WO2011111626A1 - 表面処理装置 - Google Patents

表面処理装置 Download PDF

Info

Publication number
WO2011111626A1
WO2011111626A1 PCT/JP2011/055091 JP2011055091W WO2011111626A1 WO 2011111626 A1 WO2011111626 A1 WO 2011111626A1 JP 2011055091 W JP2011055091 W JP 2011055091W WO 2011111626 A1 WO2011111626 A1 WO 2011111626A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
carry
guide roll
sub
processed
Prior art date
Application number
PCT/JP2011/055091
Other languages
English (en)
French (fr)
Inventor
光秀 野上
良憲 中野
崇 佐藤
真一 川崎
卓也 屋良
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2012504430A priority Critical patent/JP5130413B2/ja
Priority to KR1020127026047A priority patent/KR101268242B1/ko
Priority to CN2011800127702A priority patent/CN102792783A/zh
Publication of WO2011111626A1 publication Critical patent/WO2011111626A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • H05H1/473Cylindrical electrodes, e.g. rotary drums
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Testing
    • H05H2240/10Testing at atmospheric pressure

Definitions

  • the present invention relates to an apparatus for surface-treating an object to be processed under atmospheric pressure, and more particularly to a surface treatment apparatus suitable for performing surface treatment such as atmospheric pressure plasma treatment while continuously conveying the object to be processed.
  • a treatment region is surrounded by a treatment tank in order to prevent leakage of treatment gas components (see Patent Document 1 and the like).
  • An exhaust source such as an exhaust blower or an exhaust pump is connected to the processing tank, and a gas containing the processing gas in the processing tank is sucked and discharged.
  • the end wall of the treatment tank is provided with an opening for carrying in / out the object to be treated.
  • Patent Document 1 the walls on the carry-in side and the carry-out side are each made into a double structure and a small chamber is provided. A normally open opening is formed in each wall.
  • the outflow gas from the processing tank is temporarily stored in the small chamber in the double wall.
  • the gas may then diffuse and leak outside.
  • the gas in contact with the object to be processed is easily drawn by the object to be processed and leaks to the outside.
  • an exhaust source such as an exhaust blower or an exhaust pump.
  • the present invention has been made in view of the above circumstances, and in an apparatus for performing a surface treatment in a processing tank while continuously conveying an object to be processed, for example, a processing gas component without increasing the size of an exhaust source of the processing tank Is intended to be able to sufficiently suppress leakage from the treatment tank to the outside.
  • the present invention is a surface treatment apparatus for surface-treating an object to be treated in a treatment region near atmospheric pressure, (A) conveying means for conveying the object to be processed in a conveying direction so as to pass through the processing region; (B) a main chamber including the processing region; and a sub chamber provided on at least the carry-out side of the main chamber in the transfer direction in the transfer direction and partitioned by the main chamber and a partition wall.
  • a processing tank in which a normally open opening capable of carrying in and out the object to be processed is formed in the outer wall on the carry-in side and the outer wall on the carry-out side and the partition wall;
  • exhaust means connected to the main chamber, for sucking the gas in the main chamber and lowering the internal pressure of the main chamber to a pressure outside the processing tank;
  • a sub chamber supply means connected to the sub chamber and supplying air or an inert gas into the sub chamber to make the internal pressure of the sub chamber higher than the pressure outside the processing tank; It is provided with.
  • Air or inert gas supplied from the sub chamber air supply means to the sub chamber flows into the main chamber from the opening of the partition wall due to the pressure difference. This flow can surely prevent the gas containing the processing gas component in the main chamber from leaking to the outside.
  • the gas in contact with the object to be processed is moved by the object to be processed and moves toward the sub-chamber on the carry-out side and thus out of the tank.
  • gas from the sub chamber on the carry-out side flows into the main chamber.
  • the gas inflow direction from the carry-out side subchamber is substantially opposite to the moving direction of the object to be processed and thus the gas flow direction on the object to be processed.
  • This reverse inflow gas can push back the gas on the workpiece. This can reliably prevent the gas containing the processing gas component from leaking to the outside together with the object to be processed.
  • the internal pressure of the main chamber only needs to be slightly lower than the atmospheric pressure, and it is not necessary to increase the exhaust capacity of the exhaust source of the main chamber exhaust means, and the exhaust source can be downsized. Further, a part of the air or inert gas supplied from the sub chamber air supply means to the sub chamber flows out from the opening of the outer wall. This flow can prevent the external atmospheric gas from entering the treatment tank.
  • the conveying means includes a plurality of guide rolls that wrap around the object to be processed.
  • a feeding roll is provided outside the carrying-in tank
  • a winding roll is provided outside the carrying-out tank
  • the plurality of guide rolls are arranged between the feeding roll and the winding roll.
  • Some or all of the plurality of guide rolls are arranged inside the processing tank.
  • the continuous sheet-like object to be processed is fed from a feed roll, guided to the row of guide rolls, passed through a main chamber and a sub chamber including a processing region of a processing tank, and taken up on a take-up roll.
  • the first guide roll among the guide rolls is accommodated in the sub chamber.
  • fluttering can be prevented by positioning the continuous sheet-shaped workpiece in the sub chamber. Therefore, the opening degree of each opening of the outer wall and the partition wall can be set small without considering the fluttering of the continuous sheet-like workpiece. As a result, gas leakage from the main room or intrusion of the external atmosphere can be reliably prevented.
  • the diameter of the first guide roll is larger than the distance between the outer wall defining the sub chamber and the partition wall, and the outer periphery of the first guide roll enters the opening of the outer wall and the opening of the partition wall. It is preferable. Thereby, most of the opening can be closed by the first guide roll.
  • the entrance contact and the delivery contact of the continuous sheet-shaped workpiece on the peripheral surface of the first guide roll can be positioned just inside the opening or in the vicinity of the opening. If it does so, the substantially whole part arrange
  • the opening degree of the opening (that is, the size of the gap formed between the edge of the opening and the peripheral surface of the first guide roll) can be sufficiently reduced, and gas leakage from the main chamber or the outside Invasion of the atmosphere can be reliably prevented. Only one first guide roll needs to be provided in the sub chamber, and the number of parts can be reduced.
  • the object to be processed is wound around one circumferential portion of the circumferential surface of the first guide roll, and the sub chamber supply means opens to a chamber portion facing the one side portion of the sub chamber.
  • an air supply port is included.
  • the chamber portion can be reliably at a high pressure. Therefore, it is possible to reliably reduce the gas containing the processing gas component in the main chamber from being drawn into the sub chamber by the object to be processed and the external atmospheric gas from entering the sub chamber. As a result, it is possible to more reliably prevent the gas containing the processing gas component from flowing out and the external atmospheric gas from flowing into the main chamber.
  • a second guide roll adjacent to the first guide roll is disposed outside the processing tank in the transport direction or in the main chamber, and the first guide roll and the second guide roll. It is preferable that the position where the object to be processed passes through the opening is set. Thereby, the opening degree of the said opening can be made small enough and the gas leak from a main chamber or the penetration
  • the second guide roll is interposed between the feeding roll and the guide roll in the carry-in side sub-chamber or between the guide roll in the carry-out side sub-chamber and the take-up roll. Even if the winding diameter of the object to be processed on the feeding roll or the winding roll changes with the progress of the feeding and winding, the position does not change.
  • the opening degree of the opening of the outer wall can be set sufficiently small.
  • gas leakage from the main room or intrusion of the external atmosphere can be reliably prevented.
  • the first guide roll is provided in a sub-chamber on the carry-out side
  • the second guide roll is disposed between the outer wall on the carry-out side and the take-up roll, whereby the object to be processed on the take-up roll. Even if the winding diameter of the roll increases with the progress of winding, the angle at which the workpiece is fed from the first guide roll to the second guide roll can be prevented from changing, and the workpiece can be removed from the carry-out side. It is possible to avoid a change in the position passing through the opening of the outer wall.
  • the size of the gap formed between the edge of the opening of the outer wall on the carry-out side and the workpiece can be kept constant. Therefore, the opening degree of the outer wall on the carry-out side can be set sufficiently small. As a result, it is possible to reliably prevent the gas from the main chamber from flowing out from the opening of the outer wall on the carry-out side or the external atmospheric gas from flowing into the processing tank from the opening on the outer wall on the carry-out side. .
  • the internal pressure of the main chamber is preferably 10 Pa to 50 Pa lower than the pressure outside the processing tank. Therefore, the exhaust capacity of the main chamber exhaust source can be reduced.
  • the internal pressure of the sub chamber is preferably 5 Pa to 20 Pa higher than the pressure outside the processing tank. Thereby, the leakage of the processing gas component can be reliably prevented.
  • the vicinity of atmospheric pressure refers to a range of 1.013 ⁇ 10 4 to 50.663 ⁇ 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 ⁇ 10 4 to 10.664 ⁇ 10 4 Pa is preferable, and 9.331 ⁇ 10 4 to 10.9797 ⁇ 10 4 Pa is more preferable.
  • the leakage of the processing gas component from the processing tank to the outside can be sufficiently suppressed. There is no need to increase the size of the exhaust source.
  • FIG. 1 is an explanatory front view showing a schematic configuration of a surface treatment apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional plan view taken along the line II-II in FIG. 1, showing a carry-in side part and a carry-out side part of the treatment tank of the surface treatment apparatus with a film to be treated omitted. It is front sectional drawing which expands and shows the part by the side of carrying out of the said processing tank.
  • FIG. 4 is a side view of a part on the carry-out side of the processing tank, taken along line IV-IV in FIG. 3.
  • FIG. 1 shows an embodiment of the present invention.
  • the to-be-processed object 9 of this embodiment is comprised with the continuous sheet-like film.
  • a to-be-processed film is an optical resin film for optical apparatuses, such as a polarizing plate, for example.
  • an optical resin film serving as a protective film for a polarizing plate is applied as the film 9 to be processed.
  • Examples of the main component of the film 9 to be treated include triacetate cellulose (TAC), polypropylene (PP), polyethylene (PE), cycloolefin polymer (COP), cycloolefin copolymer (COC), polyethylene terephthalate (PET), Examples thereof include polymethyl methacrylate (PMMA) and polyimide (PI), but are not limited thereto.
  • TAC triacetate cellulose
  • PP polypropylene
  • PE polyethylene
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • PET polyethylene terephthalate
  • Examples thereof include polymethyl methacrylate (PMMA) and polyimide (PI), but are not limited thereto.
  • the thickness of the film is, for example, about 100 ⁇ m.
  • the surface treatment apparatus 1 of the present embodiment performs a surface treatment for improving the adhesion in the bonding process with the polarizing film on the film 9 to be processed.
  • a mixed gas of a polymerizable monomer and a carrier gas or the like is used as a processing gas.
  • acrylic acid CH 2 ⁇ CHCOOH
  • Acrylic acid has an acetic acid-like odor and has explosive properties, and therefore requires appropriate management.
  • the polymerizable monomer is not limited to acrylic acid, but methacrylic acid, itaconic acid, maleic acid, 2-methacryloylpropionic acid, ethylene glycol methacrylate, allyl alcohol, hydroxyethyl methacrylate, vinyl acetate, glycidyl methacrylate.
  • An inert gas is used as the carrier gas.
  • nitrogen (N 2) can be mentioned as an inert gas, not limited to this, Ar, may be a rare gas such as He.
  • the surface treatment apparatus 1 includes a treatment unit 10, a transport unit 20, and a treatment tank 30.
  • the processing unit 10 is configured by an atmospheric pressure plasma processing unit that surface-treats the workpiece 9 with plasma near atmospheric pressure.
  • the atmospheric pressure plasma processing unit 10 has at least two electrodes 11. These electrodes 11 have a cylindrical shape (roll shape).
  • the two roll electrodes 11 are arranged in parallel with their axes oriented in the horizontal direction perpendicular to the paper surface of FIG.
  • the narrowest portion between the roll electrodes 11 and 11 and the space in the vicinity thereof are a processing region 19.
  • one of the two roll electrodes 11 is connected to a power source.
  • the other roll electrode 11 is electrically grounded.
  • a plasma discharge is generated between the roll electrodes 11 and 11 under a pressure near atmospheric pressure.
  • the nozzles 12 are respectively disposed above and below the processing region 19.
  • the outlet of each nozzle 12 faces the processing area 19.
  • a processing gas from a processing gas source (not shown) is supplied to the nozzle 12 and blown out from the nozzle 12 to the processing region 19.
  • the processing gas is turned into plasma (including excitation, activation, radicalization, ionization, etc.) in the processing region 19 and the surface treatment of the film 9 to be processed is performed.
  • acrylic acid (polymerizable monomer) in the processing gas causes a polymerization reaction on the film 9 to be processed, and an adhesion promoting layer is formed on the surface of the film 9 to be processed.
  • the processing gas may be blown out simultaneously from the upper and lower nozzles 12, 12, or the processing gas may be blown out from only one of the upper and lower nozzles 12, and the other nozzle 12 may be used as a blocking member for the processing region 19.
  • a gas containing a polymerizable monomer such as acrylic acid is sprayed onto the film to be processed 9, and then nitrogen or the like is applied to the processing region 19.
  • the inert gas may be supplied to form a plasma to cause a polymerization reaction of the polymerizable monomer.
