, etc.) of each single cell 1 become the same. Therefore, the voltage variation of each unit cell 1 constituting the stack body 90 is reduced.
  • the voltages of the unit cells 1 are made uniform by discharging, a power source necessary for charging is not necessary. Further, the single cells 1 after the collective discharge are arranged with the SOC of the minimum use%, and are safe at the time of storage and shipment.
  • the present invention is applied to a lithium ion battery, but the type of battery is not limited to this. That is, the single battery in the present invention may be a secondary battery that can be charged and discharged, and can be applied to a nickel metal hydride battery, a nickel cadmium battery, and the like.
  • the battery pack is not limited to an in-vehicle assembled battery, and may be an assembled battery for home appliances, for example.
  • the adjustment of the SOC of the single cell 1 before assembly of S03 is performed by discharging.
  • the SOC of the single cell 1 can be adjusted to a predetermined value, and charging may be performed as appropriate. .
  • the SOC (first charge rate) after discharge before assembly is 40% and the SOC (second charge rate) after collective discharge is 30%.
  • the SOC value is limited to these values. Instead, it can be set as appropriate depending on the configuration of the unit cell 1. In view of safety, it is desirable that the first charging rate be equal to or lower than the intermediate value in the range of the SOC used.
  • all the unit cells 1 constituting the stack body 90 are discharged together, but may be divided into a plurality of groups. That is, by discharging at least two unit cells 1 at once, the voltage values of the unit cells 1 are made uniform. Of course, it is desirable to discharge all the single cells 1 at a time in order to equalize the voltages of the single cells 1 in the assembled battery 100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 先ず,単電池(1)を製造する(S01)。そして,各単電池(1)を検査後(S02),各単電池(1)をSOC40%に調整する(S03)。その後,その単電池(1)を組み付けてスタック体(90)を形成する(S04)。そして,そのスタック体(90)の状態で,そのスタック体(90)を構成する複数の単電池(1)を,一括放電によってSOC30%に調整する(S05)。この一括放電では,スタック体(90)の状態で,複数の単電池(1)を一括放電するため,各単電池(1)の放電条件(設備,時間,環境等)が同一である。

