WO2011116504A1 - 聚偏氟乙烯中空纤维分离膜及其制备方法 - Google Patents

聚偏氟乙烯中空纤维分离膜及其制备方法 Download PDF

Info

Publication number
WO2011116504A1
WO2011116504A1 PCT/CN2010/000383 CN2010000383W WO2011116504A1 WO 2011116504 A1 WO2011116504 A1 WO 2011116504A1 CN 2010000383 W CN2010000383 W CN 2010000383W WO 2011116504 A1 WO2011116504 A1 WO 2011116504A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinylidene fluoride
hollow fiber
spinning
separation membrane
membrane
Prior art date
Application number
PCT/CN2010/000383
Other languages
English (en)
French (fr)
Inventor
吕晓龙
Original Assignee
天津市塑料研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津市塑料研究所 filed Critical 天津市塑料研究所
Priority to PCT/CN2010/000383 priority Critical patent/WO2011116504A1/zh
Publication of WO2011116504A1 publication Critical patent/WO2011116504A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/081Hollow fibre membranes characterised by the fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength

Definitions

  • the invention relates to a polyvinylidene fluoride hollow fiber separation membrane which can be used for blood separation and purification. Background technique
  • Hollow fiber membranes were first used in hemodialysis in the 1960s, and the membrane material used was unmodified cellulose. After that, hollow fiber dialysis membranes modified with cellulose, such as copper-like membranes, cellulose acetate membranes, and cellulose acetate membranes, are continually appeared. These membrane materials may be referred to as "first-generation hemodialysis membrane materials". To this day, cellulosic films are still in use and account for a certain proportion, mainly modified cellulose, to improve the biocompatibility of cellulose membranes, such as the hemophane membranes currently in use. Due to the low biocompatibility of these membrane materials, some adverse effects occur during dialysis. The "first use syndrome" was first discovered when using copper imitation membrane for dialysis.
  • cellulose-type hollow fiber dialysis membranes can not remove medium molecular substances, such as microglobulin, and the retention of such substances in the blood is very harmful to people who survive long-term dialysis. Some diseases related to dialysis are caused by This is caused. Furthermore, due to the presence of a large amount of hydroxyl groups in cellulose, complement activation is inevitably caused, and the complement factors C3a and C5a in the blood are elevated, and complement activation is associated with the decrease of white blood cells. Sexuality causes many adverse reactions to long-term dialysis patients, which leads to "dialysis syndrome.”
  • the second generation of dialysis membrane materials are mainly polymer materials prepared by chemical synthesis, including polymethyl methacrylate (PMMA), polysulfone (PS:), polyamide (PA), polyacrylonitrile (PAN) and the like.
  • the high-throughput synthetic membrane also has a greater clearance rate for medium molecular toxins such as microglobulin (e 2 -MG) than cellulose membranes, thereby slowing the accumulation of P 2 -MG after long-term dialysis.
  • the risk of carpal tunnel syndrome is gradually replacing the cellulose membrane and becoming a more widely used hemodialysis membrane.
  • Polysulfone (PS) membrane with asymmetric structure better It has become a mainstream material for second-generation dialyzers due to its biocompatibility, excellent mechanical properties, stable chemical properties, high porosity and easy steam sterilization.
  • Polyethersulfone (PES) is a kind of polymer membrane material with excellent comprehensive properties. Because the oxygen ether bond in the molecular structure of polyethersulfone material replaces the isopropylidene bond in polysulfone molecule, it is hydrophilic and heat resistant.
  • Corrosion resistance is further improved, protein adsorption is reduced when in contact with blood, especially when it is in contact with strong oxidants, methyl radicals are no longer produced (residues have a great impact on the human body), which is the best second-generation dialysis.
  • Membrane material The hemodialyzer using such a membrane has a high clearance rate for medium molecular solute, does not cause complement activation, has good washing resistance, and should be reused. However, this type of membrane removes e 2 -MG which initiates dialysis by adsorption on the surface of the membrane, has a saturated adsorption amount, and also loses useful human albumin in the blood, and has a molecular weight other than ⁇ /lG.
  • a polysulfone hollow fiber membrane having excellent dialysis performance is disclosed in Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei.
  • the hollow fiber membrane is used for a long period of time, the filtration speed is reduced; and the membrane is adsorbed by the membrane surface to remove ⁇ 2 _ microglobulin (hereinafter referred to as ⁇ 2 - MG ), so there is saturation adsorption.
  • the film does not have a remarkable removal performance of a harmful substance (uremic substance) having a molecular weight of several thousands to several tens of thousands other than -MG, and thus the harmful substance cannot be sufficiently removed.
  • a harmful substance uremic substance
  • Japanese Patent Laid-Open No. 5-5 4 37 No. 3 discloses a hollow fiber membrane having good solute permeability.
  • the membrane has a high filtration flow rate, but cannot remove harmful substances such as P 2 -MG.
  • the dialysis membrane is the core component of the dialyzer.
  • the ideal dialysis membrane material should have the following characteristics: (1) The membrane material has high purity and does not contain any substances harmful to the organism; (2) It has excellent biocompatibility, Cause blood Liquid solidification, hemolysis occurs; (3) has stable physical and chemical properties and good mechanical properties; (4) can withstand disinfection treatment without affecting structure and performance; (5) has suitable ultrafiltration water permeability; (6) It is easy to pass through the lower molecular weight and medium molecular weight solute that needs to be removed, and retains the protein needed by the human body in the blood.
  • PVDF Polyvinylidene fluoride
  • the polyvinylidene fluoride membrane has a smooth surface and low protein adsorption, which can effectively inhibit the protein adsorption layer on the surface of the membrane, and stabilize the dialysis rate of the membrane.
  • Patent ZL03130556. 3 reports a polyvinylidene fluoride membrane hollow fiber membrane hemodialysis membrane using hydrophilic macromolecules as pore-forming additives such as polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone and/or polyoxygen Ethylene is a solution phase transfer method. Due to the low solid content of the polymer, the finger-like pore structure is easily formed during the film formation process, because the wall thickness of the hemodialysis membrane is thin and the strength is low. Moreover, the spinning dope has a large viscosity, and it is not easy to stably spin a fine hollow fiber membrane having a wall thickness of 10 to 50 ⁇ m.
  • the solution phase transfer method is compounded with the additive technology to spin the polyvinylidene fluoride hollow fiber separation membrane [ZL95117497. 5], but the porosity of the obtained hollow fiber separation membrane is usually higher than 80%, and the finger pore structure is easily formed, thereby causing The intensity is weak.
  • the main object of the present invention is to overcome the above disadvantages of the prior art, and to provide a polyvinylidene fluoride hollow fiber separation membrane which can remove small molecules causing uremia such as water and urea. Thereby purifying the blood, and removing low molecular weight proteins having a molecular weight of 10,000 or more, such as 6 2-microglobulin, and simultaneously retaining useful substances such as human albumin; preparing the poly by a low temperature thermal phase inducing method (L-TIPS)
  • L-TIPS low temperature thermal phase inducing method
  • the vinylidene fluoride hollow fiber separation membrane enables the polyvinylidene fluoride hollow fiber separation membrane to have high strength and high throughput, and can be used as a hemodialysis membrane and a plasma separation membrane.
  • the polyvinylidene fluoride hollow fiber separation membrane of the invention is characterized in that: the wall thickness of the membrane filament is 20 ⁇ 50 ⁇ ⁇ , and the inner diameter of the membrane filament is 200 ⁇ 500 ⁇ m; the weight percentage of the spinning dope is polyvinylidene fluoride resin 20 to 35%, polyethylene glycol is 10 to 20%, latent solvent is 5 to 20%, and the rest is a spinning solvent.
  • the above polyvinylidene fluoride hollow fiber separation membrane wherein the polyvinylidene fluoride resin is a polyvinylidene fluoride homopolymer or A polyvinylidene fluoride copolymer which is a copolymer of not less than 80% of a vinylidene fluoride repeating unit.
  • DMAc dimethylacetamide
  • DMF dimethylformamide
  • NMP N-methylpyrrolidone
  • polyethylene glycol is polyethylene glycol 6000 (PEG6000), polyethylene glycol 20000 (PEG20000), polyethylene glycol 4000 (PEG4000), preferably polyethylene glycol 6000 (PEG6000).
  • the method for producing a polyvinylidene fluoride hollow fiber separation membrane of the present invention is characterized in that the polyvinylidene fluoride resin is 20 to 35% by weight, the spinning solvent is 50 to 70%, and the polyethylene glycol is 10 to 20%.
  • the alcohol and 5 ⁇ 20% of the latent solvent are mixed into a spinning dope at 80 to 140 ° C, and the spinning dope is allowed to stand for 5 to 15 hours, and then extruded by an insertion tube spinning nozzle and inserted into the core portion. After the core liquid is introduced, the extruded spinning dope is walked in the air for 0 to 50 cm, and then solidified into a coagulation bath, and then the formed film is drawn and wound on a winding wheel.
  • the above polyvinylidene fluoride hollow fiber separation membrane wherein the polyvinylidene fluoride resin is a polyvinylidene fluoride homopolymer or a polyvinylidene fluoride copolymer, and the polyvinylidene fluoride copolymer is a vinylidene fluoride repeating unit of not less than 80 % of the copolymer;
  • the spinning solvent is a polar solvent, the polar solvent is dimethylacetamide (DMAc), dimethylformamide (DMF) or N-methylpyrrolidone (NMP);
  • the polyethylene glycol is polyethylene glycol 6000 (PEG6000), polyethylene glycol 20000 (PEG20000), polyethylene glycol 4000 (PEG4000), preferably polyethylene glycol 6000 (PEG6000);
  • the latent solvent is propylene glycol.
