WO2011114552A1 - ノズルの噴霧方法およびノズル - Google Patents

ノズルの噴霧方法およびノズル Download PDF

Info

Publication number
WO2011114552A1
WO2011114552A1 PCT/JP2010/065586 JP2010065586W WO2011114552A1 WO 2011114552 A1 WO2011114552 A1 WO 2011114552A1 JP 2010065586 W JP2010065586 W JP 2010065586W WO 2011114552 A1 WO2011114552 A1 WO 2011114552A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
air
nozzle
fluid
pressure
Prior art date
Application number
PCT/JP2010/065586
Other languages
English (en)
French (fr)
Inventor
中野久継
飯村友孝
Original Assignee
株式会社いけうち
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社いけうち filed Critical 株式会社いけうち
Priority to EP10847960.1A priority Critical patent/EP2548652B1/en
Priority to JP2012505438A priority patent/JP5547802B2/ja
Publication of WO2011114552A1 publication Critical patent/WO2011114552A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31242Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow the main flow being injected in the central area of the venturi, creating an aspiration in the circumferential part of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0846Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with jets being only jets constituted by a liquid or a mixture containing a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/12Spray pistols; Apparatus for discharge designed to control volume of flow, e.g. with adjustable passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/915Reverse flow, i.e. flow changing substantially 180° in direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/025Nozzles having elongated outlets, e.g. slots, for the material to be sprayed

