WO2009031674A1 - Lamination apparatus, hot platen for the same and process for manufacturing the hot platen - Google Patents

Lamination apparatus, hot platen for the same and process for manufacturing the hot platen Download PDF

Info

Publication number
WO2009031674A1
WO2009031674A1 PCT/JP2008/066140 JP2008066140W WO2009031674A1 WO 2009031674 A1 WO2009031674 A1 WO 2009031674A1 JP 2008066140 W JP2008066140 W JP 2008066140W WO 2009031674 A1 WO2009031674 A1 WO 2009031674A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot plate
sheath heater
groove
laminating apparatus
champ
Prior art date
Application number
PCT/JP2008/066140
Other languages
French (fr)
Japanese (ja)
Inventor
Masato Kasahara
Shin Nakamura
Kunio Takei
Takayuki Iguchi
Yoshinori Hosogaya
Original Assignee
Nissinbo Industries, Inc.
Nihon Dennetsu Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008208054A external-priority patent/JP5374715B2/en
Application filed by Nissinbo Industries, Inc., Nihon Dennetsu Co., Ltd. filed Critical Nissinbo Industries, Inc.
Priority to CN200880114992A priority Critical patent/CN101848802A/en
Publication of WO2009031674A1 publication Critical patent/WO2009031674A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • B30B15/062Press plates
    • B30B15/064Press plates with heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B5/00Presses characterised by the use of pressing means other than those mentioned in the preceding groups
    • B30B5/02Presses characterised by the use of pressing means other than those mentioned in the preceding groups wherein the pressing means is in the form of a flexible element, e.g. diaphragm, urged by fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1009Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using vacuum and fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • B32B2037/268Release layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Laminating apparatus hot plate for laminating apparatus and method for manufacturing hot plate for laminating apparatus
  • the present invention relates to a laminating apparatus in which a workpiece such as a solar cell module is disposed on a hot plate, and the workpiece heated by the hot plate is pressed by a hot plate and a pressing member to be laminated, and a hot plate for the laminating apparatus
  • the present invention relates to a method for manufacturing a hot plate for a laminating apparatus.
  • a solar battery is configured by overlapping a plurality of members such as a cover glass, a filler, a solar cell, and a back material.
  • a laminating apparatus is used (for example, see Patent Document 1).
  • the laminating apparatus performs laminating while heating the workpiece on which the constituent members of the solar cell are superposed in a vacuum state. As a result, the workpiece is bonded in a state in which the constituent members are overlapped.
  • This laminating apparatus has an upper case having a diaphragm that is expandable downward, and a lower case having a heat plate.
  • the laminating apparatus When laminating a solar cell, first, the user arranges the constituent members of the solar cell on the hot plate. Next, the laminating apparatus evacuates the space formed by the upper case and the lower case. Further, the laminating apparatus introduces atmospheric pressure into the upper case in a state where the constituent members of the solar cell, which is the workpiece, are heated by the hot plate. By doing so, the laminating apparatus laminates the constituent members of the solar cell with the diaphragm and the hot plate.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 4-2 3 8 1 9 6
  • Patent Document 2 Japanese Patent Laid-Open No. 9-3 3 1 0 0 Disclosure of the Invention Problems to be Solved by the Invention
  • a heater called a sheath heater in which the heating wire is covered with metal via an insulating material, is embedded in the hot plate of the laminating apparatus.
  • the temperature of the hot plate is controlled by a temperature controller so as to be an appropriate temperature for heating the solar cell. More specifically, a thermocouple embedded at an appropriate depth from the surface of the hot plate measures the temperature of the hot plate. The measured temperature information is then fed to the temperature controller. Be packed.
  • the temperature controller controls the temperature of the hot plate to an appropriate temperature based on the information on the temperature of the feed pack. That is, the temperature controller raises the temperature of the sheath heater or cools it naturally.
  • the temperature controller increases the temperature of the sheath heater or allows it to cool naturally so that the temperature of the hot plate is maintained at an appropriate temperature.
  • FIG. 9 is a diagram showing the temperature transition of the hot plate.
  • the characteristic line (1) is the temperature transition of the hot plate obtained when the laminating process is performed with the workpiece placed on the hot plate in the laminating apparatus described above.
  • the temperature of the hot plate is initially a target temperature (eg, 120 ° C. to 180 ° C.). By placing the work piece on the hot plate, the heat of the hot plate is taken away by the work piece, and the temperature of the hot plate decreases rapidly. To catch this temperature drop?
  • the display controller controls the temperature of the hot plate. However, the temperature of the hot plate does not easily reach the target temperature within a predetermined heating time (for example, 5 minutes).
  • the hot plate is in a vacuum atmosphere; the temperature of the hot plate does not rise. Furthermore, when the heating time of the workpiece is finished and the vacuum state of the space formed by the upper case and the lower case is released, the temperature of the hot plate greatly exceeds the target temperature and overshoots. As described above, in the conventional laminating apparatus, it is difficult to control the temperature of the hot plate to the target temperature. Further, if the temperature of the hot plate is overshot, the workpiece cannot be placed on the hot plate until the temperature of the hot plate is lowered to the target temperature. Therefore, the conventional hot plate has a problem that the working efficiency of the laminate is lowered. In FIG.
  • the characteristic line (2) is the temperature transition of the hot plate obtained when the laminating process is performed in the state where the workpiece is not placed on the hot plate. As shown by the characteristic line (2) in Fig. 9, when the laminating process starts, the temperature of the hot plate decreases slightly due to contact with the diaphragm, but is then controlled to the target temperature.
  • Fig. 17 (a) is a diagram showing a partial cross section of the hot plate in a simplified manner.
  • the hot plate 1 60 has an upper plate 1 61 and a lower plate 1 6 2.
  • the hot plate 160 has a sheath heater 16 3 provided between the receiving groove formed on the back surface of the upper plate 16 1 and the receiving groove formed on the upper surface of the lower plate 16 2.
  • gaps were generated between the upper plate 1 6 1 and the sheath heater 1 6 3 and between the lower plate 1 6 2 and the sheath heater 1 6 3. This gap is due to an overlay error between the upper plate 16 1 and the lower plate 16 2, an error in the processing dimension of the receiving groove, and the like. Due to the generation of this gap, the efficiency of heat transfer from the sheath heater 16 3 to the upper plate 16 1 and the lower plate 16 2 is reduced. In particular, as described above, in the laminating process, there is a process in which the space formed by the upper case and the lower case is in a vacuum state.
  • gaps generated between the upper plate 1 61 and the sheath heater 1 6 3 and between the lower plate 1 6 2 and the sheath heater 1 6 3 are also in a vacuum state.
  • the sheath heater 1 6 3 The efficiency of heat transfer to the upper plate 1 6 1 and the lower plate 1 6 2 is significantly reduced. Therefore, it becomes difficult for the temperature controller to control the temperature of the hot plate 160. Also, the temperature of the hot plate 160 does not easily increase to the target temperature within the heating time. Accordingly, the temperature controller performs temperature control for further increasing the temperature of the sheath heater 16 3 in order to increase the temperature of the hot plate 160. Therefore, the temperature of the sheath heater 1 6 3 rises excessively.
  • a hot platen for heating a workpiece for example, see Patent Document 2.
  • This hot platen has through holes formed in parallel to the inside of the platen.
  • the through hole is provided with a heat conducting element having an outer portion, with the inner peripheral surface of the through hole and the outer peripheral surface of the outer portion of the heat conducting element being in close contact with each other.
  • this hot plate is used in a device that does not enter a vacuum state as described above, in which the efficiency of heat transfer is significantly reduced.
  • the hot platen disclosed in Patent Document 2 has not been considered so as to be able to cope with workpieces that are becoming larger in recent years.
  • the present invention has been made in view of the above-described problems, and is intended to enable easy and reliable control of the temperature of a hot plate to a target temperature in a laminating apparatus having a step of becoming a vacuum state.
  • Objective Means for solving the problem
  • the laminate apparatus includes an upper chamber and a lower chamber separated by a pressing member, and a workpiece is disposed on a hot plate provided in the lower chamber, and heated by the hot plate.
  • the hot plate can be configured to caulk a protrusion provided at an opening edge of the housing groove in an inner direction of the housing groove in a state where the sheath heater is embedded in the housing groove.
  • the hot plate may be configured such that the receiving groove is provided on a bottom surface of a concave groove provided on a back surface of the hot plate main body.
  • the hot plate can be configured such that a portion of the protruding portion provided at the opening edge of the receiving groove is caulked in the inner direction of the receiving groove so as to protrude from the back surface of the hot plate main body.
  • the hot plate can be configured by caulking the opening edge of the housing groove in the ridge side direction of the housing groove in a state where the sheath heater is embedded in the housing groove.
  • the hot plate may be configured to be provided directly on the back surface of the hot plate body in a state before the opening edge itself of the receiving groove is caulked.
  • the material of the hot plate body may be the same as the material of the outer peripheral member of the sheath heater.
  • a plurality of sheath heaters may be embedded in the hot plate main body.
  • a plurality of housing grooves meandering along the surface direction are provided on the back surface of the hot plate main body, and a plurality of sheath heaters embedded in each of the plurality of housing grooves may be provided.
  • the plurality of sheathed heaters embedded in the same depth direction of the heat plate main body among the plurality of sheath heaters are arranged such that the position of going out from the housing groove is shifted in the width direction of the heat plate main body. It can also be configured.
  • the hot plate can be configured by combining a plurality of hot plate bodies.
  • the hot plate can also be configured to be connected by a fixing member from the surface side through a connecting member provided between adjacent hot plate bodies from the surface side to between the hot plate bodies.
  • the hot plate may include a hot plate body and a sheath heater embedded in the hot plate body, and the entire outer periphery of the sheath heater may be in contact with the hot plate body.
  • the hot plate may be configured to be embedded in the hot plate main body so that the entire outer periphery of the sheath heater is in contact with the hot plate main body.
  • the hot plate has a burying step of burying a sheath heater in a receiving groove provided on the back surface of the hot plate main body, and in the burying step, an outer peripheral surface of the sheath heater is placed on an inner peripheral surface of the receiving groove by a press machine. At least one of the housing groove and the sheath heater is deformed so as to come into surface contact, and the protrusion provided on the opening edge of the housing groove or the opening edge itself is clamped inward of the housing groove. Obtained by the manufacturing method.
  • the hot plate can also be obtained by a manufacturing method in which the sheath heater is embedded in the hot plate main body so that the entire outer periphery of the sheath heater is in contact with the hot plate main body.
  • the invention's effect According to this effort, the heat of the sheath heater is efficiently transmitted to the main body of the hot plate, and the temperature of the hot plate in the laminating apparatus can be easily and reliably controlled to the target temperature. Further, the laminate quality of the product can be improved.
  • the protruding portion provided at the opening edge of the accommodation groove is caulked in the inner direction of the accommodation groove in a state where the sheath heater is embedded in the accommodation groove.
  • the outer peripheral surface of the sheath heater can be maintained in pressure contact with the inner peripheral surface of the housing groove.
  • the housing groove can be provided on the bottom surface of the concave groove provided on the back surface of the hot plate main body.
  • the cutting area can be reduced.
  • the caulking portion can be positioned in the concave groove, the caulking portion does not protrude from the back surface of the hot plate main body, and another hot plate can be stacked on the back surface.
  • a portion where the projecting portion provided at the opening edge of the housing groove is caulked in the inner direction of the housing groove can protrude from the back surface of the hot plate main body. In this case, it is possible to reduce the cost of the press die used when caulking the protrusion.
  • the heat plate can be caulked with the opening edge of the housing groove in the inner direction of the housing groove in a state where the sheath heater is embedded in the housing groove.
  • the processing cost for processing the hot plate body can be reduced.
  • the housing groove can be provided directly on the back surface of the main body of the heat plate before the opening edge of the housing groove itself is caulked. In this case, the processing cost for processing the hot plate body can be reduced.
  • the material of the hot plate main body and the material of the outer peripheral member of the sheath heater can be made the same. In this case, the efficiency of heat transfer from the sheath heater to the hot plate body can be improved.
  • the hot plate can embed a plurality of sheath heaters in the hot plate body. In this case, the entire hot plate can be heated uniformly.
  • a plurality of receiving grooves meandering along the surface direction may be provided on the back surface of the hot plate main body, and a plurality of sheath heaters embedded in each of the plurality of receiving grooves may be provided.
  • the temperature distribution of the entire hot plate can be made constant.
  • the plurality of sheath heaters embedded in the same depth direction of the hot plate main body can be shifted in the width direction of the hot plate main body from the housing groove.
  • the sheath heaters that have come outside from the back of the hot plate body can be arranged so that they do not cross or overlap each other on the lower side of the hot plate body.
  • the space in the vertical direction on the lower side can be reduced.
  • the hot plate can be configured by combining a plurality of hot plate bodies. In this case, an accommodation groove or the like can be processed for each hot plate body. In addition, it is possible to easily embed a sheath heater in the accommodation groove.
  • adjacent hot plate bodies are configured to be coupled by a fixing member from the surface side via a coupling member provided across from the surface side to the hot plate body. You can also. In this case, the operator can work from the surface side with the coupling member between the hot plate bodies, so that the efficiency of the work of assembling the hot plate is improved.
  • the hot plate can be configured such that a sheath heater is embedded in the hot plate main body.
  • a hot plate in which the outer peripheral surface of the sheath heater is in surface contact with the inner peripheral surface of the housing groove can be easily manufactured.
  • FIG. 1 is a diagram showing the overall configuration of the laminating apparatus.
  • FIG. 2 is a perspective view showing the overall configuration of the laminating apparatus.
  • FIG. 3 is a cross-sectional view showing a configuration of a solar cell module as a workpiece.
  • FIG. 4 is a sectional side view of the laminating part of the laminating device.
  • FIG. 5 is a cross-sectional side view of the laminating portion during laminating of the laminating apparatus.
  • FIG. 6 is a perspective view showing the configuration of the hot plate and its periphery according to the first embodiment.
  • FIG. 7 is a plan view of the hot platen according to the first embodiment.
  • FIG. 8 is a diagram for explaining the configuration of the hot platen according to the first embodiment.
  • FIG. 9 is a diagram showing a temperature transition obtained by measuring the temperature of the hot plate.
  • FIG. 10 is a diagram showing the configuration of the hot platen according to the second embodiment.
  • FIG. 11 is a diagram showing a configuration of a hot plate according to the third embodiment.
  • FIG. 12 is a diagram for explaining a configuration of a hot platen according to the fourth embodiment.
  • FIG. 13 is a view for explaining a process of embedding a sheath heater in the hot plate body according to the fifth embodiment.
  • FIG. 14 is a diagram showing the configuration of the hot platen according to the sixth embodiment.
  • FIG. 15 is a perspective view showing the configuration of the hot plate and its periphery according to the seventh embodiment.
  • FIG. 16 is a view showing the back surface of a part of the hot platen according to the first embodiment.
  • Fig. 17 is a diagram showing the configuration of the hot plate of a conventional laminating apparatus and the configuration in which a heat conductive silicone sheet is interposed in the hot plate, which has been found by the verification. Explanation of reference numerals
  • FIG. 1 is a diagram showing an overall configuration of a laminating apparatus 100 according to the present embodiment.
  • FIG. 2 is a perspective view showing the overall configuration of the laminating apparatus 100.
  • the laminating apparatus 1 0 0 includes an upper case 1 1 0, a lower case 1 2 0, and a conveyor belt 1 for conveying the workpiece 1 0. 3 0 and The transport belt 1 3 0 transports the workpiece 10 between the upper case 1 1 0 and the lower case 1 2 0.
  • the laminating apparatus 100 is provided with a carry-in competitor 2 00 for conveying the workpiece 10 before laminating to the laminating apparatus 1100. Further, the laminating apparatus 100 is provided with a carry-out conveyor 300 for carrying out the workpiece 10 after lamination from the laminating apparatus 100.
  • the carry-in conveyor 2 00 and the carry-out conveyor 3 0 0 are connected in series.
  • the workpiece 10 is transferred from the carry-in conveyor 20 0 to the transfer pelt 1 3 0, and is transferred from the transfer belt 1 3 0 to the carry-out conveyor 3 0 0.
  • the laminating apparatus 100 is provided with an elevating apparatus 150 composed of a cylinder, a piston rod, and the like.
  • the lifting device 15 50 can lift and lower the upper case 1 10 with respect to the lower case 1 2 0 while maintaining the horizontal state.
  • the elevating device 1 5 0 lowers the upper case 1 1 0 so that the internal space between the upper case 1 1 0 and the lower case 1 2 0 can be sealed. .
  • FIG. 3 is a cross-sectional view showing a configuration of a solar cell module using a crystal cell as a workpiece 10.
  • the solar cell module has a configuration in which a string 15 is sandwiched between a transparent power par glass 11 and a back material 12 via fillers 13 and 14.
  • a material such as polyethylene resin is used.
  • E VA resin is used for fillers 1 3 and 1 4.
  • the string 15 has a configuration in which solar cells 18 as crystal cells are connected between electrodes 16 and 17 via lead wires 19.
  • a solar cell module generally called a thin film type can be targeted.
  • a power generating element composed of a transparent electrode, a semiconductor, and a back electrode is previously deposited on a transparent power par glass.
  • the cover glass is disposed downward, and the filler is placed on the negative electrode on the cover glass.
  • a back material is put on the filler.
  • the constituent members of the thin-film solar cell module are bonded by vacuum heating lamination. That is, the thin film solar cell module is merely changed to a power generation element on which the above-described solar cell module crystal cells are deposited.
  • the basic sealing structure of the thin-film solar cell module is the same as that of the solar cell module described above.
  • FIG. 4 is a side cross-sectional view of the laminate portion 1001 for laminating the workpiece 10 in the laminating apparatus 100.
  • FIG. 5 is a cross-sectional side view of the laminating portion 100 1 during laminating.
  • the upper case 110 is formed with a space opened downward. In this space, a diaphragm 1 1 2 is provided to horizontally partition the sky. Diaphragm 1 1 2 is molded from heat-resistant rubber such as silicone rubber. As will be described later, The flam 1 1 2 functions as a pressing member that presses the workpiece 10 and performs lamination. In the upper case 110, a space (upper champ 1 1 3) partitioned by the diaphragm 1 1 2 is formed.
  • an intake / exhaust port 14 14 communicating with the upper chamber 1 13 is provided on the upper surface of the upper case 110.
  • the upper champ 1 1 3 ⁇ can be evacuated and vacuumed or air can be introduced into the upper champ 1 1 3 via the intake and exhaust ports 1 1 4.
  • the lower case 1 2 0 is formed with a space (lower champ 1 2 1) opened upward. In this space, a hot plate 1 2 2 (panel heater) is provided.
  • the hot plate 1 2 2 is supported by a support member erected on the bottom surface of the lower case 1 2 20 so as to maintain a horizontal state. In this case, the heat plate 1 2 2 is supported so that the surface thereof is almost the same height as the opening surface of the lower champ 1 2 1.
  • an intake / exhaust port 1 2 3 communicating with the lower champ 1 2 1 is provided on the lower surface of the lower case 1 2 0.
  • the inside of the lower champ 1 2 1 can be vacuumed through the intake / exhaust port 1 2 3 to create a vacuum, or the atmosphere can be introduced to the lower champ 1 2 1 .
  • the conveying beret 1 30 receives the workpiece 10 before lamination from the loading conveyor 20 0 force of FIG. 1 and conveys it to the central position of the laminating section 1 0 1. Further, the conveyor belt 1 30 delivers the workpiece 10 after lamination to the carry-out conveyor 30 in FIG.
  • a release sheet 1 40 is provided between the upper case 1 1 0 and the lower case 1 2 0 and above the conveyor belt 1 3 0. Separation sheet 1 4 0 is the workpiece 1 0 filler 1 3
  • the conveyance belt 1 30 conveys the workpiece 10 to the center position of the laminating portion 10 1.
  • the lifting device 1 5 0 lowers the upper case 1 1 0.
  • the internal space between the upper case 110 and the lower case 120 is sealed as shown in FIG. That is, the upper and lower champs 1 1 3 and 1 2 1 can be kept sealed in the upper case 1 1 0 and the lower case 1 2 0, respectively.
  • the laminating apparatus 100 performs evacuation of the upper chamber 1 1 3 through the intake / exhaust port 1 1 4 of the upper case 1 1 0. Similarly, the laminating apparatus 100 evacuates the lower chamber 1 2 1 through the intake / exhaust port 1 2 3 of the lower case 1 2 0. By vacuuming the lower champ 1 2 1, the bubbles contained in the work piece 10 are sent out of the work piece 10. In this state, the work piece 10 is heated by the hot plate 12 2 and the fillers 13 and 14 contained therein are melted. Next, the laminating apparatus 100 introduces air to the upper chamber 1 1 3 through the intake / exhaust port 1 1 4 of the upper case 1 1 0 while keeping the vacuum state of the lower chamber 1 2 1.
  • the fillers 1 3 and 1 4 may protrude from between the power par glass 1 1 and the back material 1 2.
  • the protruding fillers 13 and 14 adhere to the release sheet 140.
  • the release sheet 140 prevents the fillers 13 and 14 from adhering to the workpiece 10 to be laminated next from the diaphragm 1 12.
  • the adhering filler 13 or 14 is removed by a cleaning mechanism (not shown).
  • the laminating apparatus 100 introduces air into the lower chamber 1 2 1 via the intake / exhaust port 1 2 3 of the lower case 1 2 0.
  • the lifting / lowering device 1 5 0 raises the upper case 1 1 0.
  • the conveyor belt 130 can be moved as shown in FIG.
  • the conveyor belt 1 3 0 delivers the laminated workpiece 10 to the carry-out conveyor 3 0 0.