  • the above polyvinylidene fluoride hollow fiber separation membrane wherein the coagulation bath is accompanied by water or a mixture of water and a spinning solvent, and the difference between the coagulation bath temperature and the spinning dope temperature is greater than 30 °C.
  • polyvinylidene fluoride hollow fiber separation membrane of the invention in hemodialysis and plasma separation.
  • the beneficial effects of the polyvinylidene fluoride hollow fiber separation membrane of the present invention adopts a low temperature thermal phase inducing method (L-TIPS) to prepare a polyvinylidene fluoride hollow fiber separation membrane.
  • L-TIPS low temperature thermal phase inducing method
  • the use of certain low molecular reagents does not dissolve PVDF at low temperatures, and the characteristics of PVDF can be dissolved at high temperatures, that is, the high temperature solubilization effect.
  • the porosity is about 70%, and the TIPS is utilized.
  • the phase mechanism forms a sponge-like lattice structure to prevent the formation of finger holes, thereby obtaining a high-strength, high-flux polyvinylidene fluoride hollow fiber separation membrane.
  • the polyvinylidene fluoride hollow fiber separation membrane of the invention has high permeation speed, can shorten the hemodialysis treatment time; and because of the polyvinylidene fluoride
  • the membrane material adsorbs a small amount of protein, and the surface of the membrane is smooth, which can inhibit the formation of a protein adsorption layer on the surface of the blood side membrane, the membrane dialysis speed is stable, and the dialysis pressure is not increased, so it is an excellent hemodialysis membrane material.
  • the polyvinylidene fluoride hollow fiber separation membrane of the present invention is characterized in that: the wall thickness of the membrane filament is 20 ⁇ 50 ⁇ m, the inner diameter of the membrane filament is 200 ⁇ m ⁇ 500 m; the weight percentage of the spinning dope is polyvinylidene fluoride
  • the resin accounts for 20 to 35%, the polyethylene glycol is 10 to 20%, the latent solvent is 5 to 20%, and the rest is a spinning solvent.
  • the polyvinylidene fluoride hollow fiber separation membrane of the present invention wherein the polyvinylidene fluoride resin is a polyvinylidene fluoride homopolymer or a polyvinylidene fluoride copolymer, and the polyvinylidene fluoride copolymer is a vinylidene fluoride repeating unit of not less than 80% copolymer;
  • the spinning solvent is a polar solvent, and the polar solvent is dimethylacetamide (DMAc), dimethylformamide (DMF) or N-methylpyrrole (NMP);
  • the polyethylene glycol is polyethylene glycol 6000 (PEG6000;), polyethylene glycol 20000 (PEG 20000), polyethylene glycol 4000 (PEG 4000), preferably polyethylene glycol 6000 (PEG6000);
  • the latent solvent is propylene glycol.
  • the method for producing a polyvinylidene fluoride hollow fiber separation membrane of the present invention is characterized in that the polyvinylidene fluoride resin is 20 to 35% by weight, the spinning solvent is 50 to 70%, and the polyethylene glycol is 10 to 20%.
  • the alcohol and 5 ⁇ 20% of the latent solvent are mixed into a spinning dope under the condition of 80 to 140 'C, and the spinning dope is allowed to stand for 5 to 15 hours, and then extruded by the insertion tube spinning nozzle, and inserted into the core portion.
  • the extruded spinning solution is dried in the air for 0 to 50 cm, and then solidified into a coagulation bath, and then the formed film is drawn and wound on a winding wheel.
  • the method for producing a polyvinylidene fluoride hollow fiber separation membrane of the invention wherein the polyvinylidene fluoride resin is a polyvinylidene fluoride homopolymer or a polyvinylidene fluoride copolymer, and the polyvinylidene fluoride copolymer is a repeating unit of a vinylidene fluoride 80% copolymer;
  • the spinning solvent is a polar solvent, the polar solvent is dimethylacetamide (D Ac), dimethylformamide (DMF) or N-methylpyrrolidone (NMP);
  • the polyethylene glycol is polyethylene glycol 6000 (PEG6000), polyethylene glycol 20000 (PEG20000), polyethylene glycol 4000 (PEG4000), preferably polyethylene glycol 6000 (PEG6000);
  • the latent solvent is propylene glycol .
  • the coagulation bath liquid is water or a mixture of water and a spinning solvent, and the difference between the coagulation bath
  • polyvinylidene fluoride hollow fiber separation membrane of the invention in hemodialysis and plasma separation.
  • Thermally induced phase separation is the process of mixing polymers with some high-boiling small molecule compounds (also known as diluents) at elevated temperatures. Lower (generally higher than the melting point Tm of the crystalline polymer) to form a homogeneous liquid state, in the process of lowering the temperature, the film-forming system undergoes solid-liquid or liquid-liquid phase separation, and then the diluent is removed by extraction, etc., thereby obtaining A microporous polymeric material. Since the phase separation porogenesis process is driven by a change in temperature, this method is called thermally induced phase separation (TIPS).
  • TIPS method can obtain a hollow fiber membrane having a porosity of 50 to 70%, and the cross section is a sponge structure.
  • the differential camera By adjusting the compatibility of the DOP/DEP mixture with PVDF, the differential camera, controlling the LL differential phase of the spinning solution at high temperature and LS pre-phase separation, a high-flux, high-strength hollow fiber membrane can be obtained.
  • the spinning temperature is higher than the melting point temperature Tm of PVDF, generally 220 to 260 ° C, the commonly used hydrophilic polymers such as PVP, PEG, PVA, etc. cannot be added as additives due to high temperature thermal decomposition, and it is difficult to obtain suitable aggregation.
  • a vinylidene fluoride hollow fiber separation membrane since the spinning temperature is higher than the melting point temperature Tm of PVDF, generally 220 to 260 ° C, the commonly used hydrophilic polymers such as PVP, PEG, PVA, etc. cannot be added as additives due to high temperature thermal decomposition, and it is difficult to obtain suitable aggregation.
  • a vinylidene fluoride hollow fiber separation membrane A vinylidene fluoride hollow
  • the invention adopts a low temperature thermal phase inducing method (L-TIPS) to prepare a polyvinylidene fluoride hollow fiber separation membrane.
  • L-TIPS low temperature thermal phase inducing method
  • the use of certain low molecular reagents does not dissolve PVDF at low temperatures, and the characteristics of PVDF can be dissolved at high temperatures, that is, the high temperature solubilization effect.
  • the porosity is about 70%, and the TIPS is utilized.
  • the phase mechanism forms a sponge-like lattice structure to prevent the formation of finger holes, thereby obtaining a high-strength, high-flux polyvinylidene fluoride hollow fiber separation membrane.
  • the key technical point of the low temperature thermal phase induction method is that the spinning dope temperature is lower than the PVDF melting point temperature, which is higher than the critical cloud point temperature T of the spinning dope. , and the temperature of the coagulation bath is lower than the cloud point temperature of the spinning dope.
  • the temperature difference between the spinning dope temperature and the coagulation bath temperature should exceed 3 (TC, so that the heat transfer rate between the casting solution and the coagulant is much greater than the rate at which the coagulant extracts the polymer solvent from the casting solution.
  • the temperature of the spinning dope is lower than the temperature T of the casting solution liquid cloud, and liquid-liquid thermal phase separation occurs to form a nascent gel, and then the polymer solvent in the spinning dope is solidified.
  • the agent is extracted from the casting solution, and the solution phase separation occurs, and the film is completely cured to form a sponge structure.
  • propylene glycol is a non-solvent for PVDF, and at 100 ° C or higher, propylene glycol can be a solvent for PVDF.
  • polyethylene glycol is used as a main additive, and propylene glycol is a PVDF latent solvent, and a polyvinylidene fluoride hollow fiber separation membrane for blood separation is prepared.
  • propylene glycol has a good porogen effect.
  • L-TIPS low temperature thermal phase separation
  • the hemodialysis hollow fiber membrane generally has an inner diameter of 150 ⁇ 250 ⁇ ⁇ fiber wall thickness of 20 ⁇ 50 ⁇ ⁇ , which has a large difference in geometrical size from the conventional hollow fiber membrane for water treatment, and has high requirements for spinning preparation technology, and a solvent is added to the core liquid.
  • the spinnability of the spinning dope can be improved.
  • the technical feature of the present invention is -
  • Polyvinylidene fluoride separation membrane using polyethylene glycol as additive which has lower protein adsorption capacity and better separation membrane strength structure than polyvinylpyrrolidone as an additive polyvinylidene fluoride separation membrane. . Further, when the amount of the additive PEG6000 added is more than 10%, the flux of the hollow fiber membrane is remarkably increased.
  • L-TIPS low temperature thermal phase separation
  • a hollow fiber membrane of useful substances such as albumin.
  • the invention relates to a polyvinylidene fluoride hollow fiber separation membrane for hemodialysis, characterized in that: the thickness of the membrane filament is 20 ⁇ 50 ⁇ ⁇ , and the inner diameter of the membrane filament is ⁇ ⁇ ⁇ ! ⁇ 500 ⁇ ⁇ , which is composed of 20 to 35 wt% of polyvinylidene fluoride resin solid matter, 50 to 70 wt% of spinning solvent, 10 to 20 wt% of polyethylene glycol 6000 hydrophilic macromolecule and 5 to 20
  • the spinning dope of ⁇ % of the latent solvent PG is obtained by spinning at a low temperature thermal phase spinning process.
  • the spinning solvent is the polar solvent dimethylacetamide (D Ac:).
  • the invention also relates to a method for preparing a polyvinylidene fluoride membrane hollow fiber membrane for hemodialysis, characterized in that: spinning dope 20 ⁇ 35 1% polyvinylidene fluoride resin solid matter, 50 ⁇ 70wt% spinning A spinning solution of a silk solvent, 10 to 20% by weight of a polyethylene glycol 6000 hydrophilic macromolecule and 5 to 20% of a latent solvent PG is obtained by a low temperature thermal phase spinning process.
  • the spinning solvent is the polar solvent dimethylacetamide (DMA).
  • the spinning dope is extruded from the insertion tube spinning nozzle, inserted into the core portion into the spinning core liquid, and the solvent is added to the core liquid to improve the spinnability, and the solvent content is 50. ⁇ 80wt%.