Definitions

  • the present invention relates to a nozzle spraying method and a nozzle, and is particularly suitable for use in a continuous casting machine of steel, for cooling high-temperature slabs, blooms and billets, and cooling rolls.
  • the continuous casting equipment manufactures a wide variety of steel plates, and it is necessary to adjust the spray amount sprayed from the nozzles according to the type of steel plate.
  • a one-fluid nozzle that injects only water or a two-fluid nozzle that mixes and injects water and air is used as this type of nozzle.
  • the amount of spray can be easily adjusted by changing the pressure balance between water and air to be supplied, and therefore, two-fluid spray is often performed in which water and air are mixed and ejected from the nozzle.
  • a nozzle 100 shown in FIG. 12 is used.
  • the nozzle 100 forms an orifice by forming an orifice 103 at the tip of an independent hole 102 drilled on the central axis, and providing a notch 104 communicating with the orifice 103 from the injection side.
  • the spray angle and the flow rate distribution change and uniform cooling cannot be performed.
  • the spray angle in the spray thickness direction becomes small and the spray angle tends to become unstable.
  • the tip of the adapter 109 into which the liquid and gas are mixed and flowed A nozzle tip 106 is attached to the nozzle.
  • the nozzle tip 106 is provided with a stirring chamber 107 having a circular cross section and a nozzle soot portion 106a inclined in a separating direction at the front opening of the stirring chamber 107. Two inflows are opposed to the side wall of the stirring chamber 107. A hole 108 is formed.
  • the spray amount is changed while maintaining the spray angle and distribution constant by adjusting the pressure balance between the liquid and air.
  • the spray in the spray width direction is changed.
  • the angle fluctuates and cooling unevenness is likely to occur.
  • the flow rate ratio of the gas to the liquid is lowered to inject only the liquid, there is a problem that the flow distribution shape in the spray width direction becomes unstable.
  • FIG. 14A when two fluids of water and air are sprayed, the spray angle becomes large, but as shown in FIG. 14B, when only one fluid of water is used.
  • the spray angle varies slightly, and there is a problem that a stable spray pattern cannot be obtained when the air-water ratio is varied greatly.
  • the present invention can stabilize the spray angle and the flow rate distribution without greatly changing even when switching between the two-fluid spray and the one-fluid spray and use the air-water ratio to regulate the amount of gas (air) relative to the liquid. It is an object of the present invention to provide a nozzle spraying method that can reduce air consumption by reducing the air consumption.
  • the nozzle is connected to a liquid supply pipe and an air supply pipe, and is configured to perform a combination of one-fluid spraying of only liquid and two-fluid spraying mixed with liquid and air,
  • a nozzle spraying method in which a single fluid spray of only the liquid is performed at a high liquid pressure with a large liquid supply amount, and a two-fluid spray in which the liquid and air are mixed at a low liquid pressure with a small liquid supply amount.
  • the present invention sprays only the liquid at a high flow rate at which the pressure of the liquid is high because the spray angle is relatively wide and the flow rate distribution is stable at a high flow rate at which the liquid pressure is high and the liquid flow rate is increased.
  • One fluid spray is used.
  • the spray angle and the flow rate distribution are stable at a high flow rate of the liquid, the spray angle and the flow rate distribution can be stably maintained even in the case of a single fluid spray of only the liquid.
  • the spray angle and the flow rate distribution become unstable if the one-fluid spraying of only the liquid is continued. Therefore, it switches to the two-fluid spray which mixed air with the liquid.
  • the spray angle and flow rate distribution can be stably sprayed at the same spray angle and flow rate distribution as when only the liquid is sprayed at a high flow rate.
  • the present invention as a nozzle used in the nozzle spraying method, A liquid inflow path connected to the liquid supply pipe, an air inflow path connected to the air supply pipe, a nozzle at the tip and a main fluid flow path; and
  • the liquid inlet and the air inlet communicating with the liquid inlet and the air inlet, respectively, are arranged opposite to each other or parallel to the inner and outer positions, and the liquid inlet is normally open, while the air inlet is switched.
  • a nozzle characterized in that it is opened and closed by a valve, and when the liquid pressure of the liquid supplied from the liquid supply pipe decreases, the switching valve is opened to spray two fluids.
  • the valve body of the switching valve at the air inlet is urged by a spring, and the air pressure supplied from the air supply pipe is set to a constant pressure P2, while the spring pressure of the spring is set to P3.
  • the switching valve is operated with air pressure. It is opened, and air is introduced into the main fluid flow path in accordance with the decreasing rate of the hydraulic pressure to spray two fluids.
  • the spring pressure P3 of the spring that biases the valve body of the switching valve that closes the air inlet does not vary, and the air pressure P2 does not vary, and is constant, so the liquid pressure P1 of the liquid is constant. If it is high, the fluid pressure P1 acts on the spring pressure P3 and acts to close the air inlet with the valve body, so that the inflow of air can be prevented.
  • the hydraulic pressure P1 decreases, when the air pressure P2 becomes larger than the hydraulic pressure P1 + the spring pressure P3, the air inlet automatically opens the air inlet by the air pressure, the air flows in, and the air mixes with the liquid. It becomes spraying.
  • the air flow rate increases automatically when the inflow amount of air fluctuates according to the pressure of the liquid and the liquid pressure decreases and the liquid flow rate decreases.
  • the spray angle and flow distribution can be stably sprayed at the same spray angle and flow distribution as when only the liquid is sprayed at a high flow rate.
  • a valve body biased by a spring may also be provided at the liquid inlet, and the spring pressure may be different from the spring pressure of the spring provided at the air inlet.
  • the switching valve at the air inlet may be an electromagnetic valve, and when the hydraulic pressure supplied from the liquid supply pipe becomes less than a set value, the switching valve is controlled to be opened to spray the two fluids.
  • the set value of the fluid pressure is in the range of 0.005 MPa to 0.9 MPa, and the air / water ratio, which is the ratio of the air amount to the maximum liquid amount during two-fluid spraying, is in the range of 0.5 to 5.0. Is preferred. If the switching valve is an electromagnetic valve and the switching valve is automatically opened and closed according to the fluid pressure, the nozzle structure can be simplified. In addition, it is more preferable that the switching valve can adjust the opening angle according to the hydraulic pressure.
  • the specific structure of the nozzle is not particularly limited, as long as the supply fluid is only a liquid and it is a one-fluid spray or a structure in which air is mixed with a liquid to form a two-fluid spray.
  • a nozzle having a configuration in which fluids collide with each other and a spray angle can be specified by the collision is preferably used.
  • a large-diameter main fluid flow path is provided along the central axis of the nozzle body, and a plurality of independent holes are provided at the tip thereof. While closing the tip, A diametrical cut portion is provided on the injection side end face of the body, and the cut portion has a required width of a circular arc shape or a tapered shape at the bottom surface, and both side surfaces sandwiching the bottom surface are defined as the central axis.
  • a side surface on the side of the central axis that is separated from the front end closing portion of each independent hole is cut out by the cut portion to provide a right-angled L-shaped nozzle that opens on the side surface and the bottom surface of the cut portion. So that the fluid returns from the closed end of the nozzle to the nozzle,
  • the spray thickness is increased by the collision of fluids ejected from each nozzle formed opposite to both sides of the notch, and the fluid ejected from each nozzle in the notch is It is preferable that the spray width is regulated by guiding by the insertion portion.
  • the nozzle spraying method of the present invention can adjust the spray amount of the liquid by adjusting the fluid pressure, while preventing the spray angle and distribution from fluctuating, and enables uniform cooling in the required range. Become. Therefore, it is most suitably used for cooling a steel plate disposed in a secondary cooling zone in a continuous casting facility. It is effective in the process of changing the cooling rate of steel plates such as controlled cooling of rolling (thick plate) and runout table of rolling (thin plate). In addition, it is not limited to this use, It uses suitably also for another use.
  • the present invention it is possible to easily and automatically adjust to a fluid spray of only liquid and a two-fluid spray of liquid and air by changing the fluid pressure according to the cooling condition to be sprayed.
  • the flow rate distribution can be stably maintained without changing between the one-fluid spraying at the high flow rate and the two-fluid spraying at the low flow rate.
  • the flow ratio (gas / water ratio) of the gas to the liquid can be reduced while maintaining a stable spray pattern, the power consumption of the gas supply compressor can be suppressed, and energy saving can be achieved.
  • FIG. 1 is an overall view of a nozzle according to a first embodiment of the present invention. It is a front view which shows mixing of the said 1st Embodiment. It is a principal part expanded sectional view of FIG. (A) is drawing which shows the spray angle at the time of 1 fluid spray with a large liquid flow rate, (B) is drawing which shows the spray angle at the time of 2 fluid spray with a small liquid flow rate. It is sectional drawing of the nozzle of 2nd Embodiment.
  • FIG. 6 is a cross-sectional view orthogonal to FIG. 5. It is a front view of the injection side of the nozzle of 2nd Embodiment. It is a rear view of the inflow port side of the nozzle of 2nd Embodiment.
  • (A) is the principal part expanded sectional view of FIG. 5
  • (B) is the principal part expanded sectional view of FIG. It is a front view of the nozzle of 3rd Embodiment. It is a principal part expanded sectional view of the nozzle of 4th Embodiment. It is sectional drawing of the nozzle of a prior art example. It is sectional drawing of the nozzle of another prior art example. (A) (B) is drawing which shows the problem of a prior art example.
  • FIG. 1 to 4 show a first embodiment.
  • the nozzle 1 of the first embodiment is arranged in a secondary cooling zone in a continuous casting facility and used for cooling a high-temperature slab.
  • the nozzle 1 includes a liquid inflow path 3 connected to the liquid supply pipe 2, an air inflow path 5 connected to the air supply pipe 4, and a nozzle 6 a at the tip, and the main fluid flow path 6. It has.
  • the spray type automatic switching valve 7 is located in the nozzle 1 at the boundary position between the liquid inflow path 3 and the main fluid flow path 6 and between the liquid inflow path 3 and the air inflow path 5. (Hereinafter abbreviated as “switching valve 7”).
  • the switching valve 7 includes a flow path 7a orthogonal to the main fluid flow path 6, with one end of the flow path 7a serving as a liquid inlet 7b communicating with the liquid inflow path 3, and the other end of the flow path 7a being air.
