WO2011114984A1 - レーザトリートメント装置 - Google Patents

レーザトリートメント装置 Download PDF

Info

Publication number
WO2011114984A1
WO2011114984A1 PCT/JP2011/055636 JP2011055636W WO2011114984A1 WO 2011114984 A1 WO2011114984 A1 WO 2011114984A1 JP 2011055636 W JP2011055636 W JP 2011055636W WO 2011114984 A1 WO2011114984 A1 WO 2011114984A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
laser light
treatment apparatus
light source
Prior art date
Application number
PCT/JP2011/055636
Other languages
English (en)
French (fr)
Inventor
山崎 岩男
章次 山崎
Original Assignee
ヤーマン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤーマン株式会社 filed Critical ヤーマン株式会社
Priority to US13/521,962 priority Critical patent/US20120296322A1/en
Priority to JP2012505638A priority patent/JPWO2011114984A1/ja
Publication of WO2011114984A1 publication Critical patent/WO2011114984A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • A61B2018/00785Reflected power
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/208Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser with multiple treatment beams not sharing a common path, e.g. non-axial or parallel

Definitions

  • the present invention relates to a laser treatment apparatus for performing hair removal and other cosmetic treatments by irradiating the skin with laser light.
  • FIG. 13 shows a conventional laser treatment apparatus with a part cut away to show the inside. This conventional apparatus is disclosed in Patent Document 1.
  • 101 is a laser treatment apparatus
  • 102 is an exterior case
  • 103 is a gripping part
  • 104 is a head part
  • 104A is an opening part of the head part 104
  • 105 is an operation panel part.
  • 106 is an optical unit
  • 107 is a semiconductor laser that emits laser light
  • 108 is a spherical lens that condenses the laser light
  • 109 is a heat sink that dissipates the semiconductor laser 107.
  • 110 is a vibration motor fixed to the optical unit 106
  • 111 is a motor shaft of the vibration motor 110
  • 112 is an eccentric weight fixed to the motor shaft 111
  • 113 is a fulcrum of vibration
  • 114 is irradiated for cosmetic treatment. Surface.
  • Laser light emitted from the semiconductor laser 107 is collected by the spherical lens 108 and irradiates the irradiated surface 114.
  • the irradiation range on the irradiated surface 114 is about 2 to 3 mm in diameter.
  • the conventional laser treatment device Since the conventional laser treatment device has the above configuration, the irradiation range of the laser beam cannot be said to be sufficiently wide. When irradiating the laser beam over a wide area, it is necessary to reciprocate the laser beam with respect to the skin. There is a problem that it is expensive and inefficient.
  • the cause is that the semiconductor laser 107 used as the laser light source is a single-point emission type and has an output peak on the optical axis, and the irradiation range of this single-point laser beam is naturally limited.
  • the present invention has been made to solve the above-mentioned problems, and while suppressing the increase in size and ensuring the practicality, the skin is irradiated with high-power and wide-range laser light to improve the efficiency of the beauty treatment.
  • the goal is to improve.
  • the laser treatment apparatus wherein two or more laser elements are arranged on the same wafer, and a surface emitting laser array for emitting laser light for irradiating the irradiated portion is provided as a light source means. It is.
  • the laser treatment apparatus is a vertical cavity surface emitting laser array in which two or more vertical cavity surface emitting laser elements are arranged on the same wafer. It is characterized by that.
  • the laser treatment apparatus is characterized by comprising light guide means for receiving the laser light emitted from the light source means according to claim 1 and guiding the laser light to the irradiated site.
  • the laser treatment apparatus is characterized in that the light source means according to claim 1 includes a battery for driving the surface emitting laser array.
  • the laser treatment apparatus is characterized in that the light source means according to claim 1 includes two surface emitting laser arrays connected in series.
  • the laser treatment apparatus is characterized in that the light source means according to claim 1 includes light diffusing means for diffusing the laser light to the irradiated portion.
  • the laser treatment apparatus according to the first aspect, wherein the light source unit according to the first aspect is a reflected light power detecting unit that detects a reflected light power from the irradiated region, And a control means for adjusting the power of the laser beam accordingly.
  • the laser treatment apparatus is characterized in that the light source means according to claim 1 detects contact with the irradiated site irradiated with laser light, and the contact detection means contacts with the irradiated site. Control means for causing the light source means to emit laser light only during detection of the light is provided.
  • the laser treatment apparatus is configured such that after the control means according to claim 9 irradiates the irradiated portion with the laser beam for a predetermined time, the light source means stops the emission of the laser light. It is characterized by.
  • the laser treatment apparatus of claim 1 at least one surface on which two or more laser elements are arranged on the same wafer and emits laser light for irradiating the irradiated site. Since the light emitting laser array is provided as the light source means, a high power and wide range laser light having a combined intensity distribution obtained by synthesizing the intensity distribution of the laser light from each laser element is emitted from the light source means. The effect of improving the efficiency of the beauty treatment can be obtained by irradiating the irradiated site with a high power and a wide range of laser light.
  • the light source means includes a vertical cavity surface emitting laser array in which two or more vertical cavity surface emitting laser elements are arranged on the same wafer.
  • the laser treatment apparatus of the third aspect since the light guide means for receiving the laser light emitted from the light source means and guiding it to the irradiated portion is provided, the laser light emitted from the light source means is irradiated. The effect that light can be easily guided to the site is obtained.
  • the battery for driving the surface emitting laser array since the battery for driving the surface emitting laser array is provided, it is necessary to use a large AC adapter or the like as a driving circuit for the surface emitting laser array that requires a large current. Thus, an increase in the size of the laser treatment apparatus using the surface emitting laser array can be suppressed, and the practicality can be ensured.
  • the light source means includes two surface emitting laser arrays connected in series, the most efficient laser using four 1.2 V rechargeable batteries. The effect that a treatment apparatus can be comprised is acquired.
  • the laser treatment apparatus of the sixth aspect since the light diffusion means for diffusing the laser light for irradiating the irradiated portion to the irradiated portion is provided, the laser light is diffused to the irradiated portion. Irradiation is achieved, and the effect of protecting the user from accidents such as burns can be obtained. In addition, it becomes possible to distribute a laser beam with a high power and a wide range to an irradiated region over a wider range, and an effect of improving the efficiency of the beauty treatment can be obtained. Furthermore, it becomes possible to irradiate the irradiated portion with laser light having high uniformity, and the effect of reducing uneven irradiation of the beauty treatment can be obtained.
  • the reflected light power detecting means for detecting the reflected light power from the irradiated portion of the light irradiated to the irradiated portion, and the reflected light detected by the reflected light power detecting means.
  • a control unit that adjusts the power of the laser beam emitted from the light source unit according to the power, so that the power of the laser beam irradiated to the irradiated site is determined according to individual differences in the color of the irradiated site.
  • the contact detection means for detecting contact with the irradiated portion irradiated with laser light, and the contact detecting means while detecting the contact with the irradiated portion. Since the light source means includes control means for emitting laser light, the laser light source does not emit laser light unless the contact detection means detects contact with the irradiated portion irradiated with the laser light. Thus, it is possible to prevent an unexpected accident that a laser beam is accidentally irradiated to an eyeball or the like, and to obtain an effect of ensuring the safety of a high-power laser treatment apparatus.
  • the control means stops the light source means from emitting the laser light after irradiating the irradiated portion with the laser light for a predetermined time.
  • FIG. 1 is a diagram showing a configuration of a laser treatment apparatus according to Embodiment 1 of the present invention.
  • FIGS. 1 (a), 1 (b), and 1 (c) are a front view and a side view of the laser treatment apparatus, respectively.
  • FIG. 1B a part of the laser treatment apparatus is cut away to show the internal structure.
  • 10 is a laser treatment apparatus
  • 20 is a gripping part held by a user of the laser treatment apparatus
  • 21 is an irradiation button for irradiating laser light
  • 30 is a head part incorporating a laser light source and other optical devices.
  • 30A is an opening of the head portion