  • the spinning drafting speed is 30 ⁇ 100m/min.
  • the spinning dope temperature is lower than the PVDF melting point temperature 1; and higher than the spinning dope critical cloud point temperature T. , and the temperature of the coagulation bath is lower than the cloud point temperature I of the spinning dope.
  • the temperature difference between the spinning dope temperature and the coagulation bath temperature should exceed 30'C, preferably 50 ⁇ 80'C, so that the heat transfer rate between the casting solution and the coagulant is much greater than that of the coagulant extracted from the casting solution.
  • the speed of the polymer solvent When the spinning dope is in contact with the coagulant, the temperature of the spinning dope is lower than that of the casting solution. Point temperature T.
  • the liquid-liquid phase separation occurs to form a nascent gel.
  • the polymer solvent in the spinning dope is extracted from the casting solution by the coagulating agent, and the solution phase separation occurs, and the film is completely solidified to form a sponge structure.
  • the present invention also relates to the use of the above polyvinylidene fluoride hollow fiber separation membrane for use as a hemodialysis membrane and a blood plasma separation membrane.
  • the polyvinylidene fluoride hollow fiber separation membrane of the invention has high permeation speed and can shorten the hemodialysis treatment time; and since the amount of protein adsorbed by the polyvinylidene fluoride membrane material is small, the membrane surface is smooth, and the formation on the blood side membrane surface can be suppressed.
  • the protein adsorption layer, the membrane dialysis speed is stable, and the dialysis pressure is not increased, so it is an excellent hemodialysis membrane material. Improve spinning stability, reduce the vulnerability of the process, increase the strength of the filament, and use safety.
  • the invention adopts a low temperature thermal coherent-wet spinning process to prepare a polyvinylidene fluoride membrane hollow fiber separation membrane.
  • the main component of the polyvinylidene fluoride membrane hollow fiber separation membrane is a polyvinylidene fluoride resin, which refers to polyvinylidene fluoride.
  • the polyvinylidene fluoride copolymer is a copolymer of not less than 80% of a vinylidene fluoride repeating unit, and such a hemodialysis membrane adsorbs less protein.
  • the solid content of the polyvinylidene fluoride resin in the spinning dope is (the following amounts are based on the total weight of the spinning dope) 20 ⁇ 35wt%, less than 20wt%, the viscosity of the spinning dope is too low, and the spinnability is poor, exceeding 35 wt%, the solubility of the polyvinylidene fluoride resin is not good, and phase separation is likely to occur.
  • the spinning solvent may be a commonly used polar solvent such as dimethylacetamide (DMAc:), dimethylformamide (DMF) and/or N-methylpyrrolidone (NMP), etc., and the amount of the solvent is 50 to 70 wt%.
  • the hydrophilic macromolecule is a polyethylene glycol series such as PEG6000, PEG20000, PEG4000, preferably PEG6000, and the amount is 10 ⁇ 20wt%; the latent solvent used is propylene glycol, and the amount is 5 ⁇ 20wt%.
  • the method for producing the polyvinylidene fluoride membrane hollow fiber separation membrane of the invention comprises: adopting a low temperature thermal coherent-wet spinning process, the spinning dope is extruded by the insertion tube spinning nozzle, and the core portion is inserted into the core liquid, The extruded spinning dope is dried in the air bath for 0 to 50 cm, and then solidified into a coagulation bath, and then wound on a winding wheel.
  • the coagulation bath liquid is usually water, and a spinning solvent may be added to the coagulation bath to control the forming speed of the hollow fiber membrane.
  • the temperature of the spinning dope is 80 ⁇ 140 ⁇ , and the temperature of the coagulation bath is 5 ⁇ 50'C. The temperature difference between the two should exceed 30 ⁇ .
  • the film thickness of the polyvinylidene fluoride membrane hollow fiber separation membrane of the present invention is 10 to 50 ⁇ m.
  • the inner diameter of the polyvinylidene fluoride membrane hollow fiber separation membrane is 100 ⁇ ⁇ ! ⁇ 500 ⁇ m.
  • the inner diameter is less than 100 ⁇ m, the blood flow pressure loss is excessively large, and hemolysis is liable to occur, and the hollow portion of the hollow fiber is clotted due to blood coagulation; when the inner diameter is larger than 500 ⁇ m, the membrane filament packing density is low and the amount of residual blood is large.
  • the inner diameter of the hollow fiber membrane can be controlled by adjusting the spinning dope feed rate and the spinning drafting speed.
  • the obtained polyvinylidene fluoride hollow fiber separation membrane has an inner diameter of 200 ⁇ , a fiber wall thickness of 40 ⁇ ⁇ , a hollow inner circle of the hollow fiber, an apparent defect-free, a porosity of 72%, and a cross-section of the membrane.
  • the pure water permeation rate is 270 L/m' ⁇ h ⁇ (0. 10 MPa)
  • the ⁇ 2 - microglobulin transmission rate is 81%
  • the human serum albumin rejection rate is 99.2%.
  • Comparative Example 1 Polyvinylidene fluoride (S0LVAY 1015) 22 wt%, D A66 wt%, polyethylene glycol 6000 12 wt%, uniformly mixed at 90 ° C, and spun after standing for 12 hours.
  • the main component of the coagulation bath liquid was water, 2% by weight of DMA solvent was added, the spinning speed was 25 m/min, and the core of the tube spinning nozzle was inserted into the core liquid.
  • the obtained polyvinylidene fluoride hollow fiber separation membrane has an inner diameter of 200 ⁇ ⁇ , a fiber wall thickness of 40 ⁇ , a hollow inner circle of the hollow fiber, an apparent defect-free, a porosity of 82%, and a cross-sectional structure of the membrane.
  • the pure water permeation rate is 340 L/m' * h * (0. 10 MPa)
  • the e 2 -microglobulin transmission rate is 85%
  • the human serum albumin rejection rate is 79.5%.
  • Example 2 Polyvinylidene fluoride (Kynar 461, USA) 23 wt%, DMAc 54 wt%, polyethylene glycol 6000 15 wt%, propylene glycol 8 wt% 14 (mixed uniformly under TC, spinning after standing defoaming for 12 hours. Solidification The main component of the bath liquid is water, 2% by mass of 1) solvent is added, the spinning drafting speed is 25 m/min, and the core of the tube spinning nozzle is inserted into the core liquid.
  • the obtained polyvinylidene fluoride hollow fiber separation membrane has an inner diameter of 200 ⁇ m, a fiber wall thickness of 30 ⁇ m, a hollow inner circle of the hollow fiber, an apparent defect-free, a porosity of 71%, and a cross-section of the membrane. Pure water permeation rate 290 L / m 2 . h ⁇ (0. lOMPa), 0 microglobulin transmission rate of 83%, human serum albumin rejection rate of 98.9%.
  • Comparative Example 2 Polyvinylidene fluoride (Kynar 461, USA) 23 wt%, DMA 62 wt%, polyethylene glycol 6000 15 wt% mixed at 80 ° C, and spun at 5 (TC) after standing defoaming for 12 hours.
  • the main component of the coagulation bath liquid is water, 2% of DMA solvent is added, the spinning drafting speed is 25 m/min, and the core of the tube spinning nozzle is inserted into the core liquid.
  • the obtained polyvinylidene fluoride hollow fiber separation membrane has an inner diameter of 200.
  • Example 3 Polyvinylidene fluoride (S0LVAY 1015) 22 wt%, DMA 66 wt%, polyethylene glycol 600012 wt%, uniformly mixed at 90 ° C, and spun after standing for 12 hours.
  • the liquid component of the coagulation bath is water.
  • the obtained polyvinylidene fluoride hollow fiber separation membrane had an inner diameter of 200 ⁇ m and a fiber wall thickness of 40 ⁇ m.
  • Comparative Example 3 Polyethersulfone (SOLVAY A100) 22 wt%, DMA 66 wt%, polyethylene glycol 6000 12 wt%, uniformly mixed at 90 ° C, and spun after standing for 12 hours. The coagulation bath liquid is water.
  • the obtained hollow fiber separation membrane had an inner diameter of 200 ⁇ m and a fiber wall thickness of 40 ⁇ m.
  • Comparative Example 4 Polyvinylidene fluoride (SOLVAY 1015) 24 wt%, DMA 76 wt%, uniformly mixed at 90 ° C, and allowed to stand for 12 hours after spinning for spinning.
  • the liquid component of the coagulation bath is water.
  • the obtained hollow fiber separation membrane had an inner diameter of 200 ⁇ m and a fiber wall thickness of 40 ⁇ m.
  • Comparative Example 5 Polyvinylidene fluoride (SOLVAY 1015) 22 wt%, DMA 66 wt%, polyvinylpyrrolidone (K-30) 12 wt%, uniformly mixed at 90 ° C, and spun after standing for 12 hours.
  • the liquid component of the coagulation bath is water.
  • the obtained polyvinylidene fluoride hollow fiber separation membrane has an inner diameter of 200 ⁇ m and a fiber wall thickness of 40 ⁇ m.
  • Table 1 Hydrophilicity of different membrane materials and adsorption of bovine serum albumin
  • the polyether sulfone has the highest protein adsorption capacity of 93.6 mg/m 2 , which is larger than the protein adsorption amount of polyvinylidene fluoride, which is consistent with the high anti-contamination of the polyvinylidene fluoride film reported in the literature.
  • the hydrophilicity of polyvinylidene fluoride was significantly improved after hydrophilic modification, and the contact angle decreased from 86 ° C to about 65 ° C.
  • the adsorption of bovine serum albumin also decreased from 58 mg/m 2 to 25.7 mg/m 2 and 38.5 mg/m 2 , which is consistent with the theoretical value that the hydrophilicity of the material increases the protein adsorption.
  • polysulfone and polyvinylidene fluoride under the same modification conditions, the hydrophilicity of the two is similar, but the poly Vinylidene fluoride has a lower protein adsorption rate than polyethersulfone.
  • most of the patents for polysulfone and polyethersulfone hollow fiber membranes are made of polyvinylpyrrolidone (PVP) as the main additive. From the comparison of Table 1, polyethylene fluoride and polyvinylpyrrolidone are used as additives.
  • the ethylene separation membrane has similar hydrophilicity, but the polyvinylidene fluoride membrane with polyethylene glycol additive has a lower protein adsorption amount.
  • the polyvinylidene fluoride dialysis membrane material of the invention has the following characteristics: 1) the protein adsorption, coagulation and cytotoxicity are better than the best polyethersulfone materials on the market; 2) the flexibility of the membrane during the spinning process Excellent, not easy to break; 3) The membrane flux decreases little during use; 4) It is resistant to radiation and antioxidants, easy to clean and disinfect, and is beneficial to the reuse of dialyzers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