  • the conveyance means 20 conveys the to-be-processed film 9 in a conveyance direction (generally right direction in FIG. 1).
  • the transport unit 20 includes a feeding roll 21, a winding roll 22, and a guide roll 23. These rolls 21, 22, and 23 each have a cylindrical shape whose axis is directed in a direction perpendicular to the paper surface of FIG. 1.
  • the feeding roll 21 is disposed on the upstream side in the transport direction from the processing tank 30, that is, on the carry-in side (left in FIG. 1).
  • the processed film 9 is fed out from the feeding roll 21.
  • the winding roll 22 is disposed downstream of the processing tank 30 in the transport direction, that is, on the carry-out side (right side in FIG. 1).
  • the processed film 9 to be processed is wound on the winding roll 22.
  • a plurality of guide rolls 23 (231 to 236) are arranged between the feed roll 21 and the take-up roll 22. Intermediate portions of the film to be processed 9 are wound around these guide rolls 23.
  • Roll electrodes 11 are arranged in the middle of the row of guide rolls 23.
  • a film to be processed 9 is wound around the upper part of the roll electrodes 11, about half a circle.
  • An intermediate film 9 between the two roll electrodes 11 passes through the processing region 19.
  • Each roll electrode 11 is rotatable around an axis.
  • the rolls 21 and 22 and the roll electrodes 11 and 11 are rotationally driven in synchronization with each other to convey the film 9 to be processed.
  • the roll electrode 11 constitutes one element of the transport unit 20.
  • the guide rolls 23 (231 to 236) are driven to rotate as the processed film 9 is conveyed.
  • the guide roll 23 sets a transport path for the film 9 to be processed, and tension is applied to the film 9 to be processed.
  • the processing tank 30 includes a main chamber 31, a loading-side sub chamber 32, and a loading-side sub chamber 33.
  • the main chamber 31 occupies most of the internal volume of the processing tank 30.
  • the processing unit 10 and thus the processing area 19 are arranged inside the main chamber 31.
  • the wall on the carry-in side of the treatment tank 30 has a double structure of the carry-in outer wall 34 and the carry-in partition wall 35.
  • the outer wall 34 partitions the outside of the processing tank 30 on the carry-in side and the inside of the processing tank 30.
  • the main chamber 31 and the carry-in side sub chamber 32 are partitioned by the partition wall 35.
  • a carry-in side sub chamber 32 is formed between the outer wall 34 and the partition wall 35.
  • the carry-in side subchamber 32 is a cylindrical space extending in the same direction as the axis of the roll 23 (a direction orthogonal to the paper surface of FIG. 1).
  • the internal volume of the carry-in side sub chamber 32 is sufficiently smaller than the internal volume of the main chamber 31.
  • the internal volume of the carry-in side sub chamber 32 is, for example, 1/500 to 1/2000 of the internal volume of the main chamber 31.
  • the wall on the carry-out side of the treatment tank 30 has a double structure of the carry-out outer wall 36 and the carry-out partition wall 37.
  • An outer wall 36 partitions the outside of the processing tank 30 on the carry-out side and the inside of the processing tank 30.
  • the partition wall 37 partitions the main chamber 31 and the carry-out side sub chamber 33.
  • a carry-out side sub-chamber 33 is formed between the outer wall 36 and the partition wall 37.
  • the carry-out side sub-chamber 33 is a cylindrical space extending in the same direction as the axis of the roll 23 (a direction perpendicular to the paper surface of FIG. 1).
  • the internal volume of the carry-out side subchamber 33 is substantially the same as the internal volume of the carry-in side subchamber 32 and is sufficiently smaller than the internal volume of the main chamber 31.
  • the internal volume of the carry-out side sub chamber 33 is, for example, 1/500 to 1/2000 of the internal volume of the main chamber 31.
  • the internal volume of the carry-in side sub chamber 32 and the internal volume of the carry-out side sub chamber 33 may be different from each other.
  • a carry-in outer opening 34 a is formed in the carry-out outer wall 34.
  • the external space on the carry-in side and the carry-in side subchamber 32 communicate with each other through the opening 34a.
  • a carry-in side opening 35 a is formed in the carry-in partition wall 35.
  • the carry-in side sub chamber 32 and the main chamber 31 communicate with each other through the opening 35a.
  • the film to be processed 9 is carried from the outside into the carry-in side sub chamber 32 through the outer opening 34a, and is further carried into the main chamber 31 through the inner opening 35a.
  • the carry-in openings 34a and 35a are normally open and are not provided with doors.
  • a carry-in side sub-chamber guide roll 232 (first guide roll) is accommodated in the carry-in side sub-chamber 32.
  • the diameter of the sub-chamber guide roll 232 is slightly larger than the dimension of the sub-chamber 32 in the horizontal lateral direction (left-right direction in FIG. 1), that is, the distance between the walls 34 and 35.
  • the left and right circumferential side portions of the sub-indoor guide roll 232 slightly enter the respective carry-in openings 34a and 35a.
  • the sub-chamber guide roll 232 blocks most of the carry-in openings 34a and 35a.
  • the clearance (clearance) between the upper and lower edges of each of the carry-in openings 34a and 35a and the peripheral surface of the sub-inner guide roll 232 is sufficiently narrow.
  • the vertical separation distance between the upper edge of each of the carry-in openings 34a and 35a and the peripheral surface of the auxiliary indoor guide roll 232 is preferably about 0.5 mm to 4 mm, more preferably about 1 mm.
  • the vertical separation distance between the lower edge of each carry-in opening 34a, 35a and the peripheral surface of the sub-inner guide roll 232 is slightly larger than the separation distance on the upper edge side, preferably about 1 mm to 6 mm, more preferably 3 mm. Degree.
  • the sub-chamber guide roll 232 partitions the carry-in side sub-chamber 32 into a chamber portion 32 a below the guide roll 232 and a chamber portion 32 b above the guide roll 232.
  • axial length along the axis L 2 of the secondary chamber the guide roll 232 is shorter than the length along the axis L 2 of the carry-in side sub-chamber 32, even along the axis L 2 of the loading aperture 34a, 35a A little shorter than the length.
  • the axis L 2 direction of the end face of the auxiliary chamber guide roll 232, carrying apertures 34a, the clearance between the axis L 2 direction edges of 35a is preferably about 1 mm ⁇ 3 mm.
  • a sufficiently large communication space 32 e is formed between the end surfaces on both sides in the axial direction of the sub chamber guide roll 232 and the inner end surface on the same side of the carry-in side sub chamber 32.
  • the lower chamber portion 32a and the upper chamber portion 32b of the sub chamber 32 communicate with each other via a communication space 32e.
  • the to-be-processed film 9 is partially wound around the lower side part (one side part of the circumferential direction) of the surrounding surface of the sub indoor guide roll 232.
  • the portion 9 a around which the film 9 to be processed is wound around the guide roll 232 extends over substantially the entire portion of the film 9 to be processed disposed in the carry-in side sub chamber 32.
  • the winding portion 9 a faces the lower chamber portion 32 a of the carry-in side sub chamber 32.
  • the position or posture of the film 9 to be processed in the carry-in side sub chamber 32 is determined by the sub chamber guide roll 232.
  • the angle at which the film 9 enters the sub-indoor guide roll 232 from the outside of the tank and the circumference of the sub-indoor guide roll 232 A position (contact point a) that contacts the surface and a position where the film 9 to be processed pass through the outer opening 34a are determined.
  • the entry contact a is located just at or near the outer opening 34a.
  • the position where the film 9 to be processed passes through the inner opening 35a is determined.
  • the delivery contact b is located just inside or in the vicinity of the inner opening 35a.
  • the outside tank guide roll 231 is disposed outside the carrying-in side of the processing tank 30 and close to the outer opening 34a.
  • the outside tank roll 231 is interposed between the feed roll 21 and the outer wall 34 on the carry-in side.
  • the main indoor guide roll 233 is disposed in the main chamber 31 in proximity to the inner opening 35a.
  • a carry-out side opening 37a is formed in the carry-out side partition wall 37 of the treatment tank 30.
  • the main chamber 31 and the unloading side sub chamber 33 communicate with each other through the opening 37a.
  • a carry-out side outer opening 36 a is formed in the carry-out side outer wall 36.
  • the unloading side subchamber 33 and the unloading side external space communicate with each other through the opening 36a.
  • the to-be-processed film 9 processed in the processing unit 10 is discharged from the main chamber 31 through the inner opening 37a to the discharge-side subchamber 33, and is further discharged outside through the outer opening 36a.
  • the carry-out openings 36a and 37a are normally open and are not provided with doors.
  • a carry-out side sub-chamber guide roll 235 (first guide roll) is accommodated in the carry-out side sub-chamber 33.
  • the diameter of the sub chamber guide roll 235 is slightly larger than the dimension of the sub chamber 33 in the horizontal short side direction (left and right direction in FIG. 1), that is, the distance between the walls 36 and 37.
  • the left and right circumferential side portions of the auxiliary indoor guide roll 235 slightly enter the carry-out openings 36a and 37a.
  • the sub-chamber guide roll 235 closes most of the carry-out openings 36a and 37a.
  • the clearance (clearance) between the upper and lower edges of each of the carry-out openings 36a and 37a and the peripheral surface of the sub-indoor guide roll 235 is sufficiently narrow.
  • the vertical separation distance between the upper edge of each carry-out opening 36a, 37a and the peripheral surface of the sub-inner guide roll 235 is preferably about 0.5 mm to 4 mm, more preferably about 1 mm.
  • the vertical separation distance between the lower edge of each carry-out opening 36a, 37a and the peripheral surface of the auxiliary indoor guide roll 235 is slightly larger than the separation distance on the upper edge side, preferably about 1 mm to 6 mm, more preferably 3 mm. Degree.
  • the sub-chamber guide roll 235 partitions the carry-out side sub-chamber 33 into a chamber portion 33a below the guide roll 235 and a chamber portion 33b above the guide roll 235.
  • the axial length along the axis L 3 sub chamber guide roll 235 is shorter than the length along the axis L 3 of the unloading side auxiliary chamber 33, even out opening 36a, 37a the axis L of A little shorter than the length along 3 .
  • the axis L 3 direction of the end face of the auxiliary chamber guide roll 235, out the opening 36a, the clearance between the axis L 3 direction of the edge of 37a is preferably about 1 mm ⁇ 3 mm.
  • a sufficiently large communication space 33e is formed between the end surfaces on both sides in the axial direction of the sub chamber guide roll 235 and the inner end surface on the same side of the carry-out side sub chamber 33.
  • the lower chamber portion 33a and the upper chamber portion 33b communicate with each other via the communication space 33e.
  • the to-be-processed film 9 is partially wound around the lower side part (one side part of the circumferential direction) of the surrounding surface of the sub indoor guide roll 235.
  • the portion 9b around the guide roll 235 of the film 9 to be processed extends over substantially the entire portion of the film 9 to be disposed in the carry-out side subchamber 33.
  • the winding portion 9 b faces the lower chamber portion 33 a of the carry-out side subchamber 33.
  • the position or posture of the film 9 to be processed in the carry-out side sub chamber 33 is determined by the sub chamber guide roll 235.
  • the angle at which the processed film 9 enters the sub-indoor guide roll 235 from the main chamber 31 and the sub-indoor guide roll 235 A position (contact point c) in contact with the peripheral surface and a position where the film to be processed 9 passes through the inner opening 35a are determined.
  • the entrance contact c is located at the inner opening 35a or in the vicinity thereof.
  • the position where the film 9 to be processed passes through the outer opening 36a is determined.
  • the delivery contact d is located just inside or near the outer opening 36a.
  • the main indoor guide roll 234 is disposed in the main chamber 31, and is disposed in the vicinity of the partition wall 37 and the opening 37a.
  • the outside tank guide roll 236 is disposed outside the processing tank 30 on the carry-out side and close to the outer opening 36a.
  • the outside tank guide roll 236 is interposed between the carry-out outer wall 36 and the take-up roll 22.
  • a main chamber exhaust means 40 is connected to the main chamber 31 of the treatment tank 30.
  • the exhaust means 40 includes an exhaust port 41 and an exhaust source 43.
  • An exhaust port 41 is provided at the bottom of the main chamber 31.
  • An exhaust passage 42 extends from the port 41.
  • the exhaust path 42 is connected to the exhaust source 43.
  • the exhaust source 43 is configured by a blower, but may be configured by an exhaust pump. By driving the exhaust source 43, the gas in the main chamber 31 is sucked from the exhaust port 41 and discharged through the exhaust path 42.
  • a carry-in side sub chamber supply means 51 is connected to the carry-in side sub chamber 32.
  • the sub chamber air supply means 51 includes a plurality of air supply ports 51p and an air supply source 51x.
  • the air supply port 51p is provided at intervals along the axis L 2 at the bottom of the entry side sub-chamber 32.
  • each air supply port 51 p is opened to the lower chamber portion 32 a of the carry-in side sub chamber 32.
  • the lower side portion of the auxiliary indoor guide roll 232 (the portion around which the film 9 to be processed is wound) and the air supply port 51p face each other vertically.
  • the air supply source 51x is configured by a blower, but may be configured by an air supply pump.
  • An air supply path 51a from the air supply source 51x is branched into a plurality (five in the figure) and is connected to each air supply port 51p. By driving the air supply source 51x, air is supplied into the carry-in side sub chamber 32 from each air supply port 51p through the air supply path 51a.
  • a carry-out side subchamber 33 is connected to the carry-out side subchamber 33.
  • the sub chamber air supply means 52 includes a plurality of air supply ports 52p and an air supply source 52x. As shown in FIGS. 2 and 4, the air supply port 52 p is provided at the bottom of the carry-out side sub-chamber 33 at an interval along the axis L 3 . As shown in FIGS. 3 and 4, each air supply port 52 p is open to the chamber portion 33 a below the carry-out side sub chamber 33.
  • the lower side portion of the sub-indoor guide roll 235 (the portion around which the film 9 to be processed is wound) and the air supply port 52p face each other vertically.
  • the air supply source 52x is configured by a blower, but may be configured by an air supply pump.
  • One supply source may be shared as the carry-in side sub-chamber supply source 51x and the carry-out side sub-chamber supply source 52x.
