JPH04204364A - Method for inspecting cross-linking degree of reinforcement-added resin - Google Patents

Method for inspecting cross-linking degree of reinforcement-added resin

Info

Publication number
JPH04204364A
JPH04204364A JP33956890A JP33956890A JPH04204364A JP H04204364 A JPH04204364 A JP H04204364A JP 33956890 A JP33956890 A JP 33956890A JP 33956890 A JP33956890 A JP 33956890A JP H04204364 A JPH04204364 A JP H04204364A
Authority
JP
Japan
Prior art keywords
reinforcing material
heat
resin
heating
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33956890A
Other languages
Japanese (ja)
Inventor
Akiyoshi Muraoka
村岡 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP33956890A priority Critical patent/JPH04204364A/en
Publication of JPH04204364A publication Critical patent/JPH04204364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To enable accurate and easy measurement of strength of minute- quantity material unlimited in form by measuring the quantity of heat generated when sampled, reinforcement-added resin is heated and inspecting for its molecular cross-linking degree on the basis of the measured quantity of heat. CONSTITUTION:A differential thermal analysis apparatus 1 comprises a heating furnace 2 for heating a specimen in a specified temperature range and a heat quantity measuring module for measuring and recording the quantity of heat generated in a specimen. In the heating furnace 2 there is disposed in its middle a heat detector 5 having specimen vessels 6,7 for containing specimens and also a heater 4 for heating specimens in the vessels 6,7. The module 10 consists of a temperature control sectional 11 and a recording section 16. A specimen is placed in either one of the vessels 6,7 and heated to a specified temperature, and if any temperature differential takes place between both vessels 6,7, thermal energy is supplied to a vessel 6 or 7 which is a lower temperature so as to keep this temperature differential at 'zero.' Thus, the supplied thermal energy is measured and recorded automatically.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、補強材添加樹脂の材料設計を行なう前等にお
いてその材料強度を把握するため、この材料強度を決定
するポリママトリクスとカップリング処理層との界面の
架橋度合いを検査する方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention aims to understand the material strength of a reinforcing material-added resin before designing the material. This invention relates to a method for inspecting the degree of crosslinking at an interface with a layer.

(従来の技術) 近年、自動車等における高剛性、軽量化の要求に対処す
べく、各種複合材料の研究、開発が盛んになされている
。この種の複合材料として従来より、高分子樹脂中にカ
ーボン繊維、ガラス繊維あるいはビーズ玉等の無機補強
材(フィラー)を混合させてなるものが広く知られてい
る。
(Prior Art) In recent years, various composite materials have been actively researched and developed in order to meet the demands for higher rigidity and lighter weight in automobiles and the like. Conventionally, as this type of composite material, materials made by mixing inorganic reinforcing materials (fillers) such as carbon fibers, glass fibers, beads, etc. into polymer resins have been widely known.

ところで、上記のような無機の樹脂用補強材に対しては
、樹脂に混合させる前に予め、この樹脂と化学的に結合
させ、あるいは親和性を向上させる。ための表面処理が
なされることが多い。この種の表面処理としては、シラ
ンカップリング剤を用いて行なうシランカップリング処
理が良べ知られている。
By the way, before mixing the inorganic resin reinforcing material with the resin, it is chemically bonded to the resin or its affinity is improved. surface treatment is often applied. As this type of surface treatment, silane coupling treatment using a silane coupling agent is well known.

樹脂用補強材に対してこのような表面処理が施されると
、樹脂用補強材表面に処理層が形成される。
When such a surface treatment is performed on the reinforcing material for resin, a treated layer is formed on the surface of the reinforcing material for resin.

この後、この樹脂用補強材を高分子樹脂中に混合させる
とこの樹脂用補強材の表面の処理層と高分子樹脂との界
面で分子架橋が形成されこの樹脂用補強材が高分子樹脂
と強固に結合されることとなる。
After this, when this reinforcing material for resin is mixed into a polymer resin, molecular crosslinks are formed at the interface between the treated layer on the surface of this reinforcing material for resin and the polymer resin, and this reinforcing material for resin is mixed with the polymer resin. This will result in a strong bond.

上記界面における架橋の度合いは補強材添加樹脂の材料
強度と密接に関係するため、一般に、この架橋の度合い
が大きい程望ましいこととなるが、この架橋の度合いは
上記カップリング処理剤の種類等によって大きく変化す
る。
The degree of crosslinking at the interface is closely related to the material strength of the reinforcing material-added resin, so generally the higher the degree of crosslinking is, the more desirable it is, but the degree of crosslinking depends on the type of coupling treatment agent, etc. Changes greatly.

したがって、材料設計を容易にするためには、使用する
予定の補強材添加樹脂における上記架橋の度合いを予め
検査し、その材料強度を正確に把握しておくことが望ま
しい。
Therefore, in order to facilitate material design, it is desirable to test in advance the degree of crosslinking in the reinforcing material-added resin to be used and to accurately understand the material strength.

従来、上述した補強材添加樹脂の材料強度を測定する方
法としての上記架橋の度合いを求める手法は確立されて
おらず、上記材料強度は材料成形後において曲げ弾性率
、引っ張り強さ、圧縮強さ。
Conventionally, a method for determining the degree of crosslinking as a method for measuring the material strength of the reinforcing material-added resin has not been established, and the material strength is determined by the flexural modulus, tensile strength, and compressive strength after the material is molded. .

線膨張率、収縮率等の物性測定を行なうことによって直
接水めるようにしていた。
By measuring physical properties such as linear expansion coefficient and contraction rate, it was possible to directly immerse the material in water.

(発明か解決しようとする課題) しかしながら上述した従来方法においては、実際に使用
する材料形状に樹脂を成形してサンプルを作成する必要
があり、また、上記測定に要する時間も長時間となる等
という問題があった。
(Problem to be solved by the invention) However, in the conventional method described above, it is necessary to create a sample by molding the resin into the shape of the material that will actually be used, and the time required for the above measurement is also long. There was a problem.

本発明はこのような事情に鑑みなされたもので、形状制
約のない微少量のサンプルを用いて補強材添加樹脂の材
料強度を正確かつ簡易に測定し得る補強材添加樹脂の架
橋度合い検査方法を提供することを目的とするものであ
る。
The present invention was made in view of the above circumstances, and provides a method for testing the degree of crosslinking of reinforcing material-added resin, which can accurately and easily measure the material strength of reinforcing material-added resin using a small amount of sample with no shape restrictions. The purpose is to provide

(課題を解決するための手段) 本発明の補強材添加樹脂の架橋度合い検査方法は、サン
プル抽出された補強材添加樹脂を加熱したときに発生す
る熱量を測定し、この測定された熱量に基づいて分子架
橋度合いを検査することを特徴とするものである。
(Means for Solving the Problems) The method for inspecting the degree of crosslinking of reinforcing material-added resin of the present invention measures the amount of heat generated when heating the sampled reinforcing material-added resin, and based on the measured amount of heat, This method is characterized by testing the degree of molecular crosslinking.

すなわち、シラン系カップリング剤により表面処理され
た補強材がポリママトリクス中に添加されてなる補強材
添加樹脂を所定量サンプル抽出し、該サンプル抽出され
た補強材添加樹脂を所定の温度域で加熱し、この加熱時
に発生する熱量を測定し、この測定結果に基づき、上記
シラン系カップリング剤により構成される表面処理層と
上記ポリママトリクスとの界面の架橋度合いを検査する
ことを特徴とするものである。
That is, a predetermined amount of a reinforcing material-added resin in which a reinforcing material whose surface has been treated with a silane coupling agent is added to a polymer matrix is sampled, and the sampled reinforcing material-added resin is heated in a predetermined temperature range. The amount of heat generated during this heating is measured, and based on the measurement results, the degree of crosslinking at the interface between the surface treatment layer composed of the silane coupling agent and the polymer matrix is examined. It is.

なお、上記所定の温度域とは上記架橋が分解・酸化され
る温度域を意味する。
Note that the above-mentioned predetermined temperature range means a temperature range in which the above-mentioned crosslinking is decomposed and oxidized.

(作  用) 本発明の検査方法は分子構造の違いによって化学的熱変
化が異なることを利用したものである。
(Function) The testing method of the present invention utilizes the fact that chemical and thermal changes vary depending on the molecular structure.

すなわち、架橋分子は所定の高温域において酸化・分解
するため、その高温域まで加熱されるとその架橋の度合
いに応じた熱量を発生する。そこで上記構成においては
、所定量の樹脂用補強材の所定温度範囲における上記酸
化・分解による発生熱量を測定するようにし、その値゛
が大きいほど、上記架橋の度合いが大であると判定する
ようにしており、これにより材料強度の大きさを表わす
架橋の度合いを正確かつ容易に検査することができる。
That is, since crosslinked molecules oxidize and decompose in a predetermined high temperature range, when heated to that high temperature range, an amount of heat is generated depending on the degree of crosslinking. Therefore, in the above configuration, the amount of heat generated by the oxidation and decomposition of a predetermined amount of reinforcing material for resin is measured in a predetermined temperature range, and the larger the value, the greater the degree of crosslinking is determined to be. This makes it possible to accurately and easily test the degree of crosslinking, which indicates the strength of the material.

また、このような発熱ffi/IP1定には微少量のサ
ンプルを用いれば十分であるからサンプルの作成。
In addition, since it is sufficient to use a very small amount of sample for such heat generation ffi/IP1 constant, we need to prepare a sample.

取り扱いも極めて容易となる。Handling is also extremely easy.

(実 施 例) 以下、図面に示す実施例を用いて本発明をさらに詳しく
説明する。
(Example) Hereinafter, the present invention will be explained in more detail using examples shown in the drawings.

本実施例の補強材添加樹脂は、アクリル系樹脂にガラス
ピーズ(材質:Eガラス、平均粒系:18μ■)を70
wt%添加してなるものであり、このガラスピーズは予
めシランカップリング剤によって表面処理されている。
The reinforcing material-added resin of this example is an acrylic resin containing 70 glass beads (material: E glass, average particle size: 18μ■).
The glass beads are surface-treated with a silane coupling agent in advance.

この補強材添加樹脂の表面処理状態を第2図に模式的に
示す。すなわち、ガラスピーズからなる補強材101の
表面にシランカップリング剤102が吸着されており、
このシランカップリング剤の一部102aにおいてシラ
ンカップリング剤102とアクリル系樹脂からなるポリ
ママトリクスlo3が分子架橋を形成している。
The surface treatment state of this reinforcing material-added resin is schematically shown in FIG. That is, the silane coupling agent 102 is adsorbed on the surface of the reinforcing material 101 made of glass beads,
In a portion 102a of the silane coupling agent, the silane coupling agent 102 and the polymer matrix lo3 made of acrylic resin form a molecular crosslink.

上述した架橋分子102aが多く形成されることによっ
て補強材101とポリママトリクス103との結合が強
固となり材料強度か大きくなるのでこの架橋分子102
aがどの程度形成されているかを検査することにより材
料強度の大きさを評価することかできる。
By forming a large number of the above-mentioned crosslinking molecules 102a, the bond between the reinforcing material 101 and the polymer matrix 103 becomes stronger and the material strength increases.
The magnitude of material strength can be evaluated by inspecting the extent to which a is formed.

第3図は、二の架橋の度合いを検査する際に使用される
市販の示差熱分析装置の一例を示している。図示される
ようにこの示差熱分析装置1は、試料を所定温度範囲に
加熱するだめの加熱炉2と、試料の発生熱量を測定・記
録するための熱量測定モジニール10とから構成されて
いる。上記加熱炉2には、その略中夫に、試料を収容す
るプラチナ製の試料容器部6および7を備えた熱検出器
5が配設されるとともに、上記試料容器部6.7内の試
料を所定温度範囲に加熱保持するためのヒータ4が設け
られている。
FIG. 3 shows an example of a commercially available differential thermal analyzer used to examine the degree of crosslinking. As shown in the figure, this differential thermal analysis apparatus 1 is comprised of a heating furnace 2 for heating a sample to a predetermined temperature range, and a calorimetry module 10 for measuring and recording the amount of heat generated by the sample. The heating furnace 2 is provided with a heat detector 5 equipped with sample containers 6 and 7 made of platinum for accommodating samples, and the sample in the sample container section 6. A heater 4 is provided for heating and maintaining the temperature within a predetermined temperature range.

一方、上記熱量測定モジュール10は、温度制御部11
と記録部1Bとで構成されている。この温度制御部11
には、ヒータ4に供給する電流値を調節するヒータ電流
調節部12と、温度制御記録部13とが設けられている
。この温度制御記録部13は、上記各試料容器部6.7
の温度を示す温度信号Slを受けるとともにプログラム
発信器14に接続されて、上記ヒータ電流調節部12に
制御信号を出力する。
On the other hand, the calorimetry module 10 includes a temperature control section 11
and a recording section 1B. This temperature control section 11
is provided with a heater current adjustment section 12 that adjusts the current value supplied to the heater 4, and a temperature control recording section 13. This temperature control recording section 13 includes each sample container section 6.7.
It is connected to the program transmitter 14 and outputs a control signal to the heater current adjustment section 12.

また記録部1Bは、試料容器部6.7内の温度を示す温
度信号S2から得られる温度差信号を増幅する増幅部1
7と、上記温度差が零となるように補償する供給熱量を
示す熱量信号S3か入力される記録計18とを備えてい
る。
The recording section 1B also includes an amplification section 1 that amplifies a temperature difference signal obtained from a temperature signal S2 indicating the temperature inside the sample container section 6.7.
7, and a recorder 18 into which is input a heat amount signal S3 indicating the amount of heat supplied to compensate for the temperature difference to be zero.

上記試料容器部6.7の少なくともいずれか一方に試料
を入れて所定温度範囲に加熱したとき、両試料容器部6
.7間に温度差が生じると、この温度差を零に保つよう
に、温度が低い側の試料容器部6または7に熱エネルギ
ーが供給され、そしてその供給熱エネルギーが自動的に
測定・記録される。なお、このような示差熱分析装置1
は、従来より良く知られているものであるので、各部の
具体的な構造およびその作動の詳細な説明は省略する。
When a sample is put into at least one of the sample container parts 6.7 and heated to a predetermined temperature range, both sample container parts 6.
.. When a temperature difference occurs between the sample containers 6 and 7, thermal energy is supplied to the sample container section 6 or 7 on the lower temperature side to keep this temperature difference at zero, and the supplied thermal energy is automatically measured and recorded. Ru. Note that such a differential thermal analysis device 1
Since this is well known, a detailed explanation of the specific structure and operation of each part will be omitted.

検査に際しては、シランカップリング処理かなされたビ
ーズ玉101をアクリル系樹脂に添加してなる補強材添
加樹脂20を、一方の試料容器部6に一例として10m
 g収容する。そして他方の試料容器部7には、参照試
料として未処理の補強材添加樹脂30を同じ(lom 
g収容する。そしてこれら両者を、ヒータ4により10
℃/分程度の速度で加熱する。
During the inspection, a reinforcing material-added resin 20 made by adding silane-coupled beads 101 to an acrylic resin is placed in one sample container part 6, for example, for 10 m.
g accommodate. Then, in the other sample container part 7, an untreated reinforcing material-added resin 30 was placed as a reference sample.
g accommodate. Both of these are heated by the heater 4 for 10
Heat at a rate of about °C/min.

加熱温度が700〜750℃の範囲に達すると、特定温
度において、シランカップリング剤の架橋分子102a
が酸化・分解し、それにより熱が発生する。
When the heating temperature reaches a range of 700 to 750°C, the crosslinked molecules 102a of the silane coupling agent at a specific temperature
oxidizes and decomposes, which generates heat.

この発熱により2つの試料容器部6.7間に温度差が生
じるが、この温度差を補償するように、試料容器部7側
に熱エネルギーが供給される。この供給熱エネルギーは
、熱流ffimJ(ミリ・ジュール)7秒で測定される
This heat generation causes a temperature difference between the two sample container sections 6 and 7, but thermal energy is supplied to the sample container section 7 side so as to compensate for this temperature difference. This supplied heat energy is measured in heat flow ffimJ (millijoules) of 7 seconds.

上記の供給熱エネルギーは、すなわち処理層21bの発
生熱量である。この発生熱量と加熱温度との関係の一例
を第2図に示す。本例では、表面処理剤つまりシランカ
ップリング剤102を、シクロへキシルトリクロロシラ
ン(シクロヘキシルタイプ)とした試料a1ビニルトリ
クロルシラン(ビニルタイプ)とした試料b1メタクロ
キシプロピルトリメトキシシラン(メタクロキシタイプ
)とした試料Cについて測定を行なった。
The above-mentioned supplied heat energy is the amount of heat generated by the processing layer 21b. An example of the relationship between the amount of heat generated and the heating temperature is shown in FIG. In this example, the surface treatment agent, that is, the silane coupling agent 102, was cyclohexyltrichlorosilane (cyclohexyl type) sample a1 vinyltrichlorosilane (vinyl type) sample b1 methacroxypropyltrimethoxysilane (methacroxy type) Measurements were made on sample C.

一方、未処理の補強材を添加した樹脂を試料dとし、こ
れについても上述と同様の検査を行なった。この試料d
についての発生熱量と加熱温度との関係を、第2図に実
線の曲線で示す。
On the other hand, a resin to which an untreated reinforcing material was added was designated as sample d, and the same tests as described above were conducted on this as well. This sample d
The relationship between the amount of heat generated and the heating temperature is shown in FIG. 2 by a solid curve.

なお、上述したシランカップリング剤102は全て信越
化学工業(株)製で試料aのものについてはKAシリー
ズ、試料すのものについてはKAシリーズ(K A −
1003) 、試料CのものについてはKBMシリーズ
(IBM−503)を使用した。
The silane coupling agents 102 mentioned above are all manufactured by Shin-Etsu Chemical Co., Ltd., and the one for sample a is from the KA series, and the one for sample A is from the KA series (KA-
1003), and for sample C, the KBM series (IBM-503) was used.

なお、試料dでは当然ながら、処理層21bの酸化・分
解による発熱は生じない。また、試料a。
Note that in sample d, of course, no heat generation occurs due to oxidation and decomposition of the treated layer 21b. Moreover, sample a.

b、cの順に架橋の度合いは大きくなるか、それに応じ
て発生熱量も大きくなる(第1図の曲線a、b、c参照
)。したがって、前述の未処理の補強材を添加した樹脂
の発生熱量を基準値(−最小値)とし、各場合の発生熱
量測定値の該基準値に対する比を求めれば、この比か大
きいほど架橋の度合いが高いと判定できることになる。
The degree of crosslinking increases in the order of b and c, and the amount of heat generated increases accordingly (see curves a, b, and c in FIG. 1). Therefore, if we take the amount of heat generated by the resin to which the untreated reinforcing material is added as the reference value (-minimum value) and calculate the ratio of the measured amount of heat generated in each case to the reference value, the larger this ratio is, the more likely the crosslinking will be. This means that it can be determined that the degree is high.

次に上記各試料a、b、cを用いてビーズ玉強化アクリ
ル樹脂を作成し、各試料について引張強度および圧縮強
度を測定し、上記実施例における測定値との相関を調べ
た。第4図はこの引張強度と上記実施例により得られた
発生熱量の相関を示すものであり、また第5図は上記圧
縮強度と上記実施例により得られた発生熱量の相関を示
すものである。この第4図および第5図によれば上述し
た相関性が良好であることが明らかである。
Next, a bead-reinforced acrylic resin was prepared using each of the above samples a, b, and c, and the tensile strength and compressive strength of each sample were measured, and the correlation with the measured values in the above example was investigated. Figure 4 shows the correlation between the tensile strength and the amount of heat generated in the above example, and Figure 5 shows the correlation between the compressive strength and the amount of heat generated in the example above. . According to FIGS. 4 and 5, it is clear that the above-mentioned correlation is good.

(発明の効果) 以上説明したように本発明の検査方法によれば、カップ
リング処理層とポリママトリクスとの界面における架橋
の度合いが大きい程所定温度範囲における発生熱量か大
きくなることを利用し、この発生熱量の測定結果に基づ
いて架橋の度合いを検査するようにしている。
(Effects of the Invention) As explained above, the inspection method of the present invention utilizes the fact that the greater the degree of crosslinking at the interface between the coupling treatment layer and the polymer matrix, the greater the amount of heat generated within a predetermined temperature range. The degree of crosslinking is examined based on the measurement results of the amount of heat generated.

したがって架橋の度合いから補強材添加樹脂の材料強度
を評価することか可能となるので、形状制約のない微少
量のサンプルを用いて補強材添加樹脂の材料強度を正確
かつ容易に検出することかできる。
Therefore, it is possible to evaluate the material strength of the reinforcing material-added resin from the degree of crosslinking, so it is possible to accurately and easily detect the material strength of the reinforcing material-added resin using a small amount of sample with no shape restrictions. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、シランカップリング処理をしたビーズ玉を添
加した補強材添加樹脂の発熱特性を示すグラフ、 第2図は、補強材添加樹脂の表面処理状態を模式的に示
す概略図、 第3図は、本発明に係る検査方法を実施するための装置
の一例を示すブロック図、 第4図および第5図は、それぞれ材料加熱時の発熱量と
、材料の引張り強度および圧縮強度との相関関係を示す
グラフである。 1・・・示差熱分析装置   2・・・加熱炉4・・・
ヒータ        5・・熱検出器10・・・熱量
測定モジュール 20・・・補強材添加樹脂101・・
・補強材(ビーズ玉) 102・・・カップリング処理剤 102a・・・架橋分子 103・・・ポリママトリクス 第1図 第2図 ジ/双強渡(19f/cyyt2ン 第5図 圧縮り1を勺に12)
Fig. 1 is a graph showing the heat generation characteristics of the reinforcing material-added resin to which silane coupling-treated beads are added; Fig. 2 is a schematic diagram schematically showing the surface treatment state of the reinforcing material-added resin; The figure is a block diagram showing an example of an apparatus for carrying out the inspection method according to the present invention. Figures 4 and 5 show the correlation between the amount of heat generated during heating of the material and the tensile strength and compressive strength of the material, respectively. It is a graph showing a relationship. 1...Differential thermal analyzer 2...Heating furnace 4...
Heater 5... Heat detector 10... Calorimetry module 20... Reinforcing material added resin 101...
・Reinforcing material (beads) 102...Coupling treatment agent 102a...Crosslinking molecule 103...Polymer matrix 12)

Claims (1)

【特許請求の範囲】  シラン系カップリング剤により表面処理された補強材
がポリママトリクス中に添加されてなる補強材添加樹脂
のサンプルを所定量抽出し、 該抽出された補強材添加樹脂を所定の温度域で加熱し、 この加熱時に発生する熱量を測定し、 この測定結果に基づき、前記シラン系カップリング剤に
より構成される表面処理層と前記ポリママトリクスとの
界面の架橋度合いを検査することを特徴とする補強材添
加樹脂の架橋度合い検査方法。
[Claims] Extracting a predetermined amount of a sample of a reinforcing material-added resin in which a reinforcing material whose surface has been treated with a silane coupling agent is added to a polymer matrix; Heating in a temperature range, measuring the amount of heat generated during this heating, and based on the measurement results, inspecting the degree of crosslinking at the interface between the surface treatment layer composed of the silane coupling agent and the polymer matrix. Characteristic method for testing the degree of crosslinking of reinforcing material added resin.
JP33956890A 1990-11-30 1990-11-30 Method for inspecting cross-linking degree of reinforcement-added resin Pending JPH04204364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33956890A JPH04204364A (en) 1990-11-30 1990-11-30 Method for inspecting cross-linking degree of reinforcement-added resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33956890A JPH04204364A (en) 1990-11-30 1990-11-30 Method for inspecting cross-linking degree of reinforcement-added resin

Publications (1)

Publication Number Publication Date
JPH04204364A true JPH04204364A (en) 1992-07-24

Family

ID=18328707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33956890A Pending JPH04204364A (en) 1990-11-30 1990-11-30 Method for inspecting cross-linking degree of reinforcement-added resin

Country Status (1)

Country Link
JP (1) JPH04204364A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108621A1 (en) * 2010-03-03 2011-09-09 日清紡メカトロニクス株式会社 Crosslink density measurement sheet
WO2011111868A1 (en) * 2010-03-09 2011-09-15 日清紡メカトロニクス株式会社 Method for measuring cross-link density of object to be tested, method for setting conditions of cross-link density of object to be tested, lamination method for laminated product, device for measuring cross-link density of object to be tested, and device for adjusting cross-link density of object to be tested

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108621A1 (en) * 2010-03-03 2011-09-09 日清紡メカトロニクス株式会社 Crosslink density measurement sheet
JP2011181791A (en) * 2010-03-03 2011-09-15 Nisshinbo Mechatronics Inc Sheet for crosslinking density measurement
WO2011111868A1 (en) * 2010-03-09 2011-09-15 日清紡メカトロニクス株式会社 Method for measuring cross-link density of object to be tested, method for setting conditions of cross-link density of object to be tested, lamination method for laminated product, device for measuring cross-link density of object to be tested, and device for adjusting cross-link density of object to be tested

Similar Documents

Publication Publication Date Title
Adam et al. Dynamical behavior of semidilute polymer solutions in a. THETA. solvent: quasi-elastic light scattering experiments
Park et al. Composite characterization
WO2007075523A2 (en) Single-point measurement of high-z additives in sheets
Tan et al. Interface effects on moisture absorption in ultrathin polyimide films
JPH04204364A (en) Method for inspecting cross-linking degree of reinforcement-added resin
Smock et al. Vapor phase determination of blood ammonia by an optical waveguide technique
JPS59114408A (en) Method and device for measuring mat made of glass fiber under movement
Chand et al. Crack closure studies under constant amplitude loading
JPH0420851A (en) Method for inspecting treated state of surface of resin reinforcing material
Broughton et al. Techniques for monitoring water absorption in fibre-reinforced polymer composites.
Reynolds et al. The use of ultrasonic wave attenuation to monitor polymer and composite quality
GOMI et al. Effect of temperature and moisture content on water diffusion coefficients in rice starch/water mixtures
Schulte et al. Nuclear reaction analysis for measuring moisture profiles in graphite/epoxy composites
SU570814A1 (en) Method of inspecting solidification rate of thermoreactive polymer articles
Olster Effect of voids on graphite fiber reinforced composites
Regel' Kinetic theory of strength as a scientific basis for predicting the lifetime of polymers under load
Yanai et al. Determination of the deflection temperature under load, vicat softening temperature, and clash—berg TF of plastics by a new method
JP3334512B2 (en) Crystallinity measurement method and apparatus
Armstrong et al. Moisture penetration through optical fiber coatings
Henry III Environmental stress cracking of thermoplastics: A new approach to testing
Sturges et al. Estimating probability of detection for subsurface ultrasonic inspection
JPH03206952A (en) Measuring method of heat-proof property of thermosetting resin
Heyman et al. Quantitative NDE applied to composites and metals
Entine et al. Nondestructive evaluation of reinforced plastics by a radiometric measurement technique
Kawabe et al. Influence of environmental conditions on the fatigue strength of plastics