  • An air inlet 7c that communicates with the inflow path 5 is disposed opposite the liquid inlet 7b.
  • a spring 8 is accommodated in the flow path 7 a of the switching valve 7, and a valve body 9 that closes the air inlet 7 c is disposed at the tip of the spring 8, and the air inlet 7 c is opened and closed by the valve body 9. ing.
  • the valve body is not opened on the liquid inlet 7b side, but is normally opened, and the liquid is always allowed to flow into the flow path 7a.
  • the liquid pressure P1 of the liquid and the spring pressure P3 of the spring 8 are applied to the valve body 9. It is assumed that it is always loaded.
  • the air supply pipe 4 is connected to the compressor 30, and the air pressure supplied to the air inflow passage 5 through the air supply pipe 4 is always a constant pressure P2. Therefore, when the liquid pressure P1 of the liquid supplied from the liquid supply pipe 2 is high and P1 + P3> P2, the valve body 9 is closed and air does not flow into the flow path 7a of the switching valve 7, Only the liquid is supplied to the fluid flow path 6. On the other hand, when the hydraulic pressure P1 is low and P1 + P3 ⁇ P2, the valve body 9 is opened by the air pressure, air flows into the flow path 7a of the switching valve 7, and the main fluid flow path 6 is mixed with liquid and air. Liquid is supplied.
  • the liquid pressure P1 of the liquid is set by the discharge pressure of the pump 31 connected to the liquid supply pipe 2, and the discharge pressure is set according to the type of steel sheet cooled by the nozzle, the temperature of the steel sheet, and the like, and the liquid flow rate is set. ing.
  • the valve body 9 when the hydraulic pressure P1 is high and P1 + P3> P2, the valve body 9 is closed and only the liquid is supplied to the main fluid flow path 6 from the nozzle.
  • the spray is a one-fluid spray of only liquid.
  • the spray angle ⁇ in the width direction is a relatively wide ⁇ 1 as shown in FIG.
  • the valve body 9 when the hydraulic pressure P1 is low and P1 + P3 ⁇ P2, the valve body 9 is opened by the air pressure, air flows into the flow path 7a of the switching valve 7, and the main fluid flow path 6 is mixed with liquid and air.
  • the liquid is supplied, and the spray from the nozzle is a two-fluid spray in which air and liquid (water) are mixed.
  • the spray angle varies so as to be narrow, but the spray angle is expanded by adding air to the liquid to form two fluids. Therefore, as shown in FIG. 4B, the spray angle ⁇ 2 ( ⁇ 2 ⁇ 1) is the same as that in FIG. 4A when spraying one fluid, and the flow rate distribution in the thickness direction is also kept uniform. In this way, even if the liquid flow rate is reduced, the spray angle and distribution fluctuations can be suppressed by adding air to form a two-fluid spray.
  • the spray angle is relatively widened when the liquid flow rate to be ejected is large, and the spray angle is relatively large when the liquid flow rate is small.
  • the liquid flow rate decreases, air is automatically added, and the fluid flow rate of the sum of both the liquid and air is made substantially equal to the flow rate when only the liquid is used. The reduction in the angle can be suppressed to be equivalent to the case where the liquid flow rate is large.
  • nozzle 10 used in the second embodiment (hereinafter abbreviated as “nozzle 10”) is different in the structure of the nozzle 1 used in the first embodiment and the nozzle side of the main fluid flow path 6. That is, the main fluid flow path 6 communicates with the liquid inflow path 3 connected to the liquid supply pipe 2 via the switching valve 7 and the air inflow path 5 connected to the air supply pipe 4 as in the first embodiment.
  • the liquid can be sprayed by switching only one fluid of the liquid from the nozzle or two fluids in which air is mixed with the liquid.
  • a partition wall 19 is provided on the central axis of the nozzle on the front end side of the cylindrical main fluid flow path 6 provided along the center line of the nozzle body 15, and independent independent holes 17 and 18 are provided on both sides of the partition wall 19.
  • the tip portions of the individual holes 17 and 18 form tapered tip closing portions 17a and 18a that gradually reduce the flow channel area.
  • a notch 22 is recessed from the tip of the injection side of the body 15 and communicates with one side of the tip closing portions 17a, 18a facing each other. And the opening of the front-end
  • the cut portion 22 has a bottom surface 22a that is recessed in an arc shape that opens to the injection side, and a side surface 22b that is parallel to the axial direction of the nozzle 10.
  • the radius of curvature R of the arc of the bottom surface 22a is in the range of 4 to 50 mm and is determined according to the body size and the required spray width.
  • the nozzle holes 20 and 21 have an L-shaped cross section in which the bottom surface 22a and the side surface 22b of the cut portion 22 are orthogonal to each other.
  • the tip closing portions 17a and 18a are U-shaped portions 17b having a shape in which the fluid is returned to the partition wall 19 side by U-turning from the tips of the independent holes 17 and 18 to the nozzles 20 and 21, respectively. 18b is provided.
  • the taper part 23 which spreads in a separation direction is provided continuously from the injection side front-end
  • the injection process of the first fluid and the second fluid is the same when only one liquid or two fluids composed of a mixture of liquid and air flows into the main fluid flow path 6. This will be described below.
  • the fluid flowing into the main fluid flow path 6 flows separately into the two independent holes 17 and 18 respectively.
  • the fluids that flow into the independent holes 17 and 18 are flowed out from the opposed nozzles 20 and 21 while the flow velocity is increased along with the reduction of the flow path area at the tip closing portions 17a and 18a. Collide within.
  • the collision promotes the diffusion of fluid in the spray thickness direction T and the spray width direction W.
  • the U-shaped portions 17b and 18b are provided so as to return the fluid to the partition wall 19 side from the tip of the independent holes 17 and 18 to the nozzles 20 and 21, a little fluid is ejected from each nozzle 20 and 21. Flows in the return direction. While stirring is performed by this flow, the collision of the two flows can be enhanced, and even when the flow rate is small, the injection angle ⁇ n in the spray thickness direction T and the injection angle ⁇ w in the spray width direction W can be sufficiently secured.
  • the colliding fluid is guided in the spray thickness direction T by the side surface 22 b of the cut portion 22 and smoothly guided in the spray width direction W by the arc-shaped bottom surface 22 a of the cut portion 22. Therefore, it is possible to provide a stable spray angle ⁇ n in the spray thickness direction T and a spray angle ⁇ w in the spray width direction W even when the liquid flow rate varies.
  • the bottom surface 22a of the notch 22 serving as a guide wall has an arc shape, spraying with less energy loss is possible.
  • the spray in the spray thickness direction T stabilized between the side surfaces 22b of the cut portion 22 is guided by the tapered portion 23 continuous from the side surface 22b of the cut portion 22 to the tip side.
  • the injection angle ⁇ n is increased.
  • the flow width distribution in the spray width direction can be kept uniform even if the liquid flow rate fluctuates. Further, since the nozzle holes 20 and 21 have an L-shaped cross section in which the bottom surface 22a and the side surface 22b of the cut portion 22 are orthogonal to each other, the openings of the nozzle holes 20 and 21 can be enlarged, and the upper limit value of the flow rate can be increased. In addition, since the nozzles 20 and 21 can be enlarged without changing the size of the body 15, the size of the nozzle 10 can be reduced.
  • the spray pattern is stable even when the liquid flow rate fluctuates, the flow rate of gas to liquid (air / water ratio) can be lowered, and the power consumption of the compressor for gas supply is also reduced, saving energy. Can also be achieved. Since the spray pattern is stable even if the flow ratio of gas to liquid (air / water ratio) is lowered, the spray angle can be kept stable without changing the spray angle even when only one liquid is sprayed.
  • the spray thickness and the spray width can be increased by the collision and diffusion of the fluid that has flowed out from the opposed nozzle holes of each independent hole.
  • the spray is guided and sprayed by the side surface and the arc-shaped bottom surface of the cut portion, a stable spray thickness and spray width can be obtained even when the flow rate varies, and the flow rate distribution is also uniform. Can be kept in.
  • the independent hole is provided with a front end closing portion with a reduced flow path area at a position before the nozzle hole, the fluid collides at high speed and high pressure, and the spray diffusion effect can be enhanced.
  • the fluid ejected from each of the opposing nozzle holes flows in the return direction slightly and stirring is performed, and the collision of the two flows can be enhanced. Even when the flow rate is small, a sufficient spray area can be secured.
  • the spray pattern is stable even when the liquid flow rate varies, so even if the flow rate ratio of gas to liquid (gas / water ratio) is lowered, it can be used without replacing the nozzle.
  • the nozzle can be used for both the one-fluid spraying of only the liquid and the two-fluid spraying mixed with the liquid and air.
  • the air-water ratio can be reduced, the power consumption of the gas supply compressor can be suppressed, and energy saving can be achieved.
  • FIG. 10 shows a third embodiment.
  • an electromagnetic switching valve 50 is interposed in the air inlet, When the hydraulic pressure supplied to the electromagnetic switching valve 50 by the liquid supply pipe 2 becomes equal to or lower than the set value, the electromagnetic switching valve 50 is opened and air is mixed with the liquid to form a two-fluid spray. Since the structure of the nozzle is the same as that of the second embodiment, the description is omitted.
  • the set value of the hydraulic pressure for switching from the one-fluid spray of only the liquid to the two-fluid spray is in the range of 0.005 MPa to 0.9 MPa.
  • the air / water ratio which is the ratio of the air amount to the maximum liquid amount at the time of two-fluid spraying, is in the range of 0.5 to 5.0.
  • FIG. 11 shows a fourth embodiment.
  • the air supply pipe is joined from the side with respect to the liquid supply pipe provided along the central axis.
  • the fourth embodiment has a double pipe configuration and the inner cylinder 40. Air is circulated through the inner central flow path, and a mixing adapter 43 accommodating a switching valve 7C having a spring and a valve body is attached to the distal end side of the inner cylinder 40.
  • An outer cylinder 41 is disposed with a liquid flow path 42 formed in the outer periphery of the inner cylinder 40, and a nozzle body 45 is connected to the tip of the outer cylinder 41.
  • adapters (not shown) connected to the air supply source and the liquid supply source via pipes are connected to the base end sides of the inner cylinder 40 and the outer cylinder 41, respectively.
  • the switching valve 7C is opened, and the air is fed to the tip of the mixing adapter 43. It is ejected from the opening 43a and mixed in the liquid. The mixed fluid of liquid and air is ejected from an ejection port 45 a at the tip of the nozzle body 45.
  • the liquid pressure is high, one-fluid spray of only the liquid is performed while the switching valve 7C is closed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Continuous Casting (AREA)