  • 40 is a laser light source (light source means)
  • 50 is a light guide made of polymethylmethacrylate (light guide means) that receives laser light emitted from the laser light source 40 and irradiates the skin. ).
  • the laser light source 40 is a component that characterizes the present invention.
  • the laser light source 40 includes a VCSEL array in which a plurality of VCSEL (* 1) elements that resonate light in a direction perpendicular to the substrate surface and emit light in the direction are arranged on the same wafer.
  • VCSEL Vertical cavity surface emitting laser. Abbreviation for Vertical Cavity Surface Emitting Laser [English]. In this specification, it is abbreviated as “VCSEL”.
  • FIG. 2 is a diagram showing the configuration of the laser light source of FIG. 1, FIG. 2 (a) is a perspective view of a VCSEL array provided in the laser light source 40, and FIG. 2 (b) is a laser beam emitted to the light guide 50.
  • the side view of the laser light source 40 to perform is typically represented respectively.
  • 41 is a VCSEL array provided in the laser light source 40
  • 41s is a plurality of VCSEL elements constituting the VCSEL array 41
  • L is a laser beam emitted from each VCSEL element 41s
  • 42 is a micro that collimates each laser beam L.
  • a lens array D is a combined intensity distribution of the laser beams L virtually illustrated.
  • the VCSEL element 41s has an advantage in that it is easily arrayed compared to an edge-emitting laser element that includes a resonator parallel to the substrate surface and emits light from a cleaved side surface. Yes.
  • the VCSEL array 41 is configured by densely arranging a plurality of VCSEL elements 41s on the same wafer, so that the laser light obtained by synthesizing the intensity of each laser light L is the VCSEL array 41.
  • the laser beam is emitted from the entire emission surface, and a high-power and wide-range laser beam is realized.
  • each laser light L emitted from the VCSEL array 41 is converted into a microlens array.
  • the laser light source 40 emits the laser light having a combined intensity distribution D through 42.
  • the laser light having the combined intensity distribution D is transmitted through the light guide 50 and irradiated from the opening 30A to the skin of the user as the irradiated portion. Since the VCSEL array 41 irradiates the laser beam having the combined intensity distribution D with high power and wide range, the efficiency of hair removal and other beauty treatments can be improved.
  • laser light can be irradiated over a wide range of approximately 20 mm in diameter.
  • the irradiation range in the case of one-point irradiation with the conventional laser treatment apparatus 101 of FIG. 13 is about 2 to 3 mm in diameter, it is possible to perform wide-area irradiation about 100 times in terms of area ratio.
  • This irradiation range can be further expanded if the number of VCSEL arrays 41 is increased.
  • the mounting volume occupied in the laser treatment apparatus 10 is not so large, and the peripheral components such as the heat sink are small.
  • Such an AC adapter that supplies a large current is not commercially available. If an attempt is made to generate a necessary large current from AC 100 V, the circuit becomes large and the laser treatment apparatus 10 becomes impractical.
  • a battery is used as a driving power source for the laser light source 40, and the laser light source 40 including the VCSEL array 41 can be driven even for a short time. In this way, while realizing high power and wide range of laser light, the circuit is prevented from being enlarged and the practicality of the laser treatment apparatus 10 is secured.
  • FIG. 3 is a diagram for explaining a design example in the case of using a battery as a driving power source of the laser light source 40.
  • a rechargeable battery of 1.2V is connected in series and used as a drive power supply, and the drive voltage per one VCSEL array 41 is 2V, the efficiency of the transformation is step-up ⁇ step-down, and the VCSEL array is stepped down by a resistor R1. 41 is driven.
  • the drive voltage of other devices provided in the laser treatment apparatus 10 is 3V.
  • the number of rechargeable batteries for one VCSEL array 41 is two, and the design example (b) in which the VCSEL array 41 cannot be driven or three rechargeable batteries are used. This is more efficient than the design example (c) in which one VCSEL array 41 is driven.
  • the design example (b) it is necessary to boost 0.6V to drive other devices, and considering that the efficiency of the transformation is boost ⁇ step-down, other devices can be driven by 1.8V step-down.
  • the design example (d) that can be driven is the most efficient.
  • three VCSEL arrays 41 can be driven with five rechargeable batteries and the step-down width is 0.0 V, which is efficient, but cannot be driven when the battery voltage E drops due to use. Do not adopt from the viewpoint of design margin.
  • the array of the VCSEL elements 41 s constituting the VCSEL array 41 may be a linear one-dimensional array or a planar two-dimensional array.
  • N and M in the case of a one-dimensional array in which only VCSEL elements 41s are arranged in N or in the case of a two-dimensional array in which an N ⁇ M matrix is arranged can be changed according to the design specifications.
  • shape of the two-dimensional array is not limited to an N ⁇ M matrix, and various patterns such as a hexagonal array can be employed.
  • the number of VCSEL arrays 41 used for the laser light source 40 is not limited to one or two, but may be three or more, and the connection method of the VCSEL arrays 41 is also limited to the serial connection. Rather, it may be connected in parallel.
  • the surface emitting laser array used for the laser light source 40 is not limited to the VCSEL array 41 using the VCSEL elements 41s, and at least one surface emitting laser array in which two or more laser elements are arranged on the same wafer is used. If used as the laser light source 40, the first embodiment is possible.
  • two or more VCSEL elements 41 s are arranged on the same wafer, and at least one VCSEL array 41 that emits laser light for irradiating the skin.
  • the effect of being able to irradiate the skin with this high-power and wide-range laser light to improve the efficiency of the beauty treatment is obtained, and by using the VCSEL element 41s, the effect of being easily arrayed is obtained.
  • the laser light emitted from the laser light source 40 is directed to the skin. The effect that it can guide light easily is acquired.
  • the battery for driving the VCSEL array 41 since the battery for driving the VCSEL array 41 is provided, it is not necessary to use a large AC adapter or the like as a drive circuit for the VCSEL array 41 that requires a large current. Of the laser treatment apparatus 10 using the VCSEL array 41 can be secured.
  • the laser light source 40 since the laser light source 40 includes two VCSEL arrays 41 connected in series, the most efficient laser treatment using four 1.2 V rechargeable batteries. The effect that the apparatus 10 can be comprised is acquired.
  • Embodiment 2 As described in the first embodiment, since the laser treatment apparatus 10 uses the VCSEL array 41 for the laser light source 40, the laser light emitted from the laser treatment apparatus 10 has high power and is used by mistake. If so, there is a risk of causing accidents such as burns. In the following second to fourth embodiments, safety measures relating to high-power laser light will be described.
  • FIG. 4 is a diagram showing a configuration of a laser treatment apparatus according to Embodiment 2 of the present invention.
  • 51 is a light diffusion plate (light diffusion means) provided in the opening 30A.
  • the light diffusion plate 51 functions to diffuse the laser light emitted from the light guide 50 into the skin.
  • a light diffusing plate 51 is provided in the opening 30 ⁇ / b> A on the light emitting side of the light guide 50, and the laser light emitted from the light guide 50 is diffused to the skin within a predetermined range by the light diffusing plate 51. is doing. By doing in this way, the situation where high-power laser light is concentrated and applied to a narrow area of the skin can be prevented, and the user can be protected from accidents such as burns.
  • the light diffusing plate 51 makes it possible to distribute high-power and wide-range laser light to the skin over a wider area, improving the efficiency of the beauty treatment and making the laser light highly uniform. Irradiation unevenness of beauty treatment can be reduced.
  • the light diffusing plate 51 that diffuses the laser light emitted from the light guide 50 to the skin is provided, the laser light is diffused and applied to the skin.
  • the user can be protected from accidents such as burns.
  • a high-power and wide-range laser beam can be distributed to the skin over a wider range, and the effect of improving the efficiency of the beauty treatment can be obtained.
  • FIG. 5 is a diagram showing a configuration of a laser treatment apparatus according to Embodiment 3 of the present invention.
  • 60 is a color sensor (reflected light power detection means) provided around the opening 30A.
  • the color sensor 60 functions to detect the reflected light power from the skin of the laser light irradiated to the skin by the laser treatment apparatus 10.
  • FIG. 6 is a block diagram showing a circuit configuration of a laser treatment apparatus according to Embodiment 3 of the present invention.
  • 70 is a circuit
  • 71 is a power source
  • 72 is a laser power control circuit (light source means)
  • 73 is a color sensor processing circuit (reflected light power detection means)
  • 74 is a CPU (control means).
