JP2007240359A - Method for measuring cross-link density of cross-linked polymer - Google Patents

Method for measuring cross-link density of cross-linked polymer Download PDF

Info

Publication number
JP2007240359A
JP2007240359A JP2006064035A JP2006064035A JP2007240359A JP 2007240359 A JP2007240359 A JP 2007240359A JP 2006064035 A JP2006064035 A JP 2006064035A JP 2006064035 A JP2006064035 A JP 2006064035A JP 2007240359 A JP2007240359 A JP 2007240359A
Authority
JP
Japan
Prior art keywords
cross
relaxation time
measuring
crosslinked polymer
spin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006064035A
Other languages
Japanese (ja)
Inventor
Motoka Sekine
素馨 関根
Miyuki Koyama
みゆき 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemical Analysis and Consulting Service Inc
Original Assignee
Mitsui Chemical Analysis and Consulting Service Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemical Analysis and Consulting Service Inc filed Critical Mitsui Chemical Analysis and Consulting Service Inc
Priority to JP2006064035A priority Critical patent/JP2007240359A/en
Publication of JP2007240359A publication Critical patent/JP2007240359A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure a cross-link density of a polymer, such as a soft foam or the like precisely, simply and quickly, whose cross-link density is low. <P>SOLUTION: A method for measuring the cross-link density of a cross-linked polymer is provided, which is characterized in that the relaxation time of the protons in the cross-linked polymer swelled in a solvent is measured by using a pulse nuclear magnetic resonance measuring apparatus. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、架橋ポリマーの架橋密度の測定方法に関する。詳しくは、架橋ポリマーを溶媒に膨潤した状態でプロトンの磁気緩和時間を測定することからなる架橋密度の測定方法である。   The present invention relates to a method for measuring the crosslinking density of a crosslinked polymer. Specifically, it is a method for measuring the crosslinking density, comprising measuring the proton magnetic relaxation time in a state where the crosslinked polymer is swollen in a solvent.

架橋ポリマーの架橋密度は、架橋ポリマーの物性に大きな影響を与える因子であり、架橋密度を制御することで架橋ポリマーの物性を制御することが広く行われている。架橋密度は、ポリマー中の官能基密度などの構造、架橋剤、架橋助剤の種類、濃度、架橋時の温度などの条件などによって変化するため条件を設定するにはある程度の試行錯誤が必須である。そのため、迅速に架橋密度を測定する方法が必要とされている。   The crosslinking density of the crosslinked polymer is a factor that greatly affects the physical properties of the crosslinked polymer, and it is widely performed to control the physical properties of the crosslinked polymer by controlling the crosslinking density. Cross-linking density varies depending on the structure such as functional group density in the polymer, cross-linking agent, type of cross-linking aid, concentration, temperature at cross-linking, etc. is there. Therefore, a method for quickly measuring the crosslinking density is required.

一方、核磁気共鳴測定装置を用い予め架橋密度が既知である架橋ポリマーのプロトンの緩和時間を測定して検量線を作成し、次いで架橋密度が未知である架橋ポリマーのプロトンの緩和時間を測定することで架橋密度を算出する方法が知られている(特許文献1)。
特開2003−344322公報
On the other hand, using a nuclear magnetic resonance measuring apparatus, measure the proton relaxation time of a crosslinked polymer whose crosslinking density is known in advance to create a calibration curve, and then measure the relaxation time of the proton of a crosslinked polymer whose crosslinking density is unknown Thus, a method for calculating the crosslinking density is known (Patent Document 1).
JP 2003-344322 A

上記方法は、発泡体にも適用可能な優れた方法であるが、架橋密度の測定を硬い架橋ポリマーの状態で測定するため、架橋密度が低い架橋ポリマー、特に軟質発泡体などの架橋密度の低いポリマーの架橋密度を測定するには十分な精度が得られないと言う問題があった。   Although the above method is an excellent method applicable to foams, the crosslink density is measured in the state of a hard crosslink polymer. There was a problem that sufficient accuracy could not be obtained to measure the crosslink density of the polymer.

本発明は、上記課題を解決して架橋密度を迅速に精度よく測定する方法について鋭意検討し特定の条件で磁気緩和時間を測定することで上記問題を解決できることを見出し、本発明を完成した。   The present invention has completed the present invention by solving the above-mentioned problems and diligently studying a method for measuring the crosslinking density quickly and accurately, and finding that the above-mentioned problems can be solved by measuring the magnetic relaxation time under specific conditions.

本発明は、溶媒に膨潤した架橋ポリマー中のプロトンのスピン−スピン緩和時間をパルス核磁気共鳴測定装置で測定することを特徴とする該架橋ポリマーの架橋密度の測定方法である。   The present invention is a method for measuring the crosslinking density of a crosslinked polymer, characterized in that the spin-spin relaxation time of protons in a crosslinked polymer swollen in a solvent is measured with a pulse nuclear magnetic resonance measuring apparatus.

本発明の架橋密度の測定方法は、簡便に迅速にしかも精度良く架橋密度を測定する方法であり、特に発泡体の架橋密度を測定するに有効な方法であり工業的に極めて優れており価値がある。   The method for measuring the crosslink density of the present invention is a method for measuring the crosslink density simply, quickly and accurately, and is particularly effective in measuring the crosslink density of a foam, and is industrially extremely excellent and valuable. is there.

本発明において架橋ポリマーとしては分子鎖中にプロトンを有するものであればどのようなものであって適用可能である。特に発泡した架橋ポリマーに適用すると有効である。測定方法の特性から架橋ポリマーを膨潤させることができる溶媒が存在しない場合には適用できない。   In the present invention, any cross-linked polymer may be used as long as it has a proton in the molecular chain. In particular, it is effective when applied to a foamed crosslinked polymer. It cannot be applied when there is no solvent capable of swelling the crosslinked polymer due to the characteristics of the measurement method.

架橋ポリマーとしては天然ゴム、合成ゴム、ウレタンゴムなど多くのものが公知でありまたそれらの発泡体も公知であり硬質発泡体、軟質発泡体として知られている。   Many cross-linked polymers such as natural rubber, synthetic rubber, and urethane rubber are known, and foams thereof are also known and are known as hard foams and soft foams.

具体的には、天然ゴム、エチレン、プロピレン、ブチレンなど、α-オレフィンの重合体の架橋体、ジイソシアナートとポリオールからなるウレタンの架橋体などが例示できる。   Specific examples include crosslinked polymers of α-olefin polymers such as natural rubber, ethylene, propylene and butylene, and crosslinked urethane products of diisocyanate and polyol.

架橋体の製造方法としては種々の方法は公知でありどのような架橋法で製造されたものであっても適用可能であり、例えば、硫黄による架橋、過酸化物による架橋、特定の官能基を縮合して架橋したものなどにも適用できる。   Various methods are known as a method for producing a crosslinked product, and any method produced by any crosslinking method can be applied. For example, crosslinking with sulfur, crosslinking with peroxide, and specific functional groups can be applied. It can also be applied to those which are condensed and crosslinked.

架橋に際して、種々の架橋助剤あるいは添加剤を添加したものであっても良い。   In crosslinking, various crosslinking assistants or additives may be added.

本発明においては、架橋ポリマーは溶媒に膨潤した状態でパルス核磁気共鳴測定装置を用いて緩和時間が測定される。ここで用いられる溶媒としては発明の趣旨から明らかなように架橋ポリマーを膨潤することが可能であればどのようなものでも利用できるが、好ましくはプロトンを有しない溶媒、あるいはプロトンを重水素で置換した溶媒が好ましく利用できる。   In the present invention, the relaxation time is measured using a pulsed nuclear magnetic resonance measuring apparatus while the crosslinked polymer is swollen in a solvent. Any solvent can be used as long as it can swell the crosslinked polymer, as is apparent from the gist of the invention. Preferably, however, the solvent does not have a proton, or the proton is replaced with deuterium. Preferably used.

パルス核磁気共鳴測定装置を用いてスピン−スピン緩和時間を測定する方法については、既に公知であり専用の装置が市販されている。溶媒に膨潤した架橋ポリマーを入れるか、試料管中で膨潤させることで所定の試料管に入れた架橋ポリマーの試料を準備する。次いでパルス核磁気共鳴測定装置に試料を装着し所定の温度でスピン−スピン緩和時間を測定する。   A method for measuring the spin-spin relaxation time using a pulsed nuclear magnetic resonance measuring apparatus is already known and a dedicated apparatus is commercially available. A sample of the cross-linked polymer put in a predetermined sample tube is prepared by putting the swollen cross-linked polymer in a solvent or swelling in a sample tube. Next, the sample is mounted on the pulse nuclear magnetic resonance measuring apparatus, and the spin-spin relaxation time is measured at a predetermined temperature.

スピン−スピン緩和時間の測定は一定のパルスを与えその吸収シグナルの減衰を測定することで行われ、CP法、CPMG法、ソリッドエコー法などが知られており、本発明ではソリッドエコー法、スピンエコー法、ハーンエコー法などで測定することが推奨され、特にソリッドエコー法で測定することが好ましい。観察された自由誘導減衰曲線(以下FID)から架橋ポリマーに対応する緩和時間である短時間成分(T2)を求めることができる。緩和時間の測定法の詳細について以下にソリッドエコー法について一例を詳述するがT2を再現性良く正確に測定できる限り測定方法の詳細が限定されるものではない。また、その他の測定法についても周知である。 The spin-spin relaxation time is measured by giving a constant pulse and measuring the attenuation of the absorption signal. The CP method, the CPMG method, the solid echo method, and the like are known. Measurement by the echo method, the Hahn echo method or the like is recommended, and measurement by the solid echo method is particularly preferable. The short-time component (T 2 ), which is the relaxation time corresponding to the crosslinked polymer, can be determined from the observed free induction decay curve (hereinafter referred to as FID). Details of the relaxation time measurement method An example of the solid echo method will be described in detail below. However, the details of the measurement method are not limited as long as T 2 can be accurately measured with good reproducibility. Other measurement methods are also well known.

ソリッドエコー法は、ガラス状および結晶性高分子などの緩和時間の短い試料の測定に用いられる。デッドタイムを見かけ上除く方法で、2つの90°パルスを、位相を90°変えて印加する90°x−π−90°yパルス法で、X軸方向に90°パルスを加えると、デッドタイム後にFIDが観測される。FIDが減衰しない時間τに、第2の90°パルスをy軸方向に加えると,t=2τ の時点で磁化の向きがそろってエコーが現れる。得られたエコーは90°パルス後のFIDシグナルに近似できる。   The solid echo method is used for measuring a sample having a short relaxation time such as a glassy or crystalline polymer. When a 90 ° pulse is applied in the X-axis direction by the 90 ° x-π-90 ° y pulse method in which two 90 ° pulses are applied by changing the phase by 90 ° by a method that apparently eliminates the dead time, Later FID is observed. When the second 90 ° pulse is applied in the y-axis direction at the time τ when the FID does not decay, echoes appear with the magnetization directions aligned at the time of t = 2τ. The obtained echo can be approximated to a FID signal after a 90 ° pulse.

実験的には、エコーの最大点から測定できるように、τ値を設定する。通常数μ秒である。   Experimentally, the τ value is set so that measurement can be performed from the maximum point of echo. Usually a few microseconds.

架橋ポリマーの場合にはこのFIDは2つの緩和時間の成分から構成されていると近似することが可能であり以下のように現される。
M(t)=Mc[exp[−1/2(t/T2')2]]+Ma[exp(−t/T2)]
ここでT2'がスピン−スピン緩和時間の長時間成分、T2がスピン−スピン緩和時間の短時間成分であり、結晶性の高分子化合物では短時間成分T2が結晶相の緩和時間に相当し長時間成分T2'が無定形部分の緩和時間に相当する。架橋ポリマーではそれぞれ架橋部分、非架橋部分に相当する。フィラーなどが入っている場合には、さらに中間的な成分緩和時間成分T2''を考慮して近似した方が良い場合もあるが、本願において重要なのは短時間成分であるT2である。ここで得られたFIDに対し上記式で近似する方法としては非線形最小二乗法で行うのが一般的である。こうして得られたT2が本発明の緩和時間である。このような緩和時間の求め方についてはMcbrierty.V.J, DouglasD. C.: J. Polym.sci.: Macromol. Rev.:16,295(1981)などに開示されている。
In the case of a crosslinked polymer, this FID can be approximated to be composed of two relaxation time components and is expressed as follows.
M (t) = Mc [exp [−1/2 (t / T 2 ′) 2 ]] + Ma [exp (−t / T 2 )]
Here, T 2 ′ is a long-time component of the spin-spin relaxation time, T 2 is a short-time component of the spin-spin relaxation time, and in a crystalline polymer compound, the short-time component T 2 is the relaxation time of the crystal phase. Corresponding long time component T 2 'corresponds to the relaxation time of the amorphous part. The crosslinked polymer corresponds to a crosslinked part and a non-crosslinked part, respectively. When a filler or the like is contained, it may be better to approximate in consideration of an intermediate component relaxation time component T 2 ″, but what is important in the present application is T 2 that is a short-time component. As a method of approximating the FID obtained here by the above formula, it is common to use a non-linear least square method. T 2 thus obtained is the relaxation time of the present invention. Such a method for obtaining the relaxation time is disclosed in Mcbrierty. VJ, Douglas D. C .: J. Polym. Sci .: Macromol. Rev .: 16,295 (1981).

本発明において肝要なのはスピン−スピン緩和時間を測定するに際し、架橋ポリマーを溶媒に膨潤した状態で測定することである。膨潤した状態とは架橋ポリマーを溶媒に浸漬して経時的に緩和時間を測定し平衡状態になったことが確認されているのが好ましいが数時間以上の一定時間経過後に測定することも可能である。例えば、23℃の架橋ポリマーの良溶媒に浸漬した場合は24時間経過した後に測定すれば、本発明を実施することが可能でありデータの活用に特に問題はない。こうすることでフィラーなどが混入された架橋ポリマーであっても短時間成分T2が算出可能であり架橋の程度に相関した値とT2を精度良く得ることができる。 In the present invention, it is important to measure the spin-spin relaxation time in a state where the crosslinked polymer is swollen in a solvent. The swollen state is preferably confirmed by immersing the crosslinked polymer in a solvent and measuring the relaxation time over time to reach an equilibrium state, but it can also be measured after a certain time of several hours or more. is there. For example, when immersed in a good solvent of a crosslinked polymer at 23 ° C., the measurement can be carried out after 24 hours and the present invention can be carried out, and there is no particular problem in the utilization of data. By doing so, even for a crosslinked polymer mixed with a filler or the like, the short-time component T 2 can be calculated, and a value correlated with the degree of crosslinking and T 2 can be obtained with high accuracy.

2を精度良く測定するためには、溶媒に膨潤することなく温度を高くするなどの方法でもある程度対応可能であるが温度を高くすると架橋がさらに進行するとかフィラーによる影響を分離することが困難になるなどの問題があり、加えて発泡体の測定が困難になるなどの問題があるのに対して本発明においてはそのような問題はない。 In order to measure T 2 with high accuracy, it is possible to respond to some extent by increasing the temperature without swelling in the solvent. However, if the temperature is increased, it is difficult to separate the influence of the filler as the crosslinking further proceeds. However, in the present invention, there is no such problem as it is difficult to measure the foam.

測定温度としては特に制限はないが、膨潤させた条件と同じであれば操作が簡単である。   Although there is no restriction | limiting in particular as measurement temperature, Operation is easy if it is the same as the swollen conditions.

具体的には、架橋ポリマーは、発泡体である場合も同様に細かく裁断(3mm角以下)し、ガラス試験管に入れ、膨潤溶媒(ゴムなどでは四塩化炭素)を追加し23℃で24時間保持した後に、ソリッドエコー法によってエコーの減衰曲線を求めることができる。測定条件としては、90°パルス幅、パルスインターバル幅はそれぞれ2.0マイクロ秒とし23℃で測定することが推奨される。得られたFIDを上記式に近似し非線形最小二乗法で成分分離して、スピン−スピン緩和時間の短時間成分T2(μ秒)を求めることができる。通常は、T2は200〜900μsとなるのが一般的であり。長時間成分であるT2'は通常2000μs以上となるのが一般的である。 Specifically, the crosslinked polymer is similarly finely cut (3 mm square or less) even in the case of a foam, put in a glass test tube, and added with a swelling solvent (carbon tetrachloride for rubber or the like) at 23 ° C. for 24 hours. After the hold, the echo attenuation curve can be obtained by the solid echo method. As measurement conditions, it is recommended that the 90 ° pulse width and the pulse interval width be 2.0 microseconds, respectively, and the measurement be performed at 23 ° C. The obtained FID is approximated to the above equation, and components are separated by the non-linear least square method, and the short-time component T 2 (μ seconds) of the spin-spin relaxation time can be obtained. Usually, T 2 is generally 200 to 900 μs. Generally, T 2 ′, which is a long-time component, is generally 2000 μs or more.

緩和時間と架橋密度の関係を求めるには種々の方法が可能である。一般に緩和時間の逆数が架橋ポリマーの架橋度が比例することは良く知られており未架橋のサンプルと架橋密度の高いサンプルの測定結果から検量線を推定することができる。また、架橋密度の低い領域では略直線に近似できることから未架橋の資料の測定結果から特定の直線を引いてそれにより架橋の程度を推算しても良い。一方、架橋密度を測定する方法として知られている方法で予め架橋密度を求め、そうして得られた架橋密度が既知の試料の数点について緩和時間を測定することで架橋密度と緩和時間T2との関係を示す検量線を作成し、その検量線より緩和時間を求めることも可能である。こうして1つの検量線を得ることができれば、面倒な架橋密度の測定を行わなくても緩和時間T2を測定するだけでベースポリマーが同じまたは類似であれば、組成の異なる種々の架橋ポリマー組成物の架橋密度を知ることができる。 Various methods can be used to obtain the relationship between the relaxation time and the crosslinking density. In general, it is well known that the reciprocal of the relaxation time is proportional to the degree of crosslinking of the crosslinked polymer, and a calibration curve can be estimated from the measurement results of an uncrosslinked sample and a sample having a high crosslinking density. Further, since it can be approximated to a substantially straight line in a region where the crosslinking density is low, a specific straight line may be drawn from the measurement result of the uncrosslinked material to thereby estimate the degree of crosslinking. On the other hand, the crosslinking density is determined in advance by a method known as a method for measuring the crosslinking density, and the relaxation time is measured at several points of the sample having the known crosslinking density so that the crosslinking density and relaxation time T are measured. It is also possible to create a calibration curve showing the relationship with 2 and obtain the relaxation time from the calibration curve. If one calibration curve can be obtained in this way, various cross-linked polymer compositions having different compositions can be used as long as the base polymer is the same or similar only by measuring the relaxation time T 2 without performing troublesome cross-linking density measurement. The crosslink density of can be known.

架橋密度としては、種々の考え方があるが例えば、Flory-Rehnerの式から算出する方法を例示できる。これは、下式に示すように、膨潤した体積;v(架橋ポリマー容積+吸収された溶媒の容積)と溶媒の分子溶;Vと、架橋ポリマーと溶媒の相互作用定数μから架橋密度dを以下により求めることができる。例えば、日本ゴム協会編;ゴムの技術の基礎,P39(1987). P.J.Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca N.Y, 1953)などが参照できる。
ν= −(ln(1−vr) + vr + μvr 2)/(g2/3・vr 1/3-2vr/f)V
ν:有効網目濃度、V:溶媒の分容、g:膨潤前のゴム容積分率、
vr:膨潤中のゴム容積分率、f:官能数(4)、μ:相互作用定数
Although there are various ways of thinking as the crosslinking density, for example, a method of calculating from the Flory-Rehner equation can be exemplified. As shown in the following formula, this indicates that the swollen volume; v (crosslinked polymer volume + absorbed solvent volume) and the molecular solution of the solvent; V and the crosslink density d from the interaction constant μ of the crosslinked polymer and the solvent. The following can be obtained. For example, reference can be made to the Japan Rubber Association edited by Rubber Technology Fundamentals, P39 (1987). PJ Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca NY, 1953).
ν = − (ln (1−v r ) + v r + μv r 2 ) / (g 2/3 · v r 1/3 −2v r / f) V
ν: effective network concentration, V: volume of solvent, g: rubber volume fraction before swelling,
v r : rubber volume fraction during swelling, f: functional number (4), μ: interaction constant

以下、本発明を実施例により説明するが、本発明は、これらの実施例により何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not restrict | limited at all by these Examples.

(実施例および比較例)
エチレン・プロピレン・5−エチリデン−2−ノルボルネン(ENB)ランダム共重合体ゴム(以下、EPDMと略す;エチレン含量62%、ENB含量8.5%、ムーニー粘度ML1+4(100℃)90(三井化学株式会社製三井EPT4095)100重量部ステアリン酸1部、酸化亜鉛5部、カーボンブラック90部、パラフィンオイル70部を神戸製鋼株式会社製1.7Lインターナルミキサーに投入し、160℃で5分間混練した。得られた各ゴム組成物に硫黄ベンゾリルパーオキサイドを3.4部(PO-1)、5.1部(PO-2)、6.8部(PO-3)、10.2部(PO-4)、硫黄を0.38部(S-1)、0.75部(S-2)、1.13部(S-3)、1.50部(S-4)を8インチロールで添加混合した。
(Examples and Comparative Examples)
Ethylene / propylene / 5-ethylidene-2-norbornene (ENB) random copolymer rubber (hereinafter abbreviated as EPDM; ethylene content 62%, ENB content 8.5%, Mooney viscosity ML 1 + 4 (100 ° C.) 90 ( Mitsui Chemicals, Inc. Mitsui EPT4095) 100 parts by weight stearic acid 1 part, zinc oxide 5 parts, carbon black 90 parts, paraffin oil 70 parts are put into a 1.7 L internal mixer manufactured by Kobe Steel Co., Ltd. Each rubber composition obtained was kneaded for 3.4 parts (PO-1), 5.1 parts (PO-2), 6.8 parts (PO-3), 10.2 parts (PO-4), sulfur benzoyl peroxide, 0.38 parts (S-1), 0.75 parts (S-2), 1.13 parts (S-3) and 1.50 parts (S-4) of sulfur were added and mixed with an 8-inch roll.

また発泡剤であるOBSH(4,4'−オキシビス(ベンゾスルフニルヒドラジド))4部をさらに同時に添加したものも準備した(SP-2、SP-3、SP-4;それぞれS-2、S-3、S-4の組成物に発泡剤を加えた)。混練はそれぞれ60℃で8分間おこなった。   Moreover, what added 4 parts of OBSH (4,4'- oxybis (benzosulfenyl hydrazide)) which is a foaming agent simultaneously was also prepared (SP-2, SP-3, SP-4; S-2, respectively) A foaming agent was added to the compositions of S-3 and S-4). Each kneading was performed at 60 ° C. for 8 minutes.

得られたゴム組成物を、150トンプレス機を用いて170℃で5分間プレスしてゴムシート(ソリッドゴム)を得た。   The obtained rubber composition was pressed at 170 ° C. for 5 minutes using a 150-ton press to obtain a rubber sheet (solid rubber).

また、発泡体は、ゴム用押出機、UHF加硫槽、HAV加硫槽の順番に配列した発泡体連続加硫成形ラインで発泡化した。引取りは3.5m/分の速度で行い、5分間で成形した。UHF槽温度は230℃、出力2kW、HAV槽温度は250℃とした。口金は、中空ホース形状が得られる形状に設計し、外径8mm、内径7mmとした。   The foam was foamed by a foam continuous vulcanization molding line arranged in the order of a rubber extruder, UHF vulcanization tank, and HAV vulcanization tank. The take-up was performed at a speed of 3.5 m / min and molded in 5 minutes. The UHF tank temperature was 230 ° C., the output was 2 kW, and the HAV tank temperature was 250 ° C. The base was designed to have a hollow hose shape, and had an outer diameter of 8 mm and an inner diameter of 7 mm.

上記で得られた、ゴムシートの膨潤試験は、ゴムシートをトルエン中に37℃、72時間膨潤させ、重量法により膨潤度を決定した。架橋密度は、Flory−Rehner式に従い、得られたモル数にアボガドロ数を積算して1cm3当りの個数を求めた。 In the swelling test of the rubber sheet obtained above, the rubber sheet was swollen in toluene at 37 ° C. for 72 hours, and the degree of swelling was determined by a gravimetric method. The crosslink density was determined according to the Flory-Rehner equation by adding the Avogadro number to the number of moles obtained to determine the number per cm 3 .

パルスNMRの測定は、ゴムシートまたは発泡体を細かく裁断し、ガラス試験管に入れ、四塩化炭素を膨潤溶媒に用い、細かく裁断したゴムシートまたは発泡体を浸せきした。パルスNMRは、JEOL製JNM−MU25型を用い、ソリッドエコー法によってエコーの減衰曲線を求めた。90°パルス幅、パルスインターバル幅はそれぞれ2.0マイクロ秒、4.0秒、積算回数16回とし23℃で測定した。   For the measurement of pulse NMR, the rubber sheet or foam was finely cut, put into a glass test tube, carbon tetrachloride was used as a swelling solvent, and the finely cut rubber sheet or foam was immersed. For pulsed NMR, an echo attenuation curve was obtained by a solid echo method using a JEOL JNM-MU25 type. The 90 ° pulse width and pulse interval width were 2.0 microseconds and 4.0 seconds, respectively, and the number of integrations was 16 times.

発泡シートについても上記方法でパルスNMRを用いて同様に緩和時間を測定した。   For the foam sheet, the relaxation time was measured in the same manner using pulsed NMR by the above method.

さらに比較例として溶媒に膨潤させずにそのままパルスNMRを測定して緩和時間を測定したそれらの結果を図1に示す。なお、発泡体はFlory−Rehner式から架橋密度を測定することはできないのでソリッド体で定めた検量線に従うとして図示した。比較例は、23℃の測定では架橋密度の差が緩和時間の差が観測できないので測定温度を150℃で測定した。測定温度を高くすることで架橋密度の差が緩和時間の差として観察可能となるが架橋密度の低い領域では緩和時間の短時間成分T2が観察できない(S-1、PO-1、PO-2、PO-3は測定不能)。 Further, as a comparative example, those results obtained by measuring the pulse NMR as it is without swelling in a solvent and measuring the relaxation time are shown in FIG. In addition, since it was not possible to measure the crosslink density from the Flory-Rehner equation, the foam was shown as following a calibration curve determined for the solid body. In the comparative example, since the difference in crosslinking density and the difference in relaxation time cannot be observed in the measurement at 23 ° C., the measurement temperature was measured at 150 ° C. Difference in crosslink density by increasing the measurement temperature is not observable to become but the relaxation time of the short time component T 2 is observed at a low crosslinking density region as the difference in relaxation time (S-1, PO-1 , PO- 2, PO-3 is not measurable).

本発明の実施例、比較例のT2と架橋密度の関係を示す図面である。Examples of the present invention is a drawing showing the relationship between T 2 and the crosslinking density of the comparative example.

Claims (4)

溶媒に膨潤した架橋ポリマー中のプロトンのスピン−スピン緩和時間をパルス核磁気共鳴測定装置で測定することを特徴とする該架橋ポリマーの架橋密度の測定方法。   A method for measuring a crosslinking density of a crosslinked polymer, comprising measuring a spin-spin relaxation time of protons in a crosslinked polymer swollen in a solvent with a pulse nuclear magnetic resonance measuring apparatus. スピン−スピン緩和時間がスピン−スピン緩和時間の短時間成分(T2)である請求項1に記載の測定方法。 The measurement method according to claim 1, wherein the spin-spin relaxation time is a short-time component (T 2 ) of the spin-spin relaxation time. 架橋密度が既知である架橋ポリマーを溶媒に膨潤させて測定したプロトンのスピン−スピン緩和時間と該架橋ポリマーの架橋密度との関係から架橋密度を算出する請求項1に記載の測定方法。   The measurement method according to claim 1, wherein the crosslinking density is calculated from a relationship between a proton spin-spin relaxation time measured by swelling a crosslinked polymer having a known crosslinking density in a solvent and the crosslinking density of the crosslinked polymer. 架橋ポリマーが発泡体である請求項1に記載の測定方法。
The measurement method according to claim 1, wherein the crosslinked polymer is a foam.
JP2006064035A 2006-03-09 2006-03-09 Method for measuring cross-link density of cross-linked polymer Pending JP2007240359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006064035A JP2007240359A (en) 2006-03-09 2006-03-09 Method for measuring cross-link density of cross-linked polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064035A JP2007240359A (en) 2006-03-09 2006-03-09 Method for measuring cross-link density of cross-linked polymer

Publications (1)

Publication Number Publication Date
JP2007240359A true JP2007240359A (en) 2007-09-20

Family

ID=38586041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064035A Pending JP2007240359A (en) 2006-03-09 2006-03-09 Method for measuring cross-link density of cross-linked polymer

Country Status (1)

Country Link
JP (1) JP2007240359A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108621A1 (en) * 2010-03-03 2011-09-09 日清紡メカトロニクス株式会社 Crosslink density measurement sheet
WO2011111868A1 (en) * 2010-03-09 2011-09-15 日清紡メカトロニクス株式会社 Method for measuring cross-link density of object to be tested, method for setting conditions of cross-link density of object to be tested, lamination method for laminated product, device for measuring cross-link density of object to be tested, and device for adjusting cross-link density of object to be tested
JP2014085309A (en) * 2012-10-26 2014-05-12 Sumitomo Rubber Ind Ltd Crosslinking density test method
JP2015045524A (en) * 2013-08-27 2015-03-12 東京瓦斯株式会社 Life evaluation method of rubber seal material
KR101898168B1 (en) 2016-05-02 2018-10-04 주식회사 엘지화학 Method for analysis of the length of sulfur cross-linking bonds in a vulcanized rubber
TWI649336B (en) * 2013-10-16 2019-02-01 艾朗希歐德意志有限公司 Determination of the degree of branching
KR20200041329A (en) * 2018-10-10 2020-04-21 스미또모 가가꾸 가부시키가이샤 Film for light-emitting element and light-emitting element using same
WO2021029225A1 (en) * 2019-08-09 2021-02-18 デンカ株式会社 Adhesive sheet
CN112834548A (en) * 2021-01-08 2021-05-25 上海纽迈电子科技有限公司 Cross-linking density measuring method and device
US11035767B1 (en) 2019-05-01 2021-06-15 The United States Of Americas As Represented By The Secretary Of The Navy Apparatus for determining swollen-polymer cross-link density

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108621A1 (en) * 2010-03-03 2011-09-09 日清紡メカトロニクス株式会社 Crosslink density measurement sheet
JP2011181791A (en) * 2010-03-03 2011-09-15 Nisshinbo Mechatronics Inc Sheet for crosslinking density measurement
CN102792461A (en) * 2010-03-03 2012-11-21 日清纺控股株式会社 Crosslink density measurement sheet
WO2011111868A1 (en) * 2010-03-09 2011-09-15 日清紡メカトロニクス株式会社 Method for measuring cross-link density of object to be tested, method for setting conditions of cross-link density of object to be tested, lamination method for laminated product, device for measuring cross-link density of object to be tested, and device for adjusting cross-link density of object to be tested
CN102753332A (en) * 2010-03-09 2012-10-24 日清纺控股株式会社 Measurement method and condition setting method for cross-linking density of a tested body, laminate treatment method for a laminate plate processing product, measurement device and adjusting device for cross-linking density of a tested body
JP2014085309A (en) * 2012-10-26 2014-05-12 Sumitomo Rubber Ind Ltd Crosslinking density test method
JP2015045524A (en) * 2013-08-27 2015-03-12 東京瓦斯株式会社 Life evaluation method of rubber seal material
TWI649336B (en) * 2013-10-16 2019-02-01 艾朗希歐德意志有限公司 Determination of the degree of branching
KR101898168B1 (en) 2016-05-02 2018-10-04 주식회사 엘지화학 Method for analysis of the length of sulfur cross-linking bonds in a vulcanized rubber
KR20200041329A (en) * 2018-10-10 2020-04-21 스미또모 가가꾸 가부시키가이샤 Film for light-emitting element and light-emitting element using same
CN111316463A (en) * 2018-10-10 2020-06-19 住友化学株式会社 Film for light-emitting element and light-emitting element using same
EP3664174A4 (en) * 2018-10-10 2020-11-25 Sumitomo Chemical Company, Limited Film for light emitting element, and light emitting element using said film for light emitting element
KR102189494B1 (en) * 2018-10-10 2020-12-11 스미또모 가가꾸 가부시키가이샤 Film for light-emitting element and light-emitting element using same
US11158806B2 (en) 2018-10-10 2021-10-26 Sumitomo Chemical Company, Limited Film for light emitting device and light emitting device using the same
US11035767B1 (en) 2019-05-01 2021-06-15 The United States Of Americas As Represented By The Secretary Of The Navy Apparatus for determining swollen-polymer cross-link density
WO2021029225A1 (en) * 2019-08-09 2021-02-18 デンカ株式会社 Adhesive sheet
CN112834548A (en) * 2021-01-08 2021-05-25 上海纽迈电子科技有限公司 Cross-linking density measuring method and device

Similar Documents

Publication Publication Date Title
JP2007240359A (en) Method for measuring cross-link density of cross-linked polymer
Gao et al. Diffusion in HPMC gels. I. Determination of drug and water diffusivity by pulsed-field-gradient spin-echo NMR
Starkweather Jr Simple and complex relaxations
Ozturk et al. Temperature sensitive poly (Nt-butylacrylamide-co-acrylamide) hydrogels: synthesis and swelling behavior
Chassé et al. Precise dipolar coupling constant distribution analysis in proton multiple-quantum NMR of elastomers
Yokota et al. A 13C nuclear magnetic resonance study of covalently cross-linked gels. Effect of chemical composition, degree of cross-linking, and temperature to chain mobility
Sefcik et al. Diffusivity of gases and main‐chain cooperative motions in plasticized poly (vinyl chloride)
Litvinov et al. The density of chemical crosslinks and chain entanglements in unfilled EPDM vulcanizates as studied with low resolution, solid state 1H NMR
John et al. Main chain and segmental dynamics of semi interpenetrating polymer networks based on polyisoprene and poly (methyl methacrylate)
Nguyen et al. Self-standing single lithium ion conductor polymer network with pendant trifluoromethanesulfonylimide groups: Li+ diffusion coefficients from PFGSTE NMR
EP3410209B1 (en) Method of forming resist pattern
Martini et al. Molecular dynamics of amphiphilic random copolymers in the bulk: a 1H and 19F NMR relaxometry study
McKenna et al. Relaxation of crosslinked networks: theoretical models and apparent power law behaviour
John et al. Relaxations and chain dynamics of sequential full interpenetrating polymer networks based on natural rubber and poly (methyl methacrylate)
Gussoni et al. Elastomeric polymers. 2. NMR and NMR imaging characterization of cross-linked PDMS
JP6135971B2 (en) Test method for crosslink density
Ilg et al. Investigation of the diffusion process in cross-linked polystyrenes by means of NMR imaging and solid-state NMR spectroscopy
US6437565B1 (en) Method and system to determine physical properties
Vartapetian et al. Molecular Dynamics in Poly (N‐vinylpyrrolidone)‐Poly (ethylene glycol) Blends Investigated by the Pulsed‐Field Gradient NMR Method: Effects of Aging, Hydration and PEG Chain Length
Yasunaga et al. Effect of cross-linking on the molecular motion of water in polymer gel as studied by pulse 1H NMR and PGSE 1H NMR
Sproll et al. Structure–property correlations of ion-containing polymers for fuel cell applications
EP0536147A4 (en) Antistatic polyolefin foams and films and method of making the foam and antistatic composition
Pazur et al. Low field 1H NMR investigation of plasticizer and filler effects in epdm
JP6473123B2 (en) Rubber composition for tire
He et al. Water dynamics within a highly rigid sulfonated polyphenylene