WO2011111868A1 - Method for measuring cross-link density of object to be tested, method for setting conditions of cross-link density of object to be tested, lamination method for laminated product, device for measuring cross-link density of object to be tested, and device for adjusting cross-link density of object to be tested - Google Patents
Method for measuring cross-link density of object to be tested, method for setting conditions of cross-link density of object to be tested, lamination method for laminated product, device for measuring cross-link density of object to be tested, and device for adjusting cross-link density of object to be tested Download PDFInfo
- Publication number
- WO2011111868A1 WO2011111868A1 PCT/JP2011/056142 JP2011056142W WO2011111868A1 WO 2011111868 A1 WO2011111868 A1 WO 2011111868A1 JP 2011056142 W JP2011056142 W JP 2011056142W WO 2011111868 A1 WO2011111868 A1 WO 2011111868A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crosslink density
- cross
- laminating
- measuring
- density
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 122
- 238000003475 lamination Methods 0.000 title claims abstract description 19
- 238000004132 cross linking Methods 0.000 claims abstract description 110
- 239000000758 substrate Substances 0.000 claims abstract description 90
- 230000008569 process Effects 0.000 claims abstract description 84
- 238000006243 chemical reaction Methods 0.000 claims abstract description 31
- 238000005259 measurement Methods 0.000 claims abstract description 27
- 238000010030 laminating Methods 0.000 claims description 151
- 238000012360 testing method Methods 0.000 claims description 62
- 238000001739 density measurement Methods 0.000 claims description 38
- 239000000945 filler Substances 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 13
- 229920005989 resin Polymers 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 29
- 210000004027 cell Anatomy 0.000 description 45
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000032258 transport Effects 0.000 description 9
- 229920001971 elastomer Polymers 0.000 description 8
- 239000005060 rubber Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000005038 ethylene vinyl acetate Substances 0.000 description 6
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 210000002858 crystal cell Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 101100444142 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) dut-1 gene Proteins 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/44—Resins; Plastics; Rubber; Leather
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/82—Testing the joint
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/10—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
- B32B37/1009—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using vacuum and fluid pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B41/00—Arrangements for controlling or monitoring lamination processes; Safety arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67092—Apparatus for mechanical treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67132—Apparatus for placing on an insulating substrate, e.g. tape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/6776—Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/12—Photovoltaic modules
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a technique for manufacturing a laminated product, and a measurement technique and an adjustment technique necessary for manufacturing.
- a solar cell is composed of a semiconductor substrate such as a silicon cell and an ethylene-vinyl acetate copolymer resin (EVA) between a transparent substrate made of glass, fluororesin, or the like and a back material formed of PET resin or the like.
- EVA ethylene-vinyl acetate copolymer resin
- a laminated product sandwiched between fillers is placed on a hot plate of a laminating apparatus, and laminating process (hereinafter simply referred to as “laminating process”) is performed with a diaphragm while being heat-treated in a vacuum in the laminating apparatus.
- the filler performs a so-called cross-linking reaction to form a covalent bond and functions to seal the semiconductor substrate (see, for example, Patent Document 1). If this crosslinking reaction is sufficiently performed, even if the transparent substrate and the filler are bonded and expanded or contracted, they can follow the temperature difference in the usage environment of the solar cell without peeling.
- a technique is known in which the crosslinking conditions of the laminating process in the laminating apparatus are monitored and the crosslinking conditions are changed as necessary (see, for example, Patent Document 2). JP 2009-201777 A JP 2009-165898 A
- the thermal conductivity of the peripheral portion and the four corners of the transparent substrate often deteriorates due to warpage accompanying the thermal expansion of the transparent substrate.
- the formed laminate product also has a problem that the cross-link density varies easily depending on the location where the cross-link density is low at the peripheral part and the four corners and the central part is high.
- the filler improves the sealing property due to elasticity as the crosslink density increases, but conversely, if the filler is too high, it has a characteristic of becoming brittle. Therefore, the filler generally has an optimum crosslink density according to the purpose.
- the present invention has been made in view of the above problems, and can measure the crosslink density in the lamination process of a laminated product much more easily and accurately, and can quickly analyze the crosslink density.
- the method of measuring the cross-linking density of the test specimen, the method of setting the cross-linking density of the test specimen, and the laminating process of the laminated product can quickly start up the production line of high-quality laminated product It is an object of the present invention to provide a method, an apparatus for measuring the crosslink density of a test object, and an apparatus for adjusting the crosslink density of the test object.
- the method for measuring the crosslink density of the device under test includes a first substrate and a second substrate disposed opposite to the first substrate.
- a step of performing a laminating process in which a heat treatment and a pressurizing process are performed in a vacuum state, and the object to be tested that has undergone the laminating process is taken out from the laminating means, and the first substrate and the second substrate A step of peeling the substrate from the crosslink density measuring sheet and taking out the crosslink density measuring sheet; and at least one ratio between a reference point in the taken out crosslink density measuring sheet.
- a step of selecting a point and measuring a crosslink density between the reference point and the comparison point, and the crosslink density measuring sheet exhibits a crosslink reaction by the laminating process and the first substrate by the crosslink reaction.
- the second substrate has a configuration in which no adhesion occurs.
- the crosslink density can be measured at a plurality of locations of the test object, and the comparative crosslink density comparison between the plurality of locations can be easily performed.
- a cross-linking reaction similar to that of the actual laminated product manufactured using the laminating process is obtained, and the cross-linking density measurement sheet that has caused the cross-linking reaction is destroyed to the first and second substrates. It can be easily peeled off without taking off.
- the crosslink density can be measured much more easily and accurately in the laminating process of laminated products, and the analysis of the crosslink density can be performed quickly, producing high quality laminated products.
- the line can be set up quickly.
- the method for measuring the crosslink density of the test object is the method of determining whether the ratio of the crosslink density at the comparison point to the crosslink density at the reference point is within a predetermined allowable range in the first aspect. It is characterized by having. According to the second invention, it is possible to easily reduce the variation in the crosslink density depending on the location of the laminated product, and to easily adjust the condition setting so that the entire laminated product has the optimum crosslink density. As a result, the laminated product can easily obtain an appropriate cross-linking density that can obtain a high sealing property due to elasticity and does not become brittle. And high quality laminated products can be manufactured.
- the reference point is a substantially central portion of the crosslink density measuring sheet.
- the crosslink density can be adjusted with reference to a place where a relatively good crosslink density can be obtained, so that the crosslink density of the entire laminated product can be easily adjusted.
- the method for measuring the crosslink density of the DUT of the fourth invention is characterized in that the predetermined allowable range is a specific ratio or more. According to the fourth aspect of the invention, when the predetermined allowable range is equal to or greater than a specific ratio, it is possible to more easily adjust the cross-linking density of the entire laminated product to be favorable.
- the laminating means is a laminator for manufacturing a solar cell module.
- the laminating means is a laminating apparatus for producing a solar cell module, so that a high quality solar cell module can be produced.
- the condition setting method for the crosslink density of the test object of the sixth invention is the comparison with respect to the crosslink density at the reference point obtained by the method for measuring the crosslink density of the test object of any of the second to fifth inventions.
- the laminating means When the ratio of the crosslink density at the point is acquired and the ratio is not within a predetermined allowable range, at least a part of the laminating means is vacuum-treated with respect to the specimen to be subjected to heat treatment and pressure treatment. A step of adjusting the ratio so that the ratio falls within the predetermined allowable range by adjusting a predetermined condition of the laminating process is provided.
- the sixth invention by calculating the difference between the crosslink density of the reference point of the test object and the crosslink density of the comparison point by the ratio of both, and adjusting this ratio to be within a predetermined allowable range, It is possible to easily adjust the crosslink density of the entire test object to be close to the crosslink density at the reference point.
- the predetermined condition is at least one of the temperature, pressure, and processing time of the laminating process in the laminating means. It is characterized by being.
- a laminate processing method for sealing a content of a laminate product including a filler by a first substrate and a second substrate disposed to face the first substrate.
- a laminating method for laminating products comprising: laminating a laminated product that has been stopped and laminated, and performing a laminating process in which at least a part of the laminating means is subjected to a heat treatment and a pressure treatment in a vacuum state.
- an apparatus for measuring a crosslink density of a test object wherein a plate-like crosslink density measuring sheet is sandwiched between a first substrate and a second substrate disposed to face the first substrate.
- test body in which they are laminated, and measure the crosslink density of the test body subjected to a laminating process in which at least a part of the laminating means is subjected to a heat treatment and a pressurizing process in a vacuum state.
- An apparatus for measuring the cross-linking density of a test object comprising: laminating means for performing the laminating process on the test object; and taking out the test object after the laminating process from the laminating means; A cross-linking density measuring sheet acquisition means for separating the cross-linking density measuring sheet and the second substrate from the cross-linking density measuring sheet and taking out the cross-linking density measuring sheet; A crosslink density measuring means for selecting a reference point and at least one comparison point in the crosslink density measuring sheet taken out by the acquisition means and measuring a crosslink density between the reference point and the comparison point.
- the cross-linking density measuring sheet exhibits a cross-linking reaction by the laminating process and is configured such that no adhesion occurs to either the first substrate or the second substrate by the cross-linking reaction. According to the ninth aspect, the same effect as the first aspect can be obtained. According to a tenth aspect of the present invention, there is provided an apparatus for adjusting a crosslink density of a test object, wherein a plate-like crosslink density measuring sheet is sandwiched between a first substrate and a second substrate disposed to face the first substrate.
- the laminating means used for laminating processing in which at least a part of the laminating means is subjected to heat treatment and pressurizing treatment in a vacuum state, the test object in the laminating process is prepared.
- a crosslink density measuring means for selecting a reference point and at least one comparison point in the crosslink density measuring sheet taken out by the degree measuring sheet acquisition means and measuring the crosslink density between the reference point and the comparison point
- a crosslink density analyzing means for determining whether a ratio of the crosslink density at the comparison point to the crosslink density at the reference point measured by the crosslink density measuring means is within a predetermined allowable range; and the crosslink density analyzing means If the ratio is not within the predetermined allowable range as a result of the determination by the laminate processing condition setting means for adjusting the predetermined condition of the la
- FIG. 1 is a cross-sectional view showing one configuration example of the solar cell module in this embodiment.
- FIG. 2 is a cross-sectional view of (a) a configuration of a device under test in this embodiment, and (b) a cross-sectional view of a sheet for measuring crosslink density.
- FIG. 3 is a functional block diagram of the crosslink density measurement / adjustment system of this embodiment.
- FIG. 4 is a diagram showing the overall configuration of the laminating means according to this embodiment.
- FIG. 5 is a side sectional view of a laminating portion for laminating a device under test and a solar cell module in the same laminating means.
- FIG. 6 is a cross-sectional side view of the same laminating means during laminating.
- FIG. 1 is a cross-sectional view showing one configuration example of the solar cell module in this embodiment.
- FIG. 2 is a cross-sectional view of (a) a configuration of a device under test in this embodiment, and (b) a
- FIG. 7 is a flowchart showing the steps of the crosslink density measurement / adjustment system according to this embodiment.
- FIG. 8 is a cross-sectional view showing a state in which the cross-link density measuring sheet is sandwiched between the transparent substrate and the back material of the DUT in this embodiment.
- FIG. 9 is a cross-sectional view showing a state in which the transparent substrate and the back material are separated from the cross-link density measurement sheet after the lamination process of the DUT in this embodiment.
- FIG. 10 is a diagram schematically showing a state in which a reference point and a comparison point are selected and a measurement piece is acquired in the crosslink density measurement sheet in this embodiment.
- FIG. 1 is a cross-sectional view showing a configuration example of a solar cell module as a “laminated product” using a crystal cell in this embodiment.
- This solar cell module 10 is manufactured in a laminating means (described later) constituting the measurement / adjustment system (described later) of this embodiment.
- the solar cell module 10 includes a transparent substrate 11 as a “first substrate” and a back material 12 as a “second substrate” disposed to face the transparent substrate 11.
- FIG. 2A is a cross-sectional view showing the configuration of the DUT 1A in this embodiment. This DUT 1A is used for measurement of the crosslinking density in a laminating means (described later) constituting the measurement / adjustment system (described later) of this embodiment. Similar to the solar cell module 10 shown in FIG.
- FIG. 2B is a cross-sectional view showing the configuration of the crosslinking density measurement sheet 1 in this embodiment.
- This crosslink density measuring sheet 1 has a rubber sheet layer 3 having a crosslink density of 0.1 ⁇ 10 ⁇ 4 to 10 ⁇ 10 ⁇ 4 mol / cc on a support 2 and has a plate shape.
- any material can be used as long as it is a sheet base material having heat resistance and strength resistance capable of maintaining the shape at the temperature distribution investigation temperature.
- a plastic sheet paper, synthetic paper, non-woven fabric, metal sheet or the like.