  • FIG. 6 is a perspective view showing the configuration of the hot plate 1 2 2 and its periphery.
  • the hot plate 1 2 2 has a plurality of hot plate bodies 61 and a plurality of sheath heaters 62.
  • the size of the hot plate 1 2 2 is formed to fit in the lower case 1 2.
  • the hot plate 1 2 2 of this embodiment is formed in a size corresponding to the size of a workpiece that has been increasing in size in recent years. Specifically, the hot plate 1 2 2 has a width of about 40 when the size of the hot plate 1 2 2 is increased. 0 O mm (see W in Fig. 6) and depth of about 200 O mm (see DE in Fig. 6).
  • the hot plate body 61 is formed in a panel shape from aluminum or an aluminum alloy.
  • the hot plate 1 2 2 of this embodiment is configured by arranging four hot plate bodies 61 in the width direction. Adjacent hot plate bodies 61 are fixed to each other on the back side of these hot plate bodies 61 with bolts or the like from the front side via coupling members 67 provided between adjacent hot plate bodies 61. Connected by members. By dividing and configuring in this way, it is possible to process each heating plate main body 61 in the case of processing an accommodation groove to be described later. Further, when a sheath heater described later is embedded in the receiving groove, a sheath heater may be embedded for each hot plate main body 61.
  • the hot plate 1 2 2 is not limited to being constituted by a plurality of hot plate main bodies 61, and may be constituted by one hot plate main body 61.
  • a receiving groove 63 for embedding the sheath heater 62 is formed on the back surface of each hot plate main body 61.
  • the receiving groove 63 is formed on the entire back surface! : It is formed to meander.
  • a sheath heater 62 is embedded in the receiving groove 63.
  • the sheath heater 62 is a nichrome wire 62a whose center is processed into a coil shape, as shown in FIG.
  • the sheath heater 6 2 has an insulating material 6 2 b filled with powder such as magnesium oxide around the nichrome wire 6 2 a. Further, the sheath heater 62 is covered with aluminum or an aluminum alloy around the insulating material 62 b as a material of the sheath 62 c (tube member forming the outer periphery).
  • the hot plate body 61 and the sheath of the sheath heater 62 are made of the same material.
  • the heat plate 12 2 can improve the efficiency of heat transfer from the sheath heater 62 to the heat plate body 61.
  • the sheath heater 6 2 embedded in the receiving groove 63 of each hot plate body 61 is connected to a temperature controller 64 installed inside or outside the laminating apparatus 100 as shown in FIG. .
  • This temperature controller 64 controls the temperature so that the temperature of the hot plate 1 2 2 becomes the target temperature.
  • FIG. 7 is a plan view of the hot plate 1 2 2.
  • the sheath heater 62 embedded in each hot plate body 61 is indicated by a broken line.
  • the sheath heater 62 is divided into 1 to 12 channels (c h) for independent temperature control. Specifically, four sheath heaters 62 are embedded in each hot plate body 61.
  • Each hot plate main body 61 is controlled in temperature by the sheath heaters 62 at both ends as one channel.
  • each hot plate main body 61 is controlled in temperature by using two center heaters 62 as one channel.
  • the sheathed heater 6 2 embedded in the receiving groove 6 3 is taken out from the back surface of the hot plate main body 61 at the point of the arrow in FIG. Connected to. Note that the sheath heater placement and temperature control channel (c h) settings are not limited to those shown in FIG.
  • the bending shape of the sheath heater 62 is different for each channel.
  • the 5-channel sheath heater 62 is meandering so as to be substantially symmetrical with respect to the two-dot chain line L1.
  • the 8-channel sheath heater 62 meanders so as to be substantially symmetrical with respect to the two-dot chain line L 2.
  • the 1 to 4 channel, 6 channel, 7 channel, and 9 to 12 channel sheath heaters 6 2 shown in FIG. 7 meander so as to be asymmetrical.
  • the 1 to 3 channel / ⁇ sheath heater 6 2 and the 10 to 12 channel sheath heater 6 2 are substantially symmetrical with respect to the two-dot chain line L 3.
  • the 4-6 channel sheath heater 6 2 and the 7-9 channel sheath heater 62 are substantially symmetrical with respect to the two-dot chain line L 3. This is especially to make the temperature distribution across the hot plate 1 2 2 uniform. It is configured. These shapes can be appropriately set so that the temperature distribution of the hot plate is uniform.
  • FIG. 16 is a view of the hot plate body 61 in which the channels 10 to 12 are embedded as seen from the back side.
  • sheath heaters 6 2 A, 6 2 B, 6 2 C, and 6 2 D are embedded in the same depth direction.
  • the sheathed heater that goes out from the back surface of the hot plate body 61 is indicated by a one-dot chain line. As shown in Fig.
  • each sheath heater 62 is composed of 1 sheath heater 6 2 B and sheath heater 6 2 C, except for the combination of sheath heater 6 2 C. Is shifted in the width direction.
  • the position of the two sheath heaters 6 2 coming out from the receiving grooves 63 is the width of the hot plate body 61. It is shifted in the direction.
  • the plurality of sheath heaters 62 that are exposed to the outside from the back surface of each hot plate main body 61 can be arranged so as to cross each other on the lower side of the hot plate main body 61 or to overlap each other. .
  • the sheath heater 6 2 crosses or overlaps with each other because it is wired to the temperature controller 6 4 through the same route. As a result, a vertical space is required below the hot plate body 61. As in this embodiment, the position where the sheath heater 6 2 is exposed to the outside is less likely to cross or overlap each other by shifting in the width direction of the hot plate 1 2 2, so the space below the hot plate 1 2 2 Can be used effectively.
  • the positions of the sheath heater 6 2 B and the sheath heater 6 2 C constituting the channel 1 that are exposed to the outside from the rear surface of the hot plate body 6 1 are the same in the width direction. Further, the space below the hot plate 1 2 2 can be used effectively by arranging them differently.
  • thermocouple 66 for measuring the temperature of the hot plate 12 2 2 is embedded in the center of each channel.
  • the thermocouple 66 is embedded at an appropriate depth position from the front surface of the hot plate main body 61 and is connected to the temperature controller 64 from the back surface of the hot plate 1 2 2.
  • the temperature of the hot plate 1 2 2 measured by the thermocouple 6 6 is feed-packed to the temperature controller 6 4.
  • the temperature controller 6 4 controls the heat generation of the sheath heater 6 2 so that the temperature of the hot plate 1 2 2 becomes the target temperature.
  • FIG. 8 is a diagram for explaining the configuration of the hot plate maintained in the first embodiment.
  • FIG. 8A is a cross-sectional view of the AA cross section in FIG. 7 as viewed from the direction of the arrow, and shows a state in which the sheath heater 6 2 is embedded in the housing groove 63.
  • FIG. 8 (a) the outer peripheral surface of the sheath heater 62 is pressed into contact with the peripheral surface of the housing groove 63 so that there is no gap.
  • FIG. 8 (b) is a diagram showing a state before the sheath heater 62 is embedded in the accommodation groove 63. As shown in FIG.
  • the receiving groove 63 is formed on the bottom surface of the groove 71 processed into a concave shape on the back surface 65 of the hot plate main body 61.
  • Protruding portions 72 are provided on both sides of the opening edge of the receiving groove 63.
  • the outer peripheral surface of the sheath heater 62 is moved around the circumference of the accommodation groove 63 with a press using a press die that matches the shape of the recess groove 71. Press against the surface.
  • FIG. 8 (c) is a view showing a state after the sheath heater 62 is embedded in the accommodation groove 63.
  • the sheath heater 62 is pressed against the inner peripheral surface of the receiving groove 63 by the press machine, the outer peripheral surface (sheath) of the sheath heater 62 is plastically deformed so as to follow the inner peripheral surface of the receiving groove 63. .
  • the outer peripheral surface of the sheath heater 62 and the inner peripheral surface of the receiving groove 63 are in close contact with each other so that no gap is formed.
  • the pressing machine simultaneously presses the sheath heater 62 and plastically deforms the protruding portion 72 provided in the receiving groove 63 in the lateral direction of the receiving groove 63 so as to close the opening of the receiving groove 63.
  • the caulking portion 7 3 is formed.
  • a raised portion 7 4 (a portion indicated by an ellipse) that bulges downward from the bottom surface of the groove 71 is formed.
  • the back surface 65 of the hot plate main body 61 in which the housing groove 63 is formed serves as an attachment surface when the hot plate 1 2 2 is attached to the lower champ 1 2 1.
  • the sheath heater 62 when the outer peripheral surface of the sheath heater 62 is pressed into contact with the circumferential surface of the receiving groove 63 using a press die, the sheath heater is used using a press die having substantially the same shape as the bent shape of the sheath heater 62. 6 2 The outer peripheral surface of 2 is pressed into contact with the inner peripheral surface of the receiving groove 63 at a time.
  • a gap between the outer peripheral surface of the sheath heater 62 and the peripheral surface of the housing groove 63 This improves heat transfer from the sheath heater to the hot plate body, and improves the temperature controllability of the hot plate.
  • the sheath heater 62 when the sheath heater 62 is heated, the temperature distribution on the surface of the hot plate 12 2 can be made uniform. Therefore, it is possible to prevent a phenomenon in which the temperature of the hot plate 12 2 exceeds the target temperature and overshoots.
  • the characteristic line (3) indicates the temperature transition of the hot plate 1 2 2 measured when the laminating process is performed with the workpiece 10 placed on the hot plate 1 2 2 according to this embodiment. It is. Similar to the conventional hot plate (characteristic line (1)), by placing the work piece 10 on the hot plate 1 2 2, the heat of the hot plate 1 2 2 is deprived by the work piece 10; The temperature of the hot plate 1 2 2 drops rapidly. In order to catch this temperature drop, temperature control is performed to raise the temperature of the hot plate 1 2 2. As indicated by the characteristic line (3), the temperature of the hot plate 1 2 2 rises rapidly toward the target temperature. Therefore, this improves the heating work efficiency. When the target temperature is reached, there is no large error between the temperature of the hot plate 12 2 and the temperature of the heater 6 2.
  • the temperature controller 64 can easily and reliably control the temperature of the hot plate 12 2 2 to the target temperature by increasing the temperature of the sheath heater 62 2 or by naturally cooling it.
  • the sheath heater 6 2 is excessively exceeded the temperature of the hot plate as in the conventional hot plate.
  • the temperature has not increased.
  • the temperature of the hot plate 1 2 2 does not exceed the target temperature and overshoots.
  • the target temperature can be reliably maintained.
  • the conventional hot plate characteristic line (1)
  • an excessive temperature rise of the hot plate was caused by overshooting, so the next workpiece 10 was laminated. It was necessary to wait for the temperature of the hot plate to drop.
  • the hot plate 1 2 2 of this embodiment since an excessive temperature rise does not occur, the next workpiece 10 can be laminated immediately, and the working efficiency is improved.
  • the temperature of the hot plate 1 2 2 can be easily and reliably controlled to the target temperature during the laminating process. Accordingly, it is possible to prevent the adhesion failure of the constituent members of the solar cell in the laminating process and improve the laminating quality. In addition, the working efficiency of the laminate can be improved.
  • the cutting area may be smaller than that in a third embodiment of FIG. Five
  • this embodiment is suitable for mass production of small models.
  • FIG. 10 is a diagram showing the configuration of the hot platen according to the second embodiment.
  • the housing groove 83 formed on the back surface of the hot plate body 81 is formed in a wedge shape that is tapered toward the front surface of the hot plate body 81.
  • the wedge-shaped tip has an angle of approximately 60 degrees.
  • the sheath heater 8 2 embedded in the receiving groove 83 is formed in a wedge shape having a substantially triangular cross section. The outer peripheral surface of the sheath heater 82 is brought into pressure contact with the inner peripheral surface of the receiving groove 83 by a press machine.
  • the outer peripheral surface of the sheath heater 82 is plastically deformed so as to be in surface contact with the inner peripheral surface of the housing groove 83 without any gap.
  • the caulking portion 7 3 is formed with a raised portion 74 that is raised from the bottom surface of the groove 1.
  • the outer peripheral surface of the sheath heater 82 and the housing groove 8 are formed by caulking the protrusion provided on the opening edge of the housing groove 83 to form the caulking portion 73.
  • Surface contact with the inner peripheral surface of 3 can be maintained.
  • the shape of the cross section of the sheath heater 82 is substantially triangular, and the cross section of the housing groove 83 is substantially triangular. Therefore, the triangular flat surface of the sheath heater 82 and the triangular flat surface of the receiving groove 83 can be easily brought into surface contact.
  • FIG. 11 is a diagram showing a configuration of a hot plate according to the third embodiment.
  • the groove 71 is formed on the back surface 65 of the hot plate body, and the storage grooves 63, 83 are formed in the groove 71.
  • a flat portion 76 extending from the back surface 65 of the hot plate main body 85 is provided without processing the HQ groove, and the accommodation groove 63 is formed in the flat portion 76.
  • the receiving groove 63 is formed in a flat portion 76 that is formed by projecting from the back surface 65 of the hot plate main body 85 into a protruding convex shape. Protruding portions are provided on both sides of the opening edge of the receiving groove 63, as in the embodiment shown in FIG. 8 (b).
  • the rear surface 6 5 of the hot plate main body 85 shown in FIG. 11 serves as a reference surface 7 5 when the hot plate 1 2 2 is attached to the lower chamber 1 2 1.
  • the accommodation groove 6 3 is formed, it is cut from the back surface of the hot plate main body 85. At this time, the reference surface 65, the flat portion 76, and the protruding portion are similarly cut.
  • the hot plate 84 has a shape having a raised portion 74 on a flat portion 76 extending from the rear surface 65 of the hot plate main body 85.
  • the entire back surface of the hot plate body 85 is cut to form the reference surface 75, the receiving groove 63, and the protruding portion! : Need to cut. Therefore, the material cost and processing cost of the hot plate body 85 are required.
  • the protruding portion is provided on the flat portion 76 of the back surface 65 of the hot plate main body 85, the space to be caulked by the concave groove or the like is not limited. Accordingly, the press die for caulking can be made into a simple shape such as a flat plate, and the die cost of the press die can be greatly reduced. In other words, the present embodiment can reduce the initial cost because there is no need for a dedicated press die cost for each type of hot plate.
  • this embodiment is an embodiment suitable for multi-model small-volume production.
  • FIG. 12 is a diagram for explaining a configuration of a hot platen according to the fourth embodiment.
  • FIG. 12 (a) is a cross-sectional view of the AA cross section in FIG. 7 as seen from the direction of the arrow, and shows a state in which the sheath heater 62 is embedded in the receiving groove 63.
  • the outer peripheral surface of the sheath heater 62 is pressed against the peripheral surface of the housing groove 63 so that there is no gap.
  • FIG. 12 (b) is a view showing a state before the sheath heater 62 is embedded in the accommodation groove 63.
  • the receiving groove 63 is formed in a concave shape directly on the back surface 92 of the hot plate main body 91.
  • the surface of the opening edge and the back surface of the hot plate main body 91 are formed on the same surface. That is, in the present embodiment, the protruding portion described in the first to third embodiments is not formed.
  • the diameter d of the sheath heater 62 shown in FIG. 12 (b) is smaller than the diameter D of the groove bottom of the receiving groove 63 (see the broken line shown in FIG. 12 (b)). Therefore, the sheath heater 62 can be easily accommodated in the accommodation groove 63. From the state in which the sheath heater 62 is housed in the housing groove 63, the outer peripheral surface of the sheath heater 62 is brought into pressure contact with the inner peripheral surface of the housing groove 63 using a press die using a press die.
  • FIG. 12 (c) is a view showing a state after the sheath heater 62 is embedded in the accommodation groove 63.
  • the outer peripheral surface (sheath) of the sheath heater 62 is plastically deformed so as to follow the inner peripheral surface of the receiving groove 63.
  • the outer peripheral surface of the sheath heater 62 and the inner peripheral surface of the receiving groove 63 are in close contact with each other so that no gap is formed.
  • the pressing machine simultaneously presses the sheath heater 62 and plastically deforms the opening edge of the receiving groove 6 3 inwardly of the receiving groove 63 so as to close the opening of the receiving groove 63.
  • FIG. 12 (c) shows the shape of the press die 93 that plastically deforms the sheath heater 62 and the opening edge.
  • the press mold 9 3 is provided with inclined portions 9 5 a, 9 which are inclined toward the center from the protrusions 9 4 a, 9 4 on both sides which are spaced apart from each other. 5 b. Therefore, when the press die 9 3 presses the back surface 9 2 of the hot plate main body 9 1, the inclined portions 9 5 a and 9 5 b extend the opening edge of the receiving groove 6 3 toward the inner side of the receiving groove 6 3. Deform to face.
  • the press die 93 has small protrusions 9 7 a and 9 7 b at locations corresponding to minute recesses formed at the boundary between the sheath heater 62 and the opening edge of the hot plate body 91. is doing.
  • FIG. 13 is a view for explaining a process of embedding the sheath heater 62 in the hot plate main body 87 according to the fifth embodiment.
  • the sheath heater 62 is pressed against the inner peripheral surface of the receiving groove 63, and the outer peripheral surface of the sheath heater 62 is copied to the inner peripheral surface of the receiving groove 63.
  • the inner circumferential surface of the housing groove 63 is plastically deformed so as to follow the outer circumferential surface of the sheath heater 62.
  • protrusions 77 having inclined portions on the outer surface are provided on both sides of the opening edge of the receiving groove 63 of the hot plate main body 87.
  • a press die 78 for caulking which has an inclined portion on the inner surface with a gentler angle than the angle of the inclined portion of the protruding portion 77.
  • the pressing machine presses the hot plate main body 87 in a state where the sheath heater 62 is accommodated in the accommodation groove 63 by the press die 78.
  • the protrusions 7 7 and the inclined portions of the press die 78 are plastically deformed so that the protrusions 7 7 (inner peripheral surface) of the receiving groove 63 are along the outer peripheral surface of the sheath heater 62.
  • FIG. 14 is a diagram showing the configuration of the hot platen according to the sixth embodiment.
  • the sheath heater 62 is inserted into the hot plate main body 89 by inserting it with an aluminum casing or the like. Specifically, in a state where the sheath heater 62 is disposed at a predetermined position of the saddle shape, by pouring aluminum melted into the saddle shape, the entire outer periphery of the sheath heater 62 is heated. The material constituting the plate body is inserted.
  • the sheath 6 2 c of the sheath heater 62 is made of a material having a melting point higher than that of the container poured into the bowl.
  • the material of the sheath 6 2 c is preferably, for example, an iron pipe, a stainless steel pipe, a pipe using Incoloy or Inconel.
  • FIG. 14 is a diagram showing a configuration of the hot plate 88 formed by the above-described swaging process.
  • the entire outer periphery of the sheath heater 62 is surrounded so as to be in surface contact with the hot plate main body 89. Accordingly, the heat of the sheath heater 62 is efficiently transmitted to the hot plate main body 89.
  • the contact between the heater 62 and the hot plate main body 89 is inferior to that of the hot plate caulked by the press machine described above.
  • heat transfer is sufficient even when the hot plate 8 8 is evacuated during lamination, and the temperature controllability of the hot plate 8 8 is sufficiently secured. .
  • FIG. 15 is a perspective view showing a configuration of a hot plate and its periphery according to a seventh embodiment.
  • FIG. 15 is a perspective view showing the configuration of the hot plate 98 and its surroundings.
  • the hot plates 1 2 2 described in the first embodiment are provided so that adjacent hot plate bodies 61 are arranged between adjacent hot plate bodies 61 on the back side of these hot plate bodies 61. It was connected by a fixing member such as Porto from the surface side through the connecting member 67.
  • the hot plate 9 8 of the present embodiment is a coupling member 6 7 provided between adjacent hot plate main bodies 9 9 across the adjacent hot plate main bodies 9 9 on the surface side of these hot plate main bodies 9 9. From the surface side, a fixing member such as Porto is used to couple from the surface side of the hot plate 98. With this configuration, the operator can work from the front side with the coupling member 6 7 placed between the hot plate main bodies 9 9, so the efficiency of the work of assembling the hot plate 9 8 Will improve. Industrial applicability
  • the temperature controllability of the hot plate can be significantly improved by using the hot plate of the present invention in a laminating apparatus that is in a vacuum state in the laminating process. That is, when the hot plate of the present invention is used in a laminating apparatus that is in a vacuum state in the laminating process, the heat of the sheath heater can be efficiently transferred to the hot plate body.
  • the hot plate of the present invention is particularly suitable for the use of a laminating apparatus that is in a vacuum state in the laminating process, and can exert a remarkable effect when used in such a laminating apparatus.
  • the hot plate of this effort can significantly improve the temperature distribution of the hot plate compared to the method shown in Fig. 17 which is the prior art.
  • the method described in Fig. 17 which is the prior art is that a groove is formed in two plates, an upper plate 1 6 1 and a lower plate 1 6 2, and a sheath heater 1 6 3 is embedded in the groove. It was. It is not easy to embed a sheath heater 1 6 3 having a complicated bent shape. In other words, it is necessary to improve the accuracy of machining the upper and lower grooves, and it is also necessary to improve the accuracy of bending the sheath heater 16 3. Therefore, in the prior art, linear sheath heaters 16 3 were embedded by processing straight grooves on the upper and lower two plates.
  • the housing groove of the sheath heater since the housing groove of the sheath heater has only to be processed in one hot plate body, the housing groove can easily realize a complicated curved shape as shown in FIG. Therefore, the temperature distribution of the hot plate can be made uniform by appropriately setting the bending shape of the sheath heater.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

The temperature of hot platen at the operation of laminating can be controlled at a target temperature easily and securely. There is disclosed a lamination apparatus having a superior chamber and an inferior chamber partitioned by a press member, the inferior chamber provided with a hot platen (122), so that a workpiece is placed on the hot platen (122) and, by evacuating the inferior chamber and introducing atmospheric air in the superior chamber, the workpiece heated by the hot platen (122) is pressurized between the hot platen (122) and the press member to thereby attain lamination. The lamination apparatus is characterized in that the hot platen (122) includes a hot platen body (61) provided at its backside with an accommodation groove (63) and a sheath heater (62) embedded in the accommodation groove (63), and that at least either the accommodation groove (63) or the sheath heater (62) is deformed so as to achieve surface contact between the outer peripheral surface of the sheath heater (62) and the inner peripheral surface of the accommodation groove (63).