Abstract

 1つのノズルで噴霧角度等を変動させずに、液体のみの1流体噴霧と液体とエアを混合した2流体噴霧を使い分けできるようにする。ノズルは液体供給管とエア供給管とに接続され、液体のみの1流体噴霧時と、液体とエアとを混合した2流体噴霧時とを組み合わせて行うようにし、液体供給量が多い高液圧時は前記液体のみの1流体噴霧とし、液体供給量が少ない低液圧時は前記液体とエアとを混合した2流体噴霧としているノズルの噴霧方法を提供する。

Description

ノズルの噴霧方法およびノズル
 本発明はノズルの噴霧方法およびノズルに関し、特に、鉄鋼の連続鋳造機において、高温のスラブ、ブルームやビレットの冷却、ロールの冷却等に好適に用いられるものである。
 連続鋳造設備においては多種多様な鋼板を製造しており、鋼板の種類に応じてノズルから噴霧する噴霧量を調節する必要がある。従来、この種のノズルとして水のみを噴射する1流体ノズルと水とエアを混合して噴射する2流体ノズルのいずれかが用いられている。
 これらのノズルのうち、供給する水とエアの圧力バランスを変えることで噴霧量を容易に調節できるため、ノズルから水とエアを混合させて噴射する2流体噴霧がなされる場合が多い。
 従来、例えば、図12に示すノズル100が使用されている。該ノズル100は、中心軸線上に穿設された独立孔102の先端にオリフィス103を形成し、該オリフィス103に連通する切欠部104を噴射側より設けることで、噴口を形成している。
 前記ノズル100で噴霧量を変えると、噴霧角度や流量分布に変化が生じ、均一な冷却ができなくなる問題がある。具体的には、前記ノズル100では、水とエアとを混合して噴霧する場合、水に対するエアの流量比を下げ、最終的に水のみを噴射して水流量を低下すると、噴霧幅方向と噴霧厚さ方向の噴角は小さくなり、噴霧角度が不安定になりやすい問題がある。
 また、図13に示す特公平3-15493号公報に開示された液体(水)とエアを混合して用いる2流体用のノズル105では、液体と気体とが混合して流入するアダプタ109の先端にノズルチップ106を取り付けている。該ノズルチップ106は、断面円形の撹拌室107を設けると共に、該撹拌室107の前面開口で離反方向に傾斜する噴口ソワセ部106aを設け、撹拌室107の側壁には、対向して2つの流入孔108を穿設している。
 この2流体用のノズル105では、液体とエアの圧力バランスを調整することで、噴霧角度と分布を一定にしつつ噴霧量を変化させているが、液体の流量が変化すると、噴霧幅方向の噴角が変動し、冷却ムラができやすい問題がある。特に、液体に対する気体の流量比を下げて液体のみの噴射とすると、噴霧幅方向の流量分布形状が不安定となってしまう問題がある。例えば、図14(A)に示すように、水と空気の2流体を噴霧した場合、噴霧角度は大となるが、図14(B)に示すように、水のみの1流体とした場合に、噴霧角度は小に変動し、気水比を大きく変動させた場合に安定した噴霧パターンが得られない問題がある。
 さらに、常時、液体(水)と気体(エア)とを混合して噴霧すると、エアの消費量が多くなる。エアの消費量が増加すると、エアを供給するコンプレッサーの電力消費量が増大し、コストアップとなる。よって、コストダウンの要請により、エアを供給するコンプレッサーの電力消費量を押えて省エネ化を図るために、液体に対するエアの流量比を下げる(あるいは液体のみにする)ことが望まれている。そのためには、エアの流量比を下げても安定した噴霧パターンが得られることが必要となるが、前記ノズルではそのニーズに十分に応えることができない。
特公平3-15493号公報
 本発明は、2流体噴霧と1流体噴霧とに適時切り替えて使用しても、噴霧角度および流量分布を大きく変動させずに安定化でき、液体に対する気体(エア)の量を規定する気水比を下げて、エア消費量を低減できるノズルの噴霧方法を提供することを課題としている。
 前記課題を解決するため、本発明は、
 ノズルは液体供給管とエア供給管とに接続され、液体のみの1流体噴霧と、液体とエアとを混合した2流体噴霧とを組み合わせて行うようにし、
 液体供給量が多い高液圧時は前記液体のみの1流体噴霧とし、液体供給量が少ない低液圧時は前記液体とエアとを混合した2流体噴霧としているノズルの噴霧方法を提供している。
 本発明は、液体の圧力が高圧となり液体流量が増加した高流量時には、噴霧角度は比較的広く且つ流量分布が安定していることより、液体が高圧となった高流量時には液体のみを噴霧する1流体噴霧としている。このように、液体の高流量時には噴霧角度および流量分布が安定しているため、液体のみの1流体噴霧としても噴霧角度および流量分布を安定保持できることによる。
 一方、液圧が低下して液体が低流量となると、液体のみの1流体噴霧を続行すると噴霧角度および流量分布が不安定となる。よって、液体にエアを混合した2流体噴霧に切り替えている。このように、エアを加えることで、噴霧角度および流量分布を前記液体のみを高流量噴霧する時と同様な噴霧角度および流量分布で安定して噴霧させることができる。
 本発明は、前記ノズルの噴霧方法に用いるノズルとして、
 液体供給管と接続した液体流入路、エア供給管と接続したエア流入路、先端に噴口を備えてメイン流体流路を備え、かつ、
 前記液体流入路とエア流入路とにそれぞれ連通した液体流入口とエア流入口とを対向配置または内外位置に平行配置すると共に、前記液体流入口は常開とする一方、前記エア流入口は切替弁で開閉し、前記液体供給管から供給される液体の液圧低下時は前記切替弁が開弁されて2流体噴霧させる構成としていることを特徴とするノズルを提供している。
 具体的には、前記エア流入口の切替弁の弁体をバネで付勢し、前記エア供給管から供給するエア圧は一定圧P2とする一方、前記バネのバネ圧はP3とし、
 前記液体供給管から供給される液体の液圧P1が高圧で、P1+P3>P2の時は液体のみを噴霧させ、前記液圧P1が低圧で、P1+P3<P2の時はエア圧で前記切替弁を開き、前記メイン流体流路に液圧の減少割合に応じてエアが導入され、2流体噴霧させる構成としている。
 前記構成では、エア流入口を閉鎖する切替弁の弁体を付勢するバネのバネ圧P3は変動せず、また、エア圧P2も変動させずに一定としているため、液体の液圧P1が高いと、該液圧P1がバネ圧P3に加わって作用し、弁体でエア流入口を確実に閉鎖するため、エアの流入を防止できる。
 一方、液圧P1が低下すると、液圧P1+バネ圧P3よりエア圧P2が大となると、エア圧によりエア流入口を自動的に開いてエアが流入し、エアが液体と混合して2流体噴霧となる。かつ、液体の圧力に応じて自動的にエアの流入量が変動し、液体圧力が小さくなり液体流量が低下すると、エア流量が増加する。
 このように、液圧の変動に応じてエアが自動的に加えられると、噴霧角度および流量分布を前記液体のみを高流量噴霧する時と同様な噴霧角度および流量分布で安定して噴霧させることができる。
 なお、液体流入口にもバネで付勢した弁体を設け、該バネ圧と前記エア流入口に設けるバネのバネ圧とを異ならせてもよい。
 あるいは、前記エア流入口の切替弁は電磁弁とし、前記液体供給管から供給する液圧が設定値未満になると前記切替弁が開放制御されて前記2流体噴霧させる構成としてもよい。
