WO2011113195A1 - 有机太阳能电池及其制备方法 - Google Patents

有机太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2011113195A1
WO2011113195A1 PCT/CN2010/071056 CN2010071056W WO2011113195A1 WO 2011113195 A1 WO2011113195 A1 WO 2011113195A1 CN 2010071056 W CN2010071056 W CN 2010071056W WO 2011113195 A1 WO2011113195 A1 WO 2011113195A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive layer
solar cell
conversion
layer
organic solar
Prior art date
Application number
PCT/CN2010/071056
Other languages
English (en)
French (fr)
Inventor
周明杰
黄杰
孙晓宇
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to EP10847664.9A priority Critical patent/EP2549559A4/en
Priority to PCT/CN2010/071056 priority patent/WO2011113195A1/zh
Priority to CN2010800612366A priority patent/CN102714277A/zh
Priority to JP2012555278A priority patent/JP5634530B2/ja
Priority to US13/582,774 priority patent/US20130000719A1/en
Publication of WO2011113195A1 publication Critical patent/WO2011113195A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of photoelectric conversion, and particularly relates to an organic solar battery and a preparation method thereof.
  • solar cells are considered to be the most promising and application value green energy because of their non-polluting, convenient source and other advantages.
  • Solar cells have been in development since the 1950s and have been half a century old. According to materials, silicon solar cells, III-V semiconductor solar cells, copper-indium-selenium (or copper-indium-gallium-selenium) solar cells, cadmium telluride solar cells, and nano-titanium dioxide (dye-sensitized) solar energy have been developed. Battery and organic solar cells.
  • Organic solar cells are new low-cost solar cells that have been developed over the past two decades and are new energy sources that are likely to change human habits.
  • Organic solar cells use low-cost, simple-process organic materials as raw materials, which greatly reduces their process costs. Its efficient electron donor-electron acceptor exciton splitting interface and a wide variety of organic materials have given the organic solar cell a broad development space and huge application potential. In addition to the advantages of low cost, organic solar cells have the characteristics of being foldable and flexible, and have a very broad application prospect. Among them, polymer solar cells can be prepared by simple and practical methods such as sol-gel and screen printing, which are very suitable for large-scale mass production, and thus have attracted more and more attention and input from scientific research units and enterprises.
  • the efficiency of current polymer solar cells is still generally low, and there is still a long way to go before commercialization.
  • the main factors restricting the energy conversion efficiency are that the spectral response range of the battery does not match the solar radiation spectrum, the carrier mobility of the polymer material itself, and the carrier transmission efficiency are low.
  • the traditional heterojunction structure limits the efficiency of exciton diffusion to the splitting interface, thereby limiting its photoelectric energy conversion capability.
  • the photoreceptor layer absorbs light and generates excitons (electron-hole pairs). The excitons are electrically neutral, only when excitons diffuse to the heterojunction. It is possible to contribute to the photovoltaic output of the battery by splitting it into free carriers, ie free electrons and holes.
  • the diffusion length of excitons in organic materials is short, generally 10-20 Nm, therefore, only near the heterojunction 10-20
  • the excitons within nm can be diffused into the interface and split into free carriers, and the exciton energy generated a little further away from the heterojunction is lost in vain, and does not contribute to the photoelectric conversion. This results in a low energy conversion efficiency of existing organic solar cells.
  • an organic solar cell with high solar energy utilization rate, high exciton utilization rate, and enhanced electrical performance and a method for preparing an organic solar cell with simple process and low cost are provided.
  • An organic solar cell comprising a light reflective electrode, a photosensitive layer on the light reflective electrode, a transparent electrode on the photosensitive layer, an upconversion structure on the transparent electrode, and a transparent insulating layer between the transparent electrode and the up-conversion structure, the up-conversion structure comprising an up-conversion material having an up-conversion function for the spectrum, the photo-sensitive layer comprising at least a mixture of the electron donor material and the electron acceptor material Mass structure.
  • the photosensitive layer comprising at least a mixed heterojunction structure in which an electron donor material and an electron acceptor material are mixed;
  • An up-conversion structure is formed on the second surface of the transparent insulating layer such that a transparent insulating layer is located between the transparent electrode and the up-conversion structure, and the up-conversion structure includes an up-conversion material having an up-conversion function for the spectrum.
  • the organic solar cell on the one hand, by providing an up-conversion structure, using a spectral conversion function of the up-conversion material, light that cannot be sufficiently absorbed by the battery, such as a low-energy near-infrared band photon, is converted into a higher-energy visible light. Band photons improve the absorption and utilization of solar energy by organic solar cells, thereby improving their photoelectric conversion performance.
  • there is a transparent insulating layer between the up-conversion structure and the transparent electrode which can ensure the electrical independence of the up-conversion layer and the solar cell, avoiding the adverse effect of the up-conversion material on the photoelectric conversion of the solar cell, and enhancing the organic The electrical properties of solar cells.
  • each layer structure is formed according to a predetermined step, and the process steps are simple, the production cost is low, and the application prospect is broad.
  • FIG. 1 is a schematic structural view of an organic solar cell according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of an organic solar cell according to a second embodiment of the present invention.
  • FIG. 3 is a flow chart of a method for preparing an organic solar cell according to an embodiment of the present invention.
  • the organic solar cell 10 of the present embodiment includes a light reflective electrode 11, a photosensitive layer 13 on the light reflective electrode 11, a transparent electrode 16 on the photosensitive layer 13, and an up-conversion structure 18 on the transparent electrode 16, which is transparent.
  • a transparent insulating layer 17 is further disposed between the electrode 16 and the up-conversion structure 18.
  • the photosensitive layer 13 includes a mixed heterojunction structure in which an electron donor material and an electron acceptor material are mixed, and the up-conversion structure 18 includes up-conversion of the spectrum. Functional upconversion material.
  • each of the above-mentioned parts is a layered structure, and a layered structure is used.
  • a buffer layer is disposed on both sides of the photosensitive layer 13, respectively, including a first buffer layer 12 between the light reflective electrode 11 and the photosensitive layer 13, and a photosensitive layer 13 and a transparent electrode 16 Between the second buffer layer 15,
  • the light reflective electrode 11 may be a high reflectivity material, which may be, but not limited to, a metal thin film electrode such as Au, Ag, Al, Ca-Al, or Mg-Ag, or a high reflectance including a metal oxide such as ITO or ZnO.
  • the electrode can be used as the cathode or anode of the battery.
  • the light reflective electrode 11 is a layered structure and is an electrode layer having a thickness of micrometers or nanometers, such as, but not limited to, 50 nanometers to 2 micrometers, preferably 100 to 200 nanometers.
  • the light reflective electrode 11 may be formed with a stripe electrode pattern, for example, may be long straight stripe.
  • the photosensitive layer 13 is formed by mixing a heterojunction structure by mixing the electron donor material and the electron acceptor material in a predetermined ratio, for example, the electron donor and the acceptor material are in a mass ratio of 1:0.1. 1:10, preferably, the mass ratio ranges from 1:0.5 to 1:2. Therefore, the mixed heterojunction structure is a mixture of an electron donor material and an electron acceptor material, the two materials are mixed and doped, and the electron donor material and the electron acceptor material are uniformly distributed and mixed with each other.
  • the mixed heterojunction structure of this embodiment is a network matrix structure formed by an electron donor and an electron acceptor having a large-area charge generation interface, is a photo-excited exciter in a battery, and is split into free electron and hole current carriers. And outputting a main region of the photocurrent, which can be formed by, for example, spin coating, so that the donor material and the acceptor material form a better uniform phase, thereby ensuring smooth export of the photocurrent.
  • it can also be prepared by vacuum coating or sputtering, and is not limited thereto.
  • the above electron donor material may be poly(p-phenylene vinylene) (PPV) or a derivative thereof, a polythiophene material, a polyfluorene material, a polycarbazole material or a polydithiophene cyclopentane material, and other polymer materials.
  • PPV poly(p-phenylene vinylene)
  • polyparaphenylenevinylene (PPV) or a derivative thereof may be, for example, poly[2-methoxy-5-(2'-vinyl-hexyloxy)poly-p-styrene] (abbreviated as MEH-PPV) , poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-p-phenylenevinylene (abbreviated as MDMO-PPV);
  • the polythiophene material may be, for example, a poly (3-hexylthiophene) (abbreviated as P3HT) or the like;
  • the polyfluorene material may be, for example, a copolymer containing a benzothiadiazole unit and a fluorene unit; and the polycarbazole material may be, for example, a benzothiadiazole-containing unit and hydrazine;
  • the electron acceptor material may be, but not limited to, polycarbimide (English name: Perylene Polyimide) material, C 60 , C 60 derivative (such as PCBM), C 70 or C 70 derivatives (eg PC 70 BM).
  • the photosensitive layer 13 is a photosensitive region in which the entire battery absorbs photons to generate photocurrent and photovoltage.
  • the thickness of the photosensitive layer 13 may be on the order of nanometers such as, but not limited to, 10 to 200 nm, preferably 20 to 160 nm.
  • the materials of the first and second buffer layers 12, 15 are the same or different one or more of the following compounds: polyethylene dioxythiophene: polystyrene-sulfonic acid composite (referred to as PEDOT: PSS) ), titanium oxide (TiO x ), BCP, Alq 3 or LiF.
  • PEDOT polystyrene-sulfonic acid composite
  • TiO x titanium oxide
  • BCP Alq 3 or LiF.
  • Alq 3 is 8-hydroxyquinoline aluminum (English name is 8-Tris-Hydroxyquinoline Aluminum)
  • BCP is 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline (English name 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline).
  • the first and second buffer layers 12, 15 may have the same or different nano-scale thickness, specifically 5-20 nm, preferably 5-10 nm.