聚偏氟乙烯中空纤维分离膜及其制备方法
技术领域:
本发明涉及一种可用于血液分离与净化的聚偏氟乙烯中空纤维分离膜。 背景技术
中空纤维膜最早用途于血液透析是在二十世纪 60年代,所用膜材料是未经改性 纤维素。之后不断出现改性纤维素的中空纤维透析膜, 如铜仿膜、醋酸纤维素膜、双 醋酸纤维素膜等, 这些膜材料可以称为 "第一代血液透析膜材料"。 直到今天, 纤维 素膜仍在使用, 并且占有一定的比例, 主要是改性纤维素, 以提高纤维素膜的生物相 容性, 如目前使用的血仿(hemophane )膜。 由于这类膜材料的生物相容性低, 在进 行透析时会产生一些不良作用, "首次使用综合症"就是在使用铜仿膜进行透析时首 先发现的。 另外, 使用纤维素类型的中空纤维透析膜不能清除中分子物质, 如 微球蛋白,而这类物质在血液中的滞留对长期透析生存的人具有很大危害,一些与透 析相关的疾病就是由此引起。再者, 由于纤维素中有大量的羟基存在, 这样就不可避 免地引起补体激活, 血液中补体因子 C3a、 C5a的升高, 而补体激活与白细胞的减少 存在一定关系, 是由生物不相容性导致,对长期透析患者带来很多不良反应, 从而引 发 "透析综合症"。
另外, 由于血液中含有血球、 蛋白等成分, 在血液透析时, 上述物质容易导致 过滤膜的膜通量下降,所以业内人员一直在寻求研发不易于吸附蛋白、在膜表面不易 于形成凝聚蛋白层、 膜表面光滑和膜过滤过程中压力几乎不升高的透析膜。
第二代透析膜材料主要是通过化学合成制备的聚合物材料, 包括聚甲基丙烯酸 甲酯(PMMA)、 聚砜(PS:)、 聚酰胺(PA)、 聚丙烯腈(PAN)等。 高通量的合成膜对于 中分子毒素, 如微球蛋白 (e 2-MG) 的清除率也较纤维素膜有很大的提高, 从而减缓 了由于长期透析后 P 2-MG的累积而导致的腕管症候群发病的风险, 因此逐步取代纤 维素膜而成为更广泛使用的血液透析膜。具有非对称结构的聚砜(PS)膜, 具有较好 的生物相容性、优良的机械性能、稳定的化学性能、 高孔隙率以及可以简便的蒸汽消 毒等特点, 目前己经成为第二代透析器的主流材料。 聚醚砜 (PES)是一种综合性能优 良的聚合物膜材料,由于聚醚砜材料分子结构中的氧醚键代替了聚砜分子中的异丙撑 键, 因此其亲水性和耐热、 耐腐蚀性能进一步提高, 与血液接触时蛋白吸附减少, 尤 其是在与强氧化剂接触时, 不再产生甲基自由基 (残留会对人体产生很大影响), 是 最优良的第二代透析膜材料。利用此类膜的血液透析器对中分子溶质的清除率高,不 产生补体激活, 耐清洗性较好, 宜重复使用。 但是, 这类膜是通过在膜表面吸附的方 法来去除引发透析病的 e 2-MG,存在饱和吸附量, 同时也流失了血液中有用的人血白 蛋白, 而且对 β /lG 以外的分子量数千〜数万的有害物质 (尿毒症物质) 的除去性 能不明显, 因此不能充分除去有害物质。 此外, 聚醚砜材料的生物相容尚显不足, 其 透析器的首次使用综合症 (first use syndrome, FUS ) 发生率比较高, 在透析时易 产生溶血、 凝血等副作用, 不仅透析速度下降快, 而且破坏血质。 聚醚砜材料在干态 下较脆, 在加工和使用时都存在膜丝破损问题。
例如, 日本专利特开平 1 一 9 4 9 0 2号中公开了一种聚砜中空纤维膜, 该中 空纤维膜透析性能优异。但是, 长期使用该中空纤维膜, 过滤速度会减小; 且该膜是 通过膜表面吸附的方法来除去血液中的 β 2_微球蛋白 (下文中称 β 2- M G ), 因此存 在饱和吸附量; 而且该膜对 -M G以外的分子量为几千〜几万的有害物质(尿毒症 物质) 的除去性能不明显, 因此不能充分除去有害物质。
日本专利特公平 5— 5 4 3 7 3号公开了一种有很好溶质透过性的中空纤维 膜。 该膜有高的过滤流量, 但不能除去 P 2-M G等低分子蛋白质有害物质。
虽然目前在血液净化领域有很多种膜材料, 但总体性能仍不是很理想, 在进行 血液净化时仍需抗凝剂,有些材料常会引起一系列的不良反应, 因此需要开发生物相 容性和血液相容性更好, 治疗分离效果更佳,、 而且对长期透析生存患者无不良影响 的第三代血液透析膜材料。进一步改进中空纤维膜的生物相容性, 实现无肝素透析或 少抗凝剂透析; 提髙透析速度, 缩短透析治疗时间, 减少病人的痛苦, 这是高性能第 三代血液透析膜的发展方向。
透析膜是透析器的核心构成部分, 理想的透析膜材料应具有以下特点: (1)膜材 料的纯度高, 不含有任何对生体有害的物质; (2)具有优良的生物相容性, 不引起血 液凝固、 溶血现象发生; (3)有稳定的物理、 化学性能和良好的机械性能; (4)能经受 消毒处理而不影响结构、性能; (5)具有适宜的超滤渗水性; (6)容易透过需要清除的 分子量较低的和中等分子量的溶质, 保留血液中人体需要的蛋白质。
聚偏氟乙烯 (PVDF) 是一种优良的制膜材料, 它具有良好的化学稳定性、 机械 性能和热稳定性, 与聚氯乙烯、 聚乙烯、 ABS等医用材料相比, 是一种最卫生的工程 材料,以其为原料制备的膜材料已经广泛用途于水处理行业。聚偏氟乙烯膜表面光滑, 蛋白吸附量低, 可有效抑制血液在膜表面的蛋白吸附层, 使膜的透析速度稳定
专利 ZL03130556. 3中报导了一种聚偏氟乙烯膜中空纤维膜血液透析膜,采用亲 水性大分子作为致孔添加剂, 如聚乙二醇、 聚乙烯醇、 聚乙烯吡咯烷酮和 /或聚氧乙 烯, 属于溶液相转移法, 由于聚合物固含量低, 在成膜过程中易于形成指状孔结构, 因血液透析膜壁厚薄, 强度低。且纺丝原液黏度大,不容易稳定纺制出壁厚 10〜50 μ m的细中空纤维膜。
目前常用溶液相转移方法复配添加剂技术纺制聚偏氟乙烯中空纤维分离膜 [ZL95117497. 5],但所得的中空纤维分离膜孔隙率通常高于 80%,易生成指状孔结构, 致使其强度较弱。 发明内容
本发明的主要目的在于克服现有产品存在的上述缺点,而提供一种聚偏氟乙烯中 空纤维分离膜,该聚偏氟乙烯中空纤维分离膜可以除去水、 尿素等引起尿毒症的小分 子, 从而净化血液, 而且可以除去分子量为 1万以上的低分子量蛋白, 如 6 2-微球蛋 白, 还可同时保留人血白蛋白等有用物质; 采用低温热致相方法 (L一 TIPS) 制备聚 偏氟乙烯中空纤维分离膜,使聚偏氟乙烯中空纤维分离膜具有高强度、高通量的功效, 可用做血液透析膜和血浆分离膜。
本发明的目的是由以下技术方案实现的。
本发明聚偏氟乙烯中空纤维分离膜, 其特征在于: 膜丝壁厚为 20〜50 μ ιη , 膜 丝内径为 200 μ πι〜500 μ m ; 纺丝原液的重量百分比是聚偏氟乙烯树脂占 20〜35%, 聚乙二醇为 10〜20%, 潜溶剂为 5〜20%, 其余为纺丝溶剂。
前述的聚偏氟乙烯中空纤维分离膜,其中聚偏氟乙烯树脂为聚偏氟乙烯均聚物或 聚偏氟乙烯共聚物, 该聚偏氟乙烯共聚物为偏氟乙烯重复单元不少于 80%的共聚物。 前述的聚偏氟乙烯中空纤维分离膜,其中紡丝溶剂为极性溶剂,该极性溶剂为二 甲基乙酰胺 (DMAc)、 二甲基甲酰胺 (DMF)或者 N-甲基吡咯烷酮 (NMP)。
前述的聚偏氟乙烯中空纤维分离膜, 其中聚乙二醇为聚乙二醇 6000 (PEG6000)、 聚乙二醇 20000( PEG20000 )、聚乙二醇 4000( PEG4000 ),优选聚乙二醇 6000( PEG6000 )。