  • FIG. 7 is a flowchart showing the operation of the laser treatment apparatus according to the third embodiment of the present invention.
  • the CPU 74 determines whether or not the irradiation button 21 is turned on (step ST31). While the irradiation button 21 is not turned on (NO in step ST31), the CPU 74 does not emit laser light from the laser light source 40 (step ST32) and enters a standby state (NO in step ST31 to step ST32).
  • the CPU 74 controls the laser power control circuit 72 to emit laser light from the laser light source 40 (step ST33). This laser light is applied to the skin through the light guide 50 and the light diffusion plate 51.
  • the CPU 74 performs the following control based on the fact that the rate of laser light absorption changes according to individual differences in skin color. That is, the laser light reflected and returned by the skin is received by the color sensor 60 and detected as reflected light power P1 by the color sensor processing circuit 73 (step ST34). Then, the CPU 74 refers to the reflected light power P1 and optimizes the power of the laser light applied to the skin.
  • the laser power control circuit 72 is controlled to reduce the power of the laser light emitted from the laser light source 40 (step ST36).
  • the laser power control circuit 72 is controlled to increase the power of the laser light emitted from the laser light source 40 (step ST37).
  • step ST35 when the reflected light power P1 is equal to the predetermined recommended light power P0 (YES in step ST35), it is determined that the ratio of the laser light absorbed by the skin is appropriate, and the CPU 74 determines the laser light source 40.
  • the power of the laser beam emitted from is maintained (step ST37 parentheses).
  • the laser light power may be optimized by the CPU 74 controlling the laser power control circuit 72 to adjust the power level itself of the laser light emitted from the laser light source 40 and the duty ratio of the optical pulse.
  • an optical attenuator or the like may be provided on the emission side of the laser light source 40, and the CPU 74 may adjust this optical attenuator.
  • the light received by the color sensor 60 is not limited to the laser light emitted from the laser light source 40. Light other than the laser light from the laser light source 40 is applied to the skin, and the reflected light is received by the color sensor 60. You may do it. However, if the color sensor 60 detects the reflected light power of the laser light from the laser light source 40 with the color sensor 60, the reflected light from the skin can be easily produced, and the power of the laser light can be easily optimized.
  • the color sensor 60 and the color sensor processing circuit 73 that detect the reflected light power P1 from the skin of the laser light irradiated on the skin in step ST34, and the color sensor 60 and the color.
  • the laser light source circuit 40 controls the laser power control circuit 72 in accordance with the comparison result in step ST35 between the reflected light power P1 detected by the sensor processing circuit 73 and the predetermined recommended light power P0. Since the CPU 74 that adjusts the power of the emitted laser light is provided, the power of the irradiated laser light can be optimized according to individual differences in the skin color, and the laser treatment apparatus has been increased in power. It is possible to secure the safety of the treatment and improve treatment efficiency. By detecting the reflected light power P1 of the laser light from the skin, the reflected light from the skin can be easily created, and the optimization of the power of the laser light is facilitated. can get.
  • FIG. 8 is a diagram showing the configuration of a laser treatment apparatus according to Embodiment 4 of the present invention.
  • 80 is a touch sensor (contact detection means) provided around the opening 30A.
  • the touch sensor 80 functions to detect contact with the skin irradiated with laser light.
  • FIG. 9 is a block diagram showing a circuit configuration of a laser treatment apparatus according to Embodiment 4 of the present invention.
  • reference numeral 75 denotes a touch sensor processing circuit (contact detection means).
  • FIG. 10 is a flowchart showing the operation of the laser treatment apparatus according to the fourth embodiment of the present invention.
  • the CPU 74 first detects the presence or absence of contact with the skin irradiated with the laser light by the touch sensor 80 and the touch sensor processing circuit 75 (step ST41). If there is no contact (NO in step ST41), the CPU 74 does not irradiate the laser light (step ST32) to prevent accidents such as accidentally irradiating the eyeball with laser light. (NO in step ST41 to step ST32).
  • the CPU 74 When the touch sensor 80 and the touch sensor processing circuit 75 detect contact with the skin in the standby state (YES in step ST41), the CPU 74 subsequently determines whether or not the irradiation button 21 is turned on (step ST31). While the irradiation button 21 is not turned on (NO in step ST31), the CPU 74 does not emit laser light from the laser light source 40 (step ST32) and enters a standby state (YES in step ST41 to NO in step ST31 to step ST32). ).
  • step ST41 When contact with the skin is detected (YES in step ST41) and it is detected that the irradiation button 21 is turned on (YES in step ST31), the CPU 74 starts the laser power control circuit 72 for the first time here. Control is performed to emit laser light from the laser light source 40 (step ST33). This laser light is applied to the skin via the light guide 50 and the light diffusion plate 51.
  • the CPU 74 uses the touch sensor 80 and the touch sensor processing circuit 75 to detect contact / non-contact with the skin irradiated with the laser light. Then, in the case of non-contact, the laser beam is not irradiated from the viewpoint of preventing erroneous irradiation.
  • the CPU 74 sets the laser power control circuit 72 on condition that the irradiation button 21 is turned on. Laser light irradiation is controlled. Thereby, erroneous irradiation with respect to parts other than the irradiated part, in particular, the eyeball can be prevented, and the user can be protected from an unexpected accident.
  • FIG. 11 is a flowchart showing the operation of the laser treatment apparatus according to the fourth embodiment of the present invention. Since step ST41 and steps ST31 to ST33 in FIG. 11 are the same as those in FIG. 10, the description thereof will be omitted, and step ST42 and subsequent steps will be described below.
  • the CPU 74 When laser light is emitted from the laser light source 40 in step ST33, the CPU 74 starts a timer to measure the laser light irradiation time t, and increments the irradiation time t by the unit irradiation time (step ST42).
  • the CPU 74 compares the irradiation time t with the maximum irradiation time Tmax, and determines whether or not the irradiation time t has reached the maximum irradiation time Tmax (step ST43).
  • the CPU 74 performs laser light. (Step ST33), irradiation time t increment (step ST42), and irradiation time comparison determination (step ST43) are repeated.
  • the CPU 74 irradiates the skin at the same location with the laser beam exceeding the maximum irradiation time Tmax. Is determined to be excessive irradiation, and in order to suppress the influence on the skin, the laser power control circuit 72 is controlled to forcibly stop the irradiation of the laser light (step ST44). Then, the timer is reset for the next irradiation (step ST45), and the series of processes is terminated. Thereafter, new processing for another irradiated site is performed again from step ST41.
  • FIG. 12 is a timing chart for explaining the operation of the laser treatment apparatus of FIG. 11.
  • FIG. 12 (a) shows contact / non-contact of the touch sensor 80
  • FIG. 12 (b) shows ON / OFF of the irradiation button 21.
  • FIG. 12C shows laser beam irradiation / non-irradiation.
  • the touch sensor 80 does not detect contact with the skin or the irradiation button 21 is OFF, so the CPU 74 Does not emit laser light from the laser light source 40.
  • the CPU 74 applies laser light to the skin for the maximum irradiation time Tmax as shown in FIG. Irradiate.
  • the CPU 74 stops the irradiation of the laser light regardless of both the contact condition of the touch sensor 80 and the ON condition of the irradiation button 21.
  • the value of the maximum irradiation time Tmax may be stored in advance in, for example, a memory (not shown) and read from the memory when the CPU 74 performs the process of step ST43.
  • the touch sensor 80 and the touch sensor processing circuit 75 that detect contact with the skin irradiated with the laser light in step ST41, and the touch sensor 80 and the touch sensor processing circuit 75.
  • the laser power control circuit 72 is controlled to emit laser light to the laser light source 40 in step ST33 only while contact with the skin is detected and YES in step ST41. Since the touch sensor 80 and the touch sensor processing circuit 75 do not detect the contact with the skin irradiated with the laser light, the laser light source 40 does not emit the laser light, and the eyeball or the like. Can prevent unexpected accidents such as accidentally irradiating laser light on the Effect that the can ensure the safety of the laser treatment apparatus 10.
  • the CPU 74 controls the laser power control circuit 72 in step ST44 after irradiating the skin with laser light for a predetermined maximum irradiation time Tmax and becoming NO in step ST43. Since the laser light source 40 stops emitting the laser light, it is possible to prevent a situation where the laser light is excessively applied to the skin at the same location, and the laser treatment apparatus 10 with high power can be prevented. The effect that the safety