  • An air supply path 52a from the air supply source 52x branches into a plurality (five in the figure) and continues to each air supply port 52p. By driving the air supply source 52x, air is supplied into the carry-out side sub chamber 33 from each air supply port 52p through the air supply path 52a.
  • the operation of the surface treatment apparatus 1 having the above configuration will be described focusing on pressure control in the treatment tank 30.
  • the film 9 to be processed is continuously fed out from the feeding roll 21, continuously conveyed along the rows of the guide rolls 23 and the roll electrodes 11, surface-treated in the middle processing area 19, and continuously on the winding roll 22. Wind up.
  • the gas in the main chamber 31 is sucked and discharged by the main chamber exhaust means 40.
  • the internal pressure of the main chamber 31 becomes lower than the pressure outside the processing tank 30 (atmospheric pressure) within the pressure range near atmospheric pressure.
  • the internal pressure of the main chamber 31 is about 10 Pa to 50 Pa lower than the atmospheric pressure, more preferably about 20 Pa.
  • the sub chamber air supply means 51 and 52 air is supplied to the sub chambers 32 and 33 by the sub chamber air supply means 51 and 52.
  • the air is first charged into the lower chamber portions 32a and 33a of the sub chambers 32 and 33 from the air supply ports 51p and 52p, and further passes through the communication spaces 32e and 33e to reach the upper chamber portions 32b. 33b is filled.
  • the internal pressure of the sub chambers 32 and 33 becomes higher than the pressure outside the processing tank 30 (atmospheric pressure) within the pressure range near the atmospheric pressure.
  • the internal pressure of the sub chambers 32 and 33 is set higher by 5 Pa to 20 Pa than the atmospheric pressure. Therefore, the following relationship is established.
  • the gas g ⁇ b> 1 in contact with the film to be treated 9 is drawn by the film to be treated 9 and is carried out on the carry-out side subchamber 33 and thus on the carry-out side of the treatment tank 30. Move towards outside.
  • the air in the chamber portion 33a on the film winding side flows into the main chamber 31 through the space between the unloading side sub-chamber guide roll 235 and the lower edge of the unloading side inner opening 37a.
  • the flow direction of the inflowing gas g3 is opposite to the conveying direction of the film 9 to be processed and thus the flow of the gas g1 on the film 9 to be processed.
  • the gas g1 on the film to be processed 9 can be separated from the film to be processed 9 and pushed back into the main chamber 31.
  • This can reliably prevent the gas g1 from flowing out of the tank together with the film 9 to be processed. Therefore, leakage of the processing gas component to the outside can be reliably prevented. Therefore, the environmental load can be reduced.
  • the processing gas contains acrylic acid, it is possible to surely prevent the acetic acid-like odor peculiar to acrylic acid from drifting in the external atmosphere, and a good working environment can be secured.
  • the internal pressure of the main chamber 31 only needs to be slightly lower than the atmospheric pressure, and it is not necessary to increase the exhaust capacity of the main chamber exhaust source 43, and the main chamber exhaust source 43 can be downsized.
  • the processed film 9 in the unloading side sub chamber 33 is positioned by being wound around the unloading side sub chamber guide roll 235. Therefore, it can prevent that the to-be-processed film 9 flutters in the carrying-out side subchamber 33.
  • FIG. since almost the entire portion of the film 9 to be processed 9 in the carry-out side sub-chamber 33 is wound around the sub-chamber guide roll 235, flapping in the carry-out side sub-chamber 33 can be reliably prevented.
  • the unloading-side main indoor guide roll 234 and the unloading-side sub-indoor guide roll 235 allow the processing film 9 to enter the unloading-side sub-indoor guide roll 235 and the processed film 9 to the unloading-side partition wall 37.
  • the crossing position and angle can be determined. Accordingly, the clearance between the lower edge of the carry-out side opening 37a and the peripheral surface of the sub-inner guide roll 235 can be made sufficiently small. Therefore, it becomes difficult for the gas g1 on the to-be-processed film 9 to pass the opening 37a, and it can prevent reliably the outflow of the gas g1 out of the tank.
  • Increasing momentum of inflow of gas g3 from sub chamber 33 also contributes to prevention of outflow of gas g1 to the outside of the tank.
  • the delivery contact point d of the film 9 to be processed from the unloading side auxiliary chamber guide roll 235, and the position and angle at which the film 9 to be processed crosses the unloading side outer wall 36. Can be confirmed.
  • the winding diameter of the film 9 to be processed on the take-up roll 22 changes as the winding progresses.
  • the position and angle at which the delivery contact d on the peripheral surface of the sub-inner guide roll 235 and the film 9 to be processed cross the outer wall 36 do not change.
  • the film 9 to be processed in the carry-in side sub chamber 32 is positioned by being wound around the carry-in side sub chamber guide roll 232. Therefore, it can prevent that the to-be-processed film 9 flutters in the carrying-in side subchamber 32. FIG. Moreover, since almost the entire portion of the film to be processed 9 in the carry-in side sub chamber 32 is wound around the sub-chamber guide roll 232, flapping in the carry-in side sub chamber 32 can be reliably prevented.
  • the entrance contact a of the film to be processed 9 to the carry-in side sub-chamber guide roll 232 and the film to be processed 9 cross the carry-in side outer wall 34 by the carry-in side outside tank guide roll 231 and the carry-in side sub-indoor guide roll 232.
  • the position and angle can be determined. Even if the winding diameter of the film 9 to be processed on the feeding roll 21 is changed with the progress of feeding, the above-mentioned sub-roller guide roll 231 is interposed between the feeding roll 21 and the sub-indoor guide roll 232.
  • the position and angle at which the entrance contact a on the peripheral surface of the indoor guide roll 232 and the film 9 to be processed cross the outer wall 34 do not change.
  • the clearance between the lower edge of the carry-in side outer opening 34a and the peripheral surface of the auxiliary indoor guide roll 232 can be made sufficiently small.
  • the delivery contact b from the carry-in side sub-indoor guide roll 232 of the film to be processed 9 and the position where the film to be processed 9 crosses the carry-in side partition wall 35 by the carry-in side sub-indoor guide roll 232 and the carry-in side main room guide roll 233 The angle can be determined. Therefore, the clearance between the lower edge of the carry-in side inner opening 35a and the peripheral surface of the carry-in side sub-indoor guide roll 232 can be made sufficiently small.
  • the clearance between the upper edge of each carry-in opening 34a, 35a and the peripheral surface of the sub-indoor guide roll 232 is as much as possible within the range where the sub-room guide roll 232 does not contact the upper edge of each carry-in opening 34a, 35a. Can be small. As a result, it is possible to reliably prevent the gas containing the processing gas component in the main chamber 31 from leaking to the outside through the carry-in side sub chamber 32, and the external atmospheric gas to enter the main chamber 31 through the carry-in side sub chamber 32. Inflow can be reliably prevented.
  • the surface treatment apparatus 1 can be easily incorporated into, for example, a polarizing plate production line, and can be easily inlined.
  • the gas supplied to the sub chambers 32 and 33 from the sub chamber air supply means 51 and 52 is not limited to air, and may be an inert gas such as nitrogen.
  • the processing tank 30 may be provided with at least the carry-out side subchamber 33 among the carry-in side subchamber 32 and the carryout side subchamber 33.
  • the unloading side subchamber 32 and the unloading side subchamber 33 are used. Only 33 may be provided, and the carry-in side sub-chamber 32 may be omitted. From the viewpoint of preventing gas outside the tank from entering the processing tank 30 together with the film 9 to be processed, only the loading sub chamber 32 of the loading side sub chamber 32 and the unloading side sub chamber 33 is provided. May be.
  • the sub chamber supply means 51 and 52 are connected to the upper chamber portions 51b and 52b of the sub chambers 32 and 33, and the gas is directly supplied from the sub chamber supply means 51 and 52 to the upper chamber portions 51b and 52b. May be.
  • the gas may be supplied directly from the sub chamber supply means 51 and 52 to the upper chamber portions 51b and 52b and the lower chamber portions 51a and 52a of the sub chambers 32 and 33, respectively.
  • the diameters of the sub-chamber guide rolls 232 and 235 may be equal to or smaller than the inner dimensions of the sub-chambers 32 and 33 in the horizontal short direction (left and right in FIG. 1).
  • the vertical widths of the openings 34a, 35a, 36a, 37a of the sub chambers 32, 33 are preferably about 1 to 10 mm.
  • Two or more guide rolls 235 may be arranged in the carry-out side sub chamber 33. In this case, it is preferable that one guide roll 235 is disposed in the vicinity of the inner opening 37a and the other one guide roll 235 is disposed in the vicinity of the outer opening 36a.
  • Two or more guide rolls 232 may be arranged in the carry-in side sub chamber 32. In this case, it is preferable that one guide roll 232 is disposed in the vicinity of the outer opening 34a, and the other one guide roll 232 is disposed in the vicinity of the inner opening 35a.
  • the electrode structure of the processing unit 10 is not limited to the pair of roll electrodes 11, and may be a combination of a roll electrode and a plate electrode, or a combination of a roll electrode and a concave plate electrode having a concave curved surface along the circumferential surface of the roll electrode. Parallel plate electrodes may also be used.
  • the processing unit 10 is not limited to a so-called direct type plasma processing unit that directly irradiates plasma by introducing an object to be processed between a pair of electrodes, and blows out a plasma gas generated between the pair of electrodes. It may be a so-called remote-type plasma processing unit that sprays an object to be processed disposed away from the space.
  • the to-be-processed film 9 is not restricted to a continuous film, A glass substrate and a semiconductor wafer may be sufficient.
  • the conveying means 20 is not limited to the row of rolls 21, 22, 23, and may be a moving stage, a roller conveyor, or a manipulator.
  • the treatment content is not limited to plasma treatment for improving the adhesiveness of the resin film. Furthermore, the processing content is not limited to plasma processing.
  • the present invention can be applied to various surface treatments such as cleaning, surface modification, etching, and film formation.
  • the component of the processing gas is appropriately selected according to the processing content.
  • CF 4 in water repellency treatment and etching treatment of a silicon-containing film, CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , CHF 3 , CH 2 F 2 , CH 3 F
  • a fluorine-containing compound such as SF 6 , NF 3 , or XeF 2 is used.
  • hydrophilic treatment O 2 , N 2 or the like is used as a processing gas component.
  • An apparatus 1 having substantially the same structure as that shown in FIGS. 1 and 2 was used.
  • a TAC film was used as the film 9 to be processed.
  • the width of the film 9 (dimension in the direction orthogonal to the paper surface of FIG. 1) was 1540 mm.
  • the axial length of the guide rolls 232 and 235 was 1586 mm.
  • the diameter of the guide rolls 232 and 235 was ⁇ 100 mm.
  • the length of the auxiliary chambers 32 and 33 in the axial length direction was 1095 mm.
  • the size of the sub chamber 32 in the horizontal lateral direction was 128 mm.
  • the clearances between the lower edges of the openings 34a, 35a, 36a, 37a and the peripheral surfaces of the sub-chamber guide rolls 232, 235 were 3 mm in the vertical direction.
  • the clearance between the upper edges of the openings 34a, 35a, 36a, and 37a and the peripheral surfaces of the sub-chamber guide rolls 232 and 235 was 1 mm in the vertical direction.
  • Opening 34a, 35a, 36a, the clearance between the end face of the axis L 2, L 3 direction edges and auxiliary combustion chamber guide rolls 232, 235 of 37a was 2 mm.
  • the exhaust flow rate of the main chamber exhaust blower 43 was set to 10 m 3 / min.
  • the supply air flow rates of the carry-in side sub-chamber supply blower 51x and the carry-out side sub-chamber supply blower 52x were set to 0.5 m 3 / min, respectively.
  • the conveyance speed of the film 9 was adjusted in the range of 5 m / min to 40 m / min.
  • the internal pressure of the main chamber 31 was measured with a differential pressure sensor, the internal pressure of the main chamber 31 was maintained at a negative pressure that was 20 Pa lower than the atmospheric pressure when the transport speed of the film 9 was in the range of 5 m / min to 15 m / min. Even when the conveyance speed was 40 m / min, the internal pressure of the main chamber 31 was maintained at a negative pressure 17 Pa lower than the atmospheric pressure. Therefore, it was confirmed that even if the conveyance speed is increased, the amount of gas flowing in from the carry-in opening 34a can be suppressed, and there is no need to increase the exhaust flow rate of the main chamber exhaust means.
  • ozone detection was performed by installing an ozone detector (manufactured by Riken Keiki Co., Ltd., model number GD-K77D) outside each of the outer wall openings 34a and 36a, no matter what the opening 34a or 36a side is, regardless of the conveyance speed. Ozone was not detected. Therefore, it was confirmed that the gas in the main chamber 31 can be sufficiently prevented from leaking outside through the openings 34a and 36a.
  • the detection limit ozone concentration of the ozone detector was 0.02 ppm.
  • Example 2 the same apparatus 1 as in Example 1 was used, and the exhaust flow rate of the main chamber exhaust blower 43 was adjusted in the range of 2.5 m 3 / min to 30 m 3 / min.
  • the conveyance speed of the film 9 was 15 m / min (constant).
  • Other conditions and the detection method were the same as those in Example 1.
  • the internal pressure of the main chamber 31 when the exhaust flow rate was 10.0 m 3 / min was a negative pressure that was 16.5 Pa lower than the atmospheric pressure.
  • the internal pressure of the main chamber 31 when the exhaust flow rate was 15.0 m 3 / min was a negative pressure 34.5 Pa lower than the atmospheric pressure.
  • the internal pressure of the main chamber 31 when the exhaust flow rate was 20.0 m 3 / min was a negative pressure that was 48 Pa lower than the atmospheric pressure. Therefore, it was confirmed that leakage can be prevented by reducing the internal pressure of the main chamber 31 by about 10 Pa from the atmospheric pressure. It was confirmed that leakage could be sufficiently prevented by reducing the internal pressure of the main chamber 31 by about 15 Pa or more from the atmospheric pressure. Therefore, it is not necessary to increase the exhaust capacity of the main chamber exhaust means.
  • the present invention is applicable to the manufacture of optical devices such as polarizing plates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 処理槽の排気手段を大型化しなくても処理ガス成分が処理槽から外部に漏出するのを十分に抑制できる表面処理装置を提供する。 被処理物9を、搬送手段20によって処理槽30の主室31内の処理領域19を通過するように搬送方向に搬送する。処理槽30には、主室31の少なくとも搬出側に副室33を設ける。これら室を仕切る仕切壁37及び外壁36に被処理物9を搬入出可能な常開の開口37a,36aを形成する。主室排気手段40を主室31に接続し、主室31の内圧を槽外の圧力より低くする。副室給気手段52を副室33に接続して給気し、副室33の内圧を槽外の圧力より高くする。

