WO2011114727A1 - 摩擦伝動ベルト - Google Patents

摩擦伝動ベルト Download PDF

Info

Publication number
WO2011114727A1
WO2011114727A1 PCT/JP2011/001558 JP2011001558W WO2011114727A1 WO 2011114727 A1 WO2011114727 A1 WO 2011114727A1 JP 2011001558 W JP2011001558 W JP 2011001558W WO 2011114727 A1 WO2011114727 A1 WO 2011114727A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
rubber layer
friction transmission
rubber
transmission belt
Prior art date
Application number
PCT/JP2011/001558
Other languages
English (en)
French (fr)
Inventor
吉田圭介
川原英昭
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Publication of WO2011114727A1 publication Critical patent/WO2011114727A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D29/00Producing belts or bands
    • B29D29/10Driving belts having wedge-shaped cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Definitions

  • the present invention relates to a friction transmission belt provided with a compression rubber layer that contacts a pulley on the inner peripheral side of a belt body and transmits power, a manufacturing method thereof, and a belt transmission device using the friction transmission belt.
  • Patent Document 1 discloses that a power transmission belt using an ethylene- ⁇ -olefin elastomer is made of an elastic layer including a rubber layer in which a core wire is embedded along the longitudinal direction of the belt.
  • -A plasticizer or softener having a solubility index of 8.3 to 10.5 (cal / cm 3 ) 1/2 per 100 parts by mass of ⁇ -olefin elastomer is contained. Is disclosed.
  • Patent Document 2 in a V-ribbed belt composed of an elastic layer including a rubber layer in which a core wire is embedded along the longitudinal direction of the belt, the rib portion serving as a friction transmission surface is based on 100 parts by weight of the ethylene- ⁇ -olefin elastomer. And 10 to 25 parts by weight of a plasticizer having a solubility index of 8.3 to 10.7 (cal / cm 3 ) 1/2 and 60 to 110 parts by weight of an inorganic filler. are disclosed.
  • Patent Document 3 discloses that in a V-ribbed belt made of an elastic layer including a rubber layer in which a core wire is embedded along the longitudinal direction of the belt, the rib portion serving as a friction transmission surface is based on 100 parts by weight of the ethylene- ⁇ -olefin elastomer. Further, a rubber composition containing 5 to 25 parts by weight of an ether ester plasticizer is disclosed.
  • Patent Document 4 discloses a V-ribbed belt in which a plasticizer is applied to the tip of the V-rib for the purpose of improving all of the abnormal sound characteristics, the bending life characteristics, and the cold resistance characteristics.
  • the friction transmission belt of the present invention includes a compression rubber layer that contacts the pulley and transmits power to the inner peripheral side of the belt body,
  • the compressed rubber layer includes a surface rubber layer formed of a rubber composition having a relatively large plasticizer content, and a relatively small plasticizer content provided on the inner side of the belt than the surface rubber layer.
  • the belt transmission device of the present invention is a belt in which the friction transmission belt of the present invention is wound around a plurality of pulleys.
  • the method for producing a friction transmission belt comprises cross-linking a non-crosslinked rubber composition for forming a belt by pressure contact with a molding surface for forming a compressed rubber layer in contact with a pulley in a belt mold.
  • a plasticizer is previously attached to the molding surface of the belt molding die and / or the surface of the belt-forming uncrosslinked rubber composition. It is something to be made.
  • V-ribbed belt It is a perspective view of the V-ribbed belt which concerns on embodiment. It is a principal part expanded sectional view of the V-ribbed belt which concerns on embodiment. It is a figure which shows the pulley layout of the auxiliary machine drive belt transmission of the motor vehicle which concerns on embodiment. It is a longitudinal cross-sectional view of a belt shaping
  • V-ribbed belt B (friction transmission belt) according to this embodiment.
  • the V-ribbed belt B according to the present embodiment is used for, for example, an auxiliary machine drive belt transmission device provided in an engine room of an automobile.
  • the V-ribbed belt B according to the present embodiment has, for example, a belt circumferential length of 700 to 3000 mm, a belt width of 10 to 36 mm, and a belt thickness of 4.0 to 5.0 mm.
  • the V-ribbed belt B includes a V-ribbed belt main body 10 configured as a triple layer of a compression rubber layer 11 on the belt inner peripheral side, an intermediate adhesive rubber layer 12 and a back rubber layer 13 on the belt outer peripheral side.
  • a core wire 14 is embedded so as to form a spiral having a pitch in the belt width direction.
  • the compression rubber layer 11 is provided so that a plurality of V ribs 15 hang down to the inner peripheral side of the belt.
  • the plurality of V ribs 15 are each formed in a ridge having a substantially inverted triangular cross section extending in the belt length direction, and arranged in parallel in the belt width direction.
  • Each V-rib 15 has, for example, a rib height of 2.0 to 3.0 mm and a width between base ends of 1.0 to 3.6 mm.
  • the number of ribs is, for example, 3 to 6 (in FIG. 1, the number of ribs is 6).
  • the compressed rubber layer 11 has a surface rubber layer 16 formed in a layer shape along the entire pulley contact surface and an internal rubber layer 17 provided on the inner side of the belt with respect to the surface rubber layer 16.
  • the compressed rubber layer 11 has, for example, a total thickness of 2.0 to 2.5 mm, a thickness of the surface rubber layer 16 of 0.3 to 0.6 mm, and a thickness of the internal rubber layer 17 of 1.6 to 2.0 mm.
  • Each of the surface rubber layer 16 and the inner rubber layer 17 of the compression rubber layer 11 is a rubber obtained by heating and pressurizing an uncrosslinked rubber composition in which various compounding agents are blended in a raw material rubber and then crosslinking with a crosslinking agent. It is formed with a composition.
  • the raw rubber of the rubber composition forming each of the surface rubber layer 16 and the internal rubber layer 17 of the compressed rubber layer 11 is, for example, ethylene / propylene copolymer (EPR), ethylene / propylene / diene terpolymer (EPDM), ethylene / propylene Examples thereof include ethylene- ⁇ -olefin elastomers such as octene copolymer and ethylene / butene copolymer, chloroprene rubber (CR), chlorosulfonated polyethylene rubber (CSM), and hydrogenated acrylonitrile rubber (H-NBR). Of these, the raw rubber is preferably an ethylene- ⁇ -olefin elastomer.
  • the raw rubber may be composed of a single species, or may be composed of a blend of a plurality of species.
  • the compounding agent examples include a reinforcing material such as carbon black, a vulcanization accelerator, a crosslinking agent, an antiaging agent, and a softening agent.
  • a reinforcing material for example, carbon black, channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, N-234; FT, MT, etc. Thermal black; acetylene black.
  • Silica is also mentioned as a reinforcing agent.
  • the reinforcing agent may be composed of a single species or a plurality of species.
  • the reinforcing material preferably has a blending amount of 30 to 80 parts by mass with respect to 100 parts by mass of the raw rubber from the viewpoint of achieving a good balance between wear resistance and flex resistance.
  • both the rubber composition forming the surface rubber layer 16 and the rubber composition forming the internal rubber layer 17 contain carbon black
  • the carbon black contained in the rubber composition forming the surface rubber layer 16 The nitrogen adsorption specific surface area is, for example, 20 to 100 m 2 / g, and the nitrogen adsorption specific surface area of carbon black contained in the rubber composition forming the internal rubber layer 17 is, for example, 20 to 50 m 2 / g.
  • the carbon black contained in the rubber composition forming the surface rubber layer 16 preferably has a larger nitrogen adsorption specific surface area than the carbon black contained in the rubber composition forming the internal rubber layer 17.
  • the vulcanization accelerator examples include metal oxides such as magnesium oxide and zinc oxide (zinc white), metal carbonates, fatty acids such as stearic acid, and derivatives thereof.
  • the vulcanization accelerator may be composed of a single species or a plurality of species.
  • the amount of the vulcanization accelerator is, for example, 0.5 to 8 parts by mass with respect to 100 parts by mass of the raw rubber.
  • crosslinking agent examples include sulfur and organic peroxides.
  • sulfur may be used, organic peroxide may be used, or both of them may be used in combination.
  • the crosslinking agent is preferably used in an amount of 0.5 to 4.0 parts by mass with respect to 100 parts by mass of the raw rubber.
  • the amount of the crosslinking agent is 100 parts by mass of the raw rubber. .5 to 8 parts by mass.
  • Antiaging agents include amine-based, quinoline-based, hydroquinone derivatives, phenol-based and phosphite-based agents.
  • the anti-aging agent may be composed of a single species or a plurality of species.
  • the anti-aging agent is, for example, 0 to 8 parts by mass with respect to 100 parts by mass of the raw rubber.
  • the softener examples include petroleum softeners, mineral oil softeners such as paraffin wax, castor oil, cottonseed oil, sesame oil, rapeseed oil, soybean oil, palm oil, palm oil, fallen raw oil, waxy wax, rosin And vegetable oil-based softeners such as pine oil.
  • the softener may be composed of a single species or a plurality of species.
  • the amount of the softening agent other than the petroleum softening agent is 2 to 30 parts by mass with respect to 100 parts by mass of the raw rubber.
  • the rubber composition forming the surface rubber layer 16 contains a relatively large amount of plasticizer as compared with the rubber composition forming the internal rubber layer 17.
  • the plasticizer content in the rubber composition forming the surface rubber layer 16 is preferably 5 to 30% by mass, and more preferably 10 to 20% by mass.
  • the plasticizer contained in the surface rubber layer 16 may have a uniform concentration in the layer thickness direction, or may have a concentration distribution in the layer thickness direction. It is preferable to have a concentration distribution in which the concentration of the plasticizer increases from the inner side toward the surface side.
  • the rubber composition forming the surface rubber layer 16 may be the same as the rubber composition forming the internal rubber layer 17 except for the inclusion of a plasticizer.
  • plasticizer examples include ethers, esters, ether esters, phthalic acid derivatives, adipic acid derivatives, sebacic acid derivatives, trimellitic acid derivatives, phosphoric acid derivatives, and the like.
  • the plasticizer preferably has a higher solubility index (SP value) than the ethylene- ⁇ -olefin elastomer.
  • the solubility index (SP value) of the ethylene- ⁇ -olefin elastomer is 8.0 (cal / cm 3 ) 1/2
  • the solubility index (SP value) of the plasticizer is 8.3 to 10 0.0 (cal / cm 3 ) 1/2 is preferable.
  • examples of such a plasticizer include ether ester plasticizers having an SP value of about 9.0 (cal / cm 3 ) 1/2 and good wettability with water.
  • the plasticizer may be composed of a single species or a plurality of species.
  • the rubber composition forming the surface rubber layer 16 may contain short fibers 18 from the viewpoint of enhancing the wear resistance.
  • the rubber composition forming the surface rubber layer 16 contains a relatively large amount of short fibers 18, while the rubber composition forming the internal rubber layer 17 contains a relatively small amount of short fibers.
  • the structure does not contain short fibers.
  • the short fibers 18 are provided so as to cover the surface of the surface rubber layer 16 and have the base end portion buried in rubber and the tip end portion protruding from the surface.
  • the short fibers 18 are preferably not provided inside the surface rubber layer 16 but only on the surface of the surface rubber layer 16.
  • the short fibers 18 include nylon short fibers, vinylon short fibers, aramid short fibers, polyester short fibers, and cotton short fibers.
  • the short fibers 18 are manufactured by cutting long fibers into a predetermined length along the length direction.
  • the short fiber 18 may be subjected to an adhesion treatment that is heated after being immersed in a resorcin / formalin / latex aqueous solution (hereinafter referred to as “RFL aqueous solution”).
  • RTL aqueous solution resorcin / formalin / latex aqueous solution
  • the short fiber 18 has, for example, a length of 0.2 to 5.0 mm and a fiber diameter of 10 to 50 ⁇ m.
  • the rubber composition for forming the surface rubber layer 16 is a powdery or granular montmorillonite and a powdery or granular ultrafine material having a weight average molecular weight of 1 million or more as a friction coefficient reducing material from the viewpoint of enhancing the wear resistance. At least one of the high molecular weight polyethylene resins may be contained.
  • the content of montmorillonite and / or ultrahigh molecular weight polyethylene resin in the rubber composition forming the surface rubber layer 16 is, for example, 10 to 40 parts by mass with respect to 100 parts by mass of the raw rubber.
  • the particle size of montmorillonite or ultrahigh molecular weight polyethylene resin is, for example, 1 to 150 ⁇ m.
  • the rubber composition forming the internal rubber layer 17 contains relatively little plasticizer or no plasticizer compared to the rubber composition forming the surface rubber layer 16.
  • the content of the plasticizer in the rubber composition forming the internal rubber layer 17 is preferably, for example, 0 to 5% by mass, more preferably 0 to 2% by mass, and 0, that is, plasticity. Most preferably, no agent is contained.
  • the compressed rubber layer 11 may further have a powder layer 19 that is composited by covering the surface of the surface rubber layer 16.
  • powder such as talc
  • the powder attached to the surface of the V-rib falls off in a short time due to contact with the pulley during belt running.
  • the powder is washed away with water and drops off from the V-rib surface very easily, and the noise prevention effect by the powder disappears.
  • the powder layer 19 may be provided so as to cover the entire surface of the surface rubber layer 16, and for example, only the surface of the belt half circumference or only the inner or outer surface in the belt width direction. It may be provided so as to be partially covered. Part of the powder of the powder layer 19 is preferably composited by being embedded in rubber.