前述的聚偏氟乙烯中空纤维分离膜, 其中潜溶剂为丙二醇。
本发明聚偏氟乙烯中空纤维分离膜的制造方法, 其特征在于, 将重量百分比为 20〜35%的聚偏氟乙烯树脂、 50〜70%的纺丝溶剂、 10〜20%的聚乙二醇以及 5〜20 %的潜溶剂在 80至 140°C的条件下混合成纺丝原液,将该纺丝原液静置 5至 15小时 后由插入管式纺丝喷头挤出, 插入管芯部通入芯液, 挤出的纺丝原液在空中走行 0〜 50cm后, 进入凝固浴水槽固化成型, 然后将成型的膜丝牵伸卷绕在绕丝轮上。
前述的聚偏氟乙烯中空纤维分离膜,其中聚偏氟乙烯树脂为聚偏氟乙烯均聚物或 者聚偏氟乙烯共聚物, 该聚偏氟乙烯共聚物为偏氟乙烯重复单元不少于 80%的共聚 物; 所述纺丝溶剂为极性溶剂, 该极性溶剂为二甲基乙酰胺(DMAc)、 二甲基甲酰胺 (DMF)或者 N-甲基吡咯垸酮(NMP); 所述聚乙二醇为聚乙二醇 6000 ( PEG6000), 聚 乙二醇 20000 ( PEG20000)、聚乙二醇 4000 (PEG4000 ),优选聚乙二醇 6000 (PEG6000 ); 所述潜溶剂为丙二醇。
前述的聚偏氟乙烯中空纤维分离膜, 其中凝固浴液伴为水或者水和纺丝溶剂的 混合液, 凝固浴温度与纺丝原液温度的差大于 30'C。
前述的聚偏氟乙烯中空纤维分离膜, 其中中空纤维膜纺丝牵伸速度控制在 30至 100米 /分钟。
本发明聚偏氟乙烯中空纤维分离膜在血液透析和血浆分离中的应用。
本发明聚偏氟乙烯中空纤维分离膜的有益效果。 本发明采用低温热致相方法(L -TIPS ) 制备聚偏氟乙烯中空纤维分离膜。 利用某些低分子试剂在低温下不溶解 PVDF, 在高温下可溶解 PVDF的特性, 即高温增溶效应, 通过增加纺丝液中 PVDF固含 量, 使孔隙率在 70%左右, 同时利用 TIPS分相机理, 形成海绵状网格结构, 阻止指 状孔的形成, 从而得到高强度、高通量的聚偏氟乙烯中空纤维分离膜。本发明聚偏氟 乙烯中空纤维分离膜透过速度高,可以缩短血液透析治疗时间;而且由于聚偏氟乙烯 膜材料吸附蛋白的量很小, 膜表面光滑, 可以抑制在血液侧膜表面形成蛋白吸附层, 膜透析速度稳定, 透析压力不升高, 故是一种优良的血液透析膜材料。 具体实施方式
本发明本发明聚偏氟乙烯中空纤维分离膜, 其特征在于: 膜丝壁厚为 20〜50 μ m ,膜丝内径为 200 μ m ~500 m ;纺丝原液的重量百分比是聚偏氟乙烯树脂占 20〜 35%, 聚乙二醇为 10〜20% , 潜溶剂为 5〜20%, 其余为纺丝溶剂。
本发明聚偏氟乙烯中空纤维分离膜,其中,聚偏氟乙烯树脂为聚偏氟乙烯均聚物 或聚偏氟乙烯共聚物, 该聚偏氟乙烯共聚物为偏氟乙烯重复单元不少于 80%的共聚 物;该纺丝溶剂为极性溶剂,该极性溶剂为二甲基乙酰胺(DMAc )、二甲基甲酰胺(DMF) 或者 N-甲基吡咯烧酮(NMP);该聚乙二醇为聚乙二醇 6000 ( PEG6000;)、聚乙二醇 20000 (PEG20000), 聚乙二醇 4000 (PEG4000), 优选聚乙二醇 6000 ( PEG6000); 该潜溶剂 为丙二醇。
本发明聚偏氟乙烯中空纤维分离膜的制造方法, 其特征在于, 将重量百分比为 20〜35%的聚偏氟乙烯树脂、 50〜70%的纺丝溶剂、 10〜20%的聚乙二醇以及 5〜20 %的潜溶剂在 80至 140 'C的条件下混合成纺丝原液, 将该纺丝原液静置 5至 15小时 后由插入管式纺丝喷头挤出, 插入管芯部通入芯液, 挤出的纺丝原液在空中走行 0~ 50cm后, 进入凝固浴水槽固化成型, 然后将成型的膜丝牵伸卷绕在绕丝轮上。
本发明聚偏氟乙烯中空纤维分离膜制造方法, 其中聚偏氟乙烯树脂为聚偏氟乙 烯均聚物或者聚偏氟乙烯共聚物, 该聚偏氟乙烯共聚物为偏氟乙烯重复单元不少于 80%的共聚物; 所述纺丝溶剂为极性溶剂, 该极性溶剂为二甲基乙酰胺(D Ac)、 二 甲基甲酰胺 (DMF ) 或者 N-甲基吡咯烷酮 (NMP ) ; 所述聚乙二醇为聚乙二醇 6000 (PEG6000)、 聚乙二醇 20000 (PEG20000)、 聚乙二醇 4000 ( PEG4000), 优选聚乙二 醇 6000 (PEG6000 ); 所述潜溶剂为丙二醇。 该凝固浴液体为水或者水和纺丝溶剂的 混合液, 凝固浴温度与紡丝原液温度的差大于 30°C。 该中空纤维膜纺丝牵伸速度控 制在 30至 100米 /分钟。
本发明聚偏氟乙烯中空纤维分离膜在血液透析和血浆分离中的应用。
热致相分离法是将聚合物与一些高沸点的小分子化合物 (也称为稀释剂)在高温 下 (一般高于结晶聚合物的熔点 Tm) 形成均相液态,在降低温度过程中,成膜体系发生 固-液或液-液相分离,然后通过萃取等方式脱除稀释剂,从而得到具备微孔结构的聚 合物材料。 由于相分离致孔过程是因温度的改变而驱动的,故称这种方法为热致相分 离法(thermally induced phase separation , TIPS) 。 TIPS方法可获得孔隙率 50〜 70%的中空纤维膜, 断面为海绵体结构。 通过调节 D0P/DEP混合液与 PVDF的相容性, 微分相机理, 控制纺丝液在高温下的 L-L微分相与 L-S预分相, 可以获得高通量、 高 强度的中空纤维膜。 但由于纺丝温度高于 PVDF的熔点温度 Tm, 一般为 220〜260°C , 常用的 PVP、 PEG, PVA等亲水性高分子由于高温热分解原因, 不能作为添加剂加入, 难以得到适宜的聚偏氟乙烯中空纤维分离膜。
本发明采用低温热致相方法(L一 TIPS)制备聚偏氟乙烯中空纤维分离膜。 利用 某些低分子试剂在低温下不溶解 PVDF, 在高温下可溶解 PVDF的特性, 即高温增溶效 应,通过增加纺丝液中 PVDF固含量,使孔隙率在 70%左右, 同时利用 TIPS分相机理, 形成海绵状网格结构, 阻止指状孔的形成, 从而得到高强度、 高通量的聚偏氟乙烯中 空纤维分离膜。 低温热致相方法的关键技术点在于: 纺丝原液温度低于 PVDF熔点温 度 , 高于纺丝原液临界浊点温度 T。, 而凝固浴温度低于纺丝原液浊点温度 Τ。纺丝 原液温度与凝固浴温度两者温度差应超过 3(TC, 使铸膜液与凝固剂之间的传热速度 远大于凝固剂从铸膜液中萃取聚合物溶剂的速度。当纺丝原液与凝固剂接触时, 首先 因纺丝原液温度低于铸膜液浊点温度 T。, 发生液-液热致相分离, 生成初生凝胶体, 然后, 纺丝原液中聚合物溶剂被凝固剂从铸膜液中萃取, 发生溶液相分离, 完全固化 成膜, 形成海绵体结构。
在 100°C以下时,丙二醇为 PVDF的非溶剂,在 100°C以上时,丙二醇可以为 PVDF 的溶剂。 本发明以聚乙二醇为主要添加剂, 丙二醇为 PVDF潜溶剂, 制备血液分离用 聚偏氟乙烯中空纤维分离膜。 当纺丝原液温度在 80Ό以上, 凝固浴温度在 50'C以下 时, 丙二醇还有很好的致孔剂作用。 采用低温热致相分离原理 (L- TIPS), 可以使分 离膜表面更为光滑, 并获得更高的分离膜机械强度。
血液透析中空纤维膜一般内径在 150〜250 μ πκ 纤维壁厚 20〜50 μ ηι, 与常规水 处理用中空纤维膜几何尺寸差别较大, 纺丝制备技术要求较高, 芯液中加入溶剂, 可 以提高纺丝原液的可纺丝性。 本发明的技术特征是-