  • the above materials are used as the first and second buffer layers 12 and 15, which mainly serve to modify the interface between the electrode and the photosensitive layer.
  • the interface can be made flatter, and on the other hand, the charge transfer of the interface is also facilitated. At the same time, it can also improve the anode work function, and also partially block the action of excitons.
  • the transparent electrode 16 may be a transparent material having good conductivity, such as, but not limited to, an oxide transparent electrode such as indium tin oxide (ITO), zinc aluminum oxide (AZO), zinc gallium oxide (GZO), or indium zinc oxide (IZO) or gold.
  • an oxide transparent electrode such as indium tin oxide (ITO), zinc aluminum oxide (AZO), zinc gallium oxide (GZO), or indium zinc oxide (IZO) or gold.
  • a metal thin film electrode such as a thin film, an aluminum (Al) thin film or a silver (Ag) thin film, or a carbon nanotube conductive thin film, etc.
  • the transparent electrode 16 can be used as an anode or a cathode of a battery as a counter electrode of a light reflective electrode.
  • the transparent electrode 16 is a layered structure and is a transparent layer having a thickness of micrometers or nanometers, such as, but not limited to, 50 nanometers to 2 micrometers, preferably 100 to 200 nanometers.
  • the transparent electrode 16 may have a stripe electrode pattern, for example, may be long straight stripe.
  • the transparent insulating layer 17 is mainly made of a transparent insulating material, for example, a glass layer or a transparent plastic layer, and the glass material may include, but not limited to, quartz glass, silicate glass, high silica glass or soda lime glass, and a transparent plastic layer. These may include, but are not limited to, polyvinyl chloride (PVC), polycarbonate (PC), or polyester (PET).
  • PVC polyvinyl chloride
  • PC polycarbonate
  • PET polyester
  • the transparent insulating layer 17 is located between the transparent electrode 16 and the up-conversion structure 18, so that the two layers are insulated from each other to ensure the electrical independence of the up-conversion structure 18 and the photosensitive layer 13 and the transparent electrode 16 to avoid
  • the adverse effect of the up-conversion material on the internal photoelectric conversion of the organic solar cell 10 is performed, so that the up-conversion structure, the battery cells of the organic solar cell 10 (ie, including at least the photosensitive layer 13, the transparent electrode 16, and the light-reflective electrode 11) can be separately performed. Independent performance optimization to achieve optimal performance of the entire battery system.
  • the thickness of the transparent insulating layer 17 may be, but not limited to, 0.5 to 5 mm, preferably 1 to 3 mm.
  • a relatively thick transparent insulating layer 17 can be employed as a base layer for supporting other layers.
  • the transparent insulating layer 17 has opposing first and second surfaces 17b, 17b, which are surfaces that are in contact with the transparent electrode 16, and the second surface 17a is a surface on which the up-conversion structure 18 is formed.
  • the upconverting material in the upconversion structure 18 can include halides, oxides, sulfides, or combinations thereof that are single or double doped with rare earth ions.
  • the halide is preferably a fluoride
  • the oxide may be a rare earth oxide, zinc oxide, zirconium oxide or a composite oxide
  • the sulfide may be a rare earth sulfide.
  • the up-conversion material may be, for example but not limited to, BaY 2 F 8 , KZnF 3 , NaYF 4 , NaYb(WO 4 ) 2 , Ga 2 S 3 -La 2 O 3 , Y 2 of single or double doped rare earth ions.
  • the single-doped or double-doped rare earth ions may include Er 3+ , Ho 3+ , Tm 3+ , Pr 3+ , Yb 3+ /Ho 3+ , Yb 3+ /Tm 3+ , Yb 3+ /Pr 3+ , Yb 3+ /Er 3+ or Tb 3+ /Er 3+ .
  • the total doping molar ratio of the rare earth ions is not particularly limited, and may be determined according to actual needs. For example, the total doping of the rare earth ions with respect to the matrix (ie, halide, oxide, sulfide, or a combination thereof) The molar ratio may be from 1% to 60%, but is not limited thereto.
  • the mixing ratio of the two ions is 1:0.1 to 1:1, and preferably, the mixing molar ratio is 1:0.1 to 1:0.5.
  • the upconversion structure 18 can be in the form of a film comprising an upconverting material or a composite structure in which an oxide film is coated with an upconverting material.
  • the oxide film for coating may be ZnO:Al, SnO 2 :Sb, and the composite structure of the overlying conversion material is ensured in the composite structure of the oxide film-coated conversion material.
  • the stability of the conversion material is such that the up-conversion function of the up-conversion structure 18 is stable and durable.
  • the thickness of the upconversion structure 18 can be, but is not limited to, 500-600 nanometers.
  • the up-conversion material has a "spectral regulation" function, which will not be able to be fully absorbed by the battery to utilize low-energy light, such as near-infrared, far-infrared or other bands of photons converted into higher-energy visible-band photons, improving the sun
  • low-energy light such as near-infrared, far-infrared or other bands of photons converted into higher-energy visible-band photons, improving the sun
  • the absorption efficiency of light can improve its photoelectric conversion performance.
  • Splitting into free carriers and forming photocurrent regions improves the efficiency of exciton splitting, and facilitates the diffusion and migration of excitons, ensuring the smooth derivation of photocurrents and avoiding exciton diffusion defects of existing heterojunctions. Thereby, the photoelectric conversion efficiency of the solar energy to the solar energy is greatly improved.
  • FIG. 2 there is shown an organic solar cell structure in accordance with a second embodiment of the present invention.
  • the organic solar cell 20 of the present embodiment is basically the same as the organic solar cell structure of the first embodiment except for the structure of the photosensitive layer.
  • the same reference numerals in Fig. 2 and Fig. 1 denote the same elements and will not be described again.
  • the photosensitive layer 23 of the present embodiment adopts a three-layer structure including a first photosensitive layer 23a and a second photosensitive layer 23b which are sequentially laminated, and a third photosensitive layer 23c between the first and second photosensitive layers 23a, 23b.
  • the first photosensitive layer 23a includes an electron donor material
  • the second photosensitive layer 23b includes an electron acceptor material
  • the third photosensitive layer 23c employs the structure of the above-described photosensitive layer 13.
  • the electron donor material may be at least one of, for example, but not limited to, a phthalocyanine dye, a pentacene, a porphyrin compound, and a cyanine dye, in addition to the material of the photosensitive layer 13, and the electron acceptor material may be
  • the material of the photosensitive layer 13 may be, for example, not limited to a tetracarboxy north derivative (for example, 3,4,9,10-norctic tetracarboxylic dianhydride, abbreviated as PTCDA), C 60 , C 70 , dipyridamole or At least one of the benzoin derivatives.
  • the electron donor and acceptor materials of the first and second photosensitive layers 23a, 23b are respectively made of the same electron donor and acceptor materials as the third photosensitive layer 23c, that is, the electrons of the photosensitive layers 23a, 23b, 23c.
  • the bulk and acceptor materials can be either the corresponding electron donor and acceptor materials of the photoactive layer 13 of the first embodiment, or the electron donor and acceptor materials previously described in the second embodiment.
  • the second photosensitive layer 23b is disposed adjacent to the transparent electrode 16, that is, disposed on the low beam side, and the first photosensitive layer 23a is adjacent to the light reflective electrode 11. It can be understood that the positions of the first and second photosensitive layers 23a, 23b may also be arranged in the reverse order of the above, that is, the first photosensitive layer 23a is disposed close to the transparent electrode 16, that is, disposed on the low beam side, and The second photosensitive layer 23b is adjacent to the light reflective electrode 11.
  • the first and second photosensitive layers 23a, 23b function as an absorption light and a carrier transport layer, and of course the third photosensitive layer 23c can also function as such, and also has the first embodiment.
  • the structure of the middle photosensitive layer 13 is the same. Through the three-layer structure, it is possible to broaden the region where the photogenerated excitons are split into free carriers and form photocurrent, which improves the exciton splitting efficiency and is more conducive to improving the photoelectric conversion efficiency.
  • the materials used in the photosensitive layer in the above two embodiments can be used interchangeably.
  • the electron donor and acceptor materials in the three photosensitive layers 23a, 23b, and 23c of the second embodiment can also adopt a photosensitive layer.
  • Corresponding polymer materials for donors and acceptors in 13 and vice versa can be used interchangeably.
  • first and second photosensitive layers 23a, 23b and the third photosensitive layer 23c may be used in two or more layers (for example, The structural form of the multilayer structure including the photosensitive layer 13 or 23c is within the scope of the concept of protection of the present invention, and is not limited to the number of layers of the above embodiment and the arrangement manner thereof.
  • a method for fabricating an organic solar cell according to an embodiment of the present invention includes the following steps:
  • S01 providing a transparent insulating layer, the transparent insulating layer has opposite first and second surfaces;
  • S05 forming an up-conversion structure on the second surface of the transparent insulating layer such that the transparent insulating layer is located between the transparent electrode and the up-conversion structure, and the up-conversion structure includes an up-conversion material having an up-conversion function for the spectrum.
  • the materials of the respective layer structures may correspond to the materials, compositions, and structural forms described above, and are not described herein again.
  • the preparation methods of the two organic solar cells of the first embodiment and the second embodiment are respectively described below.
  • the transparent insulating layer 17 has a first surface 17b and a second surface 17a.
  • a transparent insulating material such as glass or plastic can be used, and the transparent insulating layer 17 also serves as a substrate on which the subsequent layers of the film are grown.
  • the transparent electrode 16 may be plated on the first surface 17b of the transparent insulating layer 17 by vacuum evaporation or sputtering to form a transparent film-like structure.