Description

明 細 書  Specification
ラミネート装置、 ラミネート装置用の熱板及ぴラミネ一ト装置用の熱板の製 造方法  Laminating apparatus, hot plate for laminating apparatus and method for manufacturing hot plate for laminating apparatus
技術分野  Technical field
本発明は、 熱板上に太陽電池モジュール等の被加工物を配置し、 熱板により加熱した被 加工物を熱板と押圧部材とで挾圧してラミネートするラミネート装置、 ラミネート装置用 の熱板及ぴラミネ一ト装置用の熱板の製造方法に関するものである。 背景技術  The present invention relates to a laminating apparatus in which a workpiece such as a solar cell module is disposed on a hot plate, and the workpiece heated by the hot plate is pressed by a hot plate and a pressing member to be laminated, and a hot plate for the laminating apparatus The present invention relates to a method for manufacturing a hot plate for a laminating apparatus. Background art
近年の温室効果ガス等の問題から、 環境を汚さない太陽電池が注目されている。 太陽電 池は、 カバーガラス、 充填材、 太陽電池セル、 裏面材等の複数の部材が重なり合って構成 されている。 この種の太陽電池を製造する際には、 ラミネート装置が使用されている (例 えば、 特許文献 1参照) 。 ラミネート装置は、 太陽電池の構成部材が重ね合わされた被加 ェ物を真空状態で加熱しながら、 ラミネートする。 その結果、 被加工物は各構成部材が重 ね合わされた状態で接着される。 このラミネート装置は、 下方向に向けて膨張自在なダイ ャフラムを有する上ケースと、 熱板を有する下ケースと、 を有している。 太陽電池をラミ ネートする際、 まず、使用者は、熱板上に、 太陽電池の構成部材を重ね合わせて配置する。 次に、 ラミネート装置は、 上ケースと下ケースとで形成される空間を真空状態にする。 さ らに、 ラミネート装置は、 熱板によって被加工物である太陽電池の構成部材を加熱した状 態で、 上ケースの内部に大気圧を導入する。 このようにすることで、 ラミネート装置は、 ダイヤフラムと熱板とで太陽電池の構成部材を挾圧してラミネートする。  In recent years, solar cells that do not pollute the environment are attracting attention due to problems such as greenhouse gases. A solar battery is configured by overlapping a plurality of members such as a cover glass, a filler, a solar cell, and a back material. When manufacturing this type of solar cell, a laminating apparatus is used (for example, see Patent Document 1). The laminating apparatus performs laminating while heating the workpiece on which the constituent members of the solar cell are superposed in a vacuum state. As a result, the workpiece is bonded in a state in which the constituent members are overlapped. This laminating apparatus has an upper case having a diaphragm that is expandable downward, and a lower case having a heat plate. When laminating a solar cell, first, the user arranges the constituent members of the solar cell on the hot plate. Next, the laminating apparatus evacuates the space formed by the upper case and the lower case. Further, the laminating apparatus introduces atmospheric pressure into the upper case in a state where the constituent members of the solar cell, which is the workpiece, are heated by the hot plate. By doing so, the laminating apparatus laminates the constituent members of the solar cell with the diaphragm and the hot plate.
[特許文献 1 ] 特開 2 0 0 4— 2 3 8 1 9 6号公報  [Patent Document 1] Japanese Patent Laid-Open No. 2 0 0 4-2 3 8 1 9 6
[特許文献 2 ] 特開平 9— 3 3 1 7 0号公報 発明の開示 発明が解決しょうとする課題  [Patent Document 2] Japanese Patent Laid-Open No. 9-3 3 1 0 0 Disclosure of the Invention Problems to be Solved by the Invention
ラミネート装置の熱板には、 シースヒータという、 電熱線が絶縁材を介して金属で覆わ れたヒータが埋設されている。 シースヒータを発熱させることで、 シースヒータの熱が熱 板に伝達され、 熱板上に配置された太陽電池の構成部材を加熱することができる。 また、 熱板の温度は、 温度コントローラによって太陽電池を加熱するのに適正な温度になるよう 制御されている。 より具体的には、 熱板の表面から適宜な深さ位置に埋め込まれた熱電対 が熱板の温度を測定する。 そして、 測定された温度の情報は、 温度コントローラにフィー ドパックされる。 温度コントローラは、 フィードパックされた温度の情報に基づいて、 熱 板の温度を適正な温度に制御する。 すなわち、 温度コントローラは、 シースヒータの温度 を上昇させたり、 自然冷却させたりしている。 温度コントローラが、 シースヒータの温度 を上昇させたり、 自然冷却させたりすることで、 熱板の温度を適正な温度に保持するよう にする。 A heater called a sheath heater, in which the heating wire is covered with metal via an insulating material, is embedded in the hot plate of the laminating apparatus. By causing the sheath heater to generate heat, the heat of the sheath heater is transmitted to the hot plate, and the solar cell components arranged on the hot plate can be heated. The temperature of the hot plate is controlled by a temperature controller so as to be an appropriate temperature for heating the solar cell. More specifically, a thermocouple embedded at an appropriate depth from the surface of the hot plate measures the temperature of the hot plate. The measured temperature information is then fed to the temperature controller. Be packed. The temperature controller controls the temperature of the hot plate to an appropriate temperature based on the information on the temperature of the feed pack. That is, the temperature controller raises the temperature of the sheath heater or cools it naturally. The temperature controller increases the temperature of the sheath heater or allows it to cool naturally so that the temperature of the hot plate is maintained at an appropriate temperature.
図 9は、 熱板の温度遷移を示す図である。 図 9において、 特性線 (1 ) は、 上述したラ ミネ一ト装置において、 熱板上に被加工物を配置した状態でラミネート工程を行ったとき に得られる熱板の温度遷移である。 熱板の温度は当初、 目標温度 (例えば、 1 2 0 °C〜1 8 0 °C) となっている。 被加工物を熱板上に配置することにより、 熱板の熱が被加工物に 奪われ、 熱板の温度は急激に低下する。 この温度低下を捕うために、 ?显度コントローラは 熱板の温度を上昇させる温度制御を行う。 しかしながら、熱板の温度は所定の加熱時間 (例 えば、 5分間) 内において、 なかなか目標温度まで上昇しない。 また、 ラミネート加工中 は、 熱板が真空雰囲気中にあるのでなかな; ^熱板の温度が上昇しない。 更に、 被加工物の 加熱時間が終了し、 上ケースと下ケースとで形成される空間の真空状態が解除されると、 熱板の温度が、 目標温度を大きく超えてオーバーシュートしてしまう。 このように、 従来 のラミネ一ト装置においては、熱板の温度を目標温度に制御するのは困難であった。更に、 熱板の温度がオーバーシユートしてしまうと、 熱板の温度が目標温度に下がるまで被加工 物を熱板上に配置することができない。 従って、 従来の熱板では、 ラミネートの作業効率 が低下してしまうという問題が生じる。 なお、 図 9において特性線 (2 ) は、 熱板上に被 加工物を配置していない状態でラミネート工程を行ったときに得られる熱板の温度遷移で ある。 図 9の特性線 (2 ) に示すように、 ラミネート工程が始まると、 熱板の温度はダイ ャフラムとの接触によりわずかに低下するが、 その後目標温度に制御される。  FIG. 9 is a diagram showing the temperature transition of the hot plate. In FIG. 9, the characteristic line (1) is the temperature transition of the hot plate obtained when the laminating process is performed with the workpiece placed on the hot plate in the laminating apparatus described above. The temperature of the hot plate is initially a target temperature (eg, 120 ° C. to 180 ° C.). By placing the work piece on the hot plate, the heat of the hot plate is taken away by the work piece, and the temperature of the hot plate decreases rapidly. To catch this temperature drop? The display controller controls the temperature of the hot plate. However, the temperature of the hot plate does not easily reach the target temperature within a predetermined heating time (for example, 5 minutes). Also, during laminating, the hot plate is in a vacuum atmosphere; the temperature of the hot plate does not rise. Furthermore, when the heating time of the workpiece is finished and the vacuum state of the space formed by the upper case and the lower case is released, the temperature of the hot plate greatly exceeds the target temperature and overshoots. As described above, in the conventional laminating apparatus, it is difficult to control the temperature of the hot plate to the target temperature. Further, if the temperature of the hot plate is overshot, the workpiece cannot be placed on the hot plate until the temperature of the hot plate is lowered to the target temperature. Therefore, the conventional hot plate has a problem that the working efficiency of the laminate is lowered. In FIG. 9, the characteristic line (2) is the temperature transition of the hot plate obtained when the laminating process is performed in the state where the workpiece is not placed on the hot plate. As shown by the characteristic line (2) in Fig. 9, when the laminating process starts, the temperature of the hot plate decreases slightly due to contact with the diaphragm, but is then controlled to the target temperature.
そこで、 本願の発明者は、 従来のラミネート装置を検証した。 その結果、 熱板の温度が なかなか上昇しない原因、 及び加熱時間が終了した後に目標温度を大きく超えてオーバー シュートしてしまう原因が、 熱板の構造によるものであることがわかった。 図 1 7 ( a ) は、 熱板の一部断面を簡略して示した図である。 図 1 7 ( a ) に示すように、 熱板 1 6 0 は、 上板 1 6 1と、 下板 1 6 2と有している。 また、 熱板 1 6 0は、 上板 1 6 1の裏面に 形成された収容溝及ぴ下板 1 6 2の上面に形成された収容溝に挟まれて設けられたシース ヒータ 1 6 3を有している。 ここで、 上板 1 6 1とシースヒータ 1 6 3との間や下板 1 6 2とシースヒータ 1 6 3との間には所々に隙間が発生してしまっていた。 この隙間は、 上 板 1 6 1と下板 1 6 2との重ね合わせ誤差や、 収容溝の加工寸法の誤差等によるものであ る。 この隙間の発生により、 シースヒータ 1 6 3から上板 1 6 1及ぴ下板 1 6 2への熱伝 達の効率が低下してしまう。 特に、 上述したようにラミネート工程においては上ケースと 下ケースとで形成される空間を真空状態にする工程がある。 この工程において、 上板 1 6 1とシースヒータ 1 6 3との間や下板 1 6 2とシースヒ^ "タ 1 6 3との間に発生した隙間 も真空状態となってしまう。 このように隙間が真空状態となると、 シースヒータ 1 6 3か ら上板 1 6 1及ぴ下板 1 6 2への熱伝達の効率は著しく低下してしまう。 そのために、 温 度コントローラは、 熱板 1 6 0の温度を制御することが困難になる。 また、 熱板 1 6 0の 温度は加熱時間内において目標温度まで、 なかなか上昇しない。 従って、 温度コントロー ラは、 熱板 1 6 0の温度を上昇させるために、 シースヒータ 1 6 3の温度を更に上昇させ る温度制御を行う。 そのため、 シースヒータ 1 6 3の温度は、 過度に上昇してしまう。 被 加工物の加熱時間が終了した後、 真空状態が解除されると、 上述した隙間にも空気が導入 される。 空気が導入されることで、 空気が媒体となり、 シースヒータ 1 6 3の熱が熱板 1 6 0 (上板 1 6 1及ぴ下板 1 6 2 ) にそれまでよりも効率よく伝達される。 すると、 過度 に上昇したシースヒータ 1 6 3の熱が熱板に伝達され、 熱板 1 6 0の温度は、 目標温度を 大きく超えてオーバーシュートを引き起こしてしまう。 また、 隙間が発生している箇所と 接触している箇所とが存在することにより、 熱板 1 6 0の表面での温度分布は不均一とな る。 従って、 ラミネート工程における構成部材の接着等の品質に影響を与えてしまう恐れ がある。 Therefore, the inventors of the present application verified a conventional laminating apparatus. As a result, it was found that the reason why the hot plate temperature did not rise easily and the cause of overshooting exceeding the target temperature after the heating time ended were due to the structure of the hot plate. Fig. 17 (a) is a diagram showing a partial cross section of the hot plate in a simplified manner. As shown in FIG. 17 (a), the hot plate 1 60 has an upper plate 1 61 and a lower plate 1 6 2. In addition, the hot plate 160 has a sheath heater 16 3 provided between the receiving groove formed on the back surface of the upper plate 16 1 and the receiving groove formed on the upper surface of the lower plate 16 2. Have. Here, gaps were generated between the upper plate 1 6 1 and the sheath heater 1 6 3 and between the lower plate 1 6 2 and the sheath heater 1 6 3. This gap is due to an overlay error between the upper plate 16 1 and the lower plate 16 2, an error in the processing dimension of the receiving groove, and the like. Due to the generation of this gap, the efficiency of heat transfer from the sheath heater 16 3 to the upper plate 16 1 and the lower plate 16 2 is reduced. In particular, as described above, in the laminating process, there is a process in which the space formed by the upper case and the lower case is in a vacuum state. In this process, gaps generated between the upper plate 1 61 and the sheath heater 1 6 3 and between the lower plate 1 6 2 and the sheath heater 1 6 3 are also in a vacuum state. When a vacuum is reached, the sheath heater 1 6 3 The efficiency of heat transfer to the upper plate 1 6 1 and the lower plate 1 6 2 is significantly reduced. Therefore, it becomes difficult for the temperature controller to control the temperature of the hot plate 160. Also, the temperature of the hot plate 160 does not easily increase to the target temperature within the heating time. Accordingly, the temperature controller performs temperature control for further increasing the temperature of the sheath heater 16 3 in order to increase the temperature of the hot plate 160. Therefore, the temperature of the sheath heater 1 6 3 rises excessively. When the vacuum state is released after the workpiece heating time is completed, air is also introduced into the gaps described above. By introducing air, air becomes a medium, and the heat of the sheath heater 1 63 is transferred to the heat plate 1 60 (upper plate 16 1 and lower plate 16 2) more efficiently than before. Then, the heat of the sheath heater 16 3 that has risen excessively is transmitted to the hot plate, and the temperature of the hot plate 1 60 greatly exceeds the target temperature and causes overshoot. In addition, the temperature distribution on the surface of the hot plate 160 becomes non-uniform due to the presence of the location where the gap is generated and the location where it is in contact. Therefore, there is a risk of affecting the quality such as the adhesion of components in the laminating process.
このような問題点において、 上板 1 6 1とシースヒータ 1 6 3との間や下板 1 6 2とシ ースヒータ 1 6 3との間の隙間を埋めて熱伝達を向上させる方法がある。 例えば、 図 1 7 ( b ) に示すように、 隙間に熱伝導性シリコーンシート 1 6 4やフッ素系樹脂シートを介 在させる方法がある。 しかしながら、 そのような方法であっても、 完全に隙間を埋めるこ とができない。 また、 熱板全体のコストアップの要因となってしまう。  In such a problem, there is a method of improving heat transfer by filling a gap between the upper plate 16 1 and the sheath heater 16 3 or between the lower plate 16 2 and the sheath heater 16 3. For example, as shown in FIG. 17 (b), there is a method in which a thermally conductive silicone sheet 1664 or a fluorine resin sheet is interposed in the gap. However, even such a method cannot completely fill the gap. In addition, the cost of the entire hot plate is increased.
一方、 半導体若しくは液晶ディスプレイ等を製造する際に、 半導体や液晶ディスプレイ 等の被加工物を熱処理する工程がある。 この工程において、 被加工物を加熱するための熱 盤が知られている (例えば、 特許文献 2参照)。 この熱盤は、 盤の内部に平行に形成した 貫通孔を有している。 この貫通孔には外郭部を有する熱伝導要素が、 貫通孔の内周面と熱 伝導要素の外郭部の外周面とを相互に密着させて設けられている。 しかし、 この熱盤は、 上述したような熱伝達の効率が著しく低下してしまう真空状態にならない装置に使用され ているものである。 また、 特許文献 2に開示された熱盤は、 近年、 大型化する被加工物に 対応できるような考慮がなされていない。  On the other hand, when manufacturing a semiconductor or a liquid crystal display, there is a step of heat-treating a workpiece such as a semiconductor or a liquid crystal display. In this process, a hot platen for heating a workpiece is known (for example, see Patent Document 2). This hot platen has through holes formed in parallel to the inside of the platen. The through hole is provided with a heat conducting element having an outer portion, with the inner peripheral surface of the through hole and the outer peripheral surface of the outer portion of the heat conducting element being in close contact with each other. However, this hot plate is used in a device that does not enter a vacuum state as described above, in which the efficiency of heat transfer is significantly reduced. In addition, the hot platen disclosed in Patent Document 2 has not been considered so as to be able to cope with workpieces that are becoming larger in recent years.
本発明は上述したような問題に鑑みてなされたものであり、 真空状態になる工程を有す るラミネ一ト装置における熱板の温度を目標温度に容易かつ確実に制御できるようにする ことを目的とする。 課題を解決するための手段  The present invention has been made in view of the above-described problems, and is intended to enable easy and reliable control of the temperature of a hot plate to a target temperature in a laminating apparatus having a step of becoming a vacuum state. Objective. Means for solving the problem
本発明のラミネート装慨は、 押圧部材により仕切られた上チヤンパと下チヤンパとを有 し、 その下チャンバに設けられた熱板上に被加工物を配置し、 前記熱板により加熱した前 記被加工物を、 前記下チャンパを真空とし前記上チャンパに大気を導入し前記熱板と前記 押圧部材とで挟圧してラミネートするラミネート装置であって、 前記熱板は、 裏面に収容 溝が設けられた熱板本体と、 前記収容溝に埋設されたシースヒータとを備え、 前記収容溝 及び前記シースヒータの少なくともいずれか一方を変形させて、 前記シースヒータの外周 面が前記収容溝の内周面に面接触するようにしたことを特徴とする。 The laminate apparatus according to the present invention includes an upper chamber and a lower chamber separated by a pressing member, and a workpiece is disposed on a hot plate provided in the lower chamber, and heated by the hot plate. A laminating apparatus for laminating a workpiece by vacuuming the lower champ and introducing air into the upper champ and sandwiching between the hot plate and the pressing member, the hot plate having a receiving groove on the back surface And a sheath heater embedded in the housing groove, the housing groove Further, at least one of the sheath heater is deformed so that the outer peripheral surface of the sheath heater is in surface contact with the inner peripheral surface of the housing groove.
前記熱板は、 前記収容溝に前記シースヒータが埋設された状態で、 前記収容溝の開口縁 に設けられた突出部を前記収容溝の内側方向にかしめるように構成することがで.きる。 前記熱板は、 前記収容溝が前記熱板本体の裏面に設けられた凹溝の底面に設けられるよ うに構成することもできる。  The hot plate can be configured to caulk a protrusion provided at an opening edge of the housing groove in an inner direction of the housing groove in a state where the sheath heater is embedded in the housing groove. The hot plate may be configured such that the receiving groove is provided on a bottom surface of a concave groove provided on a back surface of the hot plate main body.
前記熱板は、 前記収容溝の開口縁に設けられた突出部を前記収容溝の内側方向にかしめ ている部分が、 前記熱板本体の裏面より張出すように構成することもできる。  The hot plate can be configured such that a portion of the protruding portion provided at the opening edge of the receiving groove is caulked in the inner direction of the receiving groove so as to protrude from the back surface of the hot plate main body.
前記熱板は、 前記収容溝に前記シースヒータが埋設された状態で、 前記収容溝の開口縁 そのものを前記収容溝の內側方向にかしめて構成することもできる。  The hot plate can be configured by caulking the opening edge of the housing groove in the ridge side direction of the housing groove in a state where the sheath heater is embedded in the housing groove.
前記熱板は、前記収容溝の開口縁そのものをかしめる前の状態において、前記収容溝は、 前記熱板本体の裏面に直接、 設けられるように構成することもできる。  The hot plate may be configured to be provided directly on the back surface of the hot plate body in a state before the opening edge itself of the receiving groove is caulked.
前記熱板本体の材質は、 前記シースヒータの外周部材の材質と同一とすることもできる。 前記熱板本体には、 複数のシースヒータを埋設するように構成することもできる。  The material of the hot plate body may be the same as the material of the outer peripheral member of the sheath heater. A plurality of sheath heaters may be embedded in the hot plate main body.
前記熱板本体の裏面には、 面方向に沿って異なって蛇行する収容溝が複数、 設けられ、 前記複数の収容溝それぞれに埋設されるシースヒータを複数、 備えるように構成すること もできる。  A plurality of housing grooves meandering along the surface direction are provided on the back surface of the hot plate main body, and a plurality of sheath heaters embedded in each of the plurality of housing grooves may be provided.
前記熱板は、 前記複数のシースヒータのうち、 前記熱板本体の同一奥行き方向に埋設さ れている複数のシースヒータは、 前記収容溝から外部に出る位置が前記熱板本体の幅方向 にずれるように構成することもできる。  The plurality of sheathed heaters embedded in the same depth direction of the heat plate main body among the plurality of sheath heaters are arranged such that the position of going out from the housing groove is shifted in the width direction of the heat plate main body. It can also be configured.
前記熱板は、 複数の熱板本体を結合して構成することもできる。  The hot plate can be configured by combining a plurality of hot plate bodies.