  • the thickness of the powder layer 19 is preferably such that the rubber surface is exposed. Specifically, the thickness is preferably 0.1 to 200 ⁇ m, and more preferably 1.0 to 100 ⁇ m.
  • Examples of the powder forming the powder layer 19 include talc, calcium carbonate, silica, layered silicate, and the like.
  • the powder may be composed of a single species or a mixture of a plurality of species.
  • the particle size of the powder is preferably from 0.1 to 150 ⁇ m, more preferably from 0.5 to 60 ⁇ m.
  • the particle size is expressed by the sieve opening of the test sieve measured by the sieving method, expressed by the Stokes equivalent diameter by the sedimentation method, the equivalent sphere diameter by the light scattering method, and the electrical resistance test method.
  • One of the values represented by the sphere equivalent value One of the values represented by the sphere equivalent value.
  • Examples of layered silicates include smectites, vermulites, and kaolins.
  • Examples of the smectite group include montmorillonite, beidellite, saponite, and hectorite.
  • Examples of the vermulite family include 3 octahedral vermulites, 2 octahedral vermulites, and the like.
  • Examples of the kaolin family include kaolinite, dickite, halloysite, lizardite, amesite, and chrysotile.
  • the layered silicate is preferably a smectite montmorillonite.
  • the compression rubber layer 11 includes the surface rubber layer 16 and the internal rubber layer 17 provided on the inner side of the belt, and the former is a plasticizer.
  • the compression rubber layer 11 is formed of a rubber composition having a relatively large content, and the latter is formed of a rubber composition having a relatively small plasticizer content or containing no plasticizer.
  • the surface rubber layer 16 which is a part of the surface layer of the surface has a function of suppressing stick-slip noise, so that the overall decrease in belt running performance is suppressed, resulting in stick-slip noise while maintaining heat-resistant running performance. Can be suppressed.
  • the adhesive rubber layer 12 is formed in a band shape having a horizontally long cross section, and has a thickness of, for example, 1.0 to 2.5 mm.
  • the back rubber layer 13 is also formed in a band shape having a horizontally long cross section, and has a thickness of, for example, 0.4 to 0.8 mm.
  • the surface of the back rubber layer 13 is preferably formed in a form in which the texture of the woven fabric is transferred from the viewpoint of suppressing the sound generated between the back rubber layer 13 and the flat pulley in contact with the belt back surface.
  • the adhesive rubber layer 12 and the back rubber layer 13 are formed of a rubber composition obtained by heating and pressurizing an uncrosslinked rubber composition in which various compounding agents are blended and mixed with raw rubber and then crosslinking with a crosslinking agent.
  • the back rubber layer 13 is preferably formed of a rubber composition that is slightly harder than the adhesive rubber layer 12 from the viewpoint of suppressing the occurrence of adhesion due to contact with the flat pulley with which the belt back contacts.
  • the compressed rubber layer 11 and the adhesive rubber layer 12 constitute a V-ribbed belt main body 10 and, instead of the back rubber layer 13, for example, a woven fabric formed of yarns such as cotton, polyamide fiber, polyester fiber, and aramid fiber. Further, a configuration in which a reinforcing fabric composed of a knitted fabric, a nonwoven fabric or the like is provided may be used.
  • Examples of the raw rubber of the rubber composition for forming the adhesive rubber layer 12 and the back rubber layer 13 include, for example, ethylene- ⁇ -olefin elastomer, chloroprene rubber (CR), chlorosulfonated polyethylene rubber (CSM), hydrogenated acrylonitrile rubber ( H-NBR) and the like.
  • the raw rubber for the adhesive rubber layer 12 and the back rubber layer 13 is preferably the same as the raw rubber for the compressed rubber layer 11.
  • the compounding agent examples include a reinforcing material such as carbon black, a vulcanization accelerator, a crosslinking agent, an anti-aging agent, a softening agent and the like, as in the case of the compressed rubber layer 11.
  • the compressed rubber layer 11, the adhesive rubber layer 12, and the back rubber layer 13 may be formed of a rubber composition having a different composition, or may be formed of a rubber composition having the same composition.
  • the core wire 14 is composed of twisted yarns such as polyester fiber (PET), polyethylene naphthalate fiber (PEN), aramid fiber, vinylon fiber and the like.
  • PET polyester fiber
  • PEN polyethylene naphthalate fiber
  • aramid fiber vinylon fiber and the like.
  • the core wire 14 is subjected to an adhesive treatment that is heated after being immersed in an RFL aqueous solution before molding and / or an adhesive treatment that is dried after being immersed in rubber paste in order to impart adhesion to the V-ribbed belt main body 10. .
  • FIG. 3 shows a pulley layout of an auxiliary drive belt transmission device 20 for an automobile using the V-ribbed belt B according to the present embodiment.
  • the accessory drive belt transmission device 20 is of a serpentine drive type in which a V-ribbed belt B is wound around six pulleys of four rib pulleys and two flat pulleys to transmit power.
  • the auxiliary drive belt transmission device 20 includes a power steering pulley 21 at the uppermost position, an AC generator pulley 22 disposed below the power steering pulley 21, and a flat pulley tensioner pulley disposed below the left side of the power steering pulley 21. 23, a flat water pump pulley 24 disposed below the tensioner pulley 23, a crankshaft pulley 25 disposed on the lower left side of the tensioner pulley 23, and a lower right side of the crankshaft pulley 25. And an air conditioner pulley 26. Among these, all except the tensioner pulley 23 and the water pump pulley 24 which are flat pulleys are rib pulleys.
  • These rib pulleys and flat pulleys are made of, for example, a metal press-worked product, a casting, a resin molded product such as nylon resin, phenol resin, and the diameter of the pulley is 50 to 150 mm.
  • auxiliary machine drive belt transmission 20 After the V-ribbed belt B is wound around the power steering pulley 21 so that the V-rib 15 side comes into contact, and then around the tensioner pulley 23 so that the back surface of the belt comes into contact. Further, the crankshaft pulley 25 and the air conditioner pulley 26 are wound in order so that the V-rib 15 side comes into contact, and further, they are wound around the water pump pulley 24 so that the back surface of the belt comes into contact, and the V-rib 15 side comes into contact. Is wound around the AC generator pulley 22 and finally returned to the power steering pulley 21.
  • the belt span length which is the length of the V-ribbed belt B spanned between the pulleys, is, for example, 50 to 300 mm. Misalignment that can occur between pulleys is 0-2 °.
  • a belt forming die 30 that is concentrically provided and includes a cylindrical inner die 31 and an outer die 32, respectively, is used.
  • the inner die 31 is formed of a flexible material such as rubber.
  • the outer mold 32 is formed of a rigid material such as metal.
  • the inner peripheral surface of the outer mold 32 is formed as a molding surface, and V rib forming grooves 33 are provided on the inner peripheral surface of the outer mold 32 at a constant pitch in the axial direction.
  • the outer mold 32 is provided with a temperature control mechanism that controls the temperature by circulating a heat medium such as water vapor or a coolant such as water.
  • the belt mold 30 is provided with pressurizing means for pressurizing and expanding the inner mold 31 from the inside.
  • each compound is blended with the raw rubber and kneaded with a kneader such as a kneader or a Banbury mixer, and the resulting uncrosslinked rubber composition is formed into a sheet by calendering or the like.
  • a kneader such as a kneader or a Banbury mixer
  • uncrosslinked rubber sheets 12 ′ and 13 ′ for the adhesive rubber layer 12 and the back rubber layer 13 are also produced.
  • an adhesion treatment in which the twisted yarn 14 ′ to be the core wire 14 is immersed in an RFL aqueous solution and heated
  • an adhesion treatment in which the twisted yarn 14 ′ is immersed in rubber paste and dried by heating is performed.
  • a rubber sleeve 35 is placed on a cylindrical drum 34 having a smooth surface, and an uncrosslinked rubber sheet 13 ′ for the back rubber layer 13 and an uncrosslinked rubber for the adhesive rubber layer 12 are formed thereon.
  • the rubber sheet 12 ′ is wound in order and laminated, and then the twisted yarn 14 ′ for the core wire 14 is spirally wound around the cylindrical inner mold 31 and further the uncrosslinked rubber for the adhesive rubber layer 12 is formed thereon.
  • the laminate 10 ′ is formed by winding the sheet 12 ′, the uncrosslinked rubber sheet 17 ′ for the inner rubber layer 17 in the compressed rubber layer 11 and the uncrosslinked rubber sheet 16 ′ for the surface rubber layer 16 in order.
  • the outer peripheral surface of the rubber sleeve 35 is configured as a molding surface, and a texture forming pattern of a woven fabric is provided on the outer peripheral surface.
  • a plasticizer P is applied to the surface of the laminate 10 '.
  • the method for applying the plasticizer P is not particularly limited, and may be brush coating or spraying by spraying.
  • the short fibers 18 are provided on the surface of the surface rubber layer 16, as shown in FIG. 8, the short fibers 18 are sprayed on the surface of the laminated body 10 'coated with the plasticizer P, and the plasticizer P is bound to the binder.
  • a layer of short fibers 18 may be provided.
  • the thickness of the short fiber layer is preferably 10 to 300 ⁇ m, more preferably 50 to 200 ⁇ m.
  • the inner surface of the outer mold 32 is plasticized.
  • the agent P may be applied.
  • a layer of short fibers 18 may be provided on the molding surface of the inner peripheral surface of the outer mold 32 using the plasticizer P as a binder.
  • the uncrosslinked rubber sheet 16 ′ for the surface rubber layer 16 is relatively plasticized.
  • a rubber composition having a relatively small plasticizer content or a plastic composition not containing a plasticizer may be used to form the uncrosslinked rubber sheet 17 'for the internal rubber layer 17. Good.
  • the rubber sleeve 35 provided with the laminated body 10 ′ is removed from the cylindrical drum 34, and as shown in FIG. 9, it is set in an internally fitted state on the inner peripheral surface side of the outer mold 32.
  • the powder layer 19 is provided so as to cover the surface of the surface rubber layer 16, the plasticizer P is applied to the surface of the laminate 10 ′, and as shown in FIG.
  • a powder layer 19 ′ may be provided by spraying powder onto the molding surface.
  • the thickness of the powder layer 19 ' is preferably 0.1 to 200 ⁇ m, and more preferably 1.0 to 100 ⁇ m.
  • the powder to be sprayed by applying a voltage of 10 to 100 kV, for example, from the viewpoint of improving the adhesion to the outer mold 32.
  • This powder spraying can be performed using a general powder coating apparatus.
  • the surface of the laminate 10 ′ Powder may be sprayed on the surface.
  • the inner mold 31 is positioned in the rubber sleeve 35 set in the outer mold 32 and sealed.
  • the outer mold 32 is heated, and high-pressure air or the like is injected into the sealed interior of the inner mold 31 to pressurize it.
  • the inner mold 31 expands, and uncrosslinked rubber sheets 16 ′, 17 ′, 12 ′, 13 ′ for forming the belt of the laminated body 10 ′ are formed on the molding surface of the outer mold 32. They are compressed, and their cross-linking proceeds to be integrated and combined with the twisted yarn 14 ′. Finally, a cylindrical belt slab S is formed.
  • the plasticizer P adhering to the surface of the laminate 10 ′ and / or the molding surface of the inner peripheral surface of the outer mold 32 diffuses and penetrates into the surface layer of the uncrosslinked rubber sheet 16 ′ for forming the belt of the laminate 10 ′.
  • a surface rubber layer 16 having a relatively large plasticizer content is formed, and an inner rubber layer 17 having a relatively small plasticizer content or no plasticizer content on the belt inner side of the surface rubber layer 16. Is formed.
  • the short fiber 18 or the powder layer 19 ′ is provided in advance on the surface of the laminate 10 ′ and / or the molding surface of the inner peripheral surface of the outer mold 32, these are the surface portions of the surface rubber layer 16.
  • the short fiber 18 is provided in a flocked state by compounding, and a powder layer 19 is formed.
  • the molding temperature of the belt slab S is, for example, 100 to 180 ° C.
  • the molding pressure is, for example, 0.5 to 2.0 MPa
  • the molding time is, for example, 10 to 60 minutes.
  • V-ribbed belt B is obtained by turning over.
  • the V-ribbed belt B is shown as the friction transmission belt, but it is not particularly limited to this, and a low-edge type V-belt or the like may be used.
  • the accessory driving belt transmission device 20 of the automobile is shown as the belt transmission device, but the belt transmission device is not particularly limited to this, and may be a belt transmission device for general industries.
  • V-ribbed belt V-ribbed belts of Examples 1 to 6 and Comparative Examples 1 to 5 were produced. Each characteristic configuration is also shown in Tables 1 and 2.
  • Example 1 An uncrosslinked rubber sheet for a compressed rubber layer, an adhesive rubber layer, and a back rubber layer of an EPDM composition, and a twisted yarn for a cord were prepared.
  • the uncrosslinked rubber sheet for the surface rubber layer of the compression rubber layer is made of EPDM1 (Mitsui Chemicals, trade name: EPT3045, SP value 8.0 (cal / cm 3 ) 1/2 ) as a raw rubber.
  • EPDM1 Mitsubishi Chemical Corporation, HAF carbon, nitrogen adsorption specific surface area: 79 m 2 / g
  • paraffin oil 1 manufactured by Idemitsu Kosan Co., Ltd., trade name: Diana process oil PS-90, SP value 7.5 (cal / cm 3 ) 1/2
  • vulcanizing agent (trade name: oil sulfur manufactured by Hosoi Chemical Co., Ltd.) 1.6 parts by mass
  • vulcanized 2.8 parts by mass of accelerator 1 (trade name: EM-2 manufactured by Ouchi Shinsei Chemical Co., Ltd.) and 1.2 parts by mass of vulcanization accelerator 2 (product name: MSA manufactured by Ou