Description

表面処理装置
 本発明は、被処理物を大気圧近傍下において表面処理する装置に関し、特に被処理物を連続的に搬送しながら大気圧プラズマ処理等の表面処理を行なうのに適した表面処理装置に関する。
 一般に、大気圧プラズマ処理等の表面処理においては、処理ガス成分の漏れ等を防止するため、処理領域を処理槽にて囲んでいる(特許文献1等参照)。この処理槽に排気ブロアや排気ポンプ等の排気源を接続し、処理槽内の処理ガスを含むガスを吸引して排出している。処理槽の端壁には、被処理物を搬入出する開口が設けられている。被処理物が枚葉状であったりバッチ処理する場合等では、上記開口に扉を設け、個々の被処理物を搬入、搬出する度に扉を開閉すれば、処理ガスの漏れを防止できる。しかし、被処理物が連続シート状であったり被処理物を処理ラインに沿って搬送しながら連続処理する場合等では、扉の開閉が困難ないしは不可能である。そこで、特許文献1では、搬入側及び搬出側の壁をそれぞれ二重構造にして小室を設けている。各壁に常開の開口が形成されている。
特開2001-102198号公報(0054、図8)
 上掲特許文献1の搬入側及び搬出側の二重壁によれば、処理槽からの流出ガスが、一旦、上記二重壁内の小室に溜められる。しかし、その後、ガスが拡散して外部に漏れるおそれがある。特に、搬出側においては、被処理物に接するガスが被処理物に引き連れられて外部に漏れやすい。これを防止するためには、排気ブロアや排気ポンプ等の排気源の容量を大きくする必要がある。
 本発明は、上記事情に鑑みてなされたものであり、被処理物を例えば連続的に搬送しながら処理槽内において表面処理する装置において、処理槽の排気源を大型化しなくても処理ガス成分が処理槽から外部に漏出するのを十分に抑制できるようにすることを主目的とする。
 上記課題を解決するため、本発明は、被処理物を大気圧近傍の処理領域にて表面処理する表面処理装置であって、
(a) 前記被処理物を、前記処理領域を通過するように搬送方向に搬送する搬送手段と、
(b) 前記処理領域を含む主室と、前記主室の前記搬送方向の搬入側及び搬出側のうち少なくとも搬出側に設けられて前記主室と仕切壁にて仕切られた副室とを有し、かつ搬入側の外壁及び搬出側の外壁並びに前記仕切壁には、前記被処理物を搬入出可能な常開の開口が形成された処理槽と、
(c) 前記主室に接続され、前記主室内のガスを吸引して前記主室の内圧を前記処理槽の外部の圧力より低くする排気手段と、
(d) 前記副室に接続され、前記副室内に空気又は不活性ガスを供給して前記副室の内圧を前記処理槽の外部の圧力より高くする副室給気手段と、
を備えたことを特徴とする。
 副室給気手段から副室に供給された空気又は不活性ガスが、上記圧力差によって仕切壁の開口から主室内に流入する。この流れによって、主室内の処理ガス成分を含むガスが外部に漏れるのを確実に防止できる。特に、主室内の搬出側の部分においては、被処理物に接するガスが、被処理物に引き連れられて搬出側の副室ひいては槽外へ向けて移動する。これに対し、搬出側の副室からのガスが主室に流入する。この搬出側副室からのガス流入方向は、上記被処理物の移動方向ひいては被処理物上のガスの流れ方向とは大略逆方向である。この逆方向の流入ガスによって、被処理物上のガスを押し戻すことができる。これによって、処理ガス成分を含むガスが被処理物と一緒に外部に漏れるのを確実に防止できる。主室の内圧は大気圧より少し低くすればよく、主室排気手段の排気源の排気容量を大きくする必要がなく、排気源を小型化できる。
 また、副室給気手段から副室に供給された空気又は不活性ガスの一部は、外壁の開口から外部に流出する。この流れによって、外部の雰囲気ガスが処理槽内に入り込むのを防止することができる。
 前記被処理物が連続シート状である場合には、前記搬送手段が、前記被処理物を掛け回す複数のガイドロールを含むことが好ましい。例えば、搬入側の槽外に繰出ロールが設けられ、搬出側の槽外に巻取ロールが設けられ、前記繰出ロール及び前記巻取ロールの間に前記複数のガイドロールが配列される。これら複数のガイドロールの一部又は全部が、処理槽の内部に配置される。前記連続シート状の被処理物は、繰出ロールから繰り出され、前記ガイドロールの列に案内されて処理槽の処理領域を含む主室及び副室を通り、巻取ロールに巻き取られる。
 前記ガイドロールのうち第1のガイドロールが前記副室内に収容されていることが好ましい。前記第1ガイドロールに連続シート状の被処理物を掛け回すことによって、副室内における連続シート状被処理物を位置決めしてばたつきを防止できる。したがって、外壁及び仕切壁の各開口の開口度を、連続シート状被処理物のばたつきを殆ど考慮することなく小さく設定できる。ひいては、主室からのガス漏れ又は外部雰囲気の侵入を確実に防止できる。
 前記第1ガイドロールの直径が前記副室を画成する外壁と仕切壁との間の距離より大きく、前記第1ガイドロールの外周部が前記外壁の開口及び前記仕切壁の開口に入り込んでいることが好ましい。
 これにより、前記第1ガイドロールによって前記開口の大部分を塞ぐようにできる。しかも、前記第1ガイドロールの周面上における前記連続シート状の被処理物の進入接点及び送出接点が、ちょうど前記開口の内部又は前記開口の近傍に位置するようにできる。そうすると、前記連続シート状の被処理物における前記副室内に配置される部分のほぼ全体が前記第1ガイドロールに掛け回される。したがって、前記副室内での前記連続シート状の被処理物のばたつきを確実に防止できる。よって、前記開口の開口度(すなわち、前記開口の縁部と前記第1ガイドロールの周面との間に形成される隙間の大きさ)を十分に小さくでき、主室からのガス漏れ又は外部雰囲気の侵入を確実に防止できる。副室内には第1ガイドロールを1つだけ設ければよく、部品点数を減らすことができる。
 前記第1ガイドロールの周面の周方向の一側部に前記被処理物が巻き付けられており、前記副室給気手段が、前記副室の前記一側部が面する室部分に開口する給気ポートを含むことが好ましい。これによって、前記室部分を確実に高圧にできる。したがって、主室内の処理ガス成分を含むガスが被処理物に引き連れられて副室に入り込んだり、外部の雰囲気ガスが副室内に入り込んだりするのを確実に低減できる。ひいては、処理ガス成分を含むガスが外部に流出したり、外部の雰囲気ガスが主室内に流入したりするのを一層確実に防止できる。
 前記複数のガイドロールのうち前記第1ガイドロールと隣接する第2のガイドロールが、前記処理槽の前記搬送方向の外側又は前記主室内に配置され、前記第1ガイドロールと前記第2ガイドロールとによって前記被処理物が前記開口を通過する位置が設定されていることが好ましい。
 これにより、前記開口の開口度を十分に小さくでき、主室からのガス漏れ又は外部雰囲気の侵入を確実に防止できる。前記第2ガイドロールは、前記繰出ロールと搬入側の副室内のガイドロールとの間、又は搬出側の副室内のガイドロールと前記巻取ロールとの間に介在される。繰出ロール又は巻取ロール上の被処理物の巻き付け径が繰り出し及び巻き取りの進行に伴って変化しても、上記位置が変化することはない。したがって、外壁の開口の開口度を十分に小さく設定できる。ひいては、主室からのガス漏れ又は外部雰囲気の侵入を確実に防止できる。特に、前記第1ガイドロールを搬出側の副室に設け、前記第2ガイドロールを前記搬出側の外壁と前記巻取ロールとの間に配置することによって、前記巻取ロール上の被処理物の巻き付け径が巻き取りの進行に伴って増大しても、被処理物が第1ガイドロールから第2ガイドロールへ送出される角度が変化するのを回避でき、かつ被処理物が前記搬出側の外壁の開口を通過する位置が変化するのを回避できる。したがって、前記搬出側の外壁の開口の縁と被処理物との間に形成される隙間の大きさを一定に維持できる。よって、前記搬出側の外壁の開口の開口度を十分に小さく設定できる。この結果、主室からのガスが前記搬出側の外壁の開口から外部へ流出したり、外部の雰囲気ガスが前記搬出側の外壁の開口から処理槽内に流入したりするのを確実に防止できる。
 前記主室の内圧は、好ましくは、前記処理槽の外部の圧力より10Pa~50Pa低い。よって、主室排気源の排気容量を小さくできる。
 前記副室の内圧は、好ましくは、前記処理槽の外部の圧力より5Pa~20Pa高い。これにより、処理ガス成分の漏れを確実に防止できる。
 ここで、大気圧近傍とは、1.013×10~50.663×10Paの範囲を言い、圧力調整の容易化や装置構成の簡便化を考慮すると、1.333×10~10.664×10Paが好ましく、9.331×10~10.397×10Paがより好ましい。
 本発明によれば、処理ガス成分が処理槽から外部に漏出するのを十分に抑制できる。排気源を大型化する必要はない。
本発明の第1実施形態に係る表面処理装置の概略構成を示す解説正面図である。 上記表面処理装置の処理槽の搬入側の部分及び搬出側の部分を、被処理フィルムを省略して示す、図1のII-II線に沿う平面断面図である。 上記処理槽の搬出側の部分を拡大して示す正面断面図である。 図3のIV-IV線に沿う、上記処理槽の搬出側の部分の側面図である。
 以下、本発明の実施形態を図面にしたがって説明する。
 図1は、本発明の一実施形態を示したものである。この実施形態の被処理物9は、連続シート状のフィルムにて構成されている。被処理フィルムは、例えば偏光板等の光学装置用の光学樹脂フィルムである。ここでは、被処理フィルム9として、偏光板の保護フィルムとなる光学樹脂フィルムが適用されている。被処理フィルム9の主成分としては、例えばトリアセテートセルロース(TAC)、ポリプロピレン(PP)、ポリエチレン(PE)、シクロオレフィン重合体(COP)、シクロオレフィン共重合体(COC)、ポリエチレンテレフタレート(PET)、ポリメタクリル酸メチル(PMMA)、ポリイミド(PI)等が挙げられるが、これに限定されるものではない。フィルムの厚さは、例えば100μm程度である。
 本実施形態の表面処理装置1は、被処理フィルム9に対し、偏光フィルムとの接着工程における接着性を向上させるための表面処理を施す。処理ガスとして重合性モノマーとキャリアガスの混合ガス等が用いられている。重合性モノマーとしては、例えばアクリル酸(CH=CHCOOH)が用いられている。アクリル酸は、酢酸様の臭気を有し、爆発性等をも有しているため、適切な管理を要する。重合性モノマーとしては、アクリル酸に限定されるものではなく、メタクリル酸、イタコン酸、マイレン酸、2-メタクリロイルプロピオン酸、メタクリル酸エチレングリコール、アリルアルコール、メタクリル酸ヒドロキシエチル、酢酸ビニル、メタクリル酸グリシジル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸オクチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸t-ブチル、メタクリル酸イソプロピル、メタクリル酸2-エチル、アクリルアルデヒド、クロトンアルデヒド等であってもよい。キャリアガスとしては不活性ガスが用いられている。不活性ガスとして窒素(N)が挙げられるが、これに限定されず、Ar、He等の希ガスであってもよい。
