WO2011111250A1 - デテント脱進機と機械式時計 - Google Patents
デテント脱進機と機械式時計 Download PDFInfo
- Publication number
- WO2011111250A1 WO2011111250A1 PCT/JP2010/064819 JP2010064819W WO2011111250A1 WO 2011111250 A1 WO2011111250 A1 WO 2011111250A1 JP 2010064819 W JP2010064819 W JP 2010064819W WO 2011111250 A1 WO2011111250 A1 WO 2011111250A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- balance
- center
- escapement
- stone
- wheel
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B15/00—Escapements
- G04B15/06—Free escapements
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B15/00—Escapements
- G04B15/14—Component parts or constructional details, e.g. construction of the lever or the escape wheel
Definitions
- the present invention relates to a detent escapement and a watch incorporating the detent escapement.
- the present invention relates to a detent escapement configured to reduce an escapement error and a mechanical timepiece incorporating the detent escapement configured as such.
- Detent escapement (chronometer escapement) has long been known as a type of escapement for mechanical watches.
- a spring type detent escapement (Spring Detent Escapement)
- a pivot type detent escapement (Pivoted Detent Escapement) have been widely known (for example, the following non-detent escapement).
- Patent Document 1 a spring type detent escapement (Spring Detent Escapement) and a pivot type detent escapement (Pivoted Detent Escapement) have been widely known (for example, the following non-detent escapement).
- a conventional spring-type detent escapement 800 includes an escape wheel 810, a balance with hairspring 820, a detent lever 840, and a return spring 830 formed of a plate spring.
- a granite 812 is fixed to the large brim of the balance 820.
- a retaining stone 832 is fixed to the detent lever 840.
- the removal stone 824 is fixed to the large brim 816.
- the pallet stone 812 and the removal stone 824 are configured to be able to come into contact with the tooth portion 112 of the escape wheel 110.
- a conventional pivot type detent escapement 900 includes a escape wheel 910, a balance with hairspring 920, a detent lever 930, and a return spring 940 formed of a spiral spring (spiral spring).
- a granite 912 is fixed to the large brim of the balance 920.
- a retaining stone 932 is fixed to the detent lever 930.
- the removal stone 924 is fixed to the large brim 916.
- a feature common to the type of escapement shown in FIG. 20 and FIG. 21 is that, unlike the club tooth lever type escapement that is widely used at present, power is transmitted directly from the escape wheel to the balance.
- the advantage that the loss of power (transmission torque) in the escapement can be reduced can be mentioned.
- the conventional detent escapement includes an escape wheel (1), a balance, a detent (11) that supports the stop pawl (21), and a restriction plate (5) fixed to the balance.
- the structure provided with the balance spring (12) by which the inner end was integrated with the detent (11) is known (for example, refer to the following patent documents 1).
- escapement error is a club tooth lever type escapement and direct impulse system represented by the above detent escapement.
- the escapement error is caused by the escapement acting as an impact or resistance against the free vibration of the balance when the escapement transmits energy to the balance based on Airy's theorem.
- the “dead center” means “the center of vibration of the balance” when the balance is free to vibrate. That is, the “vibration center” includes the rotation position when the balance is rotated to the maximum in the first direction (for example, clockwise direction: clockwise rotation) and the second balance in which the balance is opposite to the first direction. (For example, counterclockwise direction: counterclockwise rotation) means a position that is exactly in the center between the rotation position and the rotation position.
- “Resistance before dead center” means that a force is applied in a direction opposite to the direction of the balance of the balance with the balance before passing through the dead center (the center of vibration of the balance).
- “resistance before the dead center” means that the tip of the operating spring comes into contact with the balance stone of the balance and adds resistance to the balance before the balance passes through the dead center (the center of vibration of the balance).
- the impact before the dead point means that a force is applied to the direction of the balance of the balance before the balance passes through the dead center (the center of vibration of the balance).
- impact before dead center means that the balance wheel teeth touch the balance stone of the balance wheel before the balance passes through the dead center (the center of vibration of the balance). It means applying force against.