  • the uncrosslinked rubber sheet for the inner rubber layer of the compression rubber layer is composed of EPDM1 as a raw rubber, and 100 parts by weight of the raw rubber, carbon black 2 (made by Showa Cabot, trade name: Showa Black IP200 carbon, nitrogen adsorption ratio) Surface area: 26 m 2 / g) is 70 parts by mass, paraffin oil 1 is 8 parts by mass, vulcanizing agent is 1.6 parts by mass, vulcanization accelerator 1 is 2.8 parts by mass, and vulcanization accelerator 2 is 1. 2 parts by weight, 1 part by weight of vulcanization aid 1, 5 parts by weight of vulcanization aid 2, 2 parts by weight of anti-aging agent 1, and 1 part by weight of anti-aging agent 2 were kneaded with a Banbury mixer. After that, it was composed of what was rolled with a calender roll.
  • the uncrosslinked rubber sheet for the adhesive rubber layer uses EPDM2 (manufactured by Dow Chemical Co., Ltd., trade name: Nordel IP4640) as a raw rubber, and 100 parts by weight of the raw rubber, 50 parts by weight of carbon black 1, silica (Tokuyama Corporation).
  • EPDM2 manufactured by Dow Chemical Co., Ltd., trade name: Nordel IP4640
  • the uncrosslinked rubber sheet for the back rubber layer uses EPDM2 as a raw rubber, 100 parts by mass of this raw rubber, 60 parts by mass of carbon black 3 (product name: FEF carbon), and paraffin oil 2 8 parts by mass, 1.6 parts by mass of vulcanizing agent, 1.2 parts by mass of vulcanization accelerator 2, 2.8 parts by mass of vulcanization accelerator 3, and 1 part by mass of vulcanization aid 1 5 parts by weight of auxiliary agent 2, 2 parts by weight of anti-aging agent 1, 1 part by weight of anti-aging agent 2, and 13 parts by weight of short fibers (trade name: nylon 66, type T-5 manufactured by Asahi Kasei Co., Ltd.)
  • the material was kneaded with a Banbury mixer and then rolled with a calender roll.
  • the twisted yarn for the core wire was a polyester fiber manufactured by Teijin Ltd. having a configuration of 1100 dtex / 2 ⁇ 3 (upper twist number 9.5 T / 10 cm (Z), lower twist number 2.19 T / 10 cm).
  • the layer rubber composition was immersed in rubber paste dissolved in toluene and then subjected to heat drying at 60 ° C. for 40 seconds in order.
  • RF aqueous solution a chlorosulfonated polyethylene rubber (CSM) latex (L) having a solid content concentration of 40% by mass is obtained.
  • (RF solid content mass) / (L solid content mass) 0.25 (The total solid content concentration was 45.2% by mass), and further, water was added so that the solid content concentration was 20% by mass, and the mixture was aged for 12 hours while stirring.
  • CSM chlorosulfonated polyethylene rubber
  • a rubber sleeve is placed on a cylindrical drum having a smooth surface, and an uncrosslinked rubber sheet for the back rubber layer and an uncrosslinked rubber sheet for the adhesive rubber layer are wound around the rubber sleeve in order, and then an adhesive treatment is performed thereon.
  • the applied twisted yarn is spirally wound, and further, an uncrosslinked rubber sheet for the adhesive rubber layer, an uncrosslinked rubber sheet for the inner rubber layer of the compression rubber layer, and an uncrosslinked rubber sheet for the surface rubber layer are further wound on the spiral thread.
  • a laminate is formed on the rubber sleeve, and an ether ester plasticizer (trade name: ADEKA Sizer RS700, SP value 8.9 (cal / cm 3 ) 1/2 ) 100 g on the outer peripheral surface of the laminate is 100 g.
  • an ether ester plasticizer trade name: ADEKA Sizer RS700, SP value 8.9 (cal / cm 3 ) 1/2
  • nylon short fibers (trade name: Rhodia SD, fiber length 0.6 mm, manufactured by Rhodia) were sprayed to provide a short fiber layer.
  • talc powder product name: DS-34, manufactured by Fuji Talc Co., Ltd., particle size 20 ⁇ m
  • the outer mold was covered with the inner mold and sealed.
  • the laminate on the rubber sleeve was vulcanized and formed into a cylindrical belt slab by heating the outer mold and pressurizing the sealed interior of the inner mold.
  • the molding temperature was 170 ° C.
  • the molding pressure was 1.0 MPa
  • the molding time was 30 minutes.
  • a V-ribbed belt manufactured from this belt slab was designated as Example 1.
  • the compression rubber layer is composed of a powder layer, a surface rubber layer formed of a rubber composition having a relatively large plasticizer content, and a plastic provided on the belt inner side. And an internal rubber layer formed of a rubber composition not containing a plasticizer.
  • the V-ribbed belt of Example 1 has a belt circumferential length of 1115 mm, a belt thickness of 4.3 mm, a V-rib height of 2.0 mm, and six ribs (belt width of 21.36 mm). .
  • Example 2 A V-ribbed belt manufactured by the same method as Example 1 except that the powder was not sprayed onto the inner peripheral surface of the outer mold, that is, the compressed rubber layer had no powder layer. It was.
  • Example 3 Furthermore, the nylon short fiber was not sprayed after the plasticizer was applied to the outer peripheral surface of the laminate, that is, the compressed rubber layer had no powder layer and the surface rubber layer had no short fiber.
  • a V-ribbed belt produced by the same method as in Example 2 except for was used as Example 3.
  • Example 4 Furthermore, a V-ribbed belt manufactured by the same method as in Example 3 was used, except that the same uncrosslinked rubber sheet as the inner rubber layer was used as the uncrosslinked rubber sheet for the surface rubber layer of the compression rubber layer. Example 4 was adopted.
  • Example 5 A V-ribbed belt produced by the same method as in Example 1 except that a non-crosslinked rubber sheet for the surface rubber layer of the compression rubber layer was prepared by blending carbon black 2 instead of carbon black 1. It was set to 5.
  • Example 6 As an uncrosslinked rubber sheet for the surface rubber layer of the compression rubber layer, a material in which 8 parts by mass of an ether ester plasticizer is blended with 100 parts by mass of the raw rubber, and an ether ester plasticizer on the outer peripheral surface of the laminate is used.
  • Example 6 was a V-ribbed belt manufactured by the same method as Example 1 except that the coating was not performed.
  • the uncrosslinked rubber sheet for the compression rubber layer uses EPDM1 as a raw rubber, and 100 parts by mass of the raw rubber, 60 parts by mass of carbon black 2, 1.6 parts by mass of vulcanizing agent, and vulcanization accelerator 1 2.8 parts by weight, 1.2 parts by weight of vulcanization accelerator 2, 1 part by weight of vulcanization aid 1, 5 parts by weight of vulcanization aid 2, 2 parts by weight of anti-aging agent 1, and anti-aging 1 part by weight of agent 2, 25 parts by weight of short fibers (product name: nylon 66, type T-5, fiber length 1 mm, manufactured by Asahi Kasei Corporation), and ether ester plasticizer (product name: ADEKA Sizer RS700, manufactured by ADEKA) Was blended with a Banbury mixer and then rolled with a calender roll.
  • the uncrosslinked rubber sheet for the adhesive rubber layer and the back rubber layer, and the twisted yarn for the core wire were the same as those in Example 1.
  • the twisted yarn subjected to the adhesive treatment is wound spirally on the uncrosslinked rubber sheet Further, an uncrosslinked rubber sheet for the adhesive rubber layer and an uncrosslinked rubber sheet for the compression rubber layer were wound in order thereon to form a laminate.
  • the laminated body on the cylindrical drum was covered with a cylindrical rubber sleeve, placed in a vulcanizing can, heated and pressurized, and the laminated body was vulcanized into a cylindrical belt slab.
  • the molding temperature was 170 ° C.
  • the molding pressure was 0.9 MPa
  • the molding time was 30 minutes.
  • a V-ribbed belt manufactured by grinding the outer periphery of the belt slab with a grindstone to form a V-rib and cutting it into a predetermined width was used as Comparative Example 2.
  • a V-ribbed belt of Comparative Example 2 a belt having a belt circumference of 1115 mm, a belt thickness of 4.3 mm, a V-rib height of 2.0 mm, and 6 ribs (belt width of 21.36 mm) was produced.
  • Example 3 A V-ribbed belt manufactured by the same method as in Comparative Example 2 was compared except that the amount of the ether ester plasticizer in the uncrosslinked rubber sheet for the compressed rubber layer was 15 parts by mass with respect to 100 parts by mass of the raw rubber. Example 3 was used.
  • ⁇ Comparative Example 4> The blending amount of the ether ester plasticizer in the uncrosslinked rubber sheet for the compression rubber layer is 4 parts by mass with respect to 100 parts by mass of the raw rubber, and the paraffin oil 1 is blended with 4 parts by mass with respect to 100 parts by mass of the raw rubber.
  • a V-ribbed belt manufactured by the same method as in Comparative Example 2 was used as Comparative Example 4 except for the above.
  • Comparative Example 5 No plasticizer is blended in the uncrosslinked rubber sheet for the compressed rubber layer, while paraffin oil is blended in 8 parts by mass with respect to 100 parts by mass of the raw rubber, and an ether ester is formed on the V rib side surface using a sponge roll.
  • a V-ribbed belt manufactured by the same method as Comparative Example 2 except that a plasticizer was applied was used as Comparative Example 5.
  • the comparative example 5 corresponds to the V-ribbed belt disclosed in Patent Document 4.
  • FIG. 13 shows a pulley layout of the belt running test machine 40 for evaluating abnormal noise when wet.
  • the belt running test machine 40 for evaluating abnormal noise when wet is provided with a drive pulley 41 that is a rib pulley having a pulley diameter of 140 mm, and a first driven pulley 42 that is a rib pulley having a pulley diameter of 75 mm is provided to the right of the drive pulley 41.
  • a second driven pulley 43 which is a rib pulley having a pulley diameter of 50 mm, is provided above the first driven pulley 42 and diagonally right above the driving pulley 41.
  • An idler pulley 44 which is a flat pulley having a pulley diameter of 75 mm, is provided in the middle.
  • the V rib side of the V-ribbed belt B is in contact with the drive pulley 41, the first and second driven pulleys 42 and 43, which are rib pulleys, and the back side is a flat pulley. It is configured to be wound around in contact with a certain idler pulley 44.
  • the above-described abnormal noise evaluation belt running test machine 40 is set, and pulley positioning is performed so that a belt tension of 49 N is applied per rib.
  • a resistance is applied to the alternator to which the second driven pulley 43 is attached so that a current of 60 A flows, and the drive pulley 41 is rotated at a rotational speed of 800 rpm at room temperature, so that the V-ribbed belt B enters the drive pulley 41.
  • water was dropped on the V rib side of the V ribbed belt B at a rate of 1000 ml per minute.
  • the abnormal noise generation situation during belt running is as follows: A: No abnormal noise is generated. B: A slight noise is generated. C: An abnormal noise occurs. It was evaluated in three stages.
  • FIG. 14 shows a pulley layout of a belt running test machine 50 for evaluating heat resistance and durability.
  • the belt running test machine 50 for evaluating heat resistance durability is such that a large-diameter driven pulley 51 and a driving pulley 52, each being a rib pulley having a pulley diameter of 120 mm, are provided at intervals in the vertical direction, and a pulley is provided in the middle in the vertical direction.
  • An idler pulley 53 that is a flat pulley having a diameter of 70 mm is provided, and a small-diameter driven pulley 54 that is a rib pulley having a pulley diameter of 55 mm is provided to the right of the idler pulley 53.
  • the V rib side of the V-ribbed belt B is in contact with the large-diameter driven pulley 51, the driving pulley 52, and the small-diameter driven pulley 54 that are rib pulleys, and the back side is a flat pulley. It is configured to be wound around in contact with the idler pulley 53.
  • Each of the idler pulley 53 and the small-diameter driven pulley 54 is positioned so that the winding angle of the V-ribbed belt B is 90 °.
  • the belt running tester 50 for heat and durability evaluation was set, and a rotational load of 11.8 kW was applied to the large-diameter driven pulley 51, and the belt tension was applied.
  • a set weight of 834N was loaded on the side of the small-diameter driven pulley 54, and the drive pulley 52 was rotated at a rotational speed of 4900 rpm under an ambient temperature of 120 ° C. to run the belt.
  • FIG. 15 shows a pulley layout of the belt running test machine 60 for evaluating wear resistance.
  • a driving pulley 61 and a driven pulley 62 are provided at intervals on the left and right.
  • the wear resistance evaluation belt running test machine 60 is configured such that the V rib side of the V-ribbed belt B is wound around the driving pulley 61 and the driven pulley 62.
  • Tables 3 and 4 show the test results.
  • Examples 1 to 6 were A, and Comparative Example 1 was C, Comparative Example 2 was C, Comparative Example 3 was A, Comparative Example 4 was B, and Comparative Example 5 was C .
  • the surface rubber layer is formed of a rubber composition containing a relatively large amount of ether ester plasticizer and the inner rubber layer is formed of a rubber composition containing no ether ester plasticizer.
  • Examples 1 to 6 are equivalent to Comparative Example 3 in which the compressed rubber layer contains a large amount of plasticizer, but Comparative Example 1 in which the compressed rubber layer does not contain a plasticizer, and the compressed rubber layer contains a small amount of plasticizer It can be seen that it is superior to Comparative Examples 2 and 4 containing No. 1 and Comparative Example 5 in which an ether ester plasticizer is applied to the surface.
  • the heat durability evaluation is 442 hours for Example 1, 458 hours for Example 2, 476 hours for Example 3, 484 hours for Example 4, 450 hours for Example 5, and 440 hours for Example 6, and Comparative Example 1 was 490 hours, Comparative Example 2 was 434 hours, Comparative Example 3 was 132 hours, Comparative Example 4 was 224 hours, and Comparative Example 5 was 460 hours.
  • the abrasion resistance evaluation was 105 for Example 1, 100 for Example 2, 110 for Example 3, 105 for Example 4, 115 for Example 5, 105 for Example 6, and 150 for Comparative Example 1.
  • Comparative Example 2 was 100
  • Comparative Example 3 was 115
  • Comparative Example 4 was 105
  • Comparative Example 5 was 100.
  • Examples 1 to 6 are equivalent to Comparative Examples 2 to 5, but are superior to Comparative Example 1.
  • the present invention is useful for a friction transmission belt including a compression rubber layer that contacts a pulley on the inner peripheral side of a belt body and transmits power, a manufacturing method thereof, and a belt transmission device using the friction transmission belt.
  • V-ribbed belt (friction drive belt) P Plasticizer 10 V-ribbed belt body 11 Compressed rubber layer 16 Surface rubber layer 17 Internal rubber layer 18 Short fiber