Description

組電池の製造方法
 本発明は,複数の単電池を有する組電池の製造方法に関する。
 近年,リチウムイオン電池等の二次電池は,携帯型PCや携帯電話を始めとする電子機器のみならず,ハイブリッド車や電気自動車等の車両用電源として注目されている。このリチウムイオン電池等の二次電池では,複数の単電池(単セル)を直列に接続し,組電池とすることで所望の出力電圧を得ている。
 組電池が適正な性能を発揮するには,組電池を構成する各単電池が正常でなければならない。そこで,組電池として組み付けるに先立って,各単電池の検査を行っている。検査済みの単電池については,保管や出荷における安全面を考慮して,放電によって使用最小%の充電率(SOC:State of Charge)に近い値に調整される。
 図11は,従来の組電池の製造工程を示している。まず,単電池を製造する(S11)。その後,各単電池を所定のSOCに調整し,単電池単体の検査を行う(S12)。検査済みの単電池に対しては,放電を実施し,SOCが使用最小%(本形態では30%とする)となるように調整が行われる(S13)。その後,放電後の各単電池を積み重ねてスタック体を形成する(S14)。その後,スタック体を構成する各単電池を電気的に直列に接続することで組電池となる(S16)。
 また,スタック体を形成した後,さらにスタック体を構成する各単電池を検査する技術が知られている。例えば,特許文献1に開示されている組電池の製造方法では,まず,単電池単体の状態で,各単電池をSOCを使用最小%未満に調整して各単電池を検査する。その後,検査済みの単電池を組み付け,組み付けられた各単電池についてSOCが使用中間値となるまで充電し,その状態で再度各単電池を検査する。その後,組電池とした状態で検査する。
特開2006-324163号公報
 しかしながら,従来の組電池の製造方法には,次のような問題があった。すなわち,放電後の単電池は,単電池の個体差(内部抵抗差),放電設備の違い,温度・湿度等の環境の違い,放電実施からの経過時間の違いなどにより,放電後の電圧にばらつきが生じる。単電池の電圧ばらつきは,組電池の性能を悪化させる要因の1つとなる。
 また,特許文献1のように,単電池を組み付けた後に,全ての単電池を同じ条件(設備,環境,時間等)で充電することで,放電後電圧のばらつきを小さくすることが期待できる。しかし,充填には電源が必要であり,装置自体が高価になる。また,スタック体を構成する各単電池を高SOC状態で保管ないし出荷することは,安全面で好ましくない。
 本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,組電池を構成する各単電池の電圧ばらつきを,安全に抑制した組電池の製造方法を提供することにある。
 この課題の解決を目的としてなされた組電池の製造方法は,複数の単電池を有する組電池の製造方法であって,単電池を,その充電率が第1充電率となるように調整する第1調整ステップと,充電率が第1充電率に調整された複数の単電池を組み付け,各単電池が電気的に非接続のスタック体を形成する組付ステップと,スタック体を構成する少なくとも2つの単電池を,充電率が第1充電率よりも低い第2充電率となるように一括放電する第2調整ステップとを含むことを特徴としている。
 上記の組電池の製造方法では,一旦,単電池を第1充電率に調整した後,調整後の単電池を組み付けてスタック体を形成する。そして,そのスタック体の状態で,そのスタック体を構成する複数の単電池を,一括放電によって第2充電率に調整する。このようにスタック体の状態で複数の単電池を一括放電することで,スタック体を構成する各単電池の放電条件(設備,時間,環境等)が同一となる。そのため,スタック体を構成する各単電池の電圧ばらつきが小さくなる。また,本発明では,放電によって単電池の電圧を揃えるため,スタック体を構成した後の設備に,充電の際に必要な電源は不要である。また,各単電池は,第1充電率よりも低い第2充電率で揃えられており,保管や出荷の際に安全である。
 また,上記の製造方法の第2調整ステップでは,スタック体を構成する全ての単電池を,第2充電率となるように一括放電するとよい。組電池では,全ての単電池を一括放電した方が,全ての単電池の電圧を揃える意味で望ましい。
