WO2011116914A1 - Hydrostatisches hybrid-antriebssystem - Google Patents

Hydrostatisches hybrid-antriebssystem Download PDF

Info

Publication number
WO2011116914A1
WO2011116914A1 PCT/EP2011/001375 EP2011001375W WO2011116914A1 WO 2011116914 A1 WO2011116914 A1 WO 2011116914A1 EP 2011001375 W EP2011001375 W EP 2011001375W WO 2011116914 A1 WO2011116914 A1 WO 2011116914A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
accumulator
working line
pressure
pressure side
Prior art date
Application number
PCT/EP2011/001375
Other languages
English (en)
French (fr)
Inventor
Frank Bauer
Herbert Baltes
Peter Kloft
Original Assignee
Hydac Technology Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydac Technology Gmbh filed Critical Hydac Technology Gmbh
Priority to JP2013500378A priority Critical patent/JP5997129B2/ja
Priority to US13/261,405 priority patent/US9180764B2/en
Priority to CN201180015016.4A priority patent/CN102811877B/zh
Priority to EP11710703.7A priority patent/EP2550170B1/de
Publication of WO2011116914A1 publication Critical patent/WO2011116914A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/20Accumulator cushioning means
    • F15B2201/205Accumulator cushioning means using gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/31Accumulator separating means having rigid separating means, e.g. pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/32Accumulator separating means having multiple separating means, e.g. with an auxiliary piston sliding within a main piston, multiple membranes or combinations thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/433Pump capacity control by fluid pressure control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a hydrostatic hybrid drive system for road vehicles, with a connected to the drive train of the vehicle or connectable pump motor unit, which is controllable by a control unit in a pump or motor operation and a first, by a switching valve lockable working line with a high-pressure hydraulic accumulator and via a second working line with a low-pressure hydraulic accumulator is connected, wherein high-pressure accumulator and low-pressure accumulator are formed by a double piston accumulator, in which a high-pressure side and a low-pressure side are formed in a storage housing, each with a storage piston the fluid spaces of the
  • High pressure side and the low pressure side are separated by a central housing piece, through which extends the common piston for both accumulator piston rod.
  • hybrid drive systems are increasingly being used in automotive engineering.
  • the systems currently in use are mostly electric motor hybrids in which electrical energy obtained during braking is stored and drive energy is recovered from the stored energy in order to support the vehicle for driving and in particular for acceleration processes. This opens up the possibility for comparable performance reduce the drive power of serving as a prime mover combustion engine.
  • Such "down siz- ing" not only leads to a reduction in fuel consumption, but also opens up the possibility of allocating relevant vehicles to a lower emission class corresponding to a lower emission class.
  • hydraulic energy is stored in a hydraulic accumulator by means of a pump-motor unit in order, if necessary, to operate the pump during engine operation.
  • Motor unit to be used as drive energy.
  • Such a hydrostatic drive system with recovery of braking energy is shown in the document DE 601 18 987 T2.
  • the present invention seeks to provide a hydrostatic hybrid drive system available, which is characterized by a particularly good performance for the intended purposes operation.
  • a significant feature of the invention is that the control unit of the pump-motor unit with control fluid from the first working line via a line connection is supplied to the first working line between the pump-motor unit and the switching valve is provided. This is a reliable supply to the control unit with one for a rapid response of the control functions of the control unit ensures required control pressure, regardless of the respective operating mode.
  • a check valve is arranged, which is pressure-actuated against the first working line, that leakage fluid of the pump-motor-egg can be supplied to the second working line is and that the Leckfl uid is fed via a charge pump to the second working line.
  • the Steuerei is beauty of the pump motor-egg beauty with gefi ltertem Steuerfl uid via a Druckminderventi l with upstream Fluidfi lter supplied, which is connected to the first working line.
  • the pump-motor unit is gebied by an axial piston machine, which can be reversed by changing the pivoting angle beyond zero angle between pump and motor operation.
  • an Is supply tank is preferably connected to the gas side of the high pressure side of the double piston accumulator. Since the system of the invention, the low pressure level is constant thanks to the use of the double piston accumulator, this pressure can be adjusted by a small auxiliary memory, which is connected to the second working line and also compensates for compression losses.
  • the invention is also a double piston accumulator, which is provided in particular for use in a drive system according to one of claims 1 to 7 and having the features of claim 8.
  • FIG. 1 shows a greatly simplified symbol representation of only the hydraulic circuit of an embodiment of the drive system according to the invention without peripheral components such as control devices and vehicle-mounted mechanical components;
  • Fig. 5 shows a section corresponding to the section line Vl-Vl of
  • Fig. 4 shows the hydraulic circuit of an embodiment, wherein a pump-motor unit is denoted by 1, which is driven in the same direction of rotation by an internal combustion engine of the relevant vehicle, which, like the other vehicle parts is not shown is.
  • the pump-motor unit 1 is directly driven by the schematically indicated crankshaft 3 of the internal combustion engine.
  • the pump-motor unit 1 is an axial piston machine whose pivot angle is adjustable by means of an electro-hydraulic control unit 5 beyond a neutral zero position in both pivoting directions, so that the pump-motor unit 1 with constant rotation in pump operation and can work in engine operation.
  • the control unit 5 cooperates via an interface, not shown, with the prior art electronic engine management of the vehicle.
  • a first working line 7 On the high pressure side of the pump-motor unit 1, a first working line 7 is connected, and on the low-pressure side of the pump-motor unit 1, a second working line 9 is connected.
  • the first working line 7, as the high pressure line, and the second working line 9, as the low pressure line, together with a double piston accumulator 1 1 form a kind of hydraulic cradle in the pressurized fluid to the double piston accumulator 1 1 out and from the double piston accumulator 1 1 ago is conveyed.
  • the double piston accumulator 1 1 fulfills the functions of a high pressure accumulator and a low pressure accumulator.
  • a high-pressure accumulator piston 15 and a low-pressure accumulator piston 1 7 are slidable in a common storage housing 1 3, which are fixedly connected to each other via a common piston rod 19.
  • the piston rod 19 extends through a housing middle part 21 which separates a fluid space 23 of the high-pressure side from a fluid space 25 of the low-pressure side.
  • a reservoir 1 9 with N2 gas on the gas side 27 is connected.
  • a supply line 31 is connected to the first working line 7 for supplying control fluid supplied to a supply connection 37 via a fluid filter 33 and a pressure limiting valve 35, the control pressure level being via pressure limiting valves 39 and 41 with respect to the first working line 7 and the second working line 9 is adjustable. Between these working lines there is a check valve 43, the pressure-actuated to the first working line 7 out is apparent. In order to prevent leakage of the pump-motor unit 1, while at pivoting angle zero the system is idle befi, the first working line 7 can be blocked by a switching valve 45.
  • the leakage fluid of the pump 1 via a filter 49 with a bypass 51 and a charge pump 55 to the second working line 9 is supplied. Since the housing pressure of the pump 1 corresponds to the pressure level of the second working line 9, it is secured by a pressure limiting valve 53 for safety reasons.
  • a axial piston closed-cycle machine is used as the pump-motor unit 1, it is necessary to work with an increased low-pressure level because of the higher flow losses that occur.
  • an elevated pressure level is not allowed as the housing pressure of the pump, an additional leakage line must be provided to protect the housing seal from overloading.
  • Closed circuit pumps also require a pressure differential between the housing and low pressure side to hold the pistons to the pivot plate.
  • a small, electric motor driven charge pump 55 is arranged in a separate line 57 to compensate for the leakage by pumping to the second working line 9 out. The housing pressure is now decoupled from the low pressure level.
  • the increased low-pressure level in the second working line 9 now opens up the possibility of supplying the control unit 5 with control fluid from the second working line 9, namely via the check valve 43.
  • the pressure-limiting valve 35 in the second exemplary embodiment is located between the pump unit 1 and the switching valve 45 at 59 connected to the first working line 7, from the control is fluid via the open switching valve 45, the filter 33 and the pressure relief valve 35 to the terminal 37 can be fed.
  • the check valve 43 is closed, an increased control pressure for the control unit 5 is now available.
  • FIG. 3 to 5 illustrate a practical embodiment of the double piston accumulator 1 1
  • the storage tank 13 common to both accumulator pistons 15 and 17 has a high-pressure side housing half 63 and a low-pressure side housing half 65, which are separated from one another by a housing middle part 21.
  • the two pistons 15 and 1 7 firmly connecting piston rod 19 is passed through the central part 21 with a fluid-tight seal.
  • a displacement sensor 69 extends into an inner bore 71 of the piston rod 19 in order to provide the system with an indication of the piston position.
  • a special feature of the double-piston accumulator 1 1 is also that the central housing part 21 forms a kind of valve block on which and in which all line connections and other components are located. In the example shown, these are connections 73 and 75 for a first working line 7 and a second working line 9. Furthermore, the switching medium 45, the filter 33 and the pressure limiting valve 35, the control fluid connection 37 and pressure sensors are located in the middle part 21 of the housing 77 and 79.
  • An additional advantage over hybrid electric systems is that the system of the present invention can be easily installed in existing vehicles because the pump-motor unit 1 is mechanically coupled directly to the driveline.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