- the rubber sheet layer 3 natural rubber mainly composed of cis-isopolypropylene, acrylic rubber (ACM), nitrile rubber (NBR), isoprene rubber (IR), urethane rubber (U), ethylene propylene rubber (ECM).
- the rubber sheet layer 3 should just be a rubber component as a main component, and should just be knead
- the thickness of the crosslink density measuring sheet 1 is formed to be approximately equal to the thickness of the fillers 13 and 14 and the string 15 of the solar cell module 10. That is, in this embodiment, the thickness of the crosslink density measuring sheet 1 is formed to be about 1 mm.
- the crosslink density of the crosslink density measuring sheet 1 is equivalent to the fillers 13 and 14 of the solar cell module 10 so that the crosslink density is almost the same as that of the fillers 13 and 14 in the laminating process in the laminating means. It is desirable that it be formed. Specifically, the crosslink density is preferably 0.1 ⁇ 10 ⁇ 4 to 10 ⁇ 10 ⁇ 4 mol / cc. Further, the crosslinking density measuring sheet 1 is formed on the transparent substrate 11 and the back surface material 12 by the crosslinking reaction of the crosslinking density measuring sheet 1 on both the support 2 and the rubber sheet layer 3 of the crosslinking density measuring sheet 1.
- FIG. It is a functional block diagram of the measurement / adjustment system 100A.
- the crosslink density measuring / adjusting system 100A of this embodiment includes a laminating means 100, a crosslink density measuring sheet obtaining means 400, a crosslink density measuring means 500, a crosslink density analyzing means 600, and laminating conditions.
- Setting means 700 is provided.
- the apparatus for measuring the crosslink density of the test object of the present invention is realized by the configuration of the laminating means 100, the crosslink density measuring sheet obtaining means 400, and the crosslink density measuring means 500.
- the apparatus for adjusting the crosslink density of the object to be tested according to the present invention includes the laminating unit 100, the crosslink density measuring sheet obtaining unit 400, the crosslink density measuring unit 500, the crosslink density analyzing unit 600, and the laminating process condition setting unit 700.
- Laminating means 100 can use a laminating apparatus for manufacturing a solar cell module.
- the laminating means 100 is used for laminating the solar cell module 10 and the DUT 1A.
- a specific configuration of the laminating means 100 will be described later.
- ⁇ 4-1-2> Detailed Configuration of Laminating Unit FIG. 4 is a diagram showing the entire configuration of the laminating unit 100 according to this embodiment.
- Laminating means 100 includes an upper case 110, a lower case 120, and a transport belt 130.
- the transport belt 130 transports the DUT 1A before being subjected to the laminating process and the solar cell module 10 before being subjected to the laminating process between the upper case 110 and the lower case 120.
- the laminating means 100 is provided with a carry-in conveyor 200 for conveying the DUT 1A and the solar cell module 10 before the laminating process to the laminating means 100.
- the laminating means 100 is provided with a carry-out conveyor 300 for carrying out the test object 1A after lamination and the solar cell module 10 from the laminating means 100.
- the carry-in conveyor 200 and the carry-out conveyor 300 are connected in series.
- the device under test 1 ⁇ / b> A and the solar cell module 10 are delivered from the carry-in conveyor 200 to the transport belt 130 and from the transport belt 130 to the carry-out conveyor 300.
- the laminating means 100 is provided with a lifting device (not shown) that lifts and lowers the lower case 120 while maintaining the upper case 110 in a horizontal state.
- FIG. 5 is a side cross-sectional view of the laminating unit 101 that laminates the DUT 1A and the solar cell module 10 in the laminating means 100.
- FIG. 6 is a side sectional view of the laminating means 100 during the laminating process.
- the upper case 110 is formed with a space opened downward. In this space, a diaphragm 112 is provided so as to partition the space horizontally.
- the diaphragm 112 is formed of heat-resistant rubber such as silicone rubber.
- a space (upper chamber 113) partitioned by a diaphragm 112 is formed in the upper case 110.
- an intake / exhaust port 114 that communicates with the upper chamber 113 and is used for intake and exhaust in the upper chamber 113 is provided.
- a space (lower chamber 121) opened upward is formed.
- a hot plate 122 panel-shaped heater
- the hot plate 122 is supported by a support member erected on the bottom surface of the lower case 120 so as to maintain a horizontal state. In this case, the hot plate 122 is supported so that the surface thereof is substantially level with the opening surface of the lower chamber 121.
- An intake / exhaust port 123 that communicates with the lower chamber 121 and is used for intake / exhaust in the lower chamber 121 is provided on the lower surface of the lower case 120.
- a conveyor belt 130 is movably provided between the upper case 110 and the lower case 120 and above the heat plate 122.
- the transport belt 130 receives the specimen 1A to be tested and the solar cell module 10 from the carry-in conveyor 200 in FIG. 2 and accurately transports them to the central position of the laminating unit 101, that is, the central part of the hot plate 122.
- the conveyance belt 130 delivers the to-be-tested body 1A and the solar cell module 10 after a lamination process to the carrying-out conveyor 300 of FIG.
- a release sheet 140 is provided between the upper case 110 and the lower case 120 and above the conveyor belt 130 to prevent the molten filler from adhering to the diaphragm.
- the crosslink density measurement sheet acquisition unit 400 shown in FIG. 3 takes out the specimen 1A to be tested from which the laminating process has been completed, and forms this specimen.
- the transparent substrate 11 and the back material 12 are peeled from the crosslink density measuring sheet 1 and the crosslink density measuring sheet 1 is taken out.
- the cross-linking density measurement sheet acquisition unit 400 has a configuration necessary for taking out the cross-linking density measurement sheet 1 from the test object 1A used for the measurement of the cross-linking density that has been subjected to the laminating process in the laminating unit 100. Is provided.
- Crosslinking density measuring means 500 shown in FIG. 3 includes one reference point and at least one comparison point in the crosslink density measuring sheet 1 taken out by the crosslink density measuring sheet acquisition means 400. Is selected and the crosslink density between the reference point and the comparison point is measured.
- the crosslink density measuring means 500 is provided with a configuration necessary for measuring the crosslink density for each location of the crosslink density measuring sheet 1.
- an image processing mechanism or the like for specifying a position where the crosslink density is measured on the crosslink density measuring sheet 1 is provided.
- Crosslinking density analyzing means ⁇ 4-5>
- Laminating processing condition setting means The crosslinking density analyzing means 600 shown in FIG. It is determined whether the crosslink density ratio is within a predetermined tolerance.
- the laminating processing condition setting unit 700 acquires the ratio determined by the crosslink density analyzing unit 600, and when the ratio is not within a predetermined allowable range, the predetermined ratio of the laminating process is adjusted to adjust the predetermined ratio. Adjust so that it is within the allowable range.
- FIG. 3 includes at least one CPU, and processes various data and calculates values.
- the crosslink density analyzing unit 600 selects one reference point and a comparison point from a plurality of measured values obtained by the measurement of the crosslink density measuring unit 500, and at the same time, the crosslink density of the reference point and the comparison point. The ratio with the crosslink density is calculated.
- the laminating condition setting unit 700 adjusts the heating conditions of the laminating unit 100 based on the respective values calculated by the crosslinking density analyzing unit.
- Step S1> First, the user of the crosslink density measuring / adjusting system 100A prepares the transparent substrate 11, the back material 12, and the crosslink density measuring sheet 1 shown in FIG. 2, and using these, the transparent substrate 11 shown in FIG. 1A to be tested is prepared by sandwiching the crosslink density measuring sheet 1 between the back surface material 12 and the back surface material 12 (step S1).
- step S2> Next, the prepared DUT 1A is placed on the carry-in conveyor 200 of the laminating means 100. The test object 1A is transferred from the carry-in conveyor 200 onto the conveyor belt 130. Thereby, as shown in FIG.
- the transport belt 130 transports the device under test 1A to the center position of the laminate portion 101 and arranges it at the position (step S2).
- the crosslink density measurement / adjustment system 100A may be configured so that the DUT 1A is directly disposed on the laminate 101 without using the carry-in conveyor 200.
- the lifting device lowers the upper case 110.
- the upper chamber 113 and the lower chamber 121 are kept sealed inside the upper case 110 and the lower case 120, respectively.
- the laminating means 100 performs a laminating process on the DUT 1A (Step S3).
- the upper chamber 113 is evacuated through the intake / exhaust port 114 of the upper case 110.
- the laminating means 100 evacuates the lower chamber 121 through the intake / exhaust port 123 of the lower case 120.
- the test object 1A and the crosslink density measuring sheet 1 included in the test object 1A are heat-treated by each heater module constituting the hot plate 122, and the crosslink density measuring sheet 1 undergoes a cross-linking reaction by the laminating process.
- the laminating means 100 introduces the atmosphere into the upper chamber 113 through the intake / exhaust port 114 of the upper case 110 while keeping the vacuum state of the lower chamber 121.
- the laminating means 100 introduces air into the lower chamber 121 through the intake / exhaust port 123 of the lower case 120.
- the lifting device raises the upper case 110, and the conveyor belt 130 delivers the test object 1 ⁇ / b> A after the lamination process to the carry-out conveyor 300.
- the crosslink density measurement / adjustment system 100A may be configured such that the DUT 1A is directly taken out from the laminate unit 101 without using the carry-out conveyor 300.
- the crosslink density measurement sheet acquisition means 400 takes out the crosslink density measurement sheet 1 after the lamination process from the test object 1A on the carry-out conveyor 300 (step S4). That is, as shown in FIG. 9, the crosslink density measurement sheet acquisition means 400 separates the transparent substrate 11 and the back material 12 of the DUT 1 ⁇ / b> A from each other and separates them from the crosslink density measurement sheet 1. 1 is extracted from between the transparent substrate 11 and the back material 12 and taken out. Although the cross-linking density measuring sheet 1 exhibits a cross-linking reaction by the laminating process, no adhesion occurs to either the transparent substrate 11 or the back surface material 12 due to the cross-linking reaction.
- the transparent substrate 11 and the back surface material 12 are for cross-linking density measurement, respectively.
- the sheet 1 can be easily pulled away, and only the cross-linking density measuring sheet 1 exhibiting a cross-linking reaction can be easily taken out without destroying the DUT 1A.
- the crosslink density measuring means 500 selects the reference point and the comparison point in the taken out crosslink density measuring sheet 1, and measures the crosslink density between the reference point and the comparison point (step S5).
- FIG. 10 is a diagram schematically showing a state in which a reference point and a comparison point are selected in the crosslink density measurement sheet 1 and a measurement piece is acquired.
- one virtual block is used as a reference point, and at least one other The crosslink density is analyzed using the virtual block as a comparison point. Accordingly, one virtual block including a reference point when the crosslink density of the crosslink density measuring sheet 1 is measured is used as a reference point, and one or a plurality of points including a portion where the crosslink density is to be adjusted in relation to the reference point. It is desirable to use the virtual block as a comparison point.
- the reference point is the virtual block 1B 1 that is substantially the center of the crosslink density measurement sheet 1
- the comparison points are virtual blocks 1B 2 and 1B 6 that correspond to the four corners of the crosslink density measurement sheet 1.
- 1B 31 and 1B 35 are selected.
- the substantially central portion is a portion where the crosslinking density is most likely to be the highest
- the peripheral portion including the four corners is a portion where the crosslinking density is most likely to be the lowest. Because. That is, adjusting the cross-linking density in the peripheral portion with reference to the substantially central portion of the cross-linking density measuring sheet 1 is effective for reducing the variation in cross-linking density that occurs when the solar cell module 10 is manufactured. .
- the selection of the reference point and the comparison point is not limited to the above-described aspect, and any point can be used as long as it can easily reduce the variation in the cross-linking density that occurs when the solar cell module 10 is manufactured.
- You may select as a reference point and a comparison point. That is, the virtual block 1B 1 reference point is a position other than a substantially central portion of the cross-linking density measurement sheet 1, for example, in FIG. 10 may be a position of the virtual block 1B 2 of the upper left, comparison point crosslinking density measurements The position other than the peripheral part of the sheet 1 for use, for example, the position of the virtual block 1B 1 in FIG.
- the comparison points are the four points of the virtual blocks 1B 2 , 1B 6 , 1B 31 and 1B 35 , but may be more or less than four points.
- the crosslink density at the reference point and the comparison point is measured by a well-known swelling method. Therefore, as shown in FIG. 10, the crosslink density measuring means 500 has an appropriate size from the approximate center of the virtual block 1B 1 at the reference point and from the approximate center of the virtual blocks 1B 2 , 1B 6 , 1B 31 , 1B 35 at the comparison points. For example, measurement pieces 1C 1 , 1C 2 , 1C 6 , 1C 31 , 1C 35 of about 1 cm square are cut out.