  • the transparent electrode 16 can be further etched into a desired stripe electrode pattern by photolithography, and can be used as an anode of the organic solar cell 10. The specific pattern can be determined according to actual needs.
  • the second buffer layer 15 may be further formed on the transparent electrode 16, for example, a polymer conductive film such as PEDOT:PSS is prepared by a spin coating technique, or a material such as TiO x , BCP, Alq 3 or LiF is grown by an evaporation method.
  • a polymer conductive film such as PEDOT:PSS is prepared by a spin coating technique, or a material such as TiO x , BCP, Alq 3 or LiF is grown by an evaporation method.
  • the photosensitive layer 13 is spin-coated by a wet coating method, and a mixed layer of an electron donor material and an electron acceptor material mixed in a predetermined ratio is prepared by spin coating on the second buffer layer 15 to form a mixed heterojunction structure.
  • the electron donor material and the electron acceptor material may be pre-dissolved by using an organic solvent, and fully stirred by a magnetic stirrer to be sufficiently dissolved to form a mass percentage of the electron-containing donor material and the electron acceptor material.
  • a solution prepared by spin coating wet film (for example, a mass ratio of donor/acceptor material of 1:0.1 to 1:10) is used.
  • the organic solvent may be, but not limited to, chloroform or the like.
  • the desired photoactive layer 13 is prepared by spin coating a solution of the electron donor material and the electron acceptor material solution at a predetermined ratio, wherein the spin coating speed is 1500. Around rpm. The spin-coated product can then be further dried at 60-100 ° C for tens of minutes.
  • the first buffer layer 12 may be further formed on the photosensitive layer 13, and a polymer conductive film such as PEDOT:PSS may be prepared by a spin coating technique, or TiO x , BCP, Alq 3 may be grown by vacuum evaporation.
  • a material such as LiF is used as the first buffer layer 12 in FIG.
  • a conductive film of PEDOT:PSS or the like is prepared by a spin coating technique, it is placed in an oven after coating, and baked at 60-100 ° C for 20-60 minutes. In one embodiment, the baking temperature in the oven is 90 ° C and the baking time is 25 minutes.
  • the light reflective electrode 11 may be formed by vacuum evaporation or sputtering, and a stripe mask is used to form an electrode layer having a nanometer thickness.
  • the up-conversion structure 18 is formed as follows: a source compound (for example, an oxide, a nitrate, an oxalate or a carbonate of a corresponding element) of each element in the up-conversion material is used as a raw material, and a sol-gel method is employed. Spin coating is formed on the second surface 17a of the transparent insulating layer 17, that is, on the surface not plated with the transparent electrode 16, such that the transparent insulating layer 17 is located between the transparent electrode 16 and the up-conversion structure 18.
  • a source compound for example, an oxide, a nitrate, an oxalate or a carbonate of a corresponding element
  • the entire structure is further annealed at a temperature of about 100 to 200 ° C for 5 to 30 minutes, for example, it may be annealed at a temperature of 160 ° C for 5 minutes.
  • the up-conversion structure 18 may be formed on the second surface 17a of the transparent insulating layer 17 by coating an up-conversion material with an oxide film, for example, by a chemical homogeneous co-precipitation method, in the above-mentioned single or double doping.
  • a material such as a halide, an oxide, a sulfide, or a combination thereof of the rare earth ion is coated with ZnO:Al or the like to form a transparent up-conversion structure.
  • the preparation method is substantially similar to the above steps, except for the preparation step of the photosensitive layer. Since the photosensitive layer 23 of the organic solar cell 20 has a three-layer structure, it is carried out in three steps, and the second photosensitive layer 23b, the third photosensitive layer 23c, and the first photosensitive layer 23a are sequentially formed, respectively. Also corresponding to the structure in Fig. 2, the second buffer layer 15 may be formed on the transparent electrode 16 before the first and second photosensitive layers 23a, 23b are formed. The two photosensitive layers 23a, 23b can be formed by vacuum evaporation.
  • the specific steps are as follows: in a growth chamber of a vacuum evaporation system with a vacuum of about 10 -6 Pa, vacuum evaporation is used to grow the second photosensitive layer.
  • Layer 23b (such as C 60 electron acceptor layer), controlling the growth rate to 0.4 nm / s until deposition to the desired thickness; then growing on the second photosensitive layer 23b just after vacuum evaporation
  • the photosensitive layer 23c (such as CuPc copper phthalocyanine and C 60 mixed layer) is controlled to have a growth rate of 0.15 nm/s until deposition to a desired thickness; and then grown by vacuum evaporation on the third photosensitive layer 23c.
  • a photosensitive layer 23a (e.g., a CuPc copper phthalocyanine electron donor layer) is controlled to have a growth rate of 0.3 nm/s until deposition to the desired thickness.
  • the first and second photosensitive layers 23a, 23b are sequentially exchanged, the order of formation of the two is also reversed.
  • the photosensitive layer of the corresponding polymer material can be formed by wet coating by spin coating using the former spin coating method.
  • the photosensitive layer 13 in the first embodiment is made of the same material as the third photosensitive layer 23c, the photosensitive layer 13 can also be formed by a vacuum evaporation method. That is, the above two methods are interchangeably applicable to different kinds of photosensitive layers, and are not limited to the above embodiment forms.
  • the first buffer layer 12 may be further formed on the first photosensitive layer 23a.
  • the first buffer layer 12 (such as TiO x , BCP, Alq 3 , etc.) can form an octahydroxyquinoline aluminum Alq 3 film by a vacuum evaporation method, and the growth rate is controlled to 0.1 nm/s until deposition to a desired thickness.
  • the two buffer layers 12, 15 can be made of the same or different materials, when a polymer conductive film such as PEDOT:PSS is used, it can be spin-coated on the transparent electrode 12 or the photosensitive layer 13 by using a spin coating method, when TiO x is used.
  • materials such as BCP and Alq 3 are used, they may be formed on the transparent electrode 12 or the photosensitive layer 13 by a vacuum evaporation method, depending on actual needs.
  • each photosensitive layer and the two buffer layers are respectively made of the same type of material, for example, each photosensitive layer and both buffer layers are made of a polymer material, or both are formed by a vacuum evaporation method.
  • the electron donor and acceptor materials in the photosensitive layer 13 and the photosensitive layer 23 can be the polymer materials described in the first embodiment, and both buffer layers are made of a polymer conductive film such as PEDOT:PSS.
  • these layers can be formed by spin coating by spin coating during preparation. In this case, a plurality of successive steps can be employed in a spin coating process, thereby simplifying the process operation procedure and equipment use, thereby reducing manufacturing costs.
  • each photosensitive layer and both buffer layers are formed by a vacuum evaporation method.
  • the electron donor materials in the photosensitive layer 13 and the photosensitive layer 23 may be phthalocyanine dyes.
  • pentacene, porphyrin compounds or cyanine dyes, electron acceptor materials can use tetracarboxy north derivatives (such as 3,4,9,10-norctic tetracarboxylic dianhydride, abbreviated as PTCDA), C 60 , C 70 , A benzoate or a benzoin derivative, both of which are made of a conductive film such as TiOx, BCP, Alq3 or LiF, so that these layers can be formed by vacuum evaporation during preparation.
  • a vacuum evaporation method can be employed for a plurality of consecutive steps. It is further advantageous that both the transparent electrode 16 and the light reflective electrode 11 can be formed by a vacuum evaporation method. In this way, it is more conducive to simplifying the process operation procedures and equipment use, further reducing the manufacturing cost.
  • the light reflective electrode 11 is an aluminum (Al) thin film electrode
  • the first buffer layer 12 is a LiF film
  • the photosensitive layer 13 is a P3HT:PC 70 BM polymer mixed heterojunction film.
  • the second buffer layer 15 is made of PEDOT:PSS polymer film
  • the transparent electrode 16 is made of ITO stripe electrode
  • the transmittance in the visible light region is more than 85%
  • the transparent insulating layer 17 is made of quartz glass
  • the up-conversion structure 18 is made of Yb 3+ / Er 3+ co-doped sodium bismuth fluoride film, the thickness of each layer is as described in the following preparation method.
  • the specific preparation method of the organic solar cell 10 of the above example is as follows:
  • a layer of ITO conductive film is plated on the side of the quartz glass by sputtering.
  • the thickness of quartz glass is about 1.1 Mm
  • ITO film thickness is about 110 nm
  • its sheet resistance is 15-17 ohms / ⁇ ;
  • the P3HT:PC 70 BM photosensitive layer was prepared by spin coating using the PC 70 BM solution and the P3HT solution prepared in the previous step (5).
  • the spin coating speed is 1500 rpm, and the film thickness is about 150 nm;
  • step (6) placing the product formed in the step (6) in a vacuum oven, and baking at a temperature of 80 ° C for 10 minutes;
  • the product formed in the step (7) is introduced into a vacuum evaporation chamber, and the degree of vacuum is 10 -6 Pa or more.
  • a lithium fluoride LiF film was prepared by vacuum evaporation on a P3HT:PC 70 BM mixed photosensitive layer with a thickness of 0.5 nm and an evaporation growth rate of 0.005 nm/s.
  • the light reflective electrode 11 is a zinc oxide (ZnO) thin film electrode
  • the first buffer layer 12 is an Alq 3 film
  • the first photosensitive layer 23a is a C60 film
  • the third photosensitive layer 23c is a third photosensitive layer 23c.
  • a mixed heterojunction film of CuPc copper phthalocyanine and C 60 mixed vapor a second photosensitive layer 23b using a CuPc copper phthalocyanine film, a second buffer layer 15 using a PEDOT:PSS polymer film, and a transparent electrode 16 using an ITO strip electrode.