 また,上記の製造方法における第2充電率は,単電池の使用最小限の値であるとよい。すなわち,一括放電後の充電率である第2充電率は,使用最小限の値であることが,安全面で最も望ましい。なお,ここでいう使用最小限の値(使用最小%)は,厳密である必要はなく,使用最小%よりも大きい値であっても使用最小%に近似する値であればよい。例えば,自己放電によって電圧が低下することを考慮して,使用最小%よりも僅かに大きい値としてもよい。
 また,上記の製造方法における第2調整ステップでの放電による電圧変化量は,各単電池の放電前の電圧ばらつき量よりも大きいとよい。一括放電による電圧変化量を放電前の電圧ばらつき量よりも大きくすることで,電圧ばらつきを効果的に低減することが期待できる。また,第2調整ステップでの放電による電圧変化量は,さらに,組付ステップによるスタック体の形成時点からの電圧変化量を加えた値よりも大きいほうが望ましい。また,第2調整ステップでの放電による電圧変化量は,さらに,各単電池の一括放電後の電圧ばらつき量を加えた値よりも大きいほうが望ましい。
 本発明によれば,組電池を構成する各単電池の電圧ばらつきを,安全に抑制した組電池の製造方法が実現される。
実施の形態にかかる組電池の斜視図である。 実施の形態にかかる単電池の斜視図である。 実施の形態にかかる単電池の,充電率(SOC)と電圧との関係を示すグラフである。 実施の形態にかかる組電池の製造手順を示す図である。 実施の形態にかかるスタック体の斜視図である。 実施の形態にかかる単電池の,放電後の電圧推移を示すグラフである。 実施の形態にかかる組電池の,適正使用範囲を示すグラフである。 実施の形態にかかる放電装置の概略構成図である。 実施の形態にかかる放電装置の,接触子の周辺の概略構成図である。 実施の形態にかかる単電池群の,放電実施による電圧の推移を示すグラフである。 従来の形態にかかる組電池の製造手順を示す図である。
 以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。なお,本実施の形態は,ハイブリッド自動車等に車載されるリチウムイオン組電池の製造方法に本発明を適用したものである。
 [組電池の構成]
 まず,本形態の組電池100について,図1を参照しつつ説明する。本形態の組電池100は,複数の単電池1と,金属板である2つのエンドプレート(第1エンドプレート12,第2エンドプレート13)とを有している。
 第1エンドプレート12および第2エンドプレート13は,組電池100のうち,複数の単電池1の積層方向(図1中の矢印D1方向)の両端側に配置され,各単電池1の積層方向の寸法変化を抑制している。例えば,第1エンドプレート12および第2エンドプレート13は,エンドプレート12,13自身を積層方向D1に挿通する不図示の棒状ボルトを複数用いて,積層方向D1に積層した単電池1を所定の圧力で挟持することで寸法変化を抑制している。
 また,組電池100は,第1エンドプレート12から第2エンドプレート13まで単電池1が積層された電池群が,積層方向D1に2列に列置されている。また、隣り合う単電池1,1を,銅製のバスバー(単電池1の積層方向D1に隣り合う単電池1,1を接続する溝型のバスバーを「バスバー50」,電池群の列置方向D2に隣り合う単電池1,1を接続する平板のバスバーを「バスバー51」とする)によって互いに直列に接続している。
 [単電池の構成]
 続いて,本形態の組電池100を構成する単電池1について,図2を参照しつつ説明する。単電池1は,いずれも帯状の正電極板2と負電極板3とセパレータ4とを有し,これらを重ね合わせて捲回してなる発電要素10と,内部にこの発電要素10を収容する電池ケース8を備えるリチウムイオン二次電池である。
 発電要素10のうち,正電極板2は,帯状のアルミ箔の両面に不図示の正極活物質層を担持している。この正極活物質層には,例えば,正極活物質のニッケル酸リチウム(LiNiO2 ),導電剤のアセチレンブラック,および結着剤のポリテトラフルオロエチレン(PTFE),カルボキシルメチルセルロース(CMC)が含まれる。また,負電極板3は,帯状の銅箔の両面に不図示の負極活物質層を担持している。この負極活物質層には,例えば,グラファイトおよび結着剤が含まれる。また,不図示の電解液は,エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを,体積比でEC:EMC=3:7に調整した混合有機溶媒に,溶質として6フッ化リン酸リチウム(LiPF6 )を添加し,リチウムイオンを1mol/lの濃度とした有機電解液である。なお,正電極板2,正極活物質層,負電極板3,負極活物質層,電解液に利用される物質は,一例であり,一般的にリチウムイオン電池に利用されるものを適宜選択すればよい。
