WO2011114833A1 - Method for producing organic electroluminescence element - Google Patents

Method for producing organic electroluminescence element Download PDF

Info

Publication number
WO2011114833A1
WO2011114833A1 PCT/JP2011/053425 JP2011053425W WO2011114833A1 WO 2011114833 A1 WO2011114833 A1 WO 2011114833A1 JP 2011053425 W JP2011053425 W JP 2011053425W WO 2011114833 A1 WO2011114833 A1 WO 2011114833A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic electroluminescent
light emitting
electroluminescent element
group
Prior art date
Application number
PCT/JP2011/053425
Other languages
French (fr)
Japanese (ja)
Inventor
直之 林
郁雄 木下
隆志 加藤
浩二 高久
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011114833A1 publication Critical patent/WO2011114833A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene

Definitions

  • the present invention relates to a method for manufacturing an organic electroluminescent element.
  • Organic electroluminescence devices have features such as self-emission and high-speed response, and are expected to be applied to flat panel displays.
  • organic thin films hole transport layer
  • organic materials that have an electron transport property. Since a two-layer type (laminated type) in which a thin film (electron transport layer) is laminated is reported, it has attracted attention as a large-area light-emitting element that emits light at a low voltage of 10 V or less.
  • the stacked organic electroluminescent element has a basic configuration of positive electrode / hole transport layer / light emitting layer / electron transport layer / negative electrode.
  • the organic electroluminescence device manufactured by these methods has a problem that the rate of change in luminance attenuation immediately after the start of driving is large.
  • a method in which a light emitting layer composition containing a host compound, a dopant compound and a solvent is heat-treated at a temperature higher than the glass transition temperature of the host compound and higher than the boiling point of the solvent has been proposed (see Patent Document 3).
  • the organic electroluminescent device manufactured by this method has a problem that the rate of change in luminance attenuation immediately after the start of driving is large.
  • An object of the present invention is to provide a method for manufacturing an organic electroluminescent element having a small change rate of luminance attenuation immediately after the start of driving.
  • Means for solving the problems are as follows. That is, ⁇ 1> A method for producing an organic electroluminescent device comprising an organic layer including a light emitting layer between an anode and a cathode, The light emitting layer is coated with a coating solution prepared by dissolving or dispersing a light emitting material and a host material represented by at least one of the following general formula (1) and the following general formula (2) in a solvent, It is formed by heating at a temperature higher than the glass transition temperature and higher than the boiling point of the solvent.
  • R represents any one of t-butyl group, t-amyl group, trimethylsilyl group, triphenylsilyl group and phenyl group
  • R 1 to R 23 each represents a hydrogen atom.
  • R represents arbitrary substituents.
  • ⁇ 2> The method for producing an organic electroluminescent element according to ⁇ 1>, wherein the molecular weight of the light emitting material is 1,500 or less, and the molecular weight of the host material is 1,500 or less.
  • the host material represented by the general formula (1) is a compound represented by any one of the following structural formulas (1) to (6) and (11) It is a manufacturing method of the organic electroluminescent element as described in above.
  • the host material represented by the general formula (2) is a compound represented by any one of the following structural formulas C and E: It is a manufacturing method.
  • ⁇ 5> The organic electroluminescent element according to any one of ⁇ 1> to ⁇ 4>, wherein the solvent is at least one selected from 2-butanone, xylene, toluene, 2-methyltetrahydrofuran, and methyl isobutyl ketone. It is a manufacturing method.
  • ⁇ 6> The organic electroluminescence according to any one of ⁇ 1> to ⁇ 5>, wherein the luminescent material is a compound represented by any one of the following structural formulas (7), (8), (12) and D: It is a manufacturing method of an element.
  • ⁇ 7> The organic electroluminescence device according to any one of ⁇ 1> to ⁇ 6>, wherein the heating temperature is 10 ° C. or more higher than the glass transition temperature of the host material and 45 ° C. or more higher than the boiling point of the solvent. It is a manufacturing method.
  • an organic electroluminescent element that can solve the above-described problems and achieve the above-described object and has a small change rate of luminance attenuation immediately after the start of driving.
  • FIG. 1 is a schematic view showing an example of the layer structure of the organic electroluminescent element of the present invention.
  • FIG. 2 is a graph showing an example of a change in luminance attenuation immediately after the start of driving of the organic electroluminescent element manufactured by the method of manufacturing an organic electroluminescent element of the present invention.
  • the manufacturing method of the organic electroluminescent element of the present invention includes at least a light emitting layer forming step, and further includes other steps appropriately selected as necessary.
  • the light emitting layer forming step is a step of applying a coating solution in which a light emitting material and a host material are dissolved or dispersed in a solvent, and heating to form a light emitting layer.
  • the compound whose molecular weight is 1,500 or less is preferable.
  • the molecular weight of the light emitting material means the molecular weight of the compound having the highest molecular weight when the light emitting material is a mixture containing a plurality of compounds.
  • examples of the light emitting material include complexes containing transition metal atoms or lanthanoid atoms.
  • Preferred examples of the transition metal atom include ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, and platinum. Among these, rhenium, iridium, and platinum are preferable, and iridium and platinum are more preferable.
  • Examples of the lanthanoid atom include lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Among these lanthanoid atoms, neodymium, europium, and gadolinium are preferable.
  • Examples of the ligand of the complex include G.I. Wilkinson et al., Comprehensive Coordination Chemistry, Pergamon Press, 1987, H.C.
  • the specific ligand is preferably a halogen ligand (preferably a chlorine ligand), an aromatic carbocyclic ligand (for example, a cyclopentadienyl anion, a benzene anion, or a naphthyl anion), Nitrogen-containing heterocyclic ligand (eg, phenylpyridine, benzoquinoline, quinolinol, bipyridyl, or phenanthroline), diketone ligand (eg, acetylacetone), carboxylic acid ligand (eg, acetic acid ligand) , Alcoholate ligands (eg, phenolate ligands), carbon monoxide ligands, isonitrile ligands, and cyano ligands, more preferably nitrogen-containing heterocyclic ligands.
  • a halogen ligand preferably a chlorine ligand
  • an aromatic carbocyclic ligand for example, a cyclopent
  • the complex may have one transition metal atom in the compound, or may be a so-called binuclear complex having two or more. Different metal atoms may be contained at the same time.
  • Specific examples of the light emitting material containing platinum include, but are not limited to, the following.
  • the light emitting material containing iridium is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include compounds represented by the following structural formulas.
  • the host material is not particularly limited as long as it is represented by at least one of the following general formula (1) and the following general formula (2), but a compound having a molecular weight of 1,500 or less is preferable.
  • R represents any one of a t-butyl group, a t-amyl group, a trimethylsilyl group, a triphenylsilyl group, and a phenyl group
  • R 1 to R 23 are a hydrogen atom
  • R represents an arbitrary substituent.
  • R is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a methyl group and a phenyl group.
  • the molecular weight of the host material means the molecular weight of the compound having the largest molecular weight when the host material is a mixture containing a plurality of compounds.
  • the compound represented by the general formula (1) is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the glass transition temperature Tg of the host material means a temperature at which the supercooled liquid transitions to the glass state, and can be measured as follows.
  • the glass transition temperature Tg can be measured for the temperature of the endothermic peak by differential thermal analysis (DTA).
  • DTA differential thermal analysis
  • the glass transition temperature Tg of the host material means the glass transition temperature Tg of the compound having the highest glass transition temperature Tg when the host material is a mixture containing a plurality of compounds.
  • the solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • 2-butanone, methyl isobutyl ketone as the ketone solvent xylene, toluene, cumene, trimethylbenzene as the aromatic solvent
  • ether solvents include tetrahydrofuran and 2-methyltetrahydrofuran. These may be used individually by 1 type and may use 2 or more types together.
  • xylene, toluene, 2-butanone, and methyl isobutyl ketone are preferable from the viewpoint of ease of film formation.
  • the boiling point of the solvent means the boiling point of the solvent having the highest boiling point when the solvent is a mixed solvent containing a plurality of solvents.
  • the content of the solid content (the host material and the light emitting material) in the coating solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001% by mass to 20% by mass. 0.01 mass% to 15 mass% is more preferable, and 0.1 mass% to 10 mass% is particularly preferable. If the solid content is less than 0.001% by mass, the tact time is long, that is, the time required for coating may be long. If the content exceeds 20% by mass, clogging of the ink jet or spray may occur. May occur. On the other hand, when the content of the solid content is within the particularly preferable range, it is advantageous in that the tact time is short and the maintenance of the apparatus becomes unnecessary.
  • the mass ratio between the light emitting material and the host material is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1:99 to 30:70, more preferably 2:98 to 20:80. A ratio of 4:96 to 15:75 is particularly preferable. If the ratio of the light emitting material to the host material is less than 1 and more than 99, EL light emission may not be performed. If it is more than 30 and less than 70, EL light emission efficiency may be lowered due to concentration quenching. On the other hand, when the ratio of the light emitting material to the host material is within the particularly preferable range, it is advantageous in that the light emission efficiency is high.
  • the application method is not particularly limited as long as the light emitting material and the host material can be applied with a coating solution in which the light emitting material and the host material are dissolved or dispersed in the solvent, and can be appropriately selected according to the purpose. Examples thereof include mist spraying such as coating, ink jet coating and spray coating.
  • the heating temperature in the heating is not particularly limited as long as it is higher than the glass transition temperature of the host material and higher than the boiling point of the solvent, and can be appropriately selected according to the purpose. However, the temperature is preferably 10 ° C. or higher than the glass transition temperature of the host material and 45 ° C. or higher than the boiling point of the solvent.
  • the heating temperature is equal to or lower than the glass transition temperature of the host material, the orientation of the host material becomes random, and in the continuous driving of the organic electroluminescence device, the brightness may be drastically reduced at an early stage, If it is below the boiling point, it may remain in the organic solvent in the organic layer, and the durability and EL luminous efficiency of the organic electroluminescent device may be lowered.
  • the heating temperature when the heating temperature is within the preferred range, it is advantageous in that the initial luminance drop in the continuous driving test is small.
  • the heating temperature needs to be higher than the glass transition temperature of each compound in the mixture, that is, the heating temperature is equal to the glass transition temperature of the compound in the mixture. Of these, it must be higher than the highest glass transition temperature.
  • the solvent is a mixed solvent containing a plurality of solvents
  • the heating temperature needs to be higher than the boiling point of each solvent in the mixed solvent, that is, the heating temperature is the highest among the boiling points of the solvents in the mixed solvent. Must be higher than the high boiling point.
  • the heating time in the heating is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 1 minute to 5 hours, more preferably 5 minutes to 1 hour, and 5 minutes to 30 minutes. Is particularly preferred.
  • the heating time is less than 1 minute, the solvent remains in the light emitting layer, the EL light emission efficiency and the durability of the organic electroluminescent element are lowered, the orientation of the host material cannot be changed, and the continuous driving test is performed. An initial luminance drop may occur, and if it exceeds 5 hours, decomposition due to oxidation or peeling of the film may occur.
  • the heating time is within the particularly preferable range, since there is no residual solvent, the efficiency of the organic electroluminescent element is high, the degree of orientation of the host material is high, and the initial luminance reduction of the continuous driving test is reduced. This is advantageous in that becomes smaller.
  • the number of times of heating is not particularly limited and may be appropriately selected depending on the purpose, and may be one or more times.
  • heating temperature and heating time may be the same in each heating, or may differ.
  • the hole injection layer forming step is a step of forming the hole injection layer.
  • the method for forming the hole injection layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a dry film forming method such as a vapor deposition method or a sputtering method, a wet coating method, a transfer method, or a printing method. , Inkjet method, and the like.
  • the hole transport layer forming step is a step of forming the hole transport layer.
  • the method for forming the hole transport layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a dry film forming method such as a vapor deposition method or a sputtering method, a wet coating method, a transfer method, or a printing method. , Inkjet method, and the like.
  • the other steps are not particularly limited and may be appropriately selected depending on the purpose.
  • an electron transport layer forming step an electron injection layer forming step, a hole blocking layer forming step, an electron block layer forming step, Etc.
  • the organic electroluminescent element has an organic layer between a pair of electrodes (anode and cathode), and may further have other layers appropriately selected as necessary.
  • the organic layer has at least a light emitting layer, and further includes a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, and the like as necessary. May be.
  • the light-emitting layer contains the light-emitting material and the host material, and receives holes from the anode, hole injection layer, or hole transport layer when an electric field is applied, and receives the cathode, electron injection layer, or electron transport layer. It is a layer having a function of receiving electrons from and providing a field for recombination of holes and electrons to emit light.
  • the thickness of the light emitting layer is not particularly limited and may be appropriately selected according to the purpose.
  • the thickness is preferably 2 nm to 500 nm, more preferably 3 nm to 200 nm, and particularly preferably 10 nm to 200 nm from the viewpoint of external quantum efficiency.
  • the said light emitting layer may be 1 layer, or may be two or more layers, and each layer may light-emit with a different luminescent color.
  • the hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side.
  • the hole injection layer and the hole transport layer may have a single layer structure or a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the hole injection material or hole transport material used for the hole injection layer and the hole transport layer may be a low molecular compound or a high molecular compound.
  • the hole injection material or hole transport material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include pyrrole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazoles.
  • Derivatives polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, Examples include styrylamine compounds, aromatic dimethylidin compounds, phthalocyanine compounds, porphyrin compounds, thiophene derivatives, organic silane derivatives, and carbon. These may be used individually by 1 type and may use 2 or more types together.
  • the hole injection layer and the hole transport layer may contain an electron accepting dopant.
  • an inorganic compound or an organic compound can be used as long as it has an electron-accepting property and oxidizes an organic compound.
  • the inorganic compound is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include metal halides such as ferric chloride, aluminum chloride, gallium chloride, indium chloride and antimony pentachloride; vanadium pentoxide And metal oxides such as molybdenum trioxide.
  • the organic compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a compound having a nitro group, a halogen, a cyano group, a trifluoromethyl group or the like as a substituent for example, a compound having a nitro group, a halogen, a cyano group, a trifluoromethyl group or the like as a substituent; a quinone compound, an acid anhydride And physical compounds, fullerenes, and the like.
  • These electron-accepting dopants may be used alone or in combination of two or more.
  • the amount of the electron-accepting dopant used varies depending on the type of material, but is preferably 0.01% by mass to 50% by mass, and 0.05% by mass to 20% by mass with respect to the hole transport layer material or the hole injection material. % Is more preferable, and 0.1% by mass to 10% by mass is particularly preferable.
  • the thickness of the hole injection layer and the hole transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and particularly preferably 10 nm to 100 nm.
  • Electron transport layer, electron injection layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
  • the electron injection layer and the electron transport layer preferably contain a reducing dopant.
  • the reducing dopant is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Examples of the reducing dopant include alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earths. Selected from metal oxides, alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, and rare earth metal organic complexes It is preferable that there is at least one.
  • the amount of the reducing dopant used varies depending on the type of material, but is preferably 0.1% by mass to 99% by mass, more preferably 0.3% by mass to 80% by mass with respect to the electron transport layer material or the electron injection material. 0.5% by mass to 50% by mass is particularly preferable.
  • the electron transport layer and the electron injection layer can be formed according to a known method. For example, a vapor deposition method, a wet film forming method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, a molecular stacking method, and an LB method. It can be suitably formed by a printing method, a transfer method, or the like.
  • the thickness of the electron transport layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 200 nm, more preferably 1 nm to 100 nm, and particularly preferably 1 nm to 50 nm.
  • the thickness of the electron injection layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 200 nm, more preferably 1 nm to 100 nm, and particularly preferably 1 nm to 50 nm.
  • the hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side, and is usually provided as an organic compound layer adjacent to the light emitting layer on the cathode side.
  • the electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side, and is usually provided as an organic compound layer adjacent to the light emitting layer on the anode side.
  • the compound constituting the hole blocking layer include aluminum complexes such as BAlq, triazole derivatives, phenanthroline derivatives such as BCP, and the like.
  • the compound constituting the electron blocking layer for example, those mentioned as the hole transporting material can be used.
  • the electron block layer and the hole block layer are not particularly limited and can be formed according to a known method, for example, a dry film forming method such as a vapor deposition method and a sputtering method, a wet coating method, a transfer method, and a printing method. It can be suitably formed by an inkjet method or the like.
  • the thickness of the hole blocking layer and the electron blocking layer is preferably 1 nm to 200 nm, more preferably 1 nm to 50 nm, and particularly preferably 3 nm to 10 nm.
  • the hole blocking layer and the electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions. .
  • the organic electroluminescent element includes a pair of electrodes, that is, an anode and a cathode.
  • at least one of the anode and the cathode is preferably transparent.
  • the anode only needs to have a function as an electrode for supplying holes to the organic compound layer
  • the cathode only needs to have a function as an electrode for injecting electrons into the organic compound layer.
  • it can select suitably from well-known electrode materials.
  • a material which comprises the said electrode a metal, an alloy, a metal oxide, a conductive compound, or a mixture thereof etc. are mentioned suitably, for example.
  • the material constituting the anode examples include tin oxide doped with antimony and fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO).
  • Conductive metal oxides metals such as gold, silver, chromium and nickel; mixtures or laminates of these metals and conductive metal oxides; inorganic conductive materials such as copper iodide and copper sulfide; polyaniline, polythiophene, Examples thereof include organic conductive materials such as polypyrrole, and laminates of these with ITO.
  • conductive metal oxides are preferable, and ITO is particularly preferable in terms of productivity, high conductivity, transparency, and the like.
  • the material constituting the cathode examples include alkali metals such as Li, Na, K, and Cs, alkaline earth metals such as Mg and Ca, gold, silver, lead, aluminum, sodium-potassium alloy, and lithium-aluminum alloy. , Magnesium-silver alloys, rare earth metals such as indium and ytterbium. These may be used alone, but two or more can be suitably used in combination from the viewpoint of achieving both stability and electron injection. Among these, an alkali metal and an alkaline earth metal are preferable from the viewpoint of electron injection properties, and a material mainly composed of aluminum is preferable from the viewpoint of excellent storage stability.
  • the material mainly composed of aluminum is aluminum alone, an alloy of aluminum and 0.01% by mass to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy, magnesium-aluminum). Alloy).
  • the method for forming the electrode is not particularly limited and can be performed according to a known method, for example, a wet method such as a printing method or a coating method; a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method. And chemical methods such as CVD and plasma CVD. Among these, it can be formed on the substrate in accordance with an appropriately selected method in consideration of suitability with the material constituting the electrode. For example, when ITO is selected as the anode material, it can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like. When a metal or the like is selected as the cathode material, one or more of them can be formed simultaneously or sequentially according to a sputtering method or the like.
  • patterning when forming the electrode, it may be performed by chemical etching such as photolithography, or may be performed by physical etching using a laser or the like. It may be performed by sputtering or the like, or may be performed by a lift-off method or a printing method.
  • the organic electroluminescent element is preferably provided on a substrate, and may be provided in such a manner that the electrode and the substrate are in direct contact with each other, or may be provided with an intermediate layer interposed therebetween.
  • substrate There is no restriction
  • YSZ yttria stabilized zirconia
  • substrate an alkali free glass, soda-lime glass,
  • the shape, structure, size and the like of the substrate are not particularly limited, and can be appropriately selected according to the use, purpose, etc. of the light emitting element.
  • the shape of the substrate is preferably a plate shape.
  • the structure of the substrate may be a single layer structure, a laminated structure, may be formed of a single member, or may be formed of two or more members.
  • the substrate may be transparent or opaque, and if transparent, it may be colorless and transparent or colored and transparent.
  • the substrate may be provided with a moisture permeation preventing layer (gas barrier layer) on the front surface or the back surface.
  • a moisture permeation preventing layer gas barrier layer
  • examples of the material of the moisture permeation preventing layer (gas barrier layer) include inorganic substances such as silicon nitride and silicon oxide.
  • the moisture permeation preventing layer (gas barrier layer) can be formed by, for example, a high frequency sputtering method.
  • the entire organic electroluminescent element may be protected by a protective layer.
  • the material contained in the protective layer is not particularly limited as long as it has a function of suppressing the entry of elements that promote element deterioration such as moisture and oxygen into the element.
  • metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, Ni; MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, Fe Metal oxides such as 2 O 3 , Y 2 O 3 and TiO 2 ; Metal nitrides such as SiNx and SiNxOy; Metal fluorides such as MgF 2 , LiF, AlF 3 and CaF 2 ; polyethylene, polypropylene, polymethyl methacrylate, Polyimide, polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, chlorotrifluoroethylene And a copolymer of dichlorodifluoroethylene, a copolymer obtained by copolymerizing a monomer mixture containing tetrafluoroethylene and at least one comonomer, a fluorine-containing copolymer having a cyclic
  • a vacuum evaporation method for example, a vacuum evaporation method, sputtering method, reactive sputtering method, MBE (molecular beam epitaxy) method, cluster ion beam
  • a vacuum evaporation method for example, a vacuum evaporation method, sputtering method, reactive sputtering method, MBE (molecular beam epitaxy) method, cluster ion beam
  • a plasma polymerization method high frequency excitation ion plating method
  • a plasma CVD method for example, a plasma polymerization method (high frequency excitation ion plating method), a plasma CVD method, a laser CVD method, a thermal CVD method, a gas source CVD method, a coating method, a printing method, and a transfer method.
  • the inert liquid is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include paraffins, liquid paraffins; fluorinated solvents such as perfluoroalkane, perfluoroamine, and perfluoroether; chlorine System solvents, silicone oils, and the like.
  • the organic electroluminescent element is preferably suppressed by sealing the element performance deterioration due to oxygen or moisture from the atmosphere with a resin sealing layer.
  • the resin material of the resin sealing layer is not particularly limited and may be appropriately selected depending on the purpose.
  • an epoxy resin is particularly preferable from the viewpoint of moisture prevention function.
  • the epoxy resins a thermosetting epoxy resin or a photocurable epoxy resin is preferable.
  • the sealing adhesive used in the present invention has a function of preventing intrusion of moisture and oxygen from the end portion.
  • the material of the sealing adhesive the same material as that used for the resin sealing layer can be used.
  • an epoxy adhesive is preferable from the viewpoint of moisture prevention, and a photocurable adhesive or a thermosetting adhesive is more preferable.
  • the filler for example, SiO 2, SiO (silicon oxide), SiON (silicon oxynitride), an inorganic material such as SiN (silicon nitride) are preferred. Addition of the filler increases the viscosity of the sealing adhesive, improves processing suitability, and improves moisture resistance.
  • the sealing adhesive may contain a desiccant.
  • the desiccant include barium oxide, calcium oxide, and strontium oxide.
  • the addition amount of the desiccant is preferably 0.01% by mass to 20% by mass and more preferably 0.05% by mass to 15% by mass with respect to the sealing adhesive. When the addition amount is less than 0.01% by mass, the effect of adding the desiccant is diminished, and when it exceeds 20% by mass, it is difficult to uniformly disperse the desiccant in the sealing adhesive. Sometimes.
  • the sealing adhesive containing the desiccant can be applied by applying an arbitrary amount with a dispenser or the like, and the second substrate can be overlaid after application and cured.
  • FIG. 1 is a schematic view showing an example of a layer structure of the organic electroluminescent element.
  • the organic electroluminescent element 10 includes an anode 2 (for example, an ITO electrode) formed on the glass substrate 1, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, It has a layer structure in which an electron injection layer 7 (for example, a lithium fluoride-containing layer) and a cathode 8 (for example, an Al—Li electrode) are stacked in this order.
  • the anode 2 (for example, ITO electrode) and the cathode 8 for example, Al—Li electrode) are connected to each other via a power source.
  • the organic electroluminescence device obtains light emission by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Can do.
  • the organic electroluminescence device can be applied to an active matrix by a thin film transistor (TFT).
  • TFT thin film transistor
  • As the active layer of the thin film transistor amorphous silicon, high temperature polysilicon, low temperature polysilicon, microcrystalline silicon, oxide semiconductor, organic semiconductor, carbon nanotube, or the like can be used.
  • As the organic electroluminescent element for example, a thin film transistor described in International Publication No. 2005/088726, Japanese Patent Application Laid-Open No. 2006-165529, US Patent Application Publication No. 2008 / 0237598A1, and the like can be applied.
  • the organic electroluminescent element is not particularly limited, and the light extraction efficiency can be improved by various known devices. For example, by processing the substrate surface shape (for example, forming a fine uneven pattern), controlling the refractive index of the substrate, ITO layer, organic layer, controlling the thickness of the substrate, ITO layer, organic layer, etc. It is possible to improve light extraction efficiency and external quantum efficiency.
  • the light extraction method from the organic electroluminescent element may be a top emission method or a bottom emission method.
  • the organic electroluminescent device may have a resonator structure.
  • a multilayer film mirror made of a plurality of laminated films having different refractive indexes, a transparent or translucent electrode, a light emitting layer, and a metal electrode are superimposed on a transparent substrate.
  • the light generated in the light emitting layer resonates repeatedly with the multilayer mirror and the metal electrode as a reflection plate.
  • a transparent or translucent electrode and a metal electrode each function as a reflecting plate on a transparent substrate, and light generated in the light emitting layer repeats reflection and resonates between them.
  • the optical path length determined from the effective refractive index of the two reflectors and the refractive index and thickness of each layer between the reflectors is adjusted to an optimum value to obtain the desired resonant wavelength. Is done.
  • the calculation formula in the case of the first aspect is described in JP-A-9-180883.
  • the calculation formula in the case of the second aspect is described in Japanese Patent Application Laid-Open No. 2004-127795.
  • organic electroluminescent element is not particularly limited and may be appropriately selected according to the purpose.
  • the method using the organic electroluminescence device as a full color type is described in the three primary colors ( Three-color light emission method in which organic EL elements that emit light corresponding to blue (B), green (G), and red (R) are arranged on a substrate, and white light emitted by an organic electroluminescent element for white light emission is colored
  • a white method that divides three primary colors through a filter
  • a color conversion method that converts blue light emitted by an organic electroluminescent element for blue light emission into red (R) and green (G) through a fluorescent dye layer.
  • Example 1 Fabrication of organic electroluminescent elements- A 0.7 mm thick, 25 mm square glass substrate was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. The following layers were formed on this glass substrate.
  • the vapor deposition rate in the following examples and comparative examples is 0.2 nm / second unless otherwise specified. The deposition rate was measured using a quartz resonator.
  • the following layer thicknesses were measured using a stylus profilometer (XP-200, manufactured by AMBiOS Technology. Inc.).
  • the glass transition temperature Tg of each substance was measured with the following measuring method.
  • ITO Indium Tin Oxide
  • PTPDES-2 an arylamine derivative
  • cyclohexanone for electronics industry (manufactured by Kanto Chemical Co., Ltd.).
  • the dispersed coating solution was spin-coated, dried at 120 ° C. for 30 minutes, and annealed at 160 ° C.
  • 1 part by mass of a compound (trade name: Ir (ppy) 3, manufactured by Chemipro Kasei Co., Ltd.) is dissolved or dispersed in 990 parts by mass of 2-butanone (boiling point: 79.5 ° C., manufactured by Kanto Chemical Co., Ltd.) for electronic industry.
  • a light emitting layer coating solution prepared by adding molecular sieve (trade name: Molecular sieve 5A 1/16, manufactured by Wako Pure Chemical Industries, Ltd.) and filtering with a syringe filter having a pore diameter of 0.22 ⁇ m in a glove box, A light emitting layer having a thickness of 30 nm was formed by spin coating in a glove box and drying at 125 ° C. for 30 minutes. Next, BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum- (III)) was deposited on the light-emitting layer by a vacuum deposition method, thereby forming an electron having a thickness of 40 nm. A transport layer was formed.
  • molecular sieve trade name: Molecular sieve 5A 1/16, manufactured by Wako Pure Chemical Industries, Ltd.
  • lithium fluoride LiF
  • metal aluminum was vapor-deposited on the electron injection layer to form a cathode having a thickness of 70 nm.
  • the produced laminate was put in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
  • Example 1B In Example 1, instead of forming the light emitting layer by spin coating the light emitting layer coating solution in a glove box and drying at 125 ° C. for 30 minutes, the light emitting layer coating solution was spin coated in a glove box at 100 ° C. The organic electroluminescence device was produced in the same manner as in Example 1 except that the light emitting layer was formed by drying for 30 minutes.
  • Example 2 In Example 1, in the formation of the light emitting layer, instead of using a compound represented by the following structural formula (7) as a phosphorescent material and using 2-butanone for electronics industry as a solvent and drying at 125 ° C. for 30 minutes, a compound represented by the following structural formula (8) is used as a phosphorescent material, and xylene for electronic industry (boiling point 144 ° C., manufactured by Kanto Chemical Co.) and dehydrated toluene (boiling point 110 ° C., Wako Pure Chemical Industries, Ltd.) are used as solvents.
  • An organic electroluminescent device was prepared in the same manner as in Example 1 except that the mixture was dried at 125 ° C. for 30 minutes and further annealed at 150 ° C. for 10 minutes using a mixed solvent (mixed ratio of 2/8). did.
  • Example 2 an organic electroluminescent element was produced in the same manner as in Example 2 except that the annealing process was not performed at 150 ° C. for 10 minutes in forming the light emitting layer.
  • glass transition temperature (Tg) 102 ° C.
  • Example 3 an organic electroluminescent element was produced in the same manner as in Example 3 except that, in the formation of the light emitting layer, instead of drying at 120 ° C. for 30 minutes, drying was performed at 85 ° C. for 30 minutes.
  • glass transition temperature glass transition temperature
  • Example 4 an organic electroluminescent device was produced in the same manner as in Example 4 except that, in the formation of the light emitting layer, instead of drying at 130 ° C. for 30 minutes, drying was performed at 85 ° C. for 30 minutes.
  • Example 6 -Fabrication of organic electroluminescent elements- A 0.7 mm thick, 25 mm square glass substrate was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. The following layers were formed on this glass substrate.
  • the vapor deposition rate in the following examples and comparative examples is 0.2 nm / second unless otherwise specified. The deposition rate was measured using a quartz resonator.
  • the following layer thicknesses were measured using a stylus profilometer (XP-200, manufactured by AMBiOS Technology. Inc.).
  • ITO Indium Tin Oxide
  • a positive electrode was sputter-deposited on a glass substrate to a thickness of 150 nm.
  • the obtained transparent support substrate was etched and washed.
  • 1 part by mass of a compound (trade name: Ir (ppy) 3, manufactured by Chemipro Chemical Co., Ltd.) is dissolved or dispersed in 990 parts by mass of 2-methyltetrahydrofuran (boiling point 78 ° C., manufactured by Tokyo Chemical Industry Co., Ltd.) for electronic industry.
  • a light-emitting layer coating solution prepared by adding a sieve (trade name: Molecular sieve 5A 1/16, manufactured by Wako Pure Chemical Industries, Ltd.) and filtering with a syringe filter having a pore size of 0.22 ⁇ m in a glove box It spin-coated in the box, and it dried for 30 minutes at 160 degreeC, and formed the light emitting layer with a thickness of 30 nm.
  • a sieve trade name: Molecular sieve 5A 1/16, manufactured by Wako Pure Chemical Industries, Ltd.
  • BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum- (III)) was deposited on the light-emitting layer by a vacuum deposition method, thereby forming an electron having a thickness of 40 nm.
  • a transport layer was formed.
  • lithium fluoride (LiF) was deposited on the electron transport layer to form an electron injection layer having a thickness of 1 nm.
  • metal aluminum was vapor-deposited on the electron injection layer to form a cathode having a thickness of 70 nm.
  • the produced laminate was put in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
  • Example 6 an organic electroluminescent device was produced in the same manner as in Example 6 except that, in the formation of the light emitting layer, instead of drying at 160 ° C. for 30 minutes, drying was performed at 80 ° C. for 30 minutes.
  • a light emitting layer coating solution prepared by dissolving and dispersing 1 part by mass of the compound represented by the formula in 990 parts by mass of 2-methyltetrahydrofuran for electronics industry is spin-coated in a glove box and dried at 160 ° C. for 30 minutes.
  • phosphorescence Luminescent layer coating prepared by dissolving or dispersing 0.5 parts by mass of the compound represented by the structural formula (7) as an optical material in 995 parts by mass of methyl isobutyl ketone (boiling point 116 ° C., manufactured by Kanto Chemical Co., Inc.).
  • An organic electroluminescent element was produced in the same manner as in Example 6 except that the liquid was spray-coated and dried at 125 ° C. for 30 minutes to form a 30 nm thick light emitting layer.
  • Example 8 In Example 7, in the formation of the light emitting layer, instead of drying at 125 ° C. for 30 minutes, instead of drying at 125 ° C. for 30 minutes and further annealing at 160 ° C. for 10 minutes, the same as in Example 7, An organic electroluminescent element was produced.
  • Example 7 an organic electroluminescence device was produced in the same manner as in Example 7 except that, in the formation of the light emitting layer, instead of drying at 125 ° C. for 30 minutes, drying was performed at 100 ° C. for 30 minutes.
  • Example 6 9 parts by mass of the compound represented by the structural formula (5) as the host material and 1 mass of the compound represented by the structural formula (7) as the phosphorescent material on the hole injection layer.
  • a luminescent layer coating solution prepared by dissolving or dispersing in 990 parts by mass of 2-methyltetrahydrofuran for electronics industry, spin-coated in a glove box, and dried at 160 ° C. for 30 minutes to give a luminescent layer having a thickness of 30 nm
  • 4.5 parts by mass of a dicarbazole derivative (CBP) as a host material and 0.5 parts by mass of the compound represented by the structural formula (7) as a phosphorescent material are used.
  • CBP dicarbazole derivative
  • a luminescent layer coating solution prepared by dissolving or dispersing in 995 parts by mass of xylene (boiling point 144 ° C., manufactured by Kanto Chemical Co., Ltd.), spray-dried, dried at 155 ° C. for 30 minutes, and luminescent layer having a thickness of 30 nm
  • xylene molecular weight polyethylene
  • the light emitting layer became cloudy. This white turbidity of the light emitting layer is considered to have occurred because the dicarbazole derivative (CBP) was crystallized by heating.
  • Example 9 In Example 1, in the formation of the light emitting layer, the compound represented by the structural formula (1) is used as the host material, and the phosphorescent light emitting material is replaced with the structural formula (7).
  • Tg glass transition temperature
  • Example 9 an organic electroluminescence device was produced in the same manner as in Example 9 except that, in the formation of the light emitting layer, instead of drying at 140 ° C. for 30 minutes, drying was performed at 85 ° C. for 30 minutes.
  • Example 10 In Example 1, in the formation of the light emitting layer, an organic electric field was obtained in the same manner as in Example 1 except that the compound of the structural formula (12) was used as the phosphorescent light emitting material and was dried at 115 ° C. for 30 minutes. A light emitting element was manufactured. When this element was energized, red EL light emission was observed.
  • Example 10 (Example 10) -Fabrication of organic electroluminescent elements- A 0.7 mm thick, 25 mm square glass substrate was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. The following layers were formed on this glass substrate. The deposition rate was measured using a quartz resonator.
  • ITO Indium Tin Oxide
  • a positive electrode was sputter-deposited on a glass substrate to a thickness of 150 nm.
  • the obtained transparent support substrate was etched and washed.
  • anode ITO
  • a hole injection layer coating solution in which 5 parts by mass of a compound of the following structural formula A was dissolved or dispersed in 995 parts by mass of cyclohexanone for electronics industry (manufactured by Kanto Chemical Co., Inc.) was spin coated. Then, it dried at 200 degreeC for 30 minute (s), and formed the 5-nm-thick hole injection layer.
  • BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum- (III)) was deposited on the light-emitting layer by a vacuum deposition method, thereby forming an electron having a thickness of 40 nm.
  • a transport layer was formed.
  • lithium fluoride (LiF) was deposited on the electron transport layer to form an electron injection layer having a thickness of 1 nm.
  • metal aluminum was vapor-deposited on the electron injection layer to form a cathode having a thickness of 70 nm.
  • the produced laminate was put in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
  • Example 10 an organic electroluminescent element was produced in the same manner as in Example 10 except that the drying temperature was changed from 150 ° C to 120 ° C.
  • Example 12 an organic electroluminescent element was produced in the same manner as in Example 11 except that the drying temperature was changed from 145 ° C. to 120 ° C.
  • Example 12 an organic electroluminescent element was produced in the same manner as in Example 12 except that the drying temperature was changed from 140 ° C to 120 ° C.
  • Comparative Example 1B is used as a reference, in Table 2, Comparative Example 2 is used as a reference, in Table 3, Comparative Example 3 is used as a reference, in Table 4, Comparative Example 4 is used as a reference, and in Table 5, Based on Comparative Example 5, Table 6 uses Comparative Example 6 as a standard, Table 7 uses Comparative Example 7 as a standard, Table 8 uses Comparative Example 9 as a standard, and Table 9 uses Comparative Example 11 as a standard. In Table 10, Comparative Example 12 is used as a reference, and in Table 11, Comparative Example 13 is used as a reference. In Examples and Comparative Examples other than the reference, the external quantum efficiency and the luminance attenuation change rate (20% attenuation time) of the comparative example based on the reference were set to 1, and relative values were shown.
  • Example 1 has the same external quantum efficiency as Comparative Examples 1A and 1B, and the rate of change in luminance attenuation is smaller (20% attenuation time is longer) than Comparative Examples 1A and 1B.
  • Table 2 shows that Example 2 has higher external quantum efficiency than Comparative Example 2, and has a smaller rate of change in luminance attenuation than Comparative Example 2 (20% attenuation time is longer).
  • Table 3 shows that Example 3 has the same external quantum efficiency as Comparative Example 3, and the rate of change in luminance attenuation is smaller than that of Comparative Example 3 (20% attenuation time is longer).
  • Table 4 also shows that Example 4 has the same external quantum efficiency as that of Comparative Example 4, and the rate of change in luminance attenuation is smaller than that of Comparative Example 4 (20% attenuation time is longer).
  • Table 5 also shows that Example 5 has the same external quantum efficiency as that of Comparative Example 5, and the rate of change in luminance attenuation is smaller than that of Comparative Example 5 (20% attenuation time is longer).
  • Table 6 also shows that Example 6 has the same external quantum efficiency as that of Comparative Example 6, and the rate of change in luminance attenuation is smaller than that of Comparative Example 6 (20% attenuation time is longer).
  • Table 7 also shows that Example 7 has the same external quantum efficiency as that of Comparative Example 7, and the rate of change in luminance attenuation is smaller than that of Comparative Example 7 (20% attenuation time is longer).
  • Example 8 has higher external quantum efficiency than Comparative Example 7, and the rate of change in luminance attenuation is smaller than that of Comparative Example 7 (20% attenuation time is longer).
  • Example 8 heated at the glass transition temperature (140 ° C.) or higher of the hole injection layer is more positive than Example 7 not heated above the glass transition temperature of the hole injection layer.
  • Example 9 has the same external quantum efficiency as that of Comparative Example 9, and the rate of change in luminance attenuation is smaller than that of Comparative Example 9 (20% attenuation time is longer).
  • Example 10 has the same external quantum efficiency as Comparative Example 11 and a smaller change rate of luminance attenuation than that of Comparative Example 11 (20% attenuation time is longer).
  • Table 10 also shows that Example 11 has the same external quantum efficiency as that of Comparative Example 12, and the rate of change in luminance attenuation is smaller than that of Comparative Example 12 (20% attenuation time is longer).
  • Table 11 also shows that Example 12 has the same external quantum efficiency as that of Comparative Example 13, and the rate of change in luminance attenuation is smaller than that of Comparative Example 13 (20% attenuation time is longer).
  • the organic electroluminescent device produced by the method of the present invention can achieve both excellent luminous efficiency and luminous lifetime, for example, display device, display, backlight, electrophotography, illumination light source, recording light source, exposure light source It is suitably used for reading light sources, signs, signboards, interiors, optical communications, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a method for producing an organic electroluminescence element, said organic electroluminescence element having an organic layer which contains a light-emitting layer between an anode and a cathode. The method for producing the organic electroluminescence element involves forming the light-emitting layer by applying a coating solution in which a light-emitting material, and a host material, which is represented by general formula (1) and/or general formula (2) below, have been dissolved or dispersed in a solvent, and heating the coating solution at a temperature higher than the glass transition temperature of the host material, and higher than the boiling point of the solvent.