  • the sheet resistance is 15 ohm/ ⁇ , the transmittance in the visible light region is greater than 85%, the transparent insulating layer 17 is made of quartz glass, and the up-conversion structure 18 is made of Yb 3+ /Er 3+ co-doped sodium bismuth fluoride film.
  • the thickness of each layer is as described in the preparation method below.
  • the specific preparation method of the organic solar cell 20 of the above example is as follows:
  • quartz glass As a substrate, a layer of ITO conductive film is plated on the side of the quartz glass by sputtering.
  • the thickness of quartz glass is 1.1 Mm, size 37 cm*48 cm;
  • PEDOT:PSS film was spin-coated on the ITO transparent electrode by spin coating, and the spin-coated product was placed in an oven and baked at 85 ° C for 25 minutes;
  • the spin-coated product is taken out from the oven and sent to the growth chamber of the vacuum evaporation system, and the vacuum degree is about 10 -8 Torr, and the CuPc copper phthalocyanine electron donor layer is grown by vacuum evaporation.
  • the thickness is 20 nm and the growth rate is 0.3 nm/s;
  • the mixed layer of CuPc and C 60 was grown according to the ratio of 1:0.5 by volume.
  • the growth rate of CuPc was 0.3 nm/s
  • the growth rate of C 60 was 0.15 nm/s
  • the thickness of the mixed layer was mixed.
  • a mixed heterojunction structure of donor and acceptor materials is formed;
  • organic solar cell on the one hand, by providing an up-conversion structure, using the spectral conversion function of the up-conversion material, light that cannot be sufficiently absorbed by the battery, such as a low-energy near-infrared band photon, is converted into a higher-energy visible light band. Photon improves the absorption and utilization of solar energy by organic solar cells, thereby improving their photoelectric conversion performance.
  • a transparent insulating layer between the up-conversion structure and the transparent electrode, which can ensure the electrical independence of the up-conversion layer and the solar cell, avoiding the adverse effect of the up-conversion material on the photoelectric conversion of the solar cell, and enhancing the organic The electrical properties of solar cells.
  • each layer structure is formed according to a predetermined step, and the process steps are simple, the production cost is low, and the application prospect is broad.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Description

有机太阳能电池及其制备方法 技术领域
本发明属于光电转换技术领域,具体涉及一种有机太阳能电池及其制备方法。
背景技术
随着世界能源环境的逐渐恶化,以及伴随石化资源所产生的二氧化碳等对大气的影响,对可再生绿色能源的开发成为解决目前能源问题的首要任务。其中太阳能电池凭借其无污染,便捷的来源方式等诸多优点更是被认为是最有应用前景和应用价值绿色能源。太阳能电池从上世纪五十年代开始发展,至今已经过去半个世纪了。按照材料区分,发展了硅太阳能电池、III-V族半导体太阳能电池、铜-铟-硒(或铜-铟-镓-硒)太阳能电池、碲化镉太阳能电池、纳米二氧化钛(染料敏化)太阳能电池和有机太阳能电池。有机太阳能电池是近二十年来发展起来的新型低成本太阳能电池,是真正有可能改变人类生活习惯的新型能源。
有机太阳能电池以成本低廉的、工艺简单的有机材料作为原料,大大降低了其工艺成本。其高效的电子给体-电子受体的激子拆分界面以及种类繁多的有机材料的选择,都给予了有机太阳能电池广阔的发展空间和巨大的应用潜力。有机太阳能电池除了具有成本低廉的优势以外,还具有可折叠、柔韧性好的特点,具有非常广泛的应用前景。其中,聚合物太阳能电池更是可以采用溶胶-凝胶、丝网印刷等简便实用的方式制备,非常适合于大规模量产,因而得到来越来越多的科研单位和企业的关注和投入。
然而,目前的聚合物太阳能电池的效率普遍仍然很低,离商业化还有很长的一段路要走。制约其能量转换效率的主要因素是电池的光谱响应范围与太阳光地面辐射光谱不匹配、聚合物材料本身的较低的载流子迁移率以及载流子的传输效率低等。
对于有机太阳能电池来讲,使得其能量转换效率较低的因素有很多,其中一个重要的原因是有机分子材料对太阳光辐射的利用率低,材料的吸收光谱与太阳光的发射光谱不匹配。传统的有机分子材料对太阳光的吸收主要集中在可见光区域(波长范围380 nm- 780 nm),而对太阳光的发射光谱包括所有波段的光,例如紫外光波段、红外光波段等。其中红外波段的太阳光的能量占整个全波段太阳光谱能量的47%左右。可见,传统的有机小分子太阳能电池未能充分利用太阳光谱中的红外光部分,是一个巨大的能量损失。因此,有机分子材料对太阳光的吸收只是其能量的一小部分,对太阳能的利用率较低。
能量转换效率较低的另一个因素是传统的异质结结构限制了激子扩散到拆分界面的效率,从而限制了其光电能量转换能力。在传统的异质结结构有机小分子太阳能电池中,电池光敏层吸收光后会产生激子(电子-空穴对),激子是呈电中性的,只有当激子扩散到异质结处拆分成自由的载流子,即自由的电子和空穴,才有可能对电池的光电输出有贡献。然而,激子在有机材料中的扩散长度较短,一般为10-20 nm,因此,只有在靠近异质结10-20 nm之内的激子可以扩散到界面而拆分成自由载流子,距离异质结稍远处产生的激子能量就白白损失掉了,对光电的转换没有贡献。这样导致现有的有机太阳能电池的能量转换效率偏低。
技术问题
有鉴于此,提供一种太阳能利用率高、激子利用率高、电学性能增强的有机太阳能电池,以及一种工艺简单、成本低的有机太阳能电池制备方法。
技术解决方案
一种有机太阳能电池,其包括光反射性电极、位于所述光反射性电极上的光敏层、位于所述光敏层上的透明电极、位于所述透明电极上的上转换结构,以及位于所述透明电极和上转换结构之间的透明绝缘层,所述上转换结构包括对光谱具有上转换功能的上转换材料,所述光敏层至少包括电子给体材料和电子受体材料相混合的混合异质结结构。
以及,一种有机太阳能电池制备方法,其包括如下步骤:
提供一透明绝缘层,所述透明绝缘层具有相对的第一表面和第二表面;
在所述透明绝缘层的第一表面上形成透明电极;
在所述透明电极上形成光敏层,所述光敏层至少包括电子给体材料和电子受体材料相混合的混合异质结结构;
在所述光敏层上形成光反射性电极;
在所述透明绝缘层的第二表面上形成上转换结构,使得透明绝缘层位于所述透明电极和上转换结构之间,所述上转换结构包括对光谱具有上转换功能的上转换材料。
有益效果
在所述有机太阳能电池中,一方面,通过设置上转换结构,利用上转换材料的光谱转换功能,将不能被电池充分吸收利用的光,例如低能量近红外波段光子转换为较高能量的可见光波段光子,提高了有机太阳能电池对太阳光能的吸收利用率,从而可以改善其光电转换性能。另一方面,在上转换结构与透明电极之间有一层透明绝缘层,可以保证上转换层与太阳能电池在电学上的相对独立,避免了上转换材料对太阳能电池光电转换的不利影响,增强有机太阳能电池的电学性能。进一步,利用混合异质结结构,拓宽激子拆分的区域,提高激子利用率,从而提高了电池的内量子效率。在有机太阳能电池制备方法中,按照预定步骤形成各层结构,其工艺步骤简单,生产成本低,具有广阔的应用前景。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明第一实施例的有机太阳能电池的结构示意图;
图2是本发明第二实施例的有机太阳能电池的结构示意图;