 単電池1の電池ケース8は,共にアルミニウム製の電池ケース本体81及び封口蓋88を有する。電池ケース8と発電要素10との間には,絶縁フィルム等の絶縁部材(不図示)が介在し,互いを絶縁している。封口蓋88は,電池ケース本体81の開口を閉塞して,電池ケース本体81に溶接されている。また,封口蓋88には,発電要素10と接続している正極集電部材21および負極集電部材31のうち,それぞれ先端に位置する正極端子部21Aおよび負極端子部31Aが貫通しており,図2中,封口蓋88から突出している。これら正極端子部21Aおよび負極端子部31Aと封口蓋88との間には,それぞれ絶縁性の樹脂からなる絶縁部材89が介在し,互いを絶縁している。さらに,この封口蓋88には安全弁87も封着されている。
 図3は,リチウムイオン二次電池である単電池1の,充電率(SOC)と電圧との関係を示している。単電池1は,SOCが30%から60%の範囲内では,電圧値の変化が少なく,ほぼ一定の電圧値(本形態では約3.6V)を維持する。一方,SOCが30%よりも低い状態(過放電状態)になると,電圧値が急激に下降し,必要な電池出力が得られない。さらには,SOCが30%以下の過放電状態を放置すると,正極側のコバルトや負極側の銅が溶出し始め,二次電池としての機能が著しく低下する。また,SOCが60%よりも高い状態(過充電状態)になると,電圧値が急激に上昇し,電池出力が不安定になる。つまり,SOCが30%よりも低くなる過放電や,SOCが60%以上となる過充電は好ましくない。そのため,単電池1は,SOCの使用最小値(本形態では30%)と使用最大値(本形態では60%)とが決められており,使用時にはその範囲内となるように制御される。
 [組電池の製造手順]
 続いて,組電池100の製造手順を,図4を参照しつつ説明する。
 まず,単電池1を製造する(S01)。その後,単電池1の検査を行う(S02)。単電池1の検査では,例えば,SOCを使用範囲の中間値(本形態では45%)に調整して実施する。S01での製造およびS02での検査は,公知の技術を利用すればよい。
 S02の単電池1の検査後は,各単電池1を,SOCが40%となるように放電によって調整する(S03)。その後,放電済みの各単電池1をスタック体として組み付ける(S04)。図5は,S04における単電池1の組み付け後のスタック体90を示している。スタック体90は,バスバー50,51による各単電池1の接続(図1参照)は行われておらず,各単電池1は電気的に非接続である。
 スタック体90として組みつけられた各単電池1の電圧を計測すると,その電圧値にはばらつきがある。電圧値がばらつく理由には幾つか考えられる。ここで,電圧値がばらつく理由を図6のグラフを参照しつつ説明する。図6は,単電池1の放電後の電圧推移を示している。単電池1は,放電装置によって放電が実施されると電圧値が下降する。そして,放電が終了して単電池1の正極端子部21Aおよび負極端子部31Aが放電装置の接触子から離されると,放電装置の配線抵抗等の抵抗がなくなって電圧値が上昇する。そして,所定の電圧値で安定する。その後は,時間経過とともに自己放電によって電圧値は徐々に低下する。
 単電池1の放電後電圧のばらつき理由としては,例えば,放電終了からの経過時間がある。経過時間が異なると,電圧降下量が異なる。つまり,同じ内部抵抗を持つ電池で同じ設備を利用して放電を行ったとしても,放電終了からの経過時間の違いによって電圧値に多少のばらつきが生じる(図6中の個体Aでの,測定時間a1と測定時間a2)。この他にも,例えば,放電設備の違い(配線抵抗の違い等)や,環境の違い(温度,湿度の違い等)も,電圧ばらつきの理由になる。
 また,単電池1には,内部抵抗の個体差がある。内部抵抗が異なると,V=IRの関係から電圧値も異なる。つまり,同じ設備を利用して同じ時間に放電したとしても,電圧のばらつきが不可避的に生じる(図6中の測定時間a0での,個体Aと個体B)。