 前記液圧の設定値は0.005MPa~0.9MPaの範囲であり、2流体噴霧時における最大液体量に対するエア量の比である気水比を0.5~5.0の範囲とすることが好ましい。
 前記切替弁を電磁弁とし、液圧に応じて切替弁を自動的に開閉する設定としておくと、ノズルの構造を簡単にできる。かつ、前記切替弁は液圧に応じて開放角度を調整できるようにすることがより好ましい。
 ノズルの具体的な構造は特に限定されず、供給流体を液体のみとして1流体噴霧とするか、液体にエアを混合して2流体噴霧とすることができる構造であればよいが、噴口近傍で流体同士を衝突させ、該衝突で噴霧角度を特定できる構成としているノズルが好適に用いられる。
 使用するノズルとしては、ノズル本体の中心軸線に沿った大径のメイン流体流路を設け、その先端に複数の独立孔を設け、これら各独立孔の噴射側は流路面積を漸次縮小して先端を閉鎖している一方、
 ボディの噴射側端面に直径方向の切込部を設け、該切込部は、その底面を円弧形状あるいはテーパー状の所要幅を有するものとし、かつ、該底面を挟む両側面を前記中心軸線と平行または開口先端が離反方向に拡がるように傾斜させ、
 上記切込部により上記各独立孔の先端閉鎖部より離れた中心軸線側の側面を切り欠いて上記切込部の側面と底面に開口する直角方向のL字状の噴口を設け、各独立孔の先端閉鎖部から上記噴口へと流体が戻るようにし、
 上記切込部の両側に対向して形成される各噴口より噴出する流体同士の衝突で噴霧厚さを拡げていると共に、この切込部の内部で上記各噴口から噴射される流体を上記切込部によりガイドして噴霧幅を規制していることが好ましい。
 前記のように、本発明のノズルの噴霧方法は、液圧を調節することで液体の噴霧量を調節しながら、噴霧角度や分布を変動させないようにし、所要範囲での均一な冷却が可能となる。よって、連続鋳造設備における二次冷却帯に配置される鋼板冷却用として最も好適に用いられる。圧延(厚板)の制御冷却や圧延(薄板)のランナウトテーブル等の鋼板の冷却速度を変化させる工程で有効である。
 なお、該用途に限定されず、他の用途にも好適に用いられる。
 前記本発明によると、噴霧される冷却条件に応じて液圧を変えることで液体のみの流体噴霧と、液体とエアの2流体噴霧に簡単に自動調節できる。かつ、液体流量を変動させ、高流量時には液体のみの1流体噴霧とし、低流量時には液体とエアとを混合した2流体噴霧とし、噴霧方法を変えても、該ノズルからの噴霧の噴霧角度および流量分布を高流量時の1流体噴霧時と低流量時の2流体噴霧時とで変動させず、安定保持することができる。
 また、安定した噴霧パターンを維持しながら、液体に対する気体の流量比(気水比)を下げることができるので、気体供給用のコンプレッサーの電力消費量を抑制でき、省エネ化を図ることができる。
本発明の第1実施形態のノズルの全体図である。 前記第1実施形態の混合を示す正面図である。 図2の要部拡大断面図である。 (A)は液体流量が多い1流体噴霧時の噴霧角度を示す図面、(B)は液体流量が少ない2流体噴霧時の噴霧角度を示す図面である。 第2実施形態のノズルの断面図である。 図5と直交方向の断面図である。 第2実施形態のノズルの噴射側の正面図である。 第2実施形態のノズルの流入口側の背面図である。 (A)は図5の要部拡大断面図、(B)は図6の要部拡大断面図である。 第3実施形態のノズルの正面図である。 第4実施形態のノズルの要部拡大断面図である。 従来例のノズルの断面図である。 別の従来例のノズルの断面図である。 (A)(B)は従来例の問題点を示す図面である。
 以下、本発明の実施形態を図面を参照して説明する。
 図1乃至図4に第1実施形態を示す。該第1実施形態のノズル1は連続鋳造設備において、二次冷却帯に配置し、高温のスラブの冷却に用いている。
 図1および図2に示すように、ノズル1は、液体供給管2と接続した液体流入路3、エア供給管4と接続したエア流入路5、先端に噴口6aを備えてメイン流体流路6を備えている。
 図2に示すように、ノズル1内には、液体流入路3とメイン流体流路6との境界位置で、かつ、液体流入路3とエア流入路5との間に噴霧方式自動切替弁7(以下、切替弁7と略称する)を設置している。
 前記切替弁7は、前記メイン流体流路6と直交方向の流路7aを備え、該流路7aの一端を液体流入路3と連通する液体流入口7bとし、流路7aの他端をエア流入路5と連通するエア流入口7cとし、液体流入口7bと対向配置している。該切替弁7の流路7a内にはバネ8を収容し、該バネ8の先端にエア流入口7cを閉鎖する弁体9を配置し、弁体9でエア流入口7cを開閉するようにしている。
 一方、液体流入口7b側には弁体を配置せずに常開とし、流路7a内に液体を常時流入させ、該液体の液圧P1と前記バネ8のバネ圧P3が弁体9に常時負荷されるものとしている。
 前記エア供給管4はコンプレッサー30に接続し、常時、エア供給管4を通してエア流入路5へ供給するエア圧は一定圧P2としている。
 よって、液体供給管2から供給される液体の液圧P1が高圧で、P1+P3>P2の時は弁体9が閉鎖された状態で、エアが切替弁7の流路7aに流入せず、メイン流体流路6には液体のみが供給される。
 一方、液圧P1が低圧で、P1+P3<P2の時はエア圧で弁体9を開き、切替弁7の流路7aにエアが流入し、メイン流体流路6には液体とエアとの混合液が供給される。
 液体の液圧P1は液体供給管2に接続したポンプ31の吐出圧で設定され、該吐出圧はノズルにより冷却する鋼板の種類や鋼板の温度等に応じて設定し、液体の流量を設定している。
 前記のように、本発明のノズル1では、液圧P1が高圧で、P1+P3>P2の時は弁体9が閉鎖された状態で、メイン流体流路6には液体のみが供給され、噴口からの噴霧は、液体のみの1流体噴霧となる。
 この1流体噴霧時は、図4(A)に示すように幅方向の噴霧角度θが比較的広いθ1となる。
 一方、液圧P1が低圧で、P1+P3<P2の時はエア圧で弁体9を開き、切替弁7の流路7aにエアが流入し、メイン流体流路6には液体とエアとの混合液が供給され、噴口からの噴霧はエアと液体(水)とが混合した2流体噴霧となる。
 液体流量の低下時には、噴霧角度は狭くなるように変動するが、液体にエアを加えて2流体としていることで、噴霧角度は拡がる。よって、図4(B)に示すように、1流体噴霧時の図4(A)と同様な噴霧角度θ2(θ2≒θ1)となり、かつ、厚さ方向の流量分布も均一に保持される。このように、液体流量を低下しても、エアを加えて2流体噴霧とすることで、噴霧角度および分布の変動を抑制できる。
 ノズル1のメイン流体流路6の形状および先端の噴口の形状が相違しても、噴射する液体流量が多い場合には、噴霧角度が比較的拡がり、液体流量が少ない場合は噴霧角度は比較的小さくなるが、本発明のように、液体流量が低下するとエアが自動的に加わって液体とエアとの両方が合計された流体流量を液体だけの時の流量と略同等とすることで、噴霧角度の減少を抑制して液体流量が多い場合と同等とすることができる。
 図5乃至図9に第2実施形態を示す。
 第2実施形態で使用するノズル10(以下、ノズル10と略称する)は、第1実施形態で使用するノズル1とメイン流体流路6の噴口側の構造を変えている。即ち、メイン流体流路6は、前記第1実施形態と同様に、切替弁7を介して液体供給管2と接続した液体流入路3と、エア供給管4と接続したエア流入路5と連通し、噴口から液体のみの1流体または液体にエアが混合された2流体を切り替えて噴霧できるようにしている。
