WO2011113173A1 - 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途 - Google Patents

阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途 Download PDF

Info

Publication number
WO2011113173A1
WO2011113173A1 PCT/CN2010/000319 CN2010000319W WO2011113173A1 WO 2011113173 A1 WO2011113173 A1 WO 2011113173A1 CN 2010000319 W CN2010000319 W CN 2010000319W WO 2011113173 A1 WO2011113173 A1 WO 2011113173A1
Authority
WO
WIPO (PCT)
Prior art keywords
cytarabine
group
derivative
mmol
intermediate product
Prior art date
Application number
PCT/CN2010/000319
Other languages
English (en)
French (fr)
Inventor
高峰
徐峻
Original Assignee
Gao Feng
Xu Jun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gao Feng, Xu Jun filed Critical Gao Feng
Priority to PCT/CN2010/000319 priority Critical patent/WO2011113173A1/zh
Publication of WO2011113173A1 publication Critical patent/WO2011113173A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/09Pyrimidine radicals with arabinosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids

Definitions

  • the present invention relates to the field of medical technology, in particular to a novel cytarabine derivative and a synthetic route thereof, and to a cytarabine derivative preparation, a preparation method thereof and a cytarabine derivative and a preparation thereof Use in anti-cancer and anti-tumor. Background technique
  • Cancer is currently the most important disease that threatens human health.
  • the existing methods of treating cancer include: surgical resection, radiotherapy, chemotherapy or the combination of these methods.
  • Chemotherapy has been widely used and has been used in the treatment of many different types of cancer.
  • most of the anticancer drugs used in chemotherapy are limited to delaying the deterioration of cancer and prolonging the life of the patient, making it difficult to achieve the goal of cure.
  • the pathogenesis of various types of cancer varies, they are actually a large group of syndromes with common characteristics.
  • the physiological difference from normal cells is not very large. This is a huge challenge for developing drugs that selectively clear cancer cells without killing normal cells.
  • cancer cell resistance Another major challenge in the development of anticancer drugs is cancer cell resistance, which is the drug resistance caused by a period of chemotherapy.
  • the used chemotherapy drugs even if increased dose, no longer play a role in cancer cells. Metastasis of tumor cells often also prevents treatment with chemotherapy. So far, no anticancer drug has been able to cure all cancers.
  • Finding new, highly selective, low-toxic, non-resistant, and urgently needed new anti-cancer drugs remains challenging. Most chemotherapy and anticancer drugs can cause serious side effects, which can lead to the inability of chemotherapy to continue. Therefore, existing drugs are greatly limited in the treatment of different types of tumors. Therefore, the search for high-efficiency, low-toxic new anti-cancer drugs is still urgently needed to maintain human health.
  • Cytarabine is an analog of cytidine, an inhibitor of DNA polymerase. It can stop DNA synthesis, which can also incorporate DNA, interferes with DNA replication, and also blocks the reduction of cytosine nucleotides to deoxycytidine nucleotides (Sylvester, RK, Fisher, AJ, and Lobell, M., Drug Intelligence & Clinical Pharmacy: Vol. 21, No. 2, pp. 177-180 (1987); Boyer et al., Novel Cytarabine Monopho theme Prodrugs, United States Patent Application Publication, Pub. No. : US 2007/0037774 A 1 , ( Feb.
  • cytarabine is mainly used for the treatment of acute leukemia. It is the best for acute myeloid leukemia. It is also effective for acute monocytic leukemia and acute lymphoblastic leukemia. It has certain curative effect on malignant lymphoma, lung cancer, digestive tract cancer, head and neck cancer. It has viral keratitis and epidemic. Conjunctivitis and the like also have a certain effect, however, it is ineffective for most solid tumors. The activity of cytarabine is not very high.
  • cytarabine is generally combined with other drugs, such as: oxime daunorubicin, all-trans retinoic acid combined with arsenic trioxide, pirarubicin, topography Kang-Etoposide-cyclophosphamide, fludarabine and the like are used in combination.
  • Cytarabine has side effects such as myelosuppression and digestive tract reaction.
  • a few patients may have side effects such as abnormal liver function, fever, and rash (Bolwell, BJ, Cassileth, PA, Gale, . P. Leukemia. 2(5): 253- 60 (1988); Kimby, E., Nygren, P., Glimelius, B. Acta Oncol.
  • Cytarabine is an antimetabolite, which is catalyzed by deoxycytidine-catalyzed phosphorylation in cells, converted to active cytarabine, and further converted to the corresponding diphosphate and cytarabine. effect. Cytarabine inhibits DNA polymerase by interfering with the deoxycytidine triphosphate required for DNA synthesis, interfering with nucleotide incorporation into DNA, and inhibiting nucleotide reductase, preventing nucleotides from being converted into Deoxynucleotides, but have no significant effect on the synthesis of RNA and protein.
  • miftine and adefovir have been approved as anti-viral therapeutics for hepatitis B (Starrett, et al""Synthesis, oral bioavailability determination, and in vitro evaluation of prodrugs of the antiviral agent 9 -[2-(phosphonomethoxy)ethyl]adenine (PMEA)," J Med Chem., 37(12): 1857-64 (1994); Shaw, et al""Pharmacokinextics and Metabolism of Selected Prodrugs of PMEA in Rats," Drug Metabolism Dis., 25(3): 362-366 (1997); Wacher, VJ, et al., Advanced Drug Delivery Reviews 46:89-102 (2001); Wacher, et al""Active Secretion and Enterocytic Drug Metabolism Barriers to Drug Absorption," Adv.
  • Kopcho proposed the use of cyclic citrate nucleosides as anti-hepatocellular carcinoma Prodrug for therapeutic drugs (U Nited States Patent 7,214,668;), when the compound enters the liver, it is catalyzed by the liver's CYP 3A4 metabolizing enzyme to form an acyclic nucleoside derivative and has anticancer activity.
  • Metabasis Therapeutics, Inc. proposed another new Patent application of cyclic cytarabine cytarabine derivatives as anticancer prodrugs (Novel Cytarabine Monopho repertoire Prodrugs, United States Patent Application Publication, Pub. No.: US 2007/0037774 A 1, Boyer et al" Feb.
  • Cytarabine (see Figure 1) is generally not used to treat liver cancer because its nucleoside backbone structure is metabolically inactivated and causes toxicity when its nucleoside backbone structure enters the liver; The O5 hydroxyl group must be activated by phosphorylation, and this activation process is too much in the liver. Slow. Summary of the invention
  • the present invention aims to overcome the deficiencies of the prior art mentioned above, and to provide a cytarabine derivative which is highly efficient, low toxicity, non-resistance, can be rapidly activated, and provides a synthetic route of cytarabine derivatives and
  • the method for preparing a cytarabine derivative preparation, and the present invention also provides experimental data for the use of a cytarabine derivative and a preparation thereof for anticancer and antitumor.
  • the cytarabine derivative of the present invention characterized in that the cytarabine derivative is a compound having the following formula I:
  • R 1 R 2 is ( ⁇ -18 saturated or unsaturated aliphatic group, the unsaturated aliphatic group contains one or more unsaturated bonds, and the unsaturated bond includes cis or trans
  • R 3 is an alkyl group selected from the group consisting of H, OH, OCOR, ester group COOR, dC 18 alkyl group, C 3 - 18 cycloalkyl group, C 2 _ 10 alkenyl group, alkynyl group, Trifluoromethyl,
  • R 1, R 2 may be H, C 1-18 alkyl, a C 3-18 cycloalkyl, C 2-18 alkenyl, C 2-18 alkynyl group, and. Any one of a cycloalkenyl group, a benzyl group, a phenyl group, an aromatic ring group, a carbocyclic group and a heterocyclic group. Each of these groups may be further substituted, and may contain a hetero atom therein.
  • alkyl means various saturated straight-chain, side-chain or cyclic hydrocarbon groups, particularly including small alkyl groups having ten or ten carbons or less. For example, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, isohexyl, heptyl, octyl and decyl Some typical examples in this definition.
  • alkynyl group used in the present invention is the above alkyl group or alkenyl group and contains at least one carbon-carbon triple bond (C ⁇ C ). Therefore, the alkynyl group includes two to ten carbon atoms and contains at least one carbon-carbon triple bond.
  • Linear, branched or cyclic hydrocarbyl or alkynyl groups such as ethynyl, propynyl, butynyl and pentynyl.
  • “Saturated” in the present invention means that the group does not contain an unsaturated bond, such as a carbon-carbon double bond or a carbon-carbon triple bond; and “unsaturated” means that the group contains one or more carbon-carbon doubles. Key or carbon-carbon triple bond.
  • the "cycloalkyl group” used in the present invention is a cyclic hydrocarbon group and preferably a cycloalkyl group having three to eight carbons.
  • cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane and cyclooctane are typical examples of this definition.
  • the cycloalkyl group contains one or two carbon-carbon double bonds to form a "cycloalkenyl group”.
  • the cycloalkyl group may also carry an alkyl group, an alkenyl group, an alkynyl group and other groups.
  • aromatic group used in the present invention is a cyclic conjugated aromatic system and may contain one or more non-carbon atoms (other than carbon other nitrogen such as nitrogen) such as phenyl, naphthyl and pyridine in the ring. Base.
  • heterocyclic group which is also commonly used in the present invention means a cyclic group and a compound in which a plurality of atoms are constituted by a covalent bond, and which contains at least one non-carbon atom.
  • the heterocyclic group includes a five- and six-membered ring system containing a non-carbon atom such as nitrogen, sulfur or oxygen such as pyrazole, pyrrole, pyridine or pyrimidine.
  • alkoxy group in the present invention means an alkyl group which is formed by linking an oxygen atom to a linear or branched alkyl group.
  • alkoxy groups include methoxy, ethoxy, propoxy or isopropoxy groups and the like.
  • alkylthio refers to an alkylsulfide group formed by linking a sulfur atom to a linear or branched alkyl group.
  • alkylthio groups include sulfonylthio, ethylthio, propylthio or isopropylthio and the like.
  • halogen atom group in the present invention is fluorine, chlorine, bromine or iodine.
  • amino acid in the present invention refers to a substituted natural and non-natural amino acid, a pure L- or D-configuration or a racemic mixture, and a group derived from an amino group and a carboxyl group. It is particularly worthy of further elaboration that the various substituents defined above also include groups which are further substituted, wherein these new substituents may also contain other groups. For example, a hydrogen atom on an alkyl group or an aromatic group is substituted with an amino group, a phenol or another group to become a new group belonging to each of the above definitions.
  • the "phosphoric acid” or "phosphate ester” used in the present invention is the highest oxidation state of the pentavalent phosphorus atom to which four oxygen atoms are attached, one oxygen atom is bonded to the phosphorus atom by a double bond, and the two oxygen atoms are bonded to the phosphorus atom by a single bond.
  • Another oxygen atom on the phosphorus atom is attached to the derivative of the present invention.
  • the "prodrug” in the present invention means a compound which cleaves or increases the biological action formed by a certain structural unit in the body after the cytarabine derivative of the present invention is used in the body.
  • the organic solvents mentioned in the present invention include: hexaphosphoric acid benzotriazolyloxytripyrrole phosphorus (PyBOP) 4-dimethylaminopyridine (DMAP) hydrazine, hydrazine-dimethylformamide (DMF) Dimercaptosulfoxide (DMSO), polyethylene glycol (PEG) and tetrahydrofuran (THF)
  • PyBOP hexaphosphoric acid benzotriazolyloxytripyrrole phosphorus
  • DMAP 4-dimethylaminopyridine
  • DMF hydrazine-dimethylformamide
  • DMSO dimercaptosulfoxide
  • PEG polyethylene glycol
  • THF tetrahydrofuran
  • a synthetic route of cytarabine derivatives characterized in that: cytarabine and acetic anhydride are dissolved in decyl alcohol, and the reaction mixture is heated under reflux for 4 hours, and the obtained reaction solution is purified by column chromatography column to obtain a pass.
  • a cytarabine derivative of formula (I). (Refer to synthetic route 1)
  • a synthetic route of cytarabine derivatives characterized in that: cytarabine, acetylsalicylic acid or o-decyloxybenzoic acid, PyBOP and DMAP are dissolved in DMF, stirred at room temperature for 12 hours to obtain a reaction solution, The reaction liquid is purified by column chromatography or the reaction liquid is suspended with water, washed with ethyl acetate, and the aqueous layer is allowed to stand to precipitate crystals, which are filtered and dried to obtain a cytarabine derivative of the formula (I). (Refer to synthetic route 2, 3)