Abstract

【課題】レーザ光の照射範囲は十分広いとは言えず、皮膚へレーザ光を照射しようとすると大変に手間がかかり、美容トリートメントの効率が悪いという課題があった。 【解決手段】2つ以上のVCSEL素子41sが同一ウェハ上に配列され、皮膚に対して照射するためのレーザ光を出射する少なくとも1つ以上のVCSELアレイ41をレーザ光源40として備えるようにした。被照射部位へ照射した光の被照射部位からの反射光パワーを検出する反射光パワー検出手段と、反射光パワー検出手段により検出された反射光パワーに応じて、光源手段が出射するレーザ光のパワーを調節する制御手段とを備えてもよい。

Description

レーザトリートメント装置
 この発明は、レーザ光を皮膚へ照射して脱毛その他の美容トリートメントを行うレーザトリートメント装置に関する。
 図13は従来のレーザトリートメント装置で、その一部を切り欠いて内部を図示している。
この従来装置は特許文献1に開示されている。
 図13において、101はレーザトリートメント装置、102は外装ケース、103は把持部、104はヘッド部、104Aはヘッド部104の開口部、105は操作パネル部である。
 また、106は光学ユニット、107はレーザ光を出射する半導体レーザ、108はそのレーザ光を集光する球レンズ、109は半導体レーザ107を放熱するヒートシンクである。
 さらに、110は光学ユニット106に固定された振動モータ、111は振動モータ110のモータ軸、112はモータ軸111に固定された偏芯分銅、113は振動の支点、114は美容トリートメントを行う被照射面である。
 次に動作を説明する。
 半導体レーザ107から出射したレーザ光は、球レンズ108で集光され被照射面114を照射する。この一点照射の場合、被照射面114上の照射範囲は径2~3mm程度である。
特開2003-135484号公報
 従来のレーザトリートメント装置は以上の構成なので、レーザ光の照射範囲は十分広いとは言えず、広い面積にレーザ光を照射する場合は皮膚に対しレーザ光を往復移動する必要があり、そのために手間がかかり効率が悪いという課題があった。
 原因は、レーザ光源として用いている半導体レーザ107が一点発光型で光軸上に出力ピークがあるためであり、この一点照射のレーザ光では照射範囲には自ずと限界がある。
 これを改善するため、一点発光型の半導体レーザを複数備えれば、一応は広範囲のレーザ光の照射が可能となる。しかしながら、半導体レーザの数だけ実装容積が必要となり、同時に、これらに付随するヒートシンクなどの周辺構成要素も増加するため、装置全体が大型化し、実用的でなくなってしまう。
 この発明は上記のような課題を解決するためになされたものであり、大型化を抑制して実用性を確保しつつ、高パワーかつ広範囲のレーザ光を皮膚へ照射して美容トリートメントの効率を改善することを目的とする。
 請求項1記載のレーザトリートメント装置は、2つ以上のレーザ素子が同一ウェハ上に配列され、被照射部位を照射するためのレーザ光を出射する面発光レーザアレイを光源手段として備えるようにしたものである。
 請求項2記載のレーザトリートメント装置は、請求項1記載の面発光レーザアレイが、2つ以上の垂直共振器型面発光レーザ素子を同一ウェハ上に配列した垂直共振器型面発光レーザアレイであることを特徴としたものである。
 請求項3記載のレーザトリートメント装置は、請求項1記載の光源手段が出射したレーザ光を受光して被照射部位へ導光する導光手段を備えることを特徴としたものである。
 請求項4記載のレーザトリートメント装置は、請求項1記載の光源手段が面発光レーザアレイを駆動する電池を備えることを特徴としたものである。
 請求項5記載のレーザトリートメント装置は、請求項1記載の光源手段が、2つの面発光レーザアレイを直列に接続して備えることを特徴としたものである。
 請求項6記載のレーザトリートメント装置は、請求項1記載の光源手段がレーザ光を被照射部位へ拡散する光拡散手段を備えることを特徴としたものである。
 請求項7記載のレーザトリートメント装置は、請求項1記載の光源手段が、被照射部位からの反射光パワーを検出する反射光パワー検出手段と、反射光パワー検出手段により検出された反射光パワーに応じてレーザ光のパワーを調節する制御手段とを備えることを特徴としたものである。
 請求項8記載のレーザトリートメント装置は、請求項1記載の光源手段が、レーザ光が照射される被照射部位との接触を検出する接触検出手段と、接触検出手段が上記被照射部位との接触を検出している間のみ、光源手段にレーザ光を出射させる制御手段とを備えることを特徴としたものである。
 請求項9記載のレーザトリートメント装置は、請求項9記載の制御手段が、所定の時間だけ被照射部位へレーザ光を照射した後は、光源手段に上記レーザ光の出射を停止させるようにしたことを特徴としたものである。
 以上のように、請求項1記載のレーザトリートメント装置によれば、2つ以上のレーザ素子が同一ウェハ上に配列され、被照射部位を照射するためのレーザ光を出射する少なくとも1つ以上の面発光レーザアレイを光源手段として備えるようにしたので、各レーザ素子からのレーザ光の強度分布を合成した合成強度分布を持つ高パワーかつ広範囲のレーザ光が光源手段から出射されるようになり、この高パワーかつ広範囲のレーザ光を被照射部位へ照射し、美容トリートメントの効率を改善できるという効果が得られる。
 請求項2記載のレーザトリートメント装置によれば、光源手段は、2つ以上の垂直共振器型面発光レーザ素子を同一ウェハ上に配列した垂直共振器型面発光レーザアレイを備えるようにしたので、垂直共振器型面発光レーザ素子を用いることにより、容易にアレイ化できるという効果が得られる。
 請求項3記載のレーザトリートメント装置によれば、光源手段が出射したレーザ光を受光して被照射部位へ導光する導光手段を備えるようにしたので、光源手段が出射したレーザ光を被照射部位へ容易に導光できるという効果が得られる。
 請求項4記載のレーザトリートメント装置によれば、面発光レーザアレイを駆動する電池を備えるようにしたので、大電流を必要とする面発光レーザアレイの駆動回路として大型のACアダプタなどを用いる必要がなくなり、面発光レーザアレイを用いたレーザトリートメント装置の大型化を抑制でき、実用性を確保できるという効果が得られる。
 請求項5記載のレーザトリートメント装置によれば、光源手段は、2つの面発光レーザアレイを直列に接続して備えるようにしたので、1.2V充電池を4本使用して最も効率の良いレーザトリートメント装置を構成できるという効果が得られる。
 請求項6記載のレーザトリートメント装置によれば、被照射部位を照射するためのレーザ光を上記被照射部位へ拡散する光拡散手段を備えるようにしたので、レーザ光が被照射部位へ拡散して照射されるようになり、火傷などの事故から使用者を保護できるという効果が得られる。また、高パワーかつ広範囲のレーザ光をいっそう広範囲にわたって被照射部位へ配光できるようになり、美容トリートメントの効率を改善できるという効果が得られる。さらに、高い均一性を持ったレーザ光を被照射部位へ照射できるようになり、美容トリートメントの照射ムラを軽減できるという効果が得られる。
 請求項7記載のレーザトリートメント装置によれば、被照射部位へ照射した光の被照射部位からの反射光パワーを検出する反射光パワー検出手段と、上記反射光パワー検出手段により検出された反射光パワーに応じて、光源手段が出射するレーザ光のパワーを調節する制御手段とを備えるようにしたので、被照射部位の色の個人差に応じて、被照射部位へ照射するレーザ光のパワーを最適化できるようになり、高パワー化されたレーザトリートメント装置の安全性を確保できるという効果が得られる。
 請求項8記載のレーザトリートメント装置によれば、レーザ光が照射される被照射部位との接触を検出する接触検出手段と、上記接触検出手段が上記被照射部位との接触を検出している間のみ、光源手段にレーザ光を出射させる制御手段とを備えるようにしたので、レーザ光が照射される被照射部位との接触を接触検出手段が検出しない限り、レーザ光源はレーザ光を出射しないようになり、眼球などに対してレーザ光を誤って照射してしまうという不測の事故を防止でき、高パワー化されたレーザトリートメント装置の安全性を確保できるという効果が得られる。
 請求項9記載のレーザトリートメント装置によれば、制御手段は、所定の時間だけ被照射部位へレーザ光を照射した後は、光源手段に上記レーザ光の出射を停止させるようにしたので、同一箇所の被照射部位へレーザ光を過剰に照射してしまうという事態を防止できるようになり、高パワー化されたレーザトリートメント装置の安全性をさらに確保できるという効果が得られる。
この発明の実施の形態1によるレーザトリートメント装置の構成を示す図である。 図1のレーザ光源の構成を示す図である。 レーザ光源の駆動電源として電池を用いた場合の設計例を説明するための図である。 この発明の実施の形態2によるレーザトリートメント装置の構成を示す図である。 この発明の実施の形態3によるレーザトリートメント装置の構成を示す図である。 この発明の実施の形態3によるレーザトリートメント装置の回路構成を示すブロック図である。 この発明の実施の形態3によるレーザトリートメント装置の動作を示すフローチャートである。 この発明の実施の形態4によるレーザトリートメント装置の構成を示す図である。 この発明の実施の形態4によるレーザトリートメント装置の回路構成を示すブロック図である。 この発明の実施の形態4によるレーザトリートメント装置の動作を示すフローチャートである。 この発明の実施の形態4によるレーザトリートメント装置の動作を示すフローチャートである。 図11のレーザトリートメント装置の動作を説明するためのタイミングチャートである。 従来のレーザトリートメント装置の構成を示す図である。
 以下、図面を参照しつつ、この発明の実施の形態を詳細に説明する。なお、各図面では、同一の構成または相当する構成については同一の符号を付す。
 実施の形態1.
 図1はこの発明の実施の形態1によるレーザトリートメント装置の構成を示す図であり、図1(a),図1(b),図1(c)はそれぞれレーザトリートメント装置の正面図、側面図、上面図である。特に図1(b)ではレーザトリートメント装置の一部を切り欠いて内部構造を図示している。
 図1において、10はレーザトリートメント装置、20はレーザトリートメント装置10の使用者によって握られる把持部、21はレーザ光を照射するための照射ボタン、30はレーザ光源その他の光学機器を内蔵したヘッド部、30Aはヘッド部30の開口部、40はレーザ光源(光源手段)、50はレーザ光源40が出射したレーザ光を受光して皮膚へ照射するポリメチルメタクリレート製などの導光体(導光手段)である。
 レーザ光源40は、本願発明を特徴付ける構成要素である。基板面と垂直な方向へ光を共振させ、その方向に対して光を出射するVCSEL(*1)素子を同一ウェハ上に複数配列したVCSELアレイをレーザ光源40は備えている。
 (*1)“VCSEL”……垂直共振器型面発光レーザ。Vertical Cavity Surface Emitting Laser[英]の略。この明細書中では“VCSEL”と略す。
 図2は図1のレーザ光源の構成を示す図であり、図2(a)はレーザ光源40に備えたVCSELアレイの斜視図を、図2(b)は導光体50へレーザ光を出射するレーザ光源40の側面図をそれぞれ模式的に表している。