 上述したようなスタック体90を構成する各単電池1の電圧ばらつきは,組電池100としての性能低下や寿命低下を招くおそれがある。例えば,組電池100は,各単電池1のSOCが使用範囲内となるように制御される。図7は,単電池1の電圧ばらつきが小さい組電池(組A)と電圧ばらつきが大きい組電池(組B)の制御範囲を示している。図7中のプロットは,組電池を構成する単電池の電圧ばらつきの範囲を示している。組電池Aを制御範囲内で動作させようとすると,組Amaxの位置が最大であり,組Aminの位置が最小となる。一方,組電池Bを制御範囲内で動作させようとすると,組Bmaxの位置が最大であり,組Bminの位置が最小となる。組電池Aおよび組電池BをSOCの使用範囲内で動作させる場合,図7に示すように,組電池Bは,組電池Aと比較して,自由度が狭い(DB<DA)。そのため,SOCを使用範囲内にするために,頻繁に充電ないし放電を行う必要があり,制御が複雑になるとともに劣化の進行が速くなる。
 図4の組電池の説明に戻り,S04のスタック体90の形成後,そのスタック体90を構成する各単電池1に対し,放電によってSOCが40%から30%となるように調整する(S05)。すなわち,同一設備,同一環境,同一時間に,全ての単電池1を放電によって同一SOCに調整する。これにより,スタック体90を構成する各単電池1の電圧が揃えられる。
 ここで,スタック体90の一括放電を行う放電装置について説明する。本形態の放電装置60は,図8に示すように,ワーク90(スタック体90)を載置するワークテーブル61と,ワークテーブル61の上面(ワーク90を載置する面)から突出するリブ62と,ワークテーブル61上に載置されたワーク90をリブ62側に押し付けてワーク90を固定する押し付け部材63と,複数の接触部65が等間隔に列置され,図8中の上下方向,左右方向,奥行き方向に移動自在に設けられた接触子テーブル64A,64Bとを備えている。
 具体的に,接触子テーブル64A,64Bは,押し付け部材63の押し付け方向(図8の左右方向,以下,押し付け部材63側を「左側」,リブ62側を「右側」とする)の,左側に接触子テーブル64Aが,右側に接触子テーブル64Bが,それぞれ配置されている。また,接触子テーブル64A,64Bは,接触部65を下面から突出させ,その接触部65を,ワーク90の端子部91(正極端子部21Aや負極端子部31A)と対向する位置に配置している。そして,接触子テーブル64Aの左側端の接触部65aは,ワーク90の左側端の単電池1の端子部91aと,左右方向および奥行き方向の位置が一致するように,位置決めされる。一方,接触子テーブル64Bの右側端の接触部65bは,ワーク90の右側端の単電池1の端子部91bと,左右方向および奥行き方向の位置が一致するように,位置決めされる。
 このように複数の接触子テーブルに分割することで,非分割の接触子テーブルと比較して,次のような利点がある。すなわち,非分割の接触子テーブルを利用すると,スタック体90の積層方向D1の長さのばらつきの影響が大きくなる。例えば,非分割の接触子テーブルにおいて右側端の端子部91bを基準位置とすると,その基準位置から最も遠い左側端の端子部91aまでの距離が長くなる。そのため,スタック長のばらつきが大きいと,各端子部91との位置合わせが困難になる。一方,本形態のように分割の接触子テーブルにおいては,基準位置から最も遠い端子部91までの距離が,非分割の接触子テーブルよりも短くなる。そのため,端子部91との位置合わせが容易であり,接触不良を回避することが期待できる。
 また,各接触部65は,図9に示すように,接触子67を円筒形状のガイド部66に収容している。ガイド部66は,ワーク90と対向する側の端部が開口しており,その開口径はワーク90の端子部91が収容可能なサイズに設計されている。ワーク90の端子部91は,ガイド部66に案内されて,放電装置の接触子67とスムーズに接続できる。
 図4の組電池の説明に戻り,S05の一括放電後,各単電池1をバスバー50および51によって電気的に直列に接続することで組電池100を形成する(S06)。なお,S06の単電池1の直列接続は,S05の一括放電直後であってもよいし,出荷直前であってもよし,車載直前であってもよい。
 本形態の組電池100の製造方法では,単電池1単体での放電(S03での放電。以下,「組付前放電」とする)を行った後,各単電池1を組み付けた後にも放電(S05での放電。以下,「一括放電」とする)を行う。この一括放電によって調整されるSOCは,使用範囲内の使用最小%とする。なお,使用最小%は厳密である必要はなく,使用最小%よりも大きい値であっても使用最小%に近似する値であればよい。例えば,自然放電等によって電圧が低くなることを考慮して,使用最小%よりも僅かに大きい値に調節してもよい。