 ノズルボディ15の中心線に沿って設けた円筒状のメイン流体流路6の前端側に、ノズルの中心軸線上に隔壁19を設け、該隔壁19の両側に夫々独立した独立孔17、18を設けている。
 各独立孔17、18の先端部は流路面積を漸次縮小する先細りの先端閉鎖部17a、18aを形成している。また、ボディ15の噴射側の先端より切込部22を凹設し、各先端閉鎖部17a、18aの対向する一側部に連通させている。そして、切込部22により連通された先端閉鎖部17a、18aの開口を噴口20、21としている。
 切込部22は、その底面22aを噴射側に開いた円弧状に凹設していると共に、その側面22bはノズル10の軸芯方向に平行としている。なお、底面22aの円弧の曲率半径Rは4~50mmの範囲で、ボディサイズや要求される噴霧幅に応じて決定されている。
 噴口20、21は、切込部22の底面22aと側面22bとが直交する断面L形状としている。先端閉鎖部17a、18aは、図9(A)に示すように、独立孔17、18の先端から噴口20、21にかけて流体を隔壁19側にUターンして戻す形状となるU字部17b、18bを設けている。また、切込部22の側面22bの噴射側先端に連続して、離反方向に拡がるテーパー部23を設けている。
 前記第2実施形態のノズル10において、メイン流体流路6に液体のみ1流体または液体とエアとの混合液からなる2流体が流入してきた場合における1流体及び2流体の噴射工程は同一であり、以下に説明する。
 図9(A)(B)に示すように、メイン流体流路6に流入してくる流体は、2つの独立孔17、18に夫々分かれて流入する。
 独立孔17、18へ流入した流体は、先端閉鎖部17a、18aでの流路面積の縮小に伴って流速を上昇させながら、対向する噴口20、21より夫々流出する流体同士が切込部22内で衝突する。
 前記衝突で、噴霧厚さ方向Tと噴霧幅方向Wへの流体の拡散を促進している。その際、独立孔17、18の先端から噴口20、21にかけて流体を隔壁19側に戻す形状となるU字部17b、18bを若干設けているので、各噴口20、21から噴出する流体が若干戻り方向に流れる。この流れにより撹拌が行われると共に、2つの流れの衝突を増進でき、流量が小さい場合でも噴霧厚さ方向Tの噴角θnおよび噴霧幅方向Wの噴角θwを十分に確保することができる。
 また、衝突した流体は、噴霧厚さ方向Tが切込部22の側面22bでガイドされると共に、噴霧幅方向Wが切込部22の円弧状の底面22aで滑らかにガイドされる。したがって、液体流量が変動しても安定した噴霧厚さ方向Tの噴角θnと噴霧幅方向Wの噴角θwを提供することを可能としている。
 特に、噴霧幅方向Wに関しては、ガイド壁となる切込部22の底面22aが円弧状となっているので、エネルギー損失の少ない噴霧を可能としている。
 最後に、液体流量の大小に関わらず切込部22の側面22b間で安定化された噴霧厚さ方向Tの噴霧を、切込部22の側面22bより先端側に連続したテーパー部23によりガイドして噴角θnを拡大させている。
 前記のように噴霧の拡散は十分に行われているので、液体流量が変動しても噴霧幅方向流量分布も均一に保つことができる。さらに、噴口20、21は、切込部22の底面22aと側面22bとが直交する断面L形状としているので、噴口20、21の開口を大きくすることができ、流量の上限値を上げることが可能となり、また、ボディ15のサイズを変えずに噴口20、21を大きくできることから、ノズル10の小型化を図ることもできる。
 しかも、液体流量の変動があっても噴霧パターンが安定しているので、液体に対する気体の流量比(気水比)を下げることができ、気体供給用のコンプレッサーの電力消費量も抑制され、省エネ化を図ることもできる。
 液体に対する気体の流量比(気水比)を下げても噴霧パターンが安定しているので、液体のみの1流体を噴霧しても噴角を変動させず、安定保持することができる。
 前記したノズル10によれば、各独立孔の対向する噴口より流出した流体が衝突して拡散することにより、噴霧厚さおよび噴霧幅を厚くすることができる。また、該噴霧は、上記切込部の側面および円弧状の底面にガイドされて噴射するので、流量が変動しても安定した噴霧厚さおよび噴霧幅を得ることができると共に、流量分布も均一に保つことができる。さらに、上記独立孔には噴口の手前位置に流路面積が縮小された先端閉鎖部を設けているので、上記流体の衝突が高速・高圧で行われ、噴霧の拡散効果を高めることができる。さらにまた、独立孔の先端から上記噴口にかけて上記U字部を設けることで、対向する各噴口から噴出する流体が若干戻り方向に流れて撹拌が行われると共に、2つの流れの衝突を増進でき、流量が小さい場合でも噴霧面積を十分に確保することができる。
 また、前記のように、液体流量の変動があっても噴霧パターンが安定しているので、液体に対する気体の流量比(気水比)を下げても、ノズルを交換することなく使用することができ、液体のみの1流体噴霧用と液体とエアとを混合した2流体噴霧用との兼用ノズルとすることができる。加えて、気水比を下げることができることで、気体供給用のコンプレッサーの電力消費量も抑制され、省エネ化を図ることもできる。
 図10に第3実施形態を示す。
 第3実施形態のノズルでは、第1実施形態のバネで弁体を付勢してエア流入口を開閉している切替弁に変えて、電磁切替弁50をエア流入口に介設し、該電磁切替弁50を液体供給管2で供給する液圧が設定値以下になると開作動し、エアを液体に混合して2流体噴霧としている。
 ノズルの構造は第2実施形態と同様としているため、説明を省略する。
 前記液体のみの1流体噴霧から2流体噴霧に切り替える液圧の前記設定値は、0.005MPa~0.9MPaの範囲としている。かつ、2流体噴霧時における最大液体量に対するエア量の比である気水比を0.5~5.0の範囲としている。
 図11に第4実施形態を示す。
 前記第1~第3実施形態は中心軸線に沿って設ける液体供給管に対してエア供給管を側方より合流させた構成としているが、第4実施形態は2重管構成とし、内筒40内の中心流路にエアを流通させ、該内筒の40の先端側にバネと弁体を備えた切替弁7Cを収容した混合アダプタ43を取り付けている。
 前記内筒40の外周に液体流路42をあけて外筒41を配置し、該外筒41の先端にノズルボデイ45を連結している。
 また、内筒40と外筒41の基端側に空気供給源および液体供給源とそれぞれ配管を介して連結するアダプタ(図示せず)を連結している。
 該第4実施形態では、外側の液体流路42を流れる液体の圧力が低下し、内筒40内に供給されたエア圧の方が高くなると切替弁7Cを開き、エアを混合アダプタ43の先端開口43aより噴出させて液体中に混合している。この液体とエアとの混合流体がノズルボデイ45の先端の噴射口45aより噴射している。
 液体圧が高い場合には、切替弁7Cが閉じたままで液体のみの1流体噴霧となる。
 1、10 ノズル
 2 液体供給管
 3 液体流入路
 4 エア供給管
 5 エア流入路
 6 メイン流体流路
 7 切替弁
 8 バネ
 9 弁体
 50 電磁切替弁