Ein hydrostatisches Hybrid-Antriebssystem für Straßenfahrzeuge, mit einer mit dem Antriebsstrang des Fahrzeuges verbundenen oder verbindbaren Pumpen-Motor-Einheit (1), die mittels einer Steuereinheit (5) in einem Pump- oder Motorbetrieb steuerbar ist und über eine erste, durch ein Schaltventil (45) sperrbare Arbeitsleitung (7) mit einem Hochdruck-Hydrospeicher und über eine zweite Arbeitsleitung (9) mit einem Niederdruck-Hydrospeicher verbindbar ist, wobei Hochdruck-Hydrospeicher und Niederdruck-Hydrospeicher durch einen Doppelkolbenspeicher (11) gebildet sind, bei dem in einem Speichergehäuse (13) mit je einem Speicherkolben (15, 17) eine Hochdruckseite und eine Niederdruckseite gebildet sind, wobei die Fluidräume (23 und 25) der Hochdruckseite und der Niederdruckseite von einem Gehäusemittelstück (21) getrennt sind, durch das sich die für beide Speicherkolben (15, 17) gemeinsame Kolbenstange erstreckt, ist dadurch gekennzeichnet, dass die Steuereinheit (5) der Pumpen-Motor-Einheit (1) mit Steuerfeld aus der ersten Arbeitsleitung (7) über einen Leitungsanschluss (59) versorgbar ist, der an der ersten Arbeitsleitung (7) zwischen der Pumpen-Motor-Einheit (1) und dem Schaltventil (45) vorgesehen ist.