 [SOCの設定例]
 続いて,SOCの設定例について説明する。組付前放電後の目標SOC(あるいは電圧値)は,一括放電後の目標SOC(あるいは電圧値)を基準に決められる。具体的には,一括放電によって変動する電圧値(一括放電による放電量)が,組付前放電後の電圧のばらつき量Xと,一括放電後の電圧のばらつき量Y(<X)と,組付前放電から一括放電までの経過時間に伴って自己放電によって変動する電圧値Zと,の合計値(X+Y+Z)よりも大きくなるように設定する。
 例えば,本形態の組電池では,使用最小%であるSOC30%の電圧が3.500Vであり,組付前放電後の電圧のばらつき量Xが±0.025V,一括放電後の電圧のばらつき量Yが0.005V,組付前放電から一括放電までの経過時間に伴う自己放電によって変動する電圧値Zが0.010Vであるとする。この場合,合計値(X+Y+Z)は,0.070Vとなる。そのため,組付前放電後の電圧を3.570V以上となるように設定すればよい。本形態では,組付前放電後の目標値を,3.600V(SOCに換算して40%)とした。
 図10は,組付前放電および一括放電を実施した場合の,単電池1の電圧のばらつきの推移を例示している。図10中の(A)は,単電池1をスタック体90として組み付けた直後の電圧ばらつきを示している。この段階では,各単電池1のSOCは40%であり,その電圧ばらつきは,±0.025Vであった。組み付け後は,20日間放置し,各単電池1の自己放電を実施した。図10中の(B)は,20日間経過後であって一括放電直前の,各単電池1の電圧ばらつきを示している。この自己放電によって,各単電池1の電圧は0.010Vほど低下した。その後,SOCが30%となるまで一括放電を実施した。図10中の(C)は,一括放電直後の,単電池1の電圧ばらつきを示している。この一括放電によって,単電池1の電圧ばらつきは縮み,0.005Vの電圧ばらつきにまで減少した。
 以上詳細に説明したように本形態の組電池100の製造方法では,一旦,単電池1をSOC40%(第1充電率の一例)に調整した後,そのSOC40%の単電池1を組み付けてスタック体90を形成している。この段階での各単電池1は,電圧ばらつきが大きい。そして,そのスタック体90の状態で,そのスタック体90を構成する複数の単電池1を,一括放電によってSOC30%(第2充電率の一例)に調整している。スタック体90の状態で,複数の単電池1を一括放電することで,各単電池1の放電条件(設備,時間,環境等)が同一となる。そのため,スタック体90を構成する各単電池1の電圧ばらつきが小さくなる。また,本形態では,放電によって単電池1の電圧を揃えるため,充電の際に必要な電源は不要である。また,一括放電後の各単電池1は,使用最小%のSOCで揃えられており,保管や出荷の際に安全である。
 なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,実施の形態では,リチウムイオン電池に本発明を適用しているが,電池の種類はこれに限るものでもない。すなわち,本発明における単電池とは,充電および放電が可能な二次電池であればよく,ニッケル水素電池,ニッカド電池等にも適用可能である。また,車載用の組電池に限らず,例えば,家電製品用の組電池であってもよい。
 また,実施の形態では,S03の組み付け前における単電池1単体でのSOCの調整を放電によって行っているが,単電池1のSOCを所定値に調整できればよく,適宜,充電を行ってもよい。
 また,実施の形態では,組付前放電後のSOC(第1充電率)を40%とし,一括放電後のSOC(第2充電率)を30%としているが,SOC値はこれらに限るものではなく,単電池1の構成によって適宜設定可能である。なお,安全面を考慮すると,第1充電率は,使用SOCの範囲の中間値以下とすることが望ましい。
 また,実施の形態では,スタック体90(組電池100)を構成する全ての単電池1を一括して放電しているが,複数の組に分けて行ってもよい。すなわち,少なくとも2つの単電池1を一括して放電することで,それらの単電池1については電圧値が揃えられる。勿論,全ての単電池1を一括放電する方が,組電池100内の単電池1の電圧を揃える上で望ましい。
1     単電池
2     正電極板
3     負電極板
50,51 バスバー
10    発電要素
90    スタック体
100   組電池