前記熱板は、 隣接する熱板本体同士を表面側から熱板本体間に跨って設けられた結合部 材を介して表面側から固定部材により結合するように構成することもできる。  The hot plate can also be configured to be connected by a fixing member from the surface side through a connecting member provided between adjacent hot plate bodies from the surface side to between the hot plate bodies.
前記熱板は、 熱板本体と、 前記熱板本体に埋め込まれたシースヒータとを備え、 前記シ ースヒータの外周全面が前記熱板本体と接触するように構成することもできる。  The hot plate may include a hot plate body and a sheath heater embedded in the hot plate body, and the entire outer periphery of the sheath heater may be in contact with the hot plate body.
前記熱板は、 熱板本体に、 シースヒータの外周全面が前記熱板本体と接触するように埋 め込まれるように構成することもできる。  The hot plate may be configured to be embedded in the hot plate main body so that the entire outer periphery of the sheath heater is in contact with the hot plate main body.
前記熱板は、 熱板本体の裏面に設けられた収容溝にシースヒータを埋設する埋設工程を 有し、 前記埋設工程で、 プレス機によって、 前記シースヒータの外周面が前記収容溝の内 周面に面接触するように、 前記収容溝及び前記シースヒータの少なくともいずれか一方を 変形させると共に、 前記収容溝の開口縁に設けられた突出部又は開口縁そのものを前記収 容溝の内側方向にカゝしめる製造方法により得られる。  The hot plate has a burying step of burying a sheath heater in a receiving groove provided on the back surface of the hot plate main body, and in the burying step, an outer peripheral surface of the sheath heater is placed on an inner peripheral surface of the receiving groove by a press machine. At least one of the housing groove and the sheath heater is deformed so as to come into surface contact, and the protrusion provided on the opening edge of the housing groove or the opening edge itself is clamped inward of the housing groove. Obtained by the manufacturing method.
また、 前記熱板は、 シースヒータの外周全体が熱板本体と接触するように、 熱板本体に シ スヒータを錄込により埋設する製造方法によっても得られる。 発明の効果 本努明によれば、 シースヒータの熱が熱板本体に効率よく伝達され、 ラミネート装置に おける熱板の温度を目標温度に容易かつ確実に制御することができる。 また、 ¾¾0ェ物の ラミネート品質を向上させることができる。 The hot plate can also be obtained by a manufacturing method in which the sheath heater is embedded in the hot plate main body so that the entire outer periphery of the sheath heater is in contact with the hot plate main body. The invention's effect According to this effort, the heat of the sheath heater is efficiently transmitted to the main body of the hot plate, and the temperature of the hot plate in the laminating apparatus can be easily and reliably controlled to the target temperature. Further, the laminate quality of the product can be improved.
例えば、 熱板は、 収容溝にシースヒータが埋設された状態で、 収容溝の開口縁に設けら れた突出部を収容溝の内側方向にかしめられる。 この場合、 シースヒータの外周面を収容 溝の内周面に圧接した状態に維持させておくことができる。  For example, in the hot plate, the protruding portion provided at the opening edge of the accommodation groove is caulked in the inner direction of the accommodation groove in a state where the sheath heater is embedded in the accommodation groove. In this case, the outer peripheral surface of the sheath heater can be maintained in pressure contact with the inner peripheral surface of the housing groove.
また例えば、収容溝は、熱板本体の裏面に設けられた凹溝の底面に設けることもできる。 この場合、 切削面積を削減させることができる。 また、 かしめ部を凹溝内に位置させるこ とができるので、 かしめ部が熱板本体の裏面から突出することがなく、 裏面上に他の熱板 を重ねることもできる。  Further, for example, the housing groove can be provided on the bottom surface of the concave groove provided on the back surface of the hot plate main body. In this case, the cutting area can be reduced. Further, since the caulking portion can be positioned in the concave groove, the caulking portion does not protrude from the back surface of the hot plate main body, and another hot plate can be stacked on the back surface.
また例えば、 収容溝の開口縁に設けられた突出部を収容溝の内側方向にかしめている部 分が、 熱板本体の裏面より張出することもできる。 この場合、 突出部をかしめるときに用 いられるプレス金型費を削減することができる。  Further, for example, a portion where the projecting portion provided at the opening edge of the housing groove is caulked in the inner direction of the housing groove can protrude from the back surface of the hot plate main body. In this case, it is possible to reduce the cost of the press die used when caulking the protrusion.
また例えば、 熱板は、 収容溝にシースヒータが埋設された状態で、 収容溝の開口縁その ものを収容溝の内側方向にかしめることもできる。 この場合、 かしめるための突出部を形 成する必要がないので、 熱板本体を加工する加工費を削減することができる。  Further, for example, the heat plate can be caulked with the opening edge of the housing groove in the inner direction of the housing groove in a state where the sheath heater is embedded in the housing groove. In this case, since it is not necessary to form the protruding portion for caulking, the processing cost for processing the hot plate body can be reduced.
また例えば、 収容溝の開口縁そのものをかしめる前の状態において、 収容溝は、 熱板本 体の裏面に直接、 設けることもできる。 この場合、 熱板本体を加工する加工費を削減する ことができる。  Further, for example, the housing groove can be provided directly on the back surface of the main body of the heat plate before the opening edge of the housing groove itself is caulked. In this case, the processing cost for processing the hot plate body can be reduced.
また例えば、 熱板は、 熱板本体の材質と、 シースヒータの外周部材の材質とを同一とす ることができる。 この場合、 シースヒータから熱板本体への熱伝達の効率を向上させるこ とができる。  Further, for example, in the hot plate, the material of the hot plate main body and the material of the outer peripheral member of the sheath heater can be made the same. In this case, the efficiency of heat transfer from the sheath heater to the hot plate body can be improved.
また例えば、 熱板は、 熱板本体に複数のシースヒータを埋設することもできる。 この場 合、 熱板全体を満遍なく加熱することができる。  Further, for example, the hot plate can embed a plurality of sheath heaters in the hot plate body. In this case, the entire hot plate can be heated uniformly.
また例えば、 熱板本体の裏面には、 面方向に沿って異なって蛇行する収容溝を複数、 設 け、 前記複数の収容溝それぞれに埋設されるシースヒータを複数、 備えることもできる。 この場合、 熱板全体の温度分布を一定にすることができる。  Further, for example, a plurality of receiving grooves meandering along the surface direction may be provided on the back surface of the hot plate main body, and a plurality of sheath heaters embedded in each of the plurality of receiving grooves may be provided. In this case, the temperature distribution of the entire hot plate can be made constant.
また例えば、 複数のシースヒータのうち、 熱板本体の同一奥行き方向に埋設されている 複数のシースヒータは、 収容溝から外部に出る位置を熱板本体の幅方向にずれるようにす ることもできる。 この場合、 複数のシースヒータを配線するときに、 熱板本体の裏面から 外部に出たシースヒータそれぞれが、 熱板本体の下側で交差したり、 重なり合ったりしな いように配置できるので、 熱板の下側の上下方向のスペースを削減することができる。 また例えば、 熱板は、 複数の熱板本体を結合した構成とすることもできる。 この場合、 熱板本体ごとに収容溝等を加工することができる。 また、 収容溝にシースヒータを埋設す る作業を容易に行うことができる。 また例えば、 複数の熱板本体のうち、 隣接する熱板本体同士は、 表面側から熱板本体間 に跨って設けられた結合部材を介して、 表面側から固定部材で結合した構成とすることも できる。 この場合、 作業者は、 結合部材を熱板本体間においた状態で、 表面側から作業を 行うことができるので、 熱板を組み立てる作業の効率が向上する。 Further, for example, among the plurality of sheath heaters, the plurality of sheath heaters embedded in the same depth direction of the hot plate main body can be shifted in the width direction of the hot plate main body from the housing groove. In this case, when wiring a plurality of sheath heaters, the sheath heaters that have come outside from the back of the hot plate body can be arranged so that they do not cross or overlap each other on the lower side of the hot plate body. The space in the vertical direction on the lower side can be reduced. Further, for example, the hot plate can be configured by combining a plurality of hot plate bodies. In this case, an accommodation groove or the like can be processed for each hot plate body. In addition, it is possible to easily embed a sheath heater in the accommodation groove. Further, for example, among the plurality of hot plate bodies, adjacent hot plate bodies are configured to be coupled by a fixing member from the surface side via a coupling member provided across from the surface side to the hot plate body. You can also. In this case, the operator can work from the surface side with the coupling member between the hot plate bodies, so that the efficiency of the work of assembling the hot plate is improved.
また例えば、 熱板は、 熱板本体にシースヒータを铸込により埋設した構成とすることも できる。 この場合、 シースヒータの外周面が収容溝の内周面に面接触している熱板を容易 に製造することができる。  Further, for example, the hot plate can be configured such that a sheath heater is embedded in the hot plate main body. In this case, a hot plate in which the outer peripheral surface of the sheath heater is in surface contact with the inner peripheral surface of the housing groove can be easily manufactured.
図面の簡単な説明  Brief Description of Drawings
図 1は、 ラミネート装置の全体の構成を示す図である。  FIG. 1 is a diagram showing the overall configuration of the laminating apparatus.
図 2は、 ラミネート装置の全体の構成を示す斜視図である。  FIG. 2 is a perspective view showing the overall configuration of the laminating apparatus.
図 3は、 被加工物としての太陽電池モジュールの構成を示す断面図である。  FIG. 3 is a cross-sectional view showing a configuration of a solar cell module as a workpiece.
'図 4は、 ラミネ一ト装置のラミネート部の側断面図である。  'Fig. 4 is a sectional side view of the laminating part of the laminating device.
図 5は、 ラミネート装置のラミネート加工時におけるラミネ一ト部の側断面図である。 図 6は、 第 1の実施形態に係る熱板及ぴその周辺の構成を示す斜視図である。  FIG. 5 is a cross-sectional side view of the laminating portion during laminating of the laminating apparatus. FIG. 6 is a perspective view showing the configuration of the hot plate and its periphery according to the first embodiment.
図 7は、 第 1の実施形態に係る熱板の平面図である。  FIG. 7 is a plan view of the hot platen according to the first embodiment.
図 8は、 第 1の実施形態に係る熱板の構成を説明するための図である。  FIG. 8 is a diagram for explaining the configuration of the hot platen according to the first embodiment.
図 9は、 熱板の温度を測定した温度遷移を示す図である。  FIG. 9 is a diagram showing a temperature transition obtained by measuring the temperature of the hot plate.
図 1 0は、 第 2の実施形態に係る熱板の構成を示す図である。  FIG. 10 is a diagram showing the configuration of the hot platen according to the second embodiment.
図 1 1は、 第 3の実施形態に係る熱板の構成を示す図である。  FIG. 11 is a diagram showing a configuration of a hot plate according to the third embodiment.
図 1 2は、 第 4の実施形態に係る熱板の構成を説明するための図である。  FIG. 12 is a diagram for explaining a configuration of a hot platen according to the fourth embodiment.
図 1 3は、 第 5の実施形態に係る熱板本体にシースヒータを埋設させる工程を説明する ための図である。  FIG. 13 is a view for explaining a process of embedding a sheath heater in the hot plate body according to the fifth embodiment.
図 1 4は、 第 6の実施形態に係る熱板の構成を示す図である。  FIG. 14 is a diagram showing the configuration of the hot platen according to the sixth embodiment.
図 1 5は、 第 7の実施形態に係る熱板及ぴその周辺の構成を示す斜視図である。  FIG. 15 is a perspective view showing the configuration of the hot plate and its periphery according to the seventh embodiment.
図 1 6は、 第 1の実施形態に係る熱板一部の裏面を示す図である。  FIG. 16 is a view showing the back surface of a part of the hot platen according to the first embodiment.
図 1 7は、 検証により判明した従来のラミネート装置の熱板の構成及ぴ熱板に伝熱性シ リコーンシートを介在させた構成を示す図である。 符号の説明 、  Fig. 17 is a diagram showing the configuration of the hot plate of a conventional laminating apparatus and the configuration in which a heat conductive silicone sheet is interposed in the hot plate, which has been found by the verification. Explanation of reference numerals
1 0 被加工物  1 0 Workpiece
1 0 0 ラミネート装置  1 0 0 Laminator
1 0 1 ラミネート部  1 0 1 Laminate section
1 1 0 上ケース  1 1 0 Upper case
1 1 2 ダイヤフラム  1 1 2 Diaphragm
1 1 3 上チャンバ 1 2 0 下ケース 1 1 3 Upper chamber 1 2 0 Lower case
1 2 1 下チャンパ  1 2 1 Lower Champa
1 2 2 熱板  1 2 2 Hot plate
6 1 熱板本体  6 1 Hot plate body
6 2 シースヒータ  6 2 Sheath heater
6 3 収容溝  6 3 Housing groove
6 5 裏面  6 5 reverse side
6 7 結合部材  6 7 Connecting member
7 1 赚  7 1 赚
7 2 突出部  7 2 Protrusion
7 3 かしめ部  7 3 Caulking section
7 4 盛上部  7 4 Top
7 5 基準面  7 5 Reference plane
7 6 平坦部  7 6 Flat part
7 7 突出部  7 7 Protrusion
7 8 プレス型  7 8 Press mold
8 0 熱板  8 0 Hot plate
8 1 熱 本体  8 1 Heat Body
8 2 シースヒータ  8 2 Sheath heater
8 3 収容溝  8 3 Housing groove
8 4 熱板  8 4 Hot plate
8 5 熱板本体  8 5 Hot plate body
8 6 熟板  8 6 Ripe plate
8 7 熱板本体  8 7 Hot plate body
8 8 熱板  8 8 Hot plate
8 9 熱板本体  8 9 Hot plate body
9 1 熱板本体  9 1 Hot plate body
9 2 裏面  9 2 reverse side
9 8 熱板  9 8 Hot plate
9 9 熱板本体  9 9 Hot plate body
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本実施形態に係るラミネ一ト装置について説明する。  Hereinafter, a laminating apparatus according to the present embodiment will be described with reference to the drawings.
図 1は、 本実施形態に係るラミネート装置 1 0 0の全体の構成を示す図である。 また、 図 2は、 ラミネート装置 1 0 0の全体の構成を示す斜視囪である。 ラミネート装置 1 0 0 は、 上ケース 1 1 0と、 下ケース 1 2 0と、 被加工物 1 0を搬送するための搬送ベルト 1 3 0と、 を有する。 搬送 ルト 1 3 0は、 被加工物 1 0を上ケース 1 1 0と下ケース 1 2 0との間に搬送する。 ラミネート装置 1 0 0には、 ラミネート前の被加工物 1 0をラミネ ート装置 1 0 0に搬送するための搬入コンペァ 2 0 0が設けられている。 また、 ラミネー ト装置 1 0 0には、 ヲミネート後の被加工物 1 0をラミネート装置 1 0 0から搬出するた めの搬出コンベア 3 0 0が設けられている。 搬入コンベア 2 0 0と搬出コンベア 3 0 0と は、 連設されている。 被加工物 1 0は、 搬入コンベア 2 0 0から搬送ペルト 1 3 0に受け 渡され、 搬送ベルト 1 3 0から搬出コンベア 3 0 0に受け渡される。 FIG. 1 is a diagram showing an overall configuration of a laminating apparatus 100 according to the present embodiment. FIG. 2 is a perspective view showing the overall configuration of the laminating apparatus 100. The laminating apparatus 1 0 0 includes an upper case 1 1 0, a lower case 1 2 0, and a conveyor belt 1 for conveying the workpiece 1 0. 3 0 and The transport belt 1 3 0 transports the workpiece 10 between the upper case 1 1 0 and the lower case 1 2 0. The laminating apparatus 100 is provided with a carry-in competitor 2 00 for conveying the workpiece 10 before laminating to the laminating apparatus 1100. Further, the laminating apparatus 100 is provided with a carry-out conveyor 300 for carrying out the workpiece 10 after lamination from the laminating apparatus 100. The carry-in conveyor 2 00 and the carry-out conveyor 3 0 0 are connected in series. The workpiece 10 is transferred from the carry-in conveyor 20 0 to the transfer pelt 1 3 0, and is transferred from the transfer belt 1 3 0 to the carry-out conveyor 3 0 0.
図 2に示すように、 ラミネート装置 1 0 0には、 シリンダ及びピストンロッド等で構成 される昇降装置 1 5 0が設けられている。 昇降装置 1 5 0は、 上ケース 1 1 0を水平状態 に維持したまま下ケース 1 2 0に対して昇降させることができる。 昇降装置 1 5 0が上ケ ース 1 1 0を下降させることで、 上ケース 1 1 0と下ケース 1 2 0との内部空間を密閉さ せることができる。 .  As shown in FIG. 2, the laminating apparatus 100 is provided with an elevating apparatus 150 composed of a cylinder, a piston rod, and the like. The lifting device 15 50 can lift and lower the upper case 1 10 with respect to the lower case 1 2 0 while maintaining the horizontal state. The elevating device 1 5 0 lowers the upper case 1 1 0 so that the internal space between the upper case 1 1 0 and the lower case 1 2 0 can be sealed. .
次に、 ラミネート装置 1 0 0でラミネートされる被加工物 1 0について説明する。  Next, the workpiece 10 to be laminated by the laminating apparatus 100 will be described.
図 3は、 被加工物 1 0として結晶系セルを使用した太陽電池モジュールの構成を示す断 面図である。 太陽電池モジュールは、 図示のように、 透明な力パーガラス 1 1と裏面材 1 2との間に、 充填材 1 3、 1 4を介してストリング 1 5を挟み込んだ構成を有する。 裏面 材 1 2にはポリエチレン樹脂等の材料が使用される。 充填材 1 3、 1 4には E VA (ェチ レンビュルァセテ一ト) 樹脂等が使用される。 ストリング 1 5は、 電極 1 6、 1 7の間に 結晶系セルとしての太陽電池セル 1 8をリード線 1 9を介して接続した構成である。  FIG. 3 is a cross-sectional view showing a configuration of a solar cell module using a crystal cell as a workpiece 10. As shown in the figure, the solar cell module has a configuration in which a string 15 is sandwiched between a transparent power par glass 11 and a back material 12 via fillers 13 and 14. For the back material 1 2, a material such as polyethylene resin is used. E VA resin is used for fillers 1 3 and 1 4. The string 15 has a configuration in which solar cells 18 as crystal cells are connected between electrodes 16 and 17 via lead wires 19.
また、 被加工物 1 0としては、 上述した太陽電池モジュー^/だけではなく、 一般に薄膜 式と呼ばれる太陽電池モジュールを対象とすることもできる。 この薄膜式太陽電池モジュ ールの代表的な構造例では、 透明な力パーガラスに、 予め、 透明電極、 半導体、 裏面電極. からなる発電素子が蒸着してある。 このような薄膜式太陽電池モジュールは、 カバーガラ スを下向きに配置し、 カバーガラス上の癸電素子の上に充填材を被せる。 更に、 充填材の 上に裏面材を被せた構造になっている。 このような状態で真空加熱ラミネートすることに より薄膜式太陽電池モジュールの構成部材が接着される。 すなわち、 薄膜式太陽電池モジ ュールは、 上述した太陽電池モジュールの結晶系セルが蒸着された発電素子に変わるだけ ある。 薄膜式太陽電池モジュールの基本的な封止構造は上述した太陽電池モジュールと同 じである。  Further, as the work piece 10, not only the solar cell module ^ / described above but also a solar cell module generally called a thin film type can be targeted. In a typical structure example of this thin-film solar cell module, a power generating element composed of a transparent electrode, a semiconductor, and a back electrode is previously deposited on a transparent power par glass. In such a thin-film solar cell module, the cover glass is disposed downward, and the filler is placed on the negative electrode on the cover glass. Furthermore, it has a structure in which a back material is put on the filler. In this state, the constituent members of the thin-film solar cell module are bonded by vacuum heating lamination. That is, the thin film solar cell module is merely changed to a power generation element on which the above-described solar cell module crystal cells are deposited. The basic sealing structure of the thin-film solar cell module is the same as that of the solar cell module described above.
次に、 本実施形態に係るラミネート装置 1 0 0のラミネート部 1 0 1の構成についてよ り具体的に説明する。 図 4は、 ラミネート装置 1 0 0において被加工物 1 0をラミネート するヲミネート部 1 0 1の側断面図である。 図 5は、 ラミネート加工時におけるラミネー ト部 1 0 1の側断面図である。  Next, the configuration of the laminating unit 1001 of the laminating apparatus 100 according to this embodiment will be described more specifically. FIG. 4 is a side cross-sectional view of the laminate portion 1001 for laminating the workpiece 10 in the laminating apparatus 100. FIG. 5 is a cross-sectional side view of the laminating portion 100 1 during laminating.
上ケース 1 1 0には、 下方向に開口された空間が形成されている。 この空間には、 空聞 を水平に仕切るようにダイヤフラム 1 1 2が設けられている。 ダイヤフラム 1 1 2は、 シ リコ ン系のゴム等の耐熱性のあるゴムにより成形されている。 後述するように、 ダイヤ フラム 1 1 2は、 被加工物 1 0を押圧する押圧部材として機能し、 ラミネートを行う。 上 ケース 1 1 0内には、 ダイヤフラム 1 1 2によって仕切られた空間 (上チャンパ 1 1 3 ) が形成される。 The upper case 110 is formed with a space opened downward. In this space, a diaphragm 1 1 2 is provided to horizontally partition the sky. Diaphragm 1 1 2 is molded from heat-resistant rubber such as silicone rubber. As will be described later, The flam 1 1 2 functions as a pressing member that presses the workpiece 10 and performs lamination. In the upper case 110, a space (upper champ 1 1 3) partitioned by the diaphragm 1 1 2 is formed.