Description

Hydrostatisches Hybrid-Antriebssystem
Die Erfindung betrifft ein hydrostatisches Hybrid-Antriebssystem für Straßenfahrzeuge, mit einer mit dem Antriebsstrang des Fahrzeuges verbundenen oder verbindbaren Pumpen-Motor-Einheit, die mittels einer Steuereinheit in einem Pump- oder Motorbetrieb steuerbar ist und über eine erste, durch ein Schaltventil sperrbare Arbeitsleitung mit einem Hochdruck-Hydrospeicher und über eine zweite Arbeitsleitung mit einem Niederdruck-Hydrospeicher verbindbar ist, wobei Hochdruck-Hydrospeicher und Niederdruck- Hydrospeicher durch einen Doppelkolbenspeicher gebildet sind, bei dem in einem Speichergehäuse mit je einem Speicherkolben eine Hochdrucksei- te und eine Niederdruckseite gebildet sind, wobei die Fluidräume der
Hochdruckseite und der Niederdruckseite von einem Gehäusemittelstück getrennt sind, durch das sich die für beide Speicherkolben gemeinsame Kolbenstange erstreckt. Im Hinblick auf die Verknappung der Ressourcen und die zunehmende CC -Belastung der Umwelt kommen in der Fahrzeugtechnik zunehmend hybride Antriebssysteme zur Anwendung. Bei den derzeit im Einsatz befindlichen Systemen handelt es sich zumeist um elektromotorische Hybride, bei denen bei Bremsvorgängen gewonnene elektrische Energie gespeichert wird und aus der gespeicherten Energie Antriebsenergie wieder gewonnen wird, um das Fahrzeug für den Fahrbetrieb und insbesondere für Beschleunigungsvorgänge zu unterstützen. Dadurch eröffnet sich die Möglichkeit, für vergleichbare Fahrleistungen die Antriebsleistung des als Primärantrieb dienenden Verbrennungsmotors herab zu setzen. Ein derartiges„down siz- ing" führt nicht nur zu einer Verbrauchssenkung, sondern eröffnet auch die Möglichkeit, betreffende Fahrzeuge einer einer niedrigeren Leistungsklasse entsprechenden, günstigeren Schadstoffklasse zuzuordnen.
Wegen der hohen Energiedichte und des kompakten Aufbaues hydraulischer Systeme lassen sich diese Ziele auch durch ein hydraulisches Hybridsystem erreichen. Um zusätzliches Antriebsdrehmoment auch bei niedrigen Drehzahlen und von Nulldrehzahl ausgehend für Beschleunigungsvorgänge zur Verfügung zu stellen oder um bei Bremsvorgängen die Bremswirkung zu unterstützen, wird hierbei hydraulische Energie in einem Hydrospeicher mittels einer Pumpen-Motor-Einheit gespeichert, um bei Bedarf im Motorbetrieb der Pumpen-Motor-Einheit als Antriebsenergie genutzt zu werden. Ein derartiges hydrostatisches Antriebssystem mit Rückgewinnung von Bremsenergie ist in dem Dokument DE 601 18 987 T2 aufgezeigt.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein hydrostatisches Hybrid-Antriebssystem zur Verfügung zu stel- len, das sich durch ein für die vorgesehenen Einsatzzwecke besonders gutes Betriebsverhalten auszeichnet.
E findungsgemäß ist diese Aufgabe durch ein Antriebsystem gelöst, das die Merkmale des Patentanspruches 1 in seiner Gesamtheit aufweist.
Nach dem kennzeichnenden Teil des Anspruchs 1 besteht eine wesentliche Besonderheit der Erfindung darin, dass die Steuereinheit der Pumpen- Motor-Einheit mit Steuerfluid aus der ersten Arbeitsleitung über einen Lei- tungsanschluss versorgbar ist, der an der ersten Arbeitsleitung zwischen der Pumpen-Motor-Einheit und dem Schaltventil vorgesehen ist. Dadurch ist eine betriebssichere Versorgung der Steuereinheit mit einem für eine schnelle Reaktion der Steuerfunktionen der Steuereinheit erforderlichen Steuerdruck gewährleistet, unabhängig vom jeweil igen Betriebsmodus.
I n besonders vortei lhafter Weise kann hierbei vorgesehen sein, dass zwi- sehen erster und zweiter Arbeitsleitung ein Rückschlagventi l angeordnet ist, das druckbetätigt gegen die erste Arbeitsleitung hin offenbar ist, dass Leckfl uid der Pumpen-Motor-Ei nheit zu der zweiten Arbeitsleitung zuführbar ist und dass das Leckfl uid über eine Ladepumpe zu der zweiten Arbeitsleitung zuführbar ist. Dadurch lässt sich nicht nur die Leckage durch Pum- pen zur zweiten Arbeitsleitung hin ausgleichen, sondern der Druckpegel lässt sich in der über ein Druckbegrenzungsventi l abgesicherten Leitung auf einen in geeignetem Maße angehobenen Druckpegel einstellen, bei dem über das zwischen zweiter Arbeitsleitung und erster Arbeitsleitung angeordnete Rückschlagventil aus der ersten Arbeitsleitung die Versorgung der Steuereinheit mit Steuerdruck mit geeignetem Druckniveau sichergestel lt ist, auch bei Betriebszuständen, bei denen das Schaltventil geschlossen ist.