Claims (6)

  1. 複数の単電池を有する組電池の製造方法において,
     単電池を,その充電率が第1充電率となるように調整する第1調整ステップと,
     充電率が前記第1充電率に調整された複数の単電池を組み付け,各単電池が電気的に非接続のスタック体を形成する組付ステップと,
     前記スタック体を構成する少なくとも2つの単電池を,充電率が前記第1充電率よりも低い第2充電率となるように一括放電する第2調整ステップと,
     を含むことを特徴とする組電池の製造方法。
  2. 請求項1に記載する組電池の製造方法において,
     前記第2調整ステップでは,前記スタック体を構成する全ての単電池を,前記第2充電率となるように一括放電することを特徴とする組電池の製造方法。
  3. 請求項1または請求項2に記載する組電池の製造方法において,
     前記第2充電率は,前記単電池の使用最小限の値であることを特徴とする組電池の製造方法。
  4. 請求項1から請求項3のいずれか1つに記載する組電池の製造方法において,
     前記第2調整ステップでの放電による電圧変化量は,各単電池の放電前の電圧ばらつき量よりも大きいことを特徴とする組電池の製造方法。
  5. 請求項1から請求項3のいずれか1つに記載する組電池の製造方法において,
     前記第2調整ステップでの放電による電圧変化量は,各単電池の放電前の電圧ばらつき量に,前記組付ステップによる前記スタック体の形成時点からの電圧変化量を加えた値よりも大きいことを特徴とする組電池の製造方法。
  6. 請求項1から請求項3のいずれか1つに記載する組電池の製造方法において,
     前記第2調整ステップでの放電による電圧変化量は,各単電池の放電前の電圧ばらつき量および前記組付ステップによる前記スタック体の形成時点からの電圧変化量に,各単電池の一括放電後の電圧ばらつき量を加えた値よりも大きいことを特徴とする組電池の製造方法。
PCT/JP2010/055309 2010-03-26 2010-03-26 組電池の製造方法 WO2011118015A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010539655A JP5299434B2 (ja) 2010-03-26 2010-03-26 組電池の製造方法
US13/258,001 US8673026B2 (en) 2010-03-26 2010-03-26 Assembled battery manufacturing method
PCT/JP2010/055309 WO2011118015A1 (ja) 2010-03-26 2010-03-26 組電池の製造方法
CN201080013767.8A CN102365782B (zh) 2010-03-26 2010-03-26 电池组的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055309 WO2011118015A1 (ja) 2010-03-26 2010-03-26 組電池の製造方法