 表面処理装置1は、処理部10と、搬送手段20と、処理槽30を備えている。
 処理部10は、大気圧近傍プラズマにて被処理物9を表面処理する大気圧プラズマ処理部にて構成されている。大気圧プラズマ処理部10は、少なくとも2つの電極11を有している。これら電極11は、円筒形状(ロール状)になっている。2つのロール電極11が、軸線を図1の紙面と直交する水平方向に向けて平行に配置されている。ロール電極11,11どうし間の最も狭くなった箇所及びその近傍の空間が処理領域19になっている。図示は省略するが、2つのロール電極11の一方は電源に接続されている。他方のロール電極11は、電気的に接地されている。電源からの電力供給によって、ロール電極11,11間に大気圧近傍の圧力下でプラズマ放電が生成される。処理領域19の上方及び下方にノズル12がそれぞれ配置されている。各ノズル12の吹出し口が処理領域19に臨んでいる。図示しない処理ガス源からの処理ガスがノズル12に供給され、ノズル12から処理領域19へ吹き出される。これにより、処理ガスが処理領域19内でプラズマ化(励起、活性化、ラジカル化、イオン化等を含む)されて被処理フィルム9の表面処理がなされる。具体的には、処理ガス中のアクリル酸(重合性モノマー)が被処理フィルム9上で重合反応を起こし、被処理フィルム9の表面に接着性促進層が形成される。
 上下のノズル12,12から同時に処理ガスを吹き出してもよく、上下何れか1つのノズル12からのみ処理ガスを吹出し、他方のノズル12を処理領域19の閉塞部材として用いてもよい。
 被処理フィルム9の搬送方向の上流側のロール電極11の周面上で、アクリル酸等の重合性モノマーを含有するガスを被処理フィルム9に吹き付けて付着させ、続いて処理領域19に窒素等の不活性ガスを供給してプラズマ化し、重合性モノマーの重合反応を起こさせてもよい。
 搬送手段20は、被処理フィルム9を搬送方向(図1において概略右方向)に搬送する。搬送手段20は、繰出ロール21と、巻取ロール22と、ガイドロール23を備えている。これらロール21,22,23は、共に軸線を図1の紙面と直交する方向に向けた円筒形状になっている。繰出ロール21は、処理槽30より搬送方向の上流側すなわち搬入側(図1において左)に配置されている。繰出ロール21から被処理フィルム9が繰り出される。巻取ロール22は、処理槽30より搬送方向の下流側すなわち搬出側(図1において右)に配置されている。処理済みの被処理フィルム9が巻取ロール22に巻き取られる。繰出ロール21と巻取ロール22の間に複数のガイドロール23(231~236)が配列されている。これらガイドロール23に被処理フィルム9の中間部分が掛け回されている。ガイドロール23の列の中間にロール電極11,11が配置されている。被処理フィルム9がロール電極11,11の上側部分に半周程度掛け回されている。2つのロール電極11の中間の被処理フィルム9が処理領域19に通されている。各ロール電極11は、軸線まわりに回転可能になっている。ロール21,22及びロール電極11,11が互いに同期して回転駆動し、被処理フィルム9を搬送する。ロール電極11は、搬送手段20の一要素を構成する。ガイドロール23(231~236)は、被処理フィルム9の搬送に合わせて従動回転する。ガイドロール23によって、被処理フィルム9の搬送経路が設定され、かつ被処理フィルム9に張力が付与されている。
 処理槽30は、主室31と、搬入側の副室32と、搬出側の副室33を有している。主室31は、処理槽30の内容積の大半を占めている。主室31の内部に処理部10ひいては処理領域19が配置されている。
 処理槽30の搬入側の壁は、搬入側外壁34と搬入側仕切壁35の二重構造になっている。外壁34が処理槽30の搬入側の外部と処理槽30の内部とを仕切っている。仕切壁35によって、主室31と搬入側副室32が仕切られている。外壁34と仕切壁35との間に搬入側副室32が形成されている。搬入側副室32は、ロール23の軸線と同方向(図1の紙面と直交する方向)に延びる筒状空間になっている。搬入側副室32の内容積は、主室31の内容積より十分に小さい。搬入側副室32の内容積は、主室31の内容積の例えば500分の1~2000分の1である。
 処理槽30の搬出側の壁は、搬出側外壁36と搬出側仕切壁37の二重構造になっている。外壁36が処理槽30の搬出側の外部と処理槽30の内部とを仕切っている。仕切壁37によって、主室31と搬出側副室33が仕切られている。外壁36と仕切壁37との間に搬出側副室33が形成されている。搬出側副室33は、ロール23の軸線と同方向(図1の紙面と直交する方向)に延びる筒状空間になっている。搬出側副室33の内容積は、搬入側副室32の内容積とほぼ同じであり、主室31の内容積より十分に小さい。搬出側副室33の内容積は、主室31の内容積の例えば500分の1~2000分の1である。搬入側の副室32の内容積と搬出側の副室33の内容積が互いに異なっていてもよい。
 処理槽30の搬入側部及び搬出側部の構造を更に詳述する。
 搬入側の外壁34に搬入側外開口34aが形成されている。開口34aを介して搬入側の外部空間と搬入側副室32が連通している。搬入側仕切壁35に搬入側内開口35aが形成されている。開口35aを介して搬入側副室32と主室31が連通している。被処理フィルム9が、外部から外開口34aを通して搬入側副室32に搬入され、更に内開口35aを通して主室31に搬入される。搬入開口34a,35aは、常開であり、扉が設けられていない。
 搬入側副室32内に搬入側副室内ガイドロール232(第1ガイドロール)が収容されている。副室内ガイドロール232の直径は、副室32の水平短手方向(図1の左右方向)の寸法すなわち壁34,35間の距離より若干大きい。副室内ガイドロール232の左右の周側部が、各搬入開口34a,35aに少し入り込んでいる。副室内ガイドロール232によって、搬入開口34a,35aの大部分が塞がれている。各搬入開口34a,35aの上下の縁と副室内ガイドロール232の周面との間の隙間(クリアランス)は十分に狭い。各搬入開口34a,35aの上縁と副室内ガイドロール232の周面との垂直方向の離間距離は、好ましくは0.5mm~4mm程度であり、より好ましくは1mm程度である。各搬入開口34a,35aの下縁と副室内ガイドロール232の周面との垂直方向の離間距離は、上記上縁側の離間距離より若干大きく、好ましくは1mm~6mm程度であり、より好ましくは3mm程度である。副室内ガイドロール232によって、搬入側副室32が、ガイドロール232より下側の室部分32aと、ガイドロール232より上側の室部分32bとに仕切られている。
 図2に示すように、副室内ガイドロール232の軸線Lに沿う軸長は、搬入側副室32の軸線Lに沿う長さより短く、更には搬入開口34a,35aの軸線Lに沿う長さより少し短い。副室内ガイドロール232の軸線L方向の端面と、搬入開口34a,35aの軸線L方向の端縁との間のクリアランスは、好ましくは1mm~3mm程度である。副室内ガイドロール232の軸方向の両側の各端面と搬入側副室32の同側の内端面との間には十分な広さの連通空間32eが形成されている。副室32の下側の室部分32aと上側の室部分32bが連通空間32eを介して連通している。
 図1に示すように、被処理フィルム9が、副室内ガイドロール232の周面の下側部(周方向の一側部)に部分的に巻き付けられている。被処理フィルム9のガイドロール232への巻き付け部分9aは、被処理フィルム9における搬入側副室32内に配置された部分のほぼ全体に及んでいる。巻き付け部分9aは、搬入側副室32の下側の室部分32aに面している。副室内ガイドロール232によって被処理フィルム9の搬入側副室32内における位置ないしは姿勢が決められている。副室内ガイドロール232とその前段に隣接する槽外ガイドロール231(第2ガイドロール)とによって、被処理フィルム9が槽外から副室内ガイドロール232に進入する角度及び副室内ガイドロール232の周面に接する位置(進入接点a)、並びに被処理フィルム9が外開口34aを通過する位置が決められている。上記進入接点aは、ちょうど外開口34a又はその近傍に位置している。副室内ガイドロール232とその後段に隣接する主室内ガイドロール233(第2ガイドロール)とによって、被処理フィルム9が副室内ガイドロール232の周面から送り出される位置(送出接点b)及び角度、並びに被処理フィルム9が内開口35aを通過する位置が決められている。上記送出接点bは、ちょうど内開口35aの内部又はその近傍に位置している。
 上記槽外ガイドロール231は、処理槽30の搬入側の外部に、外開口34aに近接して配置されている。槽外ガイドロール231は、繰出ロール21と搬入側の外壁34との間に介在されている。
 上記主室内ガイドロール233は、主室31の内部に、内開口35aに近接して配置されている。
 同様に、処理槽30の搬出側の仕切壁37に搬出側内開口37aが形成されている。開口37aを介して主室31と搬出側副室33が連通している。搬出側外壁36に搬出側外開口36aが形成されている。開口36aを介して搬出側副室33と搬出側の外部空間とが連通している。処理部10にて処理済みの被処理フィルム9が、主室31から内開口37aを通して搬出側副室33に出され、更に外開口36aを通して外部に搬出される。搬出開口36a,37aは、常開であり、扉が設けられていない。
 図3及び図4に示すように、搬出側副室33内に搬出側副室内ガイドロール235(第1ガイドロール)が収容されている。副室内ガイドロール235の直径は、副室33の水平短手方向(図1の左右方向)の寸法すなわち壁36,37間の距離より若干大きい。副室内ガイドロール235の左右の周側部が、各搬出開口36a,37aに少し入り込んでいる。副室内ガイドロール235によって、搬出開口36a,37aの大部分が塞がれている。各搬出開口36a,37aの上下の縁と副室内ガイドロール235の周面との間の隙間(クリアランス)は十分に狭い。各搬出開口36a,37aの上縁と副室内ガイドロール235の周面との垂直方向の離間距離は、好ましくは0.5mm~4mm程度であり、より好ましくは1mm程度である。各搬出開口36a,37aの下縁と副室内ガイドロール235の周面との垂直方向の離間距離は、上記上縁側の離間距離より若干大きく、好ましくは1mm~6mm程度であり、より好ましくは3mm程度である。副室内ガイドロール235によって、搬出側副室33が、ガイドロール235より下側の室部分33aと、ガイドロール235より上側の室部分33bとに仕切られている。