Description

有機電界発光素子の製造方法Method for manufacturing organic electroluminescent device
 本発明は、有機電界発光素子の製造方法に関する。 The present invention relates to a method for manufacturing an organic electroluminescent element.
 有機電界発光素子は、自発光、高速応答などの特長を持ち、フラットパネルディスプレイへの適用が期待されており、特に、正孔輸送性の有機薄膜(正孔輸送層)と電子輸送性の有機薄膜(電子輸送層)とを積層した2層型(積層型)のものが報告されて以来、10V以下の低電圧で発光する大面積発光素子として関心を集めている。積層型の有機電界発光素子は、正極/正孔輸送層/発光層/電子輸送層/負極、を基本構成としている。 Organic electroluminescence devices have features such as self-emission and high-speed response, and are expected to be applied to flat panel displays. In particular, organic thin films (hole transport layer) that have a hole transport property and organic materials that have an electron transport property. Since a two-layer type (laminated type) in which a thin film (electron transport layer) is laminated is reported, it has attracted attention as a large-area light-emitting element that emits light at a low voltage of 10 V or less. The stacked organic electroluminescent element has a basic configuration of positive electrode / hole transport layer / light emitting layer / electron transport layer / negative electrode.
 このような有機電界発光素子において、膜の均質化を実現するため、例えば、ホスト材料としてジカルバゾール誘導体(CBP)を用い、溶媒としてトルエンを用い、発光層のガラス転移温度に対して-30℃~+30℃、且つ、発光層を構成している有機化合物の分解温度を超えない温度で裏面伝熱方式の熱処理を行う方法(特許文献1参照)、有機発光媒体層を、乾燥時には機能性インクを構成する有機溶媒の沸点以上に加熱し、ガラス転移温度(Tg)前後に加熱をする方法が提案されている(特許文献2参照)。
 しかし、これらの方法は、膜の均質化を実現することができるものの、これらの方法により製造された有機電界発光素子は、駆動開始直後からの輝度減衰の変化率が大きいという問題がある。
 また、長寿命化を実現するため、例えば、ホスト化合物、ドーパント化合物及び溶媒を含む発光層組成物を、ホスト化合物のガラス転移温度よりも高く、かつ溶媒の沸点より高い温度で加熱処理する方法が提案されている(特許文献3参照)。
 しかしながら、この方法により製造された有機電界発光素子は、駆動開始直後からの輝度減衰の変化率が大きいという問題がある。
In such an organic electroluminescent device, in order to achieve homogenization of the film, for example, a dicarbazole derivative (CBP) is used as a host material, toluene is used as a solvent, and the glass transition temperature of the light emitting layer is −30 ° C. A method of performing heat treatment by the backside heat transfer method at a temperature not exceeding the decomposition temperature of the organic compound constituting the light emitting layer (see Patent Document 1), and a functional ink when the organic light emitting medium layer is dried There has been proposed a method of heating above the boiling point of the organic solvent that constitutes and heating around the glass transition temperature (Tg) (see Patent Document 2).
However, although these methods can realize the homogenization of the film, the organic electroluminescence device manufactured by these methods has a problem that the rate of change in luminance attenuation immediately after the start of driving is large.
Further, in order to realize a long lifetime, for example, there is a method in which a light emitting layer composition containing a host compound, a dopant compound and a solvent is heat-treated at a temperature higher than the glass transition temperature of the host compound and higher than the boiling point of the solvent. It has been proposed (see Patent Document 3).
However, the organic electroluminescent device manufactured by this method has a problem that the rate of change in luminance attenuation immediately after the start of driving is large.
 したがって、駆動開始直後からの輝度減衰の変化率が小さい有機電界発光素子の製造方法の速やかな開発が強く求められているのが現状である。 Therefore, at present, there is a strong demand for rapid development of a method for manufacturing an organic electroluminescent element having a small rate of change in luminance attenuation immediately after the start of driving.
特開2009-163889号公報JP 2009-163889 A 特開2009-129567号公報JP 2009-129567 A 特開2009-164033号公報JP 2009-164033 A
 本発明は、駆動開始直後からの輝度減衰の変化率が小さい有機電界発光素子の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for manufacturing an organic electroluminescent element having a small change rate of luminance attenuation immediately after the start of driving.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 陽極と陰極の間に発光層を含む有機層を有してなる有機電界発光素子の製造方法であって、
 前記発光層を、発光材料と、下記一般式(1)及び下記一般式(2)の少なくともいずれかで表されるホスト材料とを溶媒に溶解乃至分散させた塗布液を塗布し、前記ホスト材料のガラス転移温度よりも高く、かつ前記溶媒の沸点よりも高い温度で加熱して、形成することを特徴とする有機電界発光素子の製造方法である。
Figure JPOXMLDOC01-appb-C000015
 ただし、前記一般式(1)中、Rは、t-ブチル基、t-アミル基、トリメチルシリル基、トリフェニルシリル基及びフェニル基のいずれかを表し、R~R23は、それぞれ、水素原子、t-ブチル基、t-アミル基、トリメチルシリル基、トリフェニルシリル基、フェニル基、シアノ基、及び炭素数1~5のアルキル基のいずれかを表す。
Figure JPOXMLDOC01-appb-C000016
 ただし、前記一般式(2)中、Rは、任意の置換基を表す。
 <2> 発光材料の分子量が1,500以下であり、ホスト材料の分子量が1,500以下である前記<1>に記載の有機電界発光素子の製造方法である。
 <3> 一般式(1)で表されるホスト材料が、下記構造式(1)から(6)及び(11)のいずれかで表される化合物である前記<1>から<2>のいずれかに記載の有機電界発光素子の製造方法である。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 <4> 一般式(2)で表されるホスト材料が、下記構造式C及びEのいずれかで表される化合物である前記<1>から<3>のいずれかに記載の有機電界発光素子の製造方法である。
Figure JPOXMLDOC01-appb-C000024
 <5> 溶媒が、2-ブタノン、キシレン、トルエン、2-メチルテトラヒドロフラン及びメチルイソブチルケトンから選択される少なくとも1種である前記<1>から<4>のいずれかに記載の有機電界発光素子の製造方法である。
 <6> 発光材料が、下記構造式(7)、(8)、(12)及びDのいずれかで表される化合物である前記<1>から<5>のいずれかに記載の有機電界発光素子の製造方法である。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 <7> 加熱の温度が、ホスト材料のガラス転移温度よりも10℃以上高く、かつ溶媒の沸点よりも45℃以上高い前記<1>から<6>のいずれかに記載の有機電界発光素子の製造方法である。
Means for solving the problems are as follows. That is,
<1> A method for producing an organic electroluminescent device comprising an organic layer including a light emitting layer between an anode and a cathode,
The light emitting layer is coated with a coating solution prepared by dissolving or dispersing a light emitting material and a host material represented by at least one of the following general formula (1) and the following general formula (2) in a solvent, It is formed by heating at a temperature higher than the glass transition temperature and higher than the boiling point of the solvent.
Figure JPOXMLDOC01-appb-C000015
In the general formula (1), R represents any one of t-butyl group, t-amyl group, trimethylsilyl group, triphenylsilyl group and phenyl group, and R 1 to R 23 each represents a hydrogen atom. , T-butyl group, t-amyl group, trimethylsilyl group, triphenylsilyl group, phenyl group, cyano group and alkyl group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000016
However, in said general formula (2), R represents arbitrary substituents.
<2> The method for producing an organic electroluminescent element according to <1>, wherein the molecular weight of the light emitting material is 1,500 or less, and the molecular weight of the host material is 1,500 or less.
<3> Any of <1> to <2>, wherein the host material represented by the general formula (1) is a compound represented by any one of the following structural formulas (1) to (6) and (11) It is a manufacturing method of the organic electroluminescent element as described in above.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
<4> The organic electroluminescent element according to any one of <1> to <3>, wherein the host material represented by the general formula (2) is a compound represented by any one of the following structural formulas C and E: It is a manufacturing method.
Figure JPOXMLDOC01-appb-C000024
<5> The organic electroluminescent element according to any one of <1> to <4>, wherein the solvent is at least one selected from 2-butanone, xylene, toluene, 2-methyltetrahydrofuran, and methyl isobutyl ketone. It is a manufacturing method.
<6> The organic electroluminescence according to any one of <1> to <5>, wherein the luminescent material is a compound represented by any one of the following structural formulas (7), (8), (12) and D: It is a manufacturing method of an element.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
<7> The organic electroluminescence device according to any one of <1> to <6>, wherein the heating temperature is 10 ° C. or more higher than the glass transition temperature of the host material and 45 ° C. or more higher than the boiling point of the solvent. It is a manufacturing method.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、駆動開始直後からの輝度減衰の変化率が小さい有機電界発光素子の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing an organic electroluminescent element that can solve the above-described problems and achieve the above-described object and has a small change rate of luminance attenuation immediately after the start of driving.
図1は、本発明の有機電界発光素子の層構成の一例を示す概略図である。FIG. 1 is a schematic view showing an example of the layer structure of the organic electroluminescent element of the present invention. 図2は、本発明の有機電界発光素子の製造方法によって製造された有機電界発光素子の駆動開始直後からの輝度減衰の変化の一例を示すグラフである。FIG. 2 is a graph showing an example of a change in luminance attenuation immediately after the start of driving of the organic electroluminescent element manufactured by the method of manufacturing an organic electroluminescent element of the present invention.
(有機電界発光素子の製造方法)
 本発明の有機電界発光素子の製造方法は、少なくとも、発光層形成工程を含んでなり、更に、必要に応じて適宜選択した、その他の工程を含んでなる。
(Method for manufacturing organic electroluminescent device)
The manufacturing method of the organic electroluminescent element of the present invention includes at least a light emitting layer forming step, and further includes other steps appropriately selected as necessary.
<発光層形成工程>
 前記発光層形成工程は、発光材料と、ホスト材料とを溶媒に溶解乃至分散させた塗布液を塗布し、加熱して、発光層を形成する工程である。
<Light emitting layer forming step>
The light emitting layer forming step is a step of applying a coating solution in which a light emitting material and a host material are dissolved or dispersed in a solvent, and heating to form a light emitting layer.
<<発光材料>>
 前記発光材料としては、特に制限はなく、目的に応じて適宜選択することができるが、分子量が1,500以下の化合物が好ましい。
 前記発光材料の分子量は、前記発光材料が複数の化合物を含む混合物である場合、最も分子量が大きい化合物の分子量を意味する。
<< Luminescent Material >>
There is no restriction | limiting in particular as said luminescent material, Although it can select suitably according to the objective, The compound whose molecular weight is 1,500 or less is preferable.
The molecular weight of the light emitting material means the molecular weight of the compound having the highest molecular weight when the light emitting material is a mixture containing a plurality of compounds.
 前記発光材料としては、一般に、遷移金属原子又はランタノイド原子を含む錯体を挙げることができる。前記遷移金属原子としては、好ましくは、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、白金などが挙げられる。これらの中でも、レニウム、イリジウム、白金が好ましく、イリジウム、白金がより好ましい。 Generally, examples of the light emitting material include complexes containing transition metal atoms or lanthanoid atoms. Preferred examples of the transition metal atom include ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, and platinum. Among these, rhenium, iridium, and platinum are preferable, and iridium and platinum are more preferable.
 前記ランタノイド原子としては、例えば、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテシウムなどが挙げられる。これらのランタノイド原子の中でも、ネオジム、ユーロピウム、ガドリニウムが好ましい。
 錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry,Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」Springer-Verlag社1987年発行、山本明夫著「有機金属化学-基礎と応用-」裳華房社、1982年発行等に記載の配位子などが挙げられる。
 具体的な配位子としては、好ましくは、ハロゲン配位子(好ましくは塩素配位子)、芳香族炭素環配位子(例えば、シクロペンタジエニルアニオン、ベンゼンアニオン、又はナフチルアニオンなど)、含窒素ヘテロ環配位子(例えば、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、又はフェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)、カルボン酸配位子(例えば、酢酸配位子など)、アルコラト配位子(例えば、フェノラト配位子など)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子であり、より好ましくは、含窒素ヘテロ環配位子である。
Examples of the lanthanoid atom include lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Among these lanthanoid atoms, neodymium, europium, and gadolinium are preferable.
Examples of the ligand of the complex include G.I. Wilkinson et al., Comprehensive Coordination Chemistry, Pergamon Press, 1987, H.C. Listed by Yersin, “Photochemistry and Photophysics of Coordination Compounds”, published by Springer-Verlag, 1987, Akio Yamamoto, “Organic Metal Chemistry-Fundamentals and Applications,” published by Soukabo, 1982, etc. It is done.
The specific ligand is preferably a halogen ligand (preferably a chlorine ligand), an aromatic carbocyclic ligand (for example, a cyclopentadienyl anion, a benzene anion, or a naphthyl anion), Nitrogen-containing heterocyclic ligand (eg, phenylpyridine, benzoquinoline, quinolinol, bipyridyl, or phenanthroline), diketone ligand (eg, acetylacetone), carboxylic acid ligand (eg, acetic acid ligand) , Alcoholate ligands (eg, phenolate ligands), carbon monoxide ligands, isonitrile ligands, and cyano ligands, more preferably nitrogen-containing heterocyclic ligands.
 前記錯体は、化合物中に遷移金属原子を1つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。
 白金を含む発光材料の具体例としては、例えば、下記のものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
The complex may have one transition metal atom in the compound, or may be a so-called binuclear complex having two or more. Different metal atoms may be contained at the same time.
Specific examples of the light emitting material containing platinum include, but are not limited to, the following.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 イリジウムを含む発光材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記構造式で表される化合物、などが挙げられる。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
The light emitting material containing iridium is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include compounds represented by the following structural formulas.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
-ホスト材料-
 前記ホスト材料としては、下記一般式(1)及び下記一般式(2)の少なくともいずれかで表される限り、特に制限はないが、分子量が1,500以下の化合物が好ましい。
Figure JPOXMLDOC01-appb-C000034
 前記一般式(1)中、Rは、t-ブチル基、t-アミル基、トリメチルシリル基、トリフェニルシリル基及びフェニル基のいずれかを表し、R~R23は、それぞれ、水素原子、t-ブチル基、t-アミル基、トリメチルシリル基、トリフェニルシリル基、フェニル基、シアノ基、及び炭素数1~5のアルキル基のいずれかを表す。
Figure JPOXMLDOC01-appb-C000035
 前記一般式(2)中、Rは、任意の置換基を表す。前記Rは、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチル基、フェニル基、などが挙げられる。
-Host material-
The host material is not particularly limited as long as it is represented by at least one of the following general formula (1) and the following general formula (2), but a compound having a molecular weight of 1,500 or less is preferable.
Figure JPOXMLDOC01-appb-C000034
In the general formula (1), R represents any one of a t-butyl group, a t-amyl group, a trimethylsilyl group, a triphenylsilyl group, and a phenyl group, and R 1 to R 23 are a hydrogen atom, t -Represents any one of a butyl group, a t-amyl group, a trimethylsilyl group, a triphenylsilyl group, a phenyl group, a cyano group, and an alkyl group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000035
In the general formula (2), R represents an arbitrary substituent. R is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a methyl group and a phenyl group.
 前記ホスト材料の分子量は、前記ホスト材料が複数の化合物を含む混合物である場合、最も分子量が大きい化合物の分子量を意味する。 The molecular weight of the host material means the molecular weight of the compound having the largest molecular weight when the host material is a mixture containing a plurality of compounds.
 前記一般式(1)で表される化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記構造式(1)から(19)のいずれかで表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
The compound represented by the general formula (1) is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the compound represented by any one of the following structural formulas (1) to (19) Etc.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 前記一般式(2)で表される化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記構造式C及びEのいずれかで表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000044
There is no restriction | limiting in particular as a compound represented by the said General formula (2), According to the objective, it can select suitably, For example, the compound etc. which are represented by either of the following structural formula C and E are mentioned. .
Figure JPOXMLDOC01-appb-C000044
 前記ホスト材料のガラス転移温度Tgは、過冷却液体からガラス状態へ転移する温度を意味し、下記のように測定可能である。 The glass transition temperature Tg of the host material means a temperature at which the supercooled liquid transitions to the glass state, and can be measured as follows.
<ガラス転移温度Tgの測定方法>
 示差熱分析(DTA)により、吸熱ピークの温度をガラス転移温度Tgを測定できる。
 前記ホスト材料のガラス転移温度Tgは、前記ホスト材料が複数の化合物を含む混合物である場合、最もガラス転移温度Tgが高い化合物のガラス転移温度Tgを意味する。
<Measuring method of glass transition temperature Tg>
The glass transition temperature Tg can be measured for the temperature of the endothermic peak by differential thermal analysis (DTA).
The glass transition temperature Tg of the host material means the glass transition temperature Tg of the compound having the highest glass transition temperature Tg when the host material is a mixture containing a plurality of compounds.
-溶媒-
 前記溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ケトン系溶媒として、2-ブタノン、メチルイソブチルケトン、芳香族系溶媒として、キシレン、トルエン、クメン、トリメチルベンゼン、エーテル系溶媒として、テトラヒドロフラン、2-メチルテトラヒドロフラン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、キシレン、トルエン、2-ブタノン、メチルイソブチルケトンが、成膜性の容易性の点で、好ましい。
-solvent-
The solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 2-butanone, methyl isobutyl ketone as the ketone solvent, xylene, toluene, cumene, trimethylbenzene as the aromatic solvent Examples of ether solvents include tetrahydrofuran and 2-methyltetrahydrofuran. These may be used individually by 1 type and may use 2 or more types together.
Among these, xylene, toluene, 2-butanone, and methyl isobutyl ketone are preferable from the viewpoint of ease of film formation.
 前記溶媒の沸点は、前記溶媒が複数の溶媒を含む混合溶媒である場合、最も沸点が高い溶媒の沸点を意味する。 The boiling point of the solvent means the boiling point of the solvent having the highest boiling point when the solvent is a mixed solvent containing a plurality of solvents.
 前記塗布液中における固形分(前記ホスト材料、前記発光材料)の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.001質量%~20質量%が好ましく、0.01質量%~15質量%がより好ましく、0.1質量%~10質量%が特に好ましい。
 前記固形分の含有量が、0.001質量%未満であると、タクトタイムが長い、即ち、塗布に要する時間が長くなることがあり、20質量%を超えると、インクジェットやスプレーの目詰まりが発生することがある。一方、前記固形分の含有量が前記特に好ましい範囲内であると、タクトタイムが短く、かつ装置のメンテナンスが不要になる点で有利である。
 なお、発光材料とホスト材料との質量比率としては、特に制限はなく、目的に応じて適宜選択することができるが、1:99~30:70が好ましく、2:98~20:80がより好ましく、4:96~15:75が特に好ましい。
 前記発光材料とホスト材料との比率が、1未満:99超であると、EL発光できないことがあり、30超:70未満であると、濃度消光によりEL発光効率が低くなることがある。一方、前記発光材料とホスト材料との比率が前記特に好ましい範囲内であると、発光効率が高い点で有利である。
The content of the solid content (the host material and the light emitting material) in the coating solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.001% by mass to 20% by mass. 0.01 mass% to 15 mass% is more preferable, and 0.1 mass% to 10 mass% is particularly preferable.
If the solid content is less than 0.001% by mass, the tact time is long, that is, the time required for coating may be long. If the content exceeds 20% by mass, clogging of the ink jet or spray may occur. May occur. On the other hand, when the content of the solid content is within the particularly preferable range, it is advantageous in that the tact time is short and the maintenance of the apparatus becomes unnecessary.
The mass ratio between the light emitting material and the host material is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1:99 to 30:70, more preferably 2:98 to 20:80. A ratio of 4:96 to 15:75 is particularly preferable.
If the ratio of the light emitting material to the host material is less than 1 and more than 99, EL light emission may not be performed. If it is more than 30 and less than 70, EL light emission efficiency may be lowered due to concentration quenching. On the other hand, when the ratio of the light emitting material to the host material is within the particularly preferable range, it is advantageous in that the light emission efficiency is high.