 図2において、41はレーザ光源40に備えたVCSELアレイ、41sはVCSELアレイ41を構成する複数のVCSEL素子、Lは各VCSEL素子41sから出射したレーザ光、42は各レーザ光Lをコリメートするマイクロレンズアレイ、Dは仮想的に図示した各レーザ光Lの合成強度分布である。
 一般によく知られているように、基板面と平行に共振器を備え、へき開した側面から光を出射する端面発光型のレーザ素子と比較すると、VCSEL素子41sはアレイ化しやすいなどの長所を持っている。図2(a)に示すように、複数のVCSEL素子41sを同一ウェハ上に密に配列してVCSELアレイ41を構成することで、各々のレーザ光Lの強度を合成したレーザ光がVCSELアレイ41の出射面全面から出射されるようになり、高パワーかつ広範囲のレーザ光が実現される。
 このようなVCSELアレイ41を用いたレーザトリートメント装置10では、使用者が照射ボタン21をONすると、図2(b)に示すように、VCSELアレイ41が出射した各レーザ光Lは、マイクロレンズアレイ42を介し、合成強度分布Dを持つレーザ光としてレーザ光源40から出射する。この合成強度分布Dのレーザ光は、導光体50を透過して開口部30Aから被照射部位である使用者の皮膚へと照射される。VCSELアレイ41により高パワー化かつ広範囲化された合成強度分布Dのレーザ光が照射されるので、脱毛その他の美容トリートメントの効率を向上することが可能となる。
 本願発明者が試作したレーザトリートメント装置10によれば、およそ径20mmの広範囲にわたってレーザ光を照射できるようになっている。図13の従来のレーザトリートメント装置101で一点照射の場合の照射範囲が径2~3mm程度だったことを考えると、面積比に換算して約100倍もの広範囲照射が可能となっている。この照射範囲は、VCSELアレイ41の数を増やせば、さらに広げることが可能である。
 ここで、VCSEL素子41sは同一ウェハ上に配列されるため、レーザトリートメント装置10に占める実装容積もさほど大きくはならず、ヒートシンクなどの周辺構成要素も少なくて済む。ただし、従来のレーザトリートメント装置101と比較して、かなりの大電流をVCSELアレイ41に供給する必要が生じる。このような大電流を供給するACアダプタは市販されておらず、交流100Vから必要な大電流を作ろうとすると回路が大型化し、レーザトリートメント装置10が非実用的となってしまう。
 そこで、この実施の形態1では、レーザ光源40の駆動電源として電池を用いるようにし、短時間ではあってもVCSELアレイ41を備えたレーザ光源40の駆動を可能としている。こうして、レーザ光の高パワー化および広範囲化を実現しつつ、回路の大型化を抑制し、レーザトリートメント装置10の実用性を確保している。
 図3はレーザ光源40の駆動電源として電池を用いた場合の設計例を説明するための図である。
 ここでは、1.2Vの充電池を直列接続して駆動電源に用いることとし、1つのVCSELアレイ41あたりの駆動電圧を2V,変圧の効率を昇圧<降圧とし、抵抗R1で降圧してVCSELアレイ41を駆動する。また、レーザトリートメント装置10に設けられた他のデバイスの駆動電圧は3Vとする。
 設計例(イ)……充電池の本数を1本とすると、電池電圧Eは1.2Vとなる。したがって、駆動可能なVCSELアレイ41の数は0であり、他のデバイスの駆動電圧と電池電圧Eとの差は+1.8Vである。
 設計例(ロ)……充電池の本数を2本とすると、電池電圧Eは2.4Vとなる。したがって、駆動可能なVCSELアレイ41の数は1であり、このとき抵抗R1による降圧幅は2.4V-2.0V=0.4Vである。また、他のデバイスの駆動電圧と電池電圧Eとの差は3.0V-2.4V=+0.6Vである。
 設計例(ハ)……充電池の本数を3本とすると、電池電圧Eは3.6Vとなる。したがって、駆動可能なVCSELアレイ41の数は1であり、このとき抵抗R1による降圧幅は3.6V-2.0V=1.6Vである。また、他のデバイスの駆動電圧と電池電圧Eとの差は3.0V-3.6V=-0.6Vである。
設計例(ニ)……充電池の本数を4本とすると、電池電圧Eは4.8Vとなる。したがって、駆動可能なVCSELアレイ41の数は2に増え、このとき抵抗R1による降圧幅は4.8V-2×2.0V=0.8Vである。また、他のデバイスの駆動電圧と電池電圧Eとの差は3.0V-4.8V=-1.8Vである。
 設計例(ホ)……充電池の本数を5本とすると、電池電圧Eは6.0Vとなる。したがって、駆動可能なVCSELアレイ41の数は3に増え、このとき抵抗R1による降圧幅は6.0V-3×2.0V=0.0Vである。また、他のデバイスの駆動電圧と電池電圧Eとの差は3.0V-6.0V=-3.0Vである。
 以上、設計例(ロ)、(ニ)の場合は、1つのVCSELアレイ41に対する充電池の本数が2本で、VCSELアレイ41を駆動できない設計例(イ)や、3本の充電池を使ってVCSELアレイ41を1つ駆動する設計例(ハ)よりも効率が良い。ただし、設計例(ロ)は他のデバイスを駆動するのに0.6Vの昇圧が必要であり、変圧の効率が昇圧<降圧であることを考えると、1.8Vの降圧により他のデバイスを駆動できる設計例(ニ)が最も効率が良いことが分かる。ここで、設計例(ホ)は、充電池5本で3つのVCSELアレイ41を駆動でき、降圧幅も0.0Vで効率は良いが、電池電圧Eが使用によりドロップしたときに駆動できなくなるので、設計マージンなどの観点から考えて採用しない。
 なお、VCSELアレイ41を構成するVCSEL素子41sの配列については、ライン状の1次元配列であっても良いし、平面状の2次元配列であっても良い。
 また、VCSEL素子41sをNだけ並べた1次元配列の場合や、N×Mのマトリクス状に並べた2次元配列の場合のNやMの値も設計仕様に応じて変更可能である。さらに、2次元配列の形状もN×Mのマトリクス状に限定されるものではなく、6角形状の配列など様々なパターンを採用することができる。
 さらに、レーザ光源40に用いるVCSELアレイ41の数も1つや2つに限定されるものではなく、3つ以上であっても良いし、VCSELアレイ41の接続の仕方も直列接続に限定されるものではなく、並列接続でも良い。
 さらに、レーザ光源40に用いる面発光レーザアレイはVCSEL素子41sを用いたVCSELアレイ41に限定されず、2つ以上のレーザ素子が同一ウェハ上に配列された少なくとも1つ以上の面発光レーザアレイをレーザ光源40として用いれば、この実施の形態1は可能である。
 以上のように、この実施の形態1によれば、2つ以上のVCSEL素子41sが同一ウェハ上に配列され、皮膚に対して照射するためのレーザ光を出射する少なくとも1つ以上のVCSELアレイ41をレーザ光源40として備えるようにしたので、VCSEL素子41sからの各レーザ光Lの強度分布を合成した合成強度分布Dを持つ高パワーかつ広範囲のレーザ光がレーザ光源40から出射されるようになり、この高パワーかつ広範囲のレーザ光を皮膚へ照射し、美容トリートメントの効率を改善できるという効果が得られ、VCSEL素子41sを用いることにより、容易にアレイ化できるという効果が得られる。
 また、この実施の形態1によれば、レーザ光源40が出射したレーザ光を受光して皮膚へ導光する導光体50を備えるようにしたので、レーザ光源40が出射したレーザ光を皮膚へ容易に導光できるという効果が得られる。
 さらに、この実施の形態1によれば、VCSELアレイ41を駆動する電池を備えるようにしたので、大電流を必要とするVCSELアレイ41の駆動回路として大型のACアダプタなどを用いる必要がなくなり、回路の大型化を抑制でき、VCSELアレイ41を用いたレーザトリートメント装置10の実用性を確保できるという効果が得られる。
 さらに、この実施の形態1によれば、レーザ光源40は、2つのVCSELアレイ41を直列に接続して備えるようにしたので、1.2V充電池を4本使用して最も効率の良いレーザトリートメント装置10を構成できるという効果が得られる。
 実施の形態2.
 実施の形態1で述べたように、レーザトリートメント装置10は、レーザ光源40にVCSELアレイ41を用いているので、レーザトリートメント装置10から照射されるレーザ光は高パワーとなっており、誤って使用すれば、火傷などの事故を引き起こす危険性もある。以下の実施の形態2~4では、高パワー化されたレーザ光に関する安全対策について説明する。
 図4はこの発明の実施の形態2によるレーザトリートメント装置の構成を示す図である。
 図4において、51は開口部30Aに設けられた光拡散板(光拡散手段)である。光拡散板51は、導光体50から出射したレーザ光を皮膚へ拡散する働きをする。
 図4では、導光体50の光出射側にある開口部30Aに光拡散板51を設け、導光体50から出射したレーザ光を光拡散板51により所定の範囲の皮膚へ拡散して照射している。
 このようにすることで、高パワーのレーザ光が皮膚の狭い範囲に集中して照射される事態を防ぎ、火傷などの事故から使用者を保護できる。加えて、光拡散板51により、高パワーかつ広範囲のレーザ光をいっそう広範囲にわたって皮膚へ配光できるようになり、美容トリートメントの効率を改善できるとともに、レーザ光に高い均一性を持たせることができ、美容トリートメントの照射ムラを軽減できる。
 以上のように、この実施の形態2によれば、導光体50が出射したレーザ光を皮膚へ拡散する光拡散板51を備えるようにしたので、レーザ光が皮膚へ拡散して照射されるようになり、火傷などの事故から使用者を保護できるという効果が得られる。また、高パワーかつ広範囲のレーザ光をいっそう広範囲にわたって皮膚へ配光できるようになり、美容トリートメントの効率を改善できるという効果が得られる。さらに、高い均一性を持ったレーザ光を皮膚へ照射できるようになり、美容トリートメントの照射ムラを軽減できるという効果が得られる。
 実施の形態3.
 図5はこの発明の実施の形態3によるレーザトリートメント装置の構成を示す図である。
 図5において、60は開口部30Aの周辺に設けられた色センサ(反射光パワー検出手段)である。色センサ60は、レーザトリートメント装置10が皮膚へ照射したレーザ光の皮膚からの反射光パワーを検出する働きをする。
 図6はこの発明の実施の形態3によるレーザトリートメント装置の回路構成を示すブロック図である。
 図6において、70は回路、71は電源、72はレーザパワー制御回路(光源手段)、73は色センサ処理回路(反射光パワー検出手段)、74はCPU(制御手段)である。
 次に動作について説明する。
 図7はこの発明の実施の形態3によるレーザトリートメント装置の動作を示すフローチャートである。
 電源71が投入されレーザトリートメント装置10が起動すると、まず、CPU74は、照射ボタン21がONされたかどうかを判断する(ステップST31)。照射ボタン21がONされていない間は(ステップST31でNO)、CPU74はレーザ光源40からレーザ光を出射せず(ステップST32)、待ち受け状態となる(ステップST31でNO~ステップST32)。
 待ち受け状態で照射ボタン21がONされると(ステップST31でYES)、CPU74は、レーザパワー制御回路72をコントロールし、レーザ光源40からレーザ光を出射させる(ステップST33)。このレーザ光は、導光体50および光拡散板51を介して皮膚へ照射される。