Bei vortei lhaften Ausführungsbeispielen ist die Steuerei nheit der Pumpen- Motor-Ei nheit mit gefi ltertem Steuerfl uid über ein Druckminderventi l mit vorgeschaltetem Fluidfi lter versorgbar, das an der ersten Arbeitsleitung angeschlossen ist.
Vorzugsweise ist die Pumpen-Motor-Einheit durch eine Axialkolbenmaschine gebi ldet, die durch Änderung des Schwenkwinkels über Nul lwinkel hin- aus zwischen Pumpen- und Motorbetrieb umsteuerbar ist.
Um die Druckdifferenz der Hochdruckseite des Doppelkolbenspeichers zwischen geladenem und entladenem Zustand zu verri ngern, ist vorzugsweise an der Gasseite der Hochdruckseite des Doppelkolbenspeichers ein Is -Vorratsbehälter angeschlossen. Da beim erfindungsgemäßen System der Niederdruckpegel dank der Benutzung des Doppelkolbenspeichers konstant ist, kann dieser Druck durch einen kleinen H ilfsspeicher eingestellt werden, der an der zweiten Arbeitsleitung angeschlossen ist und auch Kompressionsverluste kompensiert.
Gegenstand der Erfindung ist auch ein Doppelkolbenspeicher, der insbesondere für eine Benutzung bei einem Antriebssystem nach einem der Ansprüche 1 bis 7 vorgesehen ist und der die Merkmale des Patentanspruchs 8 aufweist.
Nachstehend ist die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels im Einzelnen erläutert.
Es zeigen:
Fig. 1 eine stark vereinfachte Symboldarstellung lediglich der hydraulischen Schaltung eines Ausführungsbeispieles des erfindungsgemäßen Antriebssystemes ohne periphere Komponenten wie Steuereinrichtungen und fahrzeugseitige mechanische Komponenten;
Fig. 2 eine grafische Darstellung des Verlaufs von Speicherdrücken; Fig. 3 und 4 eine Draufsicht bzw. Vorderansicht eines Doppelkolbenspeichers des erfindungsgemäßen Systems und
Fig. 5 einen Schnitt entsprechend der Schnittlinie Vl-Vl von
Fig. 4. Die Fig. 1 zeigt die hydraulische Schaltung eines Ausführungsbeispieles, wobei eine Pumpen-Motor-Einheit mit 1 bezeichnet ist, die in gleichbleibendem Drehsinn von einem Verbrennungsmotor des betreffenden Fahrzeuges angetrieben ist, welcher, wie die übrigen Fahrzeugteile nicht darge- stellt ist. Im vorliegenden Beispiel ist die Pumpen-Motor-Einheit 1 von der schematisch angedeuteten Kurbelwelle 3 des Verbrennungsmotors direkt angetrieben. Bei der Pumpen-Motor-Einheit 1 handelt es sich um eine Axialkolbenmaschine, deren Schwenkwinkel mittels einer elektrohydraulischen Steuereinheit 5 über eine neutrale Nullstellung hinaus in beide Schwenk- richtungen verstellbar ist, so dass die Pumpen-Motor-Einheit 1 bei gleichbleibendem Drehsinn im Pumpenbetrieb und im Motorbetrieb arbeiten kann. Die Steuereinheit 5 wirkt über eine nicht gezeigte Schnittstelle mit dem dem Stand der Technik entsprechenden elektronischen Motormanagement des Fahrzeuges zusammen.
An der Hochdruckseite der Pumpen-Motor-Einheit 1 ist eine erste Arbeitsleitung 7 angeschlossen, und an der Niederdruckseite der Pumpen-Motor- Einheit 1 ist eine zweite Arbeitsleitung 9 angeschlossen. Die erste Arbeitsleitung 7, als die Hochdruckleitung, und die zweite Arbeitsleitung 9, als die Niederdruckleitung, bilden zusammen mit einem Doppelkolbenspeicher 1 1 eine Art hydraulischer Wiege, in der Druckfluid zum Doppelkolbenspeicher 1 1 hin und vom Doppelkolbenspeicher 1 1 her förderbar ist. Der Doppelkolbenspeicher 1 1 erfüllt die Funktionen eines Hochdruckspeichers und eines Niederdruckspeichers. Zu diesem Zweck sind in einem gemeinsamen Speichergehäuse 1 3 ein Hochdruck-Speicherkolben 15 und ein Niederdruck-Speicherkolben 1 7 verschiebbar, die über eine gemeinsame Kolbenstange 19 fest miteinander verbunden sind. Die Kolbenstange 19 erstreckt sich durch ein Gehäusemittelteil 21 , das einen Fluidraum 23 der Hochdruckseite von einem Fluidraum 25 der Niederdruckseite trennt. Für die Befüllung der Gasseite 27, die an den Hochdruck-Speicherkolben 15 an- grenzt, mit Arbeitsgas, ist ein Vorratsbehälter 1 9 mit N2-Gas an der Gasseite 27 angeschlossen.
Für die Versorgung der Steuereinheit 5 mit Steuerfl uid ist eine Versorgungs- leitung 31 an der ersten Arbeitsleitung 7 angeschlossen, um über ein Fluid- fi lter 33 und ein Druckbegrenzungsventil 35 gefi ltertes Steuerfluid zu einem Versorgungsansehl uss 37 zuzuführen, wobei der Steuerdruckpegel über Druckbegrenzungsventi le 39 und 41 gegenüber der ersten Arbeitsleitung 7 bzw. der zweiten Arbeitsleitung 9 einstellbar ist. Zwischen diesen Arbeits- leitungen befindet sich ein Rückschlagventil 43, das druckbetätigt zur ersten Arbeitsleitung 7 hin offenbar ist. Um eine Leckage der Pumpen-Motor- Einheit 1 zu verhindern, während sich bei Schwenkwinkel Null das System im Leerlauf befi ndet, ist die erste Arbeitsleitung 7 durch ein Schaltventil 45 sperrbar.