图3是本发明实施例的有机太阳能电池制备方法流程图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,显示本发明第一实施例的有机太阳能电池结构。本实施例的有机太阳能电池10包括光反射性电极11、位于光反射性电极11上的光敏层13、位于光敏层13上的透明电极16以及位于透明电极16上的上转换结构18,在透明电极16和上转换结构18之间还设有透明绝缘层17,光敏层13包括电子给体材料和电子受体材料相混合的混合异质结结构,该上转换结构18包括对光谱具有上转换功能的上转换材料。具体地,上述各部分都是层状结构,采用层层相叠的结构形式。
在图示的实施例中,分别在光敏层13两侧设置有缓冲层,即包括位于光反射性电极11与光敏层13之间的第一缓冲层12,以及位于光敏层13与透明电极16之间的第二缓冲层15,
光反射性电极11可采用高反射率材料,其可以是但不限于Au、Ag、Al、Ca-Al或Mg-Ag等金属薄膜电极,或者是包含ITO或ZnO等金属氧化物的高反射率电极,并可以作为电池的阴极或阳极。本实施例中,光反射性电极11为层状结构,为一电极层,厚度为微米或纳米级,例如但不限于50纳米-2微米,优选为100-200纳米。在一个具体实施例中,光反射性电极11可形成有条纹电极图样,例如可以为长直条纹状。
在本实施例中,光敏层13采用混合异质结结构,通过将电子给体材料和电子受体材料以预定比例混合而成,例如,电子给体和受体材料按照质量比1:0.1~1:10,优选地,质量比范围为1:0.5~1:2。因此,该混合异质结结构是电子给体材料和电子受体材料的混合体,两种材料相互混合掺杂,电子给体材料和电子受体材料相互均匀分布并混合在一起。本实施例的混合异质结结构是具有大面积电荷产生界面的由电子给体和电子受体形成的网络矩阵结构,是电池中光生激子,并拆分成自由的电子和空穴载流子,并输出光电流的主要区域,其可通过例如旋涂制膜的方法,从而使其中的给体材料和受体材料形成较好的均匀相,保证光电流的顺利导出。当然也可以采用真空镀膜或溅射的方法制备,并不限于此。
上述电子给体材料可以是聚对苯撑乙烯(PPV)或其衍生物、聚噻吩材料、聚芴材料、聚咔唑材料或聚双噻吩环戊烷材料以及其他聚合物材料。其中,聚对苯撑乙烯(PPV)或其衍生物可以是例如聚[2-甲氧基-5-(2’-乙烯基-己氧基)聚对苯乙烯撑](简写为MEH-PPV)、聚(2-甲氧基-5-(3',7'-二甲基辛氧基)-1,4-对苯撑乙烯(简写为MDMO-PPV);聚噻吩材料可以是例如聚(3-己基噻吩)(简写为P3HT)等;聚芴材料可以是例如含苯并噻二唑单元和芴单元的共聚物等;聚咔唑材料可以是例如含苯并噻二唑单元和咔唑的共聚物等,聚双噻吩环戊烷材料可以是例如含苯并噻二唑单元和双噻吩的共聚物等;其他聚合物材料可以是但不限于含喹喔啉、噻吩并吡咯和噻吩并吡嗪等单元的聚合物等。其中电子受体材料可以为但不限于聚北酰亚胺(英文名为Perylene Polyimide)材料、C60、C60衍生物(如PCBM)、C70或C70衍生物(如PC70BM)。
光敏层13是整个电池吸收光子产生光电流、光电压的光敏区域。光敏层13的厚度可以为纳米级,例如但不限于10-200纳米,优选为20-160纳米。
该第一、第二缓冲层12、15的材料是相同或不同的以下化合物中的一种或多种混合:聚乙烯二氧基噻吩:聚苯乙烯-磺酸复合材料(简称为PEDOT:PSS)、钛的氧化物(TiOx)、BCP、Alq3或LiF。其中Alq3是8-羟基喹啉铝(英文名为 8-Tris-Hydroxyquinoline Aluminum ), BCP是2,9-二甲基-4,7-联苯-1,10-菲罗啉(英文名为 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ) 。
第一、第二缓冲层12、15可以具有相同或不同的纳米级厚度,具体可以为5-20纳米,优选为5-10纳米。
上述这些材料用作第一、第二缓冲层12、15,主要起到修饰电极与光敏层之间界面的作用,一方面可以使其界面更加平整,另一方面也有利于界面的电荷传输。同时也可以提高阳极功函数,还有部分阻挡激子的作用。
透明电极16可采用导电性好的透明材料,例如但不限于氧化铟锡(ITO)、氧化锌铝(AZO)、氧化锌镓(GZO)、氧化铟锌(IZO)等氧化物透明电极或者金(Au)薄膜、铝(Al)薄膜、银(Ag)薄膜等金属薄膜电极或者碳纳米管导电薄膜等,透明电极16可以作为电池的阳极或者阴极,作为光反射性电极的对电极。本实施例中,透明电极16为层状结构,为一透明层,厚度为微米或纳米级,例如但不限于50纳米-2微米,优选为100-200纳米。在一个具体实施例中,与光反射性电极11结构相对应,透明电极16可具有条纹电极图样,例如可以为长直条纹状。
透明绝缘层17主要是采用透明绝缘的材料,例如可以是玻璃层或透明塑胶层,玻璃材料可包括但不限于石英玻璃、硅酸盐玻璃、高硅氧玻璃或钠钙玻璃等,透明塑胶层可包括但不限于聚氯乙烯(PVC)、聚碳酸酯(PC)或聚酯(PET)等。该透明绝缘层17位于透明电极16和上转换结构18之间,使得这两层结构之间相互绝缘隔离,以保证上转换结构18与光敏层13及透明电极16在电学上的相对独立,避免了上转换材料对有机太阳能电池10的内部光电转换的不利影响,从而可以分别对上转换结构、有机太阳能电池10的电池单元(即至少包括光敏层13、透明电极16和光反射性电极11)进行独立的性能优化,以达到整个电池系统的性能最优化。透明绝缘层17的厚度可以为但不限于0.5-5毫米,优选为1-3毫米。可采用相对较厚的透明绝缘层17,作为支撑其它层的基层。
透明绝缘层17具有相对的第一表面17b和第二表面17a,第一表面17b为与透明电极16相接的表面,第二表面17a为形成有上转换结构18的表面。
上转换结构18中的上转换材料可包括单掺或双掺稀土离子的卤化物、氧化物、硫化物或者它们的组合物。其中,卤化物优选为氟化物,氧化物可以是稀土氧化物、氧化锌、氧化锆或复合氧化物,硫化物可以是稀土硫化物。具体地,上转换材料例如可以是但不限于单掺或双掺稀土离子的BaY2F8、KZnF3、NaYF4、NaYb(WO4)2、Ga2S3-La2O3、Y2O3、Gd2O3、ZrO2、ZnO、BaTiO3、ZrF2-SiO2或ZnO-SiO2。单掺或双掺的稀土离子可包括Er3+、Ho3+、Tm3+、Pr3+、Yb3+/Ho3+、Yb3+/Tm3+、Yb3+/Pr3+、Yb3+/Er3+或Tb3+/Er3+。其中,稀土离子的总掺杂摩尔比并没有特别限定,具体可根据实际需要而定,作为举例,稀土离子相对基质(即卤化物、氧化物、硫化物或者它们的组合物)的总掺杂摩尔比可以为1%-60%,但不限于此。
在双掺的稀土离子中,如在Yb3+/Ho3+、Yb3+/Tm3+、Yb3+/Pr3+、Yb3+/Er3+或Tb3+/Er3+中,两种离子混合摩尔比例为1:0.1~1:1,优选地,混合摩尔比例为1:0.1~1:0.5。
上转换结构18可以为包含上转换材料的薄膜形式,或者采用氧化物薄膜包覆上转换材料的复合结构形式。包覆用的氧化物薄膜可以是ZnO:Al,SnO2:Sb,通过这种包覆上转换材料的复合结构,在这种氧化物薄膜包覆上转换材料的复合结构形式中,可保证上转换材料的稳定性,从而使得上转换结构18的上转换功能稳定而持久。上转换结构18的厚度可以为但不限于500-600纳米。上转换材料具有“光谱调控”功能,其将不能被电池充分吸收利用的低能量光,例如近红外波段、远红外波段或其它波段的光子转换为较高能量的可见光波段光子,提高了对太阳光的吸收利用率,从而可以改善其光电转换性能。
由此,如图1所示,在太阳光14照射下,太阳光从上转换结构18一侧入射,经过上转换过程,例如将红外部分光子转换为可见光波段光子,透过透明绝缘层17和透明电极16,由聚合物太阳能电池光敏层13中的混合异质结结构吸收,并转换为自由载流子,经由载流子传输层导出,形成光电流。其中,由于光敏层13采用混合异质结结构,电子给体材料和电子受体材料相互均匀混合掺杂在一起,形成由电子给体和电子受体形成的网络矩阵结构,拓宽了光生激子拆分成自由载流子并形成光电流的区域,提高了激子拆分效率,并给激子扩散迁移提供便利,保证光电流的顺利导出,避免现有异质结的激子扩散缺陷,由此大大提高了电池对太阳光能的光电转换效率。
请参阅图2,显示本发明第二实施例的有机太阳能电池结构。本实施例的有机太阳能电池20与第一实施例的有机太阳能电池结构基本相同,不同之处在于光敏层的结构。图2和图1中相同的标号表示相同元件,在此不再赘述。
本实施例的光敏层23采用三层结构,包括依次层叠设置的第一光敏层23a和第二光敏层23b以及位于第一与第二光敏层23a、23b之间的第三光敏层23c。第一光敏层23a包括电子给体材料,第二光敏层23b包括电子受体材料,第三光敏层23c采用上述光敏层13的结构。电子给体材料除了可以是上述光敏层13的材料外,还可以是例如但不限于酞菁染料、并五苯、卟啉化合物、菁染料中的至少一种;电子受体材料除了可以是上述光敏层13的材料外,还可以是例如不限于四羧基北衍生物(例如3,4,9,10-北四甲酸二酐,简称为PTCDA)、C60、C70、二奈嵌苯或二奈嵌苯衍生物中的至少一种。优选地,第一与第二光敏层23a、23b的电子给体和受体材料分别采用与第三光敏层23c相同的电子给体和受体材料,即光敏层23a、23b、23c的电子给体和受体材料既可以采用第一实施例中的光敏层13的相应电子给体和受体材料,也可是第二实施例前述的电子给体和受体材料。
在图示的实施例中,第二光敏层23b靠近于透明电极16设置,即设置于近光侧,第一光敏层23a靠近于光反射性电极11。可以理解的是,第一、第二光敏层23a、23b的位置也可以是按与上述相反的顺序设置,即第一光敏层23a靠近于透明电极16设置,即设置于近光侧,而第二光敏层23b靠近于光反射性电极11。
在此三层光敏层结构中,第一、第二光敏层23a、23b作为吸收光和载流子传输层,当然第三光敏层23c也可起到这样的作用,同时还具有第一实施例中光敏层13一样的结构。通过这种三层结构,能够拓宽光生激子拆分成自由载流子并形成光电流的区域,提高了激子拆分效率,更有利于提高光电转换效率。
可以理解的是,上述两实施例中的光敏层采用的材料可以相互交换使用,例如第二实施例的三层光敏层23a、23b、23c中的电子给体和受体材料也可以采用光敏层13中相对应的作为给体和受体的聚合物材料,反之亦然。
另外,还可以理解的是,在其它实施例中,还可仅仅采用第一、第二光敏层23a、23b中的一层与第三光敏层23c共两层的结构形式或更多层(例如包括光敏层13或23c在内的多层结构)的结构形式,这些都在本发明保护的构思范围之列,并不局限于上述实施例的层数及其排列设置方式等方面。
请参阅图3,说明本发明实施例的有机太阳能电池制备方法,其包括如下步骤:
S01:提供一透明绝缘层,透明绝缘层具有相对的第一表面和第二表面;
S02:在透明绝缘层的第一表面上形成透明电极;