また、 上ケース 1 1 0の上面には、 上チャンパ 1 1 3と連通する吸排気口 1 1 4が設け られている。 上チャンパ 1 1 3では、 吸排気口 1 1 4を介して、 上チャンパ 1 1 3內を真 空引きして真空状態にしたり、 上チャンパ 1 1 3内に大気を導入したりすることができる。 下ケース 1 2 0には、上方向に開口された空間 (下チャンパ 1 2 1 ) が形成されている。 この空間には、 熱板 1 2 2 (パネル状のヒータ) が設けられている。 熱板 1 2 2は、 下ケ ース 1 2 0の底面に立設された支持部材によって、 水平状態を保つように支持されている。 この場合に、 熱板 1 2 2は、 その表面が下チャンパ 1 2 1の開口面とほぼ同一高さになる ように支持される。  In addition, on the upper surface of the upper case 110, an intake / exhaust port 14 14 communicating with the upper chamber 1 13 is provided. In the upper champ 1 1 3, the upper champ 1 1 3 內 can be evacuated and vacuumed or air can be introduced into the upper champ 1 1 3 via the intake and exhaust ports 1 1 4. . The lower case 1 2 0 is formed with a space (lower champ 1 2 1) opened upward. In this space, a hot plate 1 2 2 (panel heater) is provided. The hot plate 1 2 2 is supported by a support member erected on the bottom surface of the lower case 1 2 20 so as to maintain a horizontal state. In this case, the heat plate 1 2 2 is supported so that the surface thereof is almost the same height as the opening surface of the lower champ 1 2 1.
また、 下ケース 1 2 0の下面には、 下チャンパ 1 2 1と連通する吸排気口 1 2 3が設け られている。 下チャンパ 1 2 1では、 吸排気口 1 2 3を介して、 下チャンパ 1 2 1内を真 空引きして真空状態にしたり、 下チャンパ 1 2 1內に大気を導入したりすることができる。 上ケース 1 1 0と下ケース 1 2 0との間であって、 熱板 1 2 2の上方には、 搬送ベルト Further, an intake / exhaust port 1 2 3 communicating with the lower champ 1 2 1 is provided on the lower surface of the lower case 1 2 0. In the lower champ 1 2 1, the inside of the lower champ 1 2 1 can be vacuumed through the intake / exhaust port 1 2 3 to create a vacuum, or the atmosphere can be introduced to the lower champ 1 2 1 . Between the upper case 1 1 0 and the lower case 1 2 0, above the hot plate 1 2 2, the conveyor belt
1 3 0が移動自在に設けられている。 搬送べノレト 1 3 0は、 図 1の搬入コンベア 2 0 0力 らラミネート前の被加工物 1 0を受け取ってラミネート部 1 0 1の中央位置に搬送する。 また、 搬送ベルト 1 3 0は、 ラミネート後の被加工物 1 0を図 1の搬出コンベア 3 0 0に 受け渡す。 1 3 0 is movably provided. The conveying beret 1 30 receives the workpiece 10 before lamination from the loading conveyor 20 0 force of FIG. 1 and conveys it to the central position of the laminating section 1 0 1. Further, the conveyor belt 1 30 delivers the workpiece 10 after lamination to the carry-out conveyor 30 in FIG.
また、上ケース 1 1 0と下ケース 1 2 0との間であって、搬送ベルト 1 3 0の上方には、 剥離シート 1 4 0が設けられている。 剝離シ一ト 1 4 0は、 被加工物 1 0の充填材 1 3、 A release sheet 1 40 is provided between the upper case 1 1 0 and the lower case 1 2 0 and above the conveyor belt 1 3 0. Separation sheet 1 4 0 is the workpiece 1 0 filler 1 3
1 4 (図 3参照) が溶融したときに、 充填材 1 3、 1 4がダイヤフラム 1 1 2に付着する のを防止する。 When 1 4 (see Fig. 3) is melted, fillers 1 3 and 1 4 are prevented from adhering to diaphragm 1 1 2.
次に、 本実施形態に係るラミネート装置 1 0 0によるラミネート工程についてより具体 的に説明する。 まず、 図 4に示すように、 搬送ベルト 1 3 0は、 被加工物 1 0をラミネ一 ト部 1 0 1の中央位置に搬送する。  Next, the laminating process by the laminating apparatus 100 according to this embodiment will be described more specifically. First, as shown in FIG. 4, the conveyance belt 1 30 conveys the workpiece 10 to the center position of the laminating portion 10 1.
次に、 昇降装置 1 5 0は、 上ケース 1 1 0を下降させる。 上ケース 1 1 0を下降させる ことにより、 図 5に示すように、 上ケース 1 1 0と下ケース 1 2 0との内部空間は、 密閉 される。 すなわち、 上ケース 1 1 0と下ケース 1 2 0との内部にて上チャンパ 1 1 3及び 下チャンパ 1 2 1は、 それぞれ密閉状態に保つことができる。  Next, the lifting device 1 5 0 lowers the upper case 1 1 0. By lowering the upper case 110, the internal space between the upper case 110 and the lower case 120 is sealed as shown in FIG. That is, the upper and lower champs 1 1 3 and 1 2 1 can be kept sealed in the upper case 1 1 0 and the lower case 1 2 0, respectively.
次に、 ラミネート装置 1 0 0は、 上ケース 1 1 0の吸排気口 1 1 4を介して、 上チャン バ 1 1 3内の真空引きを行う。 同様に、 ラミネート装置 1 0 0は、 下ケース 1 2 0の吸排 気口 1 2 3を介して、 下チャンパ 1 2 1内の真空引きを行う。 下チャンパ 1 2 1の真空引 きにより、 被加工物 1 0に含まれている気泡は、 被加工物 1 0外に送出される。 この状態 で、 被加工物 1 0は熱板 1 2 2によって加熱され、 その内部に含まれる充填材 1 3、 1 4 が溶融する。 次に、 ラミネート装置 1 0 0は、 下チャンパ 1 2 1の真空状態を保ったまま、 上ケース 1 1 0の吸排気口 1 1 4を介して、 上チャンパ 1 1 3に大気を導入する。 これにより、 上 チャンパ 1 1 3と下チャンパ 1 2 1との間に気圧差が生じることで、 ダイヤフラム 1 1 2 が膨張する。 従って、 ダイヤフラム 1 1 2は、 図 5に示すように下方に押し出される。 被 加工物 1 0は、 下方に押レ出されたダイヤフラム 1 1 2と、 熱板 1 2 2とで挟圧され、 溶 融した充填材 1 3、 1 4により各構成部材が接着される。 Next, the laminating apparatus 100 performs evacuation of the upper chamber 1 1 3 through the intake / exhaust port 1 1 4 of the upper case 1 1 0. Similarly, the laminating apparatus 100 evacuates the lower chamber 1 2 1 through the intake / exhaust port 1 2 3 of the lower case 1 2 0. By vacuuming the lower champ 1 2 1, the bubbles contained in the work piece 10 are sent out of the work piece 10. In this state, the work piece 10 is heated by the hot plate 12 2 and the fillers 13 and 14 contained therein are melted. Next, the laminating apparatus 100 introduces air to the upper chamber 1 1 3 through the intake / exhaust port 1 1 4 of the upper case 1 1 0 while keeping the vacuum state of the lower chamber 1 2 1. As a result, a pressure difference is generated between the upper champ 1 1 3 and the lower champ 1 2 1, so that the diaphragm 1 1 2 expands. Accordingly, the diaphragm 1 1 2 is pushed downward as shown in FIG. The workpiece 10 is pressed between the diaphragm 1 1 2 pushed downward and the hot plate 1 2 2, and the constituent members are bonded to each other by the melted fillers 1 3 and 14.
このとき、 充填材 1 3、 1 4が力パーガラス 1 1と裏面材 1 2との間からはみ出てしま うことがある。 このとき、 はみ出した充填材 1 3、 1 4は剥離シート 1 4 0に付着する。 このように剥離シート 1 4 0を介在させることにより、 はみ出した充填材 1 3 , 1 4がダ ィャフラム 1 1 2に付着するのを防止する。 従って、 剥離シート 1 4 0は、 ダイヤフラム 1 1 2から次にラミネートする被加工物 1 0に充填材 1 3、 1 4が付着するのを防止する。 また、 はみ出した充填材 1 3、 1 4力 S、 搬送ベルト 1 3 0上に付着した場合は、 付着した 充填材 1 3、 1 4は、 図示しないクリーニング機構により除去される。  At this time, the fillers 1 3 and 1 4 may protrude from between the power par glass 1 1 and the back material 1 2. At this time, the protruding fillers 13 and 14 adhere to the release sheet 140. By interposing the release sheet 140 in this way, the protruding fillers 13 and 14 are prevented from adhering to the diaphragm 11. Therefore, the release sheet 140 prevents the fillers 13 and 14 from adhering to the workpiece 10 to be laminated next from the diaphragm 1 12. In addition, when the protruding filler 13 or 14 force S adheres on the conveying belt 130, the adhering filler 13 or 14 is removed by a cleaning mechanism (not shown).
このようにラミネート工程が終了した後、 ラミネート装置 1 0 0は、 下ケース 1 2 0の 吸排気口 1 2 3を介して、 下チャンパ 1 2 1に大気を導入する。 このとき、 昇降装置 1 5 0は、 上ケース 1 1 0を上昇させる。 上ケース 1 1 0を上昇させることにより、 図 4に示 すように、搬送ベルト 1 3 0を移動させることができるようになる。搬送ベルト 1 3 0は、 ラミネート後の被加工物 1 0を搬出コンベア 3 0 0に受け渡す。 第 1の実施形態  After the laminating process is completed in this way, the laminating apparatus 100 introduces air into the lower chamber 1 2 1 via the intake / exhaust port 1 2 3 of the lower case 1 2 0. At this time, the lifting / lowering device 1 5 0 raises the upper case 1 1 0. By raising the upper case 110, the conveyor belt 130 can be moved as shown in FIG. The conveyor belt 1 3 0 delivers the laminated workpiece 10 to the carry-out conveyor 3 0 0. First embodiment
次に、 第 1の実施形態に係るラミネート装置 1 0 0の熱板 1 2 2について詳細に説明す る。 図 6は、 熱板 1 2 2及ぴその周辺の構成を示す斜視図である。 熱板 1 2 2は、 複数の 熱板本体 6 1と、 複数のシースヒータ 6 2とを有している。 熱板 1 2 2の大きさは、 下ケ ース 1 2 0に収まるように形成されている。 本実施形態の熱板 1 2 2は、 近年大型化して いる被加工物のサイズに対応した大きさで形成され、 具体的には、 熱板 1 2 2の寸法は、 大きくなると幅約 4 0 0 O mm (図 6に示す W参照) 、 奥行き約 2 0 0 O mm (図 6に示 す D E参照) である。  Next, the hot plate 1 2 2 of the laminating apparatus 100 according to the first embodiment will be described in detail. FIG. 6 is a perspective view showing the configuration of the hot plate 1 2 2 and its periphery. The hot plate 1 2 2 has a plurality of hot plate bodies 61 and a plurality of sheath heaters 62. The size of the hot plate 1 2 2 is formed to fit in the lower case 1 2. The hot plate 1 2 2 of this embodiment is formed in a size corresponding to the size of a workpiece that has been increasing in size in recent years. Specifically, the hot plate 1 2 2 has a width of about 40 when the size of the hot plate 1 2 2 is increased. 0 O mm (see W in Fig. 6) and depth of about 200 O mm (see DE in Fig. 6).
熱板本体 6 1は、 アルミニウム又はアルミニウム合金によりパネル状に形成されている。 本実施形態の熱板 1 2 2は、 幅方向に 4つの熱板本体 6 1を並べて構成されている。 隣接 する熱板本体 6 1同士は、 これら熱板本体 6 1の裏面側において、 隣接する熱板本体 6 1 間に跨って設けられている結合部材 6 7を介して表面側よりボルト等の固定部材によって 結合されている。 このように分割して構成することで、 後述する収容溝を加工する場合に おいて、 熱板本体 6 1ごとに加工することができる。 また、 収容溝に後述するシースヒー タを埋設する場合において、熱板本体 6 1ごとにシースヒータを埋設すればよい。従って、 例えばシ一スヒータを熱板全体に埋設させるような大型なプレス機を使用しなくてもよく、 加工費用を削減することができる。 更には、 熱板 1 2 2の輸送や組み立て作業が容易にな る。 また、 熱板本体 6 1を更に結合することで、 より大型の被加工物に対応した熱板を容 易に構成することができる。 なお、 熱板 1 2 2は、 複数の熱板本体 6 1によって構成され ている場合に限られず、 1枚の熱板本体 6 1によって構成されていてもよい。 The hot plate body 61 is formed in a panel shape from aluminum or an aluminum alloy. The hot plate 1 2 2 of this embodiment is configured by arranging four hot plate bodies 61 in the width direction. Adjacent hot plate bodies 61 are fixed to each other on the back side of these hot plate bodies 61 with bolts or the like from the front side via coupling members 67 provided between adjacent hot plate bodies 61. Connected by members. By dividing and configuring in this way, it is possible to process each heating plate main body 61 in the case of processing an accommodation groove to be described later. Further, when a sheath heater described later is embedded in the receiving groove, a sheath heater may be embedded for each hot plate main body 61. Therefore, for example, it is not necessary to use a large press machine that embeds a sheath heater in the entire hot plate, and the processing cost can be reduced. In addition, transportation and assembly work of the hot plate 1 2 2 is easy. The Further, by further joining the hot plate body 61, a hot plate corresponding to a larger workpiece can be easily configured. The hot plate 1 2 2 is not limited to being constituted by a plurality of hot plate main bodies 61, and may be constituted by one hot plate main body 61.
各熱板本体 6 1の裏面には、 シースヒータ 6 2を埋設するための収容溝 6 3が形成され ている。 収容溝 6 3は、 熱板本体 6 1の表面での温度分布を均一にするために、 裏面の全 面に!:るように蛇行するように形成されている。  A receiving groove 63 for embedding the sheath heater 62 is formed on the back surface of each hot plate main body 61. In order to make the temperature distribution on the surface of the hot plate body 61 uniform, the receiving groove 63 is formed on the entire back surface! : It is formed to meander.
収容溝 6 3にはシースヒータ 6 2が埋設される。シースヒータ 6 2は、後述する図 8 ( b ) に示すように、 中心がコイル状に加工されたニクロム線 6 2 aである。 また、 シースヒー タ 6 2は、 ニクロム線 6 2 aの周りを酸ィ匕マグネシウム等の粉末を充填した絶縁材 6 2 b を有している。 更に、 シースヒータ 6 2は、 絶縁材 6 2 bの周りをシース 6 2 c (外周を なす管部材) の材質として、 アルミニウム又はアルミニウム合金が覆っている。 このよう に熱板本体 6 1とシースヒータ 6 2のシースとは、 同じ材質で形成されている。 従って、 熱板 1 2 2では、 シースヒータ 6 2から熱板本体 6 1への熱伝達の効率を向上させること ができる。 各熱板本体 6 1の収容溝 6 3に埋設されたシースヒータ 6 2は、 図 6に示すよ うに、 ラミネート装置 1 0 0内又は外部に設置されている温度コントローラ 6 4に接続さ れている。 この温度コントローラ 6 4は、 熱板 1 2 2の温度が目標温度になるように温度 制御する。  A sheath heater 62 is embedded in the receiving groove 63. The sheath heater 62 is a nichrome wire 62a whose center is processed into a coil shape, as shown in FIG. The sheath heater 6 2 has an insulating material 6 2 b filled with powder such as magnesium oxide around the nichrome wire 6 2 a. Further, the sheath heater 62 is covered with aluminum or an aluminum alloy around the insulating material 62 b as a material of the sheath 62 c (tube member forming the outer periphery). Thus, the hot plate body 61 and the sheath of the sheath heater 62 are made of the same material. Therefore, the heat plate 12 2 can improve the efficiency of heat transfer from the sheath heater 62 to the heat plate body 61. The sheath heater 6 2 embedded in the receiving groove 63 of each hot plate body 61 is connected to a temperature controller 64 installed inside or outside the laminating apparatus 100 as shown in FIG. . This temperature controller 64 controls the temperature so that the temperature of the hot plate 1 2 2 becomes the target temperature.
図 7は、 熱板 1 2 2の平面図である。 なお、 図 7では、 各熱板本体 6 1に埋設されるシ ースヒータ 6 2を破線で示している。シースヒータ 6 2は、独立して温度制御するために、 1〜 1 2チャンネル (c h ) に分けられている。 具体的に、 各熱板本体 6 1には 4本のシ ースヒータ 6 2が埋設されている。 各熱板本体 6 1は、 両端部のシースヒータ 6 2がそれ ぞれ 1つのチャンネルとして温度制御される。 また、 各熱板本体 6 1は、 中央の 2つのシ ースヒータ 6 2が 1つのチャンネルとして温度制御される。 収容溝 6 3に埋設されたシー スヒータ 6 2は、 図 7の矢印の地点において熱板本体 6 1の裏面から外部へ出され、 熱板 1 2 2の下側を通過して温度コントローラ 6 4に接続される。 なお、 シースヒータの配置 や温度制御のチャンネル (c h ) 設定は、 図 7に限定されるものではない。  FIG. 7 is a plan view of the hot plate 1 2 2. In FIG. 7, the sheath heater 62 embedded in each hot plate body 61 is indicated by a broken line. The sheath heater 62 is divided into 1 to 12 channels (c h) for independent temperature control. Specifically, four sheath heaters 62 are embedded in each hot plate body 61. Each hot plate main body 61 is controlled in temperature by the sheath heaters 62 at both ends as one channel. In addition, each hot plate main body 61 is controlled in temperature by using two center heaters 62 as one channel. The sheathed heater 6 2 embedded in the receiving groove 6 3 is taken out from the back surface of the hot plate main body 61 at the point of the arrow in FIG. Connected to. Note that the sheath heater placement and temperature control channel (c h) settings are not limited to those shown in FIG.
シースヒータ 6 2は、 チャンネルごとに、 その曲げ形状が異なっている。 図 7に示す通 り 5チヤンネルのシースヒータ 6 2は、 2点鎖線 L 1に対して略左右対称となるように蛇 行する。 また、 図 7に示す通り 8チャンネルのシースヒータ 6 2は、 2点鎖線 L 2に対し て略左右対称となるように蛇行する。 それに対して、 図 7に示す 1〜4チヤシネル、 6チ ヤンネル、 7チャンネル、 9 ~ 1 2チャンネルのシースヒータ 6 2は、 左右非対称となる ように蛇行する。 また、 1〜3チャンネ/ ^レのシースヒータ 6 2と 1 0 ~ 1 2チャンネ ^の シースヒータ 6 2とは 2点鎖線 L 3に対して略左右対称となっている。 また、 4〜6チヤ ンネルのシースヒ一タ 6 2と 7〜 9チャンネルのシースヒータ 6 2とは 2点鎖線 L 3に対 して略左右対称となっている。 これは特に熱板 1 2 2全体の温度分布を均一にするために 構成されている。 なお、 これらの形状は、 熱板の温度分布を一様にするように適宜設定す ることができる。 The bending shape of the sheath heater 62 is different for each channel. As shown in Fig. 7, the 5-channel sheath heater 62 is meandering so as to be substantially symmetrical with respect to the two-dot chain line L1. Further, as shown in FIG. 7, the 8-channel sheath heater 62 meanders so as to be substantially symmetrical with respect to the two-dot chain line L 2. On the other hand, the 1 to 4 channel, 6 channel, 7 channel, and 9 to 12 channel sheath heaters 6 2 shown in FIG. 7 meander so as to be asymmetrical. The 1 to 3 channel / ^ sheath heater 6 2 and the 10 to 12 channel sheath heater 6 2 are substantially symmetrical with respect to the two-dot chain line L 3. The 4-6 channel sheath heater 6 2 and the 7-9 channel sheath heater 62 are substantially symmetrical with respect to the two-dot chain line L 3. This is especially to make the temperature distribution across the hot plate 1 2 2 uniform. It is configured. These shapes can be appropriately set so that the temperature distribution of the hot plate is uniform.
また、 チャンネルごとに蛇行の形態を異ならせているので、 熱板本体 6 1の裏面からシ ースヒータ 6 2が外部に出る位置を、 熱板 1 2 2の幅方向にずらすことができる。 具体的 に、 1 0 ~ 1 2チャンネルが埋設されている熱板本体 6 1を例にして説明する。図 1 6は、 1 0〜1 2チャンネルが埋設されている熱板本体 6 1を裏側からみた図である。 この熱板 本体 6 1には、 同一奥行き方向にシースヒータ 6 2 A、 6 2 B、 6 2 C、 6 2 Dが埋設さ れている。 ここでは、 熱板本体 6 1の裏面から外部に出るシースヒータを一点鎖線で示し ている。 図 1 6に示すように、 各シースヒータ 6 2は、 1 1チャンネルを構成するシース ヒータ 6 2 Bとシースヒータ 6 2 Cとの組み合わせを除き、 互いに熱板本体 6 1の裏面か ら外部に出るシースヒータの位置が幅方向にずれている。 すなわち、 任意に 2つのシース ヒータ 6 2を選択する複数の組合せのうち、 少なくとも 1つの組み合せでは、 2つのシー スヒータ 6 2は、 収容溝 6 3から外部に出る位置が熱板本体 6 1の幅方向でずれている。 これにより、 各熱板本体 6 1の裏面から外部に出た複数のシースヒータ 6 2は、 熱板本 体 6 1の下側で互いに交差したり、 互いに重なり合うことが少ないように配置することが できる。 すなわち、 シースヒータ 6 2を外部に出す位置が、 熱板 1 2 2の幅方向で同じで あれば、 同じ経路で温度コントローラ 6 4に配線されるために、 シースヒータ 6 2同士が 交差したり重なり合ったりしてしまい、 それだけ熱板本体 6 1の下側に上下方向のスぺー スが必要になる。 本実施形態のように、 シースヒータ 6 2を外部に出す位置を、 熱板 1 2 2の幅方向にずらすことで互いに交差したり、 重なり合うことが少ないので、 熱板 1 2 2 の下側のスペースを有効に利用することができる。 なお、 図 1 6では、 1 1チャンネルを 構成するシースヒータ 6 2 Bとシースヒータ 6 2 Cとの熱板本体 6 1の裏面から外部に出 る位置を幅方向に対して同一にしているが、 両者の間でも異なるように配置することで、 更に、 熱板 1 2 2の下側のスペースを有効に利用することができる。  Further, since the form of meandering is different for each channel, the position where the sheath heater 62 is exposed to the outside from the back surface of the hot plate body 61 can be shifted in the width direction of the hot plate 12. Specifically, a description will be given by taking as an example a hot plate body 61 in which channels 10 to 12 are embedded. FIG. 16 is a view of the hot plate body 61 in which the channels 10 to 12 are embedded as seen from the back side. In the hot plate body 61, sheath heaters 6 2 A, 6 2 B, 6 2 C, and 6 2 D are embedded in the same depth direction. Here, the sheathed heater that goes out from the back surface of the hot plate body 61 is indicated by a one-dot chain line. As shown in Fig. 16, each sheath heater 62 is composed of 1 sheath heater 6 2 B and sheath heater 6 2 C, except for the combination of sheath heater 6 2 C. Is shifted in the width direction. In other words, in the combination of at least one of a plurality of combinations in which two sheath heaters 6 2 are arbitrarily selected, the position of the two sheath heaters 6 2 coming out from the receiving grooves 63 is the width of the hot plate body 61. It is shifted in the direction. As a result, the plurality of sheath heaters 62 that are exposed to the outside from the back surface of each hot plate main body 61 can be arranged so as to cross each other on the lower side of the hot plate main body 61 or to overlap each other. . That is, if the position where the sheath heater 6 2 is taken out is the same in the width direction of the hot plate 12 2 2, the sheath heater 6 2 crosses or overlaps with each other because it is wired to the temperature controller 6 4 through the same route. As a result, a vertical space is required below the hot plate body 61. As in this embodiment, the position where the sheath heater 6 2 is exposed to the outside is less likely to cross or overlap each other by shifting in the width direction of the hot plate 1 2 2, so the space below the hot plate 1 2 2 Can be used effectively. In FIG. 16, the positions of the sheath heater 6 2 B and the sheath heater 6 2 C constituting the channel 1 that are exposed to the outside from the rear surface of the hot plate body 6 1 are the same in the width direction. Further, the space below the hot plate 1 2 2 can be used effectively by arranging them differently.