<<塗布>>
 前記塗布の方法としては、前記発光材料及び前記ホスト材料が前記溶媒に溶解乃至分散した塗布液を塗布可能である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、スピンコート、インクジェット塗布及びスプレー塗布等のミスト噴霧、などが挙げられる。
<< Application >>
The application method is not particularly limited as long as the light emitting material and the host material can be applied with a coating solution in which the light emitting material and the host material are dissolved or dispersed in the solvent, and can be appropriately selected according to the purpose. Examples thereof include mist spraying such as coating, ink jet coating and spray coating.
<<加熱>>
 前記加熱における加熱温度としては、前記ホスト材料のガラス転移温度よりも高く、かつ前記溶媒の沸点よりも高い温度である限り、特に限定されるものではなく、目的に応じて適宜選択することができるが、ホスト材料のガラス転移温度よりも10℃以上高く、かつ溶媒の沸点よりも45℃以上高い温度であることが好ましい。
 前記加熱温度が、前記ホスト材料のガラス転移温度以下であると、ホスト材料の配向がランダムになり、有機電界発光素子の連続駆動において、初期に急激に輝度が低下することがあり、前記溶媒の沸点以下であると、有機層中に有機溶剤に残存することがあり、有機電界発光素子の耐久性とEL発光効率が低下することがある。一方、前記加熱温度が前記好ましい範囲内であると、連続駆動試験の初期の輝度低下が小さい点で有利である。
 なお、ホスト材料が複数の化合物を含む混合物である場合、前記加熱温度は、混合物における各化合物のガラス転移温度よりも高い必要がある、即ち、前記加熱温度は、混合物における化合物のガラス転移温度のうち最も高いガラス転移温度よりも高い必要がある。
 また、溶媒が複数の溶媒を含む混合溶媒である場合、前記加熱温度は、混合溶媒における各溶媒の沸点よりも高い必要がある、即ち、前記加熱温度は、混合溶媒における溶媒の沸点のうち最も高い沸点よりも高い必要がある。
<< Heating >>
The heating temperature in the heating is not particularly limited as long as it is higher than the glass transition temperature of the host material and higher than the boiling point of the solvent, and can be appropriately selected according to the purpose. However, the temperature is preferably 10 ° C. or higher than the glass transition temperature of the host material and 45 ° C. or higher than the boiling point of the solvent.
When the heating temperature is equal to or lower than the glass transition temperature of the host material, the orientation of the host material becomes random, and in the continuous driving of the organic electroluminescence device, the brightness may be drastically reduced at an early stage, If it is below the boiling point, it may remain in the organic solvent in the organic layer, and the durability and EL luminous efficiency of the organic electroluminescent device may be lowered. On the other hand, when the heating temperature is within the preferred range, it is advantageous in that the initial luminance drop in the continuous driving test is small.
When the host material is a mixture containing a plurality of compounds, the heating temperature needs to be higher than the glass transition temperature of each compound in the mixture, that is, the heating temperature is equal to the glass transition temperature of the compound in the mixture. Of these, it must be higher than the highest glass transition temperature.
When the solvent is a mixed solvent containing a plurality of solvents, the heating temperature needs to be higher than the boiling point of each solvent in the mixed solvent, that is, the heating temperature is the highest among the boiling points of the solvents in the mixed solvent. Must be higher than the high boiling point.
 前記加熱における加熱時間としては、特に限定されるものではなく、目的に応じて適宜選択することができるが、1分間~5時間が好ましく、5分間~1時間がより好ましく、5分間~30分間が特に好ましい。
 前記加熱時間が、1分間未満であると、発光層中に溶媒が残存し、EL発光効率と有機電界発光素子の耐久性とが低下し、ホスト材料の配向が変化できなくなり、連続駆動試験の初期の輝度低下が発生することがあり、5時間を超えると、酸化等による分解や、膜の剥離などが発生することがある。一方、前記加熱時間が前記特に好ましい範囲内であると、残存溶媒がないために、有機電界発光素子の効率が高い、また、ホスト材料の配向度が高くなり、連続駆動試験の初期の輝度低下が小さくなる点で有利である。
The heating time in the heating is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 1 minute to 5 hours, more preferably 5 minutes to 1 hour, and 5 minutes to 30 minutes. Is particularly preferred.
When the heating time is less than 1 minute, the solvent remains in the light emitting layer, the EL light emission efficiency and the durability of the organic electroluminescent element are lowered, the orientation of the host material cannot be changed, and the continuous driving test is performed. An initial luminance drop may occur, and if it exceeds 5 hours, decomposition due to oxidation or peeling of the film may occur. On the other hand, when the heating time is within the particularly preferable range, since there is no residual solvent, the efficiency of the organic electroluminescent element is high, the degree of orientation of the host material is high, and the initial luminance reduction of the continuous driving test is reduced. This is advantageous in that becomes smaller.
 前記加熱の回数としては、特に制限はなく、目的に応じて適宜選択することができ、1回でも複数回でもよい。なお、前記加熱の回数が複数回の場合、加熱温度及び加熱時間は、各加熱において同じであっても異なっていてもよい。 The number of times of heating is not particularly limited and may be appropriately selected depending on the purpose, and may be one or more times. In addition, when the frequency | count of the said heating is multiple times, heating temperature and heating time may be the same in each heating, or may differ.
<正孔注入層形成工程>
 前記正孔注入層形成工程は、前記正孔注入層を形成する工程である。
 前記正孔注入層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、蒸着法、スパッタ法等の乾式製膜法、湿式塗布方式、転写法、印刷法、インクジェット方式、などが挙げられる。
<Hole injection layer forming step>
The hole injection layer forming step is a step of forming the hole injection layer.
The method for forming the hole injection layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a dry film forming method such as a vapor deposition method or a sputtering method, a wet coating method, a transfer method, or a printing method. , Inkjet method, and the like.
<正孔輸送層形成工程>
 前記正孔輸送層形成工程は、前記正孔輸送層を形成する工程である。
 前記正孔輸送層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、蒸着法、スパッタ法等の乾式製膜法、湿式塗布方式、転写法、印刷法、インクジェット方式、などが挙げられる。
<Hole transport layer forming step>
The hole transport layer forming step is a step of forming the hole transport layer.
The method for forming the hole transport layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a dry film forming method such as a vapor deposition method or a sputtering method, a wet coating method, a transfer method, or a printing method. , Inkjet method, and the like.
<その他の工程>
 前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子輸送層形成工程、電子注入層形成工程、正孔ブロック層形成工程、電子ブロック層形成工程、などが挙げられる。
<Other processes>
The other steps are not particularly limited and may be appropriately selected depending on the purpose. For example, an electron transport layer forming step, an electron injection layer forming step, a hole blocking layer forming step, an electron block layer forming step, Etc.
<有機電界発光素子>
 前記有機電界発光素子は、一対の電極(陽極及び陰極)間に有機層を有し、更に必要に応じて適宜選択した、その他の層を有していてもよい。
 前記有機層は、少なくとも発光層を有し、更に必要に応じて、正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、などを有していてもよい。
<Organic electroluminescent device>
The organic electroluminescent element has an organic layer between a pair of electrodes (anode and cathode), and may further have other layers appropriately selected as necessary.
The organic layer has at least a light emitting layer, and further includes a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, and the like as necessary. May be.
<<発光層>>
 前記発光層は、前記発光材料及び前記ホスト材料を含有してなり、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
<< Light emitting layer >>
The light-emitting layer contains the light-emitting material and the host material, and receives holes from the anode, hole injection layer, or hole transport layer when an electric field is applied, and receives the cathode, electron injection layer, or electron transport layer. It is a layer having a function of receiving electrons from and providing a field for recombination of holes and electrons to emit light.
 前記発光層の厚みは、特に制限はなく、目的に応じて適宜選択することができ、2nm~500nmが好ましく、外部量子効率の観点から、3nm~200nmがより好ましく、10nm~200nmが特に好ましい。また、前記発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。 The thickness of the light emitting layer is not particularly limited and may be appropriately selected according to the purpose. The thickness is preferably 2 nm to 500 nm, more preferably 3 nm to 200 nm, and particularly preferably 10 nm to 200 nm from the viewpoint of external quantum efficiency. Moreover, the said light emitting layer may be 1 layer, or may be two or more layers, and each layer may light-emit with a different luminescent color.
<<正孔注入層、正孔輸送層>>
 前記正孔注入層及び正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。該正孔注入層及び正孔輸送層は、単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
<< Hole injection layer, hole transport layer >>
The hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side. The hole injection layer and the hole transport layer may have a single layer structure or a multilayer structure composed of a plurality of layers having the same composition or different compositions.
-正孔注入材料、正孔輸送材料-
 前記正孔注入層及び前記正孔輸送層に用いられる正孔注入材料、又は正孔輸送材料としては、低分子化合物であっても高分子化合物であってもよい。
 前記正孔注入材料、又は正孔輸送材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ピロール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン誘導体、有機シラン誘導体、カーボン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Hole injection material, hole transport material-
The hole injection material or hole transport material used for the hole injection layer and the hole transport layer may be a low molecular compound or a high molecular compound.
The hole injection material or hole transport material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include pyrrole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazoles. Derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, Examples include styrylamine compounds, aromatic dimethylidin compounds, phthalocyanine compounds, porphyrin compounds, thiophene derivatives, organic silane derivatives, and carbon. These may be used individually by 1 type and may use 2 or more types together.
 前記正孔注入層、及び正孔輸送層には、電子受容性ドーパントを含有させることができる。
 前記電子受容性ドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用できる。
 前記無機化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塩化第二鉄、塩化アルミニウム、塩化ガリウム、塩化インジウム、五塩化アンチモン等のハロゲン化金属;五酸化バナジウム、三酸化モリブデン等の金属酸化物、などが挙げられる。
 前記有機化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基等を有する化合物;キノン系化合物、酸無水物系化合物、フラーレン、などが挙げられる。
 これらの電子受容性ドーパントは、1種単独で用いてもよいし、2種以上を用いてもよい。
 前記電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔輸送層材料又は正孔注入材料に対して0.01質量%~50質量%が好ましく、0.05質量%~20質量%がより好ましく、0.1質量%~10質量%が特に好ましい。
The hole injection layer and the hole transport layer may contain an electron accepting dopant.
As the electron-accepting dopant, an inorganic compound or an organic compound can be used as long as it has an electron-accepting property and oxidizes an organic compound.
The inorganic compound is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include metal halides such as ferric chloride, aluminum chloride, gallium chloride, indium chloride and antimony pentachloride; vanadium pentoxide And metal oxides such as molybdenum trioxide.
The organic compound is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a compound having a nitro group, a halogen, a cyano group, a trifluoromethyl group or the like as a substituent; a quinone compound, an acid anhydride And physical compounds, fullerenes, and the like.
These electron-accepting dopants may be used alone or in combination of two or more.
The amount of the electron-accepting dopant used varies depending on the type of material, but is preferably 0.01% by mass to 50% by mass, and 0.05% by mass to 20% by mass with respect to the hole transport layer material or the hole injection material. % Is more preferable, and 0.1% by mass to 10% by mass is particularly preferable.
 前記正孔注入層及び正孔輸送層の厚みは、1nm~500nmが好ましく、5nm~200nmがより好ましく、10nm~100nmが特に好ましい。 The thickness of the hole injection layer and the hole transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and particularly preferably 10 nm to 100 nm.
<<電子輸送層、電子注入層>>
 前記電子注入層及び電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。
<< Electron transport layer, electron injection layer >>
The electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
 前記電子注入層及び電子輸送層は、還元性ドーパントを含有することが好ましい。
 前記還元性ドーパントとしては、特に制限はなく、目的に応じて適宜選択することができるが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、及び希土類金属の有機錯体の中から選ばれる少なくとも1種であることが好ましい。
 前記還元性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料又は電子注入材料に対して0.1質量%~99質量%が好ましく、0.3質量%~80質量%がより好ましく、0.5質量%~50質量%が特に好ましい。
The electron injection layer and the electron transport layer preferably contain a reducing dopant.
The reducing dopant is not particularly limited and may be appropriately selected depending on the intended purpose. Examples of the reducing dopant include alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earths. Selected from metal oxides, alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, and rare earth metal organic complexes It is preferable that there is at least one.
The amount of the reducing dopant used varies depending on the type of material, but is preferably 0.1% by mass to 99% by mass, more preferably 0.3% by mass to 80% by mass with respect to the electron transport layer material or the electron injection material. 0.5% by mass to 50% by mass is particularly preferable.
 前記電子輸送層及び電子注入層は、公知の方法に従って形成することができるが、例えば、蒸着法、湿式製膜法、MBE(分子線エピタキシー)法、クラスターイオンビーム法、分子積層法、LB法、印刷法、転写法、などにより好適に形成することができる。
 前記電子輸送層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~200nmが好ましく、1nm~100nmがより好ましく、1nm~50nmが特に好ましい。
 前記電子注入層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~200nmが好ましく、1nm~100nmがより好ましく、1nm~50nmであることが特に好ましい。
The electron transport layer and the electron injection layer can be formed according to a known method. For example, a vapor deposition method, a wet film forming method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, a molecular stacking method, and an LB method. It can be suitably formed by a printing method, a transfer method, or the like.
The thickness of the electron transport layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 200 nm, more preferably 1 nm to 100 nm, and particularly preferably 1 nm to 50 nm.
The thickness of the electron injection layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 200 nm, more preferably 1 nm to 100 nm, and particularly preferably 1 nm to 50 nm.
<<正孔ブロック層、電子ブロック層>>
 前記正孔ブロック層は、陽極側から発光層に輸送された正孔が陰極側に通り抜けることを防止する機能を有する層であり、通常、発光層と陰極側で隣接する有機化合物層として設けられる。
 前記電子ブロック層は、陰極側から発光層に輸送された電子が陽極側に通り抜けることを防止する機能を有する層であり、通常、発光層と陽極側で隣接する有機化合物層として設けられる。
 前記正孔ブロック層を構成する化合物の例としては、BAlq等のアルミニウム錯体、トリアゾール誘導体、BCP等のフェナントロリン誘導体、等が挙げられる。
 前記電子ブロック層を構成する化合物の例としては、例えば、前述の正孔輸送材料として挙げたものが利用できる。
<< Hole Block Layer, Electron Block Layer >>
The hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side, and is usually provided as an organic compound layer adjacent to the light emitting layer on the cathode side. .
The electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side, and is usually provided as an organic compound layer adjacent to the light emitting layer on the anode side.
Examples of the compound constituting the hole blocking layer include aluminum complexes such as BAlq, triazole derivatives, phenanthroline derivatives such as BCP, and the like.
As examples of the compound constituting the electron blocking layer, for example, those mentioned as the hole transporting material can be used.
 前記電子ブロック層及び正孔ブロック層は、特に制限はなく、公知の方法に従って形成することができるが、例えば、蒸着法、スパッタ法等の乾式製膜法、湿式塗布方式、転写法、印刷法、インクジェット方式、などにより好適に形成することができる。
 前記正孔ブロック層及び電子ブロック層の厚みは、1nm~200nmが好ましく、1nm~50nmがより好ましく、3nm~10nmが特に好ましい。また正孔ブロック層及び電子ブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
The electron block layer and the hole block layer are not particularly limited and can be formed according to a known method, for example, a dry film forming method such as a vapor deposition method and a sputtering method, a wet coating method, a transfer method, and a printing method. It can be suitably formed by an inkjet method or the like.
The thickness of the hole blocking layer and the electron blocking layer is preferably 1 nm to 200 nm, more preferably 1 nm to 50 nm, and particularly preferably 3 nm to 10 nm. In addition, the hole blocking layer and the electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions. .
<<電極>>
 前記有機電界発光素子は、一対の電極、即ち陽極と陰極とを含む。前記有機電界発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は透明であることが好ましい。通常、陽極は有機化合物層に正孔を供給する電極としての機能を有していればよく、陰極は有機化合物層に電子を注入する電極としての機能を有していればよい。
 前記電極としては、その形状、構造、大きさ等については特に制限はなく、有機電界発光素子の用途、目的に応じて公知の電極材料の中から適宜選択することができる。
 前記電極を構成する材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物等が好適に挙げられる。
<< Electrode >>
The organic electroluminescent element includes a pair of electrodes, that is, an anode and a cathode. In view of the nature of the organic electroluminescence device, at least one of the anode and the cathode is preferably transparent. Usually, the anode only needs to have a function as an electrode for supplying holes to the organic compound layer, and the cathode only needs to have a function as an electrode for injecting electrons into the organic compound layer.
There is no restriction | limiting in particular about the shape, a structure, a magnitude | size, etc. as said electrode, According to the use and objective of an organic electroluminescent element, it can select suitably from well-known electrode materials.
As a material which comprises the said electrode, a metal, an alloy, a metal oxide, a conductive compound, or a mixture thereof etc. are mentioned suitably, for example.
-陽極-
 前記陽極を構成する材料としては、例えば、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これらの金属と導電性金属酸化物との混合物又は積層物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料、又はこれらとITOとの積層物、などが挙げられる。これらの中でも、導電性金属酸化物が好ましく、生産性、高導電性、透明性等の点からはITOが特に好ましい。
-anode-
Examples of the material constituting the anode include tin oxide doped with antimony and fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Conductive metal oxides; metals such as gold, silver, chromium and nickel; mixtures or laminates of these metals and conductive metal oxides; inorganic conductive materials such as copper iodide and copper sulfide; polyaniline, polythiophene, Examples thereof include organic conductive materials such as polypyrrole, and laminates of these with ITO. Among these, conductive metal oxides are preferable, and ITO is particularly preferable in terms of productivity, high conductivity, transparency, and the like.
-陰極-
 前記陰極を構成する材料としては、例えば、Li、Na、K、Cs等のアルカリ金属、Mg、Ca等のアルカリ土類金属、金、銀、鉛、アルミニウム、ナトリウム-カリウム合金、リチウム-アルミニウム合金、マグネシウム-銀合金、インジウム、イッテルビウム等の希土類金属、などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。
 これらの中でも、電子注入性の点で、アルカリ金属、アルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
 前記アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%~10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム-アルミニウム合金、マグネシウム-アルミニウム合金など)をいう。
-cathode-
Examples of the material constituting the cathode include alkali metals such as Li, Na, K, and Cs, alkaline earth metals such as Mg and Ca, gold, silver, lead, aluminum, sodium-potassium alloy, and lithium-aluminum alloy. , Magnesium-silver alloys, rare earth metals such as indium and ytterbium. These may be used alone, but two or more can be suitably used in combination from the viewpoint of achieving both stability and electron injection.
Among these, an alkali metal and an alkaline earth metal are preferable from the viewpoint of electron injection properties, and a material mainly composed of aluminum is preferable from the viewpoint of excellent storage stability.