S03:在透明电极上形成光敏层,光敏层至少包括电子给体材料和电子受体材料相混合的混合异质结结构;
S04:在光敏层上形成光反射性电极;
S05:在透明绝缘层的第二表面上形成上转换结构,使得透明绝缘层位于透明电极和上转换结构之间,上转换结构包括对光谱具有上转换功能的上转换材料。
在上述各步骤中,各层结构的材料可以对应分别为以上所描述的材料和组成及结构形式,在此不再赘述。以下分别描述第一实施例和第二实施例两种有机太阳能电池的制备方法。
首先以第一实施例的结构为例,请再结合参考图1的结构,透明绝缘层17具有第一表面17b和第二表面17a。如上所述,可采用玻璃或塑料等透明绝缘材料,同时透明绝缘层17也作为后面各层薄膜生长的衬底。
在步骤S02中,透明电极16可以通过真空蒸镀或溅射的方法镀于透明绝缘层17的第一表面17b上,形成透明薄膜状结构。在一个具体的实施例中,还可进一步将透明电极16通过光刻腐蚀成所需要的条纹电极图样,可作为有机太阳能电池10的阳极,具体的图样可根据实际需要而定。
对应上述结构,可进一步在透明电极16上形成第二缓冲层15,例如采用旋涂技术制备PEDOT:PSS等聚合物导电薄膜,或者采用蒸镀方法生长TiOx、BCP、Alq3或LiF等材料,作为图1中的缓冲层15。
光敏层13采用旋涂技术,通过湿法镀膜方式,在第二缓冲层15上旋涂制备电子给体材料和电子受体材料按预定比例混合的混合层,形成混合异质结结构,作为图1中的光敏层13。在此湿法镀膜进行之前,可采用有机溶剂将电子给体材料和电子受体材料预先溶解,同时用磁力搅拌器充分搅拌,充分溶解,配成含电子给体材料和电子受体材料质量百分比为(例如按给体/受体材料的质量比1:0.1~1:10)的溶液,以备旋涂湿法制膜使用。有机溶剂可以为但不限于氯仿等。将电子给体材料溶液和电子受体材料溶液按照预定配比,旋涂制备出所需的光敏层13,其中,旋涂转速为1500 rpm左右。然后可进一步将旋涂产物在60-100°C下进行干燥数十分钟。
同样对应上述结构,可进一步在光敏层13上形成第一缓冲层12,可采用例如旋涂技术制备PEDOT:PSS等聚合物导电薄膜,或者采用真空蒸镀方法生长TiOx、BCP、Alq3或LiF等材料,作为图1中的第一缓冲层12。当采用旋涂技术制备PEDOT:PSS等聚合物导电薄膜,涂覆后将其置入烘箱内,在60-100°C烘烤20-60分钟。在一个具体实施例中,烘箱内的烘烤温度为90°C,烘烤时间为25分钟。
光反射性电极11可以采用真空蒸镀或溅镀方法,辅以条纹掩膜板形成纳米级厚度的电极层。上转换结构18形成方法如下:采用上转换材料中的各元素的源化合物(例如对应元素的氧化物、硝酸盐、草酸盐或碳酸盐等)作为原料,采用溶胶-凝胶的方法并旋涂形成于透明绝缘层17的第二表面17a,即在未镀有透明电极16的表面,使得透明绝缘层17位于透明电极16和上转换结构18之间。
此外,形成上述各层后进一步将整个结构在100-200°C左右温度下退火5-30分钟,例如具体操作时可以是在160°C温度下退火5分钟。在另一个实施例中,上转换结构18可采用氧化物薄膜包覆上转换材料而形成于透明绝缘层17的第二表面17a,例如采用化学均相共沉淀方法,在上述单掺或双掺稀土离子的卤化物、氧化物、硫化物或者它们的组合物等材料表面包覆ZnO∶Al等,形成透明的上转换结构。
对第二实施例的有机太阳能电池20,其制备方法基本类似于上述步骤,不同在于光敏层的制备步骤。由于有机太阳能电池20的光敏层23具有三层结构,因此分三步进行,分别依次形成第二光敏层23b、第三光敏层23c和第一光敏层23a。同样与图2中的结构相对应,可以在形成第一、第二光敏层23a、23b之前在透明电极16上形成第二缓冲层15。两光敏层23a、23b都可以采用真空蒸镀的方法形成,具体步骤为:在一个真空度为10-6Pa左右的真空蒸镀系统的生长腔中,采用真空蒸镀的方式生长第二光敏层23b(如C60电子受体层),控制生长速率为0.4 nm/s,直到沉积至所需的厚度;然后在刚刚镀好的第二光敏层23b上以真空蒸镀的方式生长第三光敏层23c(如CuPc酞菁铜和C60混合层),控制生长速率为0.15nm/s,直到沉积至所需的厚度;然后再在第三光敏层23c上以真空蒸镀的方式生长第一光敏层23a(例如CuPc酞菁铜电子给体层),控制生长速率为0.3 nm/s,直到沉积至所需的厚度。与上面描述光敏层23的结构相对应,当第一、第二光敏层23a、23b顺序调换时,两者的形成顺序也相应调换。
可以理解的是,当其中任一光敏层采用第一实施例中的聚合物材料时,可采用前一种旋涂的方法,通过湿法镀膜旋涂方式形成相应聚合物材料的光敏层。同样地,当第一实施例中的光敏层13采用第三光敏层23c同样的材料时,光敏层13也可以采用真空蒸镀方法形成。也即,上述两种方法针对不同种类的光敏层可交换采用,并不限于上述实施例形式。
可进一步在第一光敏层23a上形成第一缓冲层12。第一缓冲层12(如TiOx、BCP、Alq3等材料)可通过真空蒸镀方法形成八羟基喹啉铝Alq3薄膜,控制生长速率为0.1 nm/s,直到沉积至所需的厚度。由于两缓冲层12、15可采用相同或不同的材料,当采用PEDOT:PSS等聚合物导电薄膜时,可选用旋涂的方法,旋涂于透明电极12或光敏层13上,当采用TiOx、BCP、Alq3等材料时,可选用真空蒸镀方法形成于透明电极12或光敏层13上,视实际需求而定。
在本发明一个优选的实施例中,各光敏层和两缓冲层分别采用同一类型的材料,例如各光敏层和两缓冲层都采用聚合物材料,或者都采用通过真空蒸镀方法形成的小分子化合物。在一个具体实施例中,光敏层13和光敏层23中的电子给体和受体材料都可采用第一实施例描述的聚合物材料,两缓冲层都采用PEDOT:PSS等聚合物导电薄膜,这样,制备时这些层都可采用旋涂的方法,通过旋转涂覆形成。在这种情况下,使得多个连续的步骤都可采用旋涂的方法,从而简化工艺操作程序和设备使用,进而降低制造成本。同样,在另一个具体实施例中,各光敏层和两缓冲层都采用通过真空蒸镀方法形成的化合物,例如,光敏层13和光敏层23中的电子给体材料都可采用酞菁染料、并五苯、卟啉化合物或菁染料,电子受体材料都可采用四羧基北衍生物(例如3,4,9,10-北四甲酸二酐,简称为PTCDA)、C60、C70、二奈嵌苯或二奈嵌苯衍生物,两缓冲层都采用TiOx、BCP、Alq3或LiF等导电薄膜,这样,制备时这些层都可采用真空蒸镀方法形成。在这种情况下,使得多个连续的步骤都可采用真空蒸镀方法。进一步有利的是,透明电极16和光反射性电极11都可采用真空蒸镀方法形成。这样,更有利于简化工艺操作程序和设备使用,进一步降低制造成本。
以下通过具体实例来举例说明本发明实施例的有机太阳能电池10和20的结构及其制备方法,以及其性能等方面。
实例1
本实例的结构参考图1描述,其中,光反射性电极11采用铝(Al)薄膜电极,第一缓冲层12采用LiF薄膜,光敏层13采用P3HT:PC70BM聚合物混合体异质结薄膜,第二缓冲层15采用PEDOT:PSS聚合物薄膜,透明电极16采用ITO条纹电极,其在可见光区域的透射率大于85%,透明绝缘层17采用石英玻璃,上转换结构18采用Yb3+/Er3+共掺杂的氟化钇钠薄膜,各层的厚度如下制备方法所述。
上述实例的有机太阳能电池10具体制备方法如下:
(1) 以石英玻璃为衬底,采用溅射的方法在石英玻璃一侧镀一层ITO导电薄膜。石英玻璃的厚度约为1.1 mm,ITO薄膜的厚度约为110 nm,其方块电阻为15-17欧姆/□;
(2) 将ITO导电薄膜光刻蚀成所需要的条纹电极图样作为阳极,并制成ITO电极板;
(3) 整个ITO电极板通过无水甲醇、丙酮的擦洗,并在无水甲醇中超声清洗1-1.5小时,之后将ITO电极板在150摄氏度的高温炉中烘烤15分钟,以对ITO电极板进行表面预处理;
(4) 在ITO电极板上采用旋涂的方法,旋涂PEDOT:PSS薄膜,旋涂转速5000 rpm,其薄膜厚度为35 nm左右,并将旋涂后产物置入烘箱内,在90摄氏度烘烤25分钟;
(5) 采用5 ml氯仿作为湿法制备P3HT:PC70BM混合薄膜的溶剂,P3HT和PC70BM的质量比为1:0.8,其中P3HT在氯仿溶液中的质量百分比浓度为1 wt%,PC70BM在氯仿溶液中的质量百分比浓度为0.8 wt%。制成的溶液经磁力搅拌器充分搅拌溶解,以备旋涂湿法制膜使用;
(6) 在PEDOT:PSS薄膜上,通过旋涂的方法,采用前一步骤(5)里调配而成的PC70BM溶液和P3HT溶液,旋涂制备P3HT:PC70BM光敏层。旋涂转速为1500 rpm,其薄膜厚度为150 nm左右;
(7) 将步骤(6)形成产物置于真空烘箱内,在80摄氏度的温度下烘烤10分钟后取出;
(8) 将步骤(7)形成产物传入真空蒸镀室内,其真空度在10-6Pa以上。在P3HT:PC70BM混合光敏层上真空蒸镀制备氟化锂LiF薄膜,厚度为0.5 nm,蒸镀生长速率为0.005 nm/s;
(9) 在LiF薄膜上,辅以条纹电极掩膜板真空蒸镀120 nm厚度铝条纹电极,作为聚合物太阳能电池的阴极;
(10) 在石英玻璃未镀膜的一侧,采用溶胶-凝胶方法制备一层Yb3+/Er3+共掺杂的氟化钇钠薄膜,最后整个结构在ITO阳极施加2.5 V外置偏压,同时在160摄氏度退火5分钟,这样,即实现有机太阳能电池10的一个实例的制备。
实例2
本实例的结构参考图2描述,其中,光反射性电极11采用氧化锌(ZnO)薄膜电极,第一缓冲层12采用Alq3薄膜,第一光敏层23a采用C60薄膜,第三光敏层23c采用CuPc酞菁铜和C60混蒸的混合体异质结薄膜,第二光敏层23b采用CuPc酞菁铜薄膜,第二缓冲层15采用PEDOT:PSS聚合物薄膜,透明电极16采用ITO条纹电极,其方块电阻为15欧姆/□,其在可见光区域的透射率大于85%,透明绝缘层17采用石英玻璃,上转换结构18采用Yb3+/Er3+共掺杂的氟化钇钠薄膜,各层的厚度如下制备方法所述。
上述实例的有机太阳能电池20具体制备方法如下:
(1) 以石英玻璃为衬底,采用溅射的方法在石英玻璃一侧镀一层ITO导电薄膜。石英玻璃的厚度1.1 mm,尺寸为37 cm*48 cm;
(2) 将ITO导电薄膜光刻蚀成所需要的条纹电极图样,作为太阳能电池的阳极;
(3) 在ITO透明电极上采用旋涂的方法,旋涂PEDOT:PSS薄膜,并将旋涂产物置入烘箱内,在85摄氏度烘烤25分钟;
(4) 将旋涂产物从烘箱中取出,并送入真空蒸镀系统的生长腔中,其真空度为10-8Torr左右,采用真空蒸镀的方式生长CuPc酞菁铜电子给体层,其厚度为20 nm,生长速率为0.3 nm/s;
(5) 在CuPc薄膜上,按照体积比1:0.5的比列混合生长CuPc和C60的混蒸层,CuPc生长速率0.3 nm/s,C60生长速率0.15 nm/s,其混蒸层厚度为10 nm,形成给体和受体材料的混合异质结结构;