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

摩擦伝動ベルト(B)は、ベルト本体(10)の内周側にプーリに接触して動力を伝達する圧縮ゴム層(11)を備える。圧縮ゴム層(11)は、可塑剤の含有量が相対的に多いゴム組成物で形成された表面ゴム層(16)と、表面ゴム層(16)よりもベルト内部側に設けられ可塑剤の含有量が相対的に少ない乃至可塑剤を含有していないゴム組成物で形成された内部ゴム層(17)とを有する。

Description

摩擦伝動ベルト
 本発明は、ベルト本体の内周側にプーリに接触して動力を伝達する圧縮ゴム層を備えた摩擦伝動ベルト及びその製造方法、並びにそれを用いたベルト伝動装置に関する。
 被水時における摩擦伝動ベルトとプーリとの間のスリップによりスティック-スリップ音が生じるという課題が知られている。
 この課題の解決手段として、特許文献1には、ベルト長手方向に沿って心線を埋設したゴム層を含む弾性体層からなり、エチレン-α-オレフィンエラストマーを用いた動力伝動用ベルトにおいて、エチレン-α-オレフィンエラストマー100質量部に対して、溶解度指数が8.3~10.5(cal/cm1/2の可塑剤又は軟化剤が0.7~10質量部含まれているものが開示されている。
 特許文献2には、ベルト長手方向に沿って心線を埋設したゴム層を含む弾性体層からなるVリブドベルトにおいて、摩擦伝動面となるリブ部が、エチレン-α-オレフィンエラストマー100重量部に対して、溶解度指数が8.3~10.7(cal/cm1/2の可塑剤を10~25重量部、及び無機充填剤を60~110重量部配合したゴム組成物で構成されたものが開示されている。
 特許文献3には、ベルト長手方向に沿って心線を埋設したゴム層を含む弾性体層からなるVリブドベルトにおいて、摩擦伝動面となるリブ部が、エチレン-α-オレフィンエラストマー100重量部に対して、エーテルエステル系可塑剤を5~25重量部配合したゴム組成物で構成されたものが開示されている。
 また、特許文献4には、異音特性、屈曲寿命特性、及び耐寒特性のいずれもを向上させることを目的として、Vリブ先端に可塑剤を塗布したVリブドベルトが開示されている。
特開2005-147392号公報 特開2007-232205号公報 特開2008-195914号公報 特開昭59-187136号公報
 本発明の摩擦伝動ベルトは、ベルト本体の内周側にプーリに接触して動力を伝達する圧縮ゴム層を備えたものであって、
 上記圧縮ゴム層は、可塑剤の含有量が相対的に多いゴム組成物で形成された表面ゴム層と、該表面ゴム層よりもベルト内部側に設けられ可塑剤の含有量が相対的に少ない乃至可塑剤を含有していないゴム組成物で形成された内部ゴム層と、を有する。
 本発明のベルト伝動装置は、本発明の摩擦伝動ベルトが複数のプーリに巻き掛けられたものである。
 本発明の摩擦伝動ベルトの製造方法は、ベルト成形型におけるプーリに接触する圧縮ゴム層を形成するための成型面に、ベルト形成用の未架橋ゴム組成物を圧接させて架橋させるものであって、
 ベルト成形型の成型面にベルト形成用の未架橋ゴム組成物を圧接させる前に、該ベルト成形型の成型面及び/又は該ベルト形成用の未架橋ゴム組成物の表面に予め可塑剤を付着させるものである。
実施形態に係るVリブドベルトの斜視図である。 実施形態に係るVリブドベルトの要部拡大断面図である。 実施形態に係る自動車の補機駆動ベルト伝動装置のプーリレイアウトを示す図である。 ベルト成形型の縦断面図である。 ベルト成形型の一部分の拡大縦断面図である。 積層体を形成する工程を示す説明図である。 積層体の表面に可塑剤を塗布する工程を示す説明図である。 積層体の表面に短繊維を吹き付ける工程を示す説明図である。 積層体を外型にセットする工程を示す説明図である。 外型に粉体を吹き付ける工程を示す説明図である。 外型を内型の外側に設ける工程を示す説明図である。 ベルトスラブを成型する工程を示す説明図である。 被水時異音評価用ベルト走行試験機のプーリレイアウトを示す図である。 耐熱耐久性評価用ベルト走行試験機のプーリレイアウトを示す図である。 耐摩耗性評価用ベルト走行試験機のプーリレイアウトを示す図である。
 以下、実施形態を図面に基づいて詳細に説明する。
 図1及び2は、本実施形態に係るVリブドベルトB(摩擦伝動ベルト)を示す。本実施形態に係るVリブドベルトBは、例えば、自動車のエンジンルーム内に設けられる補機駆動ベルト伝動装置等に用いられるものである。本実施形態に係るVリブドベルトBは、例えば、ベルト周長700~3000mm、ベルト幅10~36mm、及びベルト厚さ4.0~5.0mmである。
 本実施形態に係るVリブドベルトBは、ベルト内周側の圧縮ゴム層11と中間の接着ゴム層12とベルト外周側の背面ゴム層13との三重層に構成されたVリブドベルト本体10を備えており、接着ゴム層12には、ベルト幅方向にピッチを有する螺旋を形成するように配された心線14が埋設されている。
 圧縮ゴム層11は、複数のVリブ15がベルト内周側に垂下するように設けられている。複数のVリブ15は、各々がベルト長さ方向に延びる断面略逆三角形の突条に形成されていると共に、ベルト幅方向に並設されている。各Vリブ15は、例えば、リブ高さが2.0~3.0mm、基端間の幅が1.0~3.6mmである。また、リブ数は例えば3~6個である(図1では、リブ数が6)。
 圧縮ゴム層11は、プーリ接触表面全体に沿うように層状に形成された表面ゴム層16とその表面ゴム層16よりもベルト内部側に設けられた内部ゴム層17とを有する。圧縮ゴム層11は、例えば、全体の厚さが2.0~2.5mm、表面ゴム層16の厚さが0.3~0.6mm、及び内部ゴム層17の厚さが1.6~2.0mmである。
 圧縮ゴム層11の表面ゴム層16及び内部ゴム層17のそれぞれは、原料ゴムに種々の配合剤が配合されて混練された未架橋ゴム組成物を加熱及び加圧して架橋剤により架橋させたゴム組成物で形成されている。
 圧縮ゴム層11の表面ゴム層16及び内部ゴム層17のそれぞれを形成するゴム組成物の原料ゴムは、例えば、エチレン・プロピレンコポリマー(EPR)、エチレン・プロピレン・ジエンターポリマー(EPDM)、エチレン・オクテンコポリマー、エチレン・ブテンコポリマーなどのエチレン-α-オレフィンエラストマー、クロロプレンゴム(CR)、クロロスルホン化ポリエチレンゴム(CSM)、水素添加アクリロニトリルゴム(H-NBR)等が挙げられる。原料ゴムは、これらのうちエチレン-α-オレフィンエラストマーであることが好ましい。原料ゴムは、単一種で構成されていてもよく、また、複数種がブレンドされて構成されていてもよい。
 配合剤としては、カーボンブラックなどの補強材、加硫促進剤、架橋剤、老化防止剤、軟化剤等が挙げられる。
 補強材としては、カーボンブラックでは、例えば、チャネルブラック;SAF、ISAF、N-339、HAF、N-351、MAF、FEF、SRF、GPF、ECF、N-234などのファーネスブラック;FT、MTなどのサーマルブラック;アセチレンブラックが挙げられる。補強剤としてはシリカも挙げられる。補強剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。補強材は、耐摩耗性及び耐屈曲性のバランスが良好となるという観点から、原料ゴム100質量部に対する配合量が30~80質量部であることが好ましい。
 表面ゴム層16を形成するゴム組成物及び内部ゴム層17を形成するゴム組成物のいずれもがカーボンブラックを含有している場合、表面ゴム層16を形成するゴム組成物が含有するカーボンブラックの窒素吸着比表面積は例えば20~100m/gであり、内部ゴム層17を形成するゴム組成物が含有するカーボンブラックの窒素吸着比表面積は例えば20~50m/gである。そして、表面ゴム層16を形成するゴム組成物が含有するカーボンブラックは、内部ゴム層17を形成するゴム組成物が含有するカーボンブラックよりも、窒素吸着比表面積が大きいことが好ましい。
 加硫促進剤としては、酸化マグネシウムや酸化亜鉛(亜鉛華)などの金属酸化物、金属炭酸塩、ステアリン酸などの脂肪酸及びその誘導体等が挙げられる。加硫促進剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。加硫促進剤は、原料ゴム100質量部に対する配合量が例えば0.5~8質量部である。
 架橋剤としては、例えば、硫黄、有機過酸化物が挙げられる。架橋剤として、硫黄を用いたものでもよく、また、有機過酸化物を用いたものでもよく、さらには、それらの両方を併用したものでもよい。架橋剤は、硫黄の場合、原料ゴム100質量部に対する配合量が0.5~4.0質量部であることが好ましく、有機過酸化物の場合、原料ゴム100質量部に対する配合量が例えば0.5~8質量部である。
 老化防止剤としては、アミン系、キノリン系、ヒドロキノン誘導体、フェノール系、亜リン酸エステル系のものが挙げられる。老化防止剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。老化防止剤は、原料ゴム100質量部に対する配合量が例えば0~8質量部である。
 軟化剤としては、例えば、石油系軟化剤、パラフィンワックスなどの鉱物油系軟化剤、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落下生油、木ろう、ロジン、パインオイルなどの植物油系軟化剤が挙げられる。軟化剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。石油系軟化剤以外の軟化剤は、原料ゴム100質量部に対する配合量が例えば2~30質量部である。
 表面ゴム層16を形成するゴム組成物は、内部ゴム層17を形成するゴム組成物と比べて、相対的に多くの可塑剤を含有している。表面ゴム層16を形成するゴム組成物における可塑剤の含有量は5~30質量%であることが好ましく、10~20質量%であることがより好ましい。表面ゴム層16が含有する可塑剤は、層厚さ方向に濃度が均一であってもよく、また、層厚さ方向に濃度分布を有していてもよく、その場合、層厚さ方向の内部側から表面側に向かって可塑剤の濃度が高くなった濃度分布を有することが好ましい。表面ゴム層16を形成するゴム組成物は可塑剤の含有を除いて内部ゴム層17を形成するゴム組成物と同一であってもよい。
 可塑剤としては、例えば、エーテル系、エステル系、エーテルエステル系、フタル酸誘導体系、アジピン酸誘導体系、セバシン酸誘導体系、トリメリット酸誘導体系、リン酸誘導体系等のものが挙げられる。可塑剤は、表面ゴム層16を形成するゴム組成物の原料ゴムがエチレン-α-オレフィンエラストマーである場合には、エチレン-α-オレフィンエラストマーよりも溶解度指数(SP値)が大きいことが好ましく、具体的には、エチレン-α-オレフィンエラストマーの溶解度指数(SP値)は8.0(cal/cm1/2であるが、可塑剤の溶解度指数(SP値)は8.3~10.0(cal/cm1/2であることが好ましい。かかる可塑剤としては、SP値が約9.0(cal/cm1/2であり、水との濡れ性が良好であるエーテルエステル系可塑剤が挙げられる。可塑剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。