The material mainly composed of aluminum is aluminum alone, an alloy of aluminum and 0.01% by mass to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy, magnesium-aluminum). Alloy).
 前記電極の形成方法については、特に制限はなく、公知の方法に従って行うことができ、例えば、印刷方式、コーティング方式等の湿式方式;真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式;CVD、プラズマCVD法等の化学的方式、などが挙げられる。これらの中でも、前記電極を構成する材料との適性を考慮し、適宜選択した方法に従って前記基板上に形成することができる。例えば、陽極の材料としてITOを選択する場合には、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って形成することができる。陰極の材料として金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って形成することができる。 The method for forming the electrode is not particularly limited and can be performed according to a known method, for example, a wet method such as a printing method or a coating method; a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method. And chemical methods such as CVD and plasma CVD. Among these, it can be formed on the substrate in accordance with an appropriately selected method in consideration of suitability with the material constituting the electrode. For example, when ITO is selected as the anode material, it can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like. When a metal or the like is selected as the cathode material, one or more of them can be formed simultaneously or sequentially according to a sputtering method or the like.
 なお、前記電極を形成する際にパターニングを行う場合は、フォトリソグラフィー等による化学的エッチングによって行ってもよいし、レーザー等による物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。 In addition, when patterning is performed when forming the electrode, it may be performed by chemical etching such as photolithography, or may be performed by physical etching using a laser or the like. It may be performed by sputtering or the like, or may be performed by a lift-off method or a printing method.
<<基板>>
 前記有機電界発光素子は、基板上に設けられていることが好ましく、電極と基板とが直接接する形で設けられていてもよいし、中間層を介在する形で設けられていてもよい。
 前記基板の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、イットリア安定化ジルコニア(YSZ)、ガラス(無アルカリガラス、ソーダライムガラス等)等の無機材料;ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル;ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の有機材料、などが挙げられる。
<< Board >>
The organic electroluminescent element is preferably provided on a substrate, and may be provided in such a manner that the electrode and the substrate are in direct contact with each other, or may be provided with an intermediate layer interposed therebetween.
There is no restriction | limiting in particular as a material of the said board | substrate, According to the objective, it can select suitably, For example, inorganic materials, such as a yttria stabilized zirconia (YSZ) and glass (an alkali free glass, soda-lime glass, etc.); Polyethylene Examples thereof include polyesters such as terephthalate, polybutylene phthalate, and polyethylene naphthalate; organic materials such as polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, and poly (chlorotrifluoroethylene).
 前記基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。基板は透明でも不透明でもよく、透明な場合は無色透明でも有色透明でもよい。 The shape, structure, size and the like of the substrate are not particularly limited, and can be appropriately selected according to the use, purpose, etc. of the light emitting element. In general, the shape of the substrate is preferably a plate shape. The structure of the substrate may be a single layer structure, a laminated structure, may be formed of a single member, or may be formed of two or more members. The substrate may be transparent or opaque, and if transparent, it may be colorless and transparent or colored and transparent.
 前記基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
 前記透湿防止層(ガスバリア層)の材料としては、例えば、窒化珪素、酸化珪素等の無機物などが挙げられる。
 前記透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。
The substrate may be provided with a moisture permeation preventing layer (gas barrier layer) on the front surface or the back surface.
Examples of the material of the moisture permeation preventing layer (gas barrier layer) include inorganic substances such as silicon nitride and silicon oxide.
The moisture permeation preventing layer (gas barrier layer) can be formed by, for example, a high frequency sputtering method.
<<保護層>>
 有機電界発光素子全体は、保護層によって保護されていてもよい。
 前記保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、In、Sn、Pb、Au、Cu、Ag、Al、Ti、Ni等の金属;MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、TiO等の金属酸化物;SiNx、SiNxOy等の金属窒化物;MgF、LiF、AlF、CaF等の金属フッ化物;ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質、などが挙げられる。
<< Protective layer >>
The entire organic electroluminescent element may be protected by a protective layer.
The material contained in the protective layer is not particularly limited as long as it has a function of suppressing the entry of elements that promote element deterioration such as moisture and oxygen into the element. For example, metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, Ni; MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, Fe Metal oxides such as 2 O 3 , Y 2 O 3 and TiO 2 ; Metal nitrides such as SiNx and SiNxOy; Metal fluorides such as MgF 2 , LiF, AlF 3 and CaF 2 ; polyethylene, polypropylene, polymethyl methacrylate, Polyimide, polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, chlorotrifluoroethylene And a copolymer of dichlorodifluoroethylene, a copolymer obtained by copolymerizing a monomer mixture containing tetrafluoroethylene and at least one comonomer, a fluorine-containing copolymer having a cyclic structure in the copolymer main chain, Examples thereof include a water-absorbing substance having a water absorption of 1% or more, a moisture-proof substance having a water absorption of 0.1% or less, and the like.
 前記保護層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、転写法などが挙げられる。 There is no restriction | limiting in particular as a formation method of the said protective layer, According to the objective, it can select suitably, For example, a vacuum evaporation method, sputtering method, reactive sputtering method, MBE (molecular beam epitaxy) method, cluster ion beam Examples thereof include an ion plating method, a plasma polymerization method (high frequency excitation ion plating method), a plasma CVD method, a laser CVD method, a thermal CVD method, a gas source CVD method, a coating method, a printing method, and a transfer method.
<<封止容器>>
 前記有機電界発光素子は、封止容器を用いて素子全体が封止されていてもよい。更に、前記封止容器と有機電界発光素子の間の空間には、水分吸収剤又は不活性液体を封入してもよい。
 前記水分吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、酸化マグネシウム、などが挙げられる。
 前記不活性液体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、パラフィン類、流動パラフィン類;パーフルオロアルカン、パーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤;塩素系溶剤、シリコーンオイル類、などが挙げられる。
<< sealing container >>
The organic electroluminescent element may be entirely sealed using a sealing container. Furthermore, a water absorbent or an inert liquid may be sealed in the space between the sealing container and the organic electroluminescent element.
The moisture absorbent is not particularly limited and may be appropriately selected depending on the purpose. For example, barium oxide, sodium oxide, potassium oxide, calcium oxide, sodium sulfate, calcium sulfate, magnesium sulfate, phosphorus pentoxide, Examples include calcium chloride, magnesium chloride, copper chloride, cesium fluoride, niobium fluoride, calcium bromide, vanadium bromide, molecular sieve, zeolite, magnesium oxide, and the like.
The inert liquid is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include paraffins, liquid paraffins; fluorinated solvents such as perfluoroalkane, perfluoroamine, and perfluoroether; chlorine System solvents, silicone oils, and the like.
<<樹脂封止層>>
 前記有機電界発光素子は、大気からの酸素や水分による素子性能劣化を樹脂封止層により封止することで抑制することが好ましい。
 前記樹脂封止層の樹脂素材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル樹脂、エポキシ樹脂、フッ素系樹脂、シリコーン系樹脂、ゴム系樹脂、エステル系樹脂、などが挙げられる。これらの中でも、水分防止機能の点からエポキシ樹脂が特に好ましい。前記エポキシ樹脂の中でも熱硬化型エポキシ樹脂、又は光硬化型エポキシ樹脂が好ましい。
<< Resin sealing layer >>
The organic electroluminescent element is preferably suppressed by sealing the element performance deterioration due to oxygen or moisture from the atmosphere with a resin sealing layer.
The resin material of the resin sealing layer is not particularly limited and may be appropriately selected depending on the purpose. For example, acrylic resin, epoxy resin, fluorine resin, silicone resin, rubber resin, ester resin , Etc. Among these, an epoxy resin is particularly preferable from the viewpoint of moisture prevention function. Among the epoxy resins, a thermosetting epoxy resin or a photocurable epoxy resin is preferable.
 前記樹脂封止層の作製方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂溶液を塗布する方法、樹脂シートを圧着又は熱圧着する方法、蒸着やスパッタリング等により乾式重合する方法、などが挙げられる。 There is no restriction | limiting in particular as a preparation method of the said resin sealing layer, According to the objective, it can select suitably, For example, the method of apply | coating a resin solution, the method of crimping | bonding or thermocompressing a resin sheet, vapor deposition, sputtering, etc. And a dry polymerization method.
<<封止接着剤>>
 本発明に用いられる封止接着剤は、端部よりの水分や酸素の侵入を防止する機能を有する。
 前記封止接着剤の材料としては、前記樹脂封止層で用いる材料と同じものを用いることができる。これらの中でも、水分防止の点からエポキシ系の接着剤が好ましく、光硬化型接着剤あるいは熱硬化型接着剤がより好ましい。
 前記封止接着剤にフィラーを添加することも好ましい。前記フィラーとしては、例えば、SiO、SiO(酸化ケイ素)、SiON(酸窒化ケイ素)、SiN(窒化ケイ素)等の無機材料が好ましい。該フィラーの添加により、封止接着剤の粘度が上昇し、加工適正が向上し、及び耐湿性が向上する。
 前記封止接着剤は、乾燥剤を含有してもよい。前記乾燥剤としては、例えば、酸化バリウム、酸化カルシウム、酸化ストロンチウム、などが挙げられる。前記乾燥剤の添加量は、前記封止接着剤に対し0.01質量%~20質量%が好ましく、0.05質量%~15質量%がより好ましい。前記添加量が、0.01質量%未満であると、乾燥剤の添加効果が薄れることになり、20質量%を超えると、封止接着剤中に乾燥剤を均一分散させることが困難になることがある。
 本発明においては、前記乾燥剤の入った封止接着剤をディスペンサー等により任意量塗布し、塗布後第2基板を重ねて、硬化させることにより封止することができる。
<< Sealing adhesive >>
The sealing adhesive used in the present invention has a function of preventing intrusion of moisture and oxygen from the end portion.
As the material of the sealing adhesive, the same material as that used for the resin sealing layer can be used. Among these, an epoxy adhesive is preferable from the viewpoint of moisture prevention, and a photocurable adhesive or a thermosetting adhesive is more preferable.
It is also preferable to add a filler to the sealing adhesive. As the filler, for example, SiO 2, SiO (silicon oxide), SiON (silicon oxynitride), an inorganic material such as SiN (silicon nitride) are preferred. Addition of the filler increases the viscosity of the sealing adhesive, improves processing suitability, and improves moisture resistance.
The sealing adhesive may contain a desiccant. Examples of the desiccant include barium oxide, calcium oxide, and strontium oxide. The addition amount of the desiccant is preferably 0.01% by mass to 20% by mass and more preferably 0.05% by mass to 15% by mass with respect to the sealing adhesive. When the addition amount is less than 0.01% by mass, the effect of adding the desiccant is diminished, and when it exceeds 20% by mass, it is difficult to uniformly disperse the desiccant in the sealing adhesive. Sometimes.
In the present invention, the sealing adhesive containing the desiccant can be applied by applying an arbitrary amount with a dispenser or the like, and the second substrate can be overlaid after application and cured.
 図1は、前記有機電界発光素子の層構成の一例を示す概略図である。有機電界発光素子10は、ガラス基板1上に形成された陽極2(例えば、ITO電極)と、正孔注入層3と、正孔輸送層4と、発光層5と、電子輸送層6と、電子注入層7(例えば、フッ化リチウム含有層)と、陰極8(例えば、Al-Li電極)とをこの順に積層してなる層構成を有する。なお、陽極2(例えば、ITO電極)と陰極8(例えば、Al-Li電極)とは電源を介して互いに接続されている。 FIG. 1 is a schematic view showing an example of a layer structure of the organic electroluminescent element. The organic electroluminescent element 10 includes an anode 2 (for example, an ITO electrode) formed on the glass substrate 1, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, It has a layer structure in which an electron injection layer 7 (for example, a lithium fluoride-containing layer) and a cathode 8 (for example, an Al—Li electrode) are stacked in this order. The anode 2 (for example, ITO electrode) and the cathode 8 (for example, Al—Li electrode) are connected to each other via a power source.
-駆動-
 前記有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト~15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
 前記有機電界発光素子は、薄膜トランジスタ(TFT)によりアクティブマトリックスへ適用することができる。薄膜トランジスタの活性層としてアモルファスシリコン、高温ポリシリコン、低温ポリシリコン、微結晶シリコン、酸化物半導体、有機半導体、カーボンナノチューブ等を適用することができる。
 前記有機電界発光素子は、例えば、国際公開2005/088726号パンフレット、特開2006-165529号公報、米国特許出願公開2008/0237598A1明細書などに記載の薄膜トランジスタを適用することができる。
-Drive-
The organic electroluminescence device obtains light emission by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Can do.
The organic electroluminescence device can be applied to an active matrix by a thin film transistor (TFT). As the active layer of the thin film transistor, amorphous silicon, high temperature polysilicon, low temperature polysilicon, microcrystalline silicon, oxide semiconductor, organic semiconductor, carbon nanotube, or the like can be used.
As the organic electroluminescent element, for example, a thin film transistor described in International Publication No. 2005/088726, Japanese Patent Application Laid-Open No. 2006-165529, US Patent Application Publication No. 2008 / 0237598A1, and the like can be applied.
 前記有機電界発光素子は、特に制限はなく、種々の公知の工夫により、光取り出し効率を向上させることができる。例えば、基板表面形状を加工する(例えば、微細な凹凸パターンを形成する)、基板、ITO層、有機層の屈折率を制御する、基板、ITO層、有機層の厚みを制御すること等により、光の取り出し効率を向上させ、外部量子効率を向上させることが可能である。
 前記有機電界発光素子からの光取り出し方式は、トップエミッション方式であってもボトムエミッション方式であってもよい。
The organic electroluminescent element is not particularly limited, and the light extraction efficiency can be improved by various known devices. For example, by processing the substrate surface shape (for example, forming a fine uneven pattern), controlling the refractive index of the substrate, ITO layer, organic layer, controlling the thickness of the substrate, ITO layer, organic layer, etc. It is possible to improve light extraction efficiency and external quantum efficiency.
The light extraction method from the organic electroluminescent element may be a top emission method or a bottom emission method.
 前記有機電界発光素子は、共振器構造を有してもよい。例えば、透明基板上に、屈折率の異なる複数の積層膜よりなる多層膜ミラー、透明又は半透明電極、発光層、及び金属電極を重ね合わせて有する。発光層で生じた光は多層膜ミラーと金属電極を反射板としてその間で反射を繰り返し共振する。
 別の好ましい態様では、透明基板上に、透明又は半透明電極と金属電極がそれぞれ反射板として機能して、発光層で生じた光はその間で反射を繰り返し共振する。
 共振構造を形成するためには、2つの反射板の有効屈折率、反射板間の各層の屈折率と厚みから決定される光路長を所望の共振波長の得るのに最適な値となるよう調整される。第1の態様の場合の計算式は、特開平9-180883号公報に記載されている。第2の態様の場合の計算式は、特開2004-127795号公報に記載されている。
The organic electroluminescent device may have a resonator structure. For example, a multilayer film mirror made of a plurality of laminated films having different refractive indexes, a transparent or translucent electrode, a light emitting layer, and a metal electrode are superimposed on a transparent substrate. The light generated in the light emitting layer resonates repeatedly with the multilayer mirror and the metal electrode as a reflection plate.
In another preferred embodiment, a transparent or translucent electrode and a metal electrode each function as a reflecting plate on a transparent substrate, and light generated in the light emitting layer repeats reflection and resonates between them.
In order to form a resonant structure, the optical path length determined from the effective refractive index of the two reflectors and the refractive index and thickness of each layer between the reflectors is adjusted to an optimum value to obtain the desired resonant wavelength. Is done. The calculation formula in the case of the first aspect is described in JP-A-9-180883. The calculation formula in the case of the second aspect is described in Japanese Patent Application Laid-Open No. 2004-127795.
-用途-
 前記有機電界発光素子の用途としては、特に制限はなく、目的に応じて適宜選択することができるが、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信等に好適に利用できる。
 前記有機電界発光素子を用いたディスプレイをフルカラータイプのものとする方法としては、例えば、「月刊ディスプレイ」、2000年9月号、33~37ページに記載されているように、色の3原色(青色(B)、緑色(G)、赤色(R))に対応する光をそれぞれ発光する有機EL素子を基板上に配置する3色発光法、白色発光用の有機電界発光素子による白色発光をカラーフィルターを通して3原色に分ける白色法、青色発光用の有機電界発光素子による青色発光を蛍光色素層を通して赤色(R)及び緑色(G)に変換する色変換法、などが知られている。また、上記方法により得られる異なる発光色の有機電界発光素子を複数組み合わせて用いることにより、所望の発光色の平面型光源を得ることができる。例えば、青色及び黄色の発光素子を組み合わせた白色発光光源青色、緑色、赤色の発光素子を組み合わせた白色発光光源、などが挙げられる。
-Applications-
The use of the organic electroluminescent element is not particularly limited and may be appropriately selected according to the purpose. Display element, display, backlight, electrophotography, illumination light source, recording light source, exposure light source, reading light source, It can be suitably used for signs, signboards, interiors, optical communications, and the like.
For example, as described in “Monthly Display”, September 2000, pages 33 to 37, the method using the organic electroluminescence device as a full color type is described in the three primary colors ( Three-color light emission method in which organic EL elements that emit light corresponding to blue (B), green (G), and red (R) are arranged on a substrate, and white light emitted by an organic electroluminescent element for white light emission is colored There are known a white method that divides three primary colors through a filter, a color conversion method that converts blue light emitted by an organic electroluminescent element for blue light emission into red (R) and green (G) through a fluorescent dye layer. Moreover, the planar light source of a desired luminescent color can be obtained by using combining the organic electroluminescent element of the different luminescent color obtained by the said method. For example, a white light-emitting light source combining blue and yellow light-emitting elements, a white light-emitting light source combining blue, green, and red light-emitting elements can be used.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
(実施例1)
-有機電界発光素子の作製-
 0.7mm厚み、25mm角のガラス基板を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。このガラス基板上に以下の各層を形成した。なお、以下の実施例及び比較例における蒸着速度は、特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。また、以下の各層厚は触針式段差計(XP-200、AMBiOS Technplogy.Inc製)を用いて測定した。また、各物質のガラス転移温度Tgは、下記測定方法により測定した。
Example 1
-Fabrication of organic electroluminescent elements-
A 0.7 mm thick, 25 mm square glass substrate was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. The following layers were formed on this glass substrate. In addition, the vapor deposition rate in the following examples and comparative examples is 0.2 nm / second unless otherwise specified. The deposition rate was measured using a quartz resonator. The following layer thicknesses were measured using a stylus profilometer (XP-200, manufactured by AMBiOS Technology. Inc.). Moreover, the glass transition temperature Tg of each substance was measured with the following measuring method.
<ガラス転移温度Tgの測定方法>
 示差熱熱重量同時測定装置(EXSTAR TG/DTA6000、セイコーインスツル株式会社製)を用いて、吸熱変化からガラス転移温度Tgを測定した。
<Measuring method of glass transition temperature Tg>
The glass transition temperature Tg was measured from the endothermic change using a differential thermal thermogravimetric simultaneous measurement apparatus (EXSTAR TG / DTA6000, manufactured by Seiko Instruments Inc.).
 まず、ガラス基板上に、陽極としてITO(Indium Tin Oxide)を厚み150nmにスパッタ蒸着した。得られた透明支持基板をエッチング及び洗浄した。