 この照射の際に、皮膚の色の個人差に応じてレーザ光の吸収の割合が変化することを踏まえ、CPU74は、以下の制御を行う。すなわち、皮膚で反射して戻ったレーザ光を色センサ60で受光し、色センサ処理回路73により反射光パワーP1として検出する(ステップST34)。そして、CPU74は、この反射光パワーP1を参照し、皮膚へ照射するレーザ光のパワーを最適化する。
 具体的には、例えば、反射光パワーP1が所定の推奨光パワーP0より低い場合には(ステップST35でNO)、皮膚に吸収されるレーザ光の割合が高いと判断し、CPU74は、高パワー化されたレーザ光の皮膚への影響を軽減するため、レーザパワー制御回路72をコントロールしてレーザ光源40から出射するレーザ光のパワーを減少させる(ステップST36)。
 一方、例えば、反射光パワーP1が所定の推奨光パワーP0より高い場合には(ステップST35でYES)、皮膚に吸収されるレーザ光の割合が低いと判断し、CPU74は、トリートメント効率の向上を図るため、レーザパワー制御回路72をコントロールしてレーザ光源40から出射するレーザ光のパワーを増加させる(ステップST37)。
 なお、例えば、反射光パワーP1が所定の推奨光パワーP0と等しい場合には(ステップST35でYES)、皮膚に吸収されるレーザ光の割合が適当であると判断し、CPU74は、レーザ光源40から出射するレーザ光のパワーを維持する(ステップST37かっこ書き)。
 このようにすることで、皮膚の色の個人差に応じて、皮膚へ照射するレーザ光のパワーを最適化できるようになり、高パワー化されたレーザトリートメント装置10の安全性を確保できるとともに、トリートメント効率の向上を図ることができる。
 なお、レーザ光のパワーの最適化は、CPU74が、レーザパワー制御回路72をコントロールしてレーザ光源40から出射するレーザ光のパワーレベル自体や光パルスのデューティ比を調節するようにしても良いし、また例えば、レーザ光源40の出射側に光アッテネータなどを設けておき、この光アッテネータをCPU74が調節するようにしても良い。
 また、色センサ60で受光する光はレーザ光源40が出射したレーザ光に限定されるものではなく、レーザ光源40のレーザ光以外の光を皮膚へ照射し、その反射光を色センサ60で受光しても良い。ただし、レーザ光源40のレーザ光の皮膚からの反射光パワーを色センサ60で検出すれば、皮膚からの反射光を簡単に作れるようになり、レーザ光のパワーの最適化が容易になる。
 以上のように、この実施の形態3によれば、皮膚へ照射したレーザ光の皮膚からの反射光パワーP1をステップST34で検出する色センサ60および色センサ処理回路73と、色センサ60および色センサ処理回路73により検出された反射光パワーP1と所定の推奨光パワーP0とのステップST35での比較結果に応じ、ステップST36またはステップST37において、レーザパワー制御回路72をコントロールしてレーザ光源40が出射するレーザ光のパワーを調節するCPU74とを備えるようにしたので、皮膚の色の個人差に応じて、照射するレーザ光のパワーを最適化できるようになり、高パワー化されたレーザトリートメント装置の安全性を確保できるという効果が得られ、トリートメント効率の向上を図ることができるという効果が得られ、皮膚からのレーザ光の反射光パワーP1を検出することにより、皮膚からの反射光を簡単に作れるようになり、レーザ光のパワーの最適化が容易になるという効果が得られる。
 実施の形態4.
 図8はこの発明の実施の形態4によるレーザトリートメント装置の構成を示す図である。
 図8において、80は開口部30Aの周辺に設けられたタッチセンサ(接触検出手段)である。タッチセンサ80は、レーザ光が照射される皮膚との接触を検出する働きをする。
 図9はこの発明の実施の形態4によるレーザトリートメント装置の回路構成を示すブロック図である。
 図9において、75はタッチセンサ処理回路(接触検出手段)である。
 次に動作について説明する。
 図10はこの発明の実施の形態4によるレーザトリートメント装置の動作を示すフローチャートである。
 電源71が投入されレーザトリートメント装置10が起動すると、まず、CPU74は、レーザ光が照射される皮膚との接触の有無をタッチセンサ80およびタッチセンサ処理回路75により検出する(ステップST41)。接触がない場合は(ステップST41でNO)、眼球などへレーザ光を誤って照射してしまうような事故を未然に防ぐため、CPU74はレーザ光の照射を行わず(ステップST32)、待ち受け状態となる(ステップST41でNO~ステップST32)。
 待ち受け状態でタッチセンサ80およびタッチセンサ処理回路75により皮膚との接触を検出すると(ステップST41でYES)、続いてCPU74は、照射ボタン21がONされたかどうかを判断する(ステップST31)。照射ボタン21がONされない間は(ステップST31でNO)、CPU74は、レーザ光源40からレーザ光を出射せず(ステップST32)、待ち受け状態となる(ステップST41でYES~ステップST31でNO~ステップST32)。
 そして、皮膚との接触を検出し(ステップST41でYES)、かつ、照射ボタン21がONされたことが検出されると(ステップST31でYES)、ここで初めてCPU74は、レーザパワー制御回路72をコントロールしてレーザ光源40からレーザ光を出射する(ステップST33)。このレーザ光は、導光体50や光拡散板51を介して皮膚へと照射される。
 このように、CPU74は、タッチセンサ80およびタッチセンサ処理回路75を用いて、レーザ光を照射する皮膚との接触/非接触を検出している。そして、非接触の場合には誤照射を防止する観点からレーザ光の照射を行わず、一方、接触の場合には照射ボタン21がONされるのを条件に、CPU74がレーザパワー制御回路72をコントロールしてレーザ光の照射を行っている。これにより、被照射部位以外の部位、特に眼球に対する誤照射を防止し、不測の事故から使用者を保護することができる。
 また、次に説明するように、レーザ光の照射時間に制限を設けるようにしても良い。
 図11はこの発明の実施の形態4によるレーザトリートメント装置の動作を示すフローチャートである。図11のステップST41およびステップST31~ST33については、図10と同様の動作であるため説明を省略し、ステップST42以降について以下に説明する。
 ステップST33でレーザ光源40からレーザ光を照射させると、CPU74は、レーザ光の照射時間tを計測するためタイマを起動し、単位照射時間分だけ照射時間tをインクリメントする(ステップST42)。
 次に、CPU74は、照射時間tと最大照射時間Tmaxとを比較し、照射時間tが最大照射時間Tmaxに達したかどうかを判断する(ステップST43)。照射時間tが最大照射時間Tmax未満の場合は(ステップST43でYES)、タッチセンサ80や照射ボタン21の両条件が満たされる限り(ステップST41でYES,ステップST31でYES)、CPU74は、レーザ光の照射(ステップST33)と、照射時間tのインクリメント(ステップST42)と、照射時間の比較判断(ステップST43)とを繰り返す。
 こうして、レーザ光が照射されて照射時間tが増加し続け、最大照射時間Tmaxに達すると(ステップST43でNO)、CPU74は、同一箇所の皮膚に対して最大照射時間Tmaxを超えるレーザ光の照射は過剰照射と判断し、皮膚への影響を抑制するため、レーザパワー制御回路72をコントロールしてレーザ光の照射を強制的に停止する(ステップST44)。そして、次回の照射のためにタイマをリセットし(ステップST45)、一連の処理を終了する。以後は、別の被照射部位に対する新たな処理をステップST41から改めて行う。
 図12は図11のレーザトリートメント装置の動作を説明するためのタイミングチャートであり、図12(a)はタッチセンサ80の接触/非接触、図12(b)は照射ボタン21のON/OFF,図12(c)はレーザ光の照射/非照射を表している。
 時間[0~t1],時間[t1~t2],時間[t2~t3]では、タッチセンサ80が皮膚との接触を検出していないか、または照射ボタン21がOFFとなっているため、CPU74はレーザ光源40からレーザ光を出射しない。タッチセンサ80が接触を検出し、かつ、照射ボタン21がONとなって両条件が揃った時刻t3以降において、CPU74は図12(c)に示すように最大照射時間Tmaxだけレーザ光を皮膚へ照射する。そして時刻t4以降においては、タッチセンサ80の接触および照射ボタン21のONの両条件とは関係なく、CPU74はレーザ光の照射を停止する。
 このように、仮にタッチセンサ80が同一箇所の皮膚と接触し続け、かつ照射ボタン21が押され続けていても、最大照射時間Tmaxだけ同一箇所の皮膚へレーザ光の連続照射が行われた後は、レーザ光の照射を停止することにより、同一箇所の皮膚に対するレーザ光の過剰照射を防止し、使用者の安全性を確保するようにしている。
 なお、最大照射時間Tmaxの値は、例えば不図示のメモリに最大照射時間Tmaxを予め記憶しておき、CPU74がステップST43の処理を行う際にメモリから読み出すようにしても良いし、実施の形態3で示した色センサ60によって得られた反射光パワーP1の値を参考にして定めるようにしても良い。
 以上のように、この実施の形態4によれば、レーザ光が照射される皮膚との接触をステップST41で検出するタッチセンサ80およびタッチセンサ処理回路75と、タッチセンサ80およびタッチセンサ処理回路75が皮膚との接触を検出してステップST41でYESとなっている間のみ、ステップST33において、照射ボタン21のONに応じて、レーザパワー制御回路72をコントロールしてレーザ光源40にレーザ光を出射させるCPU74とを備えるようにしたので、レーザ光が照射される皮膚との接触をタッチセンサ80およびタッチセンサ処理回路75が検出しない限り、レーザ光源40はレーザ光を出射しないようになり、眼球などに対してレーザ光を誤って照射してしまうという不測の事故を防止でき、高パワー化されたレーザトリートメント装置10の安全性を確保できるという効果が得られる。
 また、この実施の形態4によれば、CPU74は、所定の最大照射時間Tmaxだけレーザ光を皮膚へ照射してステップST43でNOとなった後は、ステップST44において、レーザパワー制御回路72をコントロールしてレーザ光源40にレーザ光の出射を停止させるようにしたので、同一箇所の皮膚へレーザ光を過剰に照射してしまうという事態を防止できるようになり、高パワー化されたレーザトリートメント装置10の安全性をさらに確保できるという効果が得られる。
 10 レーザトリートメント装置、20 把持部、21 照射ボタン、30 ヘッド部、30A 開口部、40 レーザ光源(光源手段)、41 VCSELアレイ、41s VCSEL素子、42 マイクロレンズアレイ、50 導光体(導光手段)、51 光拡散板(光拡散手段)、60 色センサ(反射光パワー検出手段)、70 回路、71 電源、72 レーザパワー制御回路(光源手段)、73 色センサ処理回路(反射光パワー検出手段)、74 CPU(制御手段)、75 タッチセンサ処理回路(接触検出手段)、80 タッチセンサ(接触検出手段)、L レーザ光、D 合成強度分布。