Claims (5)

  1.  ノズルは液体供給管とエア供給管とに接続され、液体のみの1流体噴霧と、液体とエアとを混合した2流体噴霧とを組み合わせて行うようにし、
     液体供給量が多い高液圧時は前記液体のみの1流体噴霧とし、液体供給量が少ない低液圧時は前記液体とエアとを混合した2流体噴霧としていることを特徴とするノズルの噴霧方法。
  2.  請求項1に記載のノズルの噴霧方法に用いるノズルであって、
     液体供給管と接続した液体流入路、エア供給管と接続したエア流入路、先端に噴口を備えてメイン流体流路を備え、かつ、
     前記液体流入路とエア流入路とにそれぞれ連通した液体流入口とエア流入口とを対向配置または内外位置に平行配置すると共に、前記液体流入口は常開とする一方、前記エア流入口は切替弁で開閉し、前記液体供給管から供給される液体の液圧低下時は前記切替弁が開弁されて2流体噴霧させる構成としていることを特徴とするノズル。
  3.  前記エア流入口の切替弁の弁体をバネで付勢し、前記エア供給管から供給するエア圧は一定圧P2とする一方、前記バネのバネ圧はP3とし、
     前記液体供給管から供給される液体の液圧P1が高圧で、P1+P3>P2の時は液体のみを噴霧させ、前記液圧P1が低圧で、P1+P3<P2の時はエア圧で前記切替弁を開き、前記メイン流体流路に液圧の減少割合に応じてエアが導入され、2流体噴霧させる構成としている請求項2に記載のノズル。
  4.  前記エア流入口の切替弁は電磁弁とし、前記液体供給管から供給する液圧が設定値未満になると前記切替弁が開放制御されて前記2流体噴霧させる構成としている請求項2に記載のノズル。
  5.  前記液圧の設定値は0.005MPa~0.9MPaの範囲であり、2流体噴霧時における最大液体量に対するエア量の比である気水比を0.5~5.0の範囲としている請求項4に記載のノズルの噴霧方法。
PCT/JP2010/065586 2010-03-18 2010-09-10 ノズルの噴霧方法およびノズル WO2011114552A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10847960.1A EP2548652B1 (en) 2010-03-18 2010-09-10 Method for spraying with nozzle and nozzle
JP2012505438A JP5547802B2 (ja) 2010-03-18 2010-09-10 ノズル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-063340 2010-03-18
JP2010063340 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011114552A1 true WO2011114552A1 (ja) 2011-09-22