  • the phthalic anhydride or dianhydride compound is mixed with a fatty alcohol, heated and melted, reacted for 4 to 5 hours, and cooled to obtain the first intermediate product (A), which is directly used in the next reaction without further purification;
  • the cytarabine, the first intermediate product (A), PyBOP and DMAP are dissolved in DMF, stirred at 25-50 ° C for 12 24 hours, and the obtained reaction solution is purified by column chromatography or by reaction.
  • the liquid is poured into water, and the solid is precipitated.
  • the obtained solid is purified by column chromatography or the obtained reaction liquid is poured into water, and extracted with ethyl acetate three times.
  • the fatty alcohol is any one of decyl alcohol, n-butanol, lauryl alcohol, n-tetradecyl alcohol, n-hexadecanol and n-octadecanol.
  • the fatty alcohol is any one of n-decyl alcohol, lauryl alcohol, n-tetradecyl alcohol, n-hexadecanol and n-octadecanol.
  • the fatty alcohol is any one of n-decyl alcohol, lauryl alcohol, n-tetradecyl alcohol, n-hexadecanol and n-octadecanol.
  • the fatty alcohol is any one of decyl alcohol, absolute ethanol, n-butanol, and n-octanol.
  • the preparation method of the cytarabine derivative preparation of the invention comprises the following steps:
  • the cytarabine derivative of the formula (I) is dissolved in water, physiological saline, aqueous cyclodextrin solution, water-soluble organic solvent, nonionic surfactant, water-soluble lipid, fatty acid, fat Preparing a formulation solution by combining a solvent of any one or more of an acid ester and a phospholipid; (2) The preparation solution is further diluted with physiological saline or glucose injection to prepare a cytarabine derivative preparation.
  • the organic solvent refers to a combined solvent of one or more of ethanol, propylene glycol, glycerin, glycerin, polyethylene glycol, hydrazine, fluorenyl-dimercaptoamide, and dimethyl sulfoxide.
  • the cytarabine derivative preparation of the present invention is characterized in that it is a product prepared by the above-described method for producing a cytarabine derivative preparation.
  • the cytarabine derivative of the invention can be used to treat or alleviate cancer in a certain tissue or organ.
  • Cancer includes, but is not limited to, leukemia, solid tumors, lung cancer, colon cancer, liver cancer, central nervous system tumors, ovarian cancer, and kidney cancer.
  • the present invention provides the use of an cytarabine derivative preparation comprising an effective dose of a cytarabine derivative of the formula I in antitumor chemotherapy and the combination of the cytarabine derivative preparation with other chemotherapeutic agents, Use in anti-tumor chemotherapy.
  • the cancer includes leukemia, solid tumor, lung cancer, colon cancer, liver cancer, central nervous system tumor, ovarian cancer, and kidney cancer.
  • Antitumor drugs which can be used in combination with the preparation of the cytarabine derivative of the present invention include, but are not limited to, alkylating agents, plant alkaloids, antibacterial antitumor sulfonamides, platinum drugs, antimetabolites and others.
  • the combination therapy referred to in the present invention includes the use of at least one cytarabine derivative exemplified in the present invention.
  • the pharmaceutical preparation is prepared by using the cytarabine derivative of the formula I of the present invention as a component, and can be administered orally or parenterally.
  • the parenteral administration referred to herein means subcutaneous, intravascular, intraarterial, intrauterine, intraatrial, intrasynovial, intrasternal injection or instillation.
  • the present invention contemplates the design of cytarabine derivatives using new design techniques.
  • Cytarabine (see Figure 1) cannot be used to treat liver cancer.
  • its nucleoside skeleton structure enters the liver, its ⁇ 4 amino group is metabolically inactivated and causes toxicity, and on the other hand, its glycocalyx structure
  • the upper 05 hydroxyl group must be activated by phosphorylation, and this activation process is too slow in the liver.
  • the cytarabine derivative of the present invention is designed by chemically modifying the position of ⁇ 4, 05 to design a novel prodrug derivative, thereby avoiding metabolic failure of ⁇ 4 amino group and causing toxicity;
  • the 05 hydroxyl group is easily activated by phosphorylation, and the main beneficial effects are: increased bioavailability, reduced multi-drug resistance (multi-target design technique), increased solubility, and increased ester solubility.
  • the invention provides a synthetic route of cytarabine derivatives, a cytarabine derivative preparation and a preparation method thereof, and proves that the cytarabine derivative of the invention has anticancer and antitumor effects through a large amount of experimental data. the use of. DRAWINGS
  • Figure 1 is a schematic diagram showing the structure of cytarabine and the position of modification of N4, 05.
  • Fig. 2 is a view showing the structure of a representative cytarabine derivative which modifies the N4 position of cytarabine of the present invention.
  • Fig. 3 is a view showing the structure of a representative cytarabine derivative which modifies the position of cytarabine 05 of the present invention.
  • Fig. 4 is a graph showing the representative drug concentration-inhibition rate of the cytarabine derivative of the present invention inhibiting the BEL-7402 liver cancer cell line. detailed description
  • Synthetic route 1 The synthetic routes of some representative cytarabine derivatives of the present invention are listed below. Other similar cytarabine derivatives of the invention are synthesized by the same or similar methods. Synthetic route 1 :
  • cytarabine derivative 2 (Route 2): cytarabine ( 1.21 g, 5 mmol), acetyl 7 salicylic acid (1.08 g, 6 mmol) PyBOP (2.6 g, 5 mmol) and DMAP (0.1 g , 0.5 mmol) dissolved in DMF (20 ml). The reaction solution was stirred at room temperature for 12 hours.
  • cytarabine derivative 3 (Scheme 3): cytarabine (1.2 g, 5 mmol), o-decyloxybenzoic acid (0.8 g, 5 mmol). PyBOP (2.6 g, 5 mmol) and DMAP (0.1 g, 0.5 mmol) was dissolved in DMF (20 mL). The reaction solution was suspended with water, washed with ethyl acetate, and the aqueous layer was allowed to stand, crystals were precipitated, filtered, and dried to obtain cytidine derivative 3 (69 mg). The purity of LC (UV 254 nm) was 98%. LC-MS m/z 378 [M + H] + (Molecular formula C 17 H 19 N 3 O 8 , molecular weight 377 ). Synthetic route 4:
  • Synthesis of the first intermediate product A4 (Scheme 4): The dianhydride compound (1.5 g, 10 mmol) was dissolved in CH 3 OH (20 ml) and heated to reflux for 4 hours. The CH 3 OH was distilled off under reduced pressure to give the crude intermediate product A4 directly to the next reaction.
  • Synthesis of cytarabine derivative 4 (Scheme 4): cytarabine (2.5 g, 10 mmol), first intermediate ⁇ 4 (2.0 g, 10 mmol), PyBOP (5.2 g, 10 mmol) and DMAP ( 0.2 g, 2 mmol) was dissolved in DMF (10 ml) and stirred at room temperature for 12 h.
  • Synthesis of the first intermediate product All (Scheme 11): phthalic anhydride (5 g, 34 mmol) was mixed with lauryl alcohol (7.5 g, 40 mmol), heated and melted, reacted for 4 hours, cooled, and whitened. The first intermediate of the solid, All, was used directly in the next reaction without further purification.
  • Synthesis of cytarabine derivative 11 (Scheme 11): cytarabine (lg, 4.1 mmol), first intermediate All (2.2 g, 5 mmol), PyBOP ( 2.35 g, 4.5 mmol) and DMAP (0.055 g, 0.45 mmol) was dissolved in DMF (10 ml) and stirred at room temperature for 12 h.
  • cytarabine derivative 12 (Scheme 12): cytarabine (2,4 g, 10 mmol), first intermediate A12 (3.6 g, 10 mmol), PyBOP (5.7 g, 11 mmol) and DMAP (0.12 g, 1 mmol) was dissolved in DMF (10 mL) and stirred at 35 °C for 24 hours. The reaction mixture was poured into water, and the mixture was evaporated.
  • Synthesis of the first intermediate product A13 (Scheme 13): phthalic anhydride (3.0 g, 20 mmol) was mixed with n-hexadecanol (5.4 g, 22 mmol), heated at 80 ° C for 5 hours, cooled, The white solid first intermediate A13 was used directly in the next reaction without further purification.
  • Synthesis of cytarabine derivative 13 (Scheme 13): cytarabine (2,4 g, 10 mmol), first intermediate A13 (3.9 g, 10 mmol), PyBOP (5.7 g, 11 mmol) and DMAP (0.12 g, 1 mmol) was dissolved in DMF (10 mL) and stirred at 35 °C for 24 hours.
  • Synthesis of the first intermediate product A14 (Scheme 14): phthalic anhydride (3.0 g, 20 mmol) mixed with n-octadecyl alcohol (5.3 g, 20 mmol), heated at 80 ° C for 5 hours, cooled, The white solid first intermediate A14 was used directly in the next step without further purification.
  • Synthesis of cytarabine derivative 14 (Scheme 14): cytarabine (2,4 g, 10 mmol), first intermediate A14 (4.2 g, 10 mmol), PyBOP (5.7 g, 11 mmol), and DMAP (0.12 g, 1 mmol) was dissolved in DMF (10 ml) and stirred at 35 °C for 24 hours.
  • Second intermediate product B15 (Scheme 15): n-decyl alcohol (3.79 g, 24 mmol) dissolved in 50 ml of tetrahydrofuran, then 1,4-cyclohexanedicarboxylic acid (3.44 g, 20 mmol) and p-toluene The acid (Ol g) was heated to reflux for 5 hours. The second intermediate product B15 obtained was used in the next step without further purification.
  • Second intermediate product B17 (Scheme 17): n-tetradecyl alcohol (5.1 g, 24 mmol) dissolved in 50 ml of dioxane, then 1,4-cyclohexanedicarboxylic acid (3.44 g, 20 mmol) and The p-toluenesulfonic acid (0.1 g) was refluxed for 5 hours. The obtained second intermediate product was used in the next reaction without further purification.
  • Second intermediate product B18 (Scheme 18): n-hexadecanol (5.8 g, 24 mmol) dissolved in 50 ml of tetrahydrofuran, then 1,4-cyclohexanedicarboxylic acid (3.4 g, 20 mmol) and iridium The benzenesulfonic acid (0.1 g) was heated to reflux for 5 hours. The obtained second intermediate product B18 was used in the next reaction without further purification.
  • Second intermediate product B19 (Scheme 19): n-Octadecyl alcohol ( 6.48 g, 24 mmol) dissolved in 50 mL of tetrahydrofuran, then 1,4-cyclohexanedicarboxylic acid (3.4 g, 20 mmol) and p-toluene The sulfonic acid (0.1 g) was heated to reflux for 5 hours. The obtained second intermediate product B19 was used in the next reaction without further purification.
  • cytarabine derivative 25 (Scheme 25): cytarabine (1.2 g, 5 mmol), fourth intermediate D25 (1.5 g, 5 mmol), PyBOP (2.86 g, 5.5 mmol) and DMAP ( 0.06 g, 0.5 mmol) dissolved in DMF (10 ml) and stirred at room temperature for 12 h.
  • LC UV 254 nm
  • the HL-60 cell line was suspended and grown in a medium containing 10% fetal bovine serum (Hyclone ⁇ RPMI 1640 cell culture medium, and the conventional cell culture was maintained at an initial cell concentration of about 3*10 5 /ml, and passaged 1:3 once every three days. Passage (5* 10 5 /ml) one day before the experiment, the cell concentration during the experiment is between 7.5 ⁇ 10*10 5 /ml.
  • BEL-7402 cell line and HT-29 cell line were adherently grown and cultured in D-MEM cell culture medium of 10% fetal bovine serum (Hyclone).
  • the initial cell concentration in conventional culture was about 3*10 5 /ml, 2 ⁇ 3 days 1: 3 pass once. Passage 1:2 on the day before the experiment, the cell concentration during the experiment was between 5 ⁇ 10*10 5 /ml.
  • Cell inoculation Cells grown 24 hours after passage, in good growth. The cells were routinely harvested, and the cell concentration was adjusted to 2 x 10 5 /ml (adherent cells) ⁇ 3 x 10 5 /ml (suspended cells) with fresh medium. The adherent cells were inoculated at 100 ⁇ /well, cultured in a 37 ° C, 5% CO 2 incubator for 24 h, and the old culture solution was discarded, and fresh culture medium was added at 95 ⁇ M/well. Suspension cells were inoculated directly to 95 ⁇ /well.
  • Drug treatment There are 6 concentration gradients for each drug, 3 duplicate wells for each concentration, and 5 duplicate wells for the drug blank control group. Ara-C control was performed at the same time for each test. The concentration of HT-29 and BEL-7402 fines was 5, 2.5, 1.25, 0.625, 0.3125, 0.16 mM, 5 ⁇ l per well, and the final concentrations were 0.25, 0.125, 0.0625, 0.03125, 0.016, 0.008 mM. 5 % ⁇ normal saline was added to the control group; the concentration of HL-60 cells added to the drug was
  • Figure 4 is a graph showing the representative drug concentration-inhibition rate of cytosine derivatives inhibiting BEL-7402 liver cancer cell lines.
  • JF001, JF017, JF019, JF029 and JF033 are cytarabine derivatives synthesized according to the synthetic routes 1, 17, 19, 29, and 33, respectively.
  • Arac is the English abbreviation for cytarabine.
  • Tables 1-4 list representative cytarabine derivatives to inhibit the biological activity of different tumor cells.
  • JF004, JF005, JF006, JF007, JF009, JF013, JF020 and JF033 are cytarabine derivatives synthesized according to synthetic routes 4, 5, 6, 7, 9, 13, 20 and 33, respectively.
  • Table 1