 図2及び図4に示すように、副室内ガイドロール235の軸線Lに沿う軸長は、搬出側副室33の軸線Lに沿う長さより短く、更には搬出開口36a,37aの軸線Lに沿う長さより少し短い。副室内ガイドロール235の軸線L方向の端面と、搬出開口36a,37aの軸線L方向の端縁との間のクリアランスは、好ましくは1mm~3mm程度である。副室内ガイドロール235の軸方向の両側の端面と搬出側副室33の同側の内端面との間には十分な広さの連通空間33eが形成されている。副室33の下側の室部分33aと上側の室部分33bが連通空間33eを介して連通している。
 図1に示すように、被処理フィルム9が、副室内ガイドロール235の周面の下側部(周方向の一側部)に部分的に巻き付けられている。被処理フィルム9のガイドロール235への巻き付け部分9bは、被処理フィルム9における搬出側副室33内に配置された部分のほぼ全体に及んでいる。巻き付け部分9bは、搬出側副室33の下側の室部分33aに面している。副室内ガイドロール235によって被処理フィルム9の搬出側副室33内における位置ないしは姿勢が決められている。副室内ガイドロール235とその前段に隣接する主室内ガイドロール234(第2ガイドロール)とによって、被処理フィルム9が主室31から副室内ガイドロール235に進入する角度及び副室内ガイドロール235の周面に接する位置(進入接点c)、並びに被処理フィルム9が内開口35aを通過する位置が決められている。上記進入接点cは、ちょうど内開口35a又はその近傍に位置している。副室内ガイドロール235とその後段に隣接する槽外ガイドロール236(第2ガイドロール)とによって、被処理フィルム9が副室内ガイドロール235の周面から送り出される位置(送出接点d)及び角度、並びに被処理フィルム9が外開口36aを通過する位置が決められている。上記送出接点dは、ちょうど外開口36aの内部又はその近傍に位置している。
 上記主室内ガイドロール234は、主室31内に配置され、かつ仕切壁37ひいてはその開口37aに近接して配置されている。
 上記槽外ガイドロール236は、処理槽30の搬出側の外部に、外開口36aに近接して配置されている。槽外ガイドロール236は、搬出側の外壁36と巻取ロール22との間に介在されている。
 処理槽30の主室31に主室排気手段40が接続されている。排気手段40は、排気ポート41と、排気源43を含む。主室31の底部に排気ポート41が設けられている。ポート41から排気路42が延びている。この排気路42が排気源43に連なっている。排気源43は、ブロアにて構成されているが、排気ポンプにて構成されていてもよい。排気源43の駆動によって、主室31内のガスが排気ポート41から吸い込まれ、排気路42を経て排出される。
 図1に示すように、搬入側副室32には搬入側副室給気手段51が接続されている。副室給気手段51は、複数の給気ポート51pと、給気源51xを含む。図2に示すように、給気ポート51pは、搬入側副室32の底部に軸線Lに沿って間隔を置いて設けられている。図1に示すように、各給気ポート51pは、搬入側副室32の下側の室部分32aに開口している。副室内ガイドロール232の下側部(被処理フィルム9が巻き付けられた部分)と給気ポート51pが上下に対向している。
 給気源51xは、ブロアにて構成されているが、給気ポンプにて構成されていてもよい。給気源51xからの給気路51aが複数(図では5つ)に分岐し、各給気ポート51pに連なっている。給気源51xの駆動によって、空気が給気路51aを経て、各給気ポート51pから搬入側副室32内に供給される。
 図1に示すように、搬出側副室33には搬出側副室給気手段52が接続されている。副室給気手段52は、複数の給気ポート52pと、給気源52xを含む。図2及び図4に示すように、給気ポート52pは、搬出側副室33の底部に軸線Lに沿って間隔を置いて設けられている。図3及び図4に示すように、各給気ポート52pは、搬出側副室33の下側の室部分33aに開口している。副室内ガイドロール235の下側部(被処理フィルム9が巻き付けられた部分)と給気ポート52pが上下に対向している。
 給気源52xは、ブロアにて構成されているが、給気ポンプにて構成されていてもよい。1つの給気源が、搬入側副室給気源51x及び搬出側副室給気源52xとして共用されていてもよい。給気源52xからの給気路52aが複数(図では5つ)に分岐し、各給気ポート52pに連なっている。給気源52xの駆動によって、空気が給気路52aを経て、各給気ポート52pから搬出側副室33内に供給される。
 上記構成の表面処理装置1の動作を、処理槽30内の圧力制御を中心に説明する。
 被処理フィルム9を、繰出ロール21から連続的に繰り出し、ガイドロール23及びロール電極11の列に沿って連続的に搬送し、途中の処理領域19において表面処理し、巻取ロール22にて連続的に巻き取る。
 上記被処理フィルム9の搬送及び表面処理と併行して、主室排気手段40によって主室31内のガスを吸引して排出する。これにより、主室31の内圧が、大気圧近傍の圧力範囲内において処理槽30の外部の圧力(大気圧)より低くなる。好ましくは、主室31の内圧を大気圧より10Pa~50Pa程度低くし、より好ましくは20Pa程度低くする。
 さらに、副室給気手段51,52によって、副室32,33に空気を供給する。この空気は、給気ポート51p,52pから、先ず副室32,33の下側の室部分32a,33aに充填され、更に連通空間32e,33eを通って、上側の室部分32b.33b内に充填される。これにより、副室32,33の内圧が、大気圧近傍の圧力範囲内において処理槽30の外部の圧力(大気圧)より高くなる。好ましくは、副室32,33の内圧を大気圧より5Pa~20Pa程度高くする。したがって、以下の関係が成立する。
 (主室31の内圧)<(大気圧)<(副室32,33の内圧) (式1)
そのため、副室給気手段51,52から副室32,33に供給された空気が、外開口34a,36aから外部に流出するとともに、内開口35a,37aから主室31内に流入する。外開口34a,36aから外部に流出する流れによって、外部の雰囲気ガスが処理槽30内に入り込むのを防止できる。内開口35a,37aから主室31内に流入する流れによって、主室31内の処理ガス成分を含むガスが外部に漏れるのを防止できる。
 更に、給気ポート51p,52pからの空気は、直接的には下側の室部分32a,33aに供給され、そこから上側の室部分32b,33bに拡散するため、以下の関係が成立する。
  (下側の室部分32a,33aの内圧)>(上側の室部分32b,33bの内圧)   …(式2)
したがって、下側の室部分32a,33a、すなわち被処理フィルム9の巻き付け部分9a,9bが面する室部分32a,33aの内圧を確実に高圧にできる。よって、主室31内の処理ガス成分を含むガスが、室部分32a,33aを経て、外部に流出したり、外部の雰囲気ガスが、室部分32a,33aを経て、主室32内に流入したりするのを一層確実に防止できる。特に、図3に示すように、主室31の搬出側の部分においては、被処理フィルム9に接するガスg1が、被処理フィルム9に引き連れられて搬出側副室33ひいては処理槽30の搬出側の外部へ向けて移動する。これに対し、フィルム巻き付け側の室部分33a内の空気が、搬出側副室内ガイドロール235と搬出側内開口37aの下縁との間を通って主室31内に流入する。この流入ガスg3の流れ方向は、被処理フィルム9の搬送方向ひいては被処理フィルム9上のガスg1の流れとは逆方向である。この逆方向の流入ガスg3によって、被処理フィルム9上のガスg1を被処理フィルム9から離して主室31の内側へ押し戻すことができる。これによって、ガスg1が被処理フィルム9と一緒に槽外に流出するのを確実に防止できる。したがって、処理ガス成分の外部への漏出を確実に防止できる。よって、環境負荷を軽減できる。処理ガスがアクリル酸を含む場合、アクリル酸特有の酢酸様の臭気が外部雰囲気中に漂うのを確実に防止でき、良好な作業環境を確保できる。
 主室31の内圧は大気圧より少し低くすればよく、主室排気源43の排気容量を大きくする必要がなく、主室排気源43を小型化できる。
 搬出側副室33内における被処理フィルム9は、搬出側副室内ガイドロール235に掛け回されることによって位置決めされている。したがって、被処理フィルム9が搬出側副室33内でばたつくのを防止できる。しかも、被処理フィルム9の搬出側副室33内における部分のほぼ全体が副室内ガイドロール235に掛け回されているため、搬出側副室33内におけるばたつきを確実に防止できる。加えて、搬出側主室内ガイドロール234及び搬出側副室内ガイドロール235によって、被処理フィルム9の搬出側副室内ガイドロール235への進入接点c、並びに被処理フィルム9が搬出側仕切壁37を横切る位置及び角度を確定できる。したがって、搬出側内開口37aの下縁と副室内ガイドロール235の周面とのクリアランスを十分に小さくできる。よって、被処理フィルム9上のガスg1が開口37aを通過しにくくなり、ガスg1の槽外への流出を確実に防止できる。副室33からのガスg3の流入の勢いが増すことも、ガスg1の槽外への流出防止に寄与する。
 搬出側副室内ガイドロール235及び搬出側槽外ガイドロール236によって、被処理フィルム9の搬出側副室内ガイドロール235からの送出接点d、並びに被処理フィルム9が搬出側外壁36を横切る位置及び角度を確定できる。搬出側副室内ガイドロール235と巻取ロール22との間に槽外ガイドロール236を介在させることで、巻取ロール22上の被処理フィルム9の巻き付け径が巻き取りの進行に伴って変化しても、上記副室内ガイドロール235の周面上の送出接点d並びに被処理フィルム9が外壁36を横切る位置及び角度が変化することはない。(図3の二点鎖線にて示すように、槽外ガイドロール236と巻取ロール22との間の被処理フィルム9の角度が、巻き取りの進行に伴って変化する。)したがって、搬出側外開口36aの下縁と副室内ガイドロール235の周面とのクリアランスを十分に小さくできる。また、各搬出開口36a,37aの上縁と副室内ガイドロール235の周面との間のクリアランスは、副室内ガイドロール235が各搬出開口36a,37aの上縁に接しない範囲で可能な限り小さくできる。
 この結果、主室31内の処理ガス成分を含むガスが、搬出側副室33を経て外部に漏れるのを一層確実に防止できる。また、外部の雰囲気ガスが搬出側副室33を経て主室31内に流入するのを確実に防止できる。