 表面ゴム層16を形成するゴム組成物は、耐摩耗性を高める観点から、短繊維18を含有していてもよい。その場合、表面ゴム層16を形成するゴム組成物が短繊維18を相対的に多く含有している一方、内部ゴム層17を形成するゴム組成物が短繊維を相対的に少なく含有している乃至短繊維を含有していない構成であることが好ましい。短繊維18は、表面ゴム層16の表面を被覆すると共に、各々、基端部がゴムに埋まり、先端部が表面から突出するように設けられていることが好ましい。短繊維18は、表面ゴム層16の層内部には設けられず、表面ゴム層16の表面のみに設けられていることが好ましい。
 短繊維18としては、例えば、ナイロン短繊維、ビニロン短繊維、アラミド短繊維、ポリエステル短繊維、綿短繊維が挙げられる。短繊維18は、長繊維を長さ方向に沿って所定長に切断して製造される。短繊維18は、例えば、レゾルシン・ホルマリン・ラテックス水溶液(以下「RFL水溶液」という。)等に浸漬した後に加熱する接着処理が施されたものであってもよい。短繊維18は、例えば、長さが0.2~5.0mm、繊維径が10~50μmである。
 また、表面ゴム層16を形成するゴム組成物は、耐摩耗性を高める観点から、摩擦係数低減材として、粉状乃至粒状のモンモリロナイト及び重量平均分子量が100万以上である粉状乃至粒状の超高分子量ポリエチレン樹脂のうち少なくとも一方を含有していてもよい。表面ゴム層16を形成するゴム組成物におけるモンモリロナイト及び/又は超高分子量ポリエチレン樹脂の含有量は、原料ゴム100質量部に対して例えば10~40質量部である。モンモリロナイト或いは超高分子量ポリエチレン樹脂の粒径は例えば1~150μmである。
 内部ゴム層17を形成するゴム組成物は、表面ゴム層16を形成するゴム組成物と比べて、相対的に少ない可塑剤を含有している乃至可塑剤を含有していない。内部ゴム層17を形成するゴム組成物における可塑剤の含有量は例えば、0~5質量%であることが好ましく、0~2質量%であることがより好ましく、0であること、つまり、可塑剤を含有していないことが最も好ましい。
 圧縮ゴム層11は、さらに表面ゴム層16の表面を被覆して複合化した粉体層19を有していてもよい。Vリブドベルトの加硫成型後にVリブ表面にタルク等の粉体を吹き付けて付着させた場合、ベルト走行時のプーリとの接触により短時間でVリブ表面に付着した粉体が脱落してしまうという問題、特に、雨天時に被水すると、粉体が水で流されて極めて容易にVリブ表面から脱落し、粉体による異音防止効果が消失してしまうという問題がある。しかしながら、上記のように表面ゴム層16の表面を被覆して複合化した粉体層19があると、プーリとの間で生じるスリップ音の抑制効果を長期に亘って得ることができる。また、粉体層19による摩擦係数の低減効果もあるので、プーリとの接触による摩耗も抑えることができ、さらに、粉体層19表面の凹凸により被水時のハイドロプレーニングを防止(水切り)して被水によるスリップを防止することができる。
 粉体層19は、表面ゴム層16表面全体を被覆するように設けられていてもよく、また、例えば、ベルト半周分の表面のみ、或いは、ベルト幅方向の内側又は外側の表面のみのように部分的に被覆するように設けられていてもよい。粉体層19の粉体は、その一部分がゴムに埋まって複合化していることが好ましい。粉体層19の厚さは、ゴム表面が露出する程度であることが好ましく、具体的には、0.1~200μmであることが好ましく、1.0~100μmであることがより好ましい。
 粉体層19を形成する粉体としては、例えば、タルク、炭酸カルシウム、シリカ、層状珪酸塩等が挙げられる。粉体は、単一種で構成されていてもよく、また、複数種が混合されて構成されていてもよい。粉体の粒径は0.1~150μmであることが好ましく、0.5~60μmであることがより好ましい。ここで、粒径とは、ふるい分け法によって測定した試験用ふるいの目開きで表したもの、沈降法によるストークス相当径で表したもの、及び光散乱法による球相当径、並びに電気抵抗試験方法による球相当値で表したもののいずれかである。
 層状珪酸塩としては、スメクタイト族、バーミュライト族、カオリン族が挙げられる。スメクタイト族としては、例えば、モンモリロナイト、バイデライト、サポナイト、ヘクトライト等が挙げられる。バーミュライト族としては、例えば、3八面体型バーミュライト、2八面体型バーミュライト等が挙げられる。カオリン族としては、例えば、カオリナイト、ディッカイト、ハロイサイト、リザーダイト、アメサイト、クリソタイル等が挙げられる。層状珪酸塩は、これらのうちスメクタイト族のモンモリロナイトが好ましい。
 ところで、従来の摩擦伝動ベルトでは、スティック-スリップ音を抑制するために、プーリに接触して動力を伝達する部分のゴム組成物に多くの可塑剤を含有させたのでは、耐熱走行性能を低下させてしまうこととなる。しかしながら、以上の構成の通り、本実施形態に係るVリブドベルトBでは、圧縮ゴム層11が表面ゴム層16とそのベルト内部側に設けられた内部ゴム層17とを有し、前者が可塑剤の含有量が相対的に多いゴム組成物で形成され、また、後者が可塑剤の含有量が相対的に少ない乃至可塑剤を含有していないゴム組成物で形成されているので、圧縮ゴム層11の表層の一部分である表面ゴム層16によってスティック-スリップ音の抑制機能が担われ、そのため全体としてはベルト走行性能の低下が抑えられ、結果として、耐熱走行性能を維持しつつスティック-スリップ音を抑制することができる。
 接着ゴム層12は、断面横長矩形の帯状に構成されており、厚さが例えば1.0~2.5mmである。背面ゴム層13も、断面横長矩形の帯状に構成されており、厚さが例えば0.4~0.8mmである。背面ゴム層13の表面は、ベルト背面が接触する平プーリとの間で生じる音を抑制する観点から、織布の布目が転写された形態に形成されていることが好ましい。接着ゴム層12及び背面ゴム層13は、原料ゴムに種々の配合剤が配合されて混練された未架橋ゴム組成物を加熱及び加圧して架橋剤により架橋させたゴム組成物で形成されている。背面ゴム層13は、ベルト背面が接触する平プーリとの接触で粘着が生じるのを抑制する観点から、接着ゴム層12よりもやや硬めのゴム組成物で形成されていることが好ましい。なお、圧縮ゴム層11と接着ゴム層12とでVリブドベルト本体10を構成し、背面ゴム層13の代わりに、例えば、綿、ポリアミド繊維、ポリエステル繊維、アラミド繊維等の糸で形成された織布、編物、不織布等で構成された補強布が設けられた構成であってもよい。
 接着ゴム層12及び背面ゴム層13を形成するゴム組成物の原料ゴムとしては、例えば、エチレン-α-オレフィンエラストマー、クロロプレンゴム(CR)、クロロスルホン化ポリエチレンゴム(CSM)、水素添加アクリロニトリルゴム(H-NBR)等が挙げられる。接着ゴム層12及び背面ゴム層13の原料ゴムは圧縮ゴム層11の原料ゴムと同一であることが好ましい。
 配合剤としては、圧縮ゴム層11と同様、例えば、カーボンブラックなどの補強材、加硫促進剤、架橋剤、老化防止剤、軟化剤等が挙げられる。
 圧縮ゴム層11、接着ゴム層12、及び背面ゴム層13は、別配合のゴム組成物で形成されていてもよく、また、同じ配合のゴム組成物で形成されていてもよい。
 心線14は、ポリエステル繊維(PET)、ポリエチレンナフタレート繊維(PEN)、アラミド繊維、ビニロン繊維等の撚り糸で構成されている。心線14は、Vリブドベルト本体10に対する接着性を付与するために、成形加工前にRFL水溶液に浸漬した後に加熱する接着処理及び/又はゴム糊に浸漬した後に乾燥させる接着処理が施されている。
 図3は、本実施形態に係るVリブドベルトBを用いた自動車の補機駆動ベルト伝動装置20のプーリレイアウトを示す。この補機駆動ベルト伝動装置20は、VリブドベルトBが4つのリブプーリ及び2つの平プーリの6つのプーリに巻き掛けられて動力を伝達するサーペンタインドライブ方式のものである。
 この補機駆動ベルト伝動装置20は、最上位置のパワーステアリングプーリ21、そのパワーステアリングプーリ21の下方に配置されたACジェネレータプーリ22、パワーステアリングプーリ21の左下方に配置された平プーリのテンショナプーリ23と、そのテンショナプーリ23の下方に配置された平プーリのウォーターポンププーリ24と、テンショナプーリ23の左下方に配置されたクランクシャフトプーリ25と、そのクランクシャフトプーリ25の右下方に配置されたエアコンプーリ26と、を備えている。これらのうち、平プーリであるテンショナプーリ23及びウォーターポンププーリ24以外は全てリブプーリである。これらのリブプーリ及び平プーリは、例えば、金属のプレス加工品や鋳物、ナイロン樹脂、フェノール樹脂などの樹脂成形品で構成されており、また、プーリ径がφ50~150mmである。
 この補機駆動ベルト伝動装置20では、VリブドベルトBは、Vリブ15側が接触するようにパワーステアリングプーリ21に巻き掛けられ、次いで、ベルト背面が接触するようにテンショナプーリ23に巻き掛けられた後、Vリブ15側が接触するようにクランクシャフトプーリ25及びエアコンプーリ26に順に巻き掛けられ、さらに、ベルト背面が接触するようにウォーターポンププーリ24に巻き掛けられ、そして、Vリブ15側が接触するようにACジェネレータプーリ22に巻き掛けられ、最後にパワーステアリングプーリ21に戻るように設けられている。プーリ間で掛け渡されるVリブドベルトBの長さであるベルトスパン長は例えば50~300mmである。プーリ間で生じ得るミスアライメントは0~2°である。
 次に、本実施形態に係るVリブドベルトBの製造方法の一例について図4~11に基づいて説明する。
 本実施形態に係るVリブドベルトBの製造では、図4及び5に示すように、同心状に設けられた、各々、円筒状の内型31及び外型32からなるベルト成形型30を用いる。
 このベルト成形型30では、内型31はゴム等の可撓性材料で形成されている。外型32は、金属等の剛性材料で形成されている。外型32の内周面は成型面に構成されており、その外型32の内周面には、Vリブ形成溝33が軸方向に一定ピッチで設けられている。また、外型32には、水蒸気等の熱媒体や水等の冷媒体を流通させて温調する温調機構が設けられている。そして、このベルト成形型30では、内型31を内部から加圧膨張させるための加圧手段が設けられている。
 本実施形態に係るVリブドベルトBの製造において、まず、原料ゴムに各配合物を配合し、ニーダー、バンバリーミキサー等の混練機で混練し、得られた未架橋ゴム組成物をカレンダー成形等によってシート状に成形して、圧縮ゴム層11における表面ゴム層16用の未架橋ゴムシート16’(ベルト形成用の未架橋ゴム組成物)及び内部ゴム層17用の未架橋ゴムシート17’(ベルト形成用の未架橋ゴム組成物)を作製する。同様に、接着ゴム層12用及び背面ゴム層13用の未架橋ゴムシート12’,13’も作製する。また、心線14となる撚り糸14’をRFL水溶液に浸漬して加熱する接着処理を行った後、撚り糸14’をゴム糊に浸漬して加熱乾燥する接着処理を行う。