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Description

说 明 书 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途 技术领域
本发明涉及医学技术领域,特别是涉及一种新型的阿糖胞苷衍生物及其 合成路线,本发明还涉及阿糖胞苷衍生物制剂及其制备方法和阿糖胞苷衍生 物及其制剂在抗癌抗肿瘤中的用途。 背景技术
癌症是目前危害人类生命健康的最主要的疾病,治疗癌症的现有手段主 要包括: 手术切除、 放射性疗法、 化学疗法或这些方法的并用。 化学疗法已 经得到了广泛的应用而且已经用于多种不同类型的癌症的治疗。 然而, 大多 数化学疗法所用的抗癌药物都仅限于延緩癌症的恶化从而延长病人的生命, 很难达到治愈的目的。 各类癌症的发病机理虽然各不相同, 但是它们其实是 具有共同特征的一大类症候群。 癌细胞除了代谢旺盛、 不断地分化之外, 与 正常细胞的生理差别不是很大。 这对于开发选择性地清除癌细胞、 且不杀伤 正常细胞的药物是个巨大的挑战。抗癌药物开发的另一大挑战是癌细胞耐药 性, 即经过一段时间化疗之后引起的耐药抗药性, 用过的化疗药物, 即使增 加剂量, 对癌细胞也不再起作用。 肿瘤细胞的转移也常使得无法用化学疗法 进行治疗。到目前为止, 没有一种抗癌药物能够医治所有的癌症。寻找高效、 高选择性、 低毒、 无耐药性、 而且急需的新型抗癌药物仍然极具挑战性。 大 多化疗抗癌药物都会产生严重的副作用, 从而导致化学治疗不能继续进行。 因此,现有药物在治疗不同种类的肿瘤时受到极大的限制。所以,寻找高效、 低毒的新型抗癌药物对维护人类健康仍然迫切需要。
阿糖胞苷是胞嘧啶核苷的类似物, DNA 多聚酶的抑制剂。 它能够阻止 DNA合成, 也可掺入 DNA, 干扰 DNA的复制, 此外还可阻断胞嘧啶核苷 酸还原成脱氧胞嘧啶核苷酸 (Sylvester, R. K., Fisher, A. J., and Lobell, M., Drug Intelligence & Clinical Pharmacy: Vol. 21 , No. 2, pp. 177-180(1987); Boyer et al., Novel Cytarabine Monopho spate Prodrugs, United States Patent Application Publication, Pub. No. : US 2007/0037774 A 1 , (Feb. 15, 2007); Colon-Cesario, M., Wang, J., Ramos, X., Garcia, H. G., Davila, J. J., Laguna, J., Rosado, C, and Pena de Ortiz, S. , J. Neurosci., 26(20): 5524 -5533(2006》。
目前, 阿糖胞苷主要用于急性白血病的治疗。 对急性粒细胞白血病疗效 最好,对急性单核细胞白血病及急性淋巴细胞白血病也有效,对恶性淋巴瘤、 肺癌、 消化道癌、 头颈部癌有一定疗效, 对病毒性角膜炎及流行性结膜炎等 也有一定疗效, 然而, 对多数实体肿瘤无效。 阿糖胞苷的活性不是很高, 为 了提高疗效, 阿糖胞苷一般均与其他药物, 如: 曱氧柔红霉素、 全反式维曱 酸联合三氧化二砷、 吡柔比星、 拓朴替康-足叶乙甙 -环磷酰胺、 氟达拉滨等 合并使用。 阿糖胞苷具有骨髓抑制、 消化道反应等副作用, 少数病人可有肝 功异常、 发热、 皮疹等副作用(Bolwell, B.J., Cassileth, P.A., Gale, . P. Leukemia. 2(5):253-60 (1988); Kimby, E., Nygren, P., Glimelius, B. Acta Oncol. 40(2-3):231-52 (2001); Stamatopoulos, K. Leukemia Research , Volume 22 , Issue 8 , pp 759 - 761 , (2003); Burnett, A.K., Milligan, D., Prentice, A.G., Goldstone, A.H., McMullin, M.F., Hills, R.K., Wheatley, K. Cancer. 109(6): 1007-10 (2007))。
阿糖胞苷为抗代谢药物, 在细胞内先经脱氧胞苷酶催化磷酸化, 转变为 有活性的阿糖胞苷酸,再进一步转为相应的二磷酸及三磷酸阿糖胞苷而起作 用。 阿糖胞苷主要通过与 DNA合成过程中所需的三磷酸脱氧胞苷竟争, 而 抑制 DNA多聚酶, 干扰核苷酸掺入 DNA , 并能抑制核苷酸还原酶, 阻止核 苷酸转变为脱氧核苷酸, 但对 RNA和蛋白质的合成无显著作用, 属于作用 于 S期的细胞周期特异性药物, 对处于 S增殖期细胞的作用最为敏感, 并 对 G1/S及 S/G2转换期也有作用。 静脉注射后迅速从血中消失, 40 %可通过 血脑屏障, 药物在体内主要在肝中代谢为无活性的阿糖尿苷, 70 % ~ 90 %通 过肾排泄。 为了开发对实体肿瘤如肝癌有疗效的抗癌新药, 必须寻找对肝脏 靶向性的新药。 显然, 抗肝炎病毒的药物可以作为极好的借鉴。 例如, 米夫 定及阿德福韦 (adefovir, PMEA ) 己被批准作为乙型肝炎抗病毒治疗药物 (Starrett, et al" "Synthesis, oral bioavailability determination, and in vitro evaluation of prodrugs of the antiviral agent 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA)," J Med Chem., 37(12): 1857-64 (1994); Shaw, et al" "Pharmacokinextics and Metabolism of Selected Prodrugs of PMEA in Rats," Drug Metabolism Dis., 25(3):362-366 (1997); Wacher, V.J., et al., Advanced Drug Delivery Reviews 46:89-102 (2001); Wacher, et al" "Active Secretion and Enterocytic Drug Metabolism Barriers to Drug Absorption," Adv. Drug Del. Rev., 46:89-102 (2001); Murono, et al., "Prevention and inhibition of nasopharyngeal carcinoma growth by antiviral phosphonated nucleoside analogs," Cancer Res., 61(21):7875-7 (2001》。 2003 年, Metabasis Therapeutics, Inc公司的科学家 K. Raja Reddy, Mark D. Erion, Michael C. Matelich, Joseph J. Kopcho 提出用环璘酸核苷类作为抗肝癌治疗 药物的前药(United States Patent 7,214,668;), 当化合物进入肝脏后, 被肝 脏的 CYP 3A4代谢酶催化解离成无环磷酸核苷类衍生物而具有抗癌的活性。 2007年, Metabasis Therapeutics, Inc公司又提出新的环磷酸阿糖胞苷衍生物 作为抗癌前药的专利申请 (Novel Cytarabine Monopho spate Prodrugs, United States Patent Application Publication, Pub. No.: US 2007/0037774 A 1, Boyer et al" Feb. 15, 2007; Phosphonic acid based prodrugs of PMEA and its analogues, United States Patent 7,214,668, Reddy, et al. May 8, 2007)。 这些 专利申请的核心是将环磷酸接入阿糖胞苷的核糖环上的 -OCH2-核糖位置 上, 即 O5位置, 而对阿糖胞苷胞嘧啶环上的氨基不加修饰。
阿糖胞苷 (参见附图 1 ) 一般不能用于治疗肝癌, 其原因在于当其胞核 苷骨架结构进入肝脏之后, 它的 N4氨基被代谢失效并引起毒性; 另一方面 是其糖甙结构上的 O5羟基必须被磷酸化而激活, 而此激活过程在肝内过于 緩慢。 发明内容
本发明旨在克服上述已有技术的不足,提供一种高效、低毒,无耐药性, 能够被迅速激活的阿糖胞苷衍生物,并提供了阿糖胞苷衍生物的合成路线以 及阿糖胞苷衍生物制剂的制备方法,本发明还提供了阿糖胞苷衍生物及其制 剂在抗癌抗肿瘤方面的用途的实验数据。
本发明的阿糖胞苷衍生物, 其特征在于: 所述阿糖胞苷衍生物是具有下 述通式 I的化合物:
Figure imgf000005_0001
通式 I
其中, X=OH时, W表示 C=O 、 S(O)O和 C(O)O中的任意一种; Z 是烷 基或下述代表性的基团中的任意一种:
Figure imgf000005_0002
其中, m = 0, l,2;n= 1,2, 3; 此 n指示的括号中所包含的及相联接的基团可 取代到苯环、 芳环、 萘环、 碳环、 杂环等结构单元的邻- 、 间-、 对 ~-中的任 意一个位置或 i:、 i -、 3-中的任意一个位置或 α-和 β-f的任意一个位置或这 些位置的组合; 其中, R1 R2是 (^_18饱和的或不饱和的脂肪基团, 所述不饱和的脂肪基团 含有一个或多个不饱和键, 所述不饱和键包括顺式或反式异构体; 其中, R3是选自 H、 OH、 OCOR,、 酯基 COOR,、 d-C18的烷基、 C3- 18 的 环烷基、 C2_10的烯基、 。的炔基、 三氟甲基、 苄基、 苯基、 芳香基、 卤原 子基、 酰基 COR,、 羰基 COR,、 氰基、 氨基、 取代氨基、 硝基、 黄酸基、 酰胺基 CONR,2和 NHCOR'、 黄酰胺基、 氨基酸、 碳环基、 杂环基、 烷氧基 OR,和烷硫基 SR,中的任意一种基团; 其中 R,是如上述所定义的 R R2; 其中, X≠OH时, X 表示 O-PCOXOR1^或磷酸基或
Figure imgf000006_0001
其中, A 表示 O、 S和 CH2中的任意 种, p = l-5 , 所述磷酸基包括单磷酸基、 二磷酸基和三磷酸基, W-Z—起 表示氢原子或 W、 Z分别表示上述定义的基团。
上述的 R1 , R2可以是 H、 C1-18烷基、 C3-18的环烷基、 C2-18 的烯基、 C2- 18 的炔基、 。环烯基、 苄基、 苯基、 芳环基、 碳环基和杂环基中的任 意一种。 其中每一个基团可以进而被取代, 而且其中可含有杂原子。
为了清晰起见但并非限制本发明, 除另外说明之外, 本发明所使用的所 有科技术语和在本发明领域内科技专家常使用和理解的意义相同。本发明所 引用的专利申请或已发表的申请及其他论文均属于原始引用并未加修改。
本专利所用"一个"或"一种"或"一类"意指最少一个 /种 /类或一个 /种 /类 或一个 /种 /类以上。
本发明所用"烷基" 意指各种饱和的直链的、 带侧链的或环状的碳氢基 团, 特包括含有十个或十个碳以下的小烷基。 例如甲基、 乙基、 丙基、 异丙 基、 正丁基、 仲丁基、 叔丁基、 正戊基、 异戊基、 正己基、 异己基、 庚基、 辛基和壬基等仅为本定义中的一些典型例子。
本发明所用 "烯基" 与上述 "烷基 "定义相同, 但其中必须最少有一个碳 碳双键(C=C ) , 所以本发明所用的烯基包括含有两个到十个碳原子的直链 的、 带有分支链的或环状的并至少含有一个碳碳双键的烃基, 如乙烯基、 丙 烯基、 丁烯基和戊烯基等。
本发明所用的"炔基"为上述烷基或烯基并含有至少一个碳碳三键( C≡ C ) , 所以, 炔基包括含有两个到十个碳原子并含有至少一个碳碳三键的直 链的、 带有分支链的或环状的烃基或炔基, 如乙炔基、 丙炔基、 丁炔基和戊 炔基等。
本发明中的"饱和" 意指该基团中不含不饱和键, 如碳碳双键或碳碳三 键; 而"不饱和" 则指该基团中含有一个或一个以上的碳碳双键或碳碳三键。
本发明所用 "环烷基"为环状的碳氢基团并优先选用含有三到八个碳的 环烷基。 因此环丙烷、 环丁烷、 环戊烷、 环己烷、 环庚烷和环辛烷均为本定 义下的典型例子。 环烷基中含有一个或两个碳碳双键即形成 "环烯基"。 环烷 基上还可带有烷基、 烯基、 炔基和其他基团。
本发明所使用的"芳香基 "为环状共轭芳香系统并可在环中含有一个或 一个以上的非碳原子(除碳以外的其他杂原子如氮) , 如苯基、 萘基和吡啶 基等。
本发明中还常用到的 "杂环基"指任何多个原子通过共价键构成的环状 基团和化合物, 并且至少含有一个非碳原子。 特指杂环基团包括含有氮、 硫 或氧等非碳原子的五元和六元环状系统如嘧唑、 吡咯、 吡啶或嘧啶等。
本发明中的 "烷氧基"指把氧原子与直链或带支链的烷基连接所形成的 烷基氧化基。 此类烷氧基团的例子包括甲氧基、 乙氧基、 丙氧基或异丙氧基 等。
同样地, "烷硫基"指把硫原子与直链或带支链的烷基连接所形成的烷基 硫化基。 此类烷硫基团的例子包括曱硫基、 乙硫基、 丙硫基或异丙硫基等。