(6) 在CuPc薄膜上真空蒸镀C60电子受体层,厚度为35 nm,生长速率为0.4 nm/s;
(7) 在C60薄膜上真空蒸镀八羟基喹啉铝Alq3,厚度为5 nm,生长速率为0.2 nm/s;
(8) 在Alq3薄膜之上,辅以条纹掩膜板真空蒸镀110nm厚度氧化锌条纹电极;
(9) 在石英玻璃未镀膜的一侧,采用溶胶-凝胶方法制备一层Yb3+/Er3+共掺杂的氟化钇钠薄膜,最后,整个结构在115摄氏度退火15分钟,即实现有机太阳能电池20的一个实例的制备。
在上述有机太阳能电池中,一方面,通过设置上转换结构,利用上转换材料的光谱转换功能,将不能被电池充分吸收利用的光,例如低能量近红外波段光子转换为较高能量的可见光波段光子,提高了有机太阳能电池对太阳光能的吸收利用率,从而可以改善其光电转换性能。另一方面,在上转换结构与透明电极之间有一层透明绝缘层,可以保证上转换层与太阳能电池在电学上的相对独立,避免了上转换材料对太阳能电池光电转换的不利影响,增强有机太阳能电池的电学性能。进一步,利用混合异质结结构,拓宽激子拆分的区域,提高激子利用率,从而提高了电池的内量子效率。在有机太阳能电池制备方法中,按照预定步骤形成各层结构,其工艺步骤简单,生产成本低,具有广阔的应用前景。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种有机太阳能电池,其包括光反射性电极、位于所述光反射性电极上的光敏层、位于所述光敏层上的透明电极,其特征在于,还包括位于所述透明电极上的上转换结构,以及位于所述透明电极和上转换结构之间的透明绝缘层,所述上转换结构包括对光谱具有上转换功能的上转换材料,所述光敏层至少包括电子给体材料和电子受体材料相混合的混合异质结结构。
  2. 如权利要求1所述的有机太阳能电池,其特征在于,所述上转换材料包括单掺或双掺稀土离子的卤化物、氧化物、硫化物或者它们的组合物。
  3. 如权利要求1所述的有机太阳能电池,其特征在于,所述上转换材料包括单掺或双掺稀土离子的BaY2F8、KZnF3、NaYF4、NaYb(WO4)2、Ga2S3-La2O3、Y2O3、Gd2O3、ZrO2、ZnO、BaTiO3、ZrF2-SiO2或ZnO-SiO2
  4. 如权利要求2或3所述的有机太阳能电池,其特征在于,所述单掺或双掺的稀土离子包括Er3+、Ho3+、Tm3+、Pr3+、Yb3+/Ho3+、Yb3+/Tm3+、Yb3+/Pr3+、Yb3+/Er3+或Tb3+/Er3+
  5. 如权利要求1所述的有机太阳能电池,其特征在于,所述上转换结构为包含上转换材料的薄膜或者采用氧化物薄膜包覆上转换材料的复合结构。
  6. 如权利要求1所述的有机太阳能电池,其特征在于,所述光敏层还包括第一光敏层和第二光敏层,所述混合异质结结构为第三光敏层,并夹于所述第一光敏层和第二光敏层之间,所述第一光敏层包括所述混合异质结结构中的电子给体材料,所述第二光敏层包括所述混合异质结结构中的电子受体材料。
  7. 如权利要求1所述的有机太阳能电池,其特征在于,还包括位于所述光反射性电极与光敏层之间的第一缓冲层以及位于所述光敏层与透明电极之间的第二缓冲层,所述第一、第二缓冲层的材料选自聚乙烯二氧基噻吩:聚苯乙烯-磺酸复合材料、钛的氧化物、BCP、Alq3或LiF。
  8. 如权利要求1所述的有机太阳能电池,其特征在于,所述光敏层的电子给体材料选自聚对苯撑乙烯或其衍生物、聚噻吩材料、聚芴材料、聚咔唑材料、聚双噻吩环戊烷材料或含喹喔啉、噻吩并吡咯和噻吩并吡嗪单元的聚合物,所述光敏层的电子受体材料为聚北酰亚胺材料,所述各个缓冲层的材料为聚乙烯二氧基噻吩:聚苯乙烯-磺酸复合材料。
  9. 如权利要求1所述的有机太阳能电池,其特征在于,所述光敏层的电子给体材料选自酞菁染料、并五苯、卟啉化合物或菁染料,所述光敏层的电子受体材料选自四羧基北衍生物、C60、C70、二奈嵌苯或二奈嵌苯衍生物,所述各个缓冲层的材料选自钛的氧化物、BCP、Alq3或LiF。
  10. 一种有机太阳能电池制备方法,其包括如下步骤:
    提供一透明绝缘层,所述透明绝缘层具有相对的第一表面和第二表面;
    在所述透明绝缘层的第一表面上形成透明电极;
    在所述透明电极上形成光敏层,所述光敏层至少包括电子给体材料和电子受体材料相混合的混合异质结结构;
    在所述光敏层上形成光反射性电极;
    在所述透明绝缘层的第二表面上形成上转换结构,使得透明绝缘层位于所述透明电极和上转换结构之间,所述上转换结构包括对光谱具有上转换功能的上转换材料。
  11. 如权利要求10所述的有机太阳能电池制备方法,其特征在于,所述光敏层还包括第一光敏层和第二光敏层,所述混合异质结结构为第三光敏层,并夹于所述第一光敏层和第二光敏层之间,所述第一光敏层包括所述混合异质结结构中的电子给体材料,所述第二光敏层包括所述混合异质结结构中的电子受体材料。
  12. 如权利要求11所述的有机太阳能电池制备方法,其特征在于,所述三层光敏层都采用旋涂法或真空镀膜法中的一种方法形成。
  13. 如权利要求10所述的有机太阳能电池制备方法,其特征在于,所述上转换结构通过溶胶-凝胶法将所述上转换材料沉积于所述透明绝缘层的第二表面,或者采用化学共沉淀法将氧化物薄膜包覆上转换材料形成于所述透明绝缘层的第二表面。
  14. 如权利要求10所述的有机太阳能电池制备方法,其特征在于,所述光敏层采用旋涂法形成,并在旋涂之前,采用有机溶剂将电子给体材料和电子受体材料预先溶解,同时用磁力搅拌器充分搅拌,配成含电子给体材料和电子受体材料的溶液,然后,将电子给体材料溶液和电子受体材料溶液旋涂,以获得所述光敏层。
PCT/CN2010/071056 2010-03-15 2010-03-15 有机太阳能电池及其制备方法 WO2011113195A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10847664.9A EP2549559A4 (en) 2010-03-15 2010-03-15 ORGANIC SOLAR CELL AND METHOD FOR MANUFACTURING THE SAME
PCT/CN2010/071056 WO2011113195A1 (zh) 2010-03-15 2010-03-15 有机太阳能电池及其制备方法
CN2010800612366A CN102714277A (zh) 2010-03-15 2010-03-15 有机太阳能电池及其制备方法
JP2012555278A JP5634530B2 (ja) 2010-03-15 2010-03-15 有機太陽電池及びその製造方法
US13/582,774 US20130000719A1 (en) 2010-03-15 2010-03-15 Organic solar cell and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/071056 WO2011113195A1 (zh) 2010-03-15 2010-03-15 有机太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2011113195A1 true WO2011113195A1 (zh) 2011-09-22

Family

ID=44648413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071056 WO2011113195A1 (zh) 2010-03-15 2010-03-15 有机太阳能电池及其制备方法

Country Status (5)

Country Link
US (1) US20130000719A1 (zh)
EP (1) EP2549559A4 (zh)
JP (1) JP5634530B2 (zh)
CN (1) CN102714277A (zh)
WO (1) WO2011113195A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403461A (zh) * 2011-11-29 2012-04-04 中山大学 一种柔性有机薄膜太阳电池的制备方法
CN103579504A (zh) * 2013-11-20 2014-02-12 电子科技大学 一种有机薄膜太阳能电池及其制备方法
JP2014234479A (ja) * 2013-06-04 2014-12-15 裕彦 後藤 アップコンバージョン蛍光体及びその製造方法
JP2015513212A (ja) * 2012-02-01 2015-04-30 日東電工株式会社 太陽光捕集効率を向上させるためのガラスプレート上の波長変換層

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120329982A1 (en) * 2010-03-15 2012-12-27 Ocean's King Lighting Science & Technology Co., Ltd. Cyclopentadienedithiophene-quinoxaline conjugated polymer and preparation method and uses thereof
JP5628418B2 (ja) * 2010-06-09 2014-11-19 海洋王照明科技股▲ふん▼有限公司 ペリレンテトラカルボン酸ジイミドおよびベンゾジチオフェンによる共役ポリマーならびにその調製方法および用途
CN102915852B (zh) * 2012-11-19 2016-05-25 沈阳航空航天大学 一种染料敏化太阳能电池结构及其制备方法
US10978654B2 (en) * 2013-10-25 2021-04-13 The Regents Of The University Of Michigan Exciton management in organic photovoltaic multi-donor energy cascades
KR101541108B1 (ko) * 2014-04-08 2015-07-31 한국과학기술연구원 태양전지 및 이의 제조방법
CN106450005A (zh) * 2016-11-15 2017-02-22 青岛大学 一种稀土上转换纳米盘聚合物太阳能电池制备方法
JP2017128731A (ja) * 2017-02-24 2017-07-27 株式会社Gbry アップコンバージョン蛍光体及びその製造方法
CN107331776B (zh) * 2017-07-18 2019-12-06 电子科技大学 一种基于电荷转移复合物的新型有机近红外光电探测器