Claims (9)

  1.  2つ以上のレーザ素子が同一ウェハ上に配列され、被照射部位を照射するためのレーザ光を出射する少なくとも1つ以上の面発光レーザアレイを光源手段として備えることを特徴とするレーザトリートメント装置。
  2.  光源手段は、2つ以上の垂直共振器型面発光レーザ素子を同一ウェハ上に配列した垂直共振器型面発光レーザアレイを備えることを特徴とする請求項1記載のレーザトリートメント装置。
  3.  光源手段が出射したレーザ光を受光して被照射部位へ導光する導光手段を備えることを特徴とする請求項1または請求項2記載のレーザトリートメント装置。
  4.  面発光レーザアレイを駆動する電池を備えることを特徴とする請求項1または請求項2記載のレーザトリートメント装置。
  5.  光源手段は、2つの面発光レーザアレイを直列に接続して備えることを特徴とする請求項1または請求項2記載のレーザトリートメント装置。
  6.  被照射部位を照射するためのレーザ光を上記被照射部位へ拡散する光拡散手段を備えることを特徴とする請求項1または請求項2記載のレーザトリートメント装置。
  7.  被照射部位へ照射した光の被照射部位からの反射光パワーを検出する反射光パワー検出手段と、
     上記反射光パワー検出手段により検出された反射光パワーに応じて、光源手段が出射するレーザ光のパワーを調節する制御手段とを備えることを特徴とする請求項1または請求項2記載のレーザトリートメント装置。
  8.  レーザ光が照射される被照射部位との接触を検出する接触検出手段と、
     上記接触検出手段が上記被照射部位との接触を検出している間のみ、光源手段にレーザ光を出射させる制御手段とを備えることを特徴とする請求項1または請求項2記載のレーザトリートメント装置。
  9.  制御手段は、所定の時間だけ被照射部位へレーザ光を照射した後は、光源手段に上記レーザ光の出射を停止させることを特徴とする請求項8記載のレーザトリートメント装置。
PCT/JP2011/055636 2010-03-15 2011-03-10 レーザトリートメント装置 WO2011114984A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/521,962 US20120296322A1 (en) 2010-03-15 2011-03-10 Laser treatment device
JP2012505638A JPWO2011114984A1 (ja) 2010-03-15 2011-03-10 レーザトリートメント装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-057008 2010-03-15
JP2010057008 2010-03-15

Publications (1)

Publication Number Publication Date
WO2011114984A1 true WO2011114984A1 (ja) 2011-09-22

Family

ID=44649079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055636 WO2011114984A1 (ja) 2010-03-15 2011-03-10 レーザトリートメント装置

Country Status (3)