本发明中的"卤原子基"为氟, 氯, 溴, 碘。
本发明中的"氨基酸 "指取代的天然和非天然的氨基酸,純的 L- 或 D- 构 型或外消旋混合物, 以及其由氨基和羧基而衍生出来的基团。 特别值得进一步说明的是,上述所定义的各种取代基还包括它们被进一 步取代而构成的基团, 其中这些新的取代基也可含有其他的基团。 例如烷基 或芳香基上的氢原子被氨基、 素或其他基团取代即成为新的属于上述各定 义中的基团。
本发明中所用的"磷酸" 或"磷酸酯" 是最高氧化态的五价磷原子上连有 四个氧原子, 一个氧原子以双键与磷原子相连, 两个氧原子以单键与磷原子 相连, 而且, 这两个氧原子上可以是氢原子、 负电荷或如上所定义的各种烷 基、 芳香基等, 如 -P(=O)(O-)2, -P(O)(OR)2。 磷原子上的另外一个氧原子与 本发明中的衍生物相连。
本发明中的"前药" 指本发明的阿糖胞苷衍生物被用到体内后, 在体内 断裂或增加某个结构单元所形成的起生物作用的化合物。
本发明的具有代表性的阿糖胞苷衍生物的结构式如下:
Figure imgf000008_0001
Figure imgf000009_0001
Figure imgf000010_0001
Figure imgf000010_0002
本发明中提及的有机溶^包括: 六氣磷酸笨并三唑 基氧基三吡咯坑 基磷( PyBOP ) 4-二甲氨基吡啶( DMAP ) Ν,Ν-二甲基甲酰胺( DMF ) 二曱基亚砜(DMSO) 、 多聚乙二醇 (PEG) 和四氢呋喃 ( THF ) 本发明解决的另一个技术问题是提供了多个通式 (I ) 的阿糖胞苷衍生 物的简单有效的合成路线, 其技术放案分别如下:
1、 阿糖胞苷衍生物的合成路线, 其特征在于: 阿糖胞苷和乙酸酐溶解 于曱醇中, 反应混合物加热回流 4小时, 得到的反应液通过柱层析色谱柱提 纯, 得到通式 (I ) 的阿糖胞苷衍生物。 (参考合成路线 1 )
2、 阿糖胞苷衍生物的合成路线, 其特征在于: 阿糖胞苷、 乙酰水杨酸 或邻曱氧基苯甲酸、 PyBOP和 DMAP溶于 DMF, 室温搅拌 12小时, 得到 反应液, 将该反应液通过柱层析色谱柱提纯或将该反应液用水混悬, 用乙酸 乙酯洗涤, 水层静置后析出结晶, 过滤、 干燥得到通式 (I ) 的阿糖胞苷衍 生物。 (参考合成路线 2、 3 )
3、 阿糖胞苷衍生物的合成路线, 包括如下步骤:
( 1 ) 邻苯曱酸酐或二酸酐化合物与脂肪醇混合, 加热融熔, 反应 4~5 小时, 冷却得第一中间产物(A ) , 不经进一步纯化, 直接用于下一步反应; ( 2 )将阿糖胞苷、 第一中间产物( A ) , PyBOP和 DMAP溶于 DMF中, 25-50 °C下搅拌 12 24小时, 将得到的反应液用柱层析色潘柱提純或将反应 液倒入水中, 析出固体, 得到的固体再通过柱层析色谱提纯或者将得到的反 应液倒入水中, 乙酸乙酯萃取三次, 乙酸乙酯液用无水石 酸钠干燥, 过滤, 滤、液减压蒸干, 得到通式 (I ) 的阿糖胞苷衍生物。 (参考合成路线 4~14 ) 所述脂肪醇是曱醇、 正丁醇、 月桂醇、 正十四醇、 正十六醇和正十八醇 中的任意一种。
4、 阿糖胞苷衍生物的合成路线, 包括如下步骤:
( 1 ) 脂肪醇溶于四氢呋喃或二氧六环, 然后加入 1 , 4-环己二酸和对曱 苯磺酸, 加热回流 5小时, 得到的第二中间产物 (B ) , 不经进一步纯化, 直接用于下一步反应;
( 2 )将阿糖胞苷、 第二中间产物( B ) 、 PyBOP和 DMAP溶于 DMF中, 室温下搅拌 12小时, 反应液倒入水中析出固体, 固体再通过柱层析色谱提 纯得到通式 (I ) 的阿糖胞苷衍生物。 (参考合成路线 15~19 ) 所述脂肪醇是正十醇、 月桂醇、 正十四醇、 正十六醇和正十八醇中的 任意一种。
5、 阿糖胞苷衍生物的合成路线, 包括如下步骤:
( 1 )将间苯二曱酸或邻苯二曱酸加入到 SOCl2中, 加 DMF, 加热回流, 反应 4小时, 旋去 SOCl2, 得到的第三中间产物 (C ) , 不经进一步纯化, 直接用于下一步反应;
( 2 )将脂肪醇溶于二氧六环再加入 Et3N, 第三中间产物 (C )用二氧六 环溶解。 在冰浴下将脂肪醇滴加到第三中间产物 C中, 反应 4小时, 将溶剂 蒸去, 得到第四中间产物 (D ) ;
( 3 ) 将阿糖胞苷、 第四中间产物 ( D ) , PyBOP和 DMAP溶于 DMF, 室温下搅拌 12小时, 反应液进行柱层析分离提纯后得到阿糖胞苷^"生物。 (参考合成路线 20~29 )
所述脂肪醇是正十醇、 月桂醇、 正十四醇、 正十六醇和正十八醇中的任 意一种。
6、 阿糖胞苷衍生物的合成路线, 包括如下步骤:
( 1 ) P0C13溶于磷酸三乙酯在 0 °C下加入阿糖胞苷, 反应 1 h, 反应液 用乙醚洗涤后得到第五中间产物 (E ) , 不经纯化直接用于下一步反应;
( 2 )第五中间产物 (E )加入到脂肪醇中, 60 ~80°C下搅拌 4~5 h, 加稀 盐酸调节 PH值到 7, 旋干脂肪醇, 得到通式 (I ) 的阿糖胞苷衍生物。 (参 考合成路线 30〜33 )
所述脂肪醇是曱醇、 无水乙醇、 正丁醇和正辛醇中的任意一种。
本发明的阿糖胞苷衍生物制剂的制备方法, 包括如下步骤:
( 1 )通式(I )的阿糖胞苷衍生物溶解到水、 生理盐水、 环糊精水溶液、 水溶性的有机溶剂、 非离子性的表面活性剂、 水溶性的类脂、 脂肪酸、 脂肪 酸酯和磷脂中的任意一种或多种的组合溶剂而制得制剂溶液; ( 2 )将所述制剂溶液再用生理盐水或葡萄糖注射液稀释而制成阿糖胞苷 衍生物制剂。
所述有机溶剂是指乙醇、 丙二醇、 甘油、 甘油酯、 多聚乙二醇、 Ν,Ν- 二曱基曱酰胺和二甲基亚砜中的一种或多种的组合溶剂。
本发明的阿糖胞苷衍生物制剂, 其特征在于: 是由上述的阿糖胞苷衍生 物制剂的制备方法制备得到的产品。
本发明的阿糖胞苷衍生物在抗癌抗肿瘤中的用途。 通式 (I ) 的阿糖胞 苷衍生物可用于治疗或緩解某一组织或器官的癌症。癌症包括但不只限于白 血病、 固体瘤、 肺癌、 结肠癌、 肝癌、 中枢神经系统肿瘤、 卵巢癌和肾癌。
本发明提供了包括有效剂量的通式 I中的阿糖胞苷衍生物的阿糖胞苷衍 生物制剂在抗肿瘤化疗中的用途以及该阿糖胞苷衍生物制剂与其他化疗药 物联合, 在抗肿瘤化疗中的用途。 所述癌症包括白血病、 固体瘤、 肺癌、 结 肠癌、 肝癌、 中枢神经系统肿瘤、 卵巢癌和肾癌。 可以与本发明的阿糖胞苷 衍生物的制剂联合使用的抗肿瘤药物包括但不限于烷化剂、 植物生物碱类、 抗菌抗肿瘤磺酰胺类药物、 铂类药物、 抗代谢类及其它已知的抗癌药物。 本 发明所指的联合用药治疗过程中, 包括运用至少一种本发明所例举的阿糖胞 苷衍生物。
以本发明的通式 I的阿糖胞苷衍生物为成份制备成药用制剂, 可以用于 口服的或非肠道途径给药。 此处所指的非肠道途径给药是指皮下皮内、 静脉 内、 动脉内、 月几肉内、 心房内、 滑膜内、 胸骨内注射或滴注。
本发明采用新的设计技术构思设计出阿糖胞苷衍生物。 阿糖胞苷(参照 附图 1 ) 不能用于治疗肝癌的原因一方面在于当其胞核苷骨架结构进入肝脏 之后, 它的 Ν4氨基被代谢失效并引起毒性, 另一方面是其糖甙结构上的 05 羟基必须被磷酸化而激活, 而此激活过程在肝内过于緩慢。
本发明的阿糖胞苷衍生物的设计是通过对 Ν4 , 05位置进行化学修饰, 而设计出了新型的前药衍生物,避免 Ν4氨基被代谢失效并引起毒性; 另夕卜, 让 05羟基容易被磷酸化而激活, 主要有益效杲是: 增加生物利用度, 减少 多重抗药性 (多靶向设计技术), 增加溶解度, 增加酯溶性。 本发明详细提供 了阿糖胞苷衍生物的合成路线, 阿糖胞苷衍生物制剂及其制备方法, 并通过 大量的实验数据证明了本发明的阿糖胞苷衍生物在抗癌抗肿瘤方面的用途。 附图说明
图 1表示阿糖胞苷的结构和 N4 , 05修饰位置的示意图。
图 2表示本发明的对阿糖胞苷的 N4位置进行修饰的具有代表性的阿糖 胞苷衍生物的结构示意图。
图 3表示本发明的对阿糖胞苷的 05位置进行修饰的具有代表性的阿糖 胞苷衍生物的结构示意图。
图 4 表示本发明的阿糖胞苷衍生物抑制 BEL-7402肝癌细胞株的代表性 药物浓度-抑制率曲线图。 具体实施方式
本发明的一些代表性阿糖胞苷衍生物的合成路线列举如下。本发明的其 他类似阿糖胞苷衍生物通过相同或类似的方法合成得到。 合成路线 1 :
Figure imgf000014_0001
阿糖胞苷衍生物 1的合成(路线 1 ) : 阿糖胞苷 ( 1.0 g, 4 mmol ) 和乙酸酐 ( 0.9 ml, 4.8 mmol ) 溶解于曱醇 MeOH ( 500 ml ) 中。 反应混合物加热回 流 4 小时。 反应液通过柱层析色谱柱提纯 (硅胶, 展开剂: 二氯曱烷 /曱醇 = 10/1 ), 得到阿糖胞苷衍生物 1 ( 84.6 mg) , LC ( UV 254 nm )纯度 >95% LC-MS m/z 286 [M + H] (分子式 CuH15N3O6,分子量 285 ) 1H NM ( 600 MHz, DMSO- d6 ) δ 10.84 ( s, 1H ) , 8.06 ( d, 1H) , 7.18 ( d, 1H ) , 6.05 ( d, 1H) 5.50 ( d 1H) 5.49(d, 1H), 5.06 ( t 1H ) 4.06 (m 1H) 3.94 (m, 1H) , 3.83 ( m, 1H) , 3.61 ( t, 2H ) , 2.10 ( t, 3H ) 合成路线 2:
Figure imgf000015_0001
阿糖胞苷衍生物 2的合成(路线 2) : 阿糖胞苷 ( 1.21 g, 5 mmol) 、 乙酰 7 杨酸 ( 1.08 g, 6 mmol ) PyBOP ( 2.6 g, 5 mmol )和 DMAP ( 0.1 g, 0.5 mmol) 溶于 DMF (20 ml ) 。 反应液在室温下搅拌 12小时。 反应液通过柱 层析色谱柱提純 (硅胶, 展开剂: 二氯甲烷 /甲醇 =20/1 ) , 得到阿糖胞苷衍 生物 2 ( 16.7 mg ) , LC (UV 254 nm )纯度 >90% LC— MS m/z 364 [M + H] (分子式 C17H19N308,分子量 363 )„ ¾ NMR( 600 MHz, DMSO- ^)5 11.83 ( s, 1H) , 10.94 ( s, 1H) , 8.15 ( t, 1H ) 7.97 ( d, 1H ) , 7.48 ( s, 1H ) , 7.40 ( t 1H ) 7.06 ( m 1H) 7.00 ( s 1H ) 6.07 ( d, 1H ) 5.54 ( s, 1H) , 5.50 ( d, 1H) , 5.10 ( t, 1H) , 4.09 ( m, 1H) , 3.94 ( m, 1H) , 3.84 (m 1H) , 3.63 ( t, 2H ) 合成路线 3:
Figure imgf000016_0001
阿糖胞苷衍生物 3的合成(路线 3 ): 阿糖胞苷 ( 1.2 g, 5 mmol ) 、 邻曱氧 基苯曱酸(0.8 g, 5 mmol ) . PyBOP ( 2.6 g, 5 mmol ) 和 DMAP ( 0.1 g, 0.5 mmol )溶于 DMF ( 20 ml ) , 室温搅拌 12小时。 反应液用水混悬, 用乙 酸乙酯洗涤,水层静置后析出结晶,过滤、干燥得阿糖胞苷衍生物 3( 69 mg ) , LC ( UV 254 nm )純度 98%。 LC-MS m/z 378 [M + H]+ (分子式 C17H19N3O8, 分子量 377 ) 。 合成路线 4:
Figure imgf000016_0002
第一中间产物 A4的合成(路线 4) : 二酸酐化合物 ( 1.5 g , 10 mmol) 溶 于 CH3OH (20 ml) , 加热回流 4个小时。 在减压下将 CH3OH蒸去, 得粗 产品的第一中间产物 A4直接用于下一步反应。 阿糖胞苷衍生物 4的合成(路线 4): 阿糖胞苷(2.5g, 10 mmol) , 第一中 间产物 Α4 ( 2.0 g, 10 mmol ) , PyBOP ( 5.2 g, 10 mmol )和 DMAP ( 0.2 g, 2 mmol) 溶于 DMF ( 10 ml) , 室温搅拌 12小时。 反应液用柱层析色语柱 提纯 (硅胶, 展开剂: 二氯甲烷 /甲醇 =10/1 ) , 得到阿糖胞苷衍生物 4 (一 对异构体, 51.8 mg) , LC(UV 254 nm )纯度 96%。 LC—MS m/z 412 [M + H]+ (分子式 C18H25N3O8, 分子量 411 ) 。 合成路线 5:
Figure imgf000017_0001
第一中间产物 A5的合成(路线 5) : 二酸酐化合物 ( 1.5 g , 10 mmol) 溶 于正丁醇(20ml) , 加热回流 4个小时。 在减压下将正丁醇蒸去, 得粗产品 的第一中间产物 A5直接用于下一步反应。
阿糖胞苷衍生物 5的合成(路线 5 ): 阿糖胞苷(2.5g, 10 mmol) , 第一中 间产物 Α5 (2.2 g, lOmmol) 、 PyBOP ( 5.2 g, 10 mmol ) 和 DMAP ( 0.2 g, 2 mmol) 溶于 DMF ( 10 ml) , 室温搅拌 12小时。 反应液用柱层析色 i脊柱 提纯 (硅胶, 展开剂: 二氯曱烷 /曱醇 =20/1 ) , 得到阿糖胞苷衍生物 5 (— 对异构体, 49.4 mg) , LC(UV 254 nm )纯度 98%。 LC—MS m/z 476 [M + Na]十 (分子式 C21H31N3Os, 分子量 453 ) 。 合成路线 6:
Figure imgf000018_0001
第一中间产物 A6的合成(路线 6) : 二酸肝化合物 (3.08 g , 20 mmol )与 月桂醇 (4.46 g , 24 ml) 溶于四氢呋喃 ( 20 ml ) 中, 控制温度 50。C, 反 应 4个小时。 得到的第一中间产物 A6不经进一步纯化, 直接用于下一步反 应。
阿糖胞苷衍生物 6的合成(路线 6 ): 阿糖胞苷 ( 1 g, 4.1 mmol) , 第一中 间产物 Α6 ( 1.53 g, 4.5 mmol ) , PyBOP ( 2.35 g, 4.5 mmol )和 DMAP ( 0.055 g, 0.41 mmol) 溶于 DMF ( 10ml) , 室温搅拌 12小时。 反应液倒入水中, 析出固体, 过滤得固体再通过柱层析色 Ϊ普柱提纯(硅胶, 展开剂: 二氯甲烷 /曱醇 =15/1 ),得到阿糖胞苷衍生物 6( 42.4 mg ), LC( UV 254 nm )纯度 >95%。 LC-MS m/z 566 [M + H]+ (分子式 C29H47N3O8, 分子量 565 ) 。 合成路线 7:
Figure imgf000019_0001
第一中间产物 A7的合成(路线 7) : 将邻苯二甲酸酐 ( 14.8 g, 100 mmol) 溶于 30毫升丁醇, 然后 70 °C下反应 5小时, 滤液蒸干, 所得第一中间产物 A7不经进一步纯化, 直接用于下一步反应。
阿糖胞苷衍生物 7的合成(路线 7) : 将阿糖胞苷 (2.43 g, 10 mmol) 、 第 一中间产物 Α·7 ( 2.22 g, 10 mmol ) 、 PyBOP ( 5.7 g, 11 mmol) 和 DMAP ( 0.12 g, 1 mmol) 溶于 DMF ( 10 ml) , 室温搅拌 24小时。 反应液通过柱 层析色谱提纯 (硅胶, 展开剂: 二氯曱烷 /曱醇 =10/1 ) , 得到阿糖胞苷衍生 物 7 ( 251.9 mg ) , LC ( UV 254匪 )纯度〉 95% ) 。 LC- MS m/z 448 [M + H]十 (分子式 C21H25N308, 分子量 447) 。 合成路线 8:
Figure imgf000019_0002
第一中间产物 A8的合成(路线 8 ) : 二酸酐化合物 (3.0 g , 19.5 mmol ) 与正十四醇 (4.2 g, 19.6 mmol ) 混合, 加热融熔, 反应 4小时, 冷却, 得 无色油状液体第一中间产物 A8, 不经进一步纯化, 直接用于下一步反应。 阿糖胞苷衍生物 8的合成(路线): 阿糖胞苷( 1 g, 4.1 mmol ) , 第一中间 产物 A8 ( 1.7 g, 4.5 mmol ) , PyBOP ( 2.35 g, 4.5 mmol ) , 和 DMAP ( 0.055 g, 0.45 mmol ) 溶于 DMF ( 10 ml ) 中, 50 °C下搅拌 12小时, 反应液倒入 水中, 析出固体, 固体再通过柱层析色谱提纯 (硅胶, 展开剂: 二氯甲烷 / 曱醇 =15/1 ) , 得到阿糖胞苷衍生物 8 ( 78.7 mg ) 。 LC ( UV 254 nm ) 纯度 97%。 LC— MS m/z 594 [M + H]+ (分子式 C31H51N3O8, 分子量 593 ) 。
Figure imgf000020_0001
第一中间产物 A9的合成(路线 9 ) : 二酸酐化合物 (3.0 g , 19.5 mmol ) 与正十六醇 (4.7 g, 19.4 mmol ) 混合, 加热融熔, 反应 4小时, 冷却, 得 无色油状液体第一中间产物 A9, 不经进一步纯化, 直接用于下一步反应。 阿糖胞苷衍生物 9的合成 (路线 9 ) 1 阿糖胞苷 ( 1 g, 4.1 mmol ) , 第一中 间产物 Α9 ( 1.8 g, 4.5 mmol ), PyBOP ( 2.35 g, 4.5 mmol ) , 和 DMAP ( 0.055 g, 0.45 mmol ) 溶于 DMF ( 10 ml ) 中, 50 °C下搅拌 12小时。 反应液倒入 水中, 析出固体, 固体再通过柱层析色侮提纯 (硅胶, 展开剂: 二氯曱烷 / 曱醇 =15/1 ) , 得到阿糖胞苷衍生物 9 ( 103.2 mg ) 。 LC ( UV 254 nm ) 純度 95%。 LC— MS m々 622 [M + H]+ (分子式 C33H55N3O8, 分子量 621 ) 。
Figure imgf000021_0001
第一中间产物 A10的合成(路线 10) : 二酸酐化合物 (3.0 g, 19.5 mmol ) 与正十八醇 (5.3 g, 19.6 mmol) 混合, 加热融熔, 反应 4小时, 冷却, 得 白色固体第一中间产物 A10, 不经进一步纯化, 直接用于下一步反应。
阿糖胞苷衍生物 10的合成(路线 10) : 阿糖胞苷 ( 1 g, 4.1 mmol) , 第一 中间产物 A10 ( 1.9 g, 4.5 mmol ) , PyBOP ( 2.35 g, 4.5 mmol ) , 和 DMAP ( 0.055 g, 0.45 mmol ) 溶于 DMF ( 10 ml ) 中, 35 °C下搅拌 12小时。 反应 液倒入水中, 析出固体, 固体再通过柱层析色普提纯(硅胶, 展开剂: 二氯 曱烷 /曱醇 =15/1 ) , 得到阿糖胞苷衍生物 10 ( 79.3 mg ) 。 LC ( UV 254 nm ) 纯度 96%。 LC-MS m/z 672 [M + Na]+ (分子式 C35H59N3O8, 分子量 649)。
Figure imgf000021_0002
第一中间产物 All的合成(路线 11 ) : 邻苯二曱酸酐 (5 g, 34 mmol) 与 月桂醇 (7.5 g, 40 mmol ) 混合, 加热融熔, 反应 4个小时, 冷却, 得白色 固体的第一中间产物 All, 不经进一步纯化, 直接用于下一步反应。 阿糖胞苷衍生物 11的合成(路线 11 ) : 阿糖胞苷 ( l g, 4.1 mmol) , 第一 中间产物 All ( 2.2 g, 5 mmol) , PyBOP( 2.35 g, 4.5 mmol )和 DMAP( 0.055 g, 0.45 mmol )溶于 DMF ( 10 ml) 中, 室温下搅拌 12小时。 反应液倒入水 中, 析出固体, 固体再通过柱层析色谱提纯 (硅胶, 展开剂: 二氯甲烷 /甲 醇 =15/1 ) , 得到阿糖胞苷衍生物 11 ( 124.3 mg) 。 LC ( UV 254 nm ) 纯度 98%。 LC—MS m々 582 [M + Na]+ (分子式 C29H41N3O8, 分子量 559 ) 。
Figure imgf000022_0001
第一中间产物 A12的合成(路线 12) : 邻苯二甲酸酐 (3.0 g, 20mmol) 与 正十四醇 (4.8g, 22 mmol) 混合, 80 °C下反应 5个小时, 冷却, 得白色固 体第一中间产物 A12, 不经进一步纯化, 直接用于下一步反应。 阿糖胞苷衍生物 12的合成(路线 12): 阿糖胞苷(2,4g, 10 mmol) , 第一 中间产物 A12 ( 3.6g, 10 mmol) , PyBOP ( 5.7 g, 11 mmol )和 DMAP ( 0.12 g, 1 mmol )溶于 DMF ( 10 ml ) 中, 35 °C下搅拌 24小时。 反应液倒入水中, 乙酸乙酯萃取三次, 乙酸乙酯液用无水硫酸钠干燥, 过滤, 滤液減压蒸干, 再通过柱层析色谱提纯 (硅胶, 展开剂: 二氯曱烷 /曱醇 =25八) , 得到阿糖 胞苷衍生物 12 ( 105.6 mg ) 。 LC ( UV 254 nm ) 纯度 100%。 LC-MS m/z 610 [M + Na]+ (分子式 C31H45N3O8, 分子量 587 ) 。
Figure imgf000023_0001
第一中间产物 A13的合成(路线 13) : 邻苯二曱酸酐 (3.0 g , 20mmol ) 与正十六醇 (5.4g , 22 mmol) 混合, 加热于 80 °C反应 5个小时, 冷却, 得白色固体第一中间产物 A13, 不经进一步纯化, 直接用于下一步反应。 阿糖胞苷衍生物 13的合成(路线 13): 阿糖胞苷(2,4g, 10 mmol) , 第一 中间产物 A13 ( 3.9g, 10 mmol) , PyBOP ( 5.7 g, 11 mmol )和 DMAP ( 0.12 g, 1 mmol )溶于 DMF ( 10 ml ) 中, 35 °C下搅拌 24小时。 反应液倒入水中, 乙酸乙酯萃取三次, 乙酸乙酯液用无水^ <酸钠千燥, 过滤, 滤液减压蒸干, 再通过柱层析色谱提纯 (硅胶, 展开剂: 二氯甲烷 /甲醇 =25八) , 得到阿糖 胞苷衍生物 13 ( 100.6 mg )。 LC ( UV 254 nm )純度 98%。 LC— MS m/z 638 [M + Na]+ (分子式 C33H49N3O8, 分子量 615 ) 。
Figure imgf000023_0002
第一中间产物 A14的合成(路线 14) : 邻苯二曱酸酐 (3.0 g, 20mmol) 与 正十八醇( 5.3 g, 20 mmol) 混合, 加热于 80 °C反应 5个小时, 冷却, 得白 色固体第一中间产物 A14, 不经进一步纯化, 直接用于下一步反应。 阿糖胞苷衍生物 14的合成(路线 14): 阿糖胞苷(2,4g, 10 mmol) , 第一 中间产物 A14 ( 4.2g, 10 mmol ) , PyBOP ( 5.7 g, 11 mmol) , 和 DMAP ( 0.12 g, 1 mmol ) 溶于 DMF ( 10 ml) 中, 35 °C下搅拌 24小时。 反应液倒 入水中, 乙酸乙酯萃取三次, 乙酸乙酯液用无水石克酸钠干燥, 过滤, 滤液减 压蒸干, 再通过柱层析色谙提纯 (硅胶, 展开剂: 二氯曱烷 /甲醇 =25/1 ) , 得到阿糖胞苷衍生物 14 ( 117.8 mg ) 。 LC ( UV 254 nm )纯度 99%。 LC-MS m/z 666 [M + Na]+ (分子式 C35H53N3O8, 分子量 643 ) 。
Figure imgf000024_0001
第二中间产物 B15的合成(路线 15) : 正十醇 (3.79 g, 24 mmol ) 溶于 50 ml四氢呋喃中, 然后加入 1, 4-环己二酸 (3.44 g , 20 mmol) 和对甲苯磺 酸(O.l g) , 加热回流 5小时。 得到的第二中间产物 B15不经进一步纯化, 直接用于下一步反应。
阿糖胞苷衍生物 15的合成(路线 15) : 阿糖胞苷 ( 1 g, 4.1 mmol) , 第二 中间产物 B15 ( 1.4 g, 4.5 mmol ) , PyBOP ( 2.35 g, 4.5 mmol) , 和 DMAP ( 0.055 g, 0.45 mmol) 溶于 DMF ( 10 ml) 中, 室温下搅拌 12小时。 反应 液倒入水中, 析出固体, 固体再通过柱层析色普提纯(硅胶, 展开剂: 二氯 曱烷 /曱醇 =15/1 ) , 得到阿糖胞苷衍生物 15 ( 75.3 mg) 。 LC ( UV 254 nm ) 纯度 97%。 LC— MS m/z 538 [M + H]+ (分子式 C27H43N3O8, 分子量 537 ) 。 合成路线 16:
Figure imgf000025_0001
于 50 毫升二氧六环中, 然后加入 1, 4-环己二酸 (3.44 g , 20 mmol) 和对甲苯 磺酸(0.1 g) ,加热回流 5小时。得到的第二中间产物 B16不经进一步纯化, 直接用于下一步反应。
阿糖胞苷衍生物 16的合成(路线 16) : 阿糖胞苷 ( 1 g, 4.1 mmol) , 第二 中间产物 B16 ( 1.53 g, 4.5 mmol ) , PyBOP (2.35 g, 4.5 mmol ) 和 DMAP ( 0.055 g, 0.45 mmol) 溶于 DMF ( 10 ml) 中, 室温下搅拌 12小时。 反应 液倒入水中, 析出固体, 固体再通过柱层析色普提纯(硅胶, 展开剂: 二氯 甲烷 /曱醇 =15/1 ) , 得到阿糖胞苷衍生物 16 ( 27 mg) 。 LC ( UV 254 nm ) 纯度 96%。 LC— MS m/z 566 [M + H]+ 566 (分子式 C29H47N308, 分子量 565 ) 。
合成路线 17:
Figure imgf000025_0002
第二中间产物 B17的合成(路线 17) : 正十四醇 (5.1 g , 24 mmol) 溶于 50 毫升二氧六环, 然后加入 1, 4-环己二酸(3.44 g , 20 mmol ) 和对曱苯 磺酸(0.1 g) , 回流反应 5小时。得到的第二中间产物 ΒΠ不经进一步纯化, 直接用于下一步反应。