1、 加入丙二醇。 (1 )具有潜溶剂作用, 实现低温热致相制膜原理。 (2)可以降 低紡丝黏度, 提高聚偏氟乙烯固含量, 获得高强度、海绵体结构的聚偏氟乙烯中空纤 维分离膜。 (3)还有很好的致孔剂作用。
2、采用聚乙二醇作为添加剂的聚偏氟乙烯分离膜, 与聚乙烯吡咯垸酮作为添加 剂的聚偏氟乙烯分离膜相比,具有更低的蛋白吸附量和更好的分离膜强度结构。并且, 添加剂 PEG6000的加入量大于 10%时, 中空纤维膜通量明显增大。
3、 采用低温热致相分离原理 (L-TIPS), 可以使分离膜表面更为光滑, 并获得 更高的分离膜机械强度。
本发明的目的是提供一种不但可以除去水、 尿素等引起尿毒症的小分子, 净化 血液,而且可以除去分子量为 1万以上的低分子量蛋白如 β 2-微球蛋白, 同时还保留 人血白蛋白等有用物质的中空纤维膜。
本发明涉及一种用于血液透析的聚偏氟乙烯中空纤维分离膜, 其特征在于: 膜 丝厚度为 20〜50 μ πι, 膜丝内径为 ΙΟΟ μ η!〜 500 μ ηι, 其是由包括 20〜35wt%的聚 偏氟乙烯树脂固体物质、 50〜70wt%的纺丝溶剂、 10〜20wt%的聚乙二醇 6000亲水 性大分子和 5〜20^%的潜溶剂 PG的纺丝原液, 经低温热致相纺丝工艺纺丝制得。 紡丝溶剂是极性溶剂二甲基乙酰胺 (D Ac:)。
本发明还涉及一种制备用于血液透析的聚偏氟乙烯膜中空纤维膜的方法, 其特 征在于: 纺丝原液 20〜35 1%的聚偏氟乙烯树脂固体物质、 50〜70wt %的纺丝溶剂、 10〜20wt%的聚乙二醇 6000亲水性大分子和 5〜20 %的潜溶剂 PG的纺丝原液, 经 低温热致相紡丝工艺纺丝制得。 紡丝溶剂是极性溶剂二甲基乙酰胺 (DMA)。 在 80〜 150Ό的纺丝温度下, 将纺丝原液从插入管式纺丝喷头挤出, 插入管芯部通入纺丝芯 液, 芯液中加入溶剂提高可纺丝性, 溶剂含量为 50〜80wt %。 纺丝牵伸速度为 30~ 100m/min。
纺丝原液温度低于 PVDF熔点温度 1;, 高于纺丝原液临界浊点温度 T。, 而凝固浴 温度低于纺丝原液浊点温度 I。纺丝原液温度与凝固浴温度两者温度差应超过 30'C, 最好为 50〜80'C, 使铸膜液与凝固剂之间的传热速度远大于凝固剂从铸膜液中萃取 聚合物溶剂的速度。当纺丝原液与凝固剂接触时,首先因纺丝原液温度低于铸膜液浊 点温度 T。, 发生液一液热致相分离, 生成初生凝胶体, 然后, 纺丝原液中聚合物溶剂 被凝固剂从铸膜液中萃取, 发生溶液相分离, 完全固化成膜, 形成海绵体结构。
本发明还涉及上述聚偏氟乙烯中空纤维分离膜用做血液透析膜和血桨分离膜的 用途。
本发明的聚偏氟乙烯中空纤维分离膜透过速度高,可以縮短血液透析治疗时间; 而且由于聚偏氟乙烯膜材料吸附蛋白的量很小,膜表面光滑, 可以抑制在血液侧膜表 面形成蛋白吸附层, 膜透析速度稳定, 透析压力不升高, 故是一种优良的血液透析膜 材料。 提高纺丝稳定性, 降低加工过程的易折损性, 提高膜丝强度, 使用安全性。
本发明采用低温热致相干一湿法紡丝工艺制备聚偏氟乙烯膜中空纤维分离膜, 该聚偏氟乙烯膜中空纤维分离膜的主要组成是聚偏氟乙烯树脂,指聚偏氟乙烯均聚物 或聚偏氟乙烯共聚物中的一种, 聚偏氟乙烯共聚物为偏氟乙烯重复单元不少于 80% 的共聚物, 这样的血液透析膜对蛋白的吸附少。
纺丝原液中聚偏氟乙烯树脂固含量为 (以下用量都是以纺丝原液的总重量为基 准) 20〜35wt%, 低于 20wt %, 纺丝原液的粘度过低, 可纺性差, 超过 35wt %, 聚偏 氟乙烯树脂的溶解性不好,容易产生相分离。纺丝溶剂可以采用常用的极性溶剂如二 甲基乙酰胺 (DMAc:)、 二甲基甲酰胺 (DMF) 和 /或 N-甲基吡咯烷酮 (NMP) 等, 溶剂 的量为 50〜70wt % ; 亲水性大分子为 PEG6000、 PEG20000、 PEG4000等聚乙二醇系列, 优选 PEG6000, 用量为 10〜20wt % ; 使用的潜溶剂为丙二醇, 用量为 5〜20wt %。
本发明的聚偏氟乙烯膜中空纤维分离膜的制造方法: 采用低温热致相干一湿法 纺丝工艺, 纺丝原液由插入管式紡丝喷头挤出, 插入管芯部通入芯液, 挤出的紡丝原 液在空中走行 0〜50cm后, 进入凝固浴水槽固化成形, 然后卷绕在绕丝轮上。凝固浴 液体通常采用水, 也可在凝固浴中加入纺丝溶剂, 控制中空纤维膜成形速度。纺丝原 液温度 80~140Ό, 凝固浴温度 5~50'C , 两者温度差应超过 30Ό。
本发明的聚偏氟乙烯膜中空纤维分离膜的膜厚是 10〜50 μ m , .聚偏氟乙烯膜中 空纤维分离膜的内径是 100 μ η!〜 500 μ m。 内径低于 100 μ m时,血液流动压力损失 过大, 容易发生溶血现象, 并且由于血液凝固使中空纤维的中空部分产生血栓; 内径 大于 500 y m时, 膜丝填充密度低, 残血量大。 可以通过调整纺丝原液供料速度和纺 丝牵伸速度来控制中空纤维膜内径。 在下文中, 使用实施例进一步说明本发明。
实施例 聚偏氟乙烯 (S0LVAY 1010, 法国) 24wt %, DMAc 54wt%, 聚乙二醇 6000 12wt%, 丙二醇 10^%在 140°C下混合均匀, 静置脱泡 12小时后纺丝。 凝固浴液 体主要成分是水, 加入 2^%的 DMA溶剂, 纺丝牵伸速度 25米 /分钟, 插入管纺丝喷 头芯部通入芯液。得到的聚偏氟乙烯中空纤维分离膜内径 200 μ πι,纤维壁厚 40 μ η, 中空纤维内圆圆整, 表观无缺陷, 孔隙率 72%, 膜丝断面为海绵体结构。 纯水透过速 度 270L/m' · h · (0. 10MPa), Ρ 2-微球蛋白透过率 81%, 人血清白蛋白截留率 99. 2%。 比较例 1:聚偏氟乙烯 (S0LVAY 1015) 22wt %, D A66wt%,聚乙二醇 6000 12wt%, 在 90°C下混合均匀, 静置脱泡 12小时后纺丝。凝固浴液体主要成分是水, 加入 2wt% 的 DMA溶剂, 纺丝牵伸速度 25米 /分钟, 插入管纺丝喷头芯部通入芯液。得到的聚偏 氟乙烯中空纤维分离膜内径 200 μ ηι,纤维壁厚 40 μ πι, 中空纤维内圆圆整, 表观无 缺陷, 孔隙率 82%, 膜丝断面为指状孔结构。纯水透过速度 340L/m' * h * (0. 10MPa), e 2 -微球蛋白透过率 85%, 人血清白蛋白截留率 79. 5%。 实施例 2: 聚偏氟乙烯(Kynar 461, 美国) 23wt %, DMAc 54wt%, 聚乙二醇 6000 15wt%, 丙二醇 8wt% 14(TC下混合均匀, 静置脱泡 12小时后纺丝。凝固浴液体主要 成分是水, 加入 2^%的1)^溶剂, 纺丝牵伸速度 25米 /分钟, 插入管纺丝喷头芯部 通入芯液。 得到的聚偏氟乙烯中空纤维分离膜内径 200 μ m,纤维壁厚 30 μ m, 中空 纤维内圆圆整,表观无缺陷,孔隙率 71%,膜丝断面为海绵体结构。纯水透过速度 290L/ m2 . h · (0. lOMPa), 0 微球蛋白透过率 83%, 人血清白蛋白截留率 98. 