 次いで、図6に示すように、表面が平滑な円筒ドラム34上にゴムスリーブ35を被せ、その上に、背面ゴム層13用の未架橋ゴムシート13’、及び接着ゴム層12用の未架橋ゴムシート12’を順に巻き付けて積層し、その上から心線14用の撚り糸14’を円筒状の内型31に対して螺旋状に巻き付け、さらにその上から接着ゴム層12用の未架橋ゴムシート12’、並びに圧縮ゴム層11における内部ゴム層17用の未架橋ゴムシート17’、及び表面ゴム層16用の未架橋ゴムシート16’を順に巻き付けて積層体10’を形成する。なお、ゴムスリーブ35の外周面は成型面に構成されており、その外周面には、織布の布目形成模様等が設けられている。
 次いで、図7に示すように、積層体10’の表面に可塑剤Pを塗布する。可塑剤Pの塗布方法は、特に限定されるものではなく、刷毛塗りでもよく、また、スプレーによる吹き付けであってもよい。また、表面ゴム層16の表面に短繊維18を設ける場合には、図8に示すように、可塑剤Pを塗布した積層体10’の表面に短繊維18を吹き付けて、可塑剤Pをバインダーとして短繊維18の層を設ければよい。短繊維18の層の厚さは10~300μmとすることが好ましく、50~200μmとすることがより好ましい。なお、積層体10’の表面への可塑剤Pの塗布に代えて、又は、積層体10’の表面への可塑剤Pの塗布に加えて、外型32の内周面の成型面に可塑剤Pを塗布してもよい。この場合、外型32の内周面の成型面に可塑剤Pをバインダーとして短繊維18の層を設けてもよい。また、積層体10’の表面及び/又は外型32の内周面の成型面への可塑剤Pの塗布に代えて、表面ゴム層16用の未架橋ゴムシート16’を相対的に可塑剤の含有量が多いゴム組成物で形成すると共に、内部ゴム層17用の未架橋ゴムシート17’を相対的に可塑剤の含有量が少ない乃至可塑剤を含有しないゴム組成物で形成してもよい。
 次いで、積層体10’を設けたゴムスリーブ35を円筒ドラム34から外し、図9に示すように、それを外型32の内周面側に内嵌め状態にセットする。表面ゴム層16の表面を被覆するように粉体層19を設ける場合には、可塑剤Pの塗布を積層体10’の表面に行い、図10に示すように、外型32の内周面の成型面に粉体を吹き付けて粉体の層19’を設ければよい。粉体の層19’の厚さは0.1~200μmとすることが好ましく、1.0~100μmとすることがより好ましい。また、このとき、外型32への付着性を高める観点から、吹き付ける粉体を例えば10~100kVの電圧をかけて帯電させることが好ましい。この粉体の吹き付けは一般の粉体塗装装置を用いて行うことができる。なお、外型32の内周面の成型面への粉体の吹き付けに代えて、又は、外型32の内周面の成型面への粉体の吹き付けに加えて、積層体10’の表面に粉体を吹き付けてもよい。
 次いで、図11に示すように、内型31を外型32にセットされたゴムスリーブ35内に位置付けて密閉する。
 続いて、外型32を加熱すると共に、内型31の密封された内部に高圧空気等を注入して加圧する。このとき、図12に示すように、内型31が膨張し、外型32の成型面に、積層体10’のベルト形成用の未架橋ゴムシート16’,17’,12’,13’が圧縮され、また、それらの架橋が進行して一体化すると共に撚り糸14’と複合化し、最終的に、円筒状のベルトスラブSが成型される。また、積層体10’の表面及び/又は外型32の内周面の成型面に付着した可塑剤Pが積層体10’のベルト形成用の未架橋ゴムシート16’の表層に拡散浸透して相対的に可塑剤の含有量が多い表面ゴム層16が形成され、その表面ゴム層16のベルト内部側に相対的に可塑剤の含有量が少ない乃至可塑剤を含有していない内部ゴム層17が形成される。さらに、予め積層体10’の表面及び/又は外型32の内周面の成型面に短繊維18や粉体の層19’を設けた場合には、それらが表面ゴム層16の表面部で複合化して短繊維18が植毛状態に設けられ、粉体層19が形成される。このベルトスラブSの成型温度は例えば100~180℃、成型圧力は例えば0.5~2.0MPa、成型時間は例えば10~60分である。
 そして、内型31の内部を減圧して密閉を解き、内型31と外型32との間でゴムスリーブ35を介して成型されたベルトスラブSを取り出し、それを所定幅に輪切りして表裏を裏返すことによりVリブドベルトBが得られる。
 なお、本実施形態では、摩擦伝動ベルトとしてVリブドベルトBを示したが、特にこれに限定されるものではなく、ローエッジタイプのVベルト等であってもよい。
 また、本実施形態では、ベルト伝動装置として自動車の補機駆動ベルト伝動装置20を示したが、特にこれに限定されるものではなく、一般産業用等のベルト伝動装置であってもよい。
 (Vリブドベルト)
 実施例1~6及び比較例1~5のVリブドベルトを作製した。それぞれの特徴的構成については表1及び2にも示す。
 <実施例1>
 EPDM組成物の圧縮ゴム層用、接着ゴム層用、及び背面ゴム層用それぞれの未架橋ゴムシート、並びに心線用の撚り糸を準備した。
 具体的には、圧縮ゴム層の表面ゴム層用の未架橋ゴムシートは、EPDM1(三井化学社製、商品名:EPT3045、SP値8.0(cal/cm1/2)を原料ゴムとして、この原料ゴム100質量部に対し、カーボンブラック1(三菱化学社製、HAFカーボン、窒素吸着比表面積:79m/g)を50質量部、パラフィンオイル1(出光興産社製、商品名:ダイアナプロセスオイルPS-90、SP値7.5(cal/cm1/2)を8質量部、加硫剤(細井化学社製 商品名:オイル硫黄)を1.6質量部、加硫促進剤1(大内新興化学社製 商品名:EM-2)を2.8質量部、加硫促進剤2(大内新興化学社製 商品名:MSA)を1.2質量部、加硫助剤1(花王社製 ステアリン酸)を1質量部、加硫助剤2(堺化学社製 亜鉛華2号)を5質量部、老化防止剤1(大内新興化学社製 商品名:ノクラック224)を2質量部、老化防止剤2(大内新興化学社製 商品名:ノクラックMB)を1質量部、及び超高分子量ポリエチレン(三井化学社製 商品名:ハイゼックスミリオン240S、重量平均分子量:200万)を30質量部配合したものをバンバリーミキサーで混練後、カレンダロールで圧延したもので構成した。
 圧縮ゴム層の内部ゴム層用の未架橋ゴムシートは、EPDM1を原料ゴムとして、この原料ゴム100質量部に対し、カーボンブラック2(昭和キャボット社製、商品名:ショウワブラックIP200カーボン、窒素吸着比表面積:26m/g)を70質量部、パラフィンオイル1を8質量部、加硫剤を1.6質量部、加硫促進剤1を2.8質量部、加硫促進剤2を1.2質量部、加硫助剤1を1質量部、加硫助剤2を5質量部、老化防止剤1を2質量部、及び老化防止剤2を1質量部配合したものをバンバリーミキサーで混練後、カレンダロールで圧延したもので構成した。
 接着ゴム層用の未架橋ゴムシートは、EPDM2(ダウケミカル社製、商品名:Nordel IP4640)を原料ゴムとして、この原料ゴム100質量部に対し、カーボンブラック1を50質量部、シリカ(トクヤマ社製 商品名:トクシールGu)を20質量部、パラフィンオイル2(日本サン化学社製、商品名:サンフレックス2280)を20質量部、加硫剤を3質量部、加硫促進剤3(大内新興化学社製 商品名:EP-150)を2.5質量部、加硫助剤1を1質量部、加硫助剤2を5質量部、老化防止剤1を2質量部、老化防止剤2を1質量部、粘着付与剤(日本ゼオン社製 商品名:石油樹脂クイントンA-100)を5質量部、及び短繊維(綿粉)を2質量部配合したものをバンバリーミキサーで混練後、カレンダロールで圧延したもので構成した。
 背面ゴム層用の未架橋ゴムシートは、EPDM2を原料ゴムとして、この原料ゴム100質量部に対し、カーボンブラック3(東海カーボン社製、商品名:FEFカーボン)を60質量部、パラフィンオイル2を8質量部、加硫剤を1.6質量部、加硫促進剤2を1.2質量部、加硫促進剤3を2.8質量部、加硫助剤1を1質量部、加硫助剤2を5質量部、老化防止剤1を2質量部、老化防止剤2を1質量部、及び短繊維(旭化成社製 商品名:ナイロン66、タイプT-5)を13質量部配合したものをバンバリーミキサーで混練後、カレンダロールで圧延したもので構成した。
 心線用の撚り糸は、帝人社製のポリエステル繊維の1100dtex/2×3(上撚り数9.5T/10cm(Z)、下撚り数2.19T/10cm)構成のものとした。この撚り糸には、固形分濃度20質量%であるイソシアネートのトルエン溶液に浸漬した後に240℃で40秒間加熱乾燥させる処理、RFL水溶液に浸漬した後に200℃で80秒間加熱乾燥させる処理、及び接着ゴム層用ゴム組成物をトルエンに溶解させたゴム糊に浸漬した後に60℃で40秒間加熱乾燥させる処理を順に施した。
 なお、RFL水溶液は、水100質量部に、レゾルシン7.31質量部、ホルマリン(37質量%)10.77質量部、及び10質量%水酸化ナトリウム水溶液(固形分3.3質量部)を加えて攪拌し、その後に水60.91質量部を追加して攪拌しながら5時間熟成させることにより(レゾルシン(R)のモル)/(ホルマリン(F)のモル)=0.5のRF水溶液を調製し、このRF水溶液に、固形分濃度が40質量%であるクロロスルホン化ポリエチレンゴム(CSM)ラテックス(L)を、(RFの固形分質量)/(Lの固形分質量)=0.25となるように加え(全体の固形分濃度が45.2質量%)、さらに固形分濃度が20質量%となるように水を追加して攪拌しながら12時間熟成させることにより調製した。
 そして、表面が平滑な円筒ドラム上にゴムスリーブを被せ、その上に背面ゴム層用の未架橋ゴムシート、及び接着ゴム層用の未架橋ゴムシートを順に巻き付けた後、その上に接着処理を施した撚り糸を螺旋状に巻き付け、その上にさらに接着ゴム層用の未架橋ゴムシート、圧縮ゴム層の内部ゴム層用の未架橋ゴムシート、及び表面ゴム層用の未架橋ゴムシートを順に巻き付けてゴムスリーブ上に積層体を形成し、その積層体の外周面にエーテルエステル系可塑剤(ADEKA社製 商品名:アデカサイザーRS700、SP値8.9(cal/cm1/2)100gを塗布した後、ナイロン短繊維(ローディア社製 商品名:ローディアSD、繊維長0.6mm)を吹き付けて短繊維の層を設けた。
 一方、外型の内周面に100kVで帯電させたタルクの粉体(富士タルク社製 商品名:DS-34、粒径20μm)を吹き付けて粉体層を設け、そこに上記積層体をセットすると共に、その外型を内型に被せて密閉した。
 次いで、外型を加熱すると共に内型の密封された内部を加圧することによりゴムスリーブ上の積層体を円筒状のベルトスラブに加硫成型した。成型温度は170℃、成型圧力は1.0MPa、成型時間は30分とした。