阿糖胞苷衍生物 17的合成(路线 17) : 阿糖胞苷 ( l g, 4.1 mmol) , 第二 中间产物 B17 ( 1.66 g, 4.5 mmol ) , PyBOP (2.35 g, 4.5 mmol ) 和 DMAP ( 0.055 g, 0.45 mmol) 溶于 DMF ( 10 ml) 中, 室温下搅拌 12小时。 反应 液倒入水中, 析出固体, 固体再通过柱层析色 i普提纯(硅胶, 展开剂: 二氯 曱烷 /曱醇 =10/1 ) , 得到阿糖胞苷衍生物 17 ( 71.7mg) 。 LC ( UV 254 nm ) 纯度 95%。 LC-MS m/z 594 [M + H]+ (分子式 C31H51N3O8, 分子量 593 ) 。 合成路线 18:
Figure imgf000026_0001
第二中间产物 B18的合成(路线 18) : 正十六醇 (5.8 g , 24 mmol) 溶于 50 毫升四氢呋喃中, 然后加入 1, 4-环己二酸 ( 3.4 g , 20 mmol) 和对曱 苯磺酸(0.1 g) , 加热回流 5小时。 得到的第二中间产物 B18不经进一步纯 化, 直接用于下一步反应。
阿糖胞苷衍生物 18的合成(路线 18) : 阿糖胞苷 ( l g, 4.1 mmol) , 第二 中间产物 B18 ( 1.78 g, 4.5 mmol ) , PyBOP ( 2.35 g, 4.5 mmol ) 和 DMAP ( 0.055 g, 0.45 mmol) 溶于 DMF ( 10 ml) 中, 室温下搅拌 12小时。 反应 液倒入水中, 析出固体, 固体再通过柱层析色语提纯(硅胶, 展开剂: 二氯 曱烷 /曱醇 =15/1 ) , 得到阿糖胞苷衍生物 18 ( 42.6 mg ) 。 LC ( UV 254 nm ) 纯度 98%。 LC-MS m/z 622 [M + H]+ (分子式 C33H55N3O8, 分子量 621 ) 。
Figure imgf000027_0001
第二中间产物 B19的合成(路线 19 ): 正十八醇 ( 6.48 g , 24 mmol )溶于 50 毫升四氢呋喃中, 然后加入 1, 4-环己二酸(3.4 g , 20 mmol) 和对甲 苯磺酸(0.1 g) , 加热回流 5小时。 得到的第二中间产物 B19不经进一步纯 化, 直接用于下一步反应。
阿糖胞苷衍生物 19的合成(路线 19) : 阿糖胞苷 ( 1 g, 4.1 mmol) , 第二 中间产物 B19 ( 1.91 g, 4.5 mmol ) , PyBOP ( 2.35 g, 4.5 mmol ) 和 DMAP ( 0.055 g, 0.45 mmol) 溶于 DMF ( 10 ml) 中, 室温下搅拌 12小时。 反应 液倒入水中, 析出固体, 固体再通过柱层析色谙提纯(硅胶, 展开剂: 二氯 甲烷 /甲醇 =15/1 ) , 得到阿糖胞苷衍生物 19 ( 27.2 mg ) 。 LC ( UV 254 nm ) 纯度 97%。 LC-MS w/z 650 [M + H]+ (分子式 C35H59N3O8, 分子量 649 ) 。 合成路线 20:
HOOC
Figure imgf000027_0002
第三中间产物 C20的合成(路线 20) : 将间苯二曱酸(6.6 g, 40mmol)加 入到 SOCl2 ( 20 ml ) 中, 加 DMF ( 2滴) , 回流反应 4小时。 旋去 SOCl2, 得到的第三中间产物 C20不用进一步纯化, 直接用于下一步反应。
第四中间产物 D20的合成(路线 20) : 将十醇 (3.16 g, 20 mmol) 溶于二 氧六环 (20 ml) 再加入 Et3N (3 ml), 第三中间产物 C20 ( 4.06 g, 20 mmol ) 用二氧六环溶解。在冰浴下将十醇滴加到第三中间产物 C20中,反应 4小时, 将溶剂蒸去。 得到的第四中间产物 D20 不用进一步纯化, 直接用于下一步 反应。
阿糖胞苷衍生物 20的合成(路线 20 ): 阿糖胞苷 ( 1.2 g, 5 mmol ) , 第四 中间产物 D20 ( 1.5g, 5 mmol ) , PyBOP ( 2.8 g, 5.5 mmol )和 DMAP ( 0.06 g, 0.5 mmol ) 溶于 DMF ( 10 ml ) 中, 室温下搅拌 12小时。 反应液通过柱 层析色谱提純 (硅胶, 展开剂: 二氯曱烷 /曱醇 =15/1 ) , 得到阿糖胞苷衍生 物 20 (31 mg)。 LC ( UV 254 nm ) 纯度 98%。 LC— MS m/z 532 [M + Hf (分 子式 C27H37N308, 分子量 531 ) 。 合成路线 21:
Figure imgf000028_0001
第三中间产物 C21的合成(路线 21 ) : 将间苯二曱酸(6.6 g, 40 mmol)加 入到 SOCl2 (20 ml) 中, 加 DMF (2滴) , 加热回流, 反应 4小时。 旋去 SOCl2, 得到的第三中间产物 C21不用进一步纯化, 直接用于下一步反应。 第四中间产物 D21的合成(路线 21 ) : 将十二醇 (3.72 g, 20 mmol ) 溶于 二氧六环 (30 ml) 再加入 Et3N (3 ml), 第三中间产物 C21 ( 4.06 g, 20 mmol ) 用二氧六环 (20 ml) 溶解。在冰浴下将十醇滴加到第三中间产物 C21 中,反 应 4 小时, 将溶剂蒸去。 得到的第四中间产物 D21 不用进一步纯化, 直接 用于下一步反应。
阿糖胞苷衍生物 21的合成(路线 21 ) : 阿糖胞苷 ( 1.2 g, 5 mmol ) , 第四 中间产物 D21 ( 1.6 g, 5 mmol ) , PyBOP ( 2.8 g, 5.5 mmol )和 DMAP ( 0.06 g, 0.5 mmol ) 溶于 DMF ( 10 ml ) , 室温搅拌 12小时。 反应液进行柱层析 色谱提純(硅胶, 展开剂: 二氯曱烷 /曱醇 =15/1 ) , 得到阿糖胞苷衍生物 21 (40.5 mg)。 LC ( UV 254 nm ) 纯度 98%。 LC-MS m々 560 [M + H]十 (分子式 C29H41N3O8, 分子量 559 ) 。 合成路线 22: OC H
Figure imgf000029_0001
第三中间产物 C22的合成(路线 22 ) : 将间苯二曱酸( 10 g, 60 mmol )加 入到 SOCl2 ( 30 ml ) 中, 加 DMF ( 2滴) , 加热回流, 反应 5小时。 旋去 SOCl2, 得到的第三中间产物 C22不用进一步纯化, 直接用于下一步反应。 第四中间产物 D的合成(路线 22 ) : 将十四醇(4.2 g, 20 mmol )溶于二氧 六环 (20 ml) 再加入 Et3N (4 ml), 第三中间产物 C22 ( 4.04 g, 20 mmol )用 二氧六环 (20 ml) 溶解。在冰浴下将十四醇滴加到第三中间产物 C22中,反 应 4h, 将溶剂蒸去。 得到的第四中间产物 D22不用进一步纯化, 直接用于 下一步反应。
阿糖胞苷衍生物 22的合成(路线 22 ): 阿糖胞苷 ( 1.2 g, 5 mmol ) , 第四 中间产物 D22 ( 1.9g, 5 mmol ) , PyBOP ( 2.86 g, 5.5 mmol )和 DMAP ( 0.061 g, 0.5 mmol ) 溶于 DMF ( 10 ml) , 室温搅拌 12小时。 反应液进行柱层析 色谱提纯(硅胶, 展开剂: 二氯甲烷 /甲醇 =10/1 ) , 得到阿糖胞苷衍生物 22 (34.4 mg)。 LC ( UV 254 nm ) 纯度 98%。 LC— MS m/z 588 [M + H]+ (分子式 C31H45N3O8, 分子量 587 ) 。 合成路线 23:
Figure imgf000030_0001
第三中间产物 C23的合成(路线 23) : 将间苯二曱酸( 10 g, 60mmol)加 入到 SOCl2 ( 30 ml) 中, 加 DMF (2滴) , 加热回流, 反应 5小时。 旋去 SOCl2, 得到的第三中间产物 C23不用进一步纯化, 直接用于下一步反应。 化合物 R4的合成(路线 23) : 将十六醇 (4.84 g, 20 mmol ) 溶于二氧六环 (20 ml) 再加入 Et3N (4 ml), 第三中间产物 C23 ( 4.04 g, 20 mmol ) 用二氧 六环 (20 ml) 溶解。 在冰浴下将十六醇滴加到第三中间产物 C23中, 反应 4 小时, 将溶剂蒸去。 得到的第四中间产物 D 不用进一步纯化, 直接用于下 一步反应。
阿糖胞苷衍生物 23的合成(路线 23 ): 阿糖胞苷 ( 1.2 g, 5 mmol ) , 第四 中间产物 D23 ( 1.95 g, 5 mmol) , PyBOP ( 2.86 g, 5.5 mmol ) 和 DMAP ( 0.06 g, 0.5 mmol) 溶于 DMF ( 10 ml) , 室温下搅拌 12小时。 反应液进 行柱层析色谱提纯 (硅胶, 展开剂: 二氯甲烷 /曱醇 =10/1 ) , 得到阿糖胞苷 衍生物 23 (99 mg)。 LC ( UV 254 nm ) 纯度 97%。 LC— MS m/z 616 [M + H]+ (分子式 C33H49N3O8, 分子量 615 ) 。 合成路线 24:
Figure imgf000031_0001
第三中间产物 C24的合成(路线 24) : 将间苯二曱酸( 10 g, 60 mmol )加 入到 SOCl2 ( 30 ml) 中, 加 DMF (2滴) , 加热回流, 反应 5小时。 旋去 SOCl2, 得到的第三中间产物 C24不用进一步纯化, 直接用于下一步反应。 第四中间产物 D24的合成(路线 24) : 将十八醇(5.4 g, 20 mmol )溶于二 氧六环 (20 ml) 再加入 Et3N (4 ml), 第三中间产物 C24 ( 4.04 g, 20 mmol ) 用二氧六环 (20 ml) 溶解。 在冰浴下将十八醇滴加到第三中间产物 C24中, 反应 4 小时, 将溶剂蒸去。 得到的第四中间产物 D24不用进一步純化, 直 接用于下一步反应。
阿糖胞苷衍生物 24的合成(路线 24 ): 阿糖胞苷 ( 1.2 g, 5 mmol ) , 第四 中间产物 D24 ( 2.02 g, 5 mmol) , PyBOP ( 2.86 g, 5.5 mmol ) 和 DMAP ( 0.06 g, 0.5 mmol) 溶于 DMF ( 10 ml) , 室温下搅拌 12小时。 反应液进 行柱层析色谱提純柱层析色普提纯(硅胶, 展开剂: 二氯甲烷 /甲醇 =10/1 ) , 得到阿糖胞苷衍生物 24 (38.1 mg)。 LC ( UV 254 nm )纯度 96%。 LC— MS m/z 644 [M + H]+ (分子式 C35H53N3Os, 分子量 643 ) 。 合成路线 25:
Figure imgf000032_0001
第三中间产物 C25的合成(路线 25 ) : 将对苯二曱酸(6.6 g, 40 mmol )加 入到 SOCl2 ( 20 ml ) 中, 加 DMF ( 2滴) , 加热回流, 反应 4小时。 旋去 S0C12, 得到的第三中间产物 C25不用进一步纯化, 直接用于下一步反应。 第四中间产物 D的合成(路线 25 ) : 将十醇 (3.16 g, 20 mmol ) 溶于二氧 六环(20 ml)再加入 Et3N (3 ml), 第三中间产物 C25 ( 4.04 g, 20 mmol )用二 氧六环 (20 ml)溶解。 在冰浴下将十醇滴加到第三中间产物 C25 中, 反应 4 小时, 将溶剂蒸去。 得到的第四中间产物 D25 不用进一步纯化, 直接用于 下一步反应。
阿糖胞苷衍生物 25的合成(路线 25 ) : 阿糖胞苷 ( 1.2 g, 5 mmol ) , 第四 中间产物 D25 ( 1.5 g, 5 mmol ) , PyBOP ( 2.86 g, 5.5 mmol )和 DMAP ( 0.06 g, 0.5 mmol ) 溶于 DMF ( 10 ml ) , 室温下搅拌 12小时。 反应液进行柱层 析分离提純 (硅胶, 展开剂: 二氯曱烷 /曱醇 =15/1,得到阿糖胞苷衍生物 25 ( 22.5 mg ) 。 LC ( UV 254 nm ) 纯度 95%。 LC— MS m々 532 [M + H]十 (分 子式 C27H37N3O8, 分子量 531 ) 。 合成路线 26:
Figure imgf000033_0001
第三中间产物 C26的合成(路线 26) : 将对苯二曱酸(6.6 g, 40 mmol )加 入到 SOCl2 (20 ml) 中, 加 DMF (2滴) , 加热回流, 反应 4小时。 旋去 SOCl2, 得到的第三中间产物 C26不用进一步纯化, 直接用于下一步反应。 第四中间产物 D26的合成(路线 26) : 将十二醇 (3.72 g, 20 mmol ) 溶于 二氧六环 (20 ml)再加入 Et3N (3 ml), 第三中间产物 C26 ( 4.04 g, 20 mmol ) 用二氧六环 (20 ml)溶解。在冰浴下将十二醇滴加到第三中间产物 C26中,反 应 4 小时, 将溶剂蒸去。 得到的第四中间产物 D26不用进一步纯化, 直接 用于下一步反应。
阿糖胞苷衍生物 26的合成(路线 26 ) : 阿糖胞苷 ( 1.2 g, 5 mmol ) , 第四 中间产物 D26 ( 1.6 g, 5 mmol) , PyBOP ( 2.86 g, 5.5 mmol )和 DMAP ( 0.06 g, 0.5 mmol ) 溶于 DMF ( 10 ml ) , 室温下搅拌 12小时。 反应液进行柱层 析分离(硅胶, DCM: MeOH =15: 1)后得到阿糖胞苷衍生物 26 (29.7 mg)。 LC ( UV 254 nm ) 纯度 93%。 LC-MS m/z 560 [M + H]+ (分子式 C29H41N3O8, 分子量 559 ) 。 合成路线 27:
Figure imgf000034_0001
第三中间产物 C27的合成(路线 27) : 将对苯二曱酸(6.6 g, 40 mmol )加 入到 SOCl2 (20 ml) 中, 加 DMF (2滴) , 加热回流, 反应 4小时。 旋去 SOCl2, 得到的第三中间产物 C27不用进一步纯化, 直接用于下一步反应。 第四中间产物 D27的合成(路线 27) : 将十四醇(4.2 g, 20 mmol )溶于二 氧六环 (20 ml) 再加入 Et3N (3 ml), 第三中间产物 C27 ( 4.04 g, 20 mmol ) 用二氧六环 (20ml) 溶解。 在冰浴下将十四醇滴加到第三中间产物 C27中, 反应 4 小时, 将溶剂蒸去, 得到的第四中间产物 D27不用进一步純化, 直 接用于下一步反应。
阿糖胞苷衍生物 27的合成(路线 27 ): 阿糖胞苷 ( 1.2 g, 5 mmol ) , 第四 中间产物 D27 ( 1.8 g, 5 mmol ) , PyBOP ( 2.86 g, 5.5 mmol )和 DMAP ( 0.06 g, 0.5 mmol ) 溶于 DMF ( 10 ml ) , 室温下搅拌 12小时。 反应液进行柱层 析分离提纯(硅胶, 展开剂: 二氯曱烷 /曱醇 =15/1 )得到阿糖胞苷衍生物 27 (26 mg)。 LC ( UV 254 nm ) 纯度 99%。 LC-MS m/z 588 [M + H]+ (分子式 C31H45N3O8, 分子量 587 ) 。 合成路线 28:
Figure imgf000035_0001
第三中间产物 C28的合成(路线 28) : 将对苯二曱酸(6.6 g, 40 mmol )加 入到 SOCl2 (20 ml) 中, 加 DMF (2滴) , 加热回流, 反应 4小时。 旋去 SOCl2, 得到的第三中间产物 C28不用进一步纯化, 直接用于下一步反应。 第四中间产物 D28的合成(路线 28) : 将十六醇(4.8 g, 20 mmol )溶于二 氧六环 (20 ml) 再加入 Et3N(3 ml), 第三中间产物 C28 ( 4.04 g, 20 mmol ) 用二氧六环 (20 ml) 溶解。 在水浴下将十六醇滴加到第三中间产物 C28中, 反应 4 小时, 将溶剂蒸去。 得到的第四中间产物 D28 不用进一步純化, 直 接用于下一步反应。
阿糖胞苷衍生物 28的合成(路线 28 ): 阿糖胞苷 ( 1.2 g, 5 mmol ) , 第四 中间产物 D28 ( 2.0 g, 5 mmol ) , PyBOP ( 2.86 g, 5.5 mmol )和 DMAP ( 0.06 g, 0.5 mmol ) 溶于 DMF ( 10 ml ) , 室温下搅拌 12小时。 反应液进行柱层 析分离提纯 (硅胶, 展开剂: 二氯甲烷 /甲醇 =15/1 ) 后得到阿糖胞苷衍生物 28 (26.6 mg)。 LC ( UV 254 nm ) 纯度 99%。 LC— MS m/z 616 [M + H]+ (分子 式 C33H49N3O8, 分子量 615 ) 。 合成路线 29:
Figure imgf000036_0001
第三中间产物 C29的合成(路线 29 ) : 将对苯二曱酸(6.6 g, 40 mmol )加 入到 SOCl2 ( 20 ml ) 中, 加 DMF ( 2滴) , 加热回流, 反应 4小时。 旋去 SOCl2, 得到的第三中间产物 C29不用进一步纯化, 直接用于下一步反应。 第四中间产物 D29的合成(路线 29 ) : 将十八醇(5.4 g, 20 mmol )溶于二 氧六环(20 ml)再加入 Et3N( 3 ml ), 第三中间产物 C29 ( 4.04 g, 20 mmol ) 用二氧六环 (20 ml) 溶解。 在冰浴下将十八醇滴加到第三中间产物 C29中, 反应 4 小时, 将溶剂蒸去。 得到的第四中间产物 D29 不用进一步純化, 直 接用于下一步反应。
阿糖胞苷衍生物 29的合成(路线 29 ) : 阿糖胞苷 ( 1.2 g, 5 mmol ) , 第四 中间产物 D29 ( 2.1 g, 5 mmol ) , PyBOP ( 2.86 g, 5.5 mmol )和 DMAP ( 0.06 g, 0.5 mmol ) 溶于 DMF ( 10 ml ) , 室温下搅拌 12小时。 反应液进行柱层 析分离提純 (硅胶, 展开剂: 二氯曱烷 /曱醇 =15/1 ) 后得到阿糖胞苷衍生物 29 (37.9 mg)。 LC ( UV 254 nm ) 纯度 97%。 LC— MS m/z 644 [M + H]十 (分子 式 C35H53N308, 分子量 643 ) 。 合成路线 30:
Figure imgf000037_0001
第五中间产物 E30的合成(路线 30) : POCl3 ( 3.0 g, 20 mmol ) 溶于磷酸 三乙酯 (25 ml) , 在 0 °C下加入阿糖胞苷 (4.9 g, 20 mmol ) , 反应 1 h, 反应液用乙醚洗涤后得到第五中间产物 E30。
阿糖胞苷衍生物 30的合成(路线 30): 第五中间产物 E30( 0.5 g, 1.4 mmol) 加入到曱醇 (20ml) 中, 60 °C下搅拌 4 h, 加稀盐酸调节 PH值到 7, 旋干 曱醇, PTLC (展开剂:异丙醇 /氨水 =10/1),得到阿糖胞苷衍生物 30( 9.3 mg )。 LC(UV 254 nm )纯度 99%。 LC— MS m/z 352 [M + H]+ (分子式 CuH18N3O8P, 分子量 351 ) 。 合成路线 31:
Figure imgf000037_0002
第五中间产物 E31的合成(路线 31 ) : POCl3 ( 1.25 g, 8.2 mmol) 溶于磷 酸三乙酯 ( 10ml) , 在 0 °C下加入阿糖胞苷 ( 1 g, 4.1 mmol) , 反应 1 h, 反应液用乙醚洗涤后得到第五中间产物 E31。
阿糖胞苷衍生物 31的合成(路线 31 ): 第五中间产物 E31 ( 0.5 g, 1.4 mmol) 加入到无水乙醇(20ml) 中, 60 °C下搅拌 4h, 加稀盐酸调节 PH值到 7, 旋 干乙醇, PTLC (展开剂: 异丙醇 /氨水 =2/1), 得到阿糖胞苷衍生物 31 ( 87.1 mg) 。 LC (UV 254 nm ) 纯度 98%。 LC— MS m/z 380 [M + H]+ (分子式 C13H22N3O8P, 分子量 379 ) 。 合成路线 32:
Figure imgf000038_0001
第五中间产物 E32的合成(路线 32) : POCl3 ( 1.25 g, 8.2 mmol)溶于磷 酸三乙酯(10ml) , 在 0 °C下加入阿糖胞苷 ( 1 g, 4.1 mmol) , 反应 1 h, 反应液用乙醚洗涤后得到第五中间产物 E32。
阿糖胞苷衍生物 32的合成(路线 32):第五中间产物 E32(0.5 g, 1.4 mmol) 加入到正丁醇(20ml) 中, 60 °C下搅拌 4 h, 加稀盐酸调节 PH值到 7, 旋 干正丁醇, PTLC (展开剂: 异丙醇 /氨水 =2/1),得到阿糖胞苷衍生物 32 (20.4 mg) 。 LC (UV 254 nm ) 纯度 95%。 LC— MS m/z 436 [M + H]十 (分子式 C17H30N3O8P, 分子量 435 ) 。 合成路线 33:
Figure imgf000038_0002
E33
第五中间产物 E33的合成(路线 33) : POCl3 ( 1.25 g, 8.2 mmol)溶于磷 酸三乙酯 ( 10ml) , 在 0 °C下加入阿糖胞苷 ( 1 g, 4.1 mmol) , 反应 1 h, 反应液用乙醚洗涤后得到第五中间产物 E33。
阿糖胞苷衍生物 33的合成(路线 33): 第五中间产物 E33( 0.9 g, 2.5 mmol ) 与正辛醇 (0.65 g, 5 mmol ) 溶于磷酸三乙酯 (5 ml) 中, 80 °C下搅拌 5 h, 加稀盐酸调节 PH值到 7, 反应液用乙醚洗涤, 固体 PTLC (展开剂: 异丙醇 /氨水 =1/1), 得到阿糖胞苷衍生物 33 ( 1.8 mg )。 LC ( UV 254 nm )纯度 95%。
LC-MS m/z 570 [M + Na]+ (分子式 C25H46N3O8P, 分子量 547 ) 。 合成药物肿瘤细胞毒性试验操作规程
本发明的阿糖胞苷衍生物及其制剂对肿瘤细胞的抑制作用试验
1. 试验材料
1) 细胞株:
HL-60细胞株,悬浮生长,用含 10%胎牛血清(Hyclone公司 々RPMI 1640 细胞培养基培养, 常规培养保持初始细胞浓度在 3*105/ml左右, 三天一次 1: 3传代。 实验前一天传代 (5* 105/ml) , 实验时细胞浓度在 7.5~10*105/ml之 间。
BEL-7402细胞林和 HT-29细胞株, 贴壁生长, 用 10%胎牛血清( Hyclone 公司 ) 的 D-MEM细胞培养基培养, 常规培养初始细胞浓度在 3*105/ml左右, 2~3天 1: 3传代一次。 实验前一天 1: 2传代, 实验时细胞浓度在 5〜10*105/ml 之间。
2) 药物的溶解与稀释: 根据提供的阿糖胞苷衍生物的重量和分子量, 首 先加入 DMSO 100~200 μΐ, 然后加入生理盐水(NS) , 使稀释后得到 的药物浓度为 5 mM (注意 DMSO终浓度不超过 10% ) 。
3) D-MEM或 RPMI 1640细胞培养基, Gibco公司
4) 胎牛血清, Hyclone公司
5) 细胞消化液, 0.25◦/。 Trypsin + 0.02 % EDTA
6) PBS磷酸盐緩冲液 ) MTT液, MTT干粉 (Sigma), 用 PBS充分溶解配成 5 mg/ml, 0·22 μιη微 孔滤膜过滤后分装, -20 °C保存。
) 10%酸化 SDS, 0.01NHC1
) 离心管、 吸管等 (BD公司 ) , 96孔板 (Costar 公司 )
骤:
) 细胞接种: 传代后 24 小时的细胞, 生长状态良好。 常规收获细胞, 用新鲜培养液调整细胞浓度为 2xl05/ml (贴壁细胞)〜3xl05/ml (悬浮 细胞) 。 贴壁细胞接种 100 μΐ/孔, 37 °C、 5%CO2孵箱中培养 24 h后 弃去旧培养液, 加入新鲜培养液 95 μΐ/孔。 悬浮细胞直接接种 95 μΐ/ 孔。
) 药物处理: 每一药物设 6个浓度梯度, 每一浓度设 3个复孔, 药物空 白对照组设 5个复孔。每次试验同时故 Ara-C对照。 HT-29和 BEL-7402 细月包加入药物的浓度依次为 5、 2.5、 1.25、 0.625、 0.3125、 0.16 mM, 每孔 5 μ1, 终浓度依次为 0.25、 0.125、 0.0625、 0.03125、 0.016、 0.008 mM, 对照组加入 5 μΐ生理盐水; HL-60细胞加入药物的浓度依次为
5χ10-3、 2.5χ10-3、 1.25χ10-3、 0·625χ10-3、 0·3125χ10-3、 Ο.ΙόχΙΟ"3 mM, 对应终浓度依次为 2.5χ1θΛ 1.25χ10-4、 6.25χ10-5、 3.125χ10-5、 1.6χ10-5、 8x10— 6 mM, 对照组加入 5 μΐ生理盐水。
) 细胞培养与检测: 加入药物后, 37 。C、 5%CO2孵箱中培养 72 h, 然 后每孔加入 MTT 10 μΐ,继续培养 4h,每孔加 100 μΐ 10%SDS (含 0.01N
HCl) 溶解, 24 h后用 Bio-rad 680型 ELISA读数仪测定各孔吸光度 (A) , 检测波长为 570 nm、 参考波长为 630 nm。
) 计算: 首先平均各复孔的吸光度(去除过于悬殊的数据) , 计算每种 细胞每个药物浓度下的抑制率 (IR) , I (%)=( 1 - A Ao) X 100% , An为实 验孔平均吸光度, A。为药物空白对照孔平均吸光度。 用 EXCEL软 件, 绘制药物浓度效应曲线, 选择合理的计算方法计算 50 %细胞存活 的药物浓度 (IC50 ) 。
图 4是阿糖胞苷衍生物抑制 BEL-7402肝癌细胞株的代表性药物浓度- 抑制率曲线。 其中, JF001、 JF017、 JF019、 JF029和 JF033分别为根据合成 路线 1、 17、 19、 29、 33合成的阿糖胞苷衍生物。 Arac为阿糖胞苷的英文名 称缩写。
表 1—4列举了具有代表性的阿糖胞苷衍生物抑制不同肿瘤细胞的生物活 性。 JF004、 JF005、 JF006 、 JF007、 JF009、 JF013、 JF020和 JF033分别为 根据合成路线 4、 5、 6、 7、 9、 13、 20和 33合成的阿糖胞苷衍生物。 表 1
Figure imgf000041_0001
表 2
Figure imgf000042_0001
Figure imgf000043_0001
/010ZN3/X3d 表 4
Figure imgf000044_0001
上述试验结果表明, 本发明的阿糖胞苷衍生物对肿瘤细胞具有抑制作