 次に、陽極(ITO)上に、アリールアミン誘導体(商品名:PTPDES-2、ケミプロ化成製、Tg=205℃)2質量部を電子工業用シクロヘキサノン(関東化学社製)98質量部に溶解乃至分散させた塗布液をスピンコートした後、120℃で30分間乾燥処理し、160℃で10分間アニール処理して、厚み約40nmの正孔注入層を形成した。
 次に、アリールアミン誘導体としての下記構造式(9)で表される化合物(Mw=8,000、なお、前記重量平均分子量はGPC(ゲルパーミションクロマトグラフ)を用いて、標準ポリスチレン換算で算出した。)19質量部と、下記構造式(10)で表される化合物1質量部とを、電子工業用キシレン(関東化学社製)2,000質量部に溶解乃至分散させて、1時間攪拌し、正孔輸送層塗布液を調製した。この正孔輸送層塗布液を正孔注入層上にスピンコートした後、120℃で30分間乾燥処理し、150℃で10分間アニール処理して、厚み約15nm、ガラス転移温度(Tg)=160℃以上の正孔輸送層を形成した。なお、構造式(9)の重量平均分子量測定は、下記のように行い、正孔注入層、正孔輸送層のスピンコートは、グローブボックス(露点-70℃、酸素濃度8ppm)内で行った。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
First, ITO (Indium Tin Oxide) as a positive electrode was sputter-deposited on a glass substrate to a thickness of 150 nm. The obtained transparent support substrate was etched and washed.
Next, on the anode (ITO), 2 parts by mass of an arylamine derivative (trade name: PTPDES-2, manufactured by Chemipro Kasei, Tg = 205 ° C.) are dissolved in 98 parts by mass of cyclohexanone for electronics industry (manufactured by Kanto Chemical Co., Ltd.). The dispersed coating solution was spin-coated, dried at 120 ° C. for 30 minutes, and annealed at 160 ° C. for 10 minutes to form a hole injection layer having a thickness of about 40 nm.
Next, a compound represented by the following structural formula (9) as an arylamine derivative (Mw = 8,000, where the weight average molecular weight was calculated in terms of standard polystyrene using GPC (gel permeation chromatograph). .) 19 parts by mass and 1 part by mass of the compound represented by the following structural formula (10) were dissolved or dispersed in 2,000 parts by mass of xylene for electronic industry (manufactured by Kanto Chemical Co., Ltd.) and stirred for 1 hour. A hole transport layer coating solution was prepared. The hole transport layer coating solution is spin-coated on the hole injection layer, dried at 120 ° C. for 30 minutes, and annealed at 150 ° C. for 10 minutes to obtain a thickness of about 15 nm and a glass transition temperature (Tg) = 160. A hole transport layer having a temperature of at least ° C. was formed. The weight average molecular weight of the structural formula (9) was measured as follows, and the spin injection of the hole injection layer and the hole transport layer was performed in a glove box (dew point −70 ° C., oxygen concentration 8 ppm). .
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 次に、正孔輸送層上に、ホスト材料としての下記構造式(1)で表される化合物(Tg=115℃)9質量部と、燐光発光材料としての下記構造式(7)で表される化合物(商品名:Ir(ppy)3、ケミプロ化成社製)1質量部とを、電子工業用2-ブタノン(沸点79.5℃、関東化学社製)990質量部に溶解乃至分散し、モレキュラーシーブ(商品名:モレキュラーシーブ5A 1/16、和光純薬工業株式会社製)を添加し、グローブボックス中で孔径0.22μmのシリンジフィルターを用いて濾過して調製した発光層塗布液を、グローブボックス中でスピンコートし、125℃で30分間乾燥して、厚み30nmの発光層を形成した。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 次に、発光層上に、BAlq(Bis-(2-methyl-8-quinolinolato)-4-(phenyl-phenolate)-aluminium-(III))を真空蒸着法にて蒸着して、厚み40nmの電子輸送層を形成した。
 次に、電子輸送層上にフッ化リチウム(LiF)を蒸着して、厚み1nmの電子注入層を形成した。
 次に、電子注入層上に金属アルミニウムを蒸着し、厚み70nmの陰極を形成した。
 作製した積層体を、アルゴンガスで置換したグローブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ株式会社製)を用いて封止した。
Next, on the hole transport layer, 9 parts by mass of a compound (Tg = 115 ° C.) represented by the following structural formula (1) as a host material and the following structural formula (7) as a phosphorescent material are represented. 1 part by mass of a compound (trade name: Ir (ppy) 3, manufactured by Chemipro Kasei Co., Ltd.) is dissolved or dispersed in 990 parts by mass of 2-butanone (boiling point: 79.5 ° C., manufactured by Kanto Chemical Co., Ltd.) for electronic industry. A light emitting layer coating solution prepared by adding molecular sieve (trade name: Molecular sieve 5A 1/16, manufactured by Wako Pure Chemical Industries, Ltd.) and filtering with a syringe filter having a pore diameter of 0.22 μm in a glove box, A light emitting layer having a thickness of 30 nm was formed by spin coating in a glove box and drying at 125 ° C. for 30 minutes.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Next, BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum- (III)) was deposited on the light-emitting layer by a vacuum deposition method, thereby forming an electron having a thickness of 40 nm. A transport layer was formed.
Next, lithium fluoride (LiF) was deposited on the electron transport layer to form an electron injection layer having a thickness of 1 nm.
Next, metal aluminum was vapor-deposited on the electron injection layer to form a cathode having a thickness of 70 nm.
The produced laminate was put in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
 なお、上記構造式(1)で表される化合物の合成スキームは以下の通りである。 The synthesis scheme of the compound represented by the structural formula (1) is as follows.
<構造式(1)で表される化合物の合成スキーム>
Figure JPOXMLDOC01-appb-C000049
<Synthesis Scheme of Compound Represented by Structural Formula (1)>
Figure JPOXMLDOC01-appb-C000049
(比較例1A)
 実施例1において、発光層塗布液をグローブボックス中でスピンコートし、125℃で30分間乾燥して発光層を形成する代わりに、発光層塗布液をグローブボックス中でスピンコートし、85℃で30分間乾燥して、発光層を形成した以外は、実施例1と同様にして、有機電界発光素子を作製した。
(Comparative Example 1A)
In Example 1, instead of spin-coating the luminescent layer coating solution in a glove box and drying at 125 ° C. for 30 minutes to form the luminescent layer, the luminescent layer coating solution was spin-coated in the glove box at 85 ° C. An organic electroluminescent element was produced in the same manner as in Example 1 except that the light emitting layer was formed by drying for 30 minutes.
(比較例1B)
 実施例1において、発光層塗布液をグローブボックス中でスピンコートし、125℃で30分間乾燥して、発光層を形成する代わりに、発光層塗布液をグローブボックス中でスピンコートし、100℃で30分間乾燥して、発光層を形成した以外は、実施例1と同様にして、有機電界発光素子を作製した。
(Comparative Example 1B)
In Example 1, instead of forming the light emitting layer by spin coating the light emitting layer coating solution in a glove box and drying at 125 ° C. for 30 minutes, the light emitting layer coating solution was spin coated in a glove box at 100 ° C. The organic electroluminescence device was produced in the same manner as in Example 1 except that the light emitting layer was formed by drying for 30 minutes.
(実施例2)
 実施例1において、発光層の形成において、燐光発光材料として、下記構造式(7)で表される化合物を用い、溶媒として、電子工業用2-ブタノンを用い、125℃で30分間乾燥する代わりに、燐光発光材料として、下記構造式(8)で表される化合物を用い、溶媒として、電子工業用キシレン(沸点144℃、関東化学社製)及び脱水トルエン(沸点110℃、和光純薬工業社製)の混合溶媒(混合比率2/8)を用い、125℃で30分間乾燥し、更に150℃で10分間アニール処理した以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000050
(Example 2)
In Example 1, in the formation of the light emitting layer, instead of using a compound represented by the following structural formula (7) as a phosphorescent material and using 2-butanone for electronics industry as a solvent and drying at 125 ° C. for 30 minutes In addition, a compound represented by the following structural formula (8) is used as a phosphorescent material, and xylene for electronic industry (boiling point 144 ° C., manufactured by Kanto Chemical Co.) and dehydrated toluene (boiling point 110 ° C., Wako Pure Chemical Industries, Ltd.) are used as solvents. An organic electroluminescent device was prepared in the same manner as in Example 1 except that the mixture was dried at 125 ° C. for 30 minutes and further annealed at 150 ° C. for 10 minutes using a mixed solvent (mixed ratio of 2/8). did.
Figure JPOXMLDOC01-appb-C000050
(比較例2)
 実施例2において、発光層の形成において、150℃10分間のアニール処理を行わなかった以外は、実施例2と同様にして、有機電界発光素子を作製した。
(Comparative Example 2)
In Example 2, an organic electroluminescent element was produced in the same manner as in Example 2 except that the annealing process was not performed at 150 ° C. for 10 minutes in forming the light emitting layer.
(実施例3)
 実施例1において、発光層の形成において、ホスト材料として、上記構造式(1)で表される化合物を用いる代わりに、下記構造式(2)で表される化合物(ガラス転移温度(Tg)=102℃)を用い、また、実施例1において、発光層の形成において、125℃30分間の乾燥を行う代わりに、120℃30分間の乾燥を行った以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000051
(Example 3)
In Example 1, instead of using the compound represented by the structural formula (1) as a host material in the formation of the light emitting layer, a compound represented by the following structural formula (2) (glass transition temperature (Tg) = 102 ° C.), and in Example 1, in the formation of the light emitting layer, instead of drying at 125 ° C. for 30 minutes, instead of drying at 120 ° C. for 30 minutes, the same as in Example 1, An organic electroluminescent element was produced.
Figure JPOXMLDOC01-appb-C000051
<構造式(2)で表される化合物の合成スキーム>
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
<Synthesis Scheme of Compound Represented by Structural Formula (2)>
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
(比較例3)
 実施例3において、発光層の形成において、120℃で30分間乾燥する代わりに、85℃で30分間乾燥した以外は、実施例3と同様にして、有機電界発光素子を作製した。
(Comparative Example 3)
In Example 3, an organic electroluminescent element was produced in the same manner as in Example 3 except that, in the formation of the light emitting layer, instead of drying at 120 ° C. for 30 minutes, drying was performed at 85 ° C. for 30 minutes.
(実施例4)
 実施例1において、発光層の形成において、ホスト材料として、上記構造式(1)で表される化合物を用いる代わりに、ホスト材料として、下記構造式(3)で表される化合物(ガラス転移温度(Tg)=122℃)を用い、また、実施例1において、発光層の形成において、125℃で30分間の乾燥を行う代わりに、130℃で30分間の乾燥を行った以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000054
Example 4
In Example 1, instead of using the compound represented by the structural formula (1) as a host material in forming the light emitting layer, the compound represented by the following structural formula (3) (glass transition temperature) was used as the host material. (Tg) = 122 ° C.) and in Example 1, except that in the formation of the light emitting layer, drying was performed at 130 ° C. for 30 minutes instead of drying at 125 ° C. for 30 minutes. In the same manner as in Example 1, an organic electroluminescent element was produced.
Figure JPOXMLDOC01-appb-C000054
 なお、上記構造式(3)で表される化合物の合成スキームは以下の通りである。
<構造式(3)で表される化合物の合成スキーム>
Figure JPOXMLDOC01-appb-C000055
The synthesis scheme of the compound represented by the structural formula (3) is as follows.
<Synthesis Scheme of Compound Represented by Structural Formula (3)>
Figure JPOXMLDOC01-appb-C000055
(比較例4)
 実施例4において、発光層の形成において、130℃で30分間乾燥する代わりに、85℃で30分間乾燥した以外は、実施例4と同様にして、有機電界発光素子を作製した。
(Comparative Example 4)
In Example 4, an organic electroluminescent device was produced in the same manner as in Example 4 except that, in the formation of the light emitting layer, instead of drying at 130 ° C. for 30 minutes, drying was performed at 85 ° C. for 30 minutes.
(実施例5)
 実施例1において、発光層の形成において、ホスト材料として、上記構造式(1)で表される化合物を用いる代わりに、ホスト材料として、下記構造式(4)で表される化合物(ガラス転移温度(Tg)=105℃)を用い、また、実施例1において、発光層の形成において、125℃で30分間の乾燥を行う代わりに、120℃で30分間の乾燥を行った以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000056
(Example 5)
In Example 1, instead of using the compound represented by the structural formula (1) as a host material in forming the light emitting layer, the compound represented by the following structural formula (4) (glass transition temperature) was used as the host material. (Tg) = 105 ° C.) In Example 1, except that, in the formation of the light emitting layer, instead of drying at 125 ° C. for 30 minutes, drying was performed at 120 ° C. for 30 minutes. In the same manner as in Example 1, an organic electroluminescent element was produced.
Figure JPOXMLDOC01-appb-C000056
<構造式(4)で表される化合物の合成スキーム>
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
<Synthesis Scheme of Compound Represented by Structural Formula (4)>
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
(比較例5)
 実施例5において、発光層の形成において、120℃で30分間乾燥する代わりに、85℃で30分間乾燥した以外は、実施例5と同様にして、有機電界発光素子を作製した。
(Comparative Example 5)
In Example 5, an organic electroluminescent element was produced in the same manner as in Example 5 except that, in the formation of the light emitting layer, instead of drying at 120 ° C. for 30 minutes, drying was performed at 85 ° C. for 30 minutes.
(実施例6)
-有機電界発光素子の作製-
 0.7mm厚み、25mm角のガラス基板を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。このガラス基板上に以下の各層を形成した。なお、以下の実施例及び比較例における蒸着速度は、特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。また、以下の各層厚は触針式段差計(XP-200、AMBiOS Technplogy.Inc製)を用いて測定した。
(Example 6)
-Fabrication of organic electroluminescent elements-
A 0.7 mm thick, 25 mm square glass substrate was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. The following layers were formed on this glass substrate. In addition, the vapor deposition rate in the following examples and comparative examples is 0.2 nm / second unless otherwise specified. The deposition rate was measured using a quartz resonator. The following layer thicknesses were measured using a stylus profilometer (XP-200, manufactured by AMBiOS Technology. Inc.).
 まず、ガラス基板上に、陽極としてITO(Indium Tin Oxide)を厚み150nmにスパッタ蒸着した。得られた透明支持基板をエッチング及び洗浄した。
 次に、陽極(ITO)上に、正孔注入材料(商品名:CLEVIOS P AI4083、H.C.Sterck製、Tg=190℃)90質量部と、エタノール10質量部とを混合して調製した塗布液をスピンコートした後、100℃で10分間乾燥処理し、160℃で120分間真空乾燥して、厚み40nmの正孔注入層を形成した。
First, ITO (Indium Tin Oxide) as a positive electrode was sputter-deposited on a glass substrate to a thickness of 150 nm. The obtained transparent support substrate was etched and washed.
Next, 90 parts by mass of a hole injection material (trade name: CLEVIOS P AI4083, manufactured by HC Stack, Tg = 190 ° C.) and 10 parts by mass of ethanol were prepared on the anode (ITO). After spin-coating the coating solution, it was dried at 100 ° C. for 10 minutes and vacuum dried at 160 ° C. for 120 minutes to form a 40 nm thick hole injection layer.
 次に、正孔注入層上に、ホスト材料としての下記構造式(5)で表される化合物(Tg=124℃)9質量部と、燐光発光材料としての上記構造式(7)で表される化合物(商品名:Ir(ppy)3、ケミプロ化成社製)1質量部とを、電子工業用2-メチルテトラヒドロフラン(沸点78℃、東京化成社製)990質量部に溶解乃至分散し、モレキュラーシーブ(商品名:モレキュラーシーブ5A 1/16、和光純薬工業株式会社製)を添加し、グローブボックス中で孔径0.22μmのシリンジフィルターを用いて濾過して調製した発光層塗布液を、グローブボックス中でスピンコートし、160℃で30分間乾燥して、厚み30nmの発光層を形成した。
Figure JPOXMLDOC01-appb-C000059
Next, on the hole injection layer, 9 parts by mass of a compound (Tg = 124 ° C.) represented by the following structural formula (5) as a host material and the above structural formula (7) as a phosphorescent material are represented. 1 part by mass of a compound (trade name: Ir (ppy) 3, manufactured by Chemipro Chemical Co., Ltd.) is dissolved or dispersed in 990 parts by mass of 2-methyltetrahydrofuran (boiling point 78 ° C., manufactured by Tokyo Chemical Industry Co., Ltd.) for electronic industry. A light-emitting layer coating solution prepared by adding a sieve (trade name: Molecular sieve 5A 1/16, manufactured by Wako Pure Chemical Industries, Ltd.) and filtering with a syringe filter having a pore size of 0.22 μm in a glove box It spin-coated in the box, and it dried for 30 minutes at 160 degreeC, and formed the light emitting layer with a thickness of 30 nm.
Figure JPOXMLDOC01-appb-C000059
 次に、発光層上に、BAlq(Bis-(2-methyl-8-quinolinolato)-4-(phenyl-phenolate)-aluminium-(III))を真空蒸着法にて蒸着して、厚み40nmの電子輸送層を形成した。
 次に、電子輸送層上にフッ化リチウム(LiF)を蒸着して、厚み1nmの電子注入層を形成した。
 次に、電子注入層上に金属アルミニウムを蒸着し、厚み70nmの陰極を形成した。
 作製した積層体を、アルゴンガスで置換したグローブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ株式会社製)を用いて封止した。
Next, BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum- (III)) was deposited on the light-emitting layer by a vacuum deposition method, thereby forming an electron having a thickness of 40 nm. A transport layer was formed.
Next, lithium fluoride (LiF) was deposited on the electron transport layer to form an electron injection layer having a thickness of 1 nm.
Next, metal aluminum was vapor-deposited on the electron injection layer to form a cathode having a thickness of 70 nm.
The produced laminate was put in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
 なお、上記構造式(5)で表される化合物の合成スキームは以下の通りである。
<構造式(5)で表される化合物の合成スキーム>
Figure JPOXMLDOC01-appb-C000060
The synthesis scheme of the compound represented by the structural formula (5) is as follows.
<Synthesis Scheme of Compound Represented by Structural Formula (5)>
Figure JPOXMLDOC01-appb-C000060
(比較例6)
 実施例6において、発光層の形成において、160℃で30分間乾燥する代わりに、80℃で30分間乾燥した以外は、実施例6と同様にして、有機電界発光素子を作製した。
(Comparative Example 6)
In Example 6, an organic electroluminescent device was produced in the same manner as in Example 6 except that, in the formation of the light emitting layer, instead of drying at 160 ° C. for 30 minutes, drying was performed at 80 ° C. for 30 minutes.
(実施例7)
 実施例6において、陽極上に、正孔注入材料(商品名:CLEVIOS P AI4083、H.C.Sterck製、ガラス転移温度(Tg)=190℃)90質量部と、エタノール10質量部とを混合して調製した塗布液をスピンコートした後、100℃で10分間乾燥処理し、160℃で120分間真空乾燥して、厚み約40nmの正孔注入層を形成する代わりに、陽極上に、アリールアミン誘導体としての上記構造式(9)で表される化合物(重量平均分子量(Mw)=8,000、ガラス転移温度140℃、なお、前記重量平均分子量はGPC(ゲルパーミションクロマトグラフ)を用いて、標準ポリスチレン換算で算出した。)2質量部を、脱水テトラヒドロフラン(関東化学社製)と脱水トルエン(関東化学社製)との混合溶媒(混合比率7:3)98質量部に溶解乃至分散させた塗布液をスピンコートした後、120℃で30分間乾燥処理し、130℃で10分間アニール処理して、厚み約40nmの正孔注入層(を形成し、また、実施例6において、正孔注入層上に、ホスト材料としての上記構造式(5)で表される化合物9質量部と、燐光発光材料としての上記構造式(7)で表される化合物1質量部とを、電子工業用2-メチルテトラヒドロフラン990質量部に溶解乃至分散して調製した発光層塗布液を、グローブボックス中でスピンコートし、160℃で30分間乾燥して、厚み30nmの発光層を形成する代わりに、正孔注入層上に、ホスト材料としての下記構造式(6)で表される化合物(ガラス転移温度(Tg)=112℃)4.5質量部と、燐光発光材料としての上記構造式(7)で表される化合物0.5質量部とを、メチルイソブチルケトン(沸点116℃、関東化学社製)995質量部に溶解乃至分散して調製した発光層塗布液を、スプレー塗布し、125℃で30分間乾燥して、厚み30nmの発光層を形成した以外は、実施例6と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000061
(Example 7)
In Example 6, 90 parts by mass of a hole injection material (trade name: CLEVIOS P AI4083, manufactured by HC Stack, glass transition temperature (Tg) = 190 ° C.) and 10 parts by mass of ethanol were mixed on the anode. After spin coating the prepared coating solution, it was dried at 100 ° C. for 10 minutes and vacuum dried at 160 ° C. for 120 minutes to form a hole injection layer having a thickness of about 40 nm. Compound represented by the above structural formula (9) as an amine derivative (weight average molecular weight (Mw) = 8,000, glass transition temperature 140 ° C., where the weight average molecular weight is determined using GPC (gel permeation chromatograph). 2 parts by mass of a mixed solvent of dehydrated tetrahydrofuran (manufactured by Kanto Chemical Co., Inc.) and dehydrated toluene (manufactured by Kanto Chemical Co., Ltd.) Mixing ratio 7: 3) Spin coating the coating solution dissolved or dispersed in 98 parts by mass, followed by drying at 120 ° C. for 30 minutes and annealing at 130 ° C. for 10 minutes to form a hole injection layer having a thickness of about 40 nm. (In Example 6, 9 parts by mass of the compound represented by the structural formula (5) as a host material and the structural formula (7) as a phosphorescent material are formed on the hole injection layer. A light emitting layer coating solution prepared by dissolving and dispersing 1 part by mass of the compound represented by the formula in 990 parts by mass of 2-methyltetrahydrofuran for electronics industry is spin-coated in a glove box and dried at 160 ° C. for 30 minutes. Instead of forming a light emitting layer having a thickness of 30 nm, a compound represented by the following structural formula (6) as a host material (glass transition temperature (Tg) = 112 ° C.) 4.5 mass on the hole injection layer And phosphorescence Luminescent layer coating prepared by dissolving or dispersing 0.5 parts by mass of the compound represented by the structural formula (7) as an optical material in 995 parts by mass of methyl isobutyl ketone (boiling point 116 ° C., manufactured by Kanto Chemical Co., Inc.). An organic electroluminescent element was produced in the same manner as in Example 6 except that the liquid was spray-coated and dried at 125 ° C. for 30 minutes to form a 30 nm thick light emitting layer.