9%。 比较例 2: 聚偏氟乙烯 (Kynar 461, 美国) 23wt %, DMA62wt%, 聚乙二醇 6000 15wt% 80°C下混合均勾, 在 5(TC下静置脱泡 12小时后纺丝。 凝固浴液体主要成分 是水, 加入 2^%的 DMA溶剂, 纺丝牵伸速度 25米 /分钟, 插入管纺丝喷头芯部通入 芯液。 得到的聚偏氟乙烯中空纤维分离膜内径 200 μ ηι,纤维壁厚 30 μ ηι, 中空纤维 内圆呈椭圆,表观无缺陷,孔隙率 82%,膜丝断面为指状孔结构。纯水透过速度 280L/ m' · h · (0. lOMPa), β 2-微球蛋白透过率 84%, 人血清白蛋白截留率 89. 2 %。 实施例 3: 聚偏氟乙烯 (S0LVAY 1015) 22wt %, DMA66wt%, 聚乙二醇 600012wt%, 在 90°C下混合均匀, 静置脱泡 12小时后纺丝。 凝固浴液体成分是水。 得到的聚偏氟 乙烯中空纤维分离膜内径 200 μ m,纤维壁厚 40μ m。 比较例 3: 聚醚砜 (SOLVAY A100) 22wt %, DMA66wt%, 聚乙二醇 6000 12wt%, 在 90°C下混合均匀, 静置脱泡 12小时后纺丝。 凝固浴液体成 是水。 得到的中空纤 维分离膜内径 200 μ m,纤维壁厚 40 μ m。 比较例 4: 聚偏氟乙烯 (SOLVAY 1015) 24wt %, DMA76wt%, 在 90°C下混合均匀, 静置脱泡 12小时后纺丝。 凝固浴液体成分是水。 得到的中空纤维分离膜内径 200μ m,纤维壁厚 40μ m。 比较例 5:聚偏氟乙烯(SOLVAY 1015)22wt%, DMA66wt%,聚乙烯吡咯垸酮(K- 30) 12wt%, 在 90°C下混合均匀, 静置脱泡 12小时后纺丝。 凝固浴液体成分是水。 得到 的聚偏氟乙烯中空纤维分离膜内径 200 μ m,纤维壁厚 40 μ m。 表 1: 不同制膜材料的亲水性和牛血清白蛋白的吸附
Figure imgf000012_0001
由表 1可以看出, 聚醚砜的蛋白吸附量最高, 为 93.6mg/m2, 大于聚偏氟乙烯的 蛋白吸附量, 这与文献报道的聚偏氟乙烯膜的高抗污染性一致。聚偏氟乙烯在亲水改 性后亲水性明显提高, 接触角从 86°C下降为 65°C左右。 对牛血清白蛋白的吸附也从 58 mg/m2下降为 25.7 mg/m2和 38.5 mg/m2,这与材料亲水性提高可降低蛋白吸附性的 理论值一致。 聚醚砜和聚偏氟乙烯在相同的改性条件下, 两者的亲水性类似, 但是聚 偏氟乙烯比聚醚砜有更低的蛋白吸附率。目前聚砜与聚醚砜中空纤维膜制膜专利大多 采用聚乙烯吡咯垸酮 (PVP) 作为主要添加剂, 从表 1比较看, 分别采用聚乙二醇和 聚乙烯吡咯垸酮作为添加剂的聚偏氟乙烯分离膜,亲水性相近,但采用聚乙二醇添加 剂的聚偏氟乙烯膜具有更低的蛋白吸附量。
本发明实施例中未进行说明的问题为现有技术, 故不再赘述。 另外,如表 2所示,在相同的操作条件下, 不同膜在超滤过程中的通量随浓缩倍 数的衰减情况。 由图可以看出, 聚醚砜对牛血清白蛋白的吸附最大, 没添加添加剂的 聚偏氟乙烯对牛血清白蛋白的吸附要比添加剂改性的聚偏氟乙烯的吸附量大,添加剂 的加入,增加了膜的亲水性也降低了膜对牛血清白蛋白的吸附率。因此在超滤过程中, 其衰减就少, 更能够保持较高的通量。 表 2 不同膜材料比通量随超滤时间的变化 比较例 4 实施例 3 比较例 5 比较例 3
比通量% 比通量% 比通量% 比通量%
0 100 100 100 100
1 65 82 75 37
5 47 70 55 15
10 43 60 51 11
20 40 51 48 8. 5
30 39 50 47 8
本发明聚偏氟乙烯中空纤维分离膜在血液透析和血浆分离中应用试验的结果:
1、如表 3所示, 为本发明聚偏氟乙烯中空纤维分离膜以及聚醚砜体外细胞毒性试验 结果图。 图中, 阴舰照且的细賺值率为 92%, 阳浙照且的细膽殖率为 , 改性的聚 偏氟乙稀的细 Ι6ϋ值率分别为 86% Ρ 81%, 细胞毒性为一级。在相同 牛下, »δ¾的细胞毒 性为肌 比聚偏氟乙删细胞毒性稍高。因此, 魏胞毒肚, 改驟偏氟乙烯只擁微的 细胞毒性, 更 生漏糊胞毒性的要求。 表 3聚偏氟乙烯改性前后以及聚醚砜体外细胞毒性试验 阴性对 阳性对
实施例 3 比较例 3 比较例 5 比较例 4 照组 照组
0.691 0.284 0.546 0.511 0.559 0.542
0.650 0.2873 0.613 0.541 0.585 0.586 吸光度 0.654 0.272 0.623 0.578 0.613 0.614
0.664 0.275 0.619 0.582 0.581 0.596
0.628 0.259 0.680 0.589 0.564 0.586 均值 0.657 0.276 0.616 0.560 0.580 0.585 增值率% 92 39 86 78 81 82 误差% 3, 1 1.5 6.6 4.6 2.9 3.7
2、如表 4所示, 为本发明聚偏氟乙烯中空纤维分离膜(聚偏氟乙烯改性前后)以 及聚醚砜的溶血试验数据。 表 4本发明聚偏氟乙烯中空纤维分离膜 (聚偏氟乙烯改性前后)
以及聚醚砜的溶血试验数据
table 4 Heamolysis-test of PVDF, Modified PVDF and PES
Figure imgf000014_0001
从表 4中可以看出聚 «实 且和 50%»wa溶血率最低, 分别为 1. ma 0.5%。改性 前 PVDF和 5 PVDF的溶血率为 3.» 2.5%略小于 5%的标准, 用两稱才料改 't4^, PVDF的溶 血率有所下降分别为 2.9^2.4%, 比改性前更船 生辦才料的溶血微要求。 3、 本发明聚偏氟乙烯中空纤维分离膜 (改性聚偏氟乙烯)与聚醚»^»时间比 较的 果, 如表 5麻。 表 5 改性聚偏氟乙烯与聚醚砜的动态凝血时间比较
Figure imgf000015_0001
从表 5可以看出, PVP mmzM m m^ 好, PEG改性的聚偏氟乙纖抗難性能 照舰瞧有了很; ¾!高, 更 国标湖料的 抗»_性能要求。从材 M l机制方面看,血液凝固时有血液中的血 蛋白、 »L因子^ 加 ^jm ,材料的介入使馳 魏 ¾¾0当血液和材料相她首 蛋 ό的吸 附, 随后的 »L¾¾½¾JfiL液和吸附的蛋白相互作用中。 改性 PVDF与 M t才料对比, 两綠水 ' 以,爾白蛋白与乡惟蛋白的吸附不同,从而对血小板的粘附不同导雜敦效 果不同。 本发明聚偏氟乙烯透析膜材料具有如下特点: 1 ) 蛋白吸附性、 凝血性、 细胞毒 性均优于目前市场上最好的聚醚砜材料; 2) 纺丝加工过程中, 膜丝柔韧性优异, 不 易折损; 3)在使用中膜通量下降小; 4) 耐辐射和抗氧化剂作用强, 易清洗和消毒, 有利于透析器的复用。 以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式上的限制, 凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均 仍属于本发明技术方案的范围内。