Beim Betrieb eines üblichen, derartigen Antri'ebssystemes, bei dem eine erste und eine zweite Arbeitsleitung mit gesonderten Hydrospeichern verbunden sind, die ihr eigenes Arbeitsgasvolumen enthalten, sinkt der Druckpegel des Niederdruckspeichers bei ansteigendem Druckpegel des Hoch- druckspeichers, wodurch sich Schwierigkeiten für das Nachspeisen von Leckfluid der Pumpe in das System ergeben. Im Unterschied hierzu ist bei dem erfindungsgemäß vorgesehenen Doppelkolbenspeicher 1 1 die Summe der Fluidvolumina in Hochdruck-Fluidraum 23 und Niederdruck-Fluidraum 25 für sämtliche Kolbenstellungen immer gleich, so dass, dank der zusam- men bewegbaren Speicherkolben 1 5 und 1 7, der Druckpegel in der zweiten Arbeitsleitung 9, d. h. der Niederdruckleitung, konstant bleibt. Die Fig. 2 zeigt die entsprechenden Druckverläufe über der gespeicherten Energie bei gesonderten Hydrospeichern und bei dem erfindungsgemäß vorgesehenen Doppelkolbenspeicher 1 1 . Bei konstantem Druckpegel in der zweiten Arbeitsleitung 9 kann das Druckniveau auf einen optimalen Wert mittels eines angeschlossenen, kleinen Hilfs-Hydrospeichers 47 eingestellt werden, der auch Kompressionsverluste kompensiert.
Bei dem Ausführungsbeispiel von Fig. 1 wird das Leckfluid der Pumpe 1 über ein Filter 49 mit einem Bypass 51 und über eine Ladepumpe 55 zur zweiten Arbeitsleitung 9 zugeführt. Da der Gehäusedruck der Pumpe 1 dem Druckpegel der zweiten Arbeitsleitung 9 entspricht, ist diese aus Si- cherheitsgründen über einen Druckbegrenzungsventil 53 abgesichert.
Wenn als Pumpen-Motor-Einheit 1 eine Axialkolbenmaschine für geschlossenen Kreislauf benutzt wird, muss wegen dabei auftretender höherer Strömungsverluste mit einem erhöhten Niederdruckpegel gearbeitet werden. Da ein erhöhter Druckpegel als Gehäusedruck der Pumpe aber nicht zulässig ist, muss eine zusätzliche Leckleitung vorgesehen sein, um die Gehäusedichtung vor Überlastung zu schützen. Pumpen für geschlossenen Kreislauf erfordern auch eine Druckdifferenz zwischen Gehäuse und Niederdruckseite, um die Kolben an der Schwenkplatte zu halten. Im Hinblick hierauf ist bei dem Ausführungsbeispiel von Fig. 1 eine kleine, elektromotorisch angetriebene Ladepumpe 55 in einer gesonderten Leitung 57 angeordnet, um durch Pumpen zur zweiten Arbeitsleitung 9 hin die Leckage auszugleichen. Der Gehäusedruck ist nunmehr vom Niederdruckpegel entkoppelt.
Durch den erhöhten Niederdruckpegel in der zweiten Arbeitsleitung 9 eröffnet sich nunmehr die Möglichkeit, die Steuereinheit 5 mit Steuerfluid aus der zweiten Arbeitsleitung 9 zu versorgen, nämlich über das Rückschlagventil 43. Zu diesem Zweck ist das Druckbegrenzungsventil 35 beim zwei- ten Ausführungsbeispiel zwischen der Pumpeneinheit 1 und dem Schaltventil 45 bei 59 an der ersten Arbeitsleitung 7 angeschlossen, von der Steu- erfluid über das geöffnete Schaltventil 45, den Filter 33 und das Druckbegrenzungsventil 35 zum Anschluss 37 zuführbar ist. Bei geschlossenem Rückschlagventil 43 steht nun ein erhöhter Steuerdruck für die Steuereinheit 5 zur Verfügung.
Die Fig. 3 bis 5 verdeutlichen eine praktische Ausführungsform des Doppelkolbenspeichers 1 1 , dessen für beide Speicherkolben 15 und 1 7 gemeinsames Speichergehäuse 13 eine hochdruckseitige Gehäusehälfte 63 und eine niederdruckseitige Gehäusehälfte 65 aufweist, die durch ein Ge- häusemittelteil 21 voneinander getrennt sind. Die die beiden Kolben 15 und 1 7 fest miteinander verbindende Kolbenstange 19 ist durch das Mittelteil 21 mit fluiddichter Abdichtung hindurchgeführt. Vom offenen Ende 67 der niederdruckseitigen Gehäusehälfte 65 erstreckt sich ein Wegaufnehmer 69 in eine Innenbohrung 71 der Kolbenstange 19, um für das System eine Anzeige der Kolbenstellung zu liefern.
Eine Besonderheit des Doppelkolbenspeichers 1 1 besteht auch darin, dass das Gehäusemittelteil 21 eine Art Ventilblock bildet, an dem und in dem sich sämtliche Leitungsanschlüsse und weitere Komponenten befinden. Beim gezeigten Beispiel handelt es sich hierbei um Anschlüsse 73 und 75 für eine erste Arbeitsleitung 7 bzw. eine zweite Arbeitsleitung 9. Des weiteren befinden sich im Gehäusemittelteil 21 das Schaltventil 45, das Filter 33 und das Druckbegrenzungsventil 35, der Steuerfluid-Anschluss 37 sowie Drucksensoren 77 und 79.
Ein zusätzlicher Vorteil gegenüber elektrischen Hybridsystemen besteht darin, dass sich das erfindungsgemäße System ohne Schwierigkeiten in existierende Fahrzeuge einbauen lässt, weil die Pumpen-Motor-Einheit 1 unmittelbar mit dem Antriebsstrang mechanisch koppelbar ist.