また、 図 7に示すように、 各チャンネルの中央部に、 熱板 1 2 2の温度を測定するため の熱電対 6 6が埋設されている。 熱電対 6 6は、 熱板本体 6 1の表面から適宜な深さ位置 に埋め込まれており、 熱板 1 2 2の裏面から温度コントローラ 6 4に接続される。 熱電対 6 6によって測定された熱板 1 2 2の温度は、 温度コントローラ 6 4にフィードパックさ れる。 温度コントローラ 6 4は、 熱板 1 2 2の温度が目標温度になるようにシースヒータ 6 2の発熱を制御する。  In addition, as shown in FIG. 7, a thermocouple 66 for measuring the temperature of the hot plate 12 2 2 is embedded in the center of each channel. The thermocouple 66 is embedded at an appropriate depth position from the front surface of the hot plate main body 61 and is connected to the temperature controller 64 from the back surface of the hot plate 1 2 2. The temperature of the hot plate 1 2 2 measured by the thermocouple 6 6 is feed-packed to the temperature controller 6 4. The temperature controller 6 4 controls the heat generation of the sheath heater 6 2 so that the temperature of the hot plate 1 2 2 becomes the target temperature.
次に、 熱板本体 6 1の収容溝 6 3とシースヒータ 6 2との関係について詳細に説明する。 図 8は、 第 1の実施形態に保る熱板の構成を説明するための図である。 図 8 ( a ) は、 図 7における A— A断面を矢印方向からみた断面図であり、 収容溝 6 3にシースヒータ 6 2 が埋設された状態を示している。 図 8 ( a ) に示すように、 シースヒータ 6 2の外周面は、 収容溝 6 3の內周面と隙間ができないように面接触するように圧接されている。 図 8 ( b ) は、 収容溝 6 3にシースヒータ 6 2を埋設させる前の状態を示す図である。 図 8 (b ) に示すように、 収容溝 6 3は、 熱板本体 6 1の裏面 6 5に凹状に加工された凹 溝 7 1の底面に形成されている。 収容溝 6 3の開口縁の両側には、 突出部 7 2が設けられ ている。 図 8 ( b ) に示す収容溝 6 3を形成する場合、 熱板本体 6 1の裏面から切削加工 により行う。 このとき、 凹溝 7 1及び突出部 7 2も同様に切削加工する。 Next, the relationship between the accommodation groove 63 of the hot plate body 61 and the sheath heater 62 will be described in detail. FIG. 8 is a diagram for explaining the configuration of the hot plate maintained in the first embodiment. FIG. 8A is a cross-sectional view of the AA cross section in FIG. 7 as viewed from the direction of the arrow, and shows a state in which the sheath heater 6 2 is embedded in the housing groove 63. As shown in FIG. 8 (a), the outer peripheral surface of the sheath heater 62 is pressed into contact with the peripheral surface of the housing groove 63 so that there is no gap. FIG. 8 (b) is a diagram showing a state before the sheath heater 62 is embedded in the accommodation groove 63. As shown in FIG. 8 (b), the receiving groove 63 is formed on the bottom surface of the groove 71 processed into a concave shape on the back surface 65 of the hot plate main body 61. Protruding portions 72 are provided on both sides of the opening edge of the receiving groove 63. When the accommodation groove 63 shown in FIG. 8B is formed, cutting is performed from the back surface of the hot plate main body 61. At this time, the concave groove 71 and the protruding portion 72 are also cut in the same manner.
次に、 収容溝 6 3にシースヒータ 6 2を埋設する場合、 凹溝 7 1の形状に合った、 プレ ス金型を用いてプレス機によりシースヒータ 6 2の外周面を収容溝 6 3の內周面に圧接さ せる。  Next, when embedding the sheath heater 62 in the accommodation groove 63, the outer peripheral surface of the sheath heater 62 is moved around the circumference of the accommodation groove 63 with a press using a press die that matches the shape of the recess groove 71. Press against the surface.
図 8 ( c ) は、 収容溝 6 3にシースヒータ 6 2を埋設した後の状態を示す図である。 プ レス機によって、 シースヒータ 6 2は収容溝 6 3の内周面に圧接させられると、 シースヒ ータ 6 2の外周面 (シース) が収容溝 6 3の内周面に倣うように塑性変形する。 すると、 シースヒータ 6 2の外周面と収容溝 6 3の内周面との間には、 隙間ができないように密着 して面接触した状態になる。 また、プレス機は、 シースヒータ 6 2をプレスすると同時に、 収容溝 6 3に設けられた突出部 7 2を、 収容溝 6 3の開口を塞ぐように収容溝 6 3の內側 方向に塑性変形させて、 かしめ部 7 3を形成する。 かしめ部 7 3には、 囬溝 7 1の底面か ら下側に盛り上がった盛上部 7 4 (楕円で示される部分) が形成される。 このように、 か しめを行うことにより、 シースヒータ 6 2の外周面を収容溝 6 3の內周面に圧接した状態 を維持することができる。なお、収容溝 6 3が形成されている熱板本体 6 1の裏面 6 5は、 熱板 1 2 2を下チャンパ 1 2 1へ取り付けるときの取付け面となる。 収容溝 6 3を凹溝 7 1の底面に形成することで、 突出部 7 2をかしめたときのかしめ部 7 3は、 凹溝 7 1内に 位置したままである。 従って、 かしめ部 7 3は、 熱板本体 6 1の裏面 6 5から突出するこ とがない。  FIG. 8 (c) is a view showing a state after the sheath heater 62 is embedded in the accommodation groove 63. When the sheath heater 62 is pressed against the inner peripheral surface of the receiving groove 63 by the press machine, the outer peripheral surface (sheath) of the sheath heater 62 is plastically deformed so as to follow the inner peripheral surface of the receiving groove 63. . As a result, the outer peripheral surface of the sheath heater 62 and the inner peripheral surface of the receiving groove 63 are in close contact with each other so that no gap is formed. In addition, the pressing machine simultaneously presses the sheath heater 62 and plastically deforms the protruding portion 72 provided in the receiving groove 63 in the lateral direction of the receiving groove 63 so as to close the opening of the receiving groove 63. The caulking portion 7 3 is formed. In the caulking portion 73, a raised portion 7 4 (a portion indicated by an ellipse) that bulges downward from the bottom surface of the groove 71 is formed. Thus, by caulking, it is possible to maintain a state in which the outer peripheral surface of the sheath heater 62 is in pressure contact with the peripheral surface of the housing groove 63. The back surface 65 of the hot plate main body 61 in which the housing groove 63 is formed serves as an attachment surface when the hot plate 1 2 2 is attached to the lower champ 1 2 1. By forming the receiving groove 63 on the bottom surface of the concave groove 71, the caulking portion 73 when the projecting portion 72 is caulked remains positioned in the concave groove 71. Accordingly, the caulking portion 73 does not protrude from the back surface 65 of the hot plate main body 61.
ここで、 プレス金型を用いてシースヒータ 6 2の外周面を収容溝 6 3の內周面に圧接さ せるとき、 シースヒータ 6 2の曲げ形状と略同一形状のプレス金型を用いて、 シースヒー タ 6 2の外周面を一度に収容溝 6 3の内周面に圧接させる。 このように、 プレスすること で、 シースヒータ 6 2の外周面と収容溝 6 3の內周面との間に隙間をなくすことができる。 これにより、 シースヒータから熱板本体への熱伝達が良好になり、 熱板の温度制御性が向 上する。 また、 シースヒータ 6 2を発熱させたときに熱板 1 2 2の表面の温度分布を均一 にすることができる。 従って、 熱板 1 2 2の温度が目標温度を大きく超えてオーバーシュ ートしてしまう現象を防止することができる。  Here, when the outer peripheral surface of the sheath heater 62 is pressed into contact with the circumferential surface of the receiving groove 63 using a press die, the sheath heater is used using a press die having substantially the same shape as the bent shape of the sheath heater 62. 6 2 The outer peripheral surface of 2 is pressed into contact with the inner peripheral surface of the receiving groove 63 at a time. Thus, by pressing, it is possible to eliminate a gap between the outer peripheral surface of the sheath heater 62 and the peripheral surface of the housing groove 63. This improves heat transfer from the sheath heater to the hot plate body, and improves the temperature controllability of the hot plate. In addition, when the sheath heater 62 is heated, the temperature distribution on the surface of the hot plate 12 2 can be made uniform. Therefore, it is possible to prevent a phenomenon in which the temperature of the hot plate 12 2 exceeds the target temperature and overshoots.
かしめ状態の均一性を保ち、 熱板本体 6 1の歪み撓み変形をなくすためには、 上述した ように一度で全面をかしめるのが望ましい。 しかしながら、 熱板 1 2 2が大型化している ことから熱板本体 6 1も大きくなるため、 プレス設備の能力の関係から 1枚の熱板本体 6 1を数回に分割してかしめる方法を用いてもよい。 なお、 分割してかしめる方法を用いる 場合、 歪み撓み変形を除去する工程が必要になる。 次に、 本実施形態の熱板 1 2 2によって被加工物 1 0をラミネ一トする場合について説 明する。 なお、 本実施形態に係る熱板 1 2 2上に被加工物 1 0を配置していない状態でラ ミネート工程を行ったときに測定した熱板 1 2 2の温度遷移は、図 9に示す従来の熱板(特 % ( 2 ) ) と同様のものとなる。 In order to maintain the uniformity of the caulking state and eliminate the distortion and deformation of the hot plate body 61, it is desirable to caulk the entire surface at once as described above. However, since the hot plate 1 2 2 has become larger, the hot plate main body 6 1 also becomes larger. Therefore, due to the capacity of the press equipment, a method of caulking one hot plate main body 6 1 in several steps is used. It may be used. In addition, when the method of caulking by dividing is used, a process of removing strain, deformation and deformation is necessary. Next, the case where the workpiece 10 is laminated by the hot plate 12 2 of this embodiment will be described. The temperature transition of the hot plate 1 2 2 measured when the lamination process is performed in a state where the work piece 10 is not arranged on the hot plate 1 2 2 according to the present embodiment is shown in FIG. It is the same as the conventional hot plate (special% (2)).
図 9において、 特性線 (3 ) は、 本実施形態に係る熱板 1 2 2上に被加工物 1 0を配置 した状態でラミネート工程を行ったときに測定した熱板 1 2 2の温度遷移である。 従来の 熱板 (特性線 (1 ) ) と同様に、 被加工物 1 0を熱板 1 2 2上に配置することにより、 熱 板 1 2 2の熱が被加工物 1 0に奪われ、 熱板 1 2 2の温度は急激に低下する。 この温度低 下を捕うために、 熱板 1 2 2の温度を上昇させる温度制御が行われる。 特性線 (3 ) に示 すように熱板 1 2 2の温度は、 目標温度に向かって急激に上昇する。 従って、 これによつ て加熱作業効率が向上する。 そして、 目標温度に達したとき、 熱板 1 2 2の温度と、 シ一 スヒータ 6 2との温度に大きな誤差が生じていない。 これは、 シースヒータ 6 2の外周面 力 収容溝 6 3の內周面に面接触するように圧接されているので、 シースヒータ 6 2と収 容溝 6 3との間には隙間が発生していないためである。 すなわち、 下チャンパ 1 2 1が真 空状態にあっても、 シースヒータ 6 2の熱が、 直に熱板本体 6 1に伝達されるため、 シー スヒータ 6 2の温度が熱板 1 2 2にすぐに反映される。 このように、 温度コントローラ 6 4はシースヒータ 6 2の温度を上昇させたり、 自然冷却させたりすることで、 熱板 1 2 2 の温度を目標温度に容易かつ確実に制御することができる。  In FIG. 9, the characteristic line (3) indicates the temperature transition of the hot plate 1 2 2 measured when the laminating process is performed with the workpiece 10 placed on the hot plate 1 2 2 according to this embodiment. It is. Similar to the conventional hot plate (characteristic line (1)), by placing the work piece 10 on the hot plate 1 2 2, the heat of the hot plate 1 2 2 is deprived by the work piece 10; The temperature of the hot plate 1 2 2 drops rapidly. In order to catch this temperature drop, temperature control is performed to raise the temperature of the hot plate 1 2 2. As indicated by the characteristic line (3), the temperature of the hot plate 1 2 2 rises rapidly toward the target temperature. Therefore, this improves the heating work efficiency. When the target temperature is reached, there is no large error between the temperature of the hot plate 12 2 and the temperature of the heater 6 2. This is because the outer peripheral surface of the sheath heater 62 is pressed against the circumferential surface of the force receiving groove 6 3 so that there is no gap between the sheath heater 62 and the receiving groove 63. Because. That is, even when the lower champ 1 2 1 is in the vacuum state, the heat of the sheath heater 6 2 is directly transferred to the hot plate body 61, so that the temperature of the sheath heater 6 2 immediately reaches the hot plate 1 2 2. It is reflected in. As described above, the temperature controller 64 can easily and reliably control the temperature of the hot plate 12 2 2 to the target temperature by increasing the temperature of the sheath heater 62 2 or by naturally cooling it.
更に、 被加工物の加熱時間 (例えば、 5分間) が終了し、 下チャンバ 1 2 1の真空状態 が解除されたとき、 従来の熱板のように熱板の温度以上に過度にシースヒータ 6 2の温度 が上昇していない。 すなわち、 熱板 1 2 2の温度が目標温度を大きく超えてオーバーシュ ートしてしまうということがない。 このように、 本実施形態の熱板 1 2 2によれば、 目標 温度を確実に保持することができる。 また、 従来の熱板 (特性線 (1 ) ) の場合、 ラミネ 一ト工程が終了した後、 オーバ一シュートによる熱板の過度の温度上昇が生じていたため、 次の被加工物 1 0のラミネートをする場合において、 熱板の温度下降を待つ必要があった。 し力 し、 本実施形態の熱板 1 2 2によれば、 過度の温度上昇が生じていないため、 すぐに 次の被加工物 1 0のラミネートを行うことができ、 作業効率が向上する。  Furthermore, when the heating time of the workpiece (for example, 5 minutes) ends and the vacuum state of the lower chamber 1 2 1 is released, the sheath heater 6 2 is excessively exceeded the temperature of the hot plate as in the conventional hot plate. The temperature has not increased. In other words, the temperature of the hot plate 1 2 2 does not exceed the target temperature and overshoots. Thus, according to the hot plate 12 of this embodiment, the target temperature can be reliably maintained. Also, in the case of the conventional hot plate (characteristic line (1)), after the lamination process was completed, an excessive temperature rise of the hot plate was caused by overshooting, so the next workpiece 10 was laminated. It was necessary to wait for the temperature of the hot plate to drop. However, according to the hot plate 1 2 2 of this embodiment, since an excessive temperature rise does not occur, the next workpiece 10 can be laminated immediately, and the working efficiency is improved.
本実施形態によれば、 ラミネート工程の際に熱板 1 2 2の温度を目標温度に容易かつ確 実に制御することができる。 従って、 ラミネート工程における太陽電池の構成部材の接着 不良等を防止して、 ラミネート品質を向上させることができる。 また、 ラミネートの作業 効率を向上させることができる。  According to this embodiment, the temperature of the hot plate 1 2 2 can be easily and reliably controlled to the target temperature during the laminating process. Accordingly, it is possible to prevent the adhesion failure of the constituent members of the solar cell in the laminating process and improve the laminating quality. In addition, the working efficiency of the laminate can be improved.
なお、 本実施形態によれば、 プレス機によりシースヒータ 6 2の外周面を収容溝 6 3の 内周面に圧接させるとき、 図 8の凹溝 7 1の形状に合った、 専用のプレス金型を用いる必 要がある。 従って、 熱板の機種ごとに専用のプレス金型费等が必要になり、 イニシャルコ ストがかかってしまう。 し力 しながら、 熱板本体 6 1に収容溝 6 3を形成する場合、 基準 面を切削するような後述する図 1 1の第 3の実施形態に比べて切削面積は少なくてよい。 5 According to the present embodiment, when the outer peripheral surface of the sheath heater 62 is pressed against the inner peripheral surface of the receiving groove 6 3 by a press machine, a dedicated press die that matches the shape of the concave groove 71 in FIG. Must be used. Therefore, a dedicated press die or the like is required for each hot plate type, and the initial cost is applied. However, when the receiving groove 63 is formed in the hot plate main body 61, the cutting area may be smaller than that in a third embodiment of FIG. Five
すなわち、 本実施形態によれば、 熱板本体の加工費等を少なくすることができるので、 ラ ンニングコストを削減することができる。 このように、 本実施形態は少機種大量生産に適 した実施形態である。 第 2の実施形態 That is, according to the present embodiment, the processing cost of the hot plate body can be reduced, and the running cost can be reduced. Thus, this embodiment is suitable for mass production of small models. Second embodiment
図 1 0は、 第 2の実施形態に係る熱板の構成を示す図である。 本実施形態では、 熱板本 体 8 1の裏面に形成された収容溝 8 3は、 熱板本体 8 1の表面に向かって先細りの略三角 形とする楔形状に形成されている。 この場合に、 楔形状の先端は略 6 0度の角度になって いる。 一方で、 収容溝 8 3に埋設されるシースヒータ 8 2は、 断面を略三角形状とする楔 形状に形成されている。 プレス機により、 シースヒータ 8 2の外周面を収容溝 8 3の内周 面に圧接させる。 すると、 シースヒータ 8 2の外周面は、 収容溝 8 3の内周面との間で隙 間なく面接触するように塑性変形する。 このとき、 図 1 0に示すように、 かしめ部 7 3に は、 凹溝 Ί 1の底面から下側に盛り上がつた盛上部 7 4が形成される。  FIG. 10 is a diagram showing the configuration of the hot platen according to the second embodiment. In the present embodiment, the housing groove 83 formed on the back surface of the hot plate body 81 is formed in a wedge shape that is tapered toward the front surface of the hot plate body 81. In this case, the wedge-shaped tip has an angle of approximately 60 degrees. On the other hand, the sheath heater 8 2 embedded in the receiving groove 83 is formed in a wedge shape having a substantially triangular cross section. The outer peripheral surface of the sheath heater 82 is brought into pressure contact with the inner peripheral surface of the receiving groove 83 by a press machine. Then, the outer peripheral surface of the sheath heater 82 is plastically deformed so as to be in surface contact with the inner peripheral surface of the housing groove 83 without any gap. At this time, as shown in FIG. 10, the caulking portion 7 3 is formed with a raised portion 74 that is raised from the bottom surface of the groove 1.
本実施形態でも、 第 1の実施形態と同様、 収容溝 8 3の開口縁に設けられた突出部をか しめて、 かしめ部 7 3を形成することで、 シースヒータ 8 2の外周面と収容溝 8 3の内周 面との間の面接触を維持することができる。 また、 シースヒータ 8 2が収容溝 8 3から脱 落するのを防止: ^ることができる。 このように、 本実施形態では、 シースヒータ 8 2の断 面の形状を略三角形状にし、 収容溝 8 3の断面を略三角形状に構成した。 従って、 シース ヒータ 8 2の三角形状の平坦面と収容溝 8 3の三角形状の平坦面とを面接触させ易くする ことができる。  Also in the present embodiment, as in the first embodiment, the outer peripheral surface of the sheath heater 82 and the housing groove 8 are formed by caulking the protrusion provided on the opening edge of the housing groove 83 to form the caulking portion 73. Surface contact with the inner peripheral surface of 3 can be maintained. Further, it is possible to prevent the sheath heater 82 from falling out of the receiving groove 83. Thus, in the present embodiment, the shape of the cross section of the sheath heater 82 is substantially triangular, and the cross section of the housing groove 83 is substantially triangular. Therefore, the triangular flat surface of the sheath heater 82 and the triangular flat surface of the receiving groove 83 can be easily brought into surface contact.
第 3の実施形態 Third embodiment
図 1 1は、 第 3の実施形態に係る熱板の構成を示す図である。 これまでの実施形態は、 図 8及ぴ図 1 0に示すように熱板本体の裏面 6 5に凹溝 7 1を加工し、 この凹溝 7 1に収 容溝 6 3、 8 3を形成する場合について説明した。 本実施形態では、 HQ溝を加工すること なく、 熱板本体 8 5の裏面 6 5より張出した平坦部 7 6を設け、 その平坦部 7 6に収容溝 6 3を形成したものである。  FIG. 11 is a diagram showing a configuration of a hot plate according to the third embodiment. In the embodiment so far, as shown in FIG. 8 and FIG. 10, the groove 71 is formed on the back surface 65 of the hot plate body, and the storage grooves 63, 83 are formed in the groove 71. Explained when to do. In the present embodiment, a flat portion 76 extending from the back surface 65 of the hot plate main body 85 is provided without processing the HQ groove, and the accommodation groove 63 is formed in the flat portion 76.