Claims

权利要求书
1、 一种聚偏氟乙烯中空纤维分离膜, 其特征在于:
膜丝壁厚为 20〜50 μ m, 膜丝内径为 200 μ π!〜 500 μ m ; 纺丝原液的重量百分 比是聚偏氟乙烯树脂占 20〜35%, 聚乙二醇为 10〜20% , 潜溶剂为 5〜20%, 其余为 纺丝溶剂。
2、 根据权利要求 1所述的聚偏氟乙烯中空纤维分离膜, 其特征在于: 所述聚偏 氟乙烯树脂为聚偏氟乙烯均聚物或者聚偏氟乙烯共聚物,该聚偏氟乙烯共聚物为偏氟 乙烯重复单元不少于 80%的共聚物。
3、 根据权利要求 1所述的聚偏氟乙烯中空纤维分离膜, 其特征在于: 所述纺丝 溶剂为极性溶剂, 该极性溶剂为二甲基乙酰胺、 二甲基甲酰胺或 N-甲基吡咯垸酮。
4、 根据权利要求 1所述的聚偏氟乙烯中空纤维分离膜, 其特征在于: 所述聚乙 二醇为聚乙二醇 6000、 聚乙二醇 20000、 聚乙二醇 4000, 优选聚乙二醇 6000。
5、 根据权利要求 1所述的聚偏氟乙烯中空纤维分离膜, 其特征在于: 所述潜溶 剂为丙二醇。
6、一种如权利要求 1所述聚偏氟乙烯中空纤维分离膜的制造方法,其特征在于, 将重量百分比为 20〜35%的聚偏氟乙烯树脂、 50〜70%的纺丝溶剂、 10〜20%的聚乙 二醇以及 5〜20%的潜溶剂在 80至 140°C的条件下混合成纺丝原液,将该纺丝原液静 置 5至 15小时后由插入管式纺丝喷头挤出, 插入管芯部通入芯液, 挤出的纺丝原液 在空中走行 0~50cm后,进入凝固浴水槽固化成型,然后将成型的膜丝牵伸卷绕在绕 丝轮上。
7、 根据权利要求 6所述的聚偏氟乙烯中空纤维分离膜, 其特征在于: 所述聚偏 氟乙烯树脂为聚偏氟乙烯均聚物或者聚偏氟乙烯共聚物,该聚偏氟乙烯共聚物为偏氟 乙烯重复单元不少于 80%的共聚物; 所述纺丝溶剂为极性溶剂, 该极性溶剂为二甲 基乙酰胺、 二甲基甲酰胺或者 N-甲基吡咯烷酮; 所述聚乙二醇为聚乙二醇 6000、 聚 乙二醇 20000、 聚乙二醇 4000, 优选聚乙二醇 6000; 所述潜溶剂为丙二醇。
8、 根据权利要求 6所述的聚偏氟乙烯中空纤维分离膜, 其特征在于: 所述凝固 浴液体为水或者水和纺丝溶剂的混合液, 凝固浴温度与纺丝原液温度的差大于 30'C。
9、 根据权利要求 6所述的聚偏氟乙烯中空纤维分离膜, 其特征在于: 所述中空 纤维膜紡丝牵伸速度控制在 30至 100米 /分钟。
10、 一种如权利要求 1所述聚偏氟乙烯中空纤维分离膜在血液透析和血浆分离 中的应用。
PCT/CN2010/000383 2010-03-26 2010-03-26 聚偏氟乙烯中空纤维分离膜及其制备方法 WO2011116504A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000383 WO2011116504A1 (zh) 2010-03-26 2010-03-26 聚偏氟乙烯中空纤维分离膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000383 WO2011116504A1 (zh) 2010-03-26 2010-03-26 聚偏氟乙烯中空纤维分离膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2011116504A1 true WO2011116504A1 (zh) 2011-09-29

Family

ID=44672433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000383 WO2011116504A1 (zh) 2010-03-26 2010-03-26 聚偏氟乙烯中空纤维分离膜及其制备方法

Country Status (1)

Country Link
WO (1) WO2011116504A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115212736A (zh) * 2022-07-15 2022-10-21 中国科学院烟台海岸带研究所 一种用于海水工厂化养殖水处理的分离膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489406A (en) * 1990-05-09 1996-02-06 Memtec Limited Method of making polyvinylidene fluoride membrane
CN1579601A (zh) * 2003-08-13 2005-02-16 天津膜天膜工程技术有限公司 用于血液透析的聚偏氟乙烯中空纤维膜
JP2007185562A (ja) * 2006-01-11 2007-07-26 Toyobo Co Ltd ポリフッ化ビニリデン系中空糸型微多孔膜およびその製造方法
CN101138708A (zh) * 2006-09-07 2008-03-12 天津膜天膜工程技术有限公司 复合稀释剂制备聚偏氟乙烯多孔膜的方法
CN101164678A (zh) * 2006-10-18 2008-04-23 中国科学院化学研究所 具有可控孔结构的聚偏氟乙烯多孔膜的制备方法
CN101362057A (zh) * 2008-01-30 2009-02-11 清华大学 一种制备聚偏氟乙烯多孔膜的方法
CN101485961A (zh) * 2009-01-08 2009-07-22 杭州水处理技术研究开发中心有限公司 一种聚偏氟乙烯中空纤维合金膜制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489406A (en) * 1990-05-09 1996-02-06 Memtec Limited Method of making polyvinylidene fluoride membrane
CN1579601A (zh) * 2003-08-13 2005-02-16 天津膜天膜工程技术有限公司 用于血液透析的聚偏氟乙烯中空纤维膜
JP2007185562A (ja) * 2006-01-11 2007-07-26 Toyobo Co Ltd ポリフッ化ビニリデン系中空糸型微多孔膜およびその製造方法
CN101138708A (zh) * 2006-09-07 2008-03-12 天津膜天膜工程技术有限公司 复合稀释剂制备聚偏氟乙烯多孔膜的方法
CN101164678A (zh) * 2006-10-18 2008-04-23 中国科学院化学研究所 具有可控孔结构的聚偏氟乙烯多孔膜的制备方法
CN101362057A (zh) * 2008-01-30 2009-02-11 清华大学 一种制备聚偏氟乙烯多孔膜的方法
CN101485961A (zh) * 2009-01-08 2009-07-22 杭州水处理技术研究开发中心有限公司 一种聚偏氟乙烯中空纤维合金膜制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115212736A (zh) * 2022-07-15 2022-10-21 中国科学院烟台海岸带研究所 一种用于海水工厂化养殖水处理的分离膜

Similar Documents

Publication Publication Date Title
JP6698536B2 (ja) 血液浄化のための膜
JP2916446B2 (ja) 非対称微孔性中空繊維の製造方法
JP6184464B2 (ja) 繊維形成のための性能向上添加剤及びポリスルホン繊維
JP6433513B2 (ja) 多孔質中空糸濾過膜
JPH0647262A (ja) 全血からの低密度リポタンパク質の高効率除去
JPWO2002009857A1 (ja) 改質された中空糸膜
TWI667048B (zh) 多孔質膜,內藏多孔質膜之血液淨化用模組及多孔質膜之製造方法
JP5952159B2 (ja) 分離膜及びその製造方法
JP6367977B2 (ja) 多孔質中空糸膜
JP2703266B2 (ja) ポリスルホン中空繊維膜およびその製法
WO2011116504A1 (zh) 聚偏氟乙烯中空纤维分离膜及其制备方法
WO2000027447A1 (fr) Epurateur de sang
JP4103037B2 (ja) 透析液清浄化用中空糸膜およびその製造方法
WO1996035504A1 (fr) Membrane fibre creuse a base de polymere de polysulfone et son procede de production
JPH0929078A (ja) 中空糸膜の製造方法
JP4672128B2 (ja) 中空糸膜およびその製造方法
JP2011020071A (ja) ポリスルホン系中空糸膜の製造方法
KR20140048458A (ko) 비대칭성 중공사막의 제조방법 및 이에 의해 제조된 비대칭성 중공사막
JP2004216328A (ja) 選択透過性中空糸膜およびそれを用いた血液処理器
JP4794716B2 (ja) 中空糸膜およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848166

Country of ref document: EP

Kind code of ref document: A1