Figure JPOXMLDOC01-appb-C000061
 なお、上記構造式(6)で表される化合物の合成スキームは以下の通りである。
<構造式(6)で表される化合物の合成スキーム>
Figure JPOXMLDOC01-appb-C000062
The synthesis scheme of the compound represented by the structural formula (6) is as follows.
<Synthesis Scheme of Compound Represented by Structural Formula (6)>
Figure JPOXMLDOC01-appb-C000062
(実施例8)
 実施例7において、発光層の形成において、125℃で30分間乾燥する代わりに、125℃で30分間乾燥し、更に、160℃で10分間アニール処理した以外は、実施例7と同様にして、有機電界発光素子を作製した。
(Example 8)
In Example 7, in the formation of the light emitting layer, instead of drying at 125 ° C. for 30 minutes, instead of drying at 125 ° C. for 30 minutes and further annealing at 160 ° C. for 10 minutes, the same as in Example 7, An organic electroluminescent element was produced.
(比較例7)
 実施例7において、発光層の形成において、125℃で30分間乾燥する代わりに、100℃で30分間乾燥した以外は、実施例7と同様にして、有機電界発光素子を作製した。
(Comparative Example 7)
In Example 7, an organic electroluminescence device was produced in the same manner as in Example 7 except that, in the formation of the light emitting layer, instead of drying at 125 ° C. for 30 minutes, drying was performed at 100 ° C. for 30 minutes.
(比較例8)
 実施例6において、正孔注入層上に、ホスト材料としての上記構造式(5)で表される化合物9質量部と、燐光発光材料としての上記構造式(7)で表される化合物1質量部とを、電子工業用2-メチルテトラヒドロフラン990質量部に溶解乃至分散して調製した発光層塗布液を、グローブボックス中でスピンコートし、160℃で30分間乾燥して、厚み30nmの発光層を形成する代わりに、正孔注入層上に、ホスト材料としてのジカルバゾール誘導体(CBP)4.5質量部と、燐光発光材料としての上記構造式(7)で表される化合物0.5質量部とを、キシレン(沸点144℃、関東化学社製)995質量部に溶解乃至分散して調製した発光層塗布液を、スプレー塗布し、155℃で30分間乾燥して、厚み30nmの発光層を形成した以外は、実施例6と同様にして、有機電界発光素子を作製した。
 その結果、発光層が白濁した。この発光層の白濁は、加熱により、ジカルバゾール誘導体(CBP)が結晶化されたために、発生したものと考えられる。
(Comparative Example 8)
In Example 6, 9 parts by mass of the compound represented by the structural formula (5) as the host material and 1 mass of the compound represented by the structural formula (7) as the phosphorescent material on the hole injection layer. A luminescent layer coating solution prepared by dissolving or dispersing in 990 parts by mass of 2-methyltetrahydrofuran for electronics industry, spin-coated in a glove box, and dried at 160 ° C. for 30 minutes to give a luminescent layer having a thickness of 30 nm On the hole injection layer, 4.5 parts by mass of a dicarbazole derivative (CBP) as a host material and 0.5 parts by mass of the compound represented by the structural formula (7) as a phosphorescent material are used. A luminescent layer coating solution prepared by dissolving or dispersing in 995 parts by mass of xylene (boiling point 144 ° C., manufactured by Kanto Chemical Co., Ltd.), spray-dried, dried at 155 ° C. for 30 minutes, and luminescent layer having a thickness of 30 nm The Except that none, in the same manner as in Example 6, to manufacture an organic electroluminescence device.
As a result, the light emitting layer became cloudy. This white turbidity of the light emitting layer is considered to have occurred because the dicarbazole derivative (CBP) was crystallized by heating.
(実施例9)
 実施例1において、発光層の形成において、ホスト材料として、上記構造式(1)で表される化合物を用い、燐光発光材料として、上記構造式(7)を用いる代わりに、ホスト材料として、下記構造式(11)で表される化合物(ガラス転移温度(Tg)=125℃)を用い、燐光発光材料として、下記構造式(12)を用い、また、実施例1において、発光層の形成において、125℃で30分間の乾燥を行う代わりに、140℃で30分間の乾燥を行った以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Example 9
In Example 1, in the formation of the light emitting layer, the compound represented by the structural formula (1) is used as the host material, and the phosphorescent light emitting material is replaced with the structural formula (7). Using the compound represented by the structural formula (11) (glass transition temperature (Tg) = 125 ° C.), using the following structural formula (12) as the phosphorescent material, and in Example 1, in forming the light emitting layer An organic electroluminescence device was produced in the same manner as in Example 1 except that drying at 140 ° C. for 30 minutes was performed instead of drying at 125 ° C. for 30 minutes.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
(比較例9)
 実施例9において、発光層の形成において、140℃で30分間乾燥する代わりに、85℃で30分間乾燥した以外は、実施例9と同様にして、有機電界発光素子を作製した。
(Comparative Example 9)
In Example 9, an organic electroluminescence device was produced in the same manner as in Example 9 except that, in the formation of the light emitting layer, instead of drying at 140 ° C. for 30 minutes, drying was performed at 85 ° C. for 30 minutes.
(比較例10)
 実施例1において、発光層の形成において、燐光発光材料として、上記構造式(12)の化合物を用い、115℃で30分間の乾燥を行った以外は、実施例1と同様にして、有機電界発光素子を作製した。
 この素子に通電したところ、赤色のEL発光が観測された。
(Comparative Example 10)
In Example 1, in the formation of the light emitting layer, an organic electric field was obtained in the same manner as in Example 1 except that the compound of the structural formula (12) was used as the phosphorescent light emitting material and was dried at 115 ° C. for 30 minutes. A light emitting element was manufactured.
When this element was energized, red EL light emission was observed.
(実施例10)
-有機電界発光素子の作製-
 0.7mm厚み、25mm角のガラス基板を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。このガラス基板上に以下の各層を形成した。蒸着速度は水晶振動子を用いて測定した。
(Example 10)
-Fabrication of organic electroluminescent elements-
A 0.7 mm thick, 25 mm square glass substrate was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. The following layers were formed on this glass substrate. The deposition rate was measured using a quartz resonator.
 まず、ガラス基板上に、陽極としてITO(Indium Tin Oxide)を厚み150nmにスパッタ蒸着した。得られた透明支持基板をエッチング及び洗浄した。
 次に、陽極(ITO)上に、下記構造式Aの化合物5質量部を、電子工業用シクロヘキサノン(関東化学社製)995質量部に溶解乃至分散させた正孔注入層塗布液をスピンコートした後、200℃で30分間乾燥して、厚み5nmの正孔注入層を形成した。
Figure JPOXMLDOC01-appb-C000065
First, ITO (Indium Tin Oxide) as a positive electrode was sputter-deposited on a glass substrate to a thickness of 150 nm. The obtained transparent support substrate was etched and washed.
Next, on the anode (ITO), a hole injection layer coating solution in which 5 parts by mass of a compound of the following structural formula A was dissolved or dispersed in 995 parts by mass of cyclohexanone for electronics industry (manufactured by Kanto Chemical Co., Inc.) was spin coated. Then, it dried at 200 degreeC for 30 minute (s), and formed the 5-nm-thick hole injection layer.
Figure JPOXMLDOC01-appb-C000065
 次に、下記構造式Bの化合物10質量部を、トルエン(脱水)(和光純薬工業社製)990質量部に溶解させて、正孔輸送層塗布液を調製した。この正孔輸送層塗布液を正孔注入層上にスピンコートし、200℃で30分間乾燥することで厚み18nmの正孔輸送層を形成した。
Figure JPOXMLDOC01-appb-C000066
Next, 10 parts by mass of the compound of the following structural formula B was dissolved in 990 parts by mass of toluene (dehydrated) (manufactured by Wako Pure Chemical Industries, Ltd.) to prepare a hole transport layer coating solution. This hole transport layer coating solution was spin-coated on the hole injection layer and dried at 200 ° C. for 30 minutes to form a hole transport layer having a thickness of 18 nm.
Figure JPOXMLDOC01-appb-C000066
 次に、正孔輸送層上に、ホスト材料としての下記構造式C(特開2001-335776記載の例示化合物22)で表される化合物(ガラス転移温度(Tg)=141℃)9質量部と、燐光発光材料としての下記構造式Dで表される化合物1質量部とを、電子工業用2-ブタノン(沸点88℃、関東化学社製)990質量部に溶解乃至分散し、モレキュラーシーブ(商品名:モレキュラーシーブ3A 1/16、和光純薬工業株式会社製)を添加し、グローブボックス中で孔径0.22μmのシリンジフィルターを用いて濾過して調製した発光層塗布液を、グローブボックス中でスピンコートし、150℃で30分間乾燥して、厚み30nmの発光層を形成した。
Figure JPOXMLDOC01-appb-C000067
Next, 9 parts by mass of a compound (glass transition temperature (Tg) = 141 ° C.) represented by the following structural formula C (Exemplary Compound 22 described in JP-A No. 2001-33576) as a host material on the hole transport layer; In addition, 1 part by mass of a compound represented by the following structural formula D as a phosphorescent material is dissolved or dispersed in 990 parts by mass of 2-butanone (boiling point 88 ° C., manufactured by Kanto Chemical Co., Inc.) for electronic industry. Name: Molecular sieve 3A 1/16, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the luminous layer coating solution prepared by filtration using a syringe filter with a pore size of 0.22 μm in the glove box was used in the glove box. It spin-coated and dried for 30 minutes at 150 degreeC, and formed the light emitting layer with a thickness of 30 nm.
Figure JPOXMLDOC01-appb-C000067
 次に、発光層上に、BAlq(Bis-(2-methyl-8-quinolinolato)-4-(phenyl-phenolate)-aluminium-(III))を真空蒸着法にて蒸着して、厚み40nmの電子輸送層を形成した。
 次に、電子輸送層上にフッ化リチウム(LiF)を蒸着して、厚み1nmの電子注入層を形成した。
 次に、電子注入層上に金属アルミニウムを蒸着し、厚み70nmの陰極を形成した。
 作製した積層体を、アルゴンガスで置換したグローブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ株式会社製)を用いて封止した。
Next, BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum- (III)) was deposited on the light-emitting layer by a vacuum deposition method, thereby forming an electron having a thickness of 40 nm. A transport layer was formed.
Next, lithium fluoride (LiF) was deposited on the electron transport layer to form an electron injection layer having a thickness of 1 nm.
Next, metal aluminum was vapor-deposited on the electron injection layer to form a cathode having a thickness of 70 nm.
The produced laminate was put in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
(比較例11)
 実施例10において、乾燥温度を150℃から120℃に変更した以外は、実施例10と同様にして、有機電界発光素子を作製した。
(Comparative Example 11)
In Example 10, an organic electroluminescent element was produced in the same manner as in Example 10 except that the drying temperature was changed from 150 ° C to 120 ° C.
(実施例11)
 実施例10において、ホスト材料として上記構造式Cで表される化合物(ガラス転移温度(Tg)=141℃)を用いる代わりに、下記構造式E(特開2001-335776号公報記載の例示化合物26)で表される化合物(ガラス転移温度(Tg)=136℃)を用い、乾燥温度を150℃から145℃に変更した以外には、実施例10と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000068
(Example 11)
In Example 10, instead of using the compound represented by the above structural formula C (glass transition temperature (Tg) = 141 ° C.) as the host material, Exemplified Compound 26 described in the following structural formula E (Japanese Patent Application Laid-Open No. 2001-335776) The organic electroluminescence device was produced in the same manner as in Example 10 except that the drying temperature was changed from 150 ° C. to 145 ° C. using the compound represented by (). (Glass transition temperature (Tg) = 136 ° C.) .
Figure JPOXMLDOC01-appb-C000068
(比較例12)
 実施例11において、乾燥温度を145℃から120℃に変更した以外は、実施例11と同様にして、有機電界発光素子を作製した。
(Comparative Example 12)
In Example 11, an organic electroluminescent element was produced in the same manner as in Example 11 except that the drying temperature was changed from 145 ° C. to 120 ° C.
(実施例12)
 実施例10において、ホスト材料として上記構造式Cで表される化合物(ガラス転移温度(Tg)=141℃)を用いる代わりに、上記構造式(11)で表される化合物(ガラス転移温度(Tg)=125℃)を用い、乾燥温度を150℃から140℃に変更した以外は、実施例10と同様にして、有機電界発光素子を作製した。
(Example 12)
In Example 10, instead of using the compound represented by the structural formula C (glass transition temperature (Tg) = 141 ° C.) as the host material, the compound represented by the structural formula (11) (glass transition temperature (Tg) ) = 125 ° C.) and an organic electroluminescence device was produced in the same manner as in Example 10 except that the drying temperature was changed from 150 ° C. to 140 ° C.
(比較例13)
 実施例12において、乾燥温度を140℃から120℃に変更した以外は、実施例12と同様にして、有機電界発光素子を作製した。
(Comparative Example 13)
In Example 12, an organic electroluminescent element was produced in the same manner as in Example 12 except that the drying temperature was changed from 140 ° C to 120 ° C.
 次に、作製した実施例1~12及び比較例1~13の有機電界発光素子について、以下のようにして、各層における外部量子効率と、輝度減衰の変化率(20%減衰時間)を測定した。 Next, for the organic electroluminescent devices of Examples 1 to 12 and Comparative Examples 1 to 13, the external quantum efficiency and the rate of change in luminance attenuation (20% attenuation time) in each layer were measured as follows. .
<外部量子効率の測定>
 東陽テクニカ株式会社製ソースメジャーユニット2400を用いて、室温において、直流電圧を各素子に印加し、連続的に駆動を行い、発光させた。発光スペクトル・輝度はトプコン社製スペクトルアナライザーSR-3を用いて測定し、これらの数値をもとに電流が10mA/cmにおける外部量子効率を輝度換算法により算出した。結果を表1~表11に示す。
<Measurement of external quantum efficiency>
Using a source measure unit 2400 manufactured by Toyo Technica Co., Ltd., a DC voltage was applied to each element at room temperature to drive continuously and emit light. The emission spectrum / luminance was measured using a spectrum analyzer SR-3 manufactured by Topcon Corporation, and the external quantum efficiency at a current of 10 mA / cm 2 was calculated by the luminance conversion method based on these numerical values. The results are shown in Tables 1 to 11.
<輝度減衰の変化率(20%減衰時間)>
 トプコン社製スペクトルアナライザーSR-3を用いて測定した輝度データから、図2に示すように、駆動開始直後の輝度1,000cd/mを100%としたときに、輝度が20%減衰して80%となるまでの時間を輝度減衰の変化率の指標とした。結果を表1~表11に示す。
 なお、表1では、比較例1Bを基準とし、表2では、比較例2を基準とし、表3では、比較例3を基準とし、表4では、比較例4を基準とし、表5では、比較例5を基準とし、表6では、比較例6を基準とし、表7では、比較例7を基準とし、表8では、比較例9を基準とし、表9では、比較例11を基準とし、表10では、比較例12を基準とし、表11では、比較例13を基準とする。前記基準以外の実施例、比較例は、前記基準とした比較例の外部量子効率及び輝度減衰の変化率(20%減衰時間)を1として、それに対する相対値を示した。
<Change rate of luminance decay (20% decay time)>
From the luminance data measured using the spectrum analyzer SR-3 manufactured by Topcon Corporation, as shown in FIG. 2, when the luminance 1,000 cd / m 2 immediately after the start of driving is set to 100%, the luminance is attenuated by 20%. The time to 80% was used as an index of the rate of change in luminance attenuation. The results are shown in Tables 1 to 11.
In Table 1, Comparative Example 1B is used as a reference, in Table 2, Comparative Example 2 is used as a reference, in Table 3, Comparative Example 3 is used as a reference, in Table 4, Comparative Example 4 is used as a reference, and in Table 5, Based on Comparative Example 5, Table 6 uses Comparative Example 6 as a standard, Table 7 uses Comparative Example 7 as a standard, Table 8 uses Comparative Example 9 as a standard, and Table 9 uses Comparative Example 11 as a standard. In Table 10, Comparative Example 12 is used as a reference, and in Table 11, Comparative Example 13 is used as a reference. In Examples and Comparative Examples other than the reference, the external quantum efficiency and the luminance attenuation change rate (20% attenuation time) of the comparative example based on the reference were set to 1, and relative values were shown.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000079
 表1より、実施例1は、比較例1A及び1Bと外部量子効率が同等であり、比較例1A及び1Bよりも輝度減衰の変化率が小さい(20%減衰時間が長い)ことが分かった。
 また、表2より、実施例2は、比較例2よりも外部量子効率が高く、比較例2よりも輝度減衰の変化率が小さい(20%減衰時間が長い)ことが分かった。
 また、表3より、実施例3は、比較例3と外部量子効率が同等であり、比較例3よりも輝度減衰の変化率が小さい(20%減衰時間が長い)ことが分かった。
 また、表4より、実施例4は、比較例4と外部量子効率が同等であり、比較例4よりも輝度減衰の変化率が小さい(20%減衰時間が長い)ことが分かった。
 また、表5より、実施例5は、比較例5と外部量子効率が同等であり、比較例5よりも輝度減衰の変化率が小さい(20%減衰時間が長い)ことが分かった。
 また、表6より、実施例6は、比較例6と外部量子効率が同等であり、比較例6よりも輝度減衰の変化率が小さい(20%減衰時間が長い)ことが分かった。
 また、表7より、実施例7は、比較例7と外部量子効率が同等であり、比較例7よりも輝度減衰の変化率が小さい(20%減衰時間が長い)ことが分かった。
 また、表7より、実施例8は、比較例7よりも外部量子効率が高く、比較例7よりも輝度減衰の変化率が小さい(20%減衰時間が長い)ことが分かった。
 また、表7より、正孔注入層のガラス転移温度(140℃)以上で加熱した実施例8は、正孔注入層のガラス転移温度以上に加熱していない実施例7と比較して、正孔注入層と発光層との界面の混合がより発生するため、外部量子効率が向上し、輝度減衰の変化率が大きくなる(20%減衰時間が短くなる)ことが分かった。
 また、表8より、実施例9は、比較例9と外部量子効率が同等であり、比較例9よりも輝度減衰の変化率が小さい(20%減衰時間が長い)ことが分かった。
 また、表9より、実施例10は、比較例11と外部量子効率が同等であり、比較例11よりも輝度減衰の変化率が小さい(20%減衰時間が長い)ことが分かった。
 また、表10より、実施例11は、比較例12と外部量子効率が同等であり、比較例12よりも輝度減衰の変化率が小さい(20%減衰時間が長い)ことが分かった。
 また、表11より、実施例12は、比較例13と外部量子効率が同等であり、比較例13よりも輝度減衰の変化率が小さい(20%減衰時間が長い)ことが分かった。
From Table 1, it was found that Example 1 has the same external quantum efficiency as Comparative Examples 1A and 1B, and the rate of change in luminance attenuation is smaller (20% attenuation time is longer) than Comparative Examples 1A and 1B.
Further, Table 2 shows that Example 2 has higher external quantum efficiency than Comparative Example 2, and has a smaller rate of change in luminance attenuation than Comparative Example 2 (20% attenuation time is longer).
In addition, Table 3 shows that Example 3 has the same external quantum efficiency as Comparative Example 3, and the rate of change in luminance attenuation is smaller than that of Comparative Example 3 (20% attenuation time is longer).
Table 4 also shows that Example 4 has the same external quantum efficiency as that of Comparative Example 4, and the rate of change in luminance attenuation is smaller than that of Comparative Example 4 (20% attenuation time is longer).
Table 5 also shows that Example 5 has the same external quantum efficiency as that of Comparative Example 5, and the rate of change in luminance attenuation is smaller than that of Comparative Example 5 (20% attenuation time is longer).
Table 6 also shows that Example 6 has the same external quantum efficiency as that of Comparative Example 6, and the rate of change in luminance attenuation is smaller than that of Comparative Example 6 (20% attenuation time is longer).
Table 7 also shows that Example 7 has the same external quantum efficiency as that of Comparative Example 7, and the rate of change in luminance attenuation is smaller than that of Comparative Example 7 (20% attenuation time is longer).
In addition, Table 7 shows that Example 8 has higher external quantum efficiency than Comparative Example 7, and the rate of change in luminance attenuation is smaller than that of Comparative Example 7 (20% attenuation time is longer).
Further, from Table 7, Example 8 heated at the glass transition temperature (140 ° C.) or higher of the hole injection layer is more positive than Example 7 not heated above the glass transition temperature of the hole injection layer. It was found that since the mixing of the interface between the hole injection layer and the light emitting layer occurs more, the external quantum efficiency is improved and the rate of change in luminance attenuation is increased (20% attenuation time is shortened).
Table 8 also shows that Example 9 has the same external quantum efficiency as that of Comparative Example 9, and the rate of change in luminance attenuation is smaller than that of Comparative Example 9 (20% attenuation time is longer).
Table 9 also shows that Example 10 has the same external quantum efficiency as Comparative Example 11 and a smaller change rate of luminance attenuation than that of Comparative Example 11 (20% attenuation time is longer).
Table 10 also shows that Example 11 has the same external quantum efficiency as that of Comparative Example 12, and the rate of change in luminance attenuation is smaller than that of Comparative Example 12 (20% attenuation time is longer).
Table 11 also shows that Example 12 has the same external quantum efficiency as that of Comparative Example 13, and the rate of change in luminance attenuation is smaller than that of Comparative Example 13 (20% attenuation time is longer).
 本発明の方法により製造された有機電界発光素子は、優れた発光効率と発光寿命を両立することができるので、例えば、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信などに好適に用いられる。 Since the organic electroluminescent device produced by the method of the present invention can achieve both excellent luminous efficiency and luminous lifetime, for example, display device, display, backlight, electrophotography, illumination light source, recording light source, exposure light source It is suitably used for reading light sources, signs, signboards, interiors, optical communications, and the like.
   1   基板
   2   陽極
   3   正孔注入層
   4   正孔輸送層
   5   発光層
   6   電子輸送層
   7   電子注入層
   8   陰極
  10   有機電界発光素子
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Electron transport layer 7 Electron injection layer 8 Cathode 10 Organic electroluminescent element