Claims

P a t e n t a n s p r ü c h e
Hydrostatisches Hybrid-Antriebssystem für Straßenfahrzeuge, mit einer mit dem Antriebsstrang des Fahrzeuges verbundenen oder verbindbaren Pumpen-Motor-Einheit (1 ), die mittels einer Steuereinheit (5) in einem Pump- oder Motorbetrieb steuerbar ist und über eine erste, durch ein Schaltventil (45) sperrbare Arbeitsleitung (7) mit einem Hochdruck- Hydrospeicher und über eine zweite Arbeitsleitung (9) mit einem Nie- derdruck-Hydrospeicher verbindbar ist, wobei Hochdruck- Hydrospeicher und Niederdruck-Hydrospeicher durch einen Doppelkolbenspeicher (1 1 ) gebildet sind, bei dem in einem Speichergehäuse (1 3) mit je einem Speicherkolben (15, 17) eine Hochdruckseite und eine Niederdruckseite gebildet sind, wobei die Fluidräume (23 und 25) der Hochdruckseite und der Niederdruckseite von einem Gehäusemittelstück (21 ) getrennt sind, durch das sich die für beide Speicherkolben (15, 1 7) gemeinsame Kolbenstange erstreckt, dadurch gekennzeichnet, dass die Steuereinheit (5) der Pumpen-Motor-Einheit (1) mit Steuerfluid aus der ersten Arbeitsleitung (7) über einen Leitungsanschluss (59) versorgbar ist, der an der ersten Arbeitsleitung (7) zwischen der Pumpen- Motor-Einheit (1) und dem Schaltventil (45) vorgesehen ist.
Antriebssystem nach Anspruch 1 , dadurch gekennzeichnet, dass zwischen erster (7) und zweiter Arbeitsleitung (9) ein Rückschlagventil (43) angeordnet ist, das druckbetätigt gegen die erste Arbeitsleitung (7) hin offenbar ist, dass Leckfluid der Pumpen-Motor-Einheit (1 ) zu der zweiten Arbeitsleitung (9) zuführbar ist und dass das Leckfluid über eine Ladepumpe (55) zu der zweiten Arbeitsleitung (9) zuführbar ist. Antriebssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Steuereinheit (5) der Pumpen-Motor-Einheit (1) mit gefiltertem Steu- erfluid über ein Druckminderventil (35) mit vorgeschaltetem Fluidfilter (33) versorgbar ist, das über den Leitungsanschluss (59) an der ersten Arbeitsleitung (7) angeschlossen ist.
Antriebssystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Pumpen-Motor-Einheit (1) durch eine Axialkolbenmaschine gebildet ist, die durch Änderung des Schwenkwinkels über Nullwinkel hinaus zwischen Pumpen- und Motorbetrieb umsteuerbar ist.
Antriebssystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass an der Gasseite (27) der Hochdruckseite des Doppelkolbenspeichers (1 1 ) ein N2-Vorratsbeh älter (29) angeschlossen ist.
Antriebssystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass an der zweiten Arbeitsleitung (9) ein Hilfs- Hydrospeicher (47) angeschlossen ist.
Antriebssystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Arbeitsleitung (9) durch ein Druckbegrenzungsventil (53) abgesichert ist.
Doppelkolbenspeicher, der insbesondere für eine Benutzung bei einem Antriebssystem nach einem der vorstehenden Ansprüche vorgesehen ist, bei dem in einem gemeinsamen Speichergehäuse (13) mit je einem Speicherkolben (1 5, 1 7) eine Hochdruckseite und eine Niederdruckseite gebildet sind, wobei die Fluidräume (25, 27) der Hochdruckseite und der Niederdruckseite von einem Gehäusemittelstück (21 ) getrennt sind, durch das sich die für beide Speicherkolben (15, 17) gemeinsame Kolbenstange (19) erstreckt, und wobei das Gehäusemittelstück (21) durch einen Venti lblock gebildet ist, der hydraulische Komponenten wie bei- spielsweise Schaltventil (45) , Druckminderventil (35), Drucksensoren (77, 79) und/oder Fluidfilter (33) enthält.
PCT/EP2011/001375 2010-03-22 2011-03-21 Hydrostatisches hybrid-antriebssystem WO2011116914A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013500378A JP5997129B2 (ja) 2010-03-22 2011-03-21 流体静力学的ハイブリッド式の駆動システム
US13/261,405 US9180764B2 (en) 2010-03-22 2011-03-21 Hydrostatic hybrid drive system
CN201180015016.4A CN102811877B (zh) 2010-03-22 2011-03-21 静压的混合式驱动系统
EP11710703.7A EP2550170B1 (de) 2010-03-22 2011-03-21 Hydrostatisches hybrid-antriebssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010012975.5 2010-03-22
DE102010012975A DE102010012975A1 (de) 2010-03-22 2010-03-22 Hydrostatisches Hybrid-Antriebssystem