Country Link
US (1) US20120296322A1 (ja)
JP (1) JPWO2011114984A1 (ja)
WO (1) WO2011114984A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2806686A1 (en) * 2010-07-28 2012-02-02 Ya-Man Ltd. Pain-relief device
US9480529B2 (en) * 2012-06-22 2016-11-01 S & Y Enterprises Llc Aesthetic treatment device and method
US9364684B2 (en) 2012-06-22 2016-06-14 S & Y Enterprises Llc Aesthetic treatment device and method
KR101403331B1 (ko) * 2014-01-29 2014-06-05 (주)하배런메디엔뷰티 광선 및 쿨링 카트리지의 교체가 가능한 포터블 제모기
FR3028917A1 (fr) * 2014-11-26 2016-05-27 Friederich Alain Louis Andre Element injecteur de lumiere
AU2018384825A1 (en) 2017-12-14 2020-06-25 Avava, Inc. Electromagnetic radiation beam scanning system and method
WO2023205094A1 (en) * 2022-04-17 2023-10-26 GenXComm, Inc. Waveguide with controlled mode confinement for analyte interaction and optical power delivery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315840A (ja) * 2001-04-20 2002-10-29 Ya Man Ltd レーザトリートメント装置
JP3539962B2 (ja) * 1993-08-16 2004-07-07 ライト、サイエンシーズ、コーポレーション 光活性治療を行う装置
JP2005511196A (ja) * 2001-12-10 2005-04-28 イノレーズ 2002 リミテッド 単色光源に露出している間の安全性を改良する方法及び装置
JP2005323774A (ja) * 2004-05-13 2005-11-24 Ya Man Ltd レーザ光照射プローブ
JP2007252452A (ja) * 2006-03-22 2007-10-04 Furukawa Electric Co Ltd:The 美容レーザ装置
WO2008069101A1 (ja) * 2006-12-08 2008-06-12 Sharp Kabushiki Kaisha 光源、光源システムおよび照明装置
JP4212867B2 (ja) * 2002-10-21 2009-01-21 ヤーマン株式会社 レーザトリートメント装置
JP4361083B2 (ja) * 2003-02-25 2009-11-11 トリア ビューティ インコーポレイテッド 目に安全な内蔵型毛再生抑制装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886178A (ja) * 1981-11-18 1983-05-23 松下電器産業株式会社 レ−ザ医療装置
US5741246A (en) * 1996-04-15 1998-04-21 Prescott; Marvin A. Method and apparatus for laser balloon angioplasty treatment of medical conditions
US20030114902A1 (en) * 1994-03-21 2003-06-19 Prescott Marvin A. Laser therapy for foot conditions
US5989245A (en) * 1994-03-21 1999-11-23 Prescott; Marvin A. Method and apparatus for therapeutic laser treatment
US6156028A (en) * 1994-03-21 2000-12-05 Prescott; Marvin A. Method and apparatus for therapeutic laser treatment of wounds
US5707139A (en) * 1995-11-01 1998-01-13 Hewlett-Packard Company Vertical cavity surface emitting laser arrays for illumination
US5743901A (en) * 1996-05-15 1998-04-28 Star Medical Technologies, Inc. High fluence diode laser device and method for the fabrication and use thereof
US6325791B1 (en) * 1997-06-10 2001-12-04 Yutaka Shimoji Method of using a cordless medical laser to cure composites
US6273885B1 (en) * 1997-08-16 2001-08-14 Cooltouch Corporation Handheld photoepilation device and method
US6251127B1 (en) * 1997-08-25 2001-06-26 Advanced Photodynamic Technologies, Inc. Dye treatment solution and photodynamic therapy and method of using same
DE19852948C2 (de) * 1998-11-12 2002-07-18 Asclepion Meditec Ag Dermatologisches Handstück
JP2001017556A (ja) * 1999-07-08 2001-01-23 Katsufumi Ito レーザ光線照射装置
WO2001035145A1 (fr) * 1999-11-10 2001-05-17 Hamamatsu Photonics K.K. Lentille optique et systeme optique
JP2001238968A (ja) * 2000-03-01 2001-09-04 Ya Man Ltd レーザ光照射プローブ
US6888871B1 (en) * 2000-07-12 2005-05-03 Princeton Optronics, Inc. VCSEL and VCSEL array having integrated microlenses for use in a semiconductor laser pumped solid state laser system
KR100393057B1 (ko) * 2000-10-20 2003-07-31 삼성전자주식회사 마이크로 렌즈 일체형 표면광 레이저
US6980575B1 (en) * 2001-03-08 2005-12-27 Cypress Semiconductor Corp. Topology on VCSEL driver
US20020165595A1 (en) * 2001-04-19 2002-11-07 Haan David Jon Method of ablating biological material with electromagnetic radiation delivered by an optical fiber
US20030091084A1 (en) * 2001-11-13 2003-05-15 Decai Sun Integration of VCSEL array and microlens for optical scanning
US6648904B2 (en) * 2001-11-29 2003-11-18 Palomar Medical Technologies, Inc. Method and apparatus for controlling the temperature of a surface
US20040147984A1 (en) * 2001-11-29 2004-07-29 Palomar Medical Technologies, Inc. Methods and apparatus for delivering low power optical treatments
IL148257A0 (en) * 2001-12-06 2002-09-12 Curelight Ltd Phototherapy for psoriasis and other skin disorders
US7762965B2 (en) * 2001-12-10 2010-07-27 Candela Corporation Method and apparatus for vacuum-assisted light-based treatments of the skin
US7935139B2 (en) * 2001-12-10 2011-05-03 Candela Corporation Eye safe dermatological phototherapy
JP2003174923A (ja) * 2001-12-11 2003-06-24 Products:Kk 光エネルギーによる脱毛方法および光エネルギー脱毛装置のプローブ
US6839370B2 (en) * 2001-12-31 2005-01-04 Agilent Technologies, Inc. Optoelectronic device using a disabled tunnel junction for current confinement
AUPS313802A0 (en) * 2002-06-25 2002-07-18 Riancorp Pty Ltd Laser beam homogenisers in medical applications
KR100546080B1 (ko) * 2003-08-13 2006-01-26 주식회사 프로스인터네셔날 레이저와 광다이오드를 이용한 탈모치료기
WO2005025478A1 (ja) * 2003-09-12 2005-03-24 Ya-Man Ltd. トリートメント装置
GB2407378B (en) * 2003-10-24 2006-09-06 Lein Applied Diagnostics Ltd Ocular property measuring apparatus and method therefor
JP4747516B2 (ja) * 2004-06-08 2011-08-17 富士ゼロックス株式会社 垂直共振器型面発光半導体レーザ装置
JP4349267B2 (ja) * 2004-11-30 2009-10-21 パナソニック電工株式会社 光脱毛装置
US8529560B2 (en) * 2005-03-04 2013-09-10 The Invention Science Fund I, Llc Hair treatment system
WO2006111201A1 (en) * 2005-04-18 2006-10-26 Pantec Biosolutions Ag Laser microporator
US8475506B1 (en) * 2007-08-13 2013-07-02 Lockheed Martin Corporation VCSEL array stimulator apparatus and method for light stimulation of bodily tissues
US20110190749A1 (en) * 2008-11-24 2011-08-04 Mcmillan Kathleen Low Profile Apparatus and Method for Phototherapy
EP2440287B1 (de) * 2009-06-09 2013-07-24 bredent medical GmbH & Co. KG Vorrichtung für die photodynamische therapie
DE102010022760A1 (de) * 2010-06-04 2011-12-08 Carl Zeiss Meditec Ag Ophthalmologisches Gerät zur Photokoagulation oder Phototherapie und Betriebsverfahren für ein solches
KR102011298B1 (ko) * 2011-02-03 2019-10-14 트리아 뷰티, 인코포레이티드 방사선-계 피부치료 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539962B2 (ja) * 1993-08-16 2004-07-07 ライト、サイエンシーズ、コーポレーション 光活性治療を行う装置
JP2002315840A (ja) * 2001-04-20 2002-10-29 Ya Man Ltd レーザトリートメント装置
JP2005511196A (ja) * 2001-12-10 2005-04-28 イノレーズ 2002 リミテッド 単色光源に露出している間の安全性を改良する方法及び装置
JP4212867B2 (ja) * 2002-10-21 2009-01-21 ヤーマン株式会社 レーザトリートメント装置
JP4361083B2 (ja) * 2003-02-25 2009-11-11 トリア ビューティ インコーポレイテッド 目に安全な内蔵型毛再生抑制装置
JP2005323774A (ja) * 2004-05-13 2005-11-24 Ya Man Ltd レーザ光照射プローブ
JP2007252452A (ja) * 2006-03-22 2007-10-04 Furukawa Electric Co Ltd:The 美容レーザ装置
WO2008069101A1 (ja) * 2006-12-08 2008-06-12 Sharp Kabushiki Kaisha 光源、光源システムおよび照明装置

Also Published As

Publication number Publication date
JPWO2011114984A1 (ja) 2013-06-27
US20120296322A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
WO2011114984A1 (ja) レーザトリートメント装置
US9072533B2 (en) Dermatological treatment device with one or more multi-emitter laser diode
US8961578B2 (en) Dermatological treatment device with one or more vertical cavity surface emitting lasers (VCSEL)
EP1418984B1 (en) Improved hand-held laser device for skin treatment
JP5916609B2 (ja) ハンドヘルド式低レベルレーザー治療機器
US9173708B2 (en) Dermatological treatment device with one or more laser diode bar
JP2019509801A (ja) 毛髪スタイリング
JP5603872B2 (ja) 毛髪の成長を刺激するための頭皮光治療装置
US20120165800A1 (en) Single-emitter diode based light homogenizing apparatus and a hair removal device employing the same
KR101861286B1 (ko) 파장선택이 가능한 발광소자 모듈을 포함하는 피부치료시스템
JP2004159666A (ja) レーザ脱毛器
KR20170125325A (ko) 연속 광을 이용한 피부 치료 장치 및 방법
JP2021523777A (ja) 光学櫛を有する光送達装置
JP2004136019A (ja) レーザトリートメント装置およびその運転方法
KR20170125324A (ko) 펄스 광을 이용한 피부 치료 장치 및 방법
JP2005058761A (ja) 携帯式赤外線発射装置
KR20150079552A (ko) 광에 의한 미용 처리용 디바이스 및 방법
US20120172949A1 (en) Skin radiation apparatus
KR20060134889A (ko) 모발관리용 레이저 조사기
EP1257324B1 (en) Improved laser comb design/function
KR20120012194A (ko) 펜 형태의 광 치료기
CN210612704U (zh) 一种生发帽
CN215136076U (zh) 一种激光美容设备
JP2006149489A (ja) 光脱毛装置
KR20190119942A (ko) 광마사지기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756170

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012505638

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13521962

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756170

Country of ref document: EP

Kind code of ref document: A1