CN109935699B (zh) * 2019-04-02 2020-10-09 北京交通大学 一种倍增型有机光电探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094128A (ja) * 1999-09-22 2001-04-06 Sharp Corp 太陽電池モジュール及びその製造方法
CN101421863A (zh) * 2004-09-22 2009-04-29 普林斯顿大学理事会 有机光敏器件
CN101582330A (zh) * 2009-06-29 2009-11-18 中国科学院等离子体物理研究所 上转换发光材料在染料敏化太阳电池上的应用
WO2009156312A1 (en) * 2008-06-23 2009-12-30 Photon B.V. Photovoltaic device with improved spectral response

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031050A (ja) * 2002-06-25 2004-01-29 Sumitomo Metal Mining Co Ltd 色素増感型太陽電池
WO2005083811A2 (en) * 2003-09-23 2005-09-09 Evergreen Solar, Inc. Organic solar cells including group iv nanocrystals and method of manufacture
US7196366B2 (en) * 2004-08-05 2007-03-27 The Trustees Of Princeton University Stacked organic photosensitive devices
WO2007098021A2 (en) * 2006-02-17 2007-08-30 The Regents Of The University Of California Photon-conversion materials (pcms) in polymer solar cells-enhancement efficiency and prevention of degradation
KR101361312B1 (ko) * 2006-10-11 2014-02-11 도레이 카부시키가이샤 광기전력 소자용 전자 공여성 유기 재료, 광기전력 소자용 재료 및 광기전력 소자
US7799990B2 (en) * 2007-03-12 2010-09-21 Northwestern University Electron-blocking layer / hole-transport layer for organic photovoltaics and applications of same
FR2920762B1 (fr) * 2007-09-10 2009-10-23 Saint Gobain Materiau a proprietes photocatalytiques
US8658290B2 (en) * 2007-10-31 2014-02-25 Basf Se Use of halogenated phthalocyanines
CN101939351A (zh) * 2008-02-05 2011-01-05 巴斯夫欧洲公司 苝酰亚胺半导体聚合物
US20110162711A1 (en) * 2008-06-06 2011-07-07 Sumitomo Bakelite Co., Ltd. Wavelength-converting composition and photovoltaic device comprising layer composed of wavelength-converting composition
CN101345291B (zh) * 2008-08-29 2010-08-11 华南理工大学 有机聚合物薄膜紫外光探测器及其制备方法
CN101515508A (zh) * 2009-03-24 2009-08-26 彩虹集团公司 一种带有上转换材料信号增强层的染料敏化太阳能电池
CN102148331A (zh) * 2010-02-08 2011-08-10 海洋王照明科技股份有限公司 具有有机小分子混合体异质结的太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094128A (ja) * 1999-09-22 2001-04-06 Sharp Corp 太陽電池モジュール及びその製造方法
CN101421863A (zh) * 2004-09-22 2009-04-29 普林斯顿大学理事会 有机光敏器件
WO2009156312A1 (en) * 2008-06-23 2009-12-30 Photon B.V. Photovoltaic device with improved spectral response
CN101582330A (zh) * 2009-06-29 2009-11-18 中国科学院等离子体物理研究所 上转换发光材料在染料敏化太阳电池上的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.SHALAV ET AL.: "Luminescent layers for enhanced silicon solar cell performance: UP-conversion", SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 91, 2007, pages 829 - 842, XP022027701 *
See also references of EP2549559A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403461A (zh) * 2011-11-29 2012-04-04 中山大学 一种柔性有机薄膜太阳电池的制备方法
JP2015513212A (ja) * 2012-02-01 2015-04-30 日東電工株式会社 太陽光捕集効率を向上させるためのガラスプレート上の波長変換層
JP2014234479A (ja) * 2013-06-04 2014-12-15 裕彦 後藤 アップコンバージョン蛍光体及びその製造方法
CN103579504A (zh) * 2013-11-20 2014-02-12 电子科技大学 一种有机薄膜太阳能电池及其制备方法

Also Published As

Publication number Publication date
JP2013521634A (ja) 2013-06-10
EP2549559A1 (en) 2013-01-23
US20130000719A1 (en) 2013-01-03
EP2549559A4 (en) 2014-12-03
JP5634530B2 (ja) 2014-12-03
CN102714277A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2011113195A1 (zh) 有机太阳能电池及其制备方法
CN108767118B (zh) 一种三元全聚合物太阳能电池
EP2261980A2 (en) Tandem photovoltaic cells
WO2011102677A2 (ko) 나노구조 무기-유기 이종 접합 태양전지의 제조방법
WO2011102673A2 (ko) 전고체상 이종 접합 태양전지
KR101082910B1 (ko) 접합고리계 화합물을 포함하는 유기태양전지
CN109802041B (zh) 一种非富勒烯钙钛矿平面异质结太阳能电池及制备方法
CN101414663A (zh) 一种并联结构的叠层聚合物薄膜太阳能电池
WO2011062457A2 (ko) 유기-무기 하이브리드 태양전지 및 그 제조방법
CN111129315A (zh) 一种倒置平面异质结杂化钙钛矿太阳能电池及制备方法
KR101097090B1 (ko) 트리페닐렌 화합물을 포함하는 유기태양전지
CN106410037A (zh) 一种基于有机小分子给体材料的双结太阳能电池器件及其制备方法
CN111081883B (zh) 一种高效稳定的平面异质结钙钛矿太阳能电池及制备方法
Chen et al. High performance thermal-treatment-free tandem polymer solar cells with high fill factors
WO2021107184A1 (ko) 일체형 탠덤 태양전지 및 그 제조방법
WO2010110590A2 (ko) 태양 전지 및 그 제조 방법
KR101033304B1 (ko) 발광특성을 가지는 유기 태양전지 및 그 제조방법
CN106025078B (zh) 一种平面异质结钙钛矿光伏电池及其制备方法
Lin et al. An universal morphology regulator for efficient and stable nonfullerene organic solar cells by π–π interaction
KR101098792B1 (ko) 바이페닐 화합물을 포함하는 유기태양전지
CN111223989B (zh) 一种两性分子修饰的钙钛矿光伏器件及其制备方法和用途
WO2012108698A2 (ko) 벌크 이종접합을 갖는 저분자 박막 및 이를 포함하는 유기 태양전지의 형성방법
CN102832346A (zh) 一种基于微腔结构的聚合物太阳能电池及其制备方法
CN104025330A (zh) 高聚物太阳能电池及其制备方法
KR100981767B1 (ko) 종형 전계효과 유기 태양전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061236.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012555278

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13582774

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010847664

Country of ref document: EP