Publications (1)

Publication Number Publication Date
WO2011116914A1 true WO2011116914A1 (de) 2011-09-29

Family

ID=43904840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/001375 WO2011116914A1 (de) 2010-03-22 2011-03-21 Hydrostatisches hybrid-antriebssystem

Country Status (6)

Country Link
US (1) US9180764B2 (de)
EP (1) EP2550170B1 (de)
JP (1) JP5997129B2 (de)
CN (1) CN102811877B (de)
DE (1) DE102010012975A1 (de)
WO (1) WO2011116914A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2991730A1 (fr) * 2012-06-06 2013-12-13 Poclain Hydraulics Ind Dispositif de recuperation d'energie
DE102012017004A1 (de) 2012-08-28 2014-03-06 Hydac Technology Gmbh Hydraulisches Energierückgewinnungssystem
US9790962B2 (en) 2011-10-10 2017-10-17 Angus Peter Robson Accumulator
US10570930B2 (en) 2011-10-10 2020-02-25 Angus Peter Robson Accumulator

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013000811A1 (de) 2013-01-18 2014-07-24 Robert Bosch Gmbh Verstellbare hydrostatische Axialkolbenmaschine
FR3010742B1 (fr) * 2013-09-16 2018-03-16 PSA Automobiles Dispositif hydraulique, a accumulateurs haute pression et basse pression combines, pour une machine hydraulique
DE102014107118A1 (de) * 2013-12-13 2015-06-18 Linde Hydraulics Gmbh & Co. Kg Hydrostatische Hybridantriebseinrichtung für einen hybriden Antriebsstrang
DE102013114037A1 (de) * 2013-12-13 2015-06-18 Linde Hydraulics Gmbh & Co. Kg Hydrostatischer Antrieb
EP3104993B1 (de) * 2014-02-14 2019-09-11 Danieli & C. Officine Meccaniche S.p.A. Steuerungsvorrichtung für oszillierenden tisch
DE102014107240B4 (de) 2014-05-22 2024-08-08 Linde Hydraulics Gmbh & Co. Kg Hydrostatische Hybridantriebseinrichtung für einen hybriden Antriebsstrang
DE102015006321A1 (de) 2015-05-16 2016-11-17 Hydac System Gmbh Hydrostatischer Antrieb
CN106629449B (zh) * 2016-10-08 2020-03-10 武汉船用机械有限责任公司 一种恒张力液压控制系统
WO2019094566A1 (en) * 2017-11-08 2019-05-16 Applied Industrial Technologies, Inc. Hydraulic braking energy utilization for emergency steering, braking, charging acc u mutator (s), and/or work functions to reduce or prevent engine from overspeed, assist acceleration and/or unlimited towing
WO2020040736A1 (en) 2018-08-21 2020-02-27 Siemens Energy, Inc. Double-acting hydraulic actuator with different pumps for each actuation direction
CN109236761B (zh) * 2018-10-19 2023-06-13 广东力源液压机械有限公司 一种液压蓄能控制方法及其液压蓄能装置
CN110285109B (zh) * 2019-05-24 2020-09-04 南京蒙福液压机械有限公司 一种气动控制阀及气液压力转换控制装置
CN113085826B (zh) * 2019-12-23 2022-06-14 比亚迪股份有限公司 电动驱动液压装置、制动系统及汽车
DE102020207787A1 (de) * 2020-06-23 2021-12-23 Hawe Hydraulik Se Hydraulische Hubvorrichtung für ein Fahrgestell einer mobilen Vorrichtung, Fahrgestell sowie mobile Vorrichtung
FR3130329B1 (fr) * 2021-12-13 2023-11-03 Sogefi Filtration Spa Système de filtration pour système de direction assistée électro-hydraulique

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3518434A1 (de) * 1985-05-22 1986-11-27 Mannesmann Rexroth GmbH, 8770 Lohr Hydrostatisches getriebe, insbesondere fuer einen fahrzeugantrieb
DE4212542A1 (de) * 1992-04-15 1993-10-21 Kurt Huber Bremsenergie-Rückführungs-System
WO2002046621A2 (en) * 2000-11-28 2002-06-13 Shep Limited Emergency energy release for hydraulic energy storage systems
US7107767B2 (en) * 2000-11-28 2006-09-19 Shep Limited Hydraulic energy storage systems
DE60118987T2 (de) 2000-11-28 2007-01-11 Shep Ltd., Douglas Hydraulikenergiespeichersysteme
WO2007122481A2 (en) * 2006-04-21 2007-11-01 Eaton Corporation Hydraulic drive system and improved filter sub-system therefor
US20080093152A1 (en) * 2006-10-18 2008-04-24 Government of the United States of America, as represented by the Administrator of the Hydraulic hybrid vehicle method of safe operation
US20090173066A1 (en) * 2008-01-03 2009-07-09 Vincent Joseph Duray Hydraulic brake energy regeneration system for electric energy storage and vehicle drive assist