図 1 1に示すように、 収容溝 6 3は、 熱板本体 8 5の裏面 6 5より張出し凸状に加工し て設けられた平坦部 7 6に形成されている。 収容溝 6 3の開口縁の両側には、 図 8 ( b ) に示す実施形態と同様に、 突出部が設けられている。 図 1 1に示す熱板本体 8 5の裏面 6 5は、 熱板 1 2 2を下チャンパ 1 2 1に取り付けるときの基準面 7 5となる。 収容溝 6 3 を形成する場合、 熱板本体 8 5の裏面から切削加工により行う。 このとき、 基準面 6 5、 平坦部 7 6及び突出部も同様に切削加工する。  As shown in FIG. 11, the receiving groove 63 is formed in a flat portion 76 that is formed by projecting from the back surface 65 of the hot plate main body 85 into a protruding convex shape. Protruding portions are provided on both sides of the opening edge of the receiving groove 63, as in the embodiment shown in FIG. 8 (b). The rear surface 6 5 of the hot plate main body 85 shown in FIG. 11 serves as a reference surface 7 5 when the hot plate 1 2 2 is attached to the lower chamber 1 2 1. When the accommodation groove 6 3 is formed, it is cut from the back surface of the hot plate main body 85. At this time, the reference surface 65, the flat portion 76, and the protruding portion are similarly cut.
次に、 収容溝 6 3にシ^ "スヒータ 6 2を埋設する場合、 プレス機を用いてシースヒータ 6 2の外周面を収容溝 6 3の内周面に圧接させる。 また、 プレス機は、 同時に収容溝 6 3 の開口縁に設けられた突出部を収容溝 6 3の開口を塞ぐように収容溝 6 3の内側方向にか しめて、 力 しめ部 7 3を形成する。 この結果、 図 1 1に示すように、 熱板 8 4は、 熱板本 体 8 5の裏面 6 5より張出した平坦部 7 6に盛上部 7 4を有する形状となる。 Next, when the heater 62 is embedded in the receiving groove 63, the outer peripheral surface of the sheath heater 62 is pressed against the inner peripheral surface of the receiving groove 63 using a press machine. Housing groove 6 3 The projecting portion provided on the opening edge of the housing is caulked inwardly of the housing groove 63 so as to close the opening of the housing groove 63 to form the crimping portion 73. As a result, as shown in FIG. 11, the hot plate 84 has a shape having a raised portion 74 on a flat portion 76 extending from the rear surface 65 of the hot plate main body 85.
本実施形態によれば、 基準面 7 5、 収容溝 6 3及び突出部を形成するように切削加工を 行うために、 熱板本体 8 5の裏面全体に!:つて切削加工を行う必要がある。 従って、 熱板 本体 8 5の材料費、 及び加工費がかかってしまう。 し力 し、 本実施形態では、 熱板本体 8 5の裏面 6 5の平坦部 7 6に突出部を設けるので、 凹溝等によってかしめる空間が制限さ れることがない。 従って、 かしめ加工用のプレス金型を例えば平面板にする等、 単純な形 状にすることができ、 プレス金型の金型費用を大幅に削減することができる。 すなわち、 本実施形態は、 熱板の機種ごとの専用のプレス金型費が不要なので、 イニシャルコストを 削減することができる。 このように、 本実施形態は、 多機種少量生産に適した実施形態で ある。  According to the present embodiment, the entire back surface of the hot plate body 85 is cut to form the reference surface 75, the receiving groove 63, and the protruding portion! : Need to cut. Therefore, the material cost and processing cost of the hot plate body 85 are required. However, in the present embodiment, since the protruding portion is provided on the flat portion 76 of the back surface 65 of the hot plate main body 85, the space to be caulked by the concave groove or the like is not limited. Accordingly, the press die for caulking can be made into a simple shape such as a flat plate, and the die cost of the press die can be greatly reduced. In other words, the present embodiment can reduce the initial cost because there is no need for a dedicated press die cost for each type of hot plate. Thus, this embodiment is an embodiment suitable for multi-model small-volume production.
第 4の実施形態 Fourth embodiment
図 1 2は、 第 4の実施形態に係る熱板の構成を説明するための図である。 図 1 2 ( a ) は、 図 7における A— A断面を矢印方向からみた断面図であり、 収容溝 6 3にシースヒー タ 6 2が埋設された状態を示している。 図 1 2 ( a ) に示すように、 シースヒータ 6 2の 外周面は、 収容溝 6 3の內周面と隙間ができないように面接触するように圧接されている。 図 1 2 ( b ) は、収容溝 6 3にシースヒータ 6 2を埋設させる前の状態を示す図である。 図 1 2 ( b ) に示すように、 収容溝 6 3は、 熱板本体 9 1の裏面 9 2に直接、 凹状に形成 されている。 また、 収容溝 6 3の開口縁の両側は、 開口縁の面と熱板本体 9 1の裏面とが 同一面で形成されている。 すなわち、 本実施形態は、 第 1の実施形態から第 3の実施形態 で説明した突出部が形成されていない。 ここで、 図 1 2 ( b ) に示すシースヒータ 6 2の 直径 dは、 収容溝 6 3の溝底の內径 D (図 1 2 ( b ) に示す破線参照) より小さく形成さ れている。 従って、 シースヒータ 6 2を収容溝 6 3に簡単に収容することができる。 シー スヒータ 6 2を収容溝 6 3に収容した状態から、 プレス金型を用いてプレス機によりシー スヒータ 6 2の外周面を収容溝 6 3の内周面に圧接させる。  FIG. 12 is a diagram for explaining a configuration of a hot platen according to the fourth embodiment. FIG. 12 (a) is a cross-sectional view of the AA cross section in FIG. 7 as seen from the direction of the arrow, and shows a state in which the sheath heater 62 is embedded in the receiving groove 63. As shown in FIG. 12 (a), the outer peripheral surface of the sheath heater 62 is pressed against the peripheral surface of the housing groove 63 so that there is no gap. FIG. 12 (b) is a view showing a state before the sheath heater 62 is embedded in the accommodation groove 63. As shown in FIG. 12 (b), the receiving groove 63 is formed in a concave shape directly on the back surface 92 of the hot plate main body 91. Further, on both sides of the opening edge of the housing groove 63, the surface of the opening edge and the back surface of the hot plate main body 91 are formed on the same surface. That is, in the present embodiment, the protruding portion described in the first to third embodiments is not formed. Here, the diameter d of the sheath heater 62 shown in FIG. 12 (b) is smaller than the diameter D of the groove bottom of the receiving groove 63 (see the broken line shown in FIG. 12 (b)). Therefore, the sheath heater 62 can be easily accommodated in the accommodation groove 63. From the state in which the sheath heater 62 is housed in the housing groove 63, the outer peripheral surface of the sheath heater 62 is brought into pressure contact with the inner peripheral surface of the housing groove 63 using a press die using a press die.
図 1 2 ( c ) は、 収容溝 6 3にシースヒータ 6 2を埋設した後の状態を示す図である。 プレス機によって、 シースヒータ 6 2は収容溝 6 3の内周面に圧接させられると、 シース ヒータ 6 2の外周面(シース) が収容溝 6 3の内周面に倣うように塑性変形する。すると、 シースヒータ 6 2の外周面と収容溝 6 3の内周面との間には、 隙間ができないように密着 して面接触した状態になる。 また、プレス機は、 シースヒータ 6 2をプレスすると同時に、 収容溝 6 3の開口縁そのものを、 収容溝 6 3の開口を塞ぐように収容溝 6 3の内側方向に 塑性変形させて、 かしめ部 7 3を形成する。 図 1 2 ( c ) には、 シースヒータ 6 2及ぴ開 口縁部を塑性変形させるプレス金型 9 3の形状が示されている。 プレス金型 9 3は、 離間 して配置された両側の突起 9 4 a、 9 4 から中央に向かって傾斜する傾斜部 9 5 a、 9 5 bを有している。 .従って、 プレス金型 9 3が熱板本体 9 1の裏面 9 2をプレスしたとき に、 傾斜部 9 5 a、 9 5 bが収容溝 6 3の開口縁を収容溝 6 3の内側方向に向かうように 変形させる。 また、 プレス金型 9 3には、 シースヒータ 6 2と熱板本体 9 1の開口縁部と の境界に形成される微小な窪みに対応する箇所に、 小さな突起 9 7 a、 9 7 bを有してい る。 FIG. 12 (c) is a view showing a state after the sheath heater 62 is embedded in the accommodation groove 63. When the sheath heater 62 is pressed against the inner peripheral surface of the receiving groove 63 by the press, the outer peripheral surface (sheath) of the sheath heater 62 is plastically deformed so as to follow the inner peripheral surface of the receiving groove 63. As a result, the outer peripheral surface of the sheath heater 62 and the inner peripheral surface of the receiving groove 63 are in close contact with each other so that no gap is formed. In addition, the pressing machine simultaneously presses the sheath heater 62 and plastically deforms the opening edge of the receiving groove 6 3 inwardly of the receiving groove 63 so as to close the opening of the receiving groove 63. Form 3 FIG. 12 (c) shows the shape of the press die 93 that plastically deforms the sheath heater 62 and the opening edge. The press mold 9 3 is provided with inclined portions 9 5 a, 9 which are inclined toward the center from the protrusions 9 4 a, 9 4 on both sides which are spaced apart from each other. 5 b. Therefore, when the press die 9 3 presses the back surface 9 2 of the hot plate main body 9 1, the inclined portions 9 5 a and 9 5 b extend the opening edge of the receiving groove 6 3 toward the inner side of the receiving groove 6 3. Deform to face. In addition, the press die 93 has small protrusions 9 7 a and 9 7 b at locations corresponding to minute recesses formed at the boundary between the sheath heater 62 and the opening edge of the hot plate body 91. is doing.
ここで、 プレス金型 9 3によりシースヒータ 6 2及び開口縁部を塑性変形させるときに、 図 1 2 ( c ) に示すように凹溝 9 6も同時に形成する。 従って、 かしめ部 7 3は、 熱板本 体 9 1の裏面 9 2から突出することがない。  Here, when the sheath heater 62 and the opening edge are plastically deformed by the press die 93, the concave groove 96 is simultaneously formed as shown in FIG. 12 (c). Therefore, the caulking portion 73 does not protrude from the back surface 92 of the hot plate main body 91.
なお、 本実施形態によれば、 開口縁部を塑性変形させると共に凹溝 9 6を形成するよう な、 専用のプレス金型を用いる必要があり、 イニシャルコストがかかってしまう。 しかし ながら、 熱板本体 9 1に収容溝 6 3を形成する場合、 熱板本体 9 1に収容溝 6 3を加工す るだけでよい。 従って、 本実施形態によれば、 突出部や凹溝等の切削加工が必要なく、 ラ ンニングコストを削減することができる。 第 5の実施形態  Note that according to the present embodiment, it is necessary to use a dedicated press die that plastically deforms the opening edge and forms the concave groove 96, and the initial cost is increased. However, when the receiving groove 63 is formed in the hot plate main body 91, it is only necessary to process the receiving groove 63 in the hot plate main body 91. Therefore, according to the present embodiment, there is no need for cutting such as protrusions and grooves, and the running cost can be reduced. Fifth embodiment
図 1 3は、 第 5の実施形態に係る熱板本体 8 7にシースヒータ 6 2を埋設させる工程を 説明するための図である。 上述した第 1の実施形態から第 4の実施形態では、 シースヒー タ 6 2を収容溝 6 3の内周面に圧接させ、 シースヒータ 6 2の外周面を収容溝 6 3の内周 面に倣うように塑性変形させる場合について説明した。 本実施形態では収容溝 6 3の内周 面をシースヒータ 6 2の外周面に倣うように塑性変形させる。 例えば、 図 1 3に示すよう に熱板本体 8 7の収容溝 6 3の開口縁の両側に、 外側面に傾斜部を有する突出部 7 7を設 ける。 そして、 突出部 7 7の傾斜部の角度より、 緩やかな角度の傾斜部を内面に有するか しめ加工用のプレス金型 7 8を用いる。 プレス機は、 プレス金型 7 8により収容溝 6 3に シースヒータ 6 2が収容された状態で、 熱板本体 8 7をプレスする。 すると、 突出部 7 7 及びプレス金型 7 8の傾斜部の作用により、 収容溝 6 3の突出部 7 7 (内周面) .がシース ヒータ 6 2の外周面に沿うように塑性変形する。 このように本実施形態によれば、 収容溝 FIG. 13 is a view for explaining a process of embedding the sheath heater 62 in the hot plate main body 87 according to the fifth embodiment. In the first to fourth embodiments described above, the sheath heater 62 is pressed against the inner peripheral surface of the receiving groove 63, and the outer peripheral surface of the sheath heater 62 is copied to the inner peripheral surface of the receiving groove 63. The case of plastic deformation was described. In this embodiment, the inner circumferential surface of the housing groove 63 is plastically deformed so as to follow the outer circumferential surface of the sheath heater 62. For example, as shown in FIG. 13, protrusions 77 having inclined portions on the outer surface are provided on both sides of the opening edge of the receiving groove 63 of the hot plate main body 87. Then, a press die 78 for caulking is used which has an inclined portion on the inner surface with a gentler angle than the angle of the inclined portion of the protruding portion 77. The pressing machine presses the hot plate main body 87 in a state where the sheath heater 62 is accommodated in the accommodation groove 63 by the press die 78. Then, the protrusions 7 7 and the inclined portions of the press die 78 are plastically deformed so that the protrusions 7 7 (inner peripheral surface) of the receiving groove 63 are along the outer peripheral surface of the sheath heater 62. Thus, according to this embodiment, the accommodation groove
6 3を塑性変形させることで、 シースヒータ 6 2の外周面を収容溝 6 3の内周面に面接触 させることができる。 第 6の実施形態 By plastically deforming 63, the outer peripheral surface of the sheath heater 62 can be brought into surface contact with the inner peripheral surface of the housing groove 63. Sixth embodiment
図 1 4は、 第 6の実施形態に係る熱板の構成を示す図である。 上述した第 1の実施形態 から第 5の実施形態ではプレス機を用いてシースヒータ 6 2の外周面を収容溝 6 3の内周 面に面接触させる場合について説明した。 本実施形態では、 プレス機によって加工するの ではなく、 シースヒータ 6 2をアルミニウムの錶物等により铸込みすることにより熱板本 体 8 9に埋設する。具体的には、シースヒータ 6 2を鎗型の所定位置に配置させた状態で、 铸型に溶融させたアルミニウムを流し込むことにより、 シースヒータ 6 2の外周全体に熱 板本体を構成する錄物が銪込まれる。 なお、 シースヒータ 6 2のシース 6 2 cは、 錄型に 流し込まれる鎵物の融点より高い材質で構成されている。 ここでは、 シース 6 2 cの材質 は、 例えば鉄パイプ、 ステンレスパイプ、 インコロイやインコネルを用いたパイプ等が好 ましい。 FIG. 14 is a diagram showing the configuration of the hot platen according to the sixth embodiment. In the first to fifth embodiments described above, the case where the outer peripheral surface of the sheath heater 62 is brought into surface contact with the inner peripheral surface of the housing groove 63 using a press machine has been described. In this embodiment, instead of processing by a press machine, the sheath heater 62 is inserted into the hot plate main body 89 by inserting it with an aluminum casing or the like. Specifically, in a state where the sheath heater 62 is disposed at a predetermined position of the saddle shape, by pouring aluminum melted into the saddle shape, the entire outer periphery of the sheath heater 62 is heated. The material constituting the plate body is inserted. The sheath 6 2 c of the sheath heater 62 is made of a material having a melting point higher than that of the container poured into the bowl. Here, the material of the sheath 6 2 c is preferably, for example, an iron pipe, a stainless steel pipe, a pipe using Incoloy or Inconel.
図 1 4は、 上述した錶込みの工程により形成された熱板 8 8の構成を示す図である。 図 1 4に示すように、 シースヒータ 6 2の外周全面は熱板本体 8 9に面接触するように囲ま れている。 従って、 シースヒータ 6 2の熱は熱板本体 8 9に効率よく伝達される。 なお、 錄物材を錶型に錄込む方法は、 錶物材の中にガスが含まれているため鏺物が凝固する際に 気孔が形成されてしまう。 従って、 シ スヒータ 6 2と熱板本体 8 9との接触は、 上述し たプレス機によってかしめ加工する熱板と比較すると劣ってしまう。 しかしながら、 従来 技術である図 1 7に記載した方法と比較すると、 ラミネート加工時に熱板 8 8が真空にな つても熱伝達は十分になされ、 熱板 8 8の温度制御性は十分確保される。  FIG. 14 is a diagram showing a configuration of the hot plate 88 formed by the above-described swaging process. As shown in FIG. 14, the entire outer periphery of the sheath heater 62 is surrounded so as to be in surface contact with the hot plate main body 89. Accordingly, the heat of the sheath heater 62 is efficiently transmitted to the hot plate main body 89. In the method of pouring the porcelain material into the mold, since the porcelain material contains gas, pores are formed when the porcelain solidifies. Therefore, the contact between the heater 62 and the hot plate main body 89 is inferior to that of the hot plate caulked by the press machine described above. However, compared with the conventional method shown in Fig. 17, heat transfer is sufficient even when the hot plate 8 8 is evacuated during lamination, and the temperature controllability of the hot plate 8 8 is sufficiently secured. .
第 7の実施形態 Seventh embodiment
図 1 5は、 第 7の実施形態に係る熱板及びその周辺の構成を示す斜視図である。 図 1 5 は、 熱板 9 8及びその周辺の構成を示す斜視図である。 第 1の実施形態において説明した 熱板 1 2 2は、 隣接する熱板本体 6 1同士を、 これら熱板本体 6 1の裏面側において、 隣 接する熱板本体 6 1間に跨って設けられている結合部材 6 7を介して表面側からポルト等 の固定部材によつて結合していた。  FIG. 15 is a perspective view showing a configuration of a hot plate and its periphery according to a seventh embodiment. FIG. 15 is a perspective view showing the configuration of the hot plate 98 and its surroundings. The hot plates 1 2 2 described in the first embodiment are provided so that adjacent hot plate bodies 61 are arranged between adjacent hot plate bodies 61 on the back side of these hot plate bodies 61. It was connected by a fixing member such as Porto from the surface side through the connecting member 67.
本実施形態の熱板 9 8は、 隣接する熱板本体 9 9同士を、 これら熱板本体 9 9の表面側 において、 隣接する熱板本体 9 9間に跨って設けられている結合部材 6 7を介して表面側 からポルト等の固定部材によって熱板 9 8の表面側から結合する。 このように構成するこ とで、 作業者は、 結合部材 6 7を熱板本体 9 9間に置いた状態で、 表面側から作業を行う ことができるので、 熱板 9 8を組み立てる作業の効率が向上する。 産業上の利用可能性  The hot plate 9 8 of the present embodiment is a coupling member 6 7 provided between adjacent hot plate main bodies 9 9 across the adjacent hot plate main bodies 9 9 on the surface side of these hot plate main bodies 9 9. From the surface side, a fixing member such as Porto is used to couple from the surface side of the hot plate 98. With this configuration, the operator can work from the front side with the coupling member 6 7 placed between the hot plate main bodies 9 9, so the efficiency of the work of assembling the hot plate 9 8 Will improve. Industrial applicability
上述したように本発明の熱板をラミネート工程において真空状態となるようなラミネー ト装置に使用することにより、 熱板の温度制御性を格段に向上させることができる。 すな わち、 本発明の熱板は、 ラミネート工程において真空状態となるようなラミネート装置に 使用した場合、 シースヒータの熱を熱板本体に効率よく伝達することができる。 本発明の 熱板は、 ラミネート工程において真空状態となるようなラミネ一ト装置の使用に特に適し、 そのようなラミネート装置に使用されることで顕著な効果を奏することができる。  As described above, the temperature controllability of the hot plate can be significantly improved by using the hot plate of the present invention in a laminating apparatus that is in a vacuum state in the laminating process. That is, when the hot plate of the present invention is used in a laminating apparatus that is in a vacuum state in the laminating process, the heat of the sheath heater can be efficiently transferred to the hot plate body. The hot plate of the present invention is particularly suitable for the use of a laminating apparatus that is in a vacuum state in the laminating process, and can exert a remarkable effect when used in such a laminating apparatus.
また、 本努明の熱板は、 熱板の温度分布を従来技術である図 1 7に記載した方法と比較 して、 格段に向上させることができる。 従来技術である図 1 7に記載した方法は、 上板 1 6 1及ぴ下板 1 6 2の 2枚の板に溝加工を行い、 その溝にシースヒータ 1 6 3を埋設して いた。 複雑に曲がった形状のシースヒータ 1 6 3を埋設することは容易ではない。 すなわ ち、 上下 2枚の溝加工の精度を向上させる必要があり、 更に、 シースヒータ 1 6 3の曲げ 加工精度を向上させる必要があるからである。 従って、 従来技術では、 上下 2枚の板に直 線形状の溝加工をして直線形状のシースヒータ 1 6 3を埋設していた。 In addition, the hot plate of this effort can significantly improve the temperature distribution of the hot plate compared to the method shown in Fig. 17 which is the prior art. The method described in Fig. 17 which is the prior art is that a groove is formed in two plates, an upper plate 1 6 1 and a lower plate 1 6 2, and a sheath heater 1 6 3 is embedded in the groove. It was. It is not easy to embed a sheath heater 1 6 3 having a complicated bent shape. In other words, it is necessary to improve the accuracy of machining the upper and lower grooves, and it is also necessary to improve the accuracy of bending the sheath heater 16 3. Therefore, in the prior art, linear sheath heaters 16 3 were embedded by processing straight grooves on the upper and lower two plates.
一方、 本発明の熱板では、 一枚の熱板本体にシースヒータの収容溝を加工すればよいの で、 その収容溝は、 図 7に示すように複雑な曲線形状も容易に実現できる。 従って、 シー スヒータの曲げ形状を適宜設定すれば熱板の温度分布を一様にすることができる。  On the other hand, in the hot plate of the present invention, since the housing groove of the sheath heater has only to be processed in one hot plate body, the housing groove can easily realize a complicated curved shape as shown in FIG. Therefore, the temperature distribution of the hot plate can be made uniform by appropriately setting the bending shape of the sheath heater.