 搬入側副室32内における被処理フィルム9は、搬入側副室内ガイドロール232に掛け回されることによって位置決めされている。したがって、被処理フィルム9が搬入側副室32内でばたつくのを防止できる。しかも、被処理フィルム9の搬入側副室32内における部分のほぼ全体が副室内ガイドロール232に掛け回されているため、搬入側副室32内におけるばたつきを確実に防止できる。加えて、搬入側槽外ガイドロール231及び搬入側副室内ガイドロール232によって、被処理フィルム9の搬入側副室内ガイドロール232への進入接点a、並びに被処理フィルム9が搬入側外壁34を横切る位置及び角度を確定できる。繰出ロール21と副室内ガイドロール232との間に槽外ガイドロール231を介在させることで、繰出ロール21上の被処理フィルム9の巻き付け径が繰り出しの進行に伴って変化しても、上記副室内ガイドロール232の周面上の進入接点a並びに被処理フィルム9が外壁34を横切る位置及び角度が変化することはない。したがって、搬入側外開口34aの下縁と副室内ガイドロール232の周面とのクリアランスを十分に小さくできる。搬入側副室内ガイドロール232及び搬入側主室内ガイドロール233によって、被処理フィルム9の搬入側副室内ガイドロール232からの送出接点b、並びに被処理フィルム9が搬入側仕切壁35を横切る位置及び角度を確定できる。したがって、搬入側内開口35aの下縁と搬入側副室内ガイドロール232の周面とのクリアランスを十分に小さくできる。また、各搬入開口34a,35aの上縁と副室内ガイドロール232の周面との間のクリアランスは、副室内ガイドロール232が各搬入開口34a,35aの上縁に接しない範囲で可能な限り小さくできる。この結果、主室31内の処理ガス成分を含むガスが搬入側副室32を経て外部に漏れるのを確実に防止でき、かつ外部の雰囲気ガスが搬入側副室32を経て主室31内に流入するのを確実に防止できる。
 よって、表面処理装置1を、例えば偏光板の製造ラインなどに簡単に組み込むことができ、容易にインライン化することができる。
 本発明は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において種々の改変をなすことができる。
 例えば、副室給気手段51,52から副室32,33に供給されるガスは、空気に限られず、窒素等の不活性ガスであってもよい。
 処理槽30には搬入側副室32及び搬出側副室33のうち少なくとも搬出側副室33が設けられていればよい。特に、処理槽30内の処理ガス成分を含むガスが被処理フィルム9と一緒に外部に漏出するのを防止する観点からは、搬入側副室32及び搬出側副室33のうち搬出側副室33だけを設け、搬入側副室32を省略してもよい。
 なお、槽外のガスが被処理フィルム9と一緒に処理槽30内に入り込むのを防止する観点からは、搬入側副室32及び搬出側副室33のうち搬入副室32だけを設けることにしてもよい。
 副室給気手段51,52を副室32,33の上側の室部分51b,52bに接続し、副室給気手段51,52からガスを上記上側の室部分51b,52bに直接的に供給してもよい。副室給気手段51,52からガスを、副室32,33の上側の室部分51b,52bと下側の室部分51a,52aにそれぞれ直接的に供給してもよい。
 副室内ガイドロール232,235の直径は、副室32,33の水平短手方向(図1の左右)の内寸法と等しくてもよく、上記内寸法より小さくてもよい。この場合、副室32,33の開口34a,35a,36a,37aの上下方向の幅は、1~10mm程度であることが好ましい。
 搬出側副室33内にガイドロール235を2つ以上配置してもよい。この場合、1つのガイドロール235を内開口37aの近傍に配置し、他の1つのガイドロール235を外開口36aの近傍に配置するのが好ましい。
 搬入側副室32内にガイドロール232を2つ以上配置してもよい。この場合、1つのガイドロール232を外開口34aの近傍に配置し、他の1つのガイドロール232を内開口35aの近傍に配置するのが好ましい。
 副室33の内部又は仕切壁37の近くにエアナイフノズルを設け、被処理フィルム9の表面に沿ってエアナイフを吹き付け、被処理フィルム9上のガスg1を被処理フィルム9から離し、又は主室31の内側へ押し戻してもよい。 
  処理部10の電極構造は、一対のロール電極11に限られず、ロール電極と平板電極の組み合わせでもよく、ロール電極と該ロール電極の周面に沿う凹曲面を有する凹板電極との組み合わせでもよく、平行平板電極でもよい。
 処理部10は、一対の電極間に被処理物を導入してプラズマを直接的に照射する所謂ダイレクト式のプラズマ処理部に限られず、一対の電極間で生成したプラズマガスを吹き出して、電極間空間から離れて配置された被処理物に吹き付ける所謂リモート式のプラズマ処理部であってもよい。
 被処理フィルム9は、連続フィルムに限られず、ガラス基板や半導体ウェハであってもよい。 搬送手段20は、ロール21,22,23の列に限られず、移動ステージでもよく、コロコンベアでもよく、マニピュレータでもよい。
 処理内容は、樹脂フィルムの接着性向上のためのプラズマ処理に限られない。更に、処理内容は、プラズマ処理に限られない。本発明は、洗浄、表面改質、エッチング、成膜等の種々の表面処理に適用できる。
 処理ガスの成分は、処理内容に応じて適宜選択される。例えば、撥水化処理やシリコン含有膜のエッチング処理においては、処理ガス成分としてCF、C、C、C、CHF、CH、CHF、SF、NF、XeF等のフッ素含有化合物を用いる。親水化処理においては、処理ガス成分としてO、N等を用いる。
 実施例を説明するが、本発明は以下の実施例に限定されるものではない。
 図1及び図2と実質的に同じ構造の装置1を用いた。
 被処理フィルム9としてTACフィルムを用いた。フィルム9の幅(図1の紙面と直交する方向の寸法)は、1540mmであった。
 ガイドロール232,235の軸長は、1586mmであった。ガイドロール232,235の直径は、φ100mmであった。
 副室32,33の上記軸長方向の長さは、1095mmであった。副室32の水平短手方向の寸法は、128mmであった。
 開口34a,35a,36a,37aの下縁と副室内ガイドロール232,235の周面との間のクリアランスは、垂直方向に3mmであった。
 開口34a,35a,36a,37aの上縁と副室内ガイドロール232,235の周面との間のクリアランスは、垂直方向に1mmであった。
 開口34a,35a,36a,37aの軸線L,L方向の端縁と副室内ガイドロール232,235の端面との間のクリアランスは、2mmであった。
 主室排気ブロア43の排気流量を、10m/minに設定した。
 搬入側副室給気ブロア51x及び搬出側副室給気ブロア52xの給気流量を、それぞれ0.5m/minに設定した。
 フィルム9の搬送速度は、5m/min~40m/minの範囲で調節した。
 処理部10におけるプラズマ条件は以下の通りとした。
  供給電力: 1200W
  印加電圧:Vpp=17kV
  ロール電極11,11間のギャップ: 1mm
 上記ロール電極11,11間において空気放電を起こし、オゾンを発生させた。ノズル12からのガス供給は行なわなかった。
 主室31の内圧を差圧センサにて測定したところ、フィルム9の搬送速度が5m/min~15m/minの範囲では、主室31の内圧を大気圧より20Pa低い陰圧に維持できた。搬送速度を40m/minにしても、主室31の内圧は大気圧より17Pa低い陰圧を維持できた。したがって、搬送速度を大きくしても、搬入開口34aからのガス流入量を抑制でき、主室排気手段の排気流量を増大させる必要がないことが確認された。
 さらに、各外壁開口34a,36aの外側にオゾン検出器(理研計器株式会社製、型番GD-K77D)を設置してオゾン検出を行なったところ、何れの開口34a,36a側でも搬送速度にかかわらずオゾンは検出されなかった。したがって、主室31内のガスが開口34a,36aから外部に漏れるのを十分に防止できることが確認された。なお、上記オゾン検出器の検出限界オゾン濃度は、0.02ppmであった。
 実施例2では、実施例1と同じ装置1を用い、主室排気ブロア43の排気流量を、2.5m/min~30m/minの範囲で調節した。フィルム9の搬送速度は、15m/min(一定)とした。それ以外の条件及び検出方法は、実施例1と同じにした。
 主室排気ブロア43の排気流量が2.5m/min~5.0m/minのときは、両開口34a,36a側でオゾンが検出された。排気流量5.0m/minのときの主室31の内圧は、大気圧より4.5Pa低い陰圧であった。
 主室排気ブロア43の排気流量が7.5m/minのときは、オゾンが検出されたり、されなかったりした。
 主室排気ブロア43の排気流量が10.0m/min~30.0m/minのときは、何れの開口34a,36a側でもオゾンは検出されなかった。排気流量10.0m/minのときの主室31の内圧は、大気圧より16.5Pa低い陰圧であった。排気流量15.0m/minのときの主室31の内圧は、大気圧より34.5Pa低い陰圧であった。排気流量20.0m/minのときの主室31の内圧は、大気圧より48Pa低い陰圧であった。
 したがって、主室31の内圧を大気圧より10Pa程度低くすれば、漏れを防止できることが確認された。主室31の内圧を大気圧より15Pa程度以上低くすれば、漏れを十分に防止できることが確認された。よって、主室排気手段の排気容量を大きくする必要はない。
 本発明は、例えば偏光板等の光学装置の製造に適用可能である。
1   表面処理装置
9   被処理物
10  処理部
11  ロール電極
12  ノズル
19  処理領域
20  搬送手段
21  繰出ロール
22  巻取ロール
23  ガイドロール
231 搬入側の槽外ガイドロール(第2ガイドロール)
232 搬入側の副室内ガイドロール(第1ガイドロール)
233 搬入側の主室内ガイドロール(第2ガイドロール)
234 搬出側の主室内ガイドロール(第2ガイドロール)
235 搬出側の副室内ガイドロール(第1ガイドロール)
236 搬入側の槽外ガイドロール(第2ガイドロール)
30  処理槽
31  主室
32  搬入側の副室
32a 搬入側副室の下側(被処理フィルムの巻付側)の室部分
32b 搬入側副室の上側(非巻付側)の室部分
32e 搬入側の連通空間
33  搬出側の副室
33a 搬出側副室の下側(被処理フィルムの巻付側)の室部分
33b 搬出側副室の上側(非巻付側)の室部分
33e 搬入側の連通空間
34  搬入側の外壁
34a 搬入側外開口(外壁の開口)
35  搬入側の仕切壁
35a 搬入側の内開口(仕切壁の開口)
36  搬出側の外壁
36a 搬出側の外開口(外壁の開口)
37  搬出側の仕切壁
37a 搬出側の内開口(仕切壁の開口)
40  主室排気手段
41  排気ポート
42  排気路
43  排気源
51  搬入側の副室給気手段
52  搬出側の副室給気手段
51a,52a 給気路
51p,52p 給気ポート
51x,52x 給気源
a,c 進入接点
b,d 送出接点
 