Claims (7)

  1.  陽極と陰極の間に発光層を含む有機層を有してなる有機電界発光素子の製造方法であって、
     前記発光層を、発光材料と、下記一般式(1)及び下記一般式(2)の少なくともいずれかで表されるホスト材料とを溶媒に溶解乃至分散させた塗布液を塗布し、前記ホスト材料のガラス転移温度よりも高く、かつ前記溶媒の沸点よりも高い温度で加熱して、形成することを特徴とする有機電界発光素子の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     ただし、前記一般式(1)中、Rは、t-ブチル基、t-アミル基、トリメチルシリル基、トリフェニルシリル基及びフェニル基のいずれかを表し、R~R23は、それぞれ、水素原子、t-ブチル基、t-アミル基、トリメチルシリル基、トリフェニルシリル基、フェニル基、シアノ基、及び炭素数1~5のアルキル基のいずれかを表す。
    Figure JPOXMLDOC01-appb-C000002
     ただし、前記一般式(2)中、Rは、任意の置換基を表す。
    A method for producing an organic electroluminescent device comprising an organic layer including a light emitting layer between an anode and a cathode,
    The light emitting layer is coated with a coating solution prepared by dissolving or dispersing a light emitting material and a host material represented by at least one of the following general formula (1) and the following general formula (2) in a solvent, A method for producing an organic electroluminescent element, wherein the organic electroluminescent element is formed by heating at a temperature higher than the glass transition temperature of the solvent and higher than the boiling point of the solvent.
    Figure JPOXMLDOC01-appb-C000001
    In the general formula (1), R represents any one of t-butyl group, t-amyl group, trimethylsilyl group, triphenylsilyl group and phenyl group, and R 1 to R 23 each represents a hydrogen atom. , T-butyl group, t-amyl group, trimethylsilyl group, triphenylsilyl group, phenyl group, cyano group and alkyl group having 1 to 5 carbon atoms.
    Figure JPOXMLDOC01-appb-C000002
    However, in said general formula (2), R represents arbitrary substituents.
  2.  発光材料の分子量が1,500以下であり、ホスト材料の分子量が1,500以下である請求項1に記載の有機電界発光素子の製造方法。 The method for producing an organic electroluminescent element according to claim 1, wherein the molecular weight of the light emitting material is 1,500 or less and the molecular weight of the host material is 1,500 or less.
  3.  一般式(1)で表されるホスト材料が、下記構造式(1)から(6)及び(11)のいずれかで表される化合物である請求項1から2のいずれかに記載の有機電界発光素子の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    The organic electric field according to claim 1, wherein the host material represented by the general formula (1) is a compound represented by any one of the following structural formulas (1) to (6) and (11). Manufacturing method of light emitting element.
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
  4.  一般式(2)で表されるホスト材料が、下記構造式C及びEのいずれかで表される化合物である請求項1から3のいずれかに記載の有機電界発光素子の製造方法。
    Figure JPOXMLDOC01-appb-C000010
    The method for producing an organic electroluminescent element according to any one of claims 1 to 3, wherein the host material represented by the general formula (2) is a compound represented by any one of the following structural formulas C and E.
    Figure JPOXMLDOC01-appb-C000010
  5.  溶媒が、2-ブタノン、キシレン、トルエン、2-メチルテトラヒドロフラン及びメチルイソブチルケトンから選択される少なくとも1種である請求項1から4のいずれかに記載の有機電界発光素子の製造方法。 5. The method for producing an organic electroluminescent element according to claim 1, wherein the solvent is at least one selected from 2-butanone, xylene, toluene, 2-methyltetrahydrofuran, and methyl isobutyl ketone.
  6.  発光材料が、下記構造式(7)、(8)、(12)及びDのいずれかで表される化合物である請求項1から5のいずれかに記載の有機電界発光素子の製造方法。
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    The method for producing an organic electroluminescent element according to claim 1, wherein the luminescent material is a compound represented by any one of the following structural formulas (7), (8), (12) and D.
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
  7.  加熱の温度が、ホスト材料のガラス転移温度よりも10℃以上高く、かつ溶媒の沸点よりも45℃以上高い請求項1から6のいずれかに記載の有機電界発光素子の製造方法。 The method for producing an organic electroluminescent element according to any one of claims 1 to 6, wherein the heating temperature is 10 ° C or more higher than the glass transition temperature of the host material and 45 ° C or higher than the boiling point of the solvent.
PCT/JP2011/053425 2010-03-15 2011-02-17 Method for producing organic electroluminescence element WO2011114833A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010057538 2010-03-15
JP2010-057538 2010-03-15
JP2010-142009 2010-06-22
JP2010142009A JP5567407B2 (en) 2010-03-15 2010-06-22 Method for manufacturing organic electroluminescent device