Publications (1)

Publication Number Publication Date
WO2011118015A1 true WO2011118015A1 (ja) 2011-09-29

Family

ID=44672606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055309 WO2011118015A1 (ja) 2010-03-26 2010-03-26 組電池の製造方法

Country Status (4)

Country Link
US (1) US8673026B2 (ja)
JP (1) JP5299434B2 (ja)
CN (1) CN102365782B (ja)
WO (1) WO2011118015A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016175148A1 (ja) * 2015-04-28 2018-02-15 株式会社カネカ 梱包物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6478121B2 (ja) * 2016-09-07 2019-03-06 トヨタ自動車株式会社 二次電池の回復処理方法および再利用処理方法
US11404887B2 (en) * 2020-02-14 2022-08-02 Techtronic Cordless Gp Battery charging and discharging using a battery bank during battery manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324163A (ja) * 2005-05-20 2006-11-30 Toyota Motor Corp 組電池の組付け方法
JP2008293703A (ja) * 2007-05-22 2008-12-04 Panasonic Ev Energy Co Ltd 組電池の製造方法、及び組電池
JP2009043736A (ja) * 2008-10-22 2009-02-26 Panasonic Corp 構成電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672736B1 (fr) * 1991-02-08 1993-04-16 Accumulateurs Fixes Procede d'optimisation de la charge d'une batterie d'accumulateurs, et dispositif pour la mise en óoeuvre de ce procede.
JP3615507B2 (ja) * 2001-09-28 2005-02-02 三洋電機株式会社 組電池の充電率調整回路
JP3976268B2 (ja) * 2003-11-28 2007-09-12 インターナショナル・ビジネス・マシーンズ・コーポレーション 電池パック、電気機器、コンピュータ装置、電池の制御方法、電力供給方法、およびプログラム
JP2005278241A (ja) * 2004-03-23 2005-10-06 Nissan Motor Co Ltd 組電池の容量調整装置および容量調整方法
US9825267B2 (en) * 2006-05-04 2017-11-21 Lg Chem, Ltd. Lithium secondary battery and method for producing the same
JP2009257775A (ja) * 2008-04-11 2009-11-05 Kawasaki Heavy Ind Ltd 二次電池の充電率推定方法及び装置
JP2010009840A (ja) * 2008-06-25 2010-01-14 Panasonic Corp 組電池およびそれを備えた電池システム
DE102008034461A1 (de) * 2008-07-24 2010-01-28 Ford Global Technologies, LLC, Dearborn Verfahren und Vorrichtung zur Ermittlung des Betriebszustandes einer Fahrzeugbatterie
KR101187766B1 (ko) * 2008-08-08 2012-10-05 주식회사 엘지화학 배터리 셀의 전압 변화 거동을 이용한 셀 밸런싱 장치 및 방법
CN101526587B (zh) * 2009-03-20 2011-05-04 惠州市亿能电子有限公司 串联电池组荷电状态的测量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324163A (ja) * 2005-05-20 2006-11-30 Toyota Motor Corp 組電池の組付け方法
JP2008293703A (ja) * 2007-05-22 2008-12-04 Panasonic Ev Energy Co Ltd 組電池の製造方法、及び組電池
JP2009043736A (ja) * 2008-10-22 2009-02-26 Panasonic Corp 構成電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016175148A1 (ja) * 2015-04-28 2018-02-15 株式会社カネカ 梱包物

Also Published As

Publication number Publication date
CN102365782A (zh) 2012-02-29
CN102365782B (zh) 2014-07-09
JP5299434B2 (ja) 2013-09-25
US20130000109A1 (en) 2013-01-03
JPWO2011118015A1 (ja) 2013-07-04
US8673026B2 (en) 2014-03-18

Similar Documents

Publication Publication Date Title
KR101873659B1 (ko) 비수계 이차 전지의 제조 방법
KR102089264B1 (ko) 이차전지의 충방전 장치
KR101903913B1 (ko) 비수계 이차 전지
US10424816B2 (en) Lithium-ion secondary battery and manufacturing method thereof
CN104303332A (zh) 具有阶梯状结构的电池单体
KR101626190B1 (ko) 이차전지의 활성화 방법
KR101617423B1 (ko) 계단 구조의 하이브리드 전극조립체
JP2011108507A (ja) 二次電池
JP2015118867A (ja) 全固体電池の製造方法
US20240113529A1 (en) Method of battery cell activation
US20120007564A1 (en) Nonaqueous electrolyte secondary battery and method for charging the same
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
AU2012370347A1 (en) Lithium-ion battery
JP5299434B2 (ja) 組電池の製造方法
KR101431726B1 (ko) 안전성이 향상된 전극조립체 및 이를 이용한 이차전지
JP5776948B2 (ja) リチウム二次電池およびその製造方法
KR20150023113A (ko) 가스이동파이프를 포함하는 배터리 팩
JP2012209026A (ja) 組電池の製造方法
KR101717154B1 (ko) 경화성 물질이 부가된 전지셀 제조 방법 및 제조 장치
KR102233106B1 (ko) 밀폐형 전지 및 조전지
WO2023063009A1 (ja) 二次電池
CN116830344A (zh) 蓄电元件以及蓄电元件的使用方法
KR20140050545A (ko) 리튬 이온 이차 전지용 정극
CN114982035A (zh) 电池组、电池包、电学装置以及电池组的制造方法及制造设备
JP2005347195A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013767.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010539655

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13258001

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848408

Country of ref document: EP

Kind code of ref document: A1