Claims (7)

  1.  被処理物を大気圧近傍の処理領域にて表面処理する表面処理装置であって、
    (a) 前記被処理物を、前記処理領域を通過するように搬送方向に搬送する搬送手段と、
    (b) 前記処理領域を含む主室と、前記主室の前記搬送方向の搬入側及び搬出側のうち少なくとも搬出側に設けられて前記主室と仕切壁にて仕切られた副室とを有し、かつ搬入側の外壁及び搬出側の外壁並びに前記仕切壁には、前記被処理物を搬入出可能な常開の開口が形成された処理槽と、
    (c) 前記主室に接続され、前記主室内のガスを吸引して前記主室の内圧を前記処理槽の外部の圧力より低くする排気手段と、
    (d) 前記副室に接続され、前記副室内に空気又は不活性ガスを供給して前記副室の内圧を前記処理槽の外部の圧力より高くする副室給気手段と、
    を備えたことを特徴とする表面処理装置。
  2.  前記被処理物が連続シート状であり、
     前記搬送手段が、前記被処理物を掛け回す複数のガイドロールを含み、前記ガイドロールのうち第1のガイドロールが前記副室内に収容されていることを特徴とする請求項1に記載の表面処理装置。
  3.  前記第1ガイドロールの直径が前記副室を画成する外壁と仕切壁との間の距離より大きく、前記第1ガイドロールの外周部が前記外壁の開口及び前記仕切壁の開口に入り込んでいることを特徴とする請求項2に記載の表面処理装置。
  4.  前記第1ガイドロールの周面の周方向の一側部に前記被処理物が巻き付けられており、前記副室給気手段が、前記副室の前記一側部が面する室部分に開口する給気ポートを含むことを特徴とする請求項2又は3に記載の表面処理装置。
  5.  前記複数のガイドロールのうち前記第1ガイドロールと隣接する第2のガイドロールが、前記処理槽の前記搬送方向の外側又は前記主室内に配置され、前記第1ガイドロールと前記第2ガイドロールとによって前記被処理物が前記開口を通過する位置が設定されていることを特徴とする請求項2~4の何れか1項に記載の表面処理装置。
  6.  前記搬送手段が、前記処理槽より前記搬出側の外側に配置されて前記被処理物を巻き取る巻取ロールを更に含み、前記第2ガイドロールが、前記搬出側の外壁と前記巻取ロールとの間に配置されていることを特徴とする請求項5に記載の表面処理装置。
  7.  前記主室の内圧が、前記処理槽の外部の圧力より10Pa~50Pa低く、前記副室の内圧が、前記処理槽の外部の圧力より5Pa~20Pa高いことを特徴とする請求項1~6の何れか1項に記載の表面処理装置。
     
PCT/JP2011/055091 2010-03-08 2011-03-04 表面処理装置 WO2011111626A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012504430A JP5130413B2 (ja) 2010-03-08 2011-03-04 表面処理装置
KR1020127026047A KR101268242B1 (ko) 2010-03-08 2011-03-04 표면 처리 장치
CN2011800127702A CN102792783A (zh) 2010-03-08 2011-03-04 表面处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-050219 2010-03-08
JP2010050219 2010-03-08

Publications (1)

Publication Number Publication Date
WO2011111626A1 true WO2011111626A1 (ja) 2011-09-15

Family

ID=44563429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055091 WO2011111626A1 (ja) 2010-03-08 2011-03-04 表面処理装置

Country Status (5)

Country Link
JP (1) JP5130413B2 (ja)
KR (1) KR101268242B1 (ja)
CN (1) CN102792783A (ja)
TW (1) TW201201632A (ja)
WO (1) WO2011111626A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138160A (ja) * 2013-01-18 2014-07-28 Fujifilm Corp 配線基板の製造方法
JP2016056390A (ja) * 2014-09-05 2016-04-21 積水化学工業株式会社 フィルム表面処理方法及び装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6066707B2 (ja) * 2012-12-13 2017-01-25 日東電工株式会社 偏光フィルムの製造方法
KR20210122507A (ko) 2020-04-01 2021-10-12 한국전기연구원 영구자석 동기전동기의 고정자 저항 및 인덕턴스 추정 시스템. 및 이를 이용한 영구자석 동기전동기 제어 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196071A (ja) * 1984-10-17 1986-05-14 Hitachi Ltd 真空連続処理装置
JPH01287275A (ja) * 1988-05-12 1989-11-17 Mitsubishi Heavy Ind Ltd 連続真空蒸着装置
JPH07223761A (ja) * 1994-02-10 1995-08-22 Fuji Photo Film Co Ltd 感光材料用支持体の真空処理用シール方法及び装置
JP2000072903A (ja) * 1998-08-31 2000-03-07 Konica Corp 支持体の表面処理装置、支持体の表面処理方法、及び表面処理した支持体
JP2000246091A (ja) * 1998-12-29 2000-09-12 Konica Corp 基体の表面処理方法及びその装置並びに表面処理した基体
JP2002346375A (ja) * 2001-05-24 2002-12-03 Matsushita Electric Works Ltd プラズマ処理装置及びプラズマ処理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880000215A (ko) * 1986-06-10 1988-03-24 나까므라 히사오 시이트(sheet)상 물체의 플라즈마 처리장치
JP4058857B2 (ja) * 1999-10-01 2008-03-12 松下電工株式会社 プラズマ処理装置及びプラズマ処理方法
JP2002322558A (ja) * 2001-04-25 2002-11-08 Konica Corp 薄膜形成方法、光学フィルム、偏光板及び画像表示装置
JP5081712B2 (ja) * 2008-05-02 2012-11-28 富士フイルム株式会社 成膜装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196071A (ja) * 1984-10-17 1986-05-14 Hitachi Ltd 真空連続処理装置
JPH01287275A (ja) * 1988-05-12 1989-11-17 Mitsubishi Heavy Ind Ltd 連続真空蒸着装置
JPH07223761A (ja) * 1994-02-10 1995-08-22 Fuji Photo Film Co Ltd 感光材料用支持体の真空処理用シール方法及び装置
JP2000072903A (ja) * 1998-08-31 2000-03-07 Konica Corp 支持体の表面処理装置、支持体の表面処理方法、及び表面処理した支持体
JP2000246091A (ja) * 1998-12-29 2000-09-12 Konica Corp 基体の表面処理方法及びその装置並びに表面処理した基体
JP2002346375A (ja) * 2001-05-24 2002-12-03 Matsushita Electric Works Ltd プラズマ処理装置及びプラズマ処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138160A (ja) * 2013-01-18 2014-07-28 Fujifilm Corp 配線基板の製造方法
JP2016056390A (ja) * 2014-09-05 2016-04-21 積水化学工業株式会社 フィルム表面処理方法及び装置

Also Published As

Publication number Publication date
JPWO2011111626A1 (ja) 2013-06-27
KR101268242B1 (ko) 2013-05-31
JP5130413B2 (ja) 2013-01-30
TW201201632A (en) 2012-01-01
KR20120117947A (ko) 2012-10-24
CN102792783A (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5130413B2 (ja) 表面処理装置
EP1340838A1 (en) Method and device for atmospheric plasma processing
KR20110079821A (ko) 표면 처리 장치
JP2014125414A (ja) 板状ガラスの表面処理装置及び表面処理方法
WO1992009103A1 (en) Device and method for carrying thin plate-like substrate
JP2010087079A (ja) 表面処理装置
JP2009213958A (ja) 基板処理装置
KR102479760B1 (ko) 광조사 장치
KR102588108B1 (ko) 유리판의 제조 방법 및 그 제조 장치
JP2009194014A (ja) プロセス処理装置
KR101568273B1 (ko) 플렉시블 기판 처리장치 및 이를 이용한 플렉시블 기판 처리방법
TW201327657A (zh) 排氣系統及其方法
JP2007280885A (ja) プラズマ処理装置
JP4612520B2 (ja) 大気圧プラズマ処理装置
JP4914415B2 (ja) 表面処理装置
JP2009099361A (ja) プラズマプロセス装置及びプラズマ処理方法
JP4865208B2 (ja) 大気圧プラズマ処理装置
JP6419428B2 (ja) 差動排気システム
WO2010073669A1 (ja) 成膜装置およびそれを用いた基板の製造方法
CN106480421B (zh) 竖立基材的连续式薄膜处理设备
KR101580968B1 (ko) 플렉시블 기판 처리장치 및 이를 이용한 플렉시블 기판 처리방법
JP6406944B2 (ja) 表面処理用排気ノズル装置
JP2015195113A (ja) 表面処理装置および表面処理方法
JP4860664B2 (ja) 表面処理装置
JP2018145444A (ja) 薄膜形成装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012770.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753285

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504430

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127026047

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11753285

Country of ref document: EP

Kind code of ref document: A1