 このベルトスラブから製造したVリブドベルトを実施例1とした。この実施例1のVリブドベルトは、圧縮ゴム層が、粉体層と、可塑剤の含有量が相対的に多いゴム組成物で形成された表面ゴム層と、そのベルト内部側に設けられた可塑剤の含有量が相対的に少ない乃至可塑剤を含有していないゴム組成物で形成された内部ゴム層とを有するものである。また、実施例1のVリブドベルトは、ベルト周長が1115mm、ベルト厚さが4.3mm、Vリブ高さが2.0mm、及びリブ数が6個のもの(ベルト幅21.36mm)である。
 <実施例2>
 外型の内周面への粉体の吹き付けを行わなかった、つまり、圧縮ゴム層が粉体層を有さないことを除いて実施例1と同一の方法により製造したVリブドベルトを実施例2とした。
 <実施例3>
 さらに積層体の外周面に可塑剤を塗布した後のナイロン短繊維の吹き付けを行わなかった、つまり、圧縮ゴム層が粉体層を有さず、且つ表面ゴム層が短繊維を有さないことを除いて実施例2と同一の方法により製造したVリブドベルトを実施例3とした。
 <実施例4>
 さらに圧縮ゴム層の表面ゴム層用の未架橋ゴムシートとして、内部ゴム層用の未架橋ゴムシートと同一のものを用いたことを除いて実施例3と同一の方法により製造したVリブドベルトを実施例4とした。
 <実施例5>
 圧縮ゴム層の表面ゴム層用の未架橋ゴムシートとして、カーボンブラック1の代わりにカーボンブラック2を配合したものを用いたことを除いて実施例1と同一の方法により製造したVリブドベルトを実施例5とした。
 <実施例6>
 圧縮ゴム層の表面ゴム層用の未架橋ゴムシートとして、原料ゴム100質量部に対し、エーテルエステル系可塑剤を8質量部配合したものを用い、積層体の外周面へのエーテルエステル系可塑剤の塗布を行わなかったことを除いて実施例1と同一の方法により製造したVリブドベルトを実施例6とした。
 <比較例1>
 さらに積層体の外周面へのエーテルエステル系可塑剤の塗布を行わなかった、つまり、圧縮ゴム層が可塑剤の含有量が相対的に多い表面ゴム層を有さないことを除いて実施例4と同一の方法により製造したVリブドベルトを比較例1とした。
 <比較例2>
 EPDM組成物の圧縮ゴム層用、接着ゴム層用、及び背面ゴム層用それぞれの未架橋ゴムシート、並びに心線用の撚り糸を準備した。
 圧縮ゴム層用の未架橋ゴムシートは、EPDM1を原料ゴムとして、この原料ゴム100質量部に対し、カーボンブラック2を60質量部、加硫剤を1.6質量部、加硫促進剤1を2.8質量部、加硫促進剤2を1.2質量部、加硫助剤1を1質量部、加硫助剤2を5質量部、老化防止剤1を2質量部、及び老化防止剤2を1質量部、短繊維(旭化成社製 商品名:ナイロン66、タイプT-5、繊維長1mm)を25質量部、及びエーテルエステル系可塑剤(ADEKA社製 商品名:アデカサイザーRS700)を5質量部配合したものをバンバリーミキサーで混練後、カレンダロールで圧延したもので構成した。
 接着ゴム層用、及び背面ゴム層用それぞれの未架橋ゴムシート、並びに心線用の撚り糸は、実施例1と同一のもので構成した。
 そして、表面が平滑な円筒ドラム上に背面ゴム層用の未架橋ゴムシート、及び接着ゴム層用の未架橋ゴムシートを順に巻き付けた後、その上に接着処理を施した撚り糸を螺旋状に巻き付け、その上にさらに接着ゴム層用の未架橋ゴムシート、及び圧縮ゴム層用の未架橋ゴムシートを順に巻き付けて積層体を形成した。
 次いで、円筒ドラム上の積層体に筒状のゴムスリーブを被せ、それを加硫缶に入れて加熱及び加圧することにより積層体を円筒状のベルトスラブに加硫成型した。成型温度は170℃、成型圧力は0.9MPa、成型時間は30分とした。
 そして、ベルトスラブの外周を砥石で研削してVリブを形成すると共に所定幅に幅切りして製造したVリブドベルトを比較例2とした。比較例2のVリブドベルトとして、ベルト周長が1115mm、ベルト厚さが4.3mm、Vリブ高さが2.0mm、及びリブ数が6個のもの(ベルト幅21.36mm)を作製した。
 <比較例3>
 圧縮ゴム層用の未架橋ゴムシートにおけるエーテルエステル系可塑剤の配合量を原料ゴム100質量部に対して15質量部としたことを除いて比較例2と同一の方法により製造したVリブドベルトを比較例3とした。
 <比較例4>
 圧縮ゴム層用の未架橋ゴムシートにおけるエーテルエステル系可塑剤の配合量を原料ゴム100質量部に対して4質量部とし、また、パラフィンオイル1を原料ゴム100質量部に対して4質量部配合したことを除いて比較例2と同一の方法により製造したVリブドベルトを比較例4とした。
 <比較例5>
 圧縮ゴム層用の未架橋ゴムシートに可塑剤を配合せず、一方、パラフィンオイルを原料ゴム100質量部に対して8質量部配合し、そして、スポンジロールを用いてVリブ側表面にエーテルエステル系可塑剤を塗布したことを除いて比較例2と同一の方法により製造したVリブドベルトを比較例5とした。なお、この比較例5は特許文献4に開示されたVリブドベルトに相当する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (試験評価方法)
 <被水時異音評価>
 図13は被水時異音評価用ベルト走行試験機40のプーリレイアウトを示す。
 被水時異音評価用ベルト走行試験機40は、プーリ径が140mmのリブプーリである駆動プーリ41を備え、その駆動プーリ41の右方にプーリ径が75mmのリブプーリである第1従動プーリ42が設けられ、また、第1従動プーリ42の上方で駆動プーリ41の右斜め上方にプーリ径が50mmのリブプーリである第2従動プーリ43が設けられ、さらに、駆動プーリ41と第2従動プーリ43との中間にプーリ径が75mmの平プーリであるアイドラプーリ44が設けられている。そして、この被水時異音評価用ベルト走行試験機40は、VリブドベルトBのVリブ側がリブプーリである駆動プーリ41、第1及び第2従動プーリ42,43に接触すると共に背面側が平プーリであるアイドラプーリ44に接触して巻き掛けられるように構成されている。
 実施例1~6及び比較例1~5のそれぞれについて、上記被水時異音評価用ベルト走行試験機40にセットし、1リブ当たり49Nのベルト張力が負荷されるようにプーリ位置決めを行い、第2従動プーリ43にそれが取り付けられたオルタネータに60Aの電流が流れるように抵抗を与え、常温下、駆動プーリ41を800rpmの回転数で回転させ、VリブドベルトBの駆動プーリ41への進入部においてVリブドベルトBのVリブ側に毎分1000mlの割合で水を滴下した。そして、ベルト走行時の異音発生状況を、A:異音の発生が全くない。B:僅かに異音が発生する。C:異音が発生する。の三段階で評価した。
 <耐熱耐久性評価>
 図14は耐熱耐久性評価用ベルト走行試験機50のプーリレイアウトを示す。
 耐熱耐久性評価用ベルト走行試験機50は、各々、プーリ径が120mmのリブプーリである大径従動プーリ51及び駆動プーリ52が上下に間隔をおいて設けられ、また、それらの上下方向中間にプーリ径が70mmの平プーリであるアイドラプーリ53が設けられ、さらに、アイドラプーリ53の右方にプーリ径が55mmのリブプーリである小径従動プーリ54が設けられている。そして、この耐熱耐久性評価用ベルト走行試験機50は、VリブドベルトBのVリブ側がリブプーリである大径従動プーリ51、駆動プーリ52、及び小径従動プーリ54に接触すると共に背面側が平プーリであるアイドラプーリ53に接触して巻き掛けられるように構成されている。なお、アイドラプーリ53及び小径従動プーリ54のそれぞれはVリブドベルトBの巻き掛け角度が90°となるように位置付けられている。
 実施例1~6及び比較例1~5のそれぞれについて、上記耐熱耐久性評価用ベルト走行試験機50にセットし、大径従動プーリ51に11.8kWの回転負荷を与え、ベルト張力が負荷されるように小径従動プーリ54に側方に834Nのセットウェイトを負荷し、雰囲気温度120℃の下、駆動プーリ52を4900rpmの回転数で回転させてベルト走行させた。そして、VリブドベルトBの圧縮ゴム層にクラックが発生し、それが心線に達するまでの走行時間を測定した。
 <耐摩耗性評価>
 図15は耐摩耗性評価用ベルト走行試験機60のプーリレイアウトを示す。
 耐摩耗性評価用ベルト走行試験機60は、各々、プーリ径が60mmのリブプーリである駆動プーリ61及び従動プーリ62が左右に間隔をおいて設けられている。そして、この耐摩耗性評価用ベルト走行試験機60は、VリブドベルトBのVリブ側が駆動プーリ61及び従動プーリ62に接触して巻き掛けられるように構成されている。
 実施例1~6及び比較例1~5のそれぞれについて、ベルト質量を測定した後、上記耐摩耗性評価用ベルト走行試験機60にセットし、従動プーリ6051に3.82kWの回転負荷を与えると共にベルト張力が負荷されるように側方に1177Nのデッドウェイトを負荷し、室温雰囲気下、駆動プーリ61を3500rpmの回転数で回転させて24時間ベルト走行させた。ベルト走行後、再度ベルト質量を測定した。そして、ベルト走行前後のベルト質量減量をベルト走行前のベルト質量で除して算出した百分率を摩耗率とし、比較例2の摩耗率を100とした相対値を耐摩耗性指標とした。
 (試験評価結果)
 表3及び4に試験結果を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 被水時異音評価は、実施例1~6がA、並びに比較例1がC、比較例2がC、比較例3がA、比較例4がB、及び比較例5がCであった。
 被水時異音評価については、表面ゴム層がエーテルエステル系可塑剤の含有量が相対的に多いゴム組成物で形成され且つ内部ゴム層がエーテルエステル系可塑剤を含有しないゴム組成物で形成された実施例1~6は、圧縮ゴム層が多量の可塑剤を含有する比較例3と同等であるものの、圧縮ゴム層が可塑剤を含有しない比較例1、圧縮ゴム層が少量の可塑剤を含有する比較例2及び4、並びに表面にエーテルエステル系可塑剤を塗布した比較例5よりも優れることが分かる。
 耐熱耐久性評価は、実施例1が442時間、実施例2が458時間、実施例3が476時間、実施例4が484時間、実施例5が450時間、及び実施例6が440時間、並びに比較例1が490時間、比較例2が434時間、比較例3が132時間、比較例4が224時間、及び比較例5が460時間であった。
 耐熱耐久性評価については、実施例1~4は、比較例1、2、及び5と同等であるものの、比較例3及び4よりも優れることが分かる。
 耐摩耗性評価は、実施例1が105、実施例2が100、実施例3が110、実施例4が105、実施例5が115、及び実施例6が105、並びに比較例1が150、比較例2が100、比較例3が115、比較例4が105、及び比較例5が100であった。
 耐摩耗性評価については、実施例1~6は比較例2~5と同等であるものの、比較例1よりも優れることが分かる。
 本発明は、ベルト本体の内周側にプーリに接触して動力を伝達する圧縮ゴム層を備えた摩擦伝動ベルト及びその製造方法、並びにそれを用いたベルト伝動装置について有用である。
B Vリブドベルト(摩擦伝動ベルト)
P 可塑剤
10 Vリブドベルト本体
11 圧縮ゴム層
16 表面ゴム層
17 内部ゴム層
18 短繊維