Family

ID=44648673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065586 WO2011114552A1 (ja) 2010-03-18 2010-09-10 ノズルの噴霧方法およびノズル

Country Status (3)

Country Link
EP (1) EP2548652B1 (ja)
JP (1) JP5547802B2 (ja)
WO (1) WO2011114552A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509029A (zh) * 2016-01-25 2016-04-20 无锡海力自控工程有限公司 蒸汽辅助减温器的喷嘴组件
CN109395563A (zh) * 2018-12-12 2019-03-01 中国华能集团清洁能源技术研究院有限公司 一种高效的液体雾化喷射装置及方法
CN112206960A (zh) * 2020-09-30 2021-01-12 林晓霞 一种防止堵塞且喷涂颗粒更加致密的天然漆喷涂装置
CN114945414A (zh) * 2019-12-05 2022-08-26 泰科消防产品有限合伙公司 包含具有多个喷射角度的喷嘴的灭火系统
WO2024100913A1 (ja) * 2022-11-07 2024-05-16 Shimada Appli合同会社 中高粘度液体の塗布方法,装置およびノズル

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103658578A (zh) * 2013-10-30 2014-03-26 芜湖新兴铸管有限责任公司 一种连铸冷却喷嘴
TWM477195U (zh) * 2013-11-27 2014-05-01 Zong Jing Investment Inc 霧化式噴灑器
JP5804131B1 (ja) * 2014-04-16 2015-11-04 日油株式会社 爆薬の装填装置及びドリルジャンボ
KR101642907B1 (ko) * 2014-12-01 2016-08-10 주식회사 포스코 노즐 및 냉각매체 공급관의 세정방법
AT520006B1 (de) * 2017-06-07 2021-08-15 Primetals Technologies Austria GmbH Kühlmitteldüse zum kühlen eines metallischen strangs in einer stranggussanlage
CN111495625A (zh) * 2020-04-22 2020-08-07 郭曼 一种流体喷射系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315493B2 (ja) 1985-10-22 1991-03-01 Ikeuchi Kk
JPH10230229A (ja) * 1997-02-17 1998-09-02 Maruyama Mfg Co Ltd オゾン混入装置及び洗浄装置
JP2000312865A (ja) * 1999-04-28 2000-11-14 Toyota Auto Body Co Ltd オゾン水洗浄装置
JP2005270870A (ja) * 2004-03-25 2005-10-06 Fuji Clean:Kk 高圧オゾン水による洗浄方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315493B2 (ja) 1985-10-22 1991-03-01 Ikeuchi Kk
JPH10230229A (ja) * 1997-02-17 1998-09-02 Maruyama Mfg Co Ltd オゾン混入装置及び洗浄装置
JP2000312865A (ja) * 1999-04-28 2000-11-14 Toyota Auto Body Co Ltd オゾン水洗浄装置
JP2005270870A (ja) * 2004-03-25 2005-10-06 Fuji Clean:Kk 高圧オゾン水による洗浄方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2548652A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509029A (zh) * 2016-01-25 2016-04-20 无锡海力自控工程有限公司 蒸汽辅助减温器的喷嘴组件
CN109395563A (zh) * 2018-12-12 2019-03-01 中国华能集团清洁能源技术研究院有限公司 一种高效的液体雾化喷射装置及方法
CN109395563B (zh) * 2018-12-12 2023-08-29 中国华能集团清洁能源技术研究院有限公司 一种高效的液体雾化喷射装置及方法
CN114945414A (zh) * 2019-12-05 2022-08-26 泰科消防产品有限合伙公司 包含具有多个喷射角度的喷嘴的灭火系统
CN112206960A (zh) * 2020-09-30 2021-01-12 林晓霞 一种防止堵塞且喷涂颗粒更加致密的天然漆喷涂装置
WO2024100913A1 (ja) * 2022-11-07 2024-05-16 Shimada Appli合同会社 中高粘度液体の塗布方法,装置およびノズル

Also Published As

Publication number Publication date
EP2548652A1 (en) 2013-01-23
JPWO2011114552A1 (ja) 2013-06-27
JP5547802B2 (ja) 2014-07-16
EP2548652A4 (en) 2014-06-18
EP2548652B1 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5547802B2 (ja) ノズル
US8349247B2 (en) Controlled cooling apparatus and cooling method of steel plate
CN104919902A (zh) 用于气体冷却等离子弧焊炬的装置和相关系统和方法
KR20100104099A (ko) 워터 제트 장치
CZ20003724A3 (cs) Sestava rozpraąovací trysky
JP2006192360A (ja) 二流体用スリットノズル
CN102137743B (zh) 混合排放装置
JP4936904B2 (ja) 噴射ノズルとそれを用いた噴霧方法
US10183300B2 (en) Spray nozzle
TW200843875A (en) Controlled cooling apparatus for steel plate, and cooling method
US20180159152A1 (en) Passive recirculation device
JP2006167599A (ja) 二流体ノズル
JP4972326B2 (ja) ノズル
WO2013137559A1 (ko) 절단토치용 노즐
JP4301776B2 (ja) ノズル
JP5048394B2 (ja) ノズル
JP5027959B2 (ja) 塗布装置
JP4766622B2 (ja) 気液混合流の噴射装置
JP2004016846A (ja) ノズル
RU2410176C2 (ru) Устройство для контролируемого охлаждения и способ охлаждения стальной плиты
WO2009034996A1 (ja) 消火用ミストノズル
KR20200061137A (ko) 냉각수 분사장치
CN117414959A (zh) 低压液刀及湿制程设备
JPH05329601A (ja) 気液混合装置
JPS635145B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847960

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012505438

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010847960

Country of ref document: EP