- the crosslink density measuring means 500 may measure the crosslink density by any measurement method other than the swelling method. For example, it is assumed that the crosslink density measuring means 500 measures the crosslink density by using a well-known pulse NMR method (Journal of the Japan Rubber Association: VOL78, 255 (2005), Hitoshi Iwasaki, Junya Nagata etc.). Is done.
- a pulse NMR method Journal of the Japan Rubber Association: VOL78, 255 (2005), Hitoshi Iwasaki, Junya Nagata etc.
- the crosslink density analyzing means 600 determines whether or not the ratio of the crosslink density at the comparison point to the crosslink density at the reference point measured by the crosslink density measuring means 500 is within a predetermined allowable range (step S6). .
- Step S6> when the crosslinking density of the fillers 13 and 14 is too low, when the solar cell module 10 is used outdoors, water enters the inside of the fillers 13 and 14 and the string 15 corrodes. On the other hand, if it is too high, the fillers 13 and 14 become brittle and easily break. Therefore, the predetermined range in which the crosslink density of the fillers 13 and 14 is not too low and not too high is an allowable range necessary for ensuring the quality of the product. Make adjustments within the allowable range.
- the crosslink density analyzing means 600 calculates the crosslink density of the virtual block 1B 1 of the reference point and the virtual blocks 1B 2 , 1B 6 , 1B 31 , 1B 35 of the comparison point based on the following formula (1). Make a decision.
- Pxy Bxy / A (1)
- Pxy degree of cross-linking
- Bxy cross-linking density at each location
- x cross-linking time
- y position information of solar cell module 10 (here, serial numbers 1 to 35 of virtual blocks 1B1 to 1B35)
- A cross-linking density measurement
- Cross-linking density in a state in which the sheet 1 is ideally cross-linked for example, a state in which laminating treatment is performed at a predetermined temperature, a predetermined pressure using an EPDM compound
- the cross-linking density analyzing means 600 is represented by the following formula ( Whether it is within a predetermined allowable range is determined depending on whether the conditions of 2) and Equation (3) are satisfied.
- Equation (2) is an expression for determining whether or not the degree of cross-linking of each of the virtual blocks 1B 1 , 1B 2 , 1B 6 , 1B 31 , 1B 35 is within a predetermined allowable range.
- the numerical values C and D are appropriately determined depending on the crosslinking density required for the fillers 13 and 14 of the solar cell module 10.
- Formula (3) is demonstrated.
- Equation (3) indicates whether or not the difference between the bridge density of the virtual block 1B 1 at the reference point and the bridge density of the virtual blocks 1B 2 , 1B 6 , 1B 31 , 1B 35 at the respective comparison points is within a predetermined allowable range. Is an expression for determining That is, it indicates the degree of unevenness of the crosslink density.
- the numerical value E is preferably set to 0.8, but may be appropriately increased or decreased depending on the crosslinking density required for the solar cell module 10.
- Step S7 ⁇ Step S7 ⁇ Step S9> And when said (2) and (3) are all within a tolerance
- Step S7 ⁇ Step S8>
- the laminating process condition setting unit 700 adjusts the laminating process conditions of the laminating unit 100. (Step S8).
- the setting of at least one of pressure, temperature, and processing time (especially temperature and time) in the laminating process of the virtual block at the comparison point that does not satisfy the condition (2) is changed. Is done.
- the laminating process condition setting unit 700 sends the adjustment result data in step S8 to the control unit (not shown) of the laminating unit 100, and changes the setting of the program of the control unit (not shown). After the process in step S8, the process returns to step S1, and the subsequent processes are continued until the determination in step S7 becomes “Yes”. ⁇ 6.
- the cross-linking density measuring sheet 1 obtained by obtaining the cross-linking reaction similar to the fillers 13 and 14 of the actual solar cell module 10 and causing the cross-linking reaction is used as the transparent substrate 11 and the back surface material 12. Can be easily peeled off without breaking. Thereby, the measurement of the crosslink density in the lamination process of the solar cell module 10 can be performed remarkably easily and accurately, and the analysis of the crosslink density can be quickly performed, so that the high quality solar cell module 10 can be performed.
- the production line can be quickly started up.
- the measurement and adjustment of the crosslink density in the solar cell module 10 using the crystal cell is targeted.
- the present invention is not limited to this, and the crosslink density of the filler in the so-called thin film solar cell module is not limited. Measurement and adjustment can also be targeted.
- the measurement and adjustment of the crosslink density in the solar cell module 10 are targeted.
- this embodiment can also be applied to the measurement and adjustment of the crosslink density in all laminated products other than the solar cell module 10. .
- the crosslink density measurement sheet acquisition unit 400, the crosslink density measurement unit 500, the crosslink density analysis unit 600, and the laminating processing condition setting unit 700 are all automatically controlled.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Fluid Mechanics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Mechanical Engineering (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Photovoltaic Devices (AREA)
- Laminated Bodies (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
Description
一方、充填材は架橋密度が上昇するに従って弾性によりシール性が向上するが、逆に高すぎると脆くなる特性があるため、一般に充填剤はその目的に応じた最適な架橋密度が存在する。そして、特許文献1及び2に記載の発明においては、このような、ラミネート加工製品の場所毎の熱の伝導状態と架橋密度の最適化とに即した調整を行うための構成が存在しないため、品質の高い製品を製造するための作業者の負担が過大になり易いという問題がある。
また、特許文献1及び2に記載の発明においては、充填材が架橋反応を起こした際、EVA等の充填材と透明基板とが共有結合するため、特許文献1及び2に記載の発明において架橋密度の測定を行う場合、接着した透明基板と充填材とを分離するためにラミネート加工製品を破壊する必要があり、破壊作業と架橋密度の測定及び確認とに要する作業者の作業が過大になり、生産ラインの起ち上げが遅くなってしまうという問題がある。
本発明は上記の問題に鑑みてなされたものであり、ラミネート加工製品のラミネート処理における架橋密度の測定を格段に容易にしかも精度良く行うことができ、かつ、架橋密度の解析を迅速に行うことができて、高品質のラミネート加工製品の生産ラインの起ち上げを迅速に行うことができる被試験体の架橋密度の測定方法、被試験体の架橋密度の条件設定方法、ラミネート加工製品のラミネート処理方法、被試験体の架橋密度の測定装置、被試験体の架橋密度の調整装置を提供することを課題としている。 However, in general, when a laminating process is performed in a laminating apparatus, a temperature difference occurs in each laminated product at each place. Specifically, the thermal conductivity of the peripheral portion and the four corners of the transparent substrate often deteriorates due to warpage accompanying the thermal expansion of the transparent substrate. As a result, the formed laminate product also has a problem that the cross-link density varies easily depending on the location where the cross-link density is low at the peripheral part and the four corners and the central part is high.
On the other hand, the filler improves the sealing property due to elasticity as the crosslink density increases, but conversely, if the filler is too high, it has a characteristic of becoming brittle. Therefore, the filler generally has an optimum crosslink density according to the purpose. And in the inventions described in
In the inventions described in
The present invention has been made in view of the above problems, and can measure the crosslink density in the lamination process of a laminated product much more easily and accurately, and can quickly analyze the crosslink density. The method of measuring the cross-linking density of the test specimen, the method of setting the cross-linking density of the test specimen, and the laminating process of the laminated product can quickly start up the production line of high-quality laminated product It is an object of the present invention to provide a method, an apparatus for measuring the crosslink density of a test object, and an apparatus for adjusting the crosslink density of the test object.
第1発明によれば、被試験体の複数の箇所について架橋密度の測定を行い、それら複数の箇所同士の相対的な架橋密度の比較対照を容易に行うことができる。また、ラミネート処理を用いて製造される現実のラミネート加工製品の充填材と同様の架橋反応を得ると共に、架橋反応を起こさせた架橋密度測定用シートを第一の基板及び第二の基板を破壊することなく容易に剥がして取り出すことができる。これにより、ラミネート加工製品のラミネート処理における架橋密度の測定を格段に容易にしかも精度良く行うことができ、かつ、架橋密度の解析を迅速に行うことができて、高品質のラミネート加工製品の生産ラインの起ち上げを迅速に行うことができる。
第2発明の前記被試験体の架橋密度の測定方法は、第1発明において、前記基準地点の架橋密度に対する前記比較地点の架橋密度の割合が所定の許容範囲内か否かを判定する工程を備えたことを特徴とする。第2発明によれば、ラミネート加工製品の場所による架橋密度のバラツキを容易に低減させ、ラミネート加工製品全体を最適な架橋密度になるように条件設定を容易に調整できる。これにより、ラミネート加工製品は、弾性により高いシール性を得られると共に脆くなることのない、適正な架橋密度を容易に得ることができる。そして、高品質のラミネート加工製品を製造できる。
第3発明の前記被試験体の架橋密度の測定方法は、第1発明または第2発明において、前記基準地点は、前記架橋密度測定用シートの略中央部であることを特徴とする。第3発明によれば、比較的良好な架橋密度が得られる場所を基準に架橋密度の調整を行い、ラミネート加工製品全体の架橋密度が良好になるような調整を容易に行うことができる。
第4発明の前記被試験体の架橋密度の測定方法は、第2発明又は第3発明において、前記所定の許容範囲とは、特定の割合以上であることを特徴とする。第4発明によれば、所定の許容範囲とは、特定の割合以上であることにより、ラミネート加工製品全体の架橋密度が良好になるような調整を一層容易に行うことができる。
第5発明の前記被試験体の架橋密度の測定方法は、第1発明から第4発明のいずれかにおいて、前記ラミネート加工手段は太陽電池モジュール製造用のラミネート装置であることを特徴とする。第5発明によれば、ラミネート加工手段は太陽電池モジュール製造用のラミネート装置であることにより、高品質の太陽電池モジュールを製造できる。
第6発明の前記被試験体の架橋密度の条件設定方法は、第2発明から第5発明のいずれかの被試験体の架橋密度の測定方法によって得られた前記基準地点の架橋密度に対する前記比較地点の架橋密度の前記割合を取得し、前記割合が所定の許容範囲内でない場合には、前記被試験体に対する、ラミネート加工手段の少なくとも一部を真空状態にして加熱処理及び加圧処理を行うラミネート処理の所定の条件を調整することで、前記割合が前記所定の許容範囲内になるように調整する工程を備えたことを特徴とする。第6発明によれば、被試験体の基準地点の架橋密度と比較地点の架橋密度との差異を両者の割合によって算出し、この割合が所定の許容範囲内となるように調整することで、被試験体全体の架橋密度を基準地点の架橋密度に近づけるような調整を容易に行うことが可能になる。そして、ラミネート加工製品の場所による架橋密度のバラツキを容易に低減させ、ラミネート加工製品全体を最適な架橋密度になるように条件設定を容易に調整できる。これにより、ラミネート加工製品は、弾性により高いシール性を得られると共に脆くなることのない、適正な架橋密度を容易に得ることができる。そして、高品質のラミネート加工製品を製造できる。
第7発明の被試験体の架橋密度の条件設定方法は、第6発明において、前記所定の条件は、前記ラミネート加工手段における前記ラミネート処理の温度、圧力、処理時間のうちの少なくとも何れか一つであることを特徴とする。第7発明によれば、加熱処理及び加圧処理で変動させることの出来る要因を変化させることで、被試験体全体の架橋密度を基準地点の架橋密度に近づけるような調整を容易に行うことが可能になる。
第8発明のラミネート加工製品のラミネート処理方法は、第一の基板、及び前記第一の基板に対向して配設される第二の基板によって、充填材を含むラミネート加工製品の内容物を封止して積層させたラミネート加工製品に対し、ラミネート加工手段の少なくとも一部を真空状態にして加熱処理及び加圧処理を行うラミネート処理を施す、ラミネート加工製品のラミネート処理方法であって、第1発明から第5発明の何れかの被試験体の架橋密度の測定方法による測定工程と、第6発明または第7発明の被試験体の架橋密度の条件設定方法による条件設定工程と、前記条件設定工程によって調整がされた前記架橋密度で前記ラミネート処理が行えるようにラミネート加工手段の条件設定を調整する工程と、前記調整がされた前記ラミネート加工手段によって前記ラミネート加工製品の前記ラミネート処理を行う工程とを備え、前記架橋密度測定用シートは前記ラミネート処理によって架橋反応を呈すると共に前記架橋反応によって前記第一の基板及び前記第二の基板のいずれとも接着が生じない構成を有していることを特徴とする。第8発明によれば、ラミネート加工製品のラミネート処理における架橋密度の測定を簡易に行うことができると共に場所による架橋密度のバラツキを容易に低減させ、ラミネート加工製品全体を最適な架橋密度になるように条件設定を容易に調整でき、高品質のラミネート加工製品を製造できる。
第9発明の被試験体の架橋密度の測定装置は、第一の基板と、前記第一の基板に対向して配設される第二の基板とによって板状の架橋密度測定用シートを挟み込んでそれらを積層させた被試験体を用意し、ラミネート加工手段の少なくとも一部を真空状態にして加熱処理及び加圧処理を行うラミネート処理を施した前記被試験体について、架橋密度の測定を行う被試験体の架橋密度の測定装置であって、前記被試験体について前記ラミネート処理を行うラミネート加工手段と、前記ラミネート処理が完了した前記被試験体を前記ラミネート加工手段から取り出して、前記第一の基板及び前記第二の基板を前記架橋密度測定用シートから剥離させて前記架橋密度測定用シートを取り出す架橋密度測定用シート取得手段と、前記架橋密度測定用シート取得手段によって取り出された前記架橋密度測定用シートにおいて一の基準地点と少なくとも一の比較地点とを選定して前記基準地点と前記比較地点との架橋密度を測定する架橋密度測定手段とを備え、前記架橋密度測定用シートは前記ラミネート処理によって架橋反応を呈すると共に前記架橋反応によって前記第一の基板及び前記第二の基板のいずれとも接着が生じないように構成することを特徴とする。第9発明によれば、第1発明と同様の効果を奏する。
第10発明の被試験体の架橋密度の調整装置は、第一の基板と、前記第一の基板に対向して配設される第二の基板とによって板状の架橋密度測定用シートを挟み込んでそれらを積層させた被試験体を用意し、ラミネート加工手段の少なくとも一部を真空状態にして加熱処理及び加圧処理を行うラミネート処理に用いられる前記ラミネート加工手段において、前記ラミネート処理における被試験体の架橋密度の調整を行う被試験体の架橋密度の調整装置であって、前記ラミネート加工手段と、前記ラミネート処理が完了した前記被試験体を前記ラミネート加工手段から取り出して、前記第一の基板及び前記第二の基板を前記架橋密度測定用シートから剥離させて前記架橋密度測定用シートを取り出す架橋密度測定用シート取得手段と、前記架橋密度測定用シート取得手段によって取り出された前記架橋密度測定用シートにおいて一の基準地点と少なくとも一の比較地点とを選定して前記基準地点と前記比較地点との架橋密度を測定する架橋密度測定手段と、前記架橋密度測定手段によって測定された、前記基準地点の架橋密度に対する前記比較地点の架橋密度の割合が所定の許容範囲内か否かを判定する架橋密度分析手段と、前記架橋密度分析手段による判定の結果、前記割合が所定の許容範囲内でない場合には、前記ラミネート処理の所定の条件を調整することで前記割合が前記所定の許容範囲内になるように調整するラミネート加工条件設定手段とを備え、前記架橋密度測定用シートは前記ラミネート処理によって架橋反応を呈すると共に前記架橋反応によって前記第一の基板及び前記第二の基板のいずれとも接着が生じない構成を有していることを特徴とする。第10発明によれば、第6発明と同様の効果を奏する。 In order to achieve such an object, the method for measuring the crosslink density of the device under test according to the first aspect of the present invention includes a first substrate and a second substrate disposed opposite to the first substrate. A step of preparing a test object in which the cross-linking density measurement sheets are sandwiched and laminated, and the test object is disposed in a laminating means, and at least one of the laminating means is disposed on the test object. A step of performing a laminating process in which a heat treatment and a pressurizing process are performed in a vacuum state, and the object to be tested that has undergone the laminating process is taken out from the laminating means, and the first substrate and the second substrate A step of peeling the substrate from the crosslink density measuring sheet and taking out the crosslink density measuring sheet; and at least one ratio between a reference point in the taken out crosslink density measuring sheet. A step of selecting a point and measuring a crosslink density between the reference point and the comparison point, and the crosslink density measuring sheet exhibits a crosslink reaction by the laminating process and the first substrate by the crosslink reaction. And the second substrate has a configuration in which no adhesion occurs.
According to the first aspect of the present invention, the crosslink density can be measured at a plurality of locations of the test object, and the comparative crosslink density comparison between the plurality of locations can be easily performed. In addition, a cross-linking reaction similar to that of the actual laminated product manufactured using the laminating process is obtained, and the cross-linking density measurement sheet that has caused the cross-linking reaction is destroyed to the first and second substrates. It can be easily peeled off without taking off. As a result, the crosslink density can be measured much more easily and accurately in the laminating process of laminated products, and the analysis of the crosslink density can be performed quickly, producing high quality laminated products. The line can be set up quickly.
The method for measuring the crosslink density of the test object according to a second aspect of the invention is the method of determining whether the ratio of the crosslink density at the comparison point to the crosslink density at the reference point is within a predetermined allowable range in the first aspect. It is characterized by having. According to the second invention, it is possible to easily reduce the variation in the crosslink density depending on the location of the laminated product, and to easily adjust the condition setting so that the entire laminated product has the optimum crosslink density. As a result, the laminated product can easily obtain an appropriate cross-linking density that can obtain a high sealing property due to elasticity and does not become brittle. And high quality laminated products can be manufactured.
According to a third aspect of the present invention, in the first or second aspect, the reference point is a substantially central portion of the crosslink density measuring sheet. According to the third aspect of the present invention, the crosslink density can be adjusted with reference to a place where a relatively good crosslink density can be obtained, so that the crosslink density of the entire laminated product can be easily adjusted.
In the second invention or the third invention, the method for measuring the crosslink density of the DUT of the fourth invention is characterized in that the predetermined allowable range is a specific ratio or more. According to the fourth aspect of the invention, when the predetermined allowable range is equal to or greater than a specific ratio, it is possible to more easily adjust the cross-linking density of the entire laminated product to be favorable.
According to a fifth aspect of the present invention, there is provided the method for measuring the crosslink density of the test object according to any one of the first to fourth aspects, wherein the laminating means is a laminator for manufacturing a solar cell module. According to the fifth aspect of the invention, the laminating means is a laminating apparatus for producing a solar cell module, so that a high quality solar cell module can be produced.
The condition setting method for the crosslink density of the test object of the sixth invention is the comparison with respect to the crosslink density at the reference point obtained by the method for measuring the crosslink density of the test object of any of the second to fifth inventions. When the ratio of the crosslink density at the point is acquired and the ratio is not within a predetermined allowable range, at least a part of the laminating means is vacuum-treated with respect to the specimen to be subjected to heat treatment and pressure treatment. A step of adjusting the ratio so that the ratio falls within the predetermined allowable range by adjusting a predetermined condition of the laminating process is provided. According to the sixth invention, by calculating the difference between the crosslink density of the reference point of the test object and the crosslink density of the comparison point by the ratio of both, and adjusting this ratio to be within a predetermined allowable range, It is possible to easily adjust the crosslink density of the entire test object to be close to the crosslink density at the reference point. Then, it is possible to easily reduce the variation in the crosslink density depending on the location of the laminated product, and to easily adjust the condition setting so that the entire laminated product has the optimum crosslink density. As a result, the laminated product can easily obtain an appropriate cross-linking density that can obtain a high sealing property due to elasticity and does not become brittle. And high quality laminated products can be manufactured.
According to a seventh aspect of the present invention, in the sixth aspect of the invention, the predetermined condition is at least one of the temperature, pressure, and processing time of the laminating process in the laminating means. It is characterized by being. According to the seventh invention, by changing the factors that can be changed by the heat treatment and the pressure treatment, it is possible to easily adjust the crosslink density of the entire specimen to be close to the crosslink density of the reference point. It becomes possible.
According to an eighth aspect of the present invention, there is provided a laminate processing method for sealing a content of a laminate product including a filler by a first substrate and a second substrate disposed to face the first substrate. A laminating method for laminating products, comprising: laminating a laminated product that has been stopped and laminated, and performing a laminating process in which at least a part of the laminating means is subjected to a heat treatment and a pressure treatment in a vacuum state. The measurement step by the method for measuring the crosslink density of the test object according to any of the invention to the fifth invention, the condition setting step by the condition setting method for the crosslink density of the test sample of the sixth or seventh invention, and the condition setting Adjusting the condition setting of the laminating means so that the laminating process can be performed at the crosslink density adjusted by the process, and the laminating process Performing the laminating process on the laminated product by means, and the cross-linking density measuring sheet exhibits a cross-linking reaction by the laminating process and any of the first substrate and the second substrate by the cross-linking reaction. Both have a configuration in which adhesion does not occur. According to the eighth aspect of the invention, it is possible to easily measure the crosslink density in the laminating process of the laminated product and to easily reduce the variation of the crosslink density depending on the location so that the entire laminated product has the optimum crosslink density. The condition setting can be easily adjusted, and high quality laminated products can be manufactured.
According to a ninth aspect of the present invention, there is provided an apparatus for measuring a crosslink density of a test object, wherein a plate-like crosslink density measuring sheet is sandwiched between a first substrate and a second substrate disposed to face the first substrate. To prepare a test body in which they are laminated, and measure the crosslink density of the test body subjected to a laminating process in which at least a part of the laminating means is subjected to a heat treatment and a pressurizing process in a vacuum state. An apparatus for measuring the cross-linking density of a test object, comprising: laminating means for performing the laminating process on the test object; and taking out the test object after the laminating process from the laminating means; A cross-linking density measuring sheet acquisition means for separating the cross-linking density measuring sheet and the second substrate from the cross-linking density measuring sheet and taking out the cross-linking density measuring sheet; A crosslink density measuring means for selecting a reference point and at least one comparison point in the crosslink density measuring sheet taken out by the acquisition means and measuring a crosslink density between the reference point and the comparison point. The cross-linking density measuring sheet exhibits a cross-linking reaction by the laminating process and is configured such that no adhesion occurs to either the first substrate or the second substrate by the cross-linking reaction. According to the ninth aspect, the same effect as the first aspect can be obtained.
According to a tenth aspect of the present invention, there is provided an apparatus for adjusting a crosslink density of a test object, wherein a plate-like crosslink density measuring sheet is sandwiched between a first substrate and a second substrate disposed to face the first substrate. In the laminating means used for laminating processing in which at least a part of the laminating means is subjected to heat treatment and pressurizing treatment in a vacuum state, the test object in the laminating process is prepared. An apparatus for adjusting the cross-linking density of a test object for adjusting the cross-linking density of the body, wherein the laminating means and the test object that has been subjected to the laminating process are taken out of the laminating means, A cross-linking density measuring sheet acquisition means for separating the cross-linking density measuring sheet by peeling the substrate and the second substrate from the cross-linking density measuring sheet; and the cross-linking A crosslink density measuring means for selecting a reference point and at least one comparison point in the crosslink density measuring sheet taken out by the degree measuring sheet acquisition means and measuring the crosslink density between the reference point and the comparison point A crosslink density analyzing means for determining whether a ratio of the crosslink density at the comparison point to the crosslink density at the reference point measured by the crosslink density measuring means is within a predetermined allowable range; and the crosslink density analyzing means If the ratio is not within the predetermined allowable range as a result of the determination by the laminate processing condition setting means for adjusting the predetermined condition of the laminating process to adjust the ratio to be within the predetermined allowable range And the crosslink density measurement sheet exhibits a cross-linking reaction by the laminating process and the first substrate and the cross-linking reaction. Characterized in that it has the configuration with any bonding of the second substrate does not occur. According to the tenth aspect, the same effects as in the sixth aspect are achieved.
図2は、この実施の形態における、(a)被試験体の構成を示す断面図、(b)架橋密度測定用シートの断面図である。
図3は、この実施の形態の架橋密度の測定・調整システムの機能ブロック図である。
図4は、この実施の形態に係るラミネート加工手段の全体の構成を示す図である。
図5は、同上ラミネート加工手段において被試験体や太陽電池モジュールをラミネートするラミネート部の側断面図である。
図6は、同上ラミネート加工手段のラミネート処理時における側断面図である。
図7は、この実施の形態の架橋密度の測定・調整システムの工程を示すフローチャートである。
図8は、この実施の形態における被試験体の、透明基板と裏面材とで架橋密度測定用シートを挟み込んだ状態を示す断面図である。
図9は、この実施の形態における被試験体の、ラミネート処理後に透明基板及び裏面材をそれぞれ引き離して架橋密度測定用シートから剥離させた状態を示す断面図である。
図10は、この実施の形態における、架橋密度測定用シートにおいて基準地点と比較地点とを選定し、測定片を取得する状態を模式的に示した図である。 FIG. 1 is a cross-sectional view showing one configuration example of the solar cell module in this embodiment.
FIG. 2 is a cross-sectional view of (a) a configuration of a device under test in this embodiment, and (b) a cross-sectional view of a sheet for measuring crosslink density.
FIG. 3 is a functional block diagram of the crosslink density measurement / adjustment system of this embodiment.
FIG. 4 is a diagram showing the overall configuration of the laminating means according to this embodiment.
FIG. 5 is a side sectional view of a laminating portion for laminating a device under test and a solar cell module in the same laminating means.
FIG. 6 is a cross-sectional side view of the same laminating means during laminating.
FIG. 7 is a flowchart showing the steps of the crosslink density measurement / adjustment system according to this embodiment.
FIG. 8 is a cross-sectional view showing a state in which the cross-link density measuring sheet is sandwiched between the transparent substrate and the back material of the DUT in this embodiment.
FIG. 9 is a cross-sectional view showing a state in which the transparent substrate and the back material are separated from the cross-link density measurement sheet after the lamination process of the DUT in this embodiment.
FIG. 10 is a diagram schematically showing a state in which a reference point and a comparison point are selected and a measurement piece is acquired in the crosslink density measurement sheet in this embodiment.
1A・・・被試験体
1B1・・・仮想ブロック(基準地点)
1B2,1B6,1B31,1B35・・・仮想ブロック(比較地点)
10・・・太陽電池モジュール(ラミネート加工製品)
11・・・透明基板(第一の基板)
12・・・裏面材(第二の基板)
13,14・・・充填材(内容物)
15・・・ストリング(内容物)
100・・・ラミネート加工手段
400・・・架橋密度測定用シート取得手段
500・・・架橋密度測定手段
600・・・架橋密度分析手段
700・・・ラミネート加工条件設定手段 DESCRIPTION OF SYMBOLS 1 ... Sheet | seat for bridge | crosslinking
1B 2 , 1B 6 , 1B 31 , 1B 35 ... Virtual block (comparison point)
10 ... Solar cell module (laminated product)
11 ... Transparent substrate (first substrate)
12 ... Back material (second substrate)
13, 14 ... Filler (contents)
15 ... String (contents)
DESCRIPTION OF
<1>ラミネート加工製品
まず、この実施の形態において対象とする、ラミネート加工製品としての太陽電池モジュールと、架橋密度の測定に用いられる被試験体とについて説明する。
図1は、この実施の形態における、結晶系セルを使用した、「ラミネート加工製品」としての太陽電池モジュールの一構成例を示す断面図である。この太陽電池モジュール10は、この実施の形態の測定・調整システム(後述)を構成するラミネート加工手段(後述)において製造されるものである。太陽電池モジュール10は、「第一の基板」としての透明基板11、及び透明基板11に対向して配設される「第二の基板」としての裏面材12を備える。透明基板11と裏面材12との間には、「内容物」としての、充填材13,14、ストリング15が封止されている。充填材13、14にはEVA(エチレンビニルアセテート)樹脂や、PVB(ポリビニルブチラール)樹脂等が使用される。ストリング15は、電極16、17の間に結晶系セルとしての太陽電池セル18をリード線19を介して接続した構成である。
<2>被試験体
一方、図2の(a)は、この実施の形態における、被試験体1Aの構成を示す断面図である。この被試験体1Aは、この実施の形態の測定・調整システム(後述)を構成するラミネート加工手段(後述)における架橋密度の測定に用いられるものである。被試験体1Aは、図1に示す太陽電池モジュール10と同じく、透明基板11、及び透明基板11に対向して配設される裏面材12を備える。そして、透明基板11と裏面材12とで架橋密度測定用シート1を挟み込んで、それら透明基板11、架橋密度測定用シート1、裏面材12を積層させた構成である。
<3>架橋密度測定用シート
一方、図2の(b)は、この実施の形態における架橋密度測定用シート1の構成を示す断面図である。この架橋密度測定用シート1は、支持体2上に、架橋密度が0.1×10−4~10×10−4mol/ccであるゴムシート層3を有する構成で、板状を呈する。支持体2としては、温度分布調査温度において形状を維持できる耐熱性、耐強度を有するシート基材であればいずれの素材を用いることもできる。例えば、プラスチックシート、紙、合成紙、不織布、金属シート等を用いることが考えられる。一方、ゴムシート層3としては、cis−イソポリプロピレンを主成分とする天然ゴムやアクリルゴム(ACM)、ニトリルゴム(NBR)、イソプレンゴム(IR)、ウレタンゴム(U)、エチレンプロピレンゴム(ECM,EPDM)、エピクロルヒドリンゴム(CO,ECO)、クロロプレンゴム(CR)、シリコーンゴム(Q)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、フッ素ゴム(FKM)、ブチルゴム(IIR)等の合成ゴムを用いることができる。また、ゴムシート層3はゴム成分が主成分となっていればよく、他の樹脂組成物と混練、共重合化されていればよい。
また、架橋密度測定用シート1の厚さは、太陽電池モジュール10の充填材13、14及びストリング15の箇所の厚さとほぼ等しくなるように形成されている。即ち、この実施の形態においては、架橋密度測定用シート1の厚さは約1mmに形成されている。ただし、2~3mm程度の厚さに形成されていてもよい。
また、架橋密度測定用シート1の架橋密度は、太陽電池モジュール10の充填材13,14と同等であり、ラミネート加工手段におけるラミネート処理において充填材13,14とほぼ同様の架橋密度となるように形成されていることが望ましい。具体的には、0.1×10−4~10×10−4mol/ccの架橋密度であることが望ましい。
更に、架橋密度測定用シート1の支持体2及びゴムシート層3のいずれにも、この架橋密度測定用シート1の架橋反応によっても、架橋密度測定用シート1が透明基板11及び裏面材12のいずれとも接着しない材質で形成されていることが望ましい。即ち、一般に太陽電池モジュール10の充填材13、14に充填されているシランカップリング材のようなフィラーは、架橋密度測定用シート1には配合されていないことが望ましい。
<4>本実施形態の架橋密度の測定・調整システム(被試験体の架橋密度の測定装置、および被試験体の架橋密度の調整装置)の構成
図3は、この実施の形態の架橋密度の測定・調整システム100Aの機能ブロック図である。同図に示す通り、この実施の形態の架橋密度の測定・調整システム100Aは、ラミネート加工手段100、架橋密度測定用シート取得手段400、架橋密度測定手段500、架橋密度分析手段600、ラミネート加工条件設定手段700を備えている。
なお、本発明の被試験体の架橋密度の測定装置は、ラミネート加工手段100、架橋密度測定用シート取得手段400、架橋密度測定手段500の構成によって実現される。また、本発明の被試験体の架橋密度の調整装置は、ラミネート加工手段100、架橋密度測定用シート取得手段400、架橋密度測定手段500、架橋密度分析手段600、ラミネート加工条件設定手段700の構成によって実現される。
<4−1−1>ラミネート加工手段
ラミネート加工手段100は、太陽電池モジュール製造用のラミネート装置を使用することができる。ラミネート加工手段100は、太陽電池モジュール10や、被試験体1Aに対するラミネート処理に用いられる。ラミネート加工手段100の具体的構成については後述する。
<4−1−2>ラミネート加工手段の構成詳細
図4は、この実施の形態に係るラミネート加工手段100の全体の構成を示す図である。ラミネート加工手段100は、上ケース110と、下ケース120と、搬送ベルト130とを有する。搬送ベルト130は、ラミネート処理が施される前の被試験体1Aや、ラミネート処理が施される前の太陽電池モジュール10を上ケース110と下ケース120との間に搬送する。ラミネート加工手段100には、ラミネート処理が施される前の被試験体1Aや太陽電池モジュール10をラミネート加工手段100に搬送するための搬入コンベア200が設けられている。また、ラミネート加工手段100には、ラミネート後の被試験体1Aや太陽電池モジュール10をラミネート加工手段100から搬出するための搬出コンベア300が設けられている。搬入コンベア200と搬出コンベア300とは連設されている。被試験体1Aや太陽電池モジュール10は、搬入コンベア200から搬送ベルト130に受け渡され、搬送ベルト130から搬出コンベア300に受け渡される。また、ラミネート加工手段100には、上ケース110を水平状態に維持したまま下ケース120に対して昇降させる昇降装置(図示せず)が設けられている。
図5は、ラミネート加工手段100において被試験体1Aや太陽電池モジュール10をラミネートするラミネート部101の側断面図である。図6は、ラミネート加工手段100のラミネート処理時における側断面図である。
上ケース110には、下方向に開口された空間が形成されている。この空間には、空間を水平に仕切るようにダイヤフラム112が設けられている。ダイヤフラム112は、シリコーン系のゴム等の耐熱性のあるゴムにより成形されている。上ケース110内には、ダイヤフラム112によって仕切られた空間(上チャンバ113)が形成される。
また、上ケース110の上面には、上チャンバ113と連通し、上チャンバ113内の吸排気に用いられる吸排気口114が設けられている。
下ケース120には、上方向に開口された空間(下チャンバ121)が形成されている。この空間には、熱板122(パネル状のヒータ)が設けられている。熱板122は、下ケース120の底面に立設された支持部材によって、水平状態を保つように支持されている。この場合に、熱板122は、その表面が下チャンバ121の開口面とほぼ同一高さになるように支持される。
また、下ケース120の下面には、下チャンバ121と連通し下チャンバ121内の吸排気に用いられる吸排気口123が設けられている。
上ケース110と下ケース120との間であって、熱板122の上方には、搬送ベルト130が移動自在に設けられている。搬送ベルト130は、図2の搬入コンベア200からラミネート処理前の被試験体1Aや太陽電池モジュール10を受け取ってラミネート部101の中央位置、すなわち熱板122の中央部に正確に搬送する。また、搬送ベルト130は、ラミネート処理後の被試験体1Aや太陽電池モジュール10を図4の搬出コンベア300に受け渡す。
また、上ケース110と下ケース120との間であって、搬送ベルト130の上方には、溶融した充填材がダイヤフラムに付着することを防止する剥離シート140が設けられている。
<4−2>架橋密度測定用シート取得手段
図3に示す架橋密度測定用シート取得手段400は、ラミネート処理が完了した被試験体1Aをラミネート加工手段から取り出して、この被試験体を形成する透明基板11及び裏面材12を架橋密度測定用シート1から剥離させて架橋密度測定用シート1を取り出す。
架橋密度測定用シート取得手段400は、ラミネート加工手段100においてラミネート処理が施された、架橋密度の測定のために用いられる被試験体1Aから架橋密度測定用シート1を取り出すために必要な構成が設けられている。例えば、被試験体1Aの透明基板11及び裏面材12をそれぞれ引き離すと共に架橋密度測定用シート1を透明基板11及び裏面材12の間から抜き取るための機構や、当該機構を動作させるための制御手段やアクチュエータ等が設けられている。
<4−3>架橋密度測定手段
図3に示す架橋密度測定手段500は、架橋密度測定用シート取得手段400によって取り出された架橋密度測定用シート1において一の基準地点と少なくとも一の比較地点とを選定して基準地点と比較地点との架橋密度を測定する。
架橋密度測定手段500は、架橋密度測定用シート1の場所ごとの架橋密度を測定するために必要な構成が設けられている。具体的には、架橋密度測定用シート1上における架橋密度を測定する位置を特定するための画像処理機構等が設けられている。
<4−4>架橋密度分析手段,<4−5>ラミネート加工条件設定手段
図3に示す架橋密度分析手段600は、架橋密度測定手段500において測定された、基準地点の架橋密度に対する比較地点の架橋密度の割合が所定の許容範囲内か否かを判定する。
ラミネート加工条件設定手段700は、架橋密度分析手段600によって判定された割合を取得し、この割合が所定の許容範囲内でない場合には、ラミネート処理の所定の条件を調整することで上記割合が所定の許容範囲内になるように調整する。
図3に示す架橋密度分析手段600、及びラミネート加工条件設定手段700は、それぞれ少なくとも一つのCPUを備え、各種データの処理や値の算出を行う。具体的には、架橋密度分析手段600は、架橋密度測定手段500の測定で得た複数の測定値から、一の基準地点と、比較地点とをそれぞれ選定すると共に基準地点の架橋密度と比較地点の架橋密度との割合を算出する。ラミネート加工条件設定手段700は、架橋密度分析手段が算出したそれぞれの値に基づいて、ラミネート加工手段100の加熱条件の調整を行う。
<5>本実施形態の架橋密度の測定・調整システムの工程フロー
次に、この実施の形態の工程について説明する。図7は、この実施の形態の架橋密度の測定・調整システム100Aの工程を示すフローチャートである。以下、このフローチャートを用いて架橋密度の測定・調整システム100Aの工程を説明する。
<ステップS1>
まず、架橋密度の測定・調整システム100Aの利用者は、図2に示す、透明基板11と裏面材12と架橋密度測定用シート1を揃え、これらを用いて、図8に示す、透明基板11と裏面材12とで架橋密度測定用シート1を挟み込んだ被試験体1Aを用意する(ステップS1)。
<ステップS2>
次に、用意した被試験体1Aはラミネート加工手段100の搬入コンベア200上に載置される。被試験体1Aは搬入コンベア200から搬送ベルト130上に受け渡される。これにより、搬送ベルト130は、図5に示す通り、被試験体1Aをラミネート部101の中央位置に搬送し、当該位置に配設する(ステップS2)。なお、架橋密度の測定・調整システム100Aは、搬入コンベア200を使用せず、被試験体1Aがラミネート部101に直接配設されるように構成されてもよい。この状態で、昇降装置は上ケース110を下降させる。これにより、図6に示すように、上ケース110と下ケース120との内部にて上チャンバ113及び下チャンバ121は、それぞれ密閉状態に保たれる。
<ステップS3>
次に、ラミネート加工手段100は、被試験体1Aに対し、ラミネート処理を行う(ステップS3)。具体的には、上ケース110の吸排気口114を介して、上チャンバ113内の真空引きを行う。同様に、ラミネート加工手段100は、下ケース120の吸排気口123を介して、下チャンバ121内の真空引きを行う。
被試験体1A及び被試験体1Aの内部に含まれる架橋密度測定用シート1は、熱板122を構成する各ヒータモジュールによって加熱処理され、架橋密度測定用シート1は当該ラミネート処理によって架橋反応を呈する。
次に、ラミネート加工手段100は、下チャンバ121の真空状態を保ったまま、上ケース110の吸排気口114を介して、上チャンバ113に大気を導入する。これにより、上チャンバ113と下チャンバ121との間に気圧差が生じてダイヤフラム112が下方に押し出され、被試験体1Aは、下方に押し出されたダイヤフラム112と、熱板122とで挟圧される。
ラミネート処理が終了した後、ラミネート加工手段100は、下ケース120の吸排気口123を介して、下チャンバ121に大気を導入する。このとき、昇降装置は、上ケース110を上昇させ、搬送ベルト130は、ラミネート処理後の被試験体1Aを搬出コンベア300に受け渡す。なお、架橋密度の測定・調整システム100Aは、搬出コンベア300を使用せず、被試験体1Aがラミネート部101から直接取り出されるように構成されてもよい。
<ステップS4>
そして、架橋密度測定用シート取得手段400は、搬出コンベア300上の被試験体1Aからラミネート処理後の架橋密度測定用シート1を取り出す(ステップS4)。即ち、架橋密度測定用シート取得手段400は、図9に示すように、被試験体1Aの透明基板11及び裏面材12をそれぞれ引き離して架橋密度測定用シート1から剥離させ、架橋密度測定用シート1を透明基板11及び裏面材12の間から抜き取って取り出す。架橋密度測定用シート1はラミネート処理によって架橋反応を呈しているが、架橋反応によって透明基板11及び裏面材12のいずれとも接着が生じないので、透明基板11及び裏面材12はそれぞれ架橋密度測定用シート1から容易に引き離すことができ、被試験体1Aを破壊することなく、架橋反応を呈した架橋密度測定用シート1だけを容易に取り出すことができる。
<ステップS5>
そして、架橋密度測定手段500は、取り出された架橋密度測定用シート1において基準地点と比較地点とを選定し、これら基準地点と比較地点との架橋密度を測定する(ステップS5)。
<ステップS5の具体的実施態様>
図10は、架橋密度測定用シート1において基準地点と比較地点とを選定し、測定片を取得する状態を模式的に示した図である。具体的には、同図に示すように、架橋密度測定用シート1上にn個(n≧1,図10ではn=35)の仮想ブロック1B1,1B2,1B3,・・・1Bnを設定し、特定の仮想ブロック(図10では、架橋密度測定用シート1の四隅にあたる仮想ブロック1B2,1B6,1Bn−4,1Bn、及び略中央部にあたる仮想ブロック1B1)について架橋密度を測定する。以下、図10に示す、n=35の場合を例にして説明する。
この実施の形態においては、架橋密度を測定する仮想ブロック1B2,1B6,1B31,1B35、及び中央にあたる仮想ブロック1B1のうち、一の仮想ブロックを基準地点とし、他の少なくとも一の仮想ブロックを比較地点として架橋密度の分析を行う。従って、架橋密度測定用シート1の架橋密度を測定する際に基準となる箇所を含む一の仮想ブロックを基準地点とし、基準地点との関係で架橋密度の調整を図りたい箇所を含む一又は複数の仮想ブロックを比較地点とすることが望ましい。
そして、この実施の形態においては、基準地点は架橋密度測定用シート1の略中央部である仮想ブロック1B1とし、比較地点は架橋密度測定用シート1の四隅にあたる仮想ブロック1B2,1B6,1B31,1B35として選定している。このような選定を行ったのは、太陽電池モジュール10を製造する際、略中央部は架橋密度が最も高くなり易い箇所であり、四隅を含む周辺部は架橋密度が最も低くなり易い箇所であるためである。即ち、架橋密度測定用シート1の略中央部を基準に周辺部の架橋密度の調整を図ることは、太陽電池モジュール10を製造する際に生ずる架橋密度のバラツキを低減させるために効果的である。
ただし、基準地点、比較地点の選定は上記の態様には限られず、太陽電池モジュール10を製造する際に生ずる架橋密度のバラツキを容易に低減させることができることができる箇所であれば、いかなる箇所を基準地点及び比較地点として選定してもよい。即ち、基準地点の仮想ブロック1B1は、架橋密度測定用シート1の略中央部以外の箇所、例えば図10における、左上の仮想ブロック1B2の位置であってもよく、比較地点は架橋密度測定用シート1の周辺部分以外の箇所、例えば架橋密度測定用シート1の略中央部である、図10における仮想ブロック1B1の位置等であってもよい。
更に、この実施の形態において比較地点は仮想ブロック1B2,1B6,1B31,1B35の4点としたが、4点より多くても少なくてもよい。
この実施の形態においては、周知の膨潤法によって基準地点及び比較地点の架橋密度の測定を行う。そのため、架橋密度測定手段500は、図10に示す通り、基準地点の仮想ブロック1B1の略中央、及び比較地点の仮想ブロック1B2,1B6,1B31,1B35の略中央から適度な大きさ、例えば1センチメートル角程度の測定片1C1,1C2,1C6,1C31,1C35をそれぞれ切り出す。そして、これらの測定片1C1,1C2,1C6,1C31,1C35について、それぞれ周知の膨潤試験を行い、架橋密度を測定する。
なお、架橋密度測定手段500は、膨潤法以外のいかなる測定方法で架橋密度の測定を行ってもよい。例えば、架橋密度測定手段500が周知のパルスNMR法(日本ゴム協会誌:VOL78,255(2005),岩蕗仁,永田員也etc.)等を用いて架橋密度の測定を行うこと等も想定される。充填材13、14がEVA樹脂で形成されている場合は、架橋反応によって充填材13、14が結晶化してしまうためパルスNMR法による測定はできないが、この実施の形態の架橋密度測定用シート1は、結晶を持っていないので、パルスNMR法による測定が可能となる。なお、パルスNMR法による測定の場合、架橋密度測定用シート1を透明基板11と裏面材12との間から取り出した状態のままで測定ができるので、測定片1C1,1C2,1C6,1C31,1C35をそれぞれ切り出すことなく測定ができて、測定作業の簡素化を図ることができる。
<ステップS6>
次に、架橋密度分析手段600は、架橋密度測定手段500において測定された、基準地点の架橋密度に対する比較地点の架橋密度の割合が、所定の許容範囲内か否かを判定する(ステップS6)。
<ステップS6の具体的実施態様>
ここで、充填材13、14の架橋密度は、低すぎると太陽電池モジュール10を屋外で使用している際に充填材13、14の内部に水が侵入してストリング15が腐食するような事態を招きやすくなり、一方で高すぎると充填材13、14がもろくなって破損し易くなる。そのため、充填材13、14の架橋密度が低すぎず、かつ高すぎない所定の範囲が製品の品質を確保するために必要な許容範囲であり、架橋密度分析手段600は、かかる架橋密度がこの許容範囲になるような調整を行う。
具体的には、架橋密度分析手段600は、以下の式(1)に基づいて基準地点の仮想ブロック1B1、及び比較地点の仮想ブロック1B2,1B6,1B31,1B35の架橋密度の判定を行う。
Pxy=Bxy/A ・・・(1)
ここで、Pxy:架橋度合、Bxy:場所毎の架橋密度、x:架橋時間、y:太陽電池モジュール10の位置情報(ここでは仮想ブロック1B1~1B35の通し番号1~35)、A:架橋密度測定用シート1を理想的に架橋した状態(例えばEPDMコンパウンドを用いて所定時間、所定温度、所定圧力でラミネート処理を行った状態)での架橋密度
そして、架橋密度分析手段600は、下記の式(2)及び式(3)の条件を満たすか否かによって、所定の許容範囲内か否かを判定する。
式(2)について以下説明する。
C≦Pxy≦D・・・(2)
式(2)は、それぞれの仮想ブロック1B1,1B2,1B6,1B31,1B35の架橋度合が所定の許容範囲内か否かを判定する式である。ここで数値C,Dは、太陽電池モジュール10の充填材13,14に要求される架橋密度により適宜決定される。
式(3)について説明する。
{(各比較地点の架橋密度)/(基準地点の架橋密度)}≧E・・・(3)
式(3)は、基準地点の仮想ブロック1B1の架橋密度と、それぞれの比較地点の仮想ブロック1B2,1B6,1B31,1B35の架橋密度との差異が所定の許容範囲か否かを判定する式である。すなわち架橋密度の場所ムラの程度を示している。ここで数値Eは、0.8に設定することが好ましいが、太陽電池モジュール10に要求される架橋密度により適宜増減させてもよい。
<ステップS7→ステップS9>
そして、上記(2)及び(3)が全て許容範囲内である場合(ステップS7の“Yes”)、ラミネート加工条件設定手段700は、ラミネート加工手段100の設定を変更することなく、太陽電池モジュール10の製造を行わせる(ステップS9)。
<ステップS7→ステップS8>
一方、上記(2)及び(3)に許容範囲内ではないものが含まれる場合(ステップS7の“No”)、ラミネート加工条件設定手段700は、ラミネート加工手段100のラミネート処理の条件を調整する(ステップS8)。具体的には、例えば、上記(2)の条件を満たさなかった比較地点の仮想ブロックのラミネート処理における圧力、温度、処理時間のうち少なくとも何れか一つの設定(特に温度や時間)の設定が変更される。ラミネート加工条件設定手段700は、ステップS8の調整結果のデータをラミネート加工手段100の制御手段(図示せず)に送り、制御手段(図示せず)のプログラム等の設定を変更させる。
ステップS8の処理の後、ステップS1に戻り、以降の処理が、ステップS7の判定が“Yes”となるまで続けられる。
<6.この実施形態における効果>
以上、この実施の形態においては、被試験体1Aの複数の箇所について架橋密度の測定を行い、それら複数の箇所同士の相対的な架橋密度の比較対照を容易に行うことができる。また、この実施の形態においては、現実の太陽電池モジュール10の充填材13、14と同様の架橋反応を得ると共に、架橋反応を起こさせた架橋密度測定用シート1を透明基板11及び裏面材12を破壊することなく容易に剥がして取り出すことができる。これにより、太陽電池モジュール10のラミネート処理における架橋密度の測定を格段に容易にしかも精度良く行うことができ、かつ、架橋密度の解析を迅速に行うことができて、高品質の太陽電池モジュール10の生産ラインの起ち上げを迅速に行うことができる。
<7.この実施形態の変形例>
なお、この実施の形態においては、結晶系セルを利用した太陽電池モジュール10における架橋密度の測定及び調整を対象としたが、これに限らず、いわゆる薄膜系太陽電池モジュールにおける充填材の架橋密度の測定及び調整を対象とすることもできる。
この実施の形態においては、太陽電池モジュール10における架橋密度の測定及び調整を対象としたが、太陽電池モジュール10以外のあらゆるラミネート加工製品における架橋密度の測定及び調整にもこの実施の形態を適用できる。
この実施の形態においては、架橋密度測定用シート取得手段400、架橋密度測定手段500、架橋密度分析手段600,ラミネート加工条件設定手段700を全て自動制御されるものとしたが、これらのうち一部又は全部を架橋密度の測定・調整システム100Aの利用者が手動で行う構成としてもよい。
上記実施の形態は本発明の例示であり、本発明が上記実施の形態のみに限定されることを意味するものではないことは、いうまでもない。 An embodiment of the present invention will be described with reference to FIGS.
<1> Laminated Product First, a solar cell module as a laminated product, which is a target in this embodiment, and a specimen to be used for measurement of crosslink density will be described.
FIG. 1 is a cross-sectional view showing a configuration example of a solar cell module as a “laminated product” using a crystal cell in this embodiment. This
<2> DUT On the other hand, FIG. 2A is a cross-sectional view showing the configuration of the
<3> Crosslinking Density Measurement Sheet On the other hand, FIG. 2B is a cross-sectional view showing the configuration of the crosslinking
In addition, the thickness of the crosslink
Further, the crosslink density of the crosslink
Further, the crosslinking
<4> Configuration of Crosslink Density Measurement / Adjustment System of the Present Embodiment (Measurement Device for Crosslink Density of Specimen and Adjuster for Crosslink Density of Specimen) FIG. It is a functional block diagram of the measurement /
The apparatus for measuring the crosslink density of the test object of the present invention is realized by the configuration of the laminating means 100, the crosslink density measuring sheet obtaining means 400, and the crosslink density measuring means 500. The apparatus for adjusting the crosslink density of the object to be tested according to the present invention includes the
<4-1-1> Laminating means The laminating means 100 can use a laminating apparatus for manufacturing a solar cell module. The laminating means 100 is used for laminating the
<4-1-2> Detailed Configuration of Laminating Unit FIG. 4 is a diagram showing the entire configuration of the
FIG. 5 is a side cross-sectional view of the
The
In addition, on the upper surface of the
In the
An intake /
A
A
<4-2> Crosslinking Density Measurement Sheet Acquisition Unit The crosslink density measurement
The cross-linking density measurement
<4-3> Crosslinking Density Measuring Means Crosslinking density measuring means 500 shown in FIG. 3 includes one reference point and at least one comparison point in the crosslink
The crosslink density measuring means 500 is provided with a configuration necessary for measuring the crosslink density for each location of the crosslink
<4-4> Crosslinking density analyzing means, <4-5> Laminating processing condition setting means The crosslinking density analyzing means 600 shown in FIG. It is determined whether the crosslink density ratio is within a predetermined tolerance.
The laminating processing
Each of the crosslinking density analysis means 600 and the lamination processing condition setting means 700 shown in FIG. 3 includes at least one CPU, and processes various data and calculates values. Specifically, the crosslink
<5> Process Flow of Crosslink Density Measurement / Adjustment System of This Embodiment Next, the process of this embodiment will be described. FIG. 7 is a flowchart showing the steps of the crosslink density measurement /
<Step S1>
First, the user of the crosslink density measuring /
<Step S2>
Next, the
<Step S3>
Next, the laminating means 100 performs a laminating process on the
The
Next, the laminating means 100 introduces the atmosphere into the
After the laminating process is completed, the laminating means 100 introduces air into the
<Step S4>
Then, the crosslink density measurement sheet acquisition means 400 takes out the crosslink
<Step S5>
Then, the crosslink density measuring means 500 selects the reference point and the comparison point in the taken out crosslink
<Specific Embodiment of Step S5>
FIG. 10 is a diagram schematically showing a state in which a reference point and a comparison point are selected in the crosslink
In this embodiment, among the virtual blocks 1B 2 , 1B 6 , 1B 31 , 1B 35 for measuring the crosslink density and the virtual block 1B 1 in the center, one virtual block is used as a reference point, and at least one other The crosslink density is analyzed using the virtual block as a comparison point. Accordingly, one virtual block including a reference point when the crosslink density of the crosslink
In this embodiment, the reference point is the virtual block 1B 1 that is substantially the center of the crosslink
However, the selection of the reference point and the comparison point is not limited to the above-described aspect, and any point can be used as long as it can easily reduce the variation in the cross-linking density that occurs when the
Further, in this embodiment, the comparison points are the four points of the virtual blocks 1B 2 , 1B 6 , 1B 31 and 1B 35 , but may be more or less than four points.
In this embodiment, the crosslink density at the reference point and the comparison point is measured by a well-known swelling method. Therefore, as shown in FIG. 10, the crosslink density measuring means 500 has an appropriate size from the approximate center of the virtual block 1B 1 at the reference point and from the approximate center of the virtual blocks 1B 2 , 1B 6 , 1B 31 , 1B 35 at the comparison points. For example, measurement pieces 1C 1 , 1C 2 , 1C 6 , 1C 31 , 1C 35 of about 1 cm square are cut out. Then, for each of these measurement pieces 1C 1 , 1C 2 , 1C 6 , 1C 31 , 1C 35 , a well-known swelling test is performed to measure the crosslink density.
The crosslink density measuring means 500 may measure the crosslink density by any measurement method other than the swelling method. For example, it is assumed that the crosslink density measuring means 500 measures the crosslink density by using a well-known pulse NMR method (Journal of the Japan Rubber Association: VOL78, 255 (2005), Hitoshi Iwasaki, Junya Nagata etc.). Is done. When the
<Step S6>
Next, the crosslink density analyzing means 600 determines whether or not the ratio of the crosslink density at the comparison point to the crosslink density at the reference point measured by the crosslink density measuring means 500 is within a predetermined allowable range (step S6). .
<Specific Embodiment of Step S6>
Here, when the crosslinking density of the
Specifically, the crosslink density analyzing means 600 calculates the crosslink density of the virtual block 1B 1 of the reference point and the virtual blocks 1B 2 , 1B 6 , 1B 31 , 1B 35 of the comparison point based on the following formula (1). Make a decision.
Pxy = Bxy / A (1)
Here, Pxy: degree of cross-linking, Bxy: cross-linking density at each location, x: cross-linking time, y: position information of solar cell module 10 (here,
Equation (2) will be described below.
C ≦ Pxy ≦ D (2)
Expression (2) is an expression for determining whether or not the degree of cross-linking of each of the virtual blocks 1B 1 , 1B 2 , 1B 6 , 1B 31 , 1B 35 is within a predetermined allowable range. Here, the numerical values C and D are appropriately determined depending on the crosslinking density required for the
Formula (3) is demonstrated.
{(Bridge density at each comparison point) / (Bridge density at the reference point)} ≧ E (3)
Equation (3) indicates whether or not the difference between the bridge density of the virtual block 1B 1 at the reference point and the bridge density of the virtual blocks 1B 2 , 1B 6 , 1B 31 , 1B 35 at the respective comparison points is within a predetermined allowable range. Is an expression for determining That is, it indicates the degree of unevenness of the crosslink density. Here, the numerical value E is preferably set to 0.8, but may be appropriately increased or decreased depending on the crosslinking density required for the
<Step S7 → Step S9>
And when said (2) and (3) are all within a tolerance | permissible range ("Yes" of step S7), the lamination process condition setting means 700 does not change the setting of the lamination process means 100, and is a solar cell module. 10 is manufactured (step S9).
<Step S7 → Step S8>
On the other hand, when the above (2) and (3) include those that are not within the allowable range (“No” in step S7), the laminating process
After the process in step S8, the process returns to step S1, and the subsequent processes are continued until the determination in step S7 becomes “Yes”.
<6. Effects in this embodiment>
As described above, in this embodiment, it is possible to easily measure the crosslink density for a plurality of locations on the
<7. Modification of this embodiment>
In this embodiment, the measurement and adjustment of the crosslink density in the
In this embodiment, the measurement and adjustment of the crosslink density in the
In this embodiment, the crosslink density measurement
The above embodiment is an exemplification of the present invention, and it is needless to say that the present invention is not limited to the above embodiment.
Claims (10)
- 第一の基板、及び前記第一の基板に対向して配設される第二の基板によって板状の架橋密度測定用シートを挟み込んでそれらを積層させた被試験体を用意する工程と、
前記被試験体をラミネート加工手段に配設し、前記被試験体に対し、前記ラミネート加工手段の少なくとも一部を真空状態にして加熱処理及び加圧処理を行うラミネート処理を施す工程と、
前記ラミネート処理が完了した前記被試験体を前記ラミネート加工手段から取り出して、前記第一の基板及び前記第二の基板を前記架橋密度測定用シートから剥離させて前記架橋密度測定用シートを取り出す工程と、
前記取り出された前記架橋密度測定用シートにおいて一の基準地点と少なくとも一の比較地点とを選定して前記基準地点と前記比較地点との架橋密度を測定する工程とを備え、
前記架橋密度測定用シートは前記ラミネート処理によって架橋反応を呈すると共に前記架橋反応によって前記第一の基板及び前記第二の基板のいずれとも接着が生じない構成を有していることを特徴とする被試験体の架橋密度の測定方法。 Preparing a test object in which a plate-like cross-linking density measuring sheet is sandwiched and laminated by a first substrate and a second substrate disposed to face the first substrate;
Providing the test object with a laminating means, and subjecting the test object to a laminating process in which at least a part of the laminating means is subjected to a heat treatment and a pressure treatment in a vacuum state;
The step of taking out the object to be tested from which the laminating process has been completed from the laminating means, peeling the first substrate and the second substrate from the crosslink density measuring sheet, and taking out the crosslink density measuring sheet. When,
Selecting one reference point and at least one comparison point in the taken out crosslink density measurement sheet, and measuring the crosslink density between the reference point and the comparison point,
The cross-linking density measuring sheet has a configuration in which a cross-linking reaction is caused by the laminating process and no adhesion occurs to either the first substrate or the second substrate by the cross-linking reaction. A method for measuring the crosslink density of a test specimen. - 前記基準地点の架橋密度に対する前記比較地点の架橋密度の割合が所定の許容範囲内か否かを判定する工程を備えたことを特徴とする請求項1に記載の被試験体の架橋密度の測定方法。 The measurement of the crosslink density of the test object according to claim 1, further comprising a step of determining whether a ratio of the crosslink density at the comparison point to the crosslink density at the reference point is within a predetermined allowable range. Method.
- 前記基準地点は、前記架橋密度測定用シートの略中央部であることを特徴とする請求項1又は2に記載の被試験体の架橋密度の測定方法。 3. The method for measuring a crosslink density of a test object according to claim 1 or 2, wherein the reference point is a substantially central portion of the crosslink density measurement sheet.
- 前記所定の許容範囲とは、特定の割合以上であることを特徴とする請求項2又は3に記載の被試験体の架橋密度の測定方法。 4. The method for measuring the crosslink density of a test object according to claim 2 or 3, wherein the predetermined allowable range is a specific ratio or more.
- 前記ラミネート加工手段は太陽電池モジュール製造用のラミネート装置であることを特徴とする請求項1乃至4の何れか一つに記載の被試験体の架橋密度の測定方法。 5. The method for measuring the crosslink density of a test object according to any one of claims 1 to 4, wherein the laminating means is a laminating apparatus for producing a solar cell module.
- 請求項2乃至5の何れか一つに記載の被試験体の架橋密度の測定方法によって得られた前記基準地点の架橋密度に対する前記比較地点の架橋密度の前記割合を取得し、前記割合が所定の許容範囲内でない場合には、前記被試験体に対する、ラミネート加工手段の少なくとも一部を真空状態にして加熱処理及び加圧処理を行うラミネート処理の所定の条件を調整することで、前記割合が前記所定の許容範囲内になるように調整する工程を備えたことを特徴とする被試験体の架橋密度の条件設定方法。 The ratio of the crosslink density at the comparison point to the crosslink density at the reference point obtained by the method for measuring the crosslink density of the test object according to any one of claims 2 to 5 is acquired, and the ratio is predetermined. When the ratio is not within the allowable range, the ratio is adjusted by adjusting a predetermined condition of the laminating process in which at least a part of the laminating unit is subjected to a heat treatment and a pressurizing process with a vacuum state for the specimen. A method for setting a condition for the cross-linking density of a test object, comprising a step of adjusting so as to be within the predetermined allowable range.
- 前記所定の条件は、前記ラミネート加工手段における前記ラミネート処理の温度、圧力、処理時間のうちの少なくとも何れか一つであることを特徴とする請求項6に記載の被試験体の架橋密度の条件設定方法。 The condition for the cross-linking density of the test object according to claim 6, wherein the predetermined condition is at least one of temperature, pressure, and processing time of the laminating process in the laminating means. Setting method.
- 第一の基板、及び前記第一の基板に対向して配設される第二の基板によって、充填材を含むラミネート加工製品の内容物を封止して積層させたラミネート加工製品に対し、ラミネート加工手段の少なくとも一部を真空状態にして加熱処理及び加圧処理を行うラミネート処理を施す、ラミネート加工製品のラミネート処理方法であって、
請求項1乃至5の何れか一つに記載の被試験体の架橋密度の測定方法による測定工程と、
請求項6又は7に記載の被試験体の架橋密度の条件設定方法による条件設定工程と、
前記条件設定工程によって調整がされた前記架橋密度で前記ラミネート処理が行えるようにラミネート加工手段の条件設定を調整する工程と、
前記調整がされた前記ラミネート加工手段によって前記ラミネート加工製品の前記ラミネート処理を行う工程とを備え、
前記架橋密度測定用シートは前記ラミネート処理によって架橋反応を呈すると共に前記架橋反応によって前記第一の基板及び前記第二の基板のいずれとも接着が生じない構成を有していることを特徴とするラミネート加工製品のラミネート処理方法。 Lamination is performed on a laminated product obtained by sealing and laminating the contents of a laminated product containing a filler by the first substrate and the second substrate disposed opposite to the first substrate. A laminating method for a laminated product, in which at least a part of the processing means is subjected to a laminating process in which a heat treatment and a pressurizing process are performed in a vacuum state,
A measuring step by a method for measuring the crosslink density of the test object according to any one of claims 1 to 5,
A condition setting step by a condition setting method for the crosslink density of the test object according to claim 6 or 7,
Adjusting the condition setting of the laminating means so that the laminating process can be performed at the crosslink density adjusted by the condition setting process;
A step of performing the laminating process of the laminated product by the adjusted laminating means,
The cross-linking density measuring sheet has a structure that exhibits a cross-linking reaction by the laminating process and does not cause any adhesion between the first substrate and the second substrate by the cross-linking reaction. Lamination process for processed products. - 第一の基板と、前記第一の基板に対向して配設される第二の基板とによって板状の架橋密度測定用シートを挟み込んでそれらを積層させた被試験体を用意し、ラミネート加工手段の少なくとも一部を真空状態にして加熱処理及び加圧処理を行うラミネート処理を施した前記被試験体について、架橋密度の測定を行う被試験体の架橋密度の測定装置であって、
前記被試験体について前記ラミネート処理を行うラミネート加工手段と、
前記ラミネート処理が完了した前記被試験体を前記ラミネート加工手段から取り出して、前記第一の基板及び前記第二の基板を前記架橋密度測定用シートから剥離させて前記架橋密度測定用シートを取り出す架橋密度測定用シート取得手段と、
前記架橋密度測定用シート取得手段によって取り出された前記架橋密度測定用シートにおいて一の基準地点と少なくとも一の比較地点とを選定して前記基準地点と前記比較地点との架橋密度を測定する架橋密度測定手段とを備え、
前記架橋密度測定用シートは前記ラミネート処理によって架橋反応を呈すると共に前記架橋反応によって前記第一の基板及び前記第二の基板のいずれとも接着が生じないように構成することを特徴とする被試験体の架橋密度の測定装置。 A specimen to be tested is prepared by sandwiching a plate-like crosslink density measuring sheet between a first substrate and a second substrate disposed opposite to the first substrate, and laminating it. A device for measuring the crosslink density of a test object for measuring a crosslink density for the test object subjected to a laminating process in which at least a part of the means is in a vacuum state and subjected to heat treatment and pressure treatment,
Laminating means for performing the laminating process on the test object;
The cross-linking is performed by taking out the DUT after the laminating process from the laminating means, peeling the first substrate and the second substrate from the cross-linking density measuring sheet, and taking out the cross-linking density measuring sheet. Density acquisition sheet acquisition means;
The crosslink density for measuring the crosslink density between the reference point and the comparison point by selecting one reference point and at least one comparison point in the crosslink density measurement sheet taken out by the crosslink density measuring sheet acquisition means Measuring means,
The cross-link density measuring sheet is configured to exhibit a cross-linking reaction by the laminating process and to prevent adhesion between the first substrate and the second substrate by the cross-linking reaction. For measuring the crosslink density of the resin. - 第一の基板と、前記第一の基板に対向して配設される第二の基板とによって板状の架橋密度測定用シートを挟み込んでそれらを積層させた被試験体を用意し、ラミネート加工手段の少なくとも一部を真空状態にして加熱処理及び加圧処理を行うラミネート処理に用いられる前記ラミネート加工手段において、前記ラミネート処理における被試験体の架橋密度の調整を行う被試験体の架橋密度の調整装置であって、
前記ラミネート加工手段と、
前記ラミネート処理が完了した前記被試験体を前記ラミネート加工手段から取り出して、前記第一の基板及び前記第二の基板を前記架橋密度測定用シートから剥離させて前記架橋密度測定用シートを取り出す架橋密度測定用シート取得手段と、
前記架橋密度測定用シート取得手段によって取り出された前記架橋密度測定用シートにおいて一の基準地点と少なくとも一の比較地点とを選定して前記基準地点と前記比較地点との架橋密度を測定する架橋密度測定手段と、
前記架橋密度測定手段によって測定された、前記基準地点の架橋密度に対する前記比較地点の架橋密度の割合が所定の許容範囲内か否かを判定する架橋密度分析手段と、
前記架橋密度分析手段による判定の結果、前記割合が所定の許容範囲内でない場合には、前記ラミネート処理の所定の条件を調整することで前記割合が前記所定の許容範囲内になるように調整するラミネート加工条件設定手段とを備え、
前記架橋密度測定用シートは前記ラミネート処理によって架橋反応を呈すると共に前記架橋反応によって前記第一の基板及び前記第二の基板のいずれとも接着が生じない構成を有していることを特徴とする被試験体の架橋密度の調整装置。 A specimen to be tested is prepared by sandwiching a plate-like crosslink density measuring sheet between a first substrate and a second substrate disposed opposite to the first substrate, and laminating it. In the laminating means used in the laminating process in which at least a part of the means is in a vacuum state and subjected to the heat treatment and the pressurizing process, the cross-linking density of the test object is adjusted to adjust the cross-linking density of the test object in the laminating process. An adjustment device,
The laminating means;
The cross-linking is performed by taking out the DUT after the laminating process from the laminating means, peeling the first substrate and the second substrate from the cross-linking density measuring sheet, and taking out the cross-linking density measuring sheet. Density acquisition sheet acquisition means;
The crosslink density for measuring the crosslink density between the reference point and the comparison point by selecting one reference point and at least one comparison point in the crosslink density measurement sheet taken out by the crosslink density measuring sheet acquisition means Measuring means;
A crosslink density analyzing means for determining whether a ratio of the crosslink density at the comparison point to the crosslink density at the reference point measured by the crosslink density measuring means is within a predetermined allowable range;
If the ratio is not within a predetermined allowable range as a result of determination by the crosslink density analyzing means, the predetermined ratio of the laminating process is adjusted so that the ratio is within the predetermined allowable range. Laminating condition setting means,
The cross-linking density measuring sheet has a configuration in which a cross-linking reaction is caused by the laminating process and no adhesion occurs to either the first substrate or the second substrate by the cross-linking reaction. A device for adjusting the crosslink density of the specimen.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127019956A KR20130020653A (en) | 2010-03-09 | 2011-03-09 | Method for measuring cross-link density of object to be tested, method for setting conditions of cross-link density of object to be tested, lamination method for laminated product, device for measuring cross-link density of object to be tested, and device for adjusting cross-link density of object to be tested |
CN2011800088924A CN102753332A (en) | 2010-03-09 | 2011-03-09 | Measurement method and condition setting method for cross-linking density of a tested body, laminate treatment method for a laminate plate processing product, measurement device and adjusting device for cross-linking density of a tested body |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010052424A JP2011183710A (en) | 2010-03-09 | 2010-03-09 | Method for measuring crosslinking density of test target, method for setting condition of crosslinking density of test target, method for lamination treatment of lamination processed product, instrument for measuring crosslinking density of test target, and device for adjusting crosslinking density of test target |
JP2010-52424 | 2010-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011111868A1 true WO2011111868A1 (en) | 2011-09-15 |
Family
ID=44563657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/056142 WO2011111868A1 (en) | 2010-03-09 | 2011-03-09 | Method for measuring cross-link density of object to be tested, method for setting conditions of cross-link density of object to be tested, lamination method for laminated product, device for measuring cross-link density of object to be tested, and device for adjusting cross-link density of object to be tested |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2011183710A (en) |
KR (1) | KR20130020653A (en) |
CN (1) | CN102753332A (en) |
TW (1) | TW201202012A (en) |
WO (1) | WO2011111868A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102866159A (en) * | 2012-08-01 | 2013-01-09 | 西北工业大学 | Dyeing stripping method and dyeing stripping device for layer detection of hole forming of composite laminate plates |
CN112834548A (en) * | 2021-01-08 | 2021-05-25 | 上海纽迈电子科技有限公司 | Cross-linking density measuring method and device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104626549B (en) * | 2014-12-08 | 2016-12-07 | 上海小糸车灯有限公司 | Lens quality determining method and device in the car light of ultrasonic bonding |
CN112881662A (en) * | 2021-02-01 | 2021-06-01 | 中策橡胶集团有限公司 | Method for detecting reinforcing degree of filler in rubber and application of filler |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04204364A (en) * | 1990-11-30 | 1992-07-24 | Mazda Motor Corp | Method for inspecting cross-linking degree of reinforcement-added resin |
JPH11216832A (en) * | 1998-02-05 | 1999-08-10 | Canon Inc | Manufacturing of laminate |
JP2003344322A (en) * | 2002-05-29 | 2003-12-03 | Inoac Corp | Method of measuring cross-link density in foam |
JP2007240359A (en) * | 2006-03-09 | 2007-09-20 | Mitsui Chemical Analysis & Consulting Service Inc | Method for measuring cross-link density of cross-linked polymer |
JP2008117926A (en) * | 2006-11-02 | 2008-05-22 | Mitsui Chemicals Inc | Solar battery module manufacturing method and its manufacturing apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100524846C (en) * | 2007-01-26 | 2009-08-05 | 财团法人工业技术研究院 | Translucent type thin-film solar cell module and manufacturing method thereof |
-
2010
- 2010-03-09 JP JP2010052424A patent/JP2011183710A/en not_active Ceased
-
2011
- 2011-03-08 TW TW100107710A patent/TW201202012A/en unknown
- 2011-03-09 CN CN2011800088924A patent/CN102753332A/en active Pending
- 2011-03-09 WO PCT/JP2011/056142 patent/WO2011111868A1/en active Application Filing
- 2011-03-09 KR KR1020127019956A patent/KR20130020653A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04204364A (en) * | 1990-11-30 | 1992-07-24 | Mazda Motor Corp | Method for inspecting cross-linking degree of reinforcement-added resin |
JPH11216832A (en) * | 1998-02-05 | 1999-08-10 | Canon Inc | Manufacturing of laminate |
JP2003344322A (en) * | 2002-05-29 | 2003-12-03 | Inoac Corp | Method of measuring cross-link density in foam |
JP2007240359A (en) * | 2006-03-09 | 2007-09-20 | Mitsui Chemical Analysis & Consulting Service Inc | Method for measuring cross-link density of cross-linked polymer |
JP2008117926A (en) * | 2006-11-02 | 2008-05-22 | Mitsui Chemicals Inc | Solar battery module manufacturing method and its manufacturing apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102866159A (en) * | 2012-08-01 | 2013-01-09 | 西北工业大学 | Dyeing stripping method and dyeing stripping device for layer detection of hole forming of composite laminate plates |
CN112834548A (en) * | 2021-01-08 | 2021-05-25 | 上海纽迈电子科技有限公司 | Cross-linking density measuring method and device |
Also Published As
Publication number | Publication date |
---|---|
KR20130020653A (en) | 2013-02-27 |
CN102753332A (en) | 2012-10-24 |
TW201202012A (en) | 2012-01-16 |
JP2011183710A (en) | 2011-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3098003B2 (en) | Laminating equipment for solar cells | |
WO2011111868A1 (en) | Method for measuring cross-link density of object to be tested, method for setting conditions of cross-link density of object to be tested, lamination method for laminated product, device for measuring cross-link density of object to be tested, and device for adjusting cross-link density of object to be tested | |
JP5095166B2 (en) | Method and apparatus for laminating solar cell module by preheating | |
JP5291840B2 (en) | Diaphragm sheet, solar cell module manufacturing method using diaphragm sheet, laminating method using laminating apparatus for manufacturing solar cell module | |
JP5781412B2 (en) | Lamination method | |
JP5897045B2 (en) | Method for manufacturing solar cell module and laminator device | |
EP2485269A1 (en) | Sealing material sheet | |
WO2011136132A1 (en) | Hot plate for laminating device and laminating device using the hot plate | |
JP2001183318A (en) | Method for inspecting film contraction by heating | |
US20180257357A1 (en) | Membraneless laminator group and relative method for making laminated panels of different sizes, in particular photovoltaic panels | |
CN105588744A (en) | Sampling method for dual-glass-assembly interior-packaging-material cross linking degree | |
JP5558131B2 (en) | Hardness meter and hardness measuring method for diaphragm for laminating apparatus | |
CN113189135A (en) | Method for measuring thermal shrinkage rate of adhesive film | |
CN207677690U (en) | Laminated compenent | |
JP2015100941A (en) | Fitting jig of diaphragm for laminating apparatus, and fitting method of diaphragm | |
CN113910743B (en) | Organic silicon OCA full-lamination method | |
JPH10305482A (en) | Laminate apparatus | |
CN220121787U (en) | Film pasting jig for ceramic substrate | |
JP2004200518A (en) | Apparatus and method for manufacturing solar cell module | |
CN109904100B (en) | Photovoltaic module laminating chamber, laminating equipment and laminating method | |
EP2735378A1 (en) | Method for making a solar module with encapsulant and system therefor | |
WO2010140705A1 (en) | Laminating device | |
JP2015121499A (en) | Hardness meter of diaphragm for laminating device | |
CN109421337A (en) | Glyglass presss from both sides film manufacturing method | |
D'Aiello | Automated array Assembly, Phase II. Quarterly report No. 3, April 1--June 30, 1978 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180008892.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11753523 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127019956 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11753523 Country of ref document: EP Kind code of ref document: A1 |