- shock after dead center means that after the balance passes through the dead center (the center of vibration of the balance), a force is applied in the direction of the balance of the balance.
- impact after dead center means that after the balance has passed through the dead center (the center of vibration of the balance), the teeth of the escape wheel push the balance stone of the balance and exert a force against the direction of movement of the balance. Means adding.
- “Resistance after dead center” means that after the balance passes through the dead center (the center of vibration of the balance), a force is applied in the direction opposite to the direction of the balance of the balance. That is, “resistance after dead center” means that when the balance passes through the dead center (the center of vibration of the balance) and further returns toward the dead center (the center of vibration of the balance), the tip of the operating spring is This means that the balance of the balance with the balance of the balance of the balance is added.
- the “resistance after the dead point” means that the balance passes through the dead point (the center of vibration of the balance) and returns toward the dead point (the center of vibration of the balance), and further, the balance changes to the dead point (the balance of the balance). Means that the tip of the one-side actuating spring comes into contact with the balance stone of the balance and adds resistance to the balance.
- the “resistance before the dead center (resistance before passing through the vibration center)” shifts the rate (second / day: sec / day) of the watch in the negative direction (delay).
- “impact after dead center (impact after passing through vibration center)” shifts the rate of the watch (second / day: sec / day) in the minus direction (delay).
- the farther the position where the disturbance is applied from the balance center of the balance with the balance the greater the influence of the disturbance on the balance of the balance.
- the disturbance does not affect the vibration cycle of the balance.
- the escapement error varies depending on the balance angle of the balance (that is, the input torque to the balance).
- the basic performance such as the rate of a mechanical watch, can be improved by providing an escapement mechanism that has good transmission efficiency of the escapement and that can transfer kinetic energy within a narrow swing angle range near the center of vibration of the balance. Can be improved.
- An object of the present invention is to provide a detent escapement configured such that an escapement error is smaller than that of a conventional detent escapement.
- the escapement error (static escapement error) is expressed by the following equation.
- SEE Static escapement error [sec / day]; Rd: rate [sec / day] at a constant swing angle (arbitrary constant torque) when the escapement is driven; Rn: the rate of free vibration of the balance with hair [sec / day].
- the present invention corrects the position of the center of vibration of the balance with the effect on the rate caused by "impact before dead center”, the effect on the rate caused by "resistance before dead center”, and The sum of the influence on the rate caused by "impact” and the influence on the rate caused by "resistance after dead center” is smaller than that of the conventional detent escapement. That is, this invention is comprised so that the fluctuation
- a correction amount is set so as to be different to some extent, an approximate expression (linear approximate expression) is created, and the correction amount (angle) of the balance center position of the balance is calculated.
- the balance of the balance of the balance of the balance can be corrected by manufacturing an escapement device for an experiment of the same size or an enlarged model, setting the correction amount so that it is somewhat different, and determining an appropriate correction amount (angle) ).
- the escapement error can be made extremely small as compared with the conventional detent escapement.
- the isochronous curve can be improved as compared with the conventional detent escapement.
- the present invention includes an escape wheel, a balance having a pallet and a disengagement stone that can come into contact with the tooth portion of the escape wheel, and an operation lever having a stop stone that can come into contact with the tooth portion of the escape wheel.
- ⁇ resistance before dead center '' The ⁇ impact before the dead center '' is defined as that the wheel of the escape wheel contacts the balance stone of the balance wheel and applies force in the direction of movement of the balance before the balance passes through the center of vibration.
- the detent escapement of the present invention the sum of the influence on the rotational movement of the balance caused by the “impact before dead center” and the influence on the rotational movement of the balance caused by the “resistance after dead center”.
- the sum of the effects of advancing the rate of the timepiece composed, the effect on the rotational movement of the balance caused by the “resistance before dead center”, and the rotational movement of the balance caused by the “impact after dead center” The removal stone is fixed at a position facing away from the escape wheel with respect to the rotation reference