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129987A (en) * 1977-10-17 1978-12-19 Gresen Manufacturing Company Hydraulic control system
JP3433415B2 (ja) * 1997-04-21 2003-08-04 アイダエンジニアリング株式会社 プレス機械のスライド駆動装置
KR20010071622A (ko) * 1998-06-27 2001-07-28 라르스 브룬 모빌 작업 기계
US6260647B1 (en) * 1999-08-30 2001-07-17 Caterpillar Inc. Electronic engine speed controller
US7082757B2 (en) * 2004-07-01 2006-08-01 Ford Global Technologies, Llc Pump/motor operating mode switching control for hydraulic hybrid vehicle
DE102005060994B4 (de) 2005-12-20 2009-04-09 Bosch Rexroth Aktiengesellschaft Hydrostatischer Antrieb mit Rückgewinnung von Bremsenergie

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3518434A1 (de) * 1985-05-22 1986-11-27 Mannesmann Rexroth GmbH, 8770 Lohr Hydrostatisches getriebe, insbesondere fuer einen fahrzeugantrieb
DE4212542A1 (de) * 1992-04-15 1993-10-21 Kurt Huber Bremsenergie-Rückführungs-System
WO2002046621A2 (en) * 2000-11-28 2002-06-13 Shep Limited Emergency energy release for hydraulic energy storage systems
US7107767B2 (en) * 2000-11-28 2006-09-19 Shep Limited Hydraulic energy storage systems
DE60118987T2 (de) 2000-11-28 2007-01-11 Shep Ltd., Douglas Hydraulikenergiespeichersysteme
WO2007122481A2 (en) * 2006-04-21 2007-11-01 Eaton Corporation Hydraulic drive system and improved filter sub-system therefor
US20080093152A1 (en) * 2006-10-18 2008-04-24 Government of the United States of America, as represented by the Administrator of the Hydraulic hybrid vehicle method of safe operation
US20090173066A1 (en) * 2008-01-03 2009-07-09 Vincent Joseph Duray Hydraulic brake energy regeneration system for electric energy storage and vehicle drive assist

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9790962B2 (en) 2011-10-10 2017-10-17 Angus Peter Robson Accumulator
US10570930B2 (en) 2011-10-10 2020-02-25 Angus Peter Robson Accumulator
FR2991730A1 (fr) * 2012-06-06 2013-12-13 Poclain Hydraulics Ind Dispositif de recuperation d'energie
US9410558B2 (en) 2012-06-06 2016-08-09 Poclain Hydraulics Industrie Apparatus for recovering energy
DE102012017004A1 (de) 2012-08-28 2014-03-06 Hydac Technology Gmbh Hydraulisches Energierückgewinnungssystem

Also Published As

Publication number Publication date
EP2550170A1 (de) 2013-01-30
CN102811877B (zh) 2015-10-21
JP2013527068A (ja) 2013-06-27
CN102811877A (zh) 2012-12-05
DE102010012975A1 (de) 2011-09-22
US9180764B2 (en) 2015-11-10
EP2550170B1 (de) 2017-05-17
US20120308404A1 (en) 2012-12-06
JP5997129B2 (ja) 2016-09-28

Similar Documents

Publication Publication Date Title
EP2550170B1 (de) Hydrostatisches hybrid-antriebssystem
DE102008062836B3 (de) Hydrostatisches Antriebssystem
DE102012102978B4 (de) Geschlossener hydraulischer Kreislauf
DE102011120227B4 (de) Hydraulisches Hybridsystem für rotatorische Anwendungen
WO2009132765A1 (de) Fahrzeug, insbesondere mobile arbeitsmaschine
EP2890904B1 (de) Hydraulisches energierückgewinnungssystem
DE202007011783U1 (de) Hydraulikantrieb insbesondere eines Baggers insbesondere für ein Drehwerk
DE102011107061A1 (de) Antriebsstrang eines Fahrzeugs, insbesondere einer mobilen Arbeitsmaschine
DE102009029840A1 (de) Hydrauliksystem
EP2039554A2 (de) Serieller und paralleler Hybridantrieb mit zwei Primäraggregaten
DE102009011247A1 (de) Hydrostatischer Antrieb
EP3298307A1 (de) Hydrostatischer antrieb
WO2013174551A1 (de) Hydrauliksystem für ein kraftfahrzeug
DE102016217061A1 (de) Hydrostatisches System und Pumpstation für eine Öl- oder Gas-Pipeline
DE102012112381A1 (de) Antriebsachse eines Fahrzeugs mit einer einen hydraulischen Druckmittelspeicher umfassenden Energierückgewinnungseinrichtung
DE102014109152A1 (de) Hydrostatisches Antriebssystem einer mobilen Arbeitsmaschine
WO2013174595A1 (de) Hydraulische maschine für ein kraftfahrzeug
DE102013007668A1 (de) Hydraulisches Antriebssystem für einen Zylinder
DE102012214831A1 (de) Hydrostatischer Antrieb mit zwei Hydromotoren
DE102012015017A1 (de) Hydrostatischer Antrieb
DE102016221724A1 (de) Hydraulische Steueranordnung und Baumaschine mit einer hydraulischen Steueranordnung
DE102014111824A1 (de) Antriebssystem einer mobilen Arbeitsmaschine mit einer Speisepumpeneinrichtung
DE102014107240A1 (de) Hydrostatische Hybridantriebseinrichtung für einen hybriden Antriebsstrang
DE102012208698A1 (de) Hydraulische Maschine für ein Kraftfahrzeug
DE102012208706A1 (de) Hydraulische Maschine für ein Kraftfahrzeug

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015016.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11710703

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011710703

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011710703

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13261405

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2300/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2013500378

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE