WO2010140705A1 - Laminating device - Google Patents

Laminating device Download PDF

Info

Publication number
WO2010140705A1
WO2010140705A1 PCT/JP2010/059726 JP2010059726W WO2010140705A1 WO 2010140705 A1 WO2010140705 A1 WO 2010140705A1 JP 2010059726 W JP2010059726 W JP 2010059726W WO 2010140705 A1 WO2010140705 A1 WO 2010140705A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot plate
peripheral
temperature
main body
workpiece
Prior art date
Application number
PCT/JP2010/059726
Other languages
French (fr)
Japanese (ja)
Inventor
真規 中村
Original Assignee
日清紡メカトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡メカトロニクス株式会社 filed Critical 日清紡メカトロニクス株式会社
Publication of WO2010140705A1 publication Critical patent/WO2010140705A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1009Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using vacuum and fluid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a laminating apparatus in which a workpiece such as a solar cell module is disposed on a hot plate, and the workpiece heated by the hot plate is sandwiched between a hot plate and a pressing member for lamination.
  • the laminating apparatus has an upper case having a diaphragm that is expandable downward, and a lower case having a hot plate.
  • the laminating apparatus evacuates the space formed by the upper case and the lower case, arranges the solar cell module on the hot plate, and then heats the constituent members, and then converts the atmospheric pressure inside the upper case. Is introduced.
  • a solar cell module is pinched by a diaphragm and a hot plate, is laminated, and each constituent member of the solar cell module is bonded by a molten filler.
  • the conventional laminating apparatus is set so that the upper surface of the hot plate is divided into a plurality of heating regions, and a uniform temperature is obtained in any heating region.
  • the space formed by the upper case and the lower case is already heated by the hot plate. Therefore, when the solar cell module is transported to the space, the peripheral portion of the solar cell module is separated from the hot plate due to the temperature difference between the upper and lower surfaces of the cover glass, which is a constituent member of the solar cell module. It will warp in a manner. In the solar cell module warped in this way, only the inner part (center part) of the solar cell module is grounded on the hot plate, and then the peripheral part is grounded behind the inner part due to the pressing of the diaphragm.
  • FIG. 12A is a plan view of a state in which a solar cell module 91 is placed at the center of a hot plate 90 of a conventional laminating apparatus.
  • the hot plate 90 shown in FIG. 12A has three heating regions 93 that are all heated to the same temperature.
  • FIG.12 (b) is a figure which shows the graph which measured the temperature of the measurement points 91a, 91b, 91c of the surface of the solar cell module 91 shown to Fig.12 (a).
  • the solar cell module 91 has a width w of about 1100 mm and a depth d of about 1400 mm.
  • the measurement point 91a is a point located 10 mm inside from the corner 92 of the solar cell module 91 in the width and depth directions.
  • the measurement point 91b is a point located 10 mm inward in the width direction from the center of one long side of the solar cell module 91.
  • the measurement point 91 c is a point located at the center of the solar cell module 91.
  • the temperature change at the measurement point 91a corresponds to the characteristic line indicated by the solid line
  • the temperature change at the measurement point 91b corresponds to the characteristic line indicated by the broken line
  • the temperature change at the measurement point 91c is indicated by the alternate long and short dash line.
  • the heating plate 90 is heated so as to have a uniform temperature, it takes time to reach a uniform temperature in all the heating regions as described above, and the temperature of the heating plate is equal to the solar temperature until the heating plate 90 reaches a uniform temperature. It differs in the area
  • the temperature of the inner part (measurement point 91c) of the solar cell module 91 is high, or in the latter half of the pressurizing process, the peripheral edge of the solar cell module.
  • the temperature difference ⁇ t between the inner side portion and the peripheral portion of the solar cell module 91 becomes approximately 10 ° C. at the time when the temperature of the portion (measurement points 91a, 91b) is increased and the pressurizing step is completed. .
  • the temperature differs between the central portion and the peripheral portion of the solar cell module 91, and a time lag occurs in the time when the filler starts to melt.
  • the laminating apparatus described in Patent Document 1 described above divides the upper surface of the heater panel as a hot plate into a plurality of heating regions, and the temperature of the heating region where the solar cell module M is placed is always in any heating region. It is controlled to be the same. Therefore, similarly to the hot plate 90 shown in FIG. 12A, the temperature difference between the inner portion and the peripheral portion of the solar cell module cannot be eliminated.
  • the laminating apparatus described in Patent Document 2 described above adsorbs a translucent substrate disposed on the upper surface of the heater panel by a plurality of vacuum suction holes on a peripheral portion where warpage of the translucent substrate of the heater panel occurs. By doing so, the warp of the translucent substrate is prevented. Thus, the temperature rise in the solar cell module is made uniform by preventing the translucent substrate from warping. However, it is necessary to make a plurality of vacuum suction holes in the heater panel, which not only complicates the structure, but also limits the degree of freedom of heater arrangement in the heater panel.
  • EVA ethylene vinyl acetate
  • PVB polyvinyl butyral resin
  • other fillers are properly used according to material costs, processing characteristics, required strength, and the like.
  • characteristics such as the melting temperature differ depending on the filler used. Therefore, since the melting temperature varies depending on the type of filler used, in addition to the difference in temperature between the peripheral portion and the inner portion of the solar cell module as described above, the filler starts to melt. It becomes difficult to control the time to perform uniformly.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to make it possible to uniformize the temperature in the workpiece during lamination.
  • a laminating apparatus of the present invention has an upper chamber and a lower chamber partitioned by a pressing member, and disposes a workpiece on a hot plate provided in the lower chamber, and A laminating apparatus for laminating the workpiece heated by a plate by vacuuming the lower chamber and introducing air into the upper chamber and sandwiching and pressing between the hot plate and the pressing member.
  • the peripheral heating area for heating the peripheral edge of the workpiece and the inner heating area inside the peripheral edge of the workpiece are separately temperature controlled, and the peripheral edge and the inner edge of the workpiece are substantially the same. Heating to temperature.
  • the temperature of the peripheral heating region and the inner heating region are separately controlled, and a time for starting the melting of the filler in the workpiece between the peripheral portion and the inner portion of the workpiece is set. It is characterized by being substantially identical.
  • the hot plate can be configured separately from a peripheral hot plate main body corresponding to the peripheral heating region and an inner hot plate main body corresponding to the inner heating region.
  • the hot plate may be configured by connecting a peripheral hot plate main body corresponding to the peripheral heating region and an inner hot plate main body corresponding to the inner heating region via a mounting plate on which a workpiece is placed. it can.
  • the peripheral hot plate body corresponding to the peripheral heating region can be configured separately for each side of the workpiece disposed in the peripheral heating region.
  • the temperature in the workpiece during lamination can be made uniform.
  • the peripheral heating region for heating the peripheral portion of the workpiece and the inner heating region inside the peripheral portion of the workpiece are separately temperature controlled, The peripheral part and the inner part are heated to substantially the same temperature.
  • the filler constituting the workpiece can be melted almost simultaneously in the workpiece, bubbles can be prevented from remaining in the workpiece.
  • the peripheral heating area and the inner heating area are separately temperature controlled, and the filler in the workpiece starts to melt at the peripheral edge and the inner edge of the workpiece. The time to do is made substantially the same. In this case, it is possible to prevent bubbles from remaining in the workpiece.
  • the said hot plate is comprised separately by the peripheral hot plate main body corresponding to the said peripheral heating area
  • temperature control between the peripheral heating region and the inner heating region is facilitated, and processing for attaching a heat transfer body such as a sheath heater to the peripheral heating region and the inner heating region can be easily performed.
  • the hot plate is configured such that a peripheral hot plate main body corresponding to the peripheral heating region and an inner hot plate main body corresponding to the inner heating region are connected via a mounting plate for mounting a workpiece. Has been.
  • the peripheral hot plate main body corresponding to the peripheral heating region and the inner hot plate main body corresponding to the inner heating region can be easily connected.
  • the peripheral hot plate main body corresponding to the peripheral heating region is configured separately for each side of the workpiece disposed in the peripheral heating region. In this case, the process etc. which attach a heat transfer body, such as a sheath heater, to a peripheral heat-plate main body can be performed easily.
  • FIG. 1 is a cross-sectional view showing a configuration of a solar cell module as a workpiece.
  • FIG. 2 is a diagram showing the overall configuration of the laminating apparatus.
  • FIG. 3 is a side sectional view of the laminating portion of the laminating apparatus.
  • FIG. 4 is a cross-sectional side view of the laminating unit during laminating by the laminating apparatus.
  • FIG. 5 is a view for explaining the temperature control region of the hot plate and the configuration of the temperature control device.
  • FIG. 6 is a diagram showing a detailed configuration of the hot plate.
  • FIG. 7 is a diagram for explaining a method of embedding a heat transfer body in the hot plate body.
  • FIG. 1 is a cross-sectional view showing a configuration of a solar cell module as a workpiece.
  • FIG. 2 is a diagram showing the overall configuration of the laminating apparatus.
  • FIG. 3 is a side sectional view of the laminating portion of the laminating apparatus.
  • FIG. 8 is a diagram for explaining a change in the surface temperature of the workpiece heated by the hot platen according to the present embodiment.
  • FIG. 9 is a view showing a hot plate in which a hot plate main body for heating the peripheral heating region is integrally formed.
  • FIG. 10 is a view showing a hot plate configured by connecting hot plate bodies.
  • FIG. 11 is a diagram showing a hot plate configured by one hot plate main body.
  • FIG. 12 is a diagram for explaining a change in the surface temperature of a workpiece heated by a conventional hot platen.
  • FIG. 1 is a cross-sectional view showing a configuration of a solar cell module using a crystal cell as a workpiece 10.
  • the solar cell module 10 has a configuration in which a string 15 is sandwiched between a transparent cover glass 11 and a back material 12 via fillers 13 and 14.
  • a material such as polyethylene resin is used for the back material 12.
  • EVA ethylene vinyl acetate
  • PVB polyvinyl butyral
  • the string 15 has a configuration in which solar cells 18 as crystal cells are connected between electrodes 16 and 17 via lead wires 19.
  • a solar cell module generally called a thin film type can be targeted.
  • a power generation element composed of a transparent electrode, a semiconductor, and a back electrode is deposited on a transparent cover glass in advance.
  • the cover glass is disposed downward, and the power generation element on the cover glass is covered with a filler. Further, the back material is covered on the filler.
  • the components of the thin film solar cell module are bonded by vacuum heating lamination in such a state.
  • FIG. 2 is a diagram illustrating an overall configuration of the laminating apparatus 100 according to the present embodiment.
  • the laminating apparatus 100 includes an upper case 110, a lower case 120, and a conveyance belt 130 for conveying the workpiece 10.
  • the conveyor belt 130 conveys the workpiece 10 between the upper case 110 and the lower case 120.
  • the laminating apparatus 100 is provided with a carry-in conveyor 200 for conveying the workpiece 10 before laminating to the laminating apparatus 100.
  • the laminating apparatus 100 is provided with a carry-out conveyor 300 for carrying out the workpiece 10 after lamination from the laminating apparatus 100.
  • the carry-in conveyor 200 and the carry-out conveyor 300 are connected in series.
  • the workpiece 10 is transferred from the carry-in conveyor 200 to the conveyance belt 130 and from the conveyance belt 130 to the carry-out conveyor 300.
  • the laminating apparatus 100 is provided with a lifting device (not shown) composed of a cylinder, a piston rod, and the like.
  • the lifting device can lift and lower the upper case 110 with respect to the lower case 120 while maintaining the horizontal state.
  • the elevating device lowers the upper case 110 so that the internal space between the upper case 110 and the lower case 120 can be sealed.
  • FIG. 3 is a side sectional view of a laminating unit 101 that laminates the workpiece 10 in the laminating apparatus 100.
  • FIG. 4 is a cross-sectional side view of the laminating unit 101 during laminating.
  • the upper case 110 is formed with a space opened downward. In this space, a diaphragm 112 is provided so as to partition the space horizontally.
  • the diaphragm 112 is formed of heat-resistant rubber such as silicone rubber. As will be described later, the diaphragm 112 functions as a pressing member that presses the workpiece 10 and performs lamination.
  • a space (upper chamber 113) partitioned by a diaphragm 112 is formed in the upper case 110.
  • An intake / exhaust port 114 communicating with the upper chamber 113 is provided on the upper surface of the upper case 110.
  • the inside of the upper chamber 113 can be evacuated and the atmosphere can be introduced into the upper chamber 113 via the intake / exhaust port 114.
  • a space (lower chamber 121) opened upward is formed in the lower case 120.
  • a hot plate 122 panel-shaped heater
  • the hot plate 122 is supported by a support member erected on the bottom surface of the lower case 120 so as to maintain a horizontal state.
  • the hot plate 122 is supported so that the surface thereof is substantially level with the opening surface of the lower chamber 121.
  • An intake / exhaust port 123 communicating with the lower chamber 121 is provided on the lower surface of the lower case 120.
  • the inside of the lower chamber 121 can be evacuated and the atmosphere can be introduced into the lower chamber 121 through the intake / exhaust port 123.
  • a conveyor belt 130 is movably provided between the upper case 110 and the lower case 120 and above the heat plate 122. The conveyor belt 130 receives the workpiece 10 before lamination from the carry-in conveyor 200 of FIG. 2 and accurately conveys it to the central position of the laminating unit 101, that is, the central part of the hot plate 122.
  • the conveyance belt 130 delivers the workpiece 10 after lamination to the carry-out conveyor 300 in FIG.
  • a release sheet 140 is provided between the upper case 110 and the lower case 120 and above the conveyor belt 130.
  • the release sheet 140 prevents the fillers 13 and 14 from adhering to the diaphragm 112 when the fillers 13 and 14 (see FIG. 1) of the workpiece 10 are melted.
  • the laminating process by the laminating apparatus 100 according to the present embodiment will be described more specifically. First, as shown in FIG. 3, the conveyance belt 130 conveys the workpiece 10 to the center position of the laminate unit 101.
  • the workpiece 10 is held at a position spaced apart from the hot plate 122 by raising a holding pin (not shown) which is arranged in the lower chamber 121 and the hot plate 122 and can move up and down. May be.
  • the lifting device lowers the upper case 110.
  • the internal space between the upper case 110 and the lower case 120 is sealed as shown in FIG. That is, the upper chamber 113 and the lower chamber 121 can be kept sealed inside the upper case 110 and the lower case 120, respectively.
  • the laminating apparatus 100 evacuates the upper chamber 113 through the intake / exhaust port 114 of the upper case 110.
  • the laminating apparatus 100 evacuates the lower chamber 121 through the intake / exhaust port 123 of the lower case 120 (vacuum process). Due to the evacuation of the lower chamber 121, the bubbles contained in the workpiece 10 are sent out of the workpiece 10.
  • the holding pin is lowered from substantially the second half of the vacuum process to move the workpiece 10. Is placed on the hot plate 122. Since the workpiece 10 is heated by the hot plate 122 heated by the temperature control of a temperature control device described later, the fillers 13 and 14 included in the workpiece 10 are also heated.
  • the laminating apparatus 100 introduces air into the upper chamber 113 through the intake / exhaust port 114 of the upper case 110 while maintaining the vacuum state of the lower chamber 121.
  • a pressure difference is generated between the upper chamber 113 and the lower chamber 121, so that the diaphragm 112 expands.
  • the diaphragm 112 is pushed downward as shown in FIG. 4 (pressurizing step).
  • the workpiece 10 is sandwiched between the diaphragm 112 extruded downward and the hot plate 122, and the constituent members are bonded to each other by the fillers 13 and 14 melted by heating.
  • the laminating apparatus 100 is a so-called all-crosslinking type laminating apparatus in which the fillers 13 and 14 are completely melted and the respective constituent members are bonded. At this time, although the fillers 13 and 14 may protrude from between the cover glass 11 and the back surface material 12, the protruding fillers 13 and 14 stick to the release sheet 140. By interposing the release sheet 140 in this way, the protruding fillers 13 and 14 are prevented from adhering to the diaphragm 112. Therefore, the release sheet 140 prevents the fillers 13 and 14 from adhering to the workpiece 10 to be laminated next from the diaphragm 112.
  • FIG. 5 is a diagram illustrating the heat plate 122 and the temperature control device 70 that controls the temperature of the heat plate 122.
  • the heat plate 122 has a size that fits in the lower case 120 as a whole, and is larger than the solar cell module 10 indicated by a two-dot chain line in FIG.
  • the dimensions of the hot plate 122 of the present embodiment are a width Wh of about 1200 mm and a depth Dh of about 1500 mm.
  • the solar cell module 10 heated by the hot plate 122 has a width w of about 1100 mm and a depth d of about 1400 mm, and is rectangular in plan view.
  • the hot plate 122 includes an inner heating region S1 that heats the inner portion (center portion) of the solar cell module 10 when the solar cell module 10 is placed at the center of the hot plate 122, and a peripheral portion of the solar cell module 10.
  • region S1 is an area
  • the dimensions of the inner heating region S1 of the present embodiment are a width Wa of about 940 mm and a depth Da of about 1250 mm, and are substantially rectangular in plan view.
  • the shape of the inner heating region S1 is substantially similar to the solar cell module 10.
  • the area of the inner heating region S1 of the present embodiment is 76% of the area of the entire solar cell module 10.
  • the inner heating region S1 of the hot plate 122 heats the inner portion, that is, the central portion of the solar cell module 10.
  • region S1 is an area
  • the peripheral heating regions S2 to S5 are located outside the inner heating region S1 and heat the entire periphery of the peripheral portion of the solar cell module 10.
  • peripheral heating regions S2 to S5 are only one region as a whole, but are divided into a plurality in this embodiment.
  • the first peripheral heating region S ⁇ b> 2 heats one side of the long side in the peripheral portion of the solar cell module 10.
  • the second peripheral heating region S ⁇ b> 3 heats the other side of the long side of the peripheral portion of the solar cell module 10.
  • the first peripheral heating region S2 and the second peripheral heating region S3 have an elongated, substantially rectangular shape that is long in the depth direction in plan view.
  • the third peripheral heating region S ⁇ b> 4 heats one side of the short side of the peripheral part of the solar cell module 10.
  • the fourth peripheral heating region S ⁇ b> 5 heats the other side of the short side of the peripheral portion of the solar cell module 10.
  • the third peripheral heating region S4 and the fourth peripheral heating region S5 have an elongated, substantially rectangular shape that is long in the width direction in plan view.
  • the peripheral heating regions S1 to S5 are generally continuous from one side of the long side of the peripheral part of the solar cell module 10 to one side of the short side, the other side of the long side, and the other side of the long side. It is an area.
  • the dimensions of the peripheral heating regions S2 to S5 are preferably substantially the same region as the range in which the solar cell module 10 is not grounded to the heat plate 122 when the solar cell module 10 is warped due to heat. .
  • the dimensions of the peripheral heating regions S2 to S5 are changed depending on the size of the solar cell module 10. Temperature sensors such as thermocouples are respectively embedded in the inner heating area S1 and the peripheral heating areas S2 to S5. Then, the temperature control device 70, based on the temperature data detected by the temperature sensor, sets the inner heating region S1 and the peripheral edge so that the inner heating region S1 and the peripheral heating regions S2 to S5 have the same set temperature. The temperature of the heating regions S2 to S5 can be controlled separately. As described above, the peripheral heating area of the hot plate 122 according to the present embodiment is divided into the first peripheral heating area S2 to the fourth peripheral heating area S5. The temperature can be separately controlled between the peripheral heating region S2 and the fourth peripheral heating region S5.
  • FIG. 6A is a plan view of the hot plate 122.
  • FIG. 6B is a front view of the hot plate 122.
  • FIG. 6C is a bottom view of the hot plate 122.
  • the heating plate 122 includes a mounting plate 20 having a mounting surface 21 on which the solar cell module 10 shown by the two-dot chain line in FIGS. 6A and 6B is mounted, and a mounting surface 21 of the mounting plate 20.
  • a hot plate main body 30 (first hot plate main body 31 to fifth hot plate main body 35) attached to the mounting surface 22 opposite to the above is connected.
  • the mounting plate 20 is disposed on the upper side of the hot plate main body 30.
  • the mounting plate 20 is formed in the panel shape which can mount the to-be-processed object 10 with aluminum or aluminum alloy.
  • the hot plate main body 30 is attached to the mounting surface 22 of the mounting plate 20 via a fixing screw or the like.
  • the hot plate main body 30 is made of aluminum or an aluminum alloy.
  • the hot plate main body 30 of the present embodiment includes a first hot plate main body 31 to a fifth hot plate main body 35. Since the first hot plate body 31 to the fifth hot plate body 35 are formed with the same thickness Tp, the entire hot plate 122 is also formed with a constant thickness Th (see FIG. 6B). ).
  • the first hot plate body 31 is attached to the center of the mounting plate 20 when the hot plate 122 is viewed from the back side.
  • the first hot plate body 31 has a role of heating the above-described inner heating region S1 and has the same size as the inner heating region S1.
  • a plurality of housing grooves are processed on the back surface of the first hot plate body 31, and a sheath heater 41 as a heat transfer body for heating the first hot plate body 31 is formed in the housing groove. Buried.
  • three sheath heaters 41 formed by bending in a U shape when viewed from the back surface are embedded in parallel.
  • each sheath heater 41 is connected to the temperature control apparatus 70 mentioned above from each accommodation groove
  • the second hot plate main body 32 to the fifth hot plate main body 35 surround the periphery of the first hot plate main body 31 when the hot plate 122 is viewed from the back side. It is attached. That is, the second hot plate main body 32 to the fifth hot plate main body 35 have a role of heating the peripheral heating regions S2 to S5, respectively, and have the same size as the peripheral heating regions S2 to S5, respectively. is there.
  • the receiving grooves are respectively processed into a substantially linear shape or a substantially elongated ring shape, and the second hot plate main body 32 is respectively provided in the receiving grooves.
  • Sheath heaters 42 to 45 as heat transfer bodies for heating the fifth hot plate main body 35 are embedded.
  • sheath heaters 42 and 43 formed in a substantially linear shape are respectively embedded.
  • sheath heaters 44 and 45 formed by bending into a substantially elongated ring shape when viewed from the back surface are embedded in the fourth hot plate main body 34 and the fifth hot plate main body 35 of the present embodiment, respectively.
  • the sheath heaters 42 to 45 are connected to the above-described temperature control device 70 from each housing groove. Therefore, the temperature control device 70 heats the sheath heaters 42 to 45 so that the entire peripheral heating regions S2 to S5 are brought to a uniform temperature via the second hot plate main body 32 to the fifth hot plate main body 35. Can be controlled. In some cases, the temperature controller 70 controls the temperatures of the second hot plate main body 32 to the fifth hot plate main body 35, respectively, and separately controls the temperatures of the peripheral heating region S2 to the peripheral heating region S5. May be. Note that there is a slight gap between the first hot plate main body 32 and the fifth hot plate main body 35 so that the temperatures of the adjacent hot plate main bodies do not interfere with each other.
  • FIGS. 7A and 7B are views showing a partial cross section of the hot plate 122.
  • the heat transfer body is the sheath heater 50.
  • the sheath heater 50 includes a nichrome wire 51 processed in a coil shape at the center, an insulating material 52 such as magnesium oxide filled around the nichrome wire 51, and a sheath 53 (an outer skin forming the outer periphery) covering the entire circumference of the insulating material 52. ).
  • FIG. 7A is a cross-sectional view showing a heat plate 122 in which the sheath heater 50 is embedded by crimping the sheath heater 50 in the accommodation groove 61 of the heat plate main body 30.
  • the sheath heater 50 is housed in the housing groove 61 that has been processed in advance with substantially the same dimensions as the sheath heater 50.
  • the opening edge of the housing groove 61 and the sheath heater 50 are crimped from the back surface of the hot plate main body 30.
  • the sheath heater 50 can be embed
  • the hot plate main body 30 is attached to the mounting surface 22 of the mounting plate 20 using the fixing screw 65.
  • the sheath heaters 41 to 45 are similarly embedded in the first hot plate main body 31 to the fifth hot plate main body 35 and attached to the mounting surface 22 of the mounting plate 20.
  • the hot plate 122 can be easily manufactured.
  • the unevenness of the mounting surface assumed when the hot plate main body 122 is simply connected to form the hot plate 122 can be eliminated.
  • FIG. 7B is a cross-sectional view showing a hot plate 122 in which the sheath heater 50 is embedded by sandwiching the sheath heater 50 between the upper and lower hot plate bodies 30a and 30b.
  • the sheath heaters 50 are accommodated in the accommodation grooves 61a and 61b that are previously processed in the upper and lower hot plate bodies 30 (30a and 30b) in the same dimensions as the substantially semicircular shape of the sheath heater 50, respectively.
  • the sheath heater 50 is screwed with bolts 66 or the like with the hot plate bodies 30a and 30b and sandwiched from above and below, so that the sheath heater 50 can be embedded in the receiving grooves 61a and 61b as shown in FIG. .
  • the hot plate main body 30 (30a, 30b) is attached to the mounting surface 22 of the mounting plate 20 using the fixing screw 65.
  • the sheath heaters 41 to 45 are similarly embedded and attached to the mounting surface 22 of the mounting plate 20, whereby the hot plate 122 is manufactured. can do.
  • the method of embedding the sheath heater 50 in the hot plate body 30 is not limited to the method described above.
  • the sheath heater 50 may be embedded in the hot plate main body 30 by casting a casting material such as aluminum constituting the hot plate main body 30 around the sheath heater 50.
  • a heat pipe (not shown) can be used as the heat transfer body.
  • the heat pipe is composed of a hollow tube member and a heat transfer medium such as heated oil flowing in the tube member.
  • the heat plate 122 can be manufactured by embedding such a heat pipe in the heat plate main body 30 in the same manner as the embedding method and the embedding method shown in FIGS.
  • Fig.8 (a) is a top view of the state which mounted the solar cell module 10 in the center of the mounting surface 21 of the hot plate 122 of the laminating apparatus 100 of this embodiment.
  • FIG.8 (b) is a figure which shows the graph which measured the temperature of the measurement points 81a, 81b, 81c of the surface of the solar cell module 10 shown to Fig.8 (a).
  • the dimensions of the hot plate 122, the inner heating area S1, the peripheral heating areas S2 to S5, and the solar cell module 10 are the same as those described in FIG.
  • the measurement point 81a is a point located 10 mm inside from the corner 82 of the solar cell module 10 in the width and depth directions.
  • the measurement point 81b is a point located 10 mm inward in the width direction from the center of one long side of the solar cell module 10. That is, the measurement points 81a and 81b are heated by the peripheral heating region S2 of the hot plate 122.
  • the measurement point 81 c is a point located at the center of the solar cell module 10. That is, the measurement point 81 c is heated by the inner heating region S 1 of the hot plate 122.
  • FIG. 8B is a diagram showing a graph in which the temperature of the hot plate 122 controlled by the temperature control device 70 is measured.
  • the temperature change in the peripheral heating region S2 corresponds to a characteristic line indicated by a solid line
  • the temperature change in the inner heating region S1 corresponds to a characteristic line indicated by a one-dot chain line.
  • the temperature change graph is shown by the rise of a holding pin (not shown) that can be moved up and down and arranged in the lower chamber 121 or the hot plate 122 until substantially the first half of the vacuum process.
  • a holding pin not shown
  • the temperature controller 70 heats the inner heating region S1 and the peripheral heating regions S2 to S5 of the hot plate 122 in the same manner as shown in FIG. By controlling, as shown by the first half of the vacuum process in FIG.
  • the solar cell module 10 is placed on the hot plate 122 by the lowering of the holding pins in the second half of the vacuum process, as shown in the c1 part of FIG. 8C, the inner heating region S1 of the hot plate 122. Only the temperature drops rapidly. This is because when the holding pin is raised and the solar cell module 10 is separated from the hot plate 122 in the first half of the vacuum process, due to the temperature difference between the upper and lower sides of the cover glass 11 of the solar cell module 10, This is because the peripheral edge has warped in a direction further away from the hot plate 122.
  • the temperature controller 70 heats the inner heating area S1 so as to compensate for the temperature of the deprived inner heating area S1, as indicated by a portion c3 in FIG. 8C. Increase the temperature of S1.
  • the peripheral heating region S2 of the hot plate 122 is not grounded to the solar cell module 10 even in the latter half of the vacuum process, so the temperature of the peripheral heating region S2 does not decrease.
  • the temperature of the peripheral heating region S2 of the hot plate 122 is rapidly lowered. This is because the peripheral portion of the solar cell module 10 is grounded to the peripheral heating region S2 by the diaphragm 112, and the heat of the peripheral heating region S2 of the hot plate 122 is taken away by the solar cell module 10. Therefore, as shown in the a2 portion of FIG. 8B, the temperature of the peripheral portion (measurement points 81a and 81b) of the solar cell module 10 rises.
  • the temperature control device 70 is heated to compensate for the temperature of the deprived peripheral heating region S2, and the temperature of the peripheral heating region S2 becomes the target temperature.
  • the heating control is performed.
  • the temperature control device 70 heats and raises the temperature of the inner heating region S1 so as to match the increase in the temperature of the peripheral heating region S2.
  • the peripheral portion (measurement points 81a, 81b) and the inner portion (measurement point 81c) of the solar cell module 10 The temperature can be made uniform.
  • the temperature difference between the measurement points 81a, 81b, 81c of the solar cell module 10 with respect to the set temperature can be within ⁇ 5%.
  • the temperature at the final measurement point 81a shown in FIG. 8B is 147.5 ° C.
  • the temperature at the measurement point 81b is 149.3 ° C.
  • the temperature at the measurement point 81c is 151.3 ° C. ° C.
  • the laminating apparatus 100 can cause the temperature of the inner heating region to follow the temperature of the peripheral heating region or the temperature of the peripheral heating region to the temperature of the inner heating region by the temperature control device 70.
  • the temperature in the module 10 can be made uniform.
  • the time for the filler to start melting can be made substantially the same, and high quality in which no bubbles are generated inside.
  • the solar cell module 10 can be provided. Even if the temperature control device 70 increases the temperature of the hot plate 122 more rapidly so that the filler can start melting in a short time, the inner heating region and the peripheral heating region of the hot plate 122 are separated separately. By controlling the temperature, the time for the filler to start melting in the solar cell module 10 can be made substantially the same.
  • the temperature control apparatus 70 can control the temperature around the solar cell module 10 and the amount of supplied heat, it can reduce the deterioration of the temperature distribution of the solar cell module 10 due to warping.
  • the process in which the temperature control device 70 described above controls the temperature of the inner heating region and the peripheral heating region of the hot plate 122 is not limited to the above description, and the temperature in the solar cell module 10 is made uniform. Any temperature control can be used as long as it is possible.
  • the temperature is lowered in advance in the inner heating region and the peripheral heating region of the hot plate 122 in advance, respectively, immediately before the temperature is lowered so that the temperature does not decrease in the inner heating region and the peripheral heating region.
  • the results of the temperature change graphs shown in FIGS. 8A and 8B described above indicate that the workpiece 10 is held at a position separated from the hot plate 122 by a holding pin or the like until approximately the first half of the vacuum process. It was a result when using a laminating apparatus of the type.
  • the present invention is not limited to such a laminating apparatus, and the conveying belt 130 can be applied to a laminating apparatus of the type in which the solar cell module 10 is placed on the hot plate 122 from the beginning.
  • Various kinds of fillers for the solar cell module 10 are used. That is, the characteristics of the filler are different, for example, the melting temperature is different depending on the type of the filler.
  • the temperature is quickly controlled according to the temperature change between the inner heating area and the peripheral heating area of the hot plate 122, as described above, assuming that the fillers are different. Therefore, the solar cell module 10 having stable quality can be manufactured even if the characteristics of the filler are different.
  • FIG. 9A is a plan view of the hot plate 150.
  • FIG. 9B is a front view of the heat plate 150.
  • FIG. 9C is a bottom view of the hot plate 150.
  • symbol is attached
  • the hot plate 150 includes a mounting plate 20 having a mounting surface 21 on which the solar cell module 10 is mounted, and a hot plate main body 151 (first plate) attached to a mounting surface 22 opposite to the mounting surface 21 of the mounting plate 20.
  • the first hot plate main body 31 and the second hot plate main body 152) are connected to each other.
  • the hot plate main body 151 is configured to include a first hot plate main body 31 and a second hot plate main body 152.
  • the first hot plate main body 31 is attached to the center of the mounting plate 20 when the hot plate 151 is viewed from the back side. That is, the first hot plate body 31 is the same size as the inner heating region S1.
  • a plurality of housing grooves are processed on the back surface of the first hot plate main body 31 over the entire back surface, and a sheath heater 41 similar to that shown in FIG. 6 is embedded in the housing groove.
  • the second hot plate main body 152 has a mouth shape that surrounds the first hot plate main body 31 when the hot plate 150 is viewed from the back side. There is a slight gap between the second hot plate main body 152 and the first hot plate main body 31.
  • the second hot plate main body 152 has a role of heating the peripheral heating region S2, and has the same size as the peripheral heating region S2.
  • a sheath heater 153 is embedded in the back surface of the second hot plate main body 152.
  • the sheath heater 153 is embedded at substantially the center in the width direction of each side of the second hot plate main body 152. Although not shown, the sheath heater 153 is connected to the temperature control device 70 described above from the accommodation groove. Therefore, the temperature control device 70 can control the entire peripheral heating region S2 to a uniform temperature via the second hot plate main body 152 by heating the sheath heater 153. Further, in the hot plate 122 shown in FIG. 6 described above, the first hot plate main body 31 for heating the inner heating region and the hot plate main body for heating the peripheral heating region (the second hot plate main body 32 to the fifth hot plate).
  • FIG. 10A is a plan view of the hot plate 160.
  • FIG. 10B is a front view of the hot plate 160.
  • FIG. 10C is a bottom view of the hot plate 160.
  • the same components as those of the hot plate 150 shown in FIG. 9 described above are denoted by the same reference numerals, and description thereof is omitted. As shown in FIGS.
  • the hot plate 160 includes the first hot plate main body 31 and the second hot plate main body 152. Is not included. Therefore, the solar cell module 10 is placed directly on the first hot plate main body 31 and the second hot plate main body 152. Then, the first hot plate main body 31 and the second hot plate main body 152 are directly connected via the mounting plate 161 shown in FIGS. 10B and 10C. Specifically, as shown in the partial cross-sectional enlarged view of the portion C in FIG. 10B, the fixing is performed through the mounting plate 161 straddling the first hot plate main body 31 and the second hot plate main body 152.
  • Screws 162 are screwed to the first hot plate main body 31 and the second hot plate main body 152.
  • the hot plate 160 By configuring the hot plate 160 in this way, the first hot plate main body 31 and the second hot plate main body 152 can be connected without using the mounting plate.
  • the above-described hot plate 122 shown in FIG. 6 has been described with respect to a case where the hot plate 122 includes a plurality of hot plate bodies (first hot plate body 31 to fifth hot plate body 35) and the mounting plate 20. You may comprise a hot plate with one hot plate main body.
  • FIG. 11A is a plan view of the hot plate 170.
  • FIG. 11B is a front view of the hot plate 170.
  • FIG. 11C is a bottom view of the heat plate 170.
  • a sheath heater 41 for heating the inner heating region S1 is embedded in the back side of the hot plate main body 171.
  • a sheath heater 153 for heating the peripheral heating region S2 is embedded on the back side of the hot plate main body 171.
  • the temperature control device 70 can control the inner heating region S1 and the peripheral heating region S2 to uniform temperatures by heating the sheath heaters 41 and 153, respectively. By configuring the hot plate 170 in this way, the configuration of the hot plate can be simplified.
  • the peripheral heating area and the inner heating area of the hot plate of the present embodiment are configured according to the size of the solar cell module 10. Therefore, when heating solar cell modules 10 having different sizes in one laminating apparatus 100, for example, two or more laminate portions are stacked in the vertical direction, and the inner heating region and the peripheral heating region having different sizes in each step. You may provide the hot plate 122 which has. Further, two or more hot plates having inner heating regions and peripheral heating regions of different sizes may be provided adjacent to one hot plate. Moreover, you may comprise so that it can replace

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The temperature within a workpiece in a laminating process can be made uniform. A laminating device has upper and lower chambers partitioned by a pressing member. In the laminating device, a workpiece (10) is placed on a heating plate (122) provided in the lower chamber. The lower chamber is brought into a vacuum state and atmosphere is introduced into the upper chamber, and then the workpiece (10) heated by the heating plate (122) is pressured between the heating plate (122) and the pressing member, thereby obtaining a laminate. The heating plate (122) includes periphery heating regions (S2 to S5) for heating the periphery portion of the workpiece (10) and an inside heating region (S1) inside the periphery portion of the workpiece (10), which are separately temperature-controlled, so that the periphery portion and inside portion of the workpiece (10) are heated substantially to the same temperature.

Description

ラミネート装置Laminating equipment
 本発明は、熱板上に太陽電池モジュール等の被加工物を配置し、熱板により加熱した被加工物を熱板と押圧部材とで挟圧してラミネートするラミネート装置に関するものである。 The present invention relates to a laminating apparatus in which a workpiece such as a solar cell module is disposed on a hot plate, and the workpiece heated by the hot plate is sandwiched between a hot plate and a pressing member for lamination.
 従来から、太陽電池モジュールを製造する場合、ラミネート装置が使用されている(特許文献1および2参照)。ラミネート装置は、下方向に向けて膨張自在なダイヤフラムを有する上ケースと、熱板を有する下ケースとを有している。太陽電池モジュールをラミネートする際、まず、構成部材を重ね合わせた太陽電池モジュールを、上ケースと下ケースとで形成される空間に搬送する。次に、ラミネート装置は、上ケースと下ケースとで形成される空間を真空状態にし、熱板上に太陽電池モジュールを配置した後、構成部材を加熱した状態で、上ケースの内部に大気圧を導入する。このようにすることで、太陽電池モジュールは、ダイヤフラムと熱板とで挟圧されて、ラミネートされ、太陽電池モジュールの各構成部材が溶融された充填材により接着される。
特開2008−47766号公報 特開2004−31739号公報
Conventionally, when manufacturing a solar cell module, a laminating apparatus has been used (see Patent Documents 1 and 2). The laminating apparatus has an upper case having a diaphragm that is expandable downward, and a lower case having a hot plate. When laminating a solar cell module, first, the solar cell module on which the constituent members are superimposed is transported to a space formed by the upper case and the lower case. Next, the laminating apparatus evacuates the space formed by the upper case and the lower case, arranges the solar cell module on the hot plate, and then heats the constituent members, and then converts the atmospheric pressure inside the upper case. Is introduced. By doing in this way, a solar cell module is pinched by a diaphragm and a hot plate, is laminated, and each constituent member of the solar cell module is bonded by a molten filler.
JP 2008-47766 A JP 2004-31739 A
 ここで、従来のラミネート装置は、熱板の上面を複数の加熱領域に分割して、何れの加熱領域でも均一の温度になるように設定されている。しかしながら、上ケースと下ケースとで形成される空間は、熱板によりすでに加熱されている。したがって、太陽電池モジュールが、その空間に搬送されると、太陽電池モジュールの構成部材であるカバーガラスの上下面の温度差等の影響により、太陽電池モジュールの周縁部が熱板から離間するような態様で反ってしまう。このように反った太陽電池モジュールでは、太陽電池モジュールの内側部(中央部)のみが熱板上に接地し、その後、周縁部がダイヤフラムの押圧によって内側部に遅れて接地する。そして、熱板は、太陽電池モジュールが接地した箇所から、太陽電池モジュールに熱を奪われるため、太陽電池モジュールが接地する箇所やそのタイミングによって、温度が急変してしまう。このような場合、何れの加熱領域の温度に基づいて熱板の温度を均一にするか等が問題となり、全ての加熱領域の温度を均一にするまでに、かなりの時間を要してしまう。また、熱板の全ての加熱領域において、均一の温度になるまでは、太陽電池モジュール内でも、その内側部と周縁部とで温度が異なってしまい、周縁部の温度が高くて周縁部の充填材が最初に溶融し、内側部の温度が低くて充填材が溶融しないという現象が生じてしまう。すなわち、太陽電池モジュールの周縁部と内側部とで温度が異なり、充填材が溶融を開始する時間にタイムラグが生じてしまう。
 ここで、図12を参照して、従来のラミネート装置の熱板90により太陽電池モジュール91を加熱したときの太陽電池モジュール91内の温度変化について説明する。
 図12(a)は、従来のラミネート装置の熱板90の中央に太陽電池モジュール91を載置した状態の平面図である。図12(a)に示す熱板90は、何れも同じ温度に加熱された加熱領域93を3つ有している。また、図12(b)は、図12(a)に示す太陽電池モジュール91の表面の測定点91a、91b、91cの温度を測定したグラフを示す図である。ここで、太陽電池モジュール91の寸法は、幅wが約1100mm、奥行きdが約1400mmである。また、測定点91aは、太陽電池モジュール91の角92から幅および奥行き方向それぞれ10mm内側に位置する点である。また、測定点91bは、太陽電池モジュール91の一方の長辺の中心から幅方向に10mm内側に位置する点である。また、測定点91cは、太陽電池モジュール91の中央に位置する点である。図12(b)において、測定点91aの温度変化が実線で示す特性線に対応し、測定点91bの温度変化が破線で示す特性線に対応し、測定点91cの温度変化が一点鎖線で示す特性線に対応する。
 熱板90が均一の温度になるように加熱した場合、上述したように全ての加熱領域で均一の温度になるまでには時間を要し、均一の温度になるまで熱板の温度は、太陽電池モジュールの周縁部と内側部とを加熱する領域とで異なってくる。したがって、図12(b)に示すように、ラミネート工程内における真空工程では、太陽電池モジュール91の内側部(測定点91c)の温度が高かったり、加圧工程の後半では、太陽電池モジュールの周縁部(測定点91a、91b)の温度が高くなったりして、加圧工程が終了する時点では太陽電池モジュール91の内側部と周縁部との温度差Δtは、略10℃にもなってしまう。このように、太陽電池モジュール91の中央部と周縁部とで温度が異なり、充填材が溶融を開始する時間にタイムラグが生じてしまう。太陽電池モジュール91の周縁部の充填材が、最初に溶融してしまうと、太陽電池モジュール91内の内側部の空気を脱気することができず、太陽電池モジュール91内に気泡が残ってしまう。気泡が残った太陽電池モジュール91を屋外に設置すると、気泡が膨張して、太陽電池モジュール91に悪い影響を与えてしまう。
 上述した特許文献1に記載のラミネート装置は、熱板としてのヒータ盤の上面を複数の加熱領域に分割して、太陽電池モジュールMが載置される加熱領域の温度が何れの加熱領域でも常に同じになるように制御されている。したがって、図12(a)に示す熱板90と同様、太陽電池モジュールの内側部と周縁部との温度差を解消することができない。
 また、上述した特許文献2に記載のラミネート装置は、ヒータ盤の上面に配置される透光性基板を、ヒータ盤の透光性基板の反りが発生する周縁部に複数の真空吸着孔により吸着させることにより、透光性基板の反りを防止させる。このように透光性基板の反りを防止させることにより、太陽電池モジュール内の温度上昇を均一化させている。しかしながら、ヒータ盤に複数の真空吸着孔を穿設する必要があり、構造が複雑になってしまうばかりでなく、ヒータ盤内のヒータの配置の自由度が限定されてしまうという問題がある。
 また、太陽電池モジュールの充填材としては、材料費、加工特性および必要とする強度等に応じてEVA(エチレンビニルアセテート)樹脂、PVB(ポリビニルブチラール)樹脂、又は他の充填材が使い分けられている。この場合、使用される充填材により溶融温度等の特性が異なってしまう。したがって、使用する充填材の種類により溶融する温度が変化してしまうために、上述したように太陽電池モジュールの周縁部と内側部とで温度が異なることに加えてさらに、充填材が溶融を開始する時間を均一に制御することが困難になる。
 本発明は、上述したような問題点に鑑みてなされたものであり、ラミネート加工中の被加工物内の温度を均一にできるようにすることを目的とする。
Here, the conventional laminating apparatus is set so that the upper surface of the hot plate is divided into a plurality of heating regions, and a uniform temperature is obtained in any heating region. However, the space formed by the upper case and the lower case is already heated by the hot plate. Therefore, when the solar cell module is transported to the space, the peripheral portion of the solar cell module is separated from the hot plate due to the temperature difference between the upper and lower surfaces of the cover glass, which is a constituent member of the solar cell module. It will warp in a manner. In the solar cell module warped in this way, only the inner part (center part) of the solar cell module is grounded on the hot plate, and then the peripheral part is grounded behind the inner part due to the pressing of the diaphragm. And since a heat plate takes heat to the solar cell module from the location which the solar cell module grounded, temperature will change suddenly according to the location and its timing which a solar cell module grounds. In such a case, it becomes a problem whether the temperature of the hot plate is made uniform based on which temperature of the heating region, and it takes a considerable time to make the temperature of all the heating regions uniform. In addition, in all the heating regions of the hot plate, the temperature is different between the inner part and the peripheral part in the solar cell module until the temperature is uniform, and the peripheral part is hot and the peripheral part is filled. The material melts first, and the phenomenon that the temperature of the inner part is low and the filler does not melt occurs. That is, the temperature differs between the peripheral portion and the inner portion of the solar cell module, and a time lag occurs in the time when the filler starts to melt.
Here, with reference to FIG. 12, the temperature change in the solar cell module 91 when the solar cell module 91 is heated with the hot plate 90 of the conventional laminating apparatus will be described.
FIG. 12A is a plan view of a state in which a solar cell module 91 is placed at the center of a hot plate 90 of a conventional laminating apparatus. The hot plate 90 shown in FIG. 12A has three heating regions 93 that are all heated to the same temperature. Moreover, FIG.12 (b) is a figure which shows the graph which measured the temperature of the measurement points 91a, 91b, 91c of the surface of the solar cell module 91 shown to Fig.12 (a). Here, the solar cell module 91 has a width w of about 1100 mm and a depth d of about 1400 mm. Moreover, the measurement point 91a is a point located 10 mm inside from the corner 92 of the solar cell module 91 in the width and depth directions. The measurement point 91b is a point located 10 mm inward in the width direction from the center of one long side of the solar cell module 91. The measurement point 91 c is a point located at the center of the solar cell module 91. In FIG. 12B, the temperature change at the measurement point 91a corresponds to the characteristic line indicated by the solid line, the temperature change at the measurement point 91b corresponds to the characteristic line indicated by the broken line, and the temperature change at the measurement point 91c is indicated by the alternate long and short dash line. Corresponds to the characteristic line.
When the heating plate 90 is heated so as to have a uniform temperature, it takes time to reach a uniform temperature in all the heating regions as described above, and the temperature of the heating plate is equal to the solar temperature until the heating plate 90 reaches a uniform temperature. It differs in the area | region which heats the peripheral part and inner side part of a battery module. Therefore, as shown in FIG. 12 (b), in the vacuum process in the laminating process, the temperature of the inner part (measurement point 91c) of the solar cell module 91 is high, or in the latter half of the pressurizing process, the peripheral edge of the solar cell module. The temperature difference Δt between the inner side portion and the peripheral portion of the solar cell module 91 becomes approximately 10 ° C. at the time when the temperature of the portion ( measurement points 91a, 91b) is increased and the pressurizing step is completed. . Thus, the temperature differs between the central portion and the peripheral portion of the solar cell module 91, and a time lag occurs in the time when the filler starts to melt. If the filler at the peripheral edge of the solar cell module 91 is first melted, the air inside the solar cell module 91 cannot be degassed, and bubbles remain in the solar cell module 91. . If the solar cell module 91 in which bubbles remain is installed outdoors, the bubbles expand and adversely affect the solar cell module 91.
The laminating apparatus described in Patent Document 1 described above divides the upper surface of the heater panel as a hot plate into a plurality of heating regions, and the temperature of the heating region where the solar cell module M is placed is always in any heating region. It is controlled to be the same. Therefore, similarly to the hot plate 90 shown in FIG. 12A, the temperature difference between the inner portion and the peripheral portion of the solar cell module cannot be eliminated.
In addition, the laminating apparatus described in Patent Document 2 described above adsorbs a translucent substrate disposed on the upper surface of the heater panel by a plurality of vacuum suction holes on a peripheral portion where warpage of the translucent substrate of the heater panel occurs. By doing so, the warp of the translucent substrate is prevented. Thus, the temperature rise in the solar cell module is made uniform by preventing the translucent substrate from warping. However, it is necessary to make a plurality of vacuum suction holes in the heater panel, which not only complicates the structure, but also limits the degree of freedom of heater arrangement in the heater panel.
Moreover, as a filler of a solar cell module, EVA (ethylene vinyl acetate) resin, PVB (polyvinyl butyral) resin, or other fillers are properly used according to material costs, processing characteristics, required strength, and the like. . In this case, characteristics such as the melting temperature differ depending on the filler used. Therefore, since the melting temperature varies depending on the type of filler used, in addition to the difference in temperature between the peripheral portion and the inner portion of the solar cell module as described above, the filler starts to melt. It becomes difficult to control the time to perform uniformly.
The present invention has been made in view of the above-described problems, and an object of the present invention is to make it possible to uniformize the temperature in the workpiece during lamination.
 上記目的を達成するための本発明のラミネート装置は、押圧部材により仕切られた上チャンバと下チャンバとを有し、その下チャンバに設けられた熱板上に被加工物を配置し、前記熱板により加熱した前記被加工物を、前記下チャンバを真空とし前記上チャンバに大気を導入し前記熱板と前記押圧部材とで挟圧してラミネートするラミネート装置であって、前記熱板は、前記被加工物の周縁部を加熱する周縁加熱領域と、前記被加工物の周縁部よりも内側の内側加熱領域とが別々に温度制御され、前記被加工物の周縁部と内側部とを略同一温度に加熱することを特徴とする。
 前記熱板は、前記周縁加熱領域と、前記内側加熱領域とが別々に温度制御され、前記被加工物内の充填材を前記被加工物の周縁部と内側部とで溶融を開始する時間を略同一にすることを特徴とする。
 前記熱板は、前記周縁加熱領域に対応する周縁熱板本体と前記内側加熱領域に対応する内側熱板本体とで別体にして構成することができる。
 前記熱板は、前記周縁加熱領域に対応する周縁熱板本体と前記内側加熱領域に対応する内側熱板本体とが被加工物を載置する載置板を介して接続して構成することができる。
 前記周縁加熱領域に対応する周縁熱板本体は、前記周縁加熱領域に配置される前記被加工物の各辺ごとに別体にして構成することができる。
In order to achieve the above object, a laminating apparatus of the present invention has an upper chamber and a lower chamber partitioned by a pressing member, and disposes a workpiece on a hot plate provided in the lower chamber, and A laminating apparatus for laminating the workpiece heated by a plate by vacuuming the lower chamber and introducing air into the upper chamber and sandwiching and pressing between the hot plate and the pressing member. The peripheral heating area for heating the peripheral edge of the workpiece and the inner heating area inside the peripheral edge of the workpiece are separately temperature controlled, and the peripheral edge and the inner edge of the workpiece are substantially the same. Heating to temperature.
In the hot plate, the temperature of the peripheral heating region and the inner heating region are separately controlled, and a time for starting the melting of the filler in the workpiece between the peripheral portion and the inner portion of the workpiece is set. It is characterized by being substantially identical.
The hot plate can be configured separately from a peripheral hot plate main body corresponding to the peripheral heating region and an inner hot plate main body corresponding to the inner heating region.
The hot plate may be configured by connecting a peripheral hot plate main body corresponding to the peripheral heating region and an inner hot plate main body corresponding to the inner heating region via a mounting plate on which a workpiece is placed. it can.
The peripheral hot plate body corresponding to the peripheral heating region can be configured separately for each side of the workpiece disposed in the peripheral heating region.
 本発明によればラミネート加工中の被加工物内の温度を均一にすることができる。
 また例えば、前記熱板は、前記被加工物の周縁部を加熱する周縁加熱領域と、前記被加工物の周縁部よりも内側の内側加熱領域とが別々に温度制御され、前記被加工物の周縁部と内側部とを略同一温度に加熱する。この場合、被加工物を構成する充填材を被加工物内において、略同時に溶融させることができるので、被加工物内に気泡が残るのを防止することができる。
 また例えば、前記熱板は、前記周縁加熱領域と、前記内側加熱領域とが別々に温度制御され、前記被加工物内の充填材を前記被加工物の周縁部と内側部とで溶融を開始する時間を略同一にする。この場合、被加工物内に気泡が残るのを防止することができる。
 また例えば、前記熱板は、前記周縁加熱領域に対応する周縁熱板本体と前記内側加熱領域に対応する内側熱板本体とで別体にして構成されている。この場合、周縁加熱領域と内側加熱領域との間の温度制御が容易になるとともに、周縁加熱領域と内側加熱領域とにシースヒータ等の熱伝達体を取り付ける加工等を容易に行うことができる。
 また例えば、前記熱板は、前記周縁加熱領域に対応する周縁熱板本体と前記内側加熱領域に対応する内側熱板本体とが被加工物を載置する載置板を介して接続されて構成されている。この場合、前記周縁加熱領域に対応する周縁熱板本体と前記内側加熱領域に対応する内側熱板本体とを容易に接続することができる。
 また例えば、前記周縁加熱領域に対応する周縁熱板本体は、前記周縁加熱領域に配置される前記被加工物の各辺ごとに別体にして構成されている。この場合、周縁熱板本体にシースヒータ等の熱伝達体を取り付ける加工等を容易に行うことができる。
According to the present invention, the temperature in the workpiece during lamination can be made uniform.
Further, for example, in the hot plate, the peripheral heating region for heating the peripheral portion of the workpiece and the inner heating region inside the peripheral portion of the workpiece are separately temperature controlled, The peripheral part and the inner part are heated to substantially the same temperature. In this case, since the filler constituting the workpiece can be melted almost simultaneously in the workpiece, bubbles can be prevented from remaining in the workpiece.
Further, for example, in the hot plate, the peripheral heating area and the inner heating area are separately temperature controlled, and the filler in the workpiece starts to melt at the peripheral edge and the inner edge of the workpiece. The time to do is made substantially the same. In this case, it is possible to prevent bubbles from remaining in the workpiece.
For example, the said hot plate is comprised separately by the peripheral hot plate main body corresponding to the said peripheral heating area | region, and the inner side hot plate main body corresponding to the said inner side heating area | region. In this case, temperature control between the peripheral heating region and the inner heating region is facilitated, and processing for attaching a heat transfer body such as a sheath heater to the peripheral heating region and the inner heating region can be easily performed.
Further, for example, the hot plate is configured such that a peripheral hot plate main body corresponding to the peripheral heating region and an inner hot plate main body corresponding to the inner heating region are connected via a mounting plate for mounting a workpiece. Has been. In this case, the peripheral hot plate main body corresponding to the peripheral heating region and the inner hot plate main body corresponding to the inner heating region can be easily connected.
Further, for example, the peripheral hot plate main body corresponding to the peripheral heating region is configured separately for each side of the workpiece disposed in the peripheral heating region. In this case, the process etc. which attach a heat transfer body, such as a sheath heater, to a peripheral heat-plate main body can be performed easily.
 図1は、被加工物としての太陽電池モジュールの構成を示す断面図である。
 図2は、ラミネート装置の全体の構成を示す図である。
 図3は、ラミネート装置のラミネート部の側断面図である。
 図4は、ラミネート装置のラミネート加工時におけるラミネート部の側断面図である。
 図5は、熱板の温度制御領域と温度制御装置の構成を説明するための図である。
 図6は、熱板の詳細な構成を示す図である。
 図7は、熱板本体に熱伝達体を埋設する方法について説明するための図である。
 図8は、本実施形態に係る熱板により加熱された被加工物の表面温度の変化を説明するための図である。
 図9は、周縁加熱領域を加熱する熱板本体を一体で構成した熱板を示す図である。
 図10は、熱板本体同士を接続して構成した熱板を示す図である。
 図11は、一つの熱板本体で構成した熱板を示す図である。
 図12は、従来の熱板により加熱された被加工物の表面温度の変化を説明するための図である。
FIG. 1 is a cross-sectional view showing a configuration of a solar cell module as a workpiece.
FIG. 2 is a diagram showing the overall configuration of the laminating apparatus.
FIG. 3 is a side sectional view of the laminating portion of the laminating apparatus.
FIG. 4 is a cross-sectional side view of the laminating unit during laminating by the laminating apparatus.
FIG. 5 is a view for explaining the temperature control region of the hot plate and the configuration of the temperature control device.
FIG. 6 is a diagram showing a detailed configuration of the hot plate.
FIG. 7 is a diagram for explaining a method of embedding a heat transfer body in the hot plate body.
FIG. 8 is a diagram for explaining a change in the surface temperature of the workpiece heated by the hot platen according to the present embodiment.
FIG. 9 is a view showing a hot plate in which a hot plate main body for heating the peripheral heating region is integrally formed.
FIG. 10 is a view showing a hot plate configured by connecting hot plate bodies.
FIG. 11 is a diagram showing a hot plate configured by one hot plate main body.
FIG. 12 is a diagram for explaining a change in the surface temperature of a workpiece heated by a conventional hot platen.
 10     被加工物(太陽電池モジュール)
 11     カバーガラス
 13、14  充填材
 20     載置板
 30     熱板本体
 31~35  第1の熱板本体~第5の熱板本体
 41~45、50  シースヒータ
 70     温度制御装置
 100    ラミネート装置
 101    ラミネート部
 110    上ケース
 112    ダイヤフラム
 113    上チャンバ
 120    下ケース
 121    下チャンバ
 122    熱板
 150    熱板
 151    熱板本体
 152    第2の熱板本体
 153    シースヒータ
 160    熱板
 161    取付板
 170    熱板
 171    熱板本体
 S1     内側加熱領域
 S2~S5  周縁加熱領域
10 Workpiece (solar cell module)
DESCRIPTION OF SYMBOLS 11 Cover glass 13, 14 Filler 20 Mounting plate 30 Hot plate main body 31-35 1st hot plate main body-5th hot plate main body 41-45, 50 Sheath heater 70 Temperature control apparatus 100 Laminating apparatus 101 Laminating part 110 Top Case 112 Diaphragm 113 Upper chamber 120 Lower case 121 Lower chamber 122 Hot plate 150 Hot plate 151 Hot plate main body 152 Second hot plate main body 153 Sheath heater 160 Hot plate 161 Mounting plate 170 Hot plate 171 Hot plate main body S1 Inner heating area S2 ~ S5 Edge heating area
 以下、図面を参照して本実施形態に係るラミネート装置について説明する。
 ここでは、まず、ラミネート装置でラミネートされる被加工物10について説明する。
 図1は、被加工物10として結晶系セルを使用した太陽電池モジュールの構成を示す断面図である。太陽電池モジュール10は、図示のように、透明なカバーガラス11と裏面材12との間に、充填材13、14を介してストリング15を挟み込んだ構成を有する。裏面材12にはポリエチレン樹脂等の材料が使用される。また、充填材13、14にはEVA(エチレンビニルアセテート)樹脂や、PVB(ポリビニルブチラール)樹脂等が使用される。ストリング15は、電極16、17の間に結晶系セルとしての太陽電池セル18をリード線19を介して接続した構成である。
 また、被加工物10としては、上述した太陽電池モジュールだけではなく、一般に薄膜式と呼ばれる太陽電池モジュールを対象とすることもできる。この薄膜式太陽電池モジュールの代表的な構造例では、透明なカバーガラスに、予め、透明電極、半導体、裏面電極からなる発電素子が蒸着してある。このような薄膜式太陽電池モジュールは、カバーガラスを下向きに配置し、カバーガラス上の発電素子の上に充填材を被せる。更に、充填材の上に裏面材を被せた構造になっている。このような状態で真空加熱ラミネートすることにより薄膜式太陽電池モジュールの構成部材が接着される。すなわち、薄膜式太陽電池モジュールは、上述した太陽電池モジュールの結晶系セルが蒸着された発電素子に変わるだけある。薄膜式太陽電池モジュールの基本的な封止構造は上述した太陽電池モジュールと同じである。
 図2は、本実施形態に係るラミネート装置100の全体の構成を示す図である。ラミネート装置100は、上ケース110と、下ケース120と、被加工物10を搬送するための搬送ベルト130とを有する。搬送ベルト130は、被加工物10を上ケース110と下ケース120との間に搬送する。ラミネート装置100には、ラミネート前の被加工物10をラミネート装置100に搬送するための搬入コンベア200が設けられている。また、ラミネート装置100には、ラミネート後の被加工物10をラミネート装置100から搬出するための搬出コンベア300が設けられている。搬入コンベア200と搬出コンベア300とは、連設されている。被加工物10は、搬入コンベア200から搬送ベルト130に受け渡され、搬送ベルト130から搬出コンベア300に受け渡される。
 ラミネート装置100には、シリンダ及びピストンロッド等で構成される図示しない昇降装置が設けられている。昇降装置は、上ケース110を水平状態に維持したまま下ケース120に対して昇降させることができる。昇降装置が上ケース110を下降させることで、上ケース110と下ケース120との内部空間を密閉させることができる。
 次に、本実施形態に係るラミネート装置100のラミネート部101の構成についてより具体的に説明する。図3は、ラミネート装置100において被加工物10をラミネートするラミネート部101の側断面図である。図4は、ラミネート加工時におけるラミネート部101の側断面図である。
 上ケース110には、下方向に開口された空間が形成されている。この空間には、空間を水平に仕切るようにダイヤフラム112が設けられている。ダイヤフラム112は、シリコーン系のゴム等の耐熱性のあるゴムにより成形されている。後述するように、ダイヤフラム112は、被加工物10を押圧する押圧部材として機能し、ラミネートを行う。上ケース110内には、ダイヤフラム112によって仕切られた空間(上チャンバ113)が形成される。
 また、上ケース110の上面には、上チャンバ113と連通する吸排気口114が設けられている。上チャンバ113では、吸排気口114を介して、上チャンバ113内を真空引きして真空状態にしたり、上チャンバ113内に大気を導入したりすることができる。
 下ケース120には、上方向に開口された空間(下チャンバ121)が形成されている。この空間には、熱板122(パネル状のヒータ)が設けられている。熱板122は、下ケース120の底面に立設された支持部材によって、水平状態を保つように支持されている。この場合に、熱板122は、その表面が下チャンバ121の開口面とほぼ同一高さになるように支持される。
 また、下ケース120の下面には、下チャンバ121と連通する吸排気口123が設けられている。下チャンバ121では、吸排気口123を介して、下チャンバ121内を真空引きして真空状態にしたり、下チャンバ121内に大気を導入したりすることができる。
 上ケース110と下ケース120との間であって、熱板122の上方には、搬送ベルト130が移動自在に設けられている。搬送ベルト130は、図2の搬入コンベア200からラミネート前の被加工物10を受け取ってラミネート部101の中央位置、すなわち熱板122の中央部に正確に搬送する。また、搬送ベルト130は、ラミネート後の被加工物10を図2の搬出コンベア300に受け渡す。
 また、上ケース110と下ケース120との間であって、搬送ベルト130の上方には、剥離シート140が設けられている。剥離シート140は、被加工物10の充填材13、14(図1参照)が溶融したときに、充填材13、14がダイヤフラム112に付着するのを防止する。
 次に、本実施形態に係るラミネート装置100によるラミネート工程についてより具体的に説明する。まず、図3に示すように、搬送ベルト130は、被加工物10をラミネート部101の中央位置に搬送する。なお、このとき、下チャンバ121や熱板122に配設された上下動可能な図示しない保持ピン等を上昇させることで、被加工物10を熱板122上から離間した位置に保持しておいてもよい。
 次に、昇降装置は、上ケース110を下降させる。上ケース110を下降させることにより、図4に示すように、上ケース110と下ケース120との内部空間は、密閉される。すなわち、上ケース110と下ケース120との内部にて上チャンバ113及び下チャンバ121は、それぞれ密閉状態に保つことができる。
 次に、ラミネート装置100は、上ケース110の吸排気口114を介して、上チャンバ113内の真空引きを行う。同様に、ラミネート装置100は、下ケース120の吸排気口123を介して、下チャンバ121内の真空引きを行う(真空工程)。下チャンバ121の真空引きにより、被加工物10内に含まれている気泡は、被加工物10外に送出される。なお、上下動可能な図示しない保持ピンにより被加工物10を、熱板122上から離間した位置に保持していた場合は、真空工程の略後半から、保持ピンを下降して被加工物10を熱板122上に載置する。
 被加工物10は、後述する温度制御装置の温度制御により加熱された熱板122によって加熱されるので、被加工物10の内部に含まれる充填材13、14も加熱される。
 次に、ラミネート装置100は、下チャンバ121の真空状態を保ったまま、上ケース110の吸排気口114を介して、上チャンバ113に大気を導入する。これにより、上チャンバ113と下チャンバ121との間に気圧差が生じることで、ダイヤフラム112が膨張する。従って、ダイヤフラム112は、図4に示すように下方に押し出される(加圧工程)。被加工物10は、下方に押し出されたダイヤフラム112と、熱板122とで挟圧され、加熱により溶融された充填材13、14によって各構成部材が接着される。本実施形態のラミネート装置100は、充填材13、14を完全に溶融させて、各構成部材を接着させる、いわゆる全架橋タイプのラミネート装置である。
 このとき、充填材13、14がカバーガラス11と裏面材12との間からはみ出てしまうことがあるものの、はみ出した充填材13、14は剥離シート140に付着する。このように剥離シート140を介在させることにより、はみ出した充填材13、14がダイヤフラム112に付着するのを防止する。従って、剥離シート140は、ダイヤフラム112から次にラミネートする被加工物10に充填材13、14が付着するのを防止する。また、はみ出した充填材13、14が、搬送ベルト130上に付着した場合は、付着した充填材13、14は、図示しないクリーニング機構により除去される。
 このようにラミネート工程が終了した後、ラミネート装置100は、下ケース120の吸排気口123を介して、下チャンバ121に大気を導入する。このとき、昇降装置は、上ケース110を上昇させる。上ケース110を上昇させることにより、図3に示すように、搬送ベルト130を移動させることができるようになる。搬送ベルト130は、ラミネート後の被加工物10を搬出コンベア300に受け渡す。
 次に、本実施形態に係るラミネート装置100の熱板122の構成について説明する。図5は、熱板122および熱板122の温度を制御する温度制御装置70を示す図である。図5は、熱板122の平面図であり、被加工物としての太陽電池モジュール10を載置する載置面21が現れている。
 熱板122は、全体の大きさが下ケース120内に収まるサイズであって、図5の二点鎖線で示す太陽電池モジュール10よりも大きいサイズで形成される。ここで、本実施形態の熱板122の寸法は、幅Whが約1200mm、奥行きDhが約1500mmである。また、この熱板122により加熱される太陽電池モジュール10の寸法は、幅wが約1100mm、奥行きdが約1400mmであり、平面視で長方形状である。
 そして、熱板122は、太陽電池モジュール10を熱板122の中心に載置したときに太陽電池モジュール10の内側部(中央部)を加熱する内側加熱領域S1と、太陽電池モジュール10の周縁部を加熱する周縁加熱領域S2~S5とを有している。
 内側加熱領域S1は、一つのみからなる領域であって、太陽電池モジュール10全体の面積よりも小さく、太陽電池モジュール10全体の面積の70%以上である。ここで、本実施形態の内側加熱領域S1の寸法は、幅Waが約940mm、奥行きDaが約1250mmであり、平面視で略長方形状である。内側加熱領域S1の形状は、太陽電池モジュール10と略相似形である。また、本実施形態の内側加熱領域S1の面積は、太陽電池モジュール10全体の面積の76%である。
 このように、熱板122の内側加熱領域S1は、太陽電池モジュール10の内側部すなわち中央部を加熱する。
 なお、内側加熱領域S1の寸法は、太陽電池モジュール10が熱の影響により反り返ったときに、太陽電池モジュール10が熱板122に接地している範囲と略同一の領域であることが好ましい。したがって、内側加熱領域S1の寸法は、太陽電池モジュール10の大きさによって変更される。
 一方、周縁加熱領域S2~S5は、内側加熱領域S1の外側に位置し、太陽電池モジュール10の周縁部の全周を加熱する。また、周縁加熱領域S2~S5は、全体では一つのみからなる領域であるが、本実施形態では複数に分割されている。第1の周縁加熱領域S2は、太陽電池モジュール10の周縁部のうち長辺の一方側を加熱する。また、第2の周縁加熱領域S3は、太陽電池モジュール10の周縁部のうち長辺の他方側を加熱する。第1の周縁加熱領域S2と第2の周縁加熱領域S3は、図5に示すように、平面視で奥行き方向に長い細長の略長方形状である。また、第3の周縁加熱領域S4は、太陽電池モジュール10の周縁部のうち短辺の一方側を加熱する。また、第4の周縁加熱領域S5は、太陽電池モジュール10の周縁部のうち短辺の他方側を加熱する。第3の周縁加熱領域S4と第4の周縁加熱領域S5は、図5に示すように、平面視で幅方向に長い細長の略長方形状である。このように、周縁加熱領域S1~S5は、全体では、太陽電池モジュール10の周縁部の長辺の一方側から短辺の一方側、長辺の他方側、長辺の他方側に亘り連続する領域となっている。
 なお、周縁加熱領域S2~S5の寸法は、太陽電池モジュール10が熱の影響により反り返ったときに、太陽電池モジュール10が熱板122に接地していない範囲と略同一の領域であることが好ましい。したがって、周縁加熱領域S2~S5の寸法は、太陽電池モジュール10の大きさによって変更される。
 上述した内側加熱領域S1と周縁加熱領域S2~S5の内部には、それぞれ熱電対等の温度センサが埋設されている。そして、温度制御装置70は、温度センサにより検出された温度データに基づいて、内側加熱領域S1と周縁加熱領域S2~S5とが同一に設定された温度になるように、内側加熱領域S1と周縁加熱領域S2~S5とを別々に温度制御することができる。なお、本実施形態の熱板122の周縁加熱領域は、上述したように、第1の周縁加熱領域S2~第4の周縁加熱領域S5に分割されていて、温度制御装置70は、第1の周縁加熱領域S2~第4の周縁加熱領域S5の間でも別々に温度制御することができる。
 次に、熱板122の構成について、図6を参照してより詳細に説明する。図6(a)は、熱板122の平面図である。図6(b)は、熱板122の正面図である。図6(c)は、熱板122の底面図である。
 熱板122は、図6(a)、(b)の二点鎖線に示した太陽電池モジュール10を載置する載置面21を有する載置板20と、載置板20の載置面21とは反対の取付面22に取り付けられる熱板本体30(第1の熱板本体31~第5の熱板本体35)とが接続されて構成されている。
 図6(b)の正面図に示すように、載置板20は、熱板本体30の上側に配置されている。また、載置板20は、アルミニウム又はアルミニウム合金等により、被加工物10を載置できるようなパネル状に形成されている。
 一方、熱板本体30は、載置板20の取付面22に固定ネジ等を介して取り付けられている。熱板本体30も同様に、アルミニウム又はアルミニウム合金等により形成されている。図6(c)に示すように、本実施形態の熱板本体30は、第1の熱板本体31~第5の熱板本体35を含んで構成されている。第1の熱板本体31~第5の熱板本体35は、それぞれ同一の厚みTpで形成されているので、熱板122全体でも、一定の厚みThで形成される(図6(b)参照)。
 ここで、第1の熱板本体31は、熱板122を裏側から見たときに、載置板20の中央に取り付けられる。すなわち、第1の熱板本体31は、上述した内側加熱領域S1を加熱する役割を有するものであり、内側加熱領域S1と同じ大きさである。
 第1の熱板本体31の裏面には、収容溝が裏面全体に亘って複数、加工され、その収容溝内には、第1の熱板本体31を加熱する熱伝達体としてのシースヒータ41が埋設されている。本実施形態の第1の熱板本体31には、裏面からみてU字状に曲げて形成されたシースヒータ41が、3つ並列して埋設されている。なお、図示しないが、それぞれのシースヒータ41は、各収容溝から上述した温度制御装置70に接続される。したがって、温度制御装置70は、これらシースヒータ41を加熱することで、第1の熱板本体31を介して、内側加熱領域S1全体を均一した温度に制御することができる。
 一方、第2の熱板本体32~第5の熱板本体35は、熱板122を裏側から見たときに、第1の熱板本体31の周りを囲むようにして、載置板20の周縁に取り付けられる。すなわち、第2の熱板本体32~第5の熱板本体35は、それぞれ上述した周縁加熱領域S2~S5を加熱する役割を有するものであり、それぞれ周縁加熱領域S2~S5と同じ大きさである。
 第2の熱板本体32~第5の熱板本体35の裏面には、それぞれ収容溝が略直線状または略細長環状に加工され、これら収容溝内には、それぞれ第2の熱板本体32~第5の熱板本体35を加熱する熱伝達体としてのシースヒータ42~45が埋設されている。本実施形態の第2の熱板本体32および第3の熱板本体33には、略直線状に形成されたシースヒータ42、43がそれぞれ埋設されている。また、本実施形態の第4の熱板本体34および第5の熱板本体35には、裏面からみて略細長環状に曲げて形成されたシースヒータ44、45がそれぞれ埋設されている。なお、図示しないが、シースヒータ42~45は、各収容溝から上述した温度制御装置70に接続されている。したがって、温度制御装置70は、これらシースヒータ42~45を加熱することで、第2の熱板本体32~第5の熱板本体35を介して、周縁加熱領域S2~S5全体を均一した温度に制御することができる。場合によって、温度制御装置70は、第2の熱板本体32~第5の熱板本体35の温度をそれぞれ制御して、周縁加熱領域S2~周縁加熱領域S5の温度を、別々に温度制御してもよい。なお、第1の熱板本体32~第5の熱板本体35の間には、僅かな隙間を有していて、隣り合う熱板本体同士の温度が干渉しないように構成されている。
 次に、熱板本体に熱伝達体を埋設する方法について、図7(a)、(b)を参照して説明する。図7(a)、(b)は、熱板122の一部断面を示す図である。ここでは、熱伝達体は、シースヒータ50である。シースヒータ50は、中心にコイル状に加工されたニクロム線51と、ニクロム線51の周りに充填された酸化マグネシウム等の絶縁材52と、絶縁材52の全周を覆うシース53(外周をなす外皮)とを有するものである。
 図7(a)は、シースヒータ50を熱板本体30の収容溝61に加締めることでシースヒータ50を埋設した熱板122を示す断面図である。図7(a)に示す埋設方法では、まず、予めシースヒータ50と略同じ寸法で加工した収容溝61にシースヒータ50を収容する。その後、収容溝61にシースヒータ50を収容した状態で、収容溝61の開口縁とシースヒータ50とを熱板本体30の裏面から加締める。このようにすることで、図7(a)に示すように、収容溝61にシースヒータ50を埋設させることができる。その後、固定ネジ65を用いて、熱板本体30を載置板20の取付面22に取り付ける。このように、第1の熱板本体31~第5の熱板本体35について、それぞれ同様にシースヒータ41~45を埋設し、載置板20の取付面22に取り付ける。第1の熱板本体31と、第2の熱板本体32~第5の熱板本体35とを載置板20を介して接続することにより、熱板122を容易に製造することができるとともに、単に熱板本体同士を接続して熱板122を構成する場合に想定される載置面の凹凸をなくすことができる。また、本実施形態のように、第1の熱板本体31と第2の熱板本体32~第5の熱板本体35とを別体で構成することにより、各熱板本体の収容溝61の加工や、熱伝達体の埋設を容易に行うことができる。
 図7(b)は、シースヒータ50を上下の熱板本体30a、30bで挟み込むことでシースヒータ50を埋設した熱板122を示す断面図である。図7(b)に示す埋設方法では、上下の熱板本体30(30a、30b)にそれぞれ予めシースヒータ50の略半円形状と同じ寸法で加工した収容溝61a、61bにシースヒータ50を収容する。その後、熱板本体30a、30bでシースヒータ50をボルト66等でネジ固定して上下から挟み込むことで、図7(b)に示すように、収容溝61a、61bにシースヒータ50を埋設させることができる。その後、固定ネジ65を用いて、熱板本体30(30a、30b)を載置板20の取付面22に取り付ける。このように、第1の熱板本体31~第5の熱板本体35について、それぞれ同様にシースヒータ41~45を埋設し、載置板20の取付面22に取り付けることで、熱板122を製造することができる。
 なお、シースヒータ50を熱板本体30に埋設する方法は、上述した方法に限られない。例えば、シースヒータ50の周囲に熱板本体30を構成するアルミニウム等の鋳込み材を鋳込むことにより、シースヒータ50を熱板本体30に埋設してもよい。
 また、熱板本体30に埋設する熱伝達体としてシースヒータ50を用いる場合について説明したが、この場合に限られない。例えば、熱伝達体として図示しない熱パイプ等を用いることができる。熱パイプとは、中空の管部材と、管部材内を流れる加熱したオイル等の熱伝達媒体とから構成されるものである。このような熱パイプを図7(a)、(b)に示す埋設方法および鋳込みによる埋設方法と同様に、熱板本体30に埋設することにより、熱板122を製造することができる。この場合、熱パイプを温度制御装置70に接続させ、温度制御装置70が、管部材内に流す熱伝達媒体の温度を調整することで、熱板122の温度を制御する。
 次に、図8を参照して、本実施形態のラミネート装置100により太陽電池モジュール10を加熱したときの太陽電池モジュール10内の温度変化について説明する。
 図8(a)は、本実施形態のラミネート装置100の熱板122の載置面21の中央に太陽電池モジュール10を載置した状態の平面図である。図8(b)は、図8(a)に示す太陽電池モジュール10の表面の測定点81a、81b、81cの温度を測定したグラフを示す図である。ここで、熱板122、内側加熱領域S1、周縁加熱領域S2~S5および太陽電池モジュール10の寸法は、図5で説明した大きさと同様である。また、測定点81aは、太陽電池モジュール10の角82から幅および奥行き方向それぞれ10mm内側に位置する点である。また、測定点81bは、太陽電池モジュール10の一方の長辺の中心から幅方向に10mm内側に位置する点である。すなわち測定点81a、81bは、熱板122の周縁加熱領域S2により加熱される。また、測定点81cは、太陽電池モジュール10の中心に位置する点である。すなわち測定点81cは、熱板122の内側加熱領域S1により加熱される。図8(b)において、測定点81aの温度変化が実線で示す特性線に対応し、測定点81bの温度変化が破線で示す特性線に対応し、測定点81cの温度変化が一点鎖線で示す特性線に対応する。また、図8(c)は、温度制御装置70に制御された熱板122の温度を測定したグラフを示す図である。図8(c)において、周縁加熱領域S2の温度変化が実線で示す特性線に対応し、内側加熱領域S1の温度変化が一点鎖線で示す特性線に対応する。
 なお、図8(b)、(c)に示す温度変化のグラフは、真空工程の略前半まで、下チャンバ121または熱板122等に配設された上下動可能な図示しない保持ピンの上昇により、被加工物10を熱板122上から離間した位置に保持するタイプのラミネート装置100によりラミネートしたときの結果である。
 まず、温度制御装置70は、真空工程が開始されると、図8(c)に示すように、熱板122の内側加熱領域S1と周縁加熱領域S2~S5とを同じように加熱して温度制御することで、図8(b)の真空工程の前半までに示すように、太陽電池モジュール10の測定点81a、81b、81cでは、温度差があるものの同じような勾配で温度が上昇する。
 その後、真空工程の後半において、保持ピンの下降により太陽電池モジュール10が熱板122上に載置されると、図8(c)のc1部分に示すように、熱板122の内側加熱領域S1のみの温度が急激に低下する。これは、真空工程の前半において保持ピンを上昇させ太陽電池モジュール10を熱板122上から離間させていたときに、太陽電池モジュール10のカバーガラス11の上下の温度差により、太陽電池モジュール10の周縁部が熱板122からより離間する方向に反ってしまったためである。すなわち、太陽電池モジュール10の内側部のみが内側加熱領域S1に熱板122上に接地し、熱板122の内側加熱領域S1の熱が太陽電池モジュール10に奪われるためである。したがって、図8(b)のc2部分に示すように、真空工程の後半において、太陽電池モジュール10の内側部(測定点81c)の温度が急激に上昇する。
 次に、真空工程から加圧工程にかけて、温度制御装置70は、図8(c)のc3部分に示すように、奪われた内側加熱領域S1の温度を補うようにして加熱し、内側加熱領域S1の温度を上昇させる。
 一方、図8(c)に示すように、熱板122の周縁加熱領域S2は、真空工程の後半でも太陽電池モジュール10に接地しないため、周縁加熱領域S2の温度が低下しない。しかし、図8(c)のa1部分に示すように、加圧工程が開始されると、熱板122の周縁加熱領域S2の温度が急激に低下する。これは、ダイヤフラム112により、太陽電池モジュール10の周縁部が周縁加熱領域S2に接地し、熱板122の周縁加熱領域S2の熱が太陽電池モジュール10に奪われるためである。したがって、図8(b)のa2部分に示すように、太陽電池モジュール10の周縁部(測定点81a、81b)の温度が上昇する。
 次に、温度制御装置70は、図8(c)のa3部分に示すように、奪われた周縁加熱領域S2の温度を補うようにして、加熱して周縁加熱領域S2の温度が目標温度になるよう加熱制御を行う。
 このとき、図8(c)のc4部分に示すように、温度制御装置70は、周縁加熱領域S2の温度の上昇に合わせるように、内側加熱領域S1の温度を加熱して上昇させる。
 このような温度制御を行うことにより、加圧工程の後半では、図8(b)に示すように、太陽電池モジュール10の周縁部(測定点81a、81b)と内側部(測定点81c)との温度を均一にすることができる。本実施形態では、設定した温度に対して太陽電池モジュール10の測定点81a、81b、81cの温度差を±5%以内にすることができる。具体的には、図8(b)に示す最終的な測定点81aの温度は147.5℃であり、測定点81bの温度は149.3℃であり、測定点81cの温度は151.3℃であった。
 このように、太陽電池モジュール10と熱板122とダイヤフラム112との間の熱の移動によって、熱板122の内側加熱領域と周縁加熱領域との間で、時間差で温度低下が生じても、温度制御装置70により、内側加熱領域と周縁加熱領域とが別々に温度制御されるので、それぞれの温度変化に応じた迅速な温度制御を行うことができる。したがって、ラミネート装置100は、温度制御装置70により、内側加熱領域の温度を周縁加熱領域の温度に、又は周縁加熱領域の温度を内側加熱領域の温度に追従させることができるので、容易に太陽電池モジュール10内の温度を均一にすることができる。すなわち、太陽電池モジュール10内の周縁部と内側部との充填材の温度を略同一にすることで、充填材が溶融を開始する時間を略同一にでき、内部に気泡が生じない品質の高い太陽電池モジュール10を提供することができる。
 なお、温度制御装置70が、短時間に充填材が溶融を開始できるように熱板122の温度をより急激に上昇させたとしても、熱板122の内側加熱領域と周縁加熱領域とを別々に温度制御することにより、太陽電池モジュール10内において、充填材が溶融を開始する時間を略同一にすることができる。したがって、熱板122の温度を急激に上昇させても均一な温度に制御できるので、内部に気泡が生じない品質の高い太陽電池モジュールを製造するタクトタイムの短縮を容易に行うことができる。
 また、温度制御装置70は、太陽電池モジュール10の周辺の温度や供給熱量を制御することができるので、反りによる太陽電池モジュール10の温度分布の悪化を軽減できる。
 なお、上述した温度制御装置70が熱板122の内側加熱領域と周縁加熱領域とを温度制御する過程は、上述した説明に限られることがなく、太陽電池モジュール10内の温度を均一にすることができるのであれば、どのような温度制御であってもよい。例えば、予め熱板122の内側加熱領域と周縁加熱領域とで、それぞれ温度低下するタイミングを想定し、それぞれ内側加熱領域と周縁加熱領域とで温度低下しないように、温度低下をする直前にそれぞれ内側加熱領域と周縁加熱領域との温度を上昇させるような温度制御をしてもよい。
 また、上述した図8(a)、(b)に示す温度変化のグラフの結果は、真空工程の略前半まで、保持ピン等により、被加工物10を熱板122上から離間した位置に保持するタイプのラミネート装置を用いたときの結果であった。しかしながら、このようなラミネート装置に限られず、搬送ベルト130が、太陽電池モジュール10を最初から、熱板122上に載置するタイプのラミネート装置であっても、適用することができる。
 また、太陽電池モジュール10の充填材には、様々な種類が用いられている。すなわち、充填材の種類によって溶融する温度が異なる等、充填材の特性が異なる。本実施形態のラミネート装置では、充填材が異なったとして、上述した説明と同様に、熱板122の内側加熱領域と周縁加熱領域との温度変化に応じた迅速な温度制御をする。したがって、充填材の特性が異なっても安定した品質の太陽電池モジュール10を製造することができる。
 また、上述した実施形態では、周縁加熱領域を加熱する熱板本体を、第2の熱板本体32~第5の熱板本体35の複数で構成する場合について説明したが、この場合に、限られない。例えば、周縁加熱領域を加熱する熱板本体を一体で構成してもよい。
 ここで、周縁加熱領域S2を加熱する熱板本体30を一体で構成した熱板150の構成について、図9を参照して説明する。図9(a)は、熱板150の平面図である。図9(b)は、熱板150の正面図である。図9(c)は、熱板150の底面図である。なお、図6に示す熱板122と同一の構成要素については同一符号を付して、この説明を省略する。
 熱板150は、太陽電池モジュール10を載置する載置面21を有する載置板20と、載置板20の載置面21とは反対の取付面22に取り付けられる熱板本体151(第1の熱板本体31、第2の熱板本体152)とが接続されて構成されている。
 また、図9(c)に示すように、熱板本体151は、第1の熱板本体31と第2の熱板本体152とを含んで構成されている。
 第1の熱板本体31は、熱板151を裏側から見たときに、載置板20の中央に取り付けられる。すなわち、第1の熱板本体31は、内側加熱領域S1と同じ大きさである。
 第1の熱板本体31の裏面には、収容溝が裏面全体に亘って複数、加工され、その収容溝内には、図6と同様なシースヒータ41が埋設されている。
 第2の熱板本体152は、熱板150を裏側から見たときに、第1の熱板本体31の周りを囲むような口字形状をしている。第2の熱板本体152と第1の熱板本体31との間には、僅かな隙間を有している。第2の熱板本体152は、周縁加熱領域S2を加熱する役割を有するものであり、周縁加熱領域S2と同じ大きさである。第2の熱板本体152の裏面には、シースヒータ153が埋設されている。シースヒータ153は、第2の熱板本体152の各辺の幅方向における略中央に埋設される。なお、図示しないが、シースヒータ153は、収容溝から上述した温度制御装置70に接続されている。したがって、温度制御装置70は、これらシースヒータ153を加熱することで、第2の熱板本体152を介して、周縁加熱領域S2全体を均一した温度に制御することができる。
 また、上述した図6に示す熱板122では、内側加熱領域を加熱する第1の熱板本体31と周縁加熱領域を加熱する熱板本体(第2の熱板本体32~第5の熱板本体35)とを載置板20を介して接続する場合について説明したが、載置板20を省略して熱板本体同士を接続してもよい。
 ここで、熱板本体同士を接続した熱板160の構成について、図10を参照して説明する。図10(a)は、熱板160の平面図である。図10(b)は、熱板160の正面図である。図10(c)は、熱板160の底面図である。なお、ここでは、上述した図9に示す熱板150と同一の構成要素については同一符号を付して、この説明を省略する。
 図10(a)、(b)、(c)に示すように、熱板160は、第1の熱板本体31と第2の熱板本体152とを含んで構成されていて、載置板は含まれない。したがって、太陽電池モジュール10は、第1の熱板本体31と第2の熱板本体152との上に直接、載置される。
 そして、第1の熱板本体31と第2の熱板本体152とは、図10(b)、(c)に示す取付板161を介して直接、接続する。具体的には、図10(b)のC部分の一部断面拡大図で示すように、第1の熱板本体31と第2の熱板本体152とに跨る取付板161を介して、固定ネジ162を第1の熱板本体31と第2の熱板本体152とにネジ固定する。
 このように熱板160を構成することで、載置板を用いずに、第1の熱板本体31と第2の熱板本体152と接続することができる。
 また、上述した図6に示す熱板122は、複数の熱板本体(第1の熱板本体31~第5の熱板本体35)と載置板20とで構成する場合について説明したが、熱板を一つの熱板本体で構成してもよい。
 ここで、一つの熱板本体171で構成する熱板170の構成について、図11を参照して説明する。図11(a)は、熱板170の平面図である。図11(b)は、熱板170の正面図である。図11(c)は、熱板170の底面図である。なお、ここでは、上述した図9に示す熱板150と同一の構成要素については同一符号を付して、この説明を省略する。
 熱板本体171の裏側には、内側加熱領域S1を加熱するシースヒータ41が埋設されている。また、熱板本体171の裏側には、周縁加熱領域S2を加熱するシースヒータ153が埋設されている。温度制御装置70は、これらシースヒータ41、153を加熱することで、内側加熱領域S1および周縁加熱領域S2をそれぞれ均一した温度に制御することができる。
 このように熱板170を構成することで、熱板の構成を簡単にすることができる。
 また、本実施形態の熱板の周縁加熱領域と内側加熱領域とは、太陽電池モジュール10の大きさに合わせて構成される。したがって、一台のラミネート装置100に異なる大きさの太陽電池モジュール10を加熱する場合、例えば、ラミネート部を上下方向に2段以上重ねて、各段に異なる大きさの内側加熱領域および周縁加熱領域を有する熱板122を設けてもよい。また、1つの熱板に隣接させて異なる大きさの内側加熱領域および周縁加熱領域を有する熱板を2つ以上設けてもよい。また、異なる大きさの内側加熱領域および周縁加熱領域を有する熱板に取り替えられるように構成してもよい。
 また、本実施形態のラミネート装置100は、温度制御装置70を内蔵してもよい。また、温度制御装置70を別体にして、ラミネート装置100と温度制御装置70とを含んで構成されるラミネートシステムとしてもよい。
Hereinafter, the laminating apparatus according to this embodiment will be described with reference to the drawings.
Here, first, the workpiece 10 to be laminated by the laminating apparatus will be described.
FIG. 1 is a cross-sectional view showing a configuration of a solar cell module using a crystal cell as a workpiece 10. As shown in the drawing, the solar cell module 10 has a configuration in which a string 15 is sandwiched between a transparent cover glass 11 and a back material 12 via fillers 13 and 14. A material such as polyethylene resin is used for the back material 12. Further, EVA (ethylene vinyl acetate) resin, PVB (polyvinyl butyral) resin, or the like is used for the fillers 13 and 14. The string 15 has a configuration in which solar cells 18 as crystal cells are connected between electrodes 16 and 17 via lead wires 19.
Moreover, as the workpiece 10, not only the solar cell module described above but also a solar cell module generally called a thin film type can be targeted. In a typical structure example of this thin film solar cell module, a power generation element composed of a transparent electrode, a semiconductor, and a back electrode is deposited on a transparent cover glass in advance. In such a thin film solar cell module, the cover glass is disposed downward, and the power generation element on the cover glass is covered with a filler. Further, the back material is covered on the filler. The components of the thin film solar cell module are bonded by vacuum heating lamination in such a state. That is, the thin film solar cell module is merely changed to a power generation element in which the above-described solar cell module crystal cells are deposited. The basic sealing structure of the thin film solar cell module is the same as that of the solar cell module described above.
FIG. 2 is a diagram illustrating an overall configuration of the laminating apparatus 100 according to the present embodiment. The laminating apparatus 100 includes an upper case 110, a lower case 120, and a conveyance belt 130 for conveying the workpiece 10. The conveyor belt 130 conveys the workpiece 10 between the upper case 110 and the lower case 120. The laminating apparatus 100 is provided with a carry-in conveyor 200 for conveying the workpiece 10 before laminating to the laminating apparatus 100. Further, the laminating apparatus 100 is provided with a carry-out conveyor 300 for carrying out the workpiece 10 after lamination from the laminating apparatus 100. The carry-in conveyor 200 and the carry-out conveyor 300 are connected in series. The workpiece 10 is transferred from the carry-in conveyor 200 to the conveyance belt 130 and from the conveyance belt 130 to the carry-out conveyor 300.
The laminating apparatus 100 is provided with a lifting device (not shown) composed of a cylinder, a piston rod, and the like. The lifting device can lift and lower the upper case 110 with respect to the lower case 120 while maintaining the horizontal state. The elevating device lowers the upper case 110 so that the internal space between the upper case 110 and the lower case 120 can be sealed.
Next, the configuration of the laminating unit 101 of the laminating apparatus 100 according to the present embodiment will be described more specifically. FIG. 3 is a side sectional view of a laminating unit 101 that laminates the workpiece 10 in the laminating apparatus 100. FIG. 4 is a cross-sectional side view of the laminating unit 101 during laminating.
The upper case 110 is formed with a space opened downward. In this space, a diaphragm 112 is provided so as to partition the space horizontally. The diaphragm 112 is formed of heat-resistant rubber such as silicone rubber. As will be described later, the diaphragm 112 functions as a pressing member that presses the workpiece 10 and performs lamination. A space (upper chamber 113) partitioned by a diaphragm 112 is formed in the upper case 110.
An intake / exhaust port 114 communicating with the upper chamber 113 is provided on the upper surface of the upper case 110. In the upper chamber 113, the inside of the upper chamber 113 can be evacuated and the atmosphere can be introduced into the upper chamber 113 via the intake / exhaust port 114.
In the lower case 120, a space (lower chamber 121) opened upward is formed. In this space, a hot plate 122 (panel-shaped heater) is provided. The hot plate 122 is supported by a support member erected on the bottom surface of the lower case 120 so as to maintain a horizontal state. In this case, the hot plate 122 is supported so that the surface thereof is substantially level with the opening surface of the lower chamber 121.
An intake / exhaust port 123 communicating with the lower chamber 121 is provided on the lower surface of the lower case 120. In the lower chamber 121, the inside of the lower chamber 121 can be evacuated and the atmosphere can be introduced into the lower chamber 121 through the intake / exhaust port 123.
A conveyor belt 130 is movably provided between the upper case 110 and the lower case 120 and above the heat plate 122. The conveyor belt 130 receives the workpiece 10 before lamination from the carry-in conveyor 200 of FIG. 2 and accurately conveys it to the central position of the laminating unit 101, that is, the central part of the hot plate 122. Moreover, the conveyance belt 130 delivers the workpiece 10 after lamination to the carry-out conveyor 300 in FIG.
A release sheet 140 is provided between the upper case 110 and the lower case 120 and above the conveyor belt 130. The release sheet 140 prevents the fillers 13 and 14 from adhering to the diaphragm 112 when the fillers 13 and 14 (see FIG. 1) of the workpiece 10 are melted.
Next, the laminating process by the laminating apparatus 100 according to the present embodiment will be described more specifically. First, as shown in FIG. 3, the conveyance belt 130 conveys the workpiece 10 to the center position of the laminate unit 101. At this time, the workpiece 10 is held at a position spaced apart from the hot plate 122 by raising a holding pin (not shown) which is arranged in the lower chamber 121 and the hot plate 122 and can move up and down. May be.
Next, the lifting device lowers the upper case 110. By lowering the upper case 110, the internal space between the upper case 110 and the lower case 120 is sealed as shown in FIG. That is, the upper chamber 113 and the lower chamber 121 can be kept sealed inside the upper case 110 and the lower case 120, respectively.
Next, the laminating apparatus 100 evacuates the upper chamber 113 through the intake / exhaust port 114 of the upper case 110. Similarly, the laminating apparatus 100 evacuates the lower chamber 121 through the intake / exhaust port 123 of the lower case 120 (vacuum process). Due to the evacuation of the lower chamber 121, the bubbles contained in the workpiece 10 are sent out of the workpiece 10. When the workpiece 10 is held at a position separated from the hot plate 122 by a holding pin (not shown) that can move up and down, the holding pin is lowered from substantially the second half of the vacuum process to move the workpiece 10. Is placed on the hot plate 122.
Since the workpiece 10 is heated by the hot plate 122 heated by the temperature control of a temperature control device described later, the fillers 13 and 14 included in the workpiece 10 are also heated.
Next, the laminating apparatus 100 introduces air into the upper chamber 113 through the intake / exhaust port 114 of the upper case 110 while maintaining the vacuum state of the lower chamber 121. As a result, a pressure difference is generated between the upper chamber 113 and the lower chamber 121, so that the diaphragm 112 expands. Accordingly, the diaphragm 112 is pushed downward as shown in FIG. 4 (pressurizing step). The workpiece 10 is sandwiched between the diaphragm 112 extruded downward and the hot plate 122, and the constituent members are bonded to each other by the fillers 13 and 14 melted by heating. The laminating apparatus 100 according to this embodiment is a so-called all-crosslinking type laminating apparatus in which the fillers 13 and 14 are completely melted and the respective constituent members are bonded.
At this time, although the fillers 13 and 14 may protrude from between the cover glass 11 and the back surface material 12, the protruding fillers 13 and 14 stick to the release sheet 140. By interposing the release sheet 140 in this way, the protruding fillers 13 and 14 are prevented from adhering to the diaphragm 112. Therefore, the release sheet 140 prevents the fillers 13 and 14 from adhering to the workpiece 10 to be laminated next from the diaphragm 112. Further, when the protruding fillers 13 and 14 adhere to the conveyor belt 130, the attached fillers 13 and 14 are removed by a cleaning mechanism (not shown).
After the laminating process is thus completed, the laminating apparatus 100 introduces air into the lower chamber 121 through the intake / exhaust port 123 of the lower case 120. At this time, the lifting device raises the upper case 110. By raising the upper case 110, the conveyor belt 130 can be moved as shown in FIG. The conveyor belt 130 delivers the workpiece 10 after lamination to the carry-out conveyor 300.
Next, the configuration of the hot plate 122 of the laminating apparatus 100 according to this embodiment will be described. FIG. 5 is a diagram illustrating the heat plate 122 and the temperature control device 70 that controls the temperature of the heat plate 122. FIG. 5 is a plan view of the hot plate 122, and a placement surface 21 on which the solar cell module 10 as a workpiece is placed appears.
The heat plate 122 has a size that fits in the lower case 120 as a whole, and is larger than the solar cell module 10 indicated by a two-dot chain line in FIG. Here, the dimensions of the hot plate 122 of the present embodiment are a width Wh of about 1200 mm and a depth Dh of about 1500 mm. The solar cell module 10 heated by the hot plate 122 has a width w of about 1100 mm and a depth d of about 1400 mm, and is rectangular in plan view.
The hot plate 122 includes an inner heating region S1 that heats the inner portion (center portion) of the solar cell module 10 when the solar cell module 10 is placed at the center of the hot plate 122, and a peripheral portion of the solar cell module 10. Peripheral heating regions S2 to S5.
Inner heating area | region S1 is an area | region which consists of only one, Comprising: It is smaller than the area of the whole solar cell module 10, and is 70% or more of the area of the whole solar cell module 10. FIG. Here, the dimensions of the inner heating region S1 of the present embodiment are a width Wa of about 940 mm and a depth Da of about 1250 mm, and are substantially rectangular in plan view. The shape of the inner heating region S1 is substantially similar to the solar cell module 10. Further, the area of the inner heating region S1 of the present embodiment is 76% of the area of the entire solar cell module 10.
As described above, the inner heating region S1 of the hot plate 122 heats the inner portion, that is, the central portion of the solar cell module 10.
In addition, it is preferable that the dimension of inner side heating area | region S1 is an area | region substantially the same as the range where the solar cell module 10 is earth | grounded to the heat plate 122, when the solar cell module 10 curves by the influence of heat. Therefore, the dimension of the inner heating region S1 is changed depending on the size of the solar cell module 10.
On the other hand, the peripheral heating regions S2 to S5 are located outside the inner heating region S1 and heat the entire periphery of the peripheral portion of the solar cell module 10. In addition, the peripheral heating regions S2 to S5 are only one region as a whole, but are divided into a plurality in this embodiment. The first peripheral heating region S <b> 2 heats one side of the long side in the peripheral portion of the solar cell module 10. In addition, the second peripheral heating region S <b> 3 heats the other side of the long side of the peripheral portion of the solar cell module 10. As shown in FIG. 5, the first peripheral heating region S2 and the second peripheral heating region S3 have an elongated, substantially rectangular shape that is long in the depth direction in plan view. Further, the third peripheral heating region S <b> 4 heats one side of the short side of the peripheral part of the solar cell module 10. In addition, the fourth peripheral heating region S <b> 5 heats the other side of the short side of the peripheral portion of the solar cell module 10. As shown in FIG. 5, the third peripheral heating region S4 and the fourth peripheral heating region S5 have an elongated, substantially rectangular shape that is long in the width direction in plan view. As described above, the peripheral heating regions S1 to S5 are generally continuous from one side of the long side of the peripheral part of the solar cell module 10 to one side of the short side, the other side of the long side, and the other side of the long side. It is an area.
The dimensions of the peripheral heating regions S2 to S5 are preferably substantially the same region as the range in which the solar cell module 10 is not grounded to the heat plate 122 when the solar cell module 10 is warped due to heat. . Accordingly, the dimensions of the peripheral heating regions S2 to S5 are changed depending on the size of the solar cell module 10.
Temperature sensors such as thermocouples are respectively embedded in the inner heating area S1 and the peripheral heating areas S2 to S5. Then, the temperature control device 70, based on the temperature data detected by the temperature sensor, sets the inner heating region S1 and the peripheral edge so that the inner heating region S1 and the peripheral heating regions S2 to S5 have the same set temperature. The temperature of the heating regions S2 to S5 can be controlled separately. As described above, the peripheral heating area of the hot plate 122 according to the present embodiment is divided into the first peripheral heating area S2 to the fourth peripheral heating area S5. The temperature can be separately controlled between the peripheral heating region S2 and the fourth peripheral heating region S5.
Next, the configuration of the hot plate 122 will be described in more detail with reference to FIG. FIG. 6A is a plan view of the hot plate 122. FIG. 6B is a front view of the hot plate 122. FIG. 6C is a bottom view of the hot plate 122.
The heating plate 122 includes a mounting plate 20 having a mounting surface 21 on which the solar cell module 10 shown by the two-dot chain line in FIGS. 6A and 6B is mounted, and a mounting surface 21 of the mounting plate 20. A hot plate main body 30 (first hot plate main body 31 to fifth hot plate main body 35) attached to the mounting surface 22 opposite to the above is connected.
As shown in the front view of FIG. 6B, the mounting plate 20 is disposed on the upper side of the hot plate main body 30. Moreover, the mounting plate 20 is formed in the panel shape which can mount the to-be-processed object 10 with aluminum or aluminum alloy.
On the other hand, the hot plate main body 30 is attached to the mounting surface 22 of the mounting plate 20 via a fixing screw or the like. Similarly, the hot plate main body 30 is made of aluminum or an aluminum alloy. As shown in FIG. 6C, the hot plate main body 30 of the present embodiment includes a first hot plate main body 31 to a fifth hot plate main body 35. Since the first hot plate body 31 to the fifth hot plate body 35 are formed with the same thickness Tp, the entire hot plate 122 is also formed with a constant thickness Th (see FIG. 6B). ).
Here, the first hot plate body 31 is attached to the center of the mounting plate 20 when the hot plate 122 is viewed from the back side. In other words, the first hot plate body 31 has a role of heating the above-described inner heating region S1 and has the same size as the inner heating region S1.
A plurality of housing grooves are processed on the back surface of the first hot plate body 31, and a sheath heater 41 as a heat transfer body for heating the first hot plate body 31 is formed in the housing groove. Buried. In the first hot plate body 31 of the present embodiment, three sheath heaters 41 formed by bending in a U shape when viewed from the back surface are embedded in parallel. In addition, although not shown in figure, each sheath heater 41 is connected to the temperature control apparatus 70 mentioned above from each accommodation groove | channel. Therefore, the temperature control device 70 can control the entire inner heating region S1 to a uniform temperature via the first hot plate main body 31 by heating the sheath heater 41.
On the other hand, the second hot plate main body 32 to the fifth hot plate main body 35 surround the periphery of the first hot plate main body 31 when the hot plate 122 is viewed from the back side. It is attached. That is, the second hot plate main body 32 to the fifth hot plate main body 35 have a role of heating the peripheral heating regions S2 to S5, respectively, and have the same size as the peripheral heating regions S2 to S5, respectively. is there.
On the back surfaces of the second hot plate main body 32 to the fifth hot plate main body 35, the receiving grooves are respectively processed into a substantially linear shape or a substantially elongated ring shape, and the second hot plate main body 32 is respectively provided in the receiving grooves. ~ Sheath heaters 42 to 45 as heat transfer bodies for heating the fifth hot plate main body 35 are embedded. In the second hot plate main body 32 and the third hot plate main body 33 of the present embodiment, sheath heaters 42 and 43 formed in a substantially linear shape are respectively embedded. In addition, sheath heaters 44 and 45 formed by bending into a substantially elongated ring shape when viewed from the back surface are embedded in the fourth hot plate main body 34 and the fifth hot plate main body 35 of the present embodiment, respectively. Although not shown, the sheath heaters 42 to 45 are connected to the above-described temperature control device 70 from each housing groove. Therefore, the temperature control device 70 heats the sheath heaters 42 to 45 so that the entire peripheral heating regions S2 to S5 are brought to a uniform temperature via the second hot plate main body 32 to the fifth hot plate main body 35. Can be controlled. In some cases, the temperature controller 70 controls the temperatures of the second hot plate main body 32 to the fifth hot plate main body 35, respectively, and separately controls the temperatures of the peripheral heating region S2 to the peripheral heating region S5. May be. Note that there is a slight gap between the first hot plate main body 32 and the fifth hot plate main body 35 so that the temperatures of the adjacent hot plate main bodies do not interfere with each other.
Next, a method of embedding a heat transfer body in the hot plate body will be described with reference to FIGS. 7 (a) and 7 (b). FIGS. 7A and 7B are views showing a partial cross section of the hot plate 122. Here, the heat transfer body is the sheath heater 50. The sheath heater 50 includes a nichrome wire 51 processed in a coil shape at the center, an insulating material 52 such as magnesium oxide filled around the nichrome wire 51, and a sheath 53 (an outer skin forming the outer periphery) covering the entire circumference of the insulating material 52. ).
FIG. 7A is a cross-sectional view showing a heat plate 122 in which the sheath heater 50 is embedded by crimping the sheath heater 50 in the accommodation groove 61 of the heat plate main body 30. In the embedding method shown in FIG. 7A, first, the sheath heater 50 is housed in the housing groove 61 that has been processed in advance with substantially the same dimensions as the sheath heater 50. Thereafter, in a state where the sheath heater 50 is housed in the housing groove 61, the opening edge of the housing groove 61 and the sheath heater 50 are crimped from the back surface of the hot plate main body 30. By doing in this way, the sheath heater 50 can be embed | buried in the accommodation groove | channel 61, as shown to Fig.7 (a). Thereafter, the hot plate main body 30 is attached to the mounting surface 22 of the mounting plate 20 using the fixing screw 65. As described above, the sheath heaters 41 to 45 are similarly embedded in the first hot plate main body 31 to the fifth hot plate main body 35 and attached to the mounting surface 22 of the mounting plate 20. By connecting the first hot plate main body 31 and the second hot plate main body 32 to the fifth hot plate main body 35 via the mounting plate 20, the hot plate 122 can be easily manufactured. The unevenness of the mounting surface assumed when the hot plate main body 122 is simply connected to form the hot plate 122 can be eliminated. Further, as in the present embodiment, the first hot plate main body 31 and the second hot plate main body 32 to the fifth hot plate main body 35 are configured separately, so that the receiving groove 61 of each hot plate main body is provided. It is possible to easily embed a heat transfer body.
FIG. 7B is a cross-sectional view showing a hot plate 122 in which the sheath heater 50 is embedded by sandwiching the sheath heater 50 between the upper and lower hot plate bodies 30a and 30b. In the embedding method shown in FIG. 7B, the sheath heaters 50 are accommodated in the accommodation grooves 61a and 61b that are previously processed in the upper and lower hot plate bodies 30 (30a and 30b) in the same dimensions as the substantially semicircular shape of the sheath heater 50, respectively. Thereafter, the sheath heater 50 is screwed with bolts 66 or the like with the hot plate bodies 30a and 30b and sandwiched from above and below, so that the sheath heater 50 can be embedded in the receiving grooves 61a and 61b as shown in FIG. . Thereafter, the hot plate main body 30 (30a, 30b) is attached to the mounting surface 22 of the mounting plate 20 using the fixing screw 65. In this manner, for the first hot plate main body 31 to the fifth hot plate main body 35, the sheath heaters 41 to 45 are similarly embedded and attached to the mounting surface 22 of the mounting plate 20, whereby the hot plate 122 is manufactured. can do.
The method of embedding the sheath heater 50 in the hot plate body 30 is not limited to the method described above. For example, the sheath heater 50 may be embedded in the hot plate main body 30 by casting a casting material such as aluminum constituting the hot plate main body 30 around the sheath heater 50.
Moreover, although the case where the sheath heater 50 is used as a heat transfer body embedded in the hot plate body 30 has been described, the present invention is not limited to this case. For example, a heat pipe (not shown) can be used as the heat transfer body. The heat pipe is composed of a hollow tube member and a heat transfer medium such as heated oil flowing in the tube member. The heat plate 122 can be manufactured by embedding such a heat pipe in the heat plate main body 30 in the same manner as the embedding method and the embedding method shown in FIGS. In this case, the heat pipe is connected to the temperature control device 70, and the temperature control device 70 controls the temperature of the heat plate 122 by adjusting the temperature of the heat transfer medium flowing in the tube member.
Next, with reference to FIG. 8, the temperature change in the solar cell module 10 when the solar cell module 10 is heated with the laminating apparatus 100 of this embodiment is demonstrated.
Fig.8 (a) is a top view of the state which mounted the solar cell module 10 in the center of the mounting surface 21 of the hot plate 122 of the laminating apparatus 100 of this embodiment. FIG.8 (b) is a figure which shows the graph which measured the temperature of the measurement points 81a, 81b, 81c of the surface of the solar cell module 10 shown to Fig.8 (a). Here, the dimensions of the hot plate 122, the inner heating area S1, the peripheral heating areas S2 to S5, and the solar cell module 10 are the same as those described in FIG. Further, the measurement point 81a is a point located 10 mm inside from the corner 82 of the solar cell module 10 in the width and depth directions. The measurement point 81b is a point located 10 mm inward in the width direction from the center of one long side of the solar cell module 10. That is, the measurement points 81a and 81b are heated by the peripheral heating region S2 of the hot plate 122. The measurement point 81 c is a point located at the center of the solar cell module 10. That is, the measurement point 81 c is heated by the inner heating region S 1 of the hot plate 122. In FIG. 8B, the temperature change at the measurement point 81a corresponds to a characteristic line indicated by a solid line, the temperature change at the measurement point 81b corresponds to a characteristic line indicated by a broken line, and the temperature change at the measurement point 81c is indicated by a one-dot chain line. Corresponds to the characteristic line. FIG. 8C is a diagram showing a graph in which the temperature of the hot plate 122 controlled by the temperature control device 70 is measured. In FIG. 8C, the temperature change in the peripheral heating region S2 corresponds to a characteristic line indicated by a solid line, and the temperature change in the inner heating region S1 corresponds to a characteristic line indicated by a one-dot chain line.
8 (b) and 8 (c), the temperature change graph is shown by the rise of a holding pin (not shown) that can be moved up and down and arranged in the lower chamber 121 or the hot plate 122 until substantially the first half of the vacuum process. This is a result when the workpiece 10 is laminated by a laminating apparatus 100 of a type that holds the workpiece 10 at a position separated from the hot plate 122.
First, when the vacuum process is started, the temperature controller 70 heats the inner heating region S1 and the peripheral heating regions S2 to S5 of the hot plate 122 in the same manner as shown in FIG. By controlling, as shown by the first half of the vacuum process in FIG. 8B, the temperature rises at the measurement points 81a, 81b, 81c of the solar cell module 10 with a similar gradient although there is a temperature difference.
Thereafter, when the solar cell module 10 is placed on the hot plate 122 by the lowering of the holding pins in the second half of the vacuum process, as shown in the c1 part of FIG. 8C, the inner heating region S1 of the hot plate 122. Only the temperature drops rapidly. This is because when the holding pin is raised and the solar cell module 10 is separated from the hot plate 122 in the first half of the vacuum process, due to the temperature difference between the upper and lower sides of the cover glass 11 of the solar cell module 10, This is because the peripheral edge has warped in a direction further away from the hot plate 122. That is, only the inner part of the solar cell module 10 is grounded on the hot plate 122 to the inner heating region S 1, and the heat of the inner heating region S 1 of the hot plate 122 is taken away by the solar cell module 10. Therefore, as shown in part c2 of FIG. 8B, the temperature of the inner part (measurement point 81c) of the solar cell module 10 rapidly increases in the latter half of the vacuum process.
Next, from the vacuum process to the pressurization process, the temperature controller 70 heats the inner heating area S1 so as to compensate for the temperature of the deprived inner heating area S1, as indicated by a portion c3 in FIG. 8C. Increase the temperature of S1.
On the other hand, as shown in FIG. 8C, the peripheral heating region S2 of the hot plate 122 is not grounded to the solar cell module 10 even in the latter half of the vacuum process, so the temperature of the peripheral heating region S2 does not decrease. However, as shown in the a1 part of FIG. 8C, when the pressurization process is started, the temperature of the peripheral heating region S2 of the hot plate 122 is rapidly lowered. This is because the peripheral portion of the solar cell module 10 is grounded to the peripheral heating region S2 by the diaphragm 112, and the heat of the peripheral heating region S2 of the hot plate 122 is taken away by the solar cell module 10. Therefore, as shown in the a2 portion of FIG. 8B, the temperature of the peripheral portion ( measurement points 81a and 81b) of the solar cell module 10 rises.
Next, as shown in the a3 part of FIG. 8C, the temperature control device 70 is heated to compensate for the temperature of the deprived peripheral heating region S2, and the temperature of the peripheral heating region S2 becomes the target temperature. The heating control is performed.
At this time, as shown in part c4 of FIG. 8C, the temperature control device 70 heats and raises the temperature of the inner heating region S1 so as to match the increase in the temperature of the peripheral heating region S2.
By performing such temperature control, in the latter half of the pressurization step, as shown in FIG. 8B, the peripheral portion ( measurement points 81a, 81b) and the inner portion (measurement point 81c) of the solar cell module 10 The temperature can be made uniform. In the present embodiment, the temperature difference between the measurement points 81a, 81b, 81c of the solar cell module 10 with respect to the set temperature can be within ± 5%. Specifically, the temperature at the final measurement point 81a shown in FIG. 8B is 147.5 ° C., the temperature at the measurement point 81b is 149.3 ° C., and the temperature at the measurement point 81c is 151.3 ° C. ° C.
As described above, even if the temperature decreases due to the time difference between the inner heating region and the peripheral heating region of the hot plate 122 due to the movement of heat among the solar cell module 10, the hot plate 122, and the diaphragm 112, the temperature Since the inner heating region and the peripheral heating region are separately temperature controlled by the control device 70, it is possible to perform quick temperature control corresponding to each temperature change. Therefore, the laminating apparatus 100 can cause the temperature of the inner heating region to follow the temperature of the peripheral heating region or the temperature of the peripheral heating region to the temperature of the inner heating region by the temperature control device 70. The temperature in the module 10 can be made uniform. That is, by making the temperature of the filler in the peripheral part and the inner part in the solar cell module 10 substantially the same, the time for the filler to start melting can be made substantially the same, and high quality in which no bubbles are generated inside. The solar cell module 10 can be provided.
Even if the temperature control device 70 increases the temperature of the hot plate 122 more rapidly so that the filler can start melting in a short time, the inner heating region and the peripheral heating region of the hot plate 122 are separated separately. By controlling the temperature, the time for the filler to start melting in the solar cell module 10 can be made substantially the same. Therefore, even if the temperature of the hot plate 122 is suddenly increased, the temperature can be controlled to be uniform, so that the tact time for producing a high-quality solar cell module in which no bubbles are generated can be easily reduced.
Moreover, since the temperature control apparatus 70 can control the temperature around the solar cell module 10 and the amount of supplied heat, it can reduce the deterioration of the temperature distribution of the solar cell module 10 due to warping.
In addition, the process in which the temperature control device 70 described above controls the temperature of the inner heating region and the peripheral heating region of the hot plate 122 is not limited to the above description, and the temperature in the solar cell module 10 is made uniform. Any temperature control can be used as long as it is possible. For example, assuming that the temperature is lowered in advance in the inner heating region and the peripheral heating region of the hot plate 122 in advance, respectively, immediately before the temperature is lowered so that the temperature does not decrease in the inner heating region and the peripheral heating region. You may control temperature which raises the temperature of a heating area | region and a periphery heating area | region.
Further, the results of the temperature change graphs shown in FIGS. 8A and 8B described above indicate that the workpiece 10 is held at a position separated from the hot plate 122 by a holding pin or the like until approximately the first half of the vacuum process. It was a result when using a laminating apparatus of the type. However, the present invention is not limited to such a laminating apparatus, and the conveying belt 130 can be applied to a laminating apparatus of the type in which the solar cell module 10 is placed on the hot plate 122 from the beginning.
Various kinds of fillers for the solar cell module 10 are used. That is, the characteristics of the filler are different, for example, the melting temperature is different depending on the type of the filler. In the laminating apparatus of the present embodiment, the temperature is quickly controlled according to the temperature change between the inner heating area and the peripheral heating area of the hot plate 122, as described above, assuming that the fillers are different. Therefore, the solar cell module 10 having stable quality can be manufactured even if the characteristics of the filler are different.
In the above-described embodiment, the case where the hot plate main body for heating the peripheral heating region is configured by a plurality of the second hot plate main body 32 to the fifth hot plate main body 35 has been described. I can't. For example, a hot plate main body for heating the peripheral heating region may be integrally formed.
Here, the configuration of the hot plate 150 integrally configured with the hot plate main body 30 for heating the peripheral heating region S2 will be described with reference to FIG. FIG. 9A is a plan view of the hot plate 150. FIG. 9B is a front view of the heat plate 150. FIG. 9C is a bottom view of the hot plate 150. In addition, the same code | symbol is attached | subjected about the component same as the hot platen 122 shown in FIG. 6, and this description is abbreviate | omitted.
The hot plate 150 includes a mounting plate 20 having a mounting surface 21 on which the solar cell module 10 is mounted, and a hot plate main body 151 (first plate) attached to a mounting surface 22 opposite to the mounting surface 21 of the mounting plate 20. The first hot plate main body 31 and the second hot plate main body 152) are connected to each other.
Further, as shown in FIG. 9C, the hot plate main body 151 is configured to include a first hot plate main body 31 and a second hot plate main body 152.
The first hot plate main body 31 is attached to the center of the mounting plate 20 when the hot plate 151 is viewed from the back side. That is, the first hot plate body 31 is the same size as the inner heating region S1.
A plurality of housing grooves are processed on the back surface of the first hot plate main body 31 over the entire back surface, and a sheath heater 41 similar to that shown in FIG. 6 is embedded in the housing groove.
The second hot plate main body 152 has a mouth shape that surrounds the first hot plate main body 31 when the hot plate 150 is viewed from the back side. There is a slight gap between the second hot plate main body 152 and the first hot plate main body 31. The second hot plate main body 152 has a role of heating the peripheral heating region S2, and has the same size as the peripheral heating region S2. A sheath heater 153 is embedded in the back surface of the second hot plate main body 152. The sheath heater 153 is embedded at substantially the center in the width direction of each side of the second hot plate main body 152. Although not shown, the sheath heater 153 is connected to the temperature control device 70 described above from the accommodation groove. Therefore, the temperature control device 70 can control the entire peripheral heating region S2 to a uniform temperature via the second hot plate main body 152 by heating the sheath heater 153.
Further, in the hot plate 122 shown in FIG. 6 described above, the first hot plate main body 31 for heating the inner heating region and the hot plate main body for heating the peripheral heating region (the second hot plate main body 32 to the fifth hot plate). Although the case where the main body 35) is connected via the mounting plate 20 has been described, the mounting plate 20 may be omitted and the hot plate main bodies may be connected to each other.
Here, the configuration of the hot plate 160 in which the hot plate bodies are connected to each other will be described with reference to FIG. FIG. 10A is a plan view of the hot plate 160. FIG. 10B is a front view of the hot plate 160. FIG. 10C is a bottom view of the hot plate 160. Here, the same components as those of the hot plate 150 shown in FIG. 9 described above are denoted by the same reference numerals, and description thereof is omitted.
As shown in FIGS. 10A, 10 </ b> B, and 10 </ b> C, the hot plate 160 includes the first hot plate main body 31 and the second hot plate main body 152. Is not included. Therefore, the solar cell module 10 is placed directly on the first hot plate main body 31 and the second hot plate main body 152.
Then, the first hot plate main body 31 and the second hot plate main body 152 are directly connected via the mounting plate 161 shown in FIGS. 10B and 10C. Specifically, as shown in the partial cross-sectional enlarged view of the portion C in FIG. 10B, the fixing is performed through the mounting plate 161 straddling the first hot plate main body 31 and the second hot plate main body 152. Screws 162 are screwed to the first hot plate main body 31 and the second hot plate main body 152.
By configuring the hot plate 160 in this way, the first hot plate main body 31 and the second hot plate main body 152 can be connected without using the mounting plate.
In addition, the above-described hot plate 122 shown in FIG. 6 has been described with respect to a case where the hot plate 122 includes a plurality of hot plate bodies (first hot plate body 31 to fifth hot plate body 35) and the mounting plate 20. You may comprise a hot plate with one hot plate main body.
Here, the configuration of the hot plate 170 constituted by one hot plate main body 171 will be described with reference to FIG. FIG. 11A is a plan view of the hot plate 170. FIG. 11B is a front view of the hot plate 170. FIG. 11C is a bottom view of the heat plate 170. Here, the same components as those of the hot plate 150 shown in FIG. 9 described above are denoted by the same reference numerals, and description thereof is omitted.
A sheath heater 41 for heating the inner heating region S1 is embedded in the back side of the hot plate main body 171. In addition, a sheath heater 153 for heating the peripheral heating region S2 is embedded on the back side of the hot plate main body 171. The temperature control device 70 can control the inner heating region S1 and the peripheral heating region S2 to uniform temperatures by heating the sheath heaters 41 and 153, respectively.
By configuring the hot plate 170 in this way, the configuration of the hot plate can be simplified.
Further, the peripheral heating area and the inner heating area of the hot plate of the present embodiment are configured according to the size of the solar cell module 10. Therefore, when heating solar cell modules 10 having different sizes in one laminating apparatus 100, for example, two or more laminate portions are stacked in the vertical direction, and the inner heating region and the peripheral heating region having different sizes in each step. You may provide the hot plate 122 which has. Further, two or more hot plates having inner heating regions and peripheral heating regions of different sizes may be provided adjacent to one hot plate. Moreover, you may comprise so that it can replace | exchange with the hot plate | board which has an inner side heating area | region and peripheral heating area | region of a different magnitude | size.
Moreover, the laminating apparatus 100 of this embodiment may incorporate the temperature control apparatus 70. FIG. Alternatively, the temperature control device 70 may be separated and a laminating system including the laminating device 100 and the temperature control device 70 may be used.

Claims (5)

  1.  押圧部材により仕切られた上チャンバと下チャンバとを有し、その下チャンバに設けられた熱板上に被加工物を配置し、前記熱板により加熱した前記被加工物を、前記下チャンバを真空とし前記上チャンバに大気を導入し前記熱板と前記押圧部材とで挟圧してラミネートするラミネート装置であって、
     前記熱板は、前記被加工物の周縁部を加熱する周縁加熱領域と、前記被加工物の周縁部よりも内側の内側加熱領域とが別々に温度制御され、前記被加工物の周縁部と内側部とを略同一温度に加熱することを特徴とするラミネート装置。
    An upper chamber and a lower chamber, which are partitioned by a pressing member, are arranged on a hot plate provided in the lower chamber, and the workpiece heated by the hot plate is placed in the lower chamber. A laminating apparatus for laminating by vacuuming and introducing air into the upper chamber and sandwiching between the hot plate and the pressing member,
    In the hot plate, the peripheral heating area for heating the peripheral edge of the workpiece and the inner heating area inside the peripheral edge of the workpiece are separately temperature-controlled, and the peripheral edge of the workpiece A laminating apparatus that heats the inner part to substantially the same temperature.
  2.  前記熱板は、前記周縁加熱領域と、前記内側加熱領域とが別々に温度制御され、前記被加工物内の充填材を前記被加工物の周縁部と内側部とで溶融を開始する時間を略同一にすることを特徴とする請求項1に記載のラミネート装置。 In the hot plate, the temperature of the peripheral heating region and the inner heating region are separately controlled, and a time for starting the melting of the filler in the workpiece between the peripheral portion and the inner portion of the workpiece is set. The laminating apparatus according to claim 1, wherein the laminating apparatus is substantially the same.
  3.  前記熱板は、前記周縁加熱領域に対応する周縁熱板本体と前記内側加熱領域に対応する内側熱板本体とで別体にして構成されていることを特徴とする請求項1又は2に記載のラミネート装置。 The said hot plate is comprised separately by the peripheral hot plate main body corresponding to the said peripheral heating area | region, and the inner side hot plate main body corresponding to the said inner side heating area | region. Laminating equipment.
  4.  前記熱板は、前記周縁加熱領域に対応する周縁熱板本体と前記内側加熱領域に対応する内側熱板本体とが被加工物を載置する載置板を介して接続して構成されていることを特徴とする請求項3に記載のラミネート装置。 The hot plate is configured such that a peripheral hot plate main body corresponding to the peripheral heating region and an inner hot plate main body corresponding to the inner heating region are connected via a mounting plate for mounting a workpiece. The laminating apparatus according to claim 3.
  5.  前記周縁加熱領域に対応する周縁熱板本体は、前記周縁加熱領域に配置される前記被加工物の各辺ごとに別体にして構成されていることを特徴とする請求項3又は4に記載のラミネート装置。 5. The peripheral hot plate body corresponding to the peripheral heating region is configured separately for each side of the workpiece disposed in the peripheral heating region. Laminating equipment.
PCT/JP2010/059726 2009-06-05 2010-06-02 Laminating device WO2010140705A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-136549 2009-06-05
JP2009136549A JP2010280172A (en) 2009-06-05 2009-06-05 Laminating apparatus

Publications (1)

Publication Number Publication Date
WO2010140705A1 true WO2010140705A1 (en) 2010-12-09

Family

ID=43297836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059726 WO2010140705A1 (en) 2009-06-05 2010-06-02 Laminating device

Country Status (3)

Country Link
JP (1) JP2010280172A (en)
TW (1) TW201111170A (en)
WO (1) WO2010140705A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184717A (en) * 2013-02-25 2014-10-02 Panasonic Corp Laminate device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214987A (en) * 1997-01-31 1998-08-11 Kyocera Corp Laminate of solar cell module and lamination method
JP2008047765A (en) * 2006-08-18 2008-02-28 Npc Inc Laminating apparatus
JP2008047766A (en) * 2006-08-18 2008-02-28 Npc Inc Laminating apparatus
JP2008072056A (en) * 2006-09-15 2008-03-27 Nisshinbo Ind Inc Laminating method of solar-battery module by process including preheating, and its apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214987A (en) * 1997-01-31 1998-08-11 Kyocera Corp Laminate of solar cell module and lamination method
JP2008047765A (en) * 2006-08-18 2008-02-28 Npc Inc Laminating apparatus
JP2008047766A (en) * 2006-08-18 2008-02-28 Npc Inc Laminating apparatus
JP2008072056A (en) * 2006-09-15 2008-03-27 Nisshinbo Ind Inc Laminating method of solar-battery module by process including preheating, and its apparatus

Also Published As

Publication number Publication date
JP2010280172A (en) 2010-12-16
TW201111170A (en) 2011-04-01

Similar Documents

Publication Publication Date Title
JP5095166B2 (en) Method and apparatus for laminating solar cell module by preheating
JP5374715B2 (en) Laminating apparatus, hot plate for laminating apparatus, and method for manufacturing hot plate for laminating apparatus
JP5781412B2 (en) Lamination method
JP3098003B2 (en) Laminating equipment for solar cells
JP2008126407A (en) Laminator
JP2012080120A (en) Laminate press, carrier plate, laminate system and laminating method
JP2008114549A (en) Laminating apparatus
TW201803732A (en) Laminating device, laminating method and manufacturing method of solar cell module
JP5173921B2 (en) Solar cell module laminator
JP5922461B2 (en) Laminating equipment
KR101593833B1 (en) Unit for heating a printed circuit board and apparatus for bonding dies including the same
WO2011136132A1 (en) Hot plate for laminating device and laminating device using the hot plate
JP2013010330A (en) Heat plate for laminating device
WO2010140705A1 (en) Laminating device
JP5558117B2 (en) Laminating equipment
JP2000101119A (en) Laminating method and device for solar cell
CN102336017A (en) Press mechanism and bonding apparatus
WO2009031674A1 (en) Lamination apparatus, hot platen for the same and process for manufacturing the hot platen
JP2016030396A (en) Laminate device and laminate method
JP2015100941A (en) Fitting jig of diaphragm for laminating apparatus, and fitting method of diaphragm
JP2003282920A (en) Method of manufacturing solar cell module
JP2012196835A (en) Laminator, and method for manufacturing solar cell module using the same
JP2016125605A (en) Drawing-in prevention jig of diaphragm for laminate device
JP2016215447A (en) Laminating device
JP2004031739A (en) Method and apparatus for manufacturing solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783487

Country of ref document: EP

Kind code of ref document: A1