Publications (1)

Publication Number Publication Date
WO2011114833A1 true WO2011114833A1 (en) 2011-09-22

Family

ID=44648940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053425 WO2011114833A1 (en) 2010-03-15 2011-02-17 Method for producing organic electroluminescence element

Country Status (3)

Country Link
JP (1) JP5567407B2 (en)
TW (1) TW201241148A (en)
WO (1) WO2011114833A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424417B2 (en) 2018-11-16 2022-08-23 Samsung Display Co., Ltd. Organic electroluminescence device and compound for organic electroluminescence device
US11985893B2 (en) 2019-11-08 2024-05-14 Samsung Display Co., Ltd. Organic electroluminescence device and aromatic compound for organic electroluminescence device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188609A1 (en) * 2015-05-22 2016-12-01 Merck Patent Gmbh Formulation containing an organic semiconductor and a metal complex

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335776A (en) * 1999-07-22 2001-12-04 Fuji Photo Film Co Ltd Novel heterocyclic compound, light-emitting element material and light-emitting element using this material
JP2003515897A (en) * 1999-12-01 2003-05-07 ザ、トラスティーズ オブ プリンストン ユニバーシティ Complexes of Formula L2MX as phosphorescent dopants for organic LEDs
JP2006059879A (en) * 2004-08-17 2006-03-02 Tdk Corp Organic el element and its fabrication process, and organic el display
WO2006100868A1 (en) * 2005-03-18 2006-09-28 Konica Minolta Holdings, Inc. Method of forming organic compound layer, process for producing organic el device, and organic el device
JP2010050129A (en) * 2008-08-19 2010-03-04 Konica Minolta Holdings Inc Organic electroluminescent element and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4226159B2 (en) * 1999-08-06 2009-02-18 シャープ株式会社 Manufacturing method of organic LED display
JP2005026003A (en) * 2003-06-30 2005-01-27 Tdk Corp Manufacturing method for organic el device
JP2007110102A (en) * 2005-09-15 2007-04-26 Fujifilm Corp Organic electroluminescence element
JP4887731B2 (en) * 2005-10-26 2012-02-29 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
JP4301260B2 (en) * 2006-07-06 2009-07-22 セイコーエプソン株式会社 Method for manufacturing organic EL device and electronic device
JP5186757B2 (en) * 2006-11-27 2013-04-24 コニカミノルタホールディングス株式会社 Method for manufacturing organic electroluminescent element, organic electroluminescent element, display device and lighting device
JP2008226642A (en) * 2007-03-13 2008-09-25 Toppan Printing Co Ltd Organic functional thin film heat treatment device, and manufacturing method of organic functional element
JP5157593B2 (en) * 2008-03-31 2013-03-06 三菱化学株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT, ITS MANUFACTURING METHOD, AND ORGANIC ELECTROLUMINESCENT DISPLAY

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335776A (en) * 1999-07-22 2001-12-04 Fuji Photo Film Co Ltd Novel heterocyclic compound, light-emitting element material and light-emitting element using this material
JP2003515897A (en) * 1999-12-01 2003-05-07 ザ、トラスティーズ オブ プリンストン ユニバーシティ Complexes of Formula L2MX as phosphorescent dopants for organic LEDs
JP2006059879A (en) * 2004-08-17 2006-03-02 Tdk Corp Organic el element and its fabrication process, and organic el display
WO2006100868A1 (en) * 2005-03-18 2006-09-28 Konica Minolta Holdings, Inc. Method of forming organic compound layer, process for producing organic el device, and organic el device
JP2010050129A (en) * 2008-08-19 2010-03-04 Konica Minolta Holdings Inc Organic electroluminescent element and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424417B2 (en) 2018-11-16 2022-08-23 Samsung Display Co., Ltd. Organic electroluminescence device and compound for organic electroluminescence device
US11985893B2 (en) 2019-11-08 2024-05-14 Samsung Display Co., Ltd. Organic electroluminescence device and aromatic compound for organic electroluminescence device

Also Published As

Publication number Publication date
JP2011216455A (en) 2011-10-27
TW201241148A (en) 2012-10-16
JP5567407B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP5456554B2 (en) Organic electroluminescence device
JP5506475B2 (en) Method for manufacturing organic electroluminescent device
JP4620802B1 (en) Organic electroluminescence device
US9935275B2 (en) Organic electroluminescence device and method for producing the same
JP2010171205A (en) Organic electric field light-emitting element
JP2010278354A (en) Organic electroluminescent element
JP5497510B2 (en) Organic electroluminescence device
WO2010140482A1 (en) Organic electroluminescent device
JP5572004B2 (en) White organic electroluminescence device
JP5567407B2 (en) Method for manufacturing organic electroluminescent device
JP5761962B2 (en) Organic electroluminescence device
JP4603624B1 (en) Organic electroluminescence device
JP5912224B2 (en) White organic electroluminescence device
JP5511454B2 (en) Organic electroluminescence device
JP2010171204A (en) Organic electric field light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756023

Country of ref document: EP

Kind code of ref document: A1