Claims

权 利 要 求 书
1、 阿糖胞苷衍生物, 其特征在于: 所述阿糖胞苷衍生物是具有下述通 式 (I ) 的化合物:
Figure imgf000045_0001
( I )
其中, X=OH时, W表示 c=o 、 s(o)o和 c(o)o中的任意一种; Z 是烷 基或下述代表性的基团中的任意一种:
Figure imgf000045_0002
其中, m = 0, 1, 2;n = 1, 2, 3; 此 n指示的括号中所包含的及相联接的基团可 取代到苯环、 芳环、 萘环、 碳环、 杂环等结构单元的邻- 、 间-、 对 ~-中的任 意一个位置或 1 i -、 3-中的任意一个位置或 α -和 β -f的任意一个位置或这 些位置的组合;
其中, R1 R2是 (^_18饱和的或不饱和的脂肪基团, 所述不饱和的脂肪基团 含有至少一个不饱和键, 所述不饱和键包括顺式或反式异构体;
其中, R3是选自 H、 OH、 OCOR,、 酯基 COOR,、 d-C18的烷基、 C3-18 的 环烷基、 。的烯基、 C2_1()的炔基、 三氟曱基、 苄基、 芳香基、 卤原子基、 酰基 COR'、 羰基 COR,、 氰基、 氨基、 取代氨基、 硝基、 黄酸基、 酰胺基 CONR,2和 NHCOR'、 黄酰胺基、 氨基酸、 碳环基、 杂环基、 烷氧基 OR,、 烷硫基 SR,中的任意一种基团; 其中 R,是如上述所定义的 R R2;
其中, X≠OH时, X表示 O-Pt XOR1) 或磷酸基或
Figure imgf000046_0001
其中, A表示 O、 S和 CH2中的任意 种, p = l-5 , 所述磷酸基包括单磷酸基、 二磷酸基和三磷酸基,
W-Z—起表示氢原子或 W, Z分別表示上述定义的基团。
2、 根据权利要求 1所述的阿糖胞苷衍生物, 其特征在于: 所述 R1 、 R2 A H, C1-18烷基、 C3-18的环烷基、 C2-i8 的烯基、 c2-18 的炔基、 c3-1。环烯 基、 苄基、 苯基、 芳环基、 碳环基和杂环基中的任意一种基团。
3、 根据权利要求 1或 2所述的阿糖胞苷衍生物, 其特征在于: 所述阿 糖胞苷衍生物是通式( I ) 中的 X=OH时的阿糖胞苷衍生物。
4、 根据权利要求 1或 2所述的阿糖胞苷衍生物, 其特征在于: 所述阿 糖胞苷衍生物是在通式( I ) 的 W-Z为 H时的阿糖胞苷衍生物。
5、 根据权利要求 1或 2所述的阿糖胞苷衍生物, 其特征在于: 所述阿 糖胞苷衍生物的结构式是以下结构式中的任意一种:
Figure imgf000046_0002
Figure imgf000047_0001
46
Figure imgf000048_0001
n = 2-8
Figure imgf000048_0002
、 阿糖胞苷衍生物的合成路线, 其特征在于: 阿糖胞苷和乙酸酐溶解 于曱醇中, 反应混合物加热回流 4小时, 得到的反应液通过柱层析色谱柱提 纯, 得到通式 (I ) 的阿糖胞苷衍生物。
7、 阿糖胞苷衍生物的合成路线, 其特征在于: 阿糖胞苷、 乙酰水杨酸 或邻曱氧基苯甲酸、 PyBOP和 DMAP溶于 DMF , 室温搅拌 12小时, 得到 反应液, 将该反应液通过柱层析色谱柱提純或将该反应液用水混悬, 用乙酸 乙酯洗涤, 水层静置后析出结晶, 过滤、 干燥得到通式 (I ) 的阿糖胞苷衍 生物。
8、 阿糖胞苷衍生物的合成路线, 包括如下步骤:
( 1 ) 酸酐化合物与脂肪醇混合, 加热融熔, 反应 4~5个小时, 冷却, 得第一中间产物 (A ) , 不经进一步纯化, 直接用于下一步反应;
( 2 ) 将阿糖胞苷, 第一中间产物 (A ) , PyBOP和 DMAP溶于 DMF 中, 25〜50 °C下搅拌 12~24个小时, 得到反应液,
将反应液用柱层析色谱柱提纯或将反应液倒入水中, 析出固体, 得到的 固体再通过柱层析色谱提纯
或者将得到的反应液倒入水中, 乙酸乙酯萃取三次, 乙酸乙酯液用无水 硫酸钠干燥, 过滤, 滤液减压蒸干, 得到通式 (I ) 的阿糖胞苷衍生物。
9、 根据权利要求 8所述的阿糖胞苷衍生物的合成路线, 其特征在于: 所述酸酐化合物是邻苯二曱酸 或二酸酐化合物; 所述脂肪醇是曱醇、 正丁 醇、 月桂醇、 正十四醇、 正十六醇和正十八醇中的任意一种。
10、 阿糖胞苷衍生物的合成路线, 包括如下步骤:
( 1 ) 脂肪醇溶于四氢呋喃或二氧六环, 然后加入 1 , 4-环己二酸和对甲 苯磺酸, 加热回流 5小时, 得到的第二中间产物 (B ) , 不经进一步純化, 直接用于下一步反应;
( 2 )将阿糖胞苷、 第二中间产物( B ) 、 PyBOP和 DMAP溶于 DMF中 , 室温下搅拌 12小时, 反应液倒入水中, 析出固体, 固体再通过柱层析色谙 提纯得到通式 (I ) 的阿糖胞苷衍生物。
11、 根据权利要求 10所述的阿糖胞苷衍生物的合成路线, 其特征在于: 所述脂肪醇是正十醇、 月桂醇、 正十四醇、 正十六醇和正十八醇中的任意一 种。
12、 阿糖胞苷衍生物的合成路线, 包括如下步骤:
( 1 )将间苯二曱酸或邻苯二曱酸加入到 SOCl2中, 加 1~4滴 DMF, 加 热回流, 反应 4小时, 旋去 SOCl2, 得到的第三中间产物 (C ) 不经进一步 纯化, 直接用于下一步反应;
( 2 ) 将脂肪醇溶于二氧六环再加入 Et3N, 第三中间产物 (C ) 用二氧 六环溶解, 在冰浴下将脂肪醇滴加到第三中间产物 (C ) 中, 反应 4小时, 将溶剂蒸去, 得到第四中间产物 (D ) ;
( 3 )将阿糖胞苷、第四中间产物( D ) 、 PyBOP和 DMAP溶于 DMF , 室温下搅拌 12小时, 反应液进行柱层析分离提純后得到通式(I ) 的阿糖胞 苷衍生物。
13、 根据权利要求 12所述的阿糖胞苷衍生物的合成路线, 其特征在于: 所述脂肪醇是正十醇、 月桂醇、 正十四醇、 正十六醇和正十八醇中的任意一 种。
14、 阿糖胞苷衍生物的合成路线, 包括如下步骤:
( 1 ) POCl3溶于磷酸三乙酯, 在 0 °C下加入阿糖胞苷, 反应 1 h, 反 应液用乙醚洗涤后得到第五中间产物 (E ) , 不经进一步纯化, 直接用于下 一步反应;
( 2 ) 第五中间产物 (E ) 加入到脂肪醇中, 60 〜80°C下搅拌 4〜5 h, 加稀盐酸调节 PH值到 7, 旋干脂肪醇, 得到通式 (I ) 的阿糖胞苷衍生物。
15、 根据权利要求 14所述的阿糖胞苷衍生物的合成路线, 其特征在于: 所述脂肪醇是甲醇、 无水乙醇、 正丁醇和正辛醇中的任意一种。
16、 阿糖胞苷衍生物制剂的制备方法, 包括如下步骤:
( 1 )通式(I )的阿糖胞苷衍生物溶解到水、 生理盐水、 环糊精水溶液、 水溶性的有机溶剂、 非离子性的表面活性剂、 水溶性的类脂、 脂肪酸、 脂肪酸酯和磷脂中的任意一种或多种的组合溶剂而制得制剂溶液;
( 2 ) 将所述制剂溶液再用生理盐水或葡萄糖注射液稀释而制成阿糖胞 苷衍生物制剂。
17、 根据权利要求 16的一种制备阿糖胞苷衍生物制剂的方法, 其特征 在于: 所述有机溶剂是乙醇、 丙二醇、 甘油、 甘油酯、 多聚乙二醇、 N,N- 二曱基曱酰胺和二甲基亚砜中的任意一种或多种的组合溶剂。
18、 一种阿糖胞苷衍生物制剂, 其特征在于: 是由权利要求 16的阿糖 胞苷衍生物制剂的制备方法制备得到的产品。
19、 权利要求 1的阿糖胞苷衍生物在抗癌抗肿瘤中的用途。
20、 根据权利要求 19 的阿糖胞苷衍生物在抗癌抗肿瘤中的用途, 其特 征在于: 癌症包括白血病、 固体瘤、 肺癌、 结肠癌、 肝癌、 中枢神经系统肿 瘤、 卵巢癌和肾癌。
21、 权利要求 18 的阿糖胞苷衍生物制剂在抗癌抗肿瘤中的用途。
22、 根据权利要求 21 的阿糖胞苷衍生物制剂在抗癌抗肿瘤中的用途, 其特征在于: 癌症包括白血病、 固体瘤、 肺癌、 结肠癌、 肝癌、 中枢神经系 统肿瘤、 卵巢癌和肾癌。
23、 权利要求 21 的阿糖胞苷衍生物制剂在抗癌抗肿瘤中的用途, 其特 征在于: 所述阿糖胞苷衍生物制剂与其他化疗药物联合用药, 所述其他化疗 药物包括烷化剂、 植物生物碱类、 抗菌抗肿瘤磺酰胺类药物、 铂类药物、 抗 代谢类及其它已知的抗癌药物。
24、 根据权利要求 23 的阿糖胞苷衍生物制剂在抗癌抗肿瘤中的用途, 其特征在于: 在联合用药过程中, 包括运用至少一种具有权利要求 5的结构 式的阿糖胞苷^"生物。
PCT/CN2010/000319 2010-03-15 2010-03-15 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途 WO2011113173A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000319 WO2011113173A1 (zh) 2010-03-15 2010-03-15 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000319 WO2011113173A1 (zh) 2010-03-15 2010-03-15 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途

Publications (1)

Publication Number Publication Date
WO2011113173A1 true WO2011113173A1 (zh) 2011-09-22

Family

ID=44648399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000319 WO2011113173A1 (zh) 2010-03-15 2010-03-15 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途

Country Status (1)

Country Link
WO (1) WO2011113173A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104910024A (zh) * 2015-05-12 2015-09-16 四川理工学院 一种驱油用表面活性剂
WO2017090264A1 (ja) * 2015-11-27 2017-06-01 大原薬品工業株式会社 5-アザシチジン又は其の2'-デオキシ体の5'位ジベンジル燐酸エステル
WO2018199049A1 (ja) * 2017-04-25 2018-11-01 大原薬品工業株式会社 固形がん治療薬としての新規dnmt阻害剤

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3910885A (en) * 1974-03-12 1975-10-07 Syntex Inc 4-Alkoxy nucleosides and intermediates therefore
US4367332A (en) * 1980-07-16 1983-01-04 Asahi Kasei Kogyo Kabushiki Kaisha N4 -Alkoxycarbonylarabinofuranosylcytosine
WO2006030217A2 (en) * 2004-09-15 2006-03-23 Drug Discovery Laboratory As Drug conjugates of long chain fatty acid or ester moieties as protein binding prodrugs
CN101787066A (zh) * 2009-01-23 2010-07-28 高峰 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途
CN101787065A (zh) * 2009-01-23 2010-07-28 高峰 阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途
CN101787064A (zh) * 2009-01-23 2010-07-28 高峰 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3910885A (en) * 1974-03-12 1975-10-07 Syntex Inc 4-Alkoxy nucleosides and intermediates therefore
US4367332A (en) * 1980-07-16 1983-01-04 Asahi Kasei Kogyo Kabushiki Kaisha N4 -Alkoxycarbonylarabinofuranosylcytosine
WO2006030217A2 (en) * 2004-09-15 2006-03-23 Drug Discovery Laboratory As Drug conjugates of long chain fatty acid or ester moieties as protein binding prodrugs
CN101787066A (zh) * 2009-01-23 2010-07-28 高峰 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途
CN101787065A (zh) * 2009-01-23 2010-07-28 高峰 阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途
CN101787064A (zh) * 2009-01-23 2010-07-28 高峰 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AOSHIMA, MICHIKO ET AL.: "Antitumor activities of newly synthesized N4-acyl-1-(beta-D- arabinofuranosylcytosine.", CANCER RESEARCH., vol. 36, no. 8, 1976, pages 2726 - 2732, XP009118679 *
COLIN, B. ET AL.: "Synthesis and biological evaluation of some phosphate triester derivatives of the anti-cancer drug AraC.", NUCLEIC ACIDS RESEARCH, vol. 17, no. 18, 1989, pages 7195 - 7201 *
GOUY, MARIE-HELENE ET AL.: "Special feature of mixed phosphotriester derivatives of cytarabine.", BIOORGANIC & MEDICINAL CHEMISTRY., vol. 17, no. 17, 2009, pages 6340 - 6347, XP026471113, DOI: doi:10.1016/j.bmc.2009.07.038 *
QIAN, XUEQI ET AL.: "Facile synthesis of novel mutual derivatives of nucleosides and pyrimidines by regioselectively chemo-enzymatic protocol.", BIOORGANIC & MEDICINAL CHEMISTRY., vol. 16, no. 9, 2008, pages 5181 - 5188, XP022647309, DOI: doi:10.1016/j.bmc.2008.03.012 *
WANG, NA ET AL.: "Controllable selective synthesis of a polymerizable prodrug of cytarabine by enzymatic and chemical methods.", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS., vol. 15, no. 18, 2005, pages 4064 - 4067., XP025314073, DOI: doi:10.1016/j.bmcl.2005.06.011 *
ZHOU MIN ET AL.: "Cytarabine concentration Monitoring and its correlation to therapeutic response and prognosis in pediatric leukemia treated with high dose cytarabine.", JOURNAL CHINA PEDIATRBLOOD CANCER., vol. 13, no. 6, December 2008 (2008-12-01), pages 258 - 260 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104910024A (zh) * 2015-05-12 2015-09-16 四川理工学院 一种驱油用表面活性剂
WO2017090264A1 (ja) * 2015-11-27 2017-06-01 大原薬品工業株式会社 5-アザシチジン又は其の2'-デオキシ体の5'位ジベンジル燐酸エステル
WO2017090275A1 (ja) 2015-11-27 2017-06-01 大原薬品工業株式会社 5-アザシチジン又は其の2'-デオキシ体の5'位ジベンジル燐酸エステル
US9670238B1 (en) 2015-11-27 2017-06-06 Ohara Pharmaceutical Co., Ltd. 5′-dibenzyl phosphates of 5-azacytidine or 2′-deoxy-5-azacytidine
JP6142098B1 (ja) * 2015-11-27 2017-06-07 大原薬品工業株式会社 5−アザシチジン又は其の2’−デオキシ体の5’位ジベンジル燐酸エステル
CN108290920A (zh) * 2015-11-27 2018-07-17 大原药品工业株式会社 5-氮杂胞苷或2’-脱氧-5-氮杂胞苷的5’-二苄基磷酸酯
CN108290920B (zh) * 2015-11-27 2021-08-10 大原药品工业株式会社 5-氮杂胞苷或2’-脱氧-5-氮杂胞苷的5’-二苄基磷酸酯
WO2018199049A1 (ja) * 2017-04-25 2018-11-01 大原薬品工業株式会社 固形がん治療薬としての新規dnmt阻害剤
JPWO2018199049A1 (ja) * 2017-04-25 2020-03-12 大原薬品工業株式会社 固形がん治療薬としての新規dnmt阻害剤
US11173174B2 (en) 2017-04-25 2021-11-16 Ohara Pharmaceutical Co., Ltd. DNMT inhibitor as solid tumor therapeutic drug

Similar Documents

Publication Publication Date Title
CA2882201C (en) Tenofovir prodrug and pharmaceutical uses thereof
US9422321B2 (en) Pyrimidine nucleoside derivatives, synthesis methods and uses thereof for preparing anti-tumor and anti-virus medicaments
CN104640444B (zh) 双肝脏靶向氨基磷酸酯和氨基膦酸酯前药
CN104955818B (zh) 核苷激酶旁路组合物和方法
WO2010121486A1 (zh) 基于吉西他滨结构的前药及其合成方法及应用
JP2003528146A (ja) 脳血管疾患の治療
AU2008298592A2 (en) Drug carriers
KR20100102092A (ko) 아자시티딘 유사체 및 이들의 용도
TW202019913A (zh) 細胞壞死抑制劑及其製備方法和用途
WO2015101183A1 (zh) 尿嘧啶核苷酸类似物及其制备方法和应用
CN108349880B (zh) 用于治疗心脏疾病的cyp类花生酸代谢稳健类似物
CA2980885C (en) Glycolipids and pharmaceutical compositions thereof for use in therapy
CN101787064A (zh) 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途
ES2230574T3 (es) Derivados fosfolipidos de acidos fosfonocarboxilicos, su preparacion, asi como su uso como medicamentos antiviricos.
WO2011113173A1 (zh) 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途
JP2021506846A (ja) 肝臓送達に基づくエンテカビルプロドラッグであるヌクレオシドの環状リン酸エステル化合物および応用
WO2011113175A1 (zh) 阿糖胞苷前药衍生物及其在抗癌抗肿瘤中的用途
WO2013013404A1 (zh) 水溶性喜树碱衍生物、药物组合物及其用途
WO2019080724A1 (zh) 核苷磷酸类化合物及其制备方法和用途
WO2011079501A1 (zh) 基于阿糖胞苷结构的前药及其合成方法及应用
US20100093609A1 (en) Prodrugs of triciribine and triciribine phosphate
WO2009053654A2 (fr) Prodrogues phosphoesters de la gemcitabine comme agents anticancereux
TWI382978B (zh) 化學化合物
CN101787066B (zh) 阿糖胞苷衍生物及其在抗癌抗肿瘤中的用途
CN103906751A (zh) 作为晚期SV40因子(LSF)抑制剂用于治疗癌症的[1,3]二氧杂环戊烯并[4,5-g]喹啉-6(5H)-硫酮和[1,3]二氧杂环戊烯并[4,5-g][1,2,4]三唑并[1,5-a]喹啉衍生物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.01.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10847642

Country of ref document: EP

Kind code of ref document: A1