Claims (15)

  1.  ベルト本体の内周側にプーリに接触して動力を伝達する圧縮ゴム層を備えた摩擦伝動ベルトであって、
     上記圧縮ゴム層は、可塑剤の含有量が相対的に多いゴム組成物で形成された表面ゴム層と、該表面ゴム層よりもベルト内部側に設けられ可塑剤の含有量が相対的に少ない乃至可塑剤を含有していないゴム組成物で形成された内部ゴム層と、を有する摩擦伝動ベルト。
  2.  請求項1に記載された摩擦伝動ベルトにおいて、
     上記表面ゴム層は、層厚さ方向の内部側から表面側に向かって可塑剤の濃度が高くなった濃度分布を有する摩擦伝動ベルト。
  3.  請求項1又は2に記載された摩擦伝動ベルトにおいて、
     上記圧縮ゴム層は、上記表面ゴム層の表面を被覆して複合化した粉体層をさらに有する摩擦伝動ベルト。
  4.  請求項1乃至3のいずれかに記載された摩擦伝動ベルトにおいて、
     上記表面ゴム層を形成するゴム組成物は、粉状乃至粒状のモンモリロナイト及び重量平均分子量が100万以上である粉状乃至粒状の超高分子量ポリエチレン樹脂のうち少なくとも一方を含有する摩擦伝動ベルト。
  5.  請求項1乃至4のいずれかに記載された摩擦伝動ベルトにおいて、
     上記表面ゴム層を形成するゴム組成物及び上記内部ゴム層を形成するゴム組成物は、いずれもカーボンブラックを含有しており、
     上記表面ゴム層を形成するゴム組成物が含有するカーボンブラックは、上記内部ゴム層を形成するゴム組成物が含有するカーボンブラックよりも、窒素吸着比表面積が大きい摩擦伝動ベルト。
  6.  請求項1乃至5のいずれかに記載された摩擦伝動ベルトにおいて、
     上記表面ゴム層を形成するゴム組成物は短繊維を相対的に多く含有している一方、上記内部ゴム層を形成するゴム組成物は短繊維を相対的に少なく含有している乃至短繊維を含有していない摩擦伝動ベルト。
  7.  請求項1乃至6のいずれかに記載された摩擦伝動ベルトにおいて、
     上記表面ゴム層を形成するゴム組成物の原料ゴムがエチレン-α-オレフィンエラストマーであり、
     上記可塑剤が該原料ゴムのエチレン-α-オレフィンエラストマーよりも溶解度指数が大きい摩擦伝動ベルト。
  8.  請求項7に記載された摩擦伝動ベルトにおいて、
     上記可塑剤がエーテルエステル系可塑剤である摩擦伝動ベルト。
  9.  請求項1乃至8のいずれかに記載された摩擦伝動ベルトが複数のプーリに巻き掛けられたベルト伝動装置。
  10.  ベルト成形型におけるプーリに接触する圧縮ゴム層を形成するための成型面に、ベルト形成用の未架橋ゴム組成物を圧接させて架橋させる摩擦伝動ベルトの製造方法であって、
     ベルト成形型の成型面にベルト形成用の未架橋ゴム組成物を圧接させる前に、該ベルト成形型の成型面及び/又は該ベルト形成用の未架橋ゴム組成物の表面に予め可塑剤を付着させる摩擦伝動ベルトの製造方法。
  11.  請求項10に記載された摩擦伝動ベルトの製造方法において、
     上記予め可塑剤を付着させたベルト成形型の成型面及び/又はベルト形成用の未架橋ゴム組成物の表面に、短繊維を吹き付けて可塑剤をバインダーとして短繊維の層を設ける摩擦伝動ベルトの製造方法。
  12.  ベルト成形型におけるプーリに接触する圧縮ゴム層を形成するための成型面に、ベルト形成用の未架橋ゴム組成物を圧接させて架橋させる摩擦伝動ベルトの製造方法であって、
     ベルト成形型の成型面にベルト形成用の未架橋ゴム組成物を圧接させる前に、該ベルト成形型の成型面に予め粉体を付着させると共に、該ベルト形成用の未架橋ゴム組成物の表面に予め可塑剤を付着させる摩擦伝動ベルトの製造方法。
  13.  請求項12に記載された摩擦伝動ベルトの製造方法において、
     上記ベルト成形型の成型面に吹き付ける粉体を帯電させる摩擦伝動ベルトの製造方法。
  14.  請求項12又は13に記載された摩擦伝動ベルトの製造方法において、
     上記予め可塑剤を付着させたベルト形成用の未架橋ゴム組成物の表面に、短繊維を吹き付けて可塑剤をバインダーとして短繊維の層を設ける摩擦伝動ベルトの製造方法。
  15.  ベルト成形型におけるプーリに接触する圧縮ゴム層を形成するための成型面に、可塑剤の含有量が相対的に多い外側の未架橋ゴム組成物と可塑剤の含有量が相対的に少ない乃至可塑剤を含有していない内側の未架橋ゴム組成物との積層体を圧接させて架橋させる摩擦伝動ベルトの製造方法。
PCT/JP2011/001558 2010-03-16 2011-03-16 摩擦伝動ベルト WO2011114727A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-059787 2010-03-16
JP2010059787A JP5586282B2 (ja) 2010-03-16 2010-03-16 摩擦伝動ベルト及びその製造方法、並びにそれを用いたベルト伝動装置

Publications (1)

Publication Number Publication Date
WO2011114727A1 true WO2011114727A1 (ja) 2011-09-22

Family

ID=44648839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001558 WO2011114727A1 (ja) 2010-03-16 2011-03-16 摩擦伝動ベルト

Country Status (2)

Country Link
JP (1) JP5586282B2 (ja)
WO (1) WO2011114727A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190976A1 (ja) * 2012-06-22 2013-12-27 バンドー化学株式会社 コンベヤベルト
US10508712B2 (en) 2014-10-31 2019-12-17 Mitsuboshi Belting Ltd. Friction transmission belt and manufacturing method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104040215B (zh) * 2012-01-11 2016-01-20 阪东化学株式会社 摩擦传动带及其制造方法、以及带传动装置
JP6110463B2 (ja) * 2012-01-31 2017-04-05 三ツ星ベルト株式会社 Vリブドベルト
KR20150095644A (ko) 2012-12-13 2015-08-21 반도 카가쿠 가부시키가이샤 전동벨트
JP5863712B2 (ja) * 2013-02-21 2016-02-17 バンドー化学株式会社 自動車の補機駆動ベルト伝動装置及びそれに用いるvリブドベルト
CN108368914B (zh) 2015-12-04 2018-12-18 阪东化学株式会社 多楔带
CN108700159B (zh) 2016-03-30 2019-08-27 阪东化学株式会社 带的制造方法及双层贴合机
KR101942990B1 (ko) 2016-03-30 2019-01-28 반도 카가쿠 가부시키가이샤 V 리브드 벨트의 제조방법
DE112017001731B4 (de) * 2016-03-30 2022-01-20 Bando Chemical Industries, Ltd. Verfahren zur Herstellung eines Riemens und Zweischichtverbindungsmaschine
JP7475829B2 (ja) * 2019-09-11 2024-04-30 三井化学株式会社 伝動ベルト用組成物
JP6916356B2 (ja) * 2019-09-25 2021-08-11 三ツ星ベルト株式会社 摩擦伝動ベルト
US11982336B2 (en) 2019-09-25 2024-05-14 Mitsuboshi Belting Ltd. Friction transmission belt

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150039U (ja) * 1983-03-26 1984-10-06 バンドー化学株式会社 多突条ベルト
JP2001173728A (ja) * 1999-12-15 2001-06-26 Goodyear Tire & Rubber Co:The 動力伝動ベルト
JP2001289281A (ja) * 2000-04-04 2001-10-19 Hokushin Ind Inc 動力伝達用ゴムベルト
JP2009036302A (ja) * 2007-08-01 2009-02-19 Bando Chem Ind Ltd 伝動ベルト及びその製造方法
JP2009281575A (ja) * 2008-05-26 2009-12-03 Mitsuboshi Belting Ltd Vリブドベルト
JP2009299756A (ja) * 2008-06-12 2009-12-24 Bando Chem Ind Ltd 伝動ベルト
JP2010053909A (ja) * 2008-08-27 2010-03-11 Mitsuboshi Belting Ltd 伝動ベルトとその製造方法
JP2010053935A (ja) * 2008-08-27 2010-03-11 Bando Chem Ind Ltd Vリブドベルト

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485147B2 (ja) * 2002-07-30 2010-06-16 三ツ星ベルト株式会社 Vリブドベルトの製造方法
JP4362308B2 (ja) * 2003-04-17 2009-11-11 三ツ星ベルト株式会社 Vリブドベルトの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150039U (ja) * 1983-03-26 1984-10-06 バンドー化学株式会社 多突条ベルト
JP2001173728A (ja) * 1999-12-15 2001-06-26 Goodyear Tire & Rubber Co:The 動力伝動ベルト
JP2001289281A (ja) * 2000-04-04 2001-10-19 Hokushin Ind Inc 動力伝達用ゴムベルト
JP2009036302A (ja) * 2007-08-01 2009-02-19 Bando Chem Ind Ltd 伝動ベルト及びその製造方法
JP2009281575A (ja) * 2008-05-26 2009-12-03 Mitsuboshi Belting Ltd Vリブドベルト
JP2009299756A (ja) * 2008-06-12 2009-12-24 Bando Chem Ind Ltd 伝動ベルト
JP2010053909A (ja) * 2008-08-27 2010-03-11 Mitsuboshi Belting Ltd 伝動ベルトとその製造方法
JP2010053935A (ja) * 2008-08-27 2010-03-11 Bando Chem Ind Ltd Vリブドベルト

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190976A1 (ja) * 2012-06-22 2013-12-27 バンドー化学株式会社 コンベヤベルト
JPWO2013190976A1 (ja) * 2012-06-22 2016-05-26 バンドー化学株式会社 コンベヤベルト
US10508712B2 (en) 2014-10-31 2019-12-17 Mitsuboshi Belting Ltd. Friction transmission belt and manufacturing method thereof

Also Published As

Publication number Publication date
JP5586282B2 (ja) 2014-09-10
JP2011190916A (ja) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5586282B2 (ja) 摩擦伝動ベルト及びその製造方法、並びにそれを用いたベルト伝動装置
JP5508648B2 (ja) Vリブドベルト及びその製造方法
JP6101677B2 (ja) 摩擦伝動ベルト
JP4768893B2 (ja) 摩擦伝動ベルト
JP6088985B2 (ja) 摩擦伝動ベルト及びその製造方法、並びにベルト伝動装置
JP6412210B2 (ja) 摩擦伝動ベルト
JP5309275B1 (ja) 摩擦伝動ベルト及びその製造方法
KR101495453B1 (ko) 마찰전동벨트
JP5704752B2 (ja) 摩擦伝動ベルト
WO2017094213A1 (ja) Vリブドベルト
JP6306267B2 (ja) 摩擦伝動ベルト
WO2015104778A1 (ja) 耐油性伝動ベルト
JPWO2009150803A1 (ja) 摩擦伝動ベルト及びそれを用いたベルト伝動装置
WO2016194371A1 (ja) 伝動ベルト
JP6078702B1 (ja) Vリブドベルト
JP5329262B2 (ja) 摩擦伝動ベルト
JP6581892B2 (ja) 摩擦伝動ベルト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11755918

Country of ref document: EP

Kind code of ref document: A1