Claims

請 求 の 範 囲 The scope of the claims
押圧部材により仕切られた上チャンパと下チャンパとを有し、 その下チャンパに設 けられた熱板上に被加工物を配置し、 前記熱板により加熱した前記被加工物を、 前記 下チャンパを真空とし前 IE上チャンパに大気を導入し前記熱板と前記押圧部材とで挟 圧してラミネートするラミネート装置であって、  An upper and lower champs partitioned by a pressing member, a work piece is disposed on a hot plate provided in the lower champ, and the work piece heated by the hot plate is placed on the lower champ. A laminating apparatus for laminating by vacuuming the front IE chamber with air and sandwiching between the hot plate and the pressing member,
前記熱板は、 裏面に収容溝が設けられた熱板本体と、  The hot plate is a hot plate body provided with a receiving groove on the back surface,
前記収容溝に埋設されたシースヒータとを備え、  A sheath heater embedded in the housing groove,
前記収容溝及ぴ前記シースヒータの少なくともいずれか一方を変形させて、 前記シ ースヒータの外周面が前記収容溝の内周面に面接触するようにしたことを特徴とする ラミネート装置。  At least one of the accommodation groove and the sheath heater is deformed so that the outer peripheral surface of the sheath heater is in surface contact with the inner peripheral surface of the accommodation groove.
前記収容溝に前記シースヒータが埋設された状態で、 前記収容溝の開口縁に設けら れた突出部を前記収容溝の内側方向にかしめていることを特徴とする請求項 1に記载 のラミネート装置。  2. The laminate according to claim 1, wherein in a state in which the sheath heater is embedded in the housing groove, a protrusion provided at an opening edge of the housing groove is caulked in an inner direction of the housing groove. apparatus.
前記収容溝は、 前記熱板本体の裏面に設けられた凹溝の底面に設けられていること を特徴とする請求項 1又は 2に記載のラミネート装置。  The laminating apparatus according to claim 1 or 2, wherein the housing groove is provided on a bottom surface of a concave groove provided on a back surface of the hot plate main body.
前記収容溝の開口縁に設けられた突出部を前記収容溝の内側方向にかしめている部 分が、 前記熱板本体の裏面より張出していることを特徴とする請求項 2に記載のラミ ネート装置。  3. The laminate according to claim 2, wherein a portion of the protruding portion provided at the opening edge of the receiving groove is caulked in an inner direction of the receiving groove, and is projected from a back surface of the hot plate main body. apparatus.
前記収容溝に前記シースヒータが埋設された状態で、 前記収容溝の開口縁そのもの を前記収容溝の內側方向にかしめていることを特徴とする請求項 1に記載のラミネー 卜装置。  2. The laminating device according to claim 1, wherein an opening edge of the housing groove is caulked in a heel side direction of the housing groove in a state where the sheath heater is embedded in the housing groove.
前記収容溝の開口縁そのものをかしめる前の状態において、 前記収容溝は、 前記熱 板本体の裏面に直接、 設けられていることを特徴とする請求項 5に記載のラミネート 装置。  6. The laminating apparatus according to claim 5, wherein the housing groove is provided directly on the back surface of the hot plate main body in a state before the opening edge of the housing groove itself is caulked.
前記熱板本体の材質と、 前記シースヒータの外周部材の材質とが同一であることを 特徴とする請求項 1乃至 6の何れか 1項に記載のラミネート装置。  The laminating apparatus according to any one of claims 1 to 6, wherein a material of the hot plate main body and a material of an outer peripheral member of the sheath heater are the same.
前記熱板本体には複数のシースヒータが埋設されていることを特徴とする請求項 1 乃至 Ίの何れか 1項に記載のラミネート装置。  The laminating apparatus according to claim 1, wherein a plurality of sheath heaters are embedded in the hot plate body.
前記熱板本体の裏面には、 面方向に沿って異なって蛇行する収容溝が複数、 設けら れ、 '  A plurality of receiving grooves meandering along the surface direction are provided on the back surface of the hot plate body.
前記複数の収容溝それぞれに埋設されるシースヒータを複数、 備えていることを特 徴とする請求項 1乃至 8の何れか 1項に記載のラミネート装置。 9. The laminating apparatus according to claim 1, further comprising a plurality of sheath heaters embedded in each of the plurality of receiving grooves.
. 前記複数のシースヒータのうち、 前記熱板本体の同一奥行き方向に埋設されている 複数のシースヒータは、 前記収容溝から外部に出る位 Sが前記熱板本体の幅方向にず れていることを特徴とする請求項 9に記載のラミネート装置。 Among the plurality of sheath heaters, the plurality of sheath heaters embedded in the same depth direction of the hot plate main body is such that the position S coming out from the housing groove is shifted in the width direction of the hot plate main body. The laminating apparatus according to claim 9, wherein the laminating apparatus is characterized in that:
. 前記熱板は、 複数の熱板本体を結合して構成されていることを特徴とする請求項 1 乃至 1 0の何れか 1項に記載のラミネート装置。The laminating apparatus according to any one of claims 1 to 10, wherein the hot plate is configured by combining a plurality of hot plate bodies.
. 前記複数の熱板本体のうち、 隣接する熱板本体同士は、 表面側から熱板本体間に跨 つて設けられた結合部材を介して、 表面側から固定部材で結合されていることを特徴 とする請求項 1 1に記載のラミネート装置。Among the plurality of hot plate bodies, adjacent hot plate bodies are coupled to each other by a fixing member from the surface side through a coupling member provided across the hot plate body from the surface side. The laminating apparatus according to claim 11.
. 押圧部材により仕切られた上チャンバと下チャンパとを有し、 その下チャンパに設 けられた熱板上に被加工物を配置し、 前記熱板により加熱した前記被加工物を、 前記 下チヤンパを真空とし前記上チヤンパに大気を導入し前記熱板と前記押圧部材とで挟 圧してラミネートするラミネート装置であって、 An upper chamber partitioned by a pressing member and a lower champ; a workpiece is placed on a hot plate provided in the lower champ; and the workpiece heated by the hot plate is A laminating apparatus for laminating by vacuuming a chamber and introducing air into the upper chamber and sandwiching between the hot plate and the pressing member,
前記熱板は、 熱板本体と、  The hot plate is a hot plate body,
前記熱板本体に埋め込まれたシースヒータとを備え、  A sheath heater embedded in the hot plate body,
前記シースヒータの外周全面が前記熱板本体と接触するようにしたことを特徴とす るラミネ一ト装置。 A laminating apparatus characterized in that the entire outer periphery of the sheath heater is in contact with the hot plate body.
. 押圧部材により仕切られた上チャンバと下チャンパとを有し、 その下チャンパに設 けられた熱板上に被加工物を配置し、 前記熱板により加熱した前記被加工物を、 下チ ヤンパを真空とし上チャンパに大気を導入し前記押圧部材との間で挟圧してラミネ一 トするラミネート装置用の熱板であって、 An upper chamber and a lower champ separated by a pressing member; a work piece is disposed on a hot plate provided in the lower champ; and the work piece heated by the hot plate is A heating plate for a laminating apparatus that vacuums the yampa, introduces air into the upper champ, and sandwiches and laminates between the pressing members,
裏面に収容溝が設けられた熱板本体と、  A hot plate body provided with a receiving groove on the back surface;
前記収容溝に埋設されたシースヒータとを備え、  A sheath heater embedded in the housing groove,
前記収容溝及び前記シースヒータの少なくともいずれか一方を変形させて、 前記シ ースヒータの外周面が前記収容溝の內周面に面接触するようにしたことを特徴とする ラミネート装置用の熱板。 At least one of the accommodation groove and the sheath heater is deformed so that the outer peripheral surface of the sheath heater is in surface contact with the peripheral surface of the accommodation groove.
. 押圧部材により仕切られた上チャンバと下チャンパとを有し、 その下チャンパに設 けられた熱板上に被加工物を配置し、 前記熱板により加熱した前記被加工物を、 下チ ャンパを真空と'し上チヤンパに大気を導入し前記押圧部材との間で挟圧してラミネー トするラミネ一ト装置用の熱板であって、 An upper chamber and a lower champ separated by a pressing member; a work piece is disposed on a hot plate provided in the lower champ; and the work piece heated by the hot plate is A heating plate for a laminating apparatus that evacuates the amp and introduces air into the upper chamber and sandwiches it between the pressing members for lamination.
前記熱板は、  The hot plate is
熱板本体に、  On the hot plate body,
シースヒータの外周全面が前記熱板本体と接触するように埋め込まれたことを特徴 とするラミネート装置用の熱板。 A heat plate for a laminating apparatus, wherein the entire outer periphery of a sheath heater is embedded so as to be in contact with the main body of the heat plate.
. 押圧部材により仕切られた上チャンパと下チャンバとを有し、 その下チャンパに設 けられた熱板上に被加工物を配置し、 前記熱板により加熱した前記被加工物を、 前記 下チャンパを真空とし前記上チヤンバに大気を導入し前 押圧部材との間で挟圧して ラミネートするラミネ一ト装置用の熱板の製造方法であって、 An upper chamber divided by a pressing member and a lower chamber; a workpiece placed on a hot plate provided in the lower champ; and the workpiece heated by the hot plate, A method for producing a hot plate for a laminating apparatus in which a vacuum is applied to a chamber and air is introduced into the upper chamber and is sandwiched between a pressing member and laminated.
熱板本体の裏面に設けられた収容溝にシースヒータを埋設する埋設工程を有し、 前記埋設工程で、 プレス機によって、 前記シースヒータの外周面が前記収容溝の内 周面に面接触するように、 前記収容溝及ぴ前記シースヒータの少なくともいずれか一 方を変形させると共に、 前記収容溝の開口縁に設けられた突出部又は開口縁そのもの を前記収容溝の内側方向にかしめるようにしたことを特徴とする製造方法。Having a burying step of burying a sheath heater in a receiving groove provided on the back surface of the hot plate body, In the embedding step, at least one of the housing groove and the sheath heater is deformed by a pressing machine so that the outer circumferential surface of the sheath heater is in surface contact with the inner circumferential surface of the housing groove, and the housing groove The manufacturing method characterized by caulking the protruding portion provided at the opening edge of the housing or the opening edge itself toward the inside of the housing groove.
. 押圧部材により仕切られた上チャンパと下チャンパを有し、 その下チャンパに設け られた熱板上に被加工物を配置し、 前記熱板により加熱した前記被加工物を、 下チヤ ンパを真空とし上チャンパに大気を導入し前記押圧部材との間で挟圧してラミネート するラミネート装置用の熱板の製造方法であって、 An upper champ and a lower champ separated by a pressing member are arranged, a work piece is disposed on a hot plate provided in the lower champ, and the work piece heated by the hot plate is placed on the lower champ. A method for producing a hot plate for a laminating apparatus for laminating by vacuuming and introducing air into the upper chamber and sandwiching and pressing between the pressing members,
シースヒータの外周全体が熱板本体と接触するように、 前記熱板本体に前記シース ヒータを鎵込により埋設することを特徴とする製造方法。  A manufacturing method comprising embedding the sheath heater in the hot plate main body so as to contact the entire outer periphery of the sheath heater with the hot plate main body.
PCT/JP2008/066140 2007-09-07 2008-09-02 Lamination apparatus, hot platen for the same and process for manufacturing the hot platen WO2009031674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200880114992A CN101848802A (en) 2007-09-07 2008-09-02 Lamination apparatus, hot platen for the same and process for manufacturing the hot platen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007233298 2007-09-07
JP2007-233298 2007-09-07
JP2008-208054 2008-08-12
JP2008208054A JP5374715B2 (en) 2007-09-07 2008-08-12 Laminating apparatus, hot plate for laminating apparatus, and method for manufacturing hot plate for laminating apparatus

Publications (1)

Publication Number Publication Date
WO2009031674A1 true WO2009031674A1 (en) 2009-03-12

Family

ID=40428986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066140 WO2009031674A1 (en) 2007-09-07 2008-09-02 Lamination apparatus, hot platen for the same and process for manufacturing the hot platen

Country Status (1)

Country Link
WO (1) WO2009031674A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121178A1 (en) * 2018-12-13 2020-06-18 Arcelormittal Lamination device and process thereof
CN113247380A (en) * 2021-04-28 2021-08-13 红塔烟草(集团)有限责任公司 Method and device for heat sealing of bag opening of large-size plastic packaging bag

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314791A (en) * 1987-06-18 1988-12-22 Toshiba Heating Appliances Co Electric cooking apparatus
JPH0933170A (en) * 1995-05-15 1997-02-07 Nippon Dennetsu Co Ltd Heated plate
JPH10305482A (en) * 1997-05-01 1998-11-17 N P C:Kk Laminate apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314791A (en) * 1987-06-18 1988-12-22 Toshiba Heating Appliances Co Electric cooking apparatus
JPH0933170A (en) * 1995-05-15 1997-02-07 Nippon Dennetsu Co Ltd Heated plate
JPH10305482A (en) * 1997-05-01 1998-11-17 N P C:Kk Laminate apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121178A1 (en) * 2018-12-13 2020-06-18 Arcelormittal Lamination device and process thereof
WO2020121036A1 (en) * 2018-12-13 2020-06-18 Arcelormittal Lamination device and process thereof
JP2022512476A (en) * 2018-12-13 2022-02-04 アルセロールミタル Laminating equipment and its process
US11623436B2 (en) 2018-12-13 2023-04-11 Arcelormittal Lamination device and process thereof
JP7404370B2 (en) 2018-12-13 2023-12-25 アルセロールミタル Lamination equipment and its process
CN113247380A (en) * 2021-04-28 2021-08-13 红塔烟草(集团)有限责任公司 Method and device for heat sealing of bag opening of large-size plastic packaging bag

Similar Documents

Publication Publication Date Title
JP5374715B2 (en) Laminating apparatus, hot plate for laminating apparatus, and method for manufacturing hot plate for laminating apparatus
JP5095166B2 (en) Method and apparatus for laminating solar cell module by preheating
JP3098003B2 (en) Laminating equipment for solar cells
JP5781412B2 (en) Lamination method
JP6213561B2 (en) Metal separator molding apparatus and molding method
JP5897045B2 (en) Method for manufacturing solar cell module and laminator device
JP5173921B2 (en) Solar cell module laminator
JP5922461B2 (en) Laminating equipment
WO2009031674A1 (en) Lamination apparatus, hot platen for the same and process for manufacturing the hot platen
WO2011136132A1 (en) Hot plate for laminating device and laminating device using the hot plate
JP2013010330A (en) Heat plate for laminating device
JP2013083283A (en) Vacuum heat insulating material, and manufacturing method and manufacturing device thereof
EP2612745A1 (en) Laminating method
JP2000101119A (en) Laminating method and device for solar cell
WO2010140705A1 (en) Laminating device
JP5558117B2 (en) Laminating equipment
JP2001102614A (en) Method for manufacturing solar cell panel
JP2016030396A (en) Laminate device and laminate method
TW201210806A (en) Multi-level press, level element of such a multi-level press, and method for producing plate-type workpieces by means of such a multi-level press
JP2788884B2 (en) Laminated glass vacuum fusion equipment
JP2016215447A (en) Laminating device
CN110890439A (en) Hot-pressing packaging device and method for solar module
JP2015223746A (en) Laminating device and method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880114992.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08829288

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107005357

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08829288

Country of ref document: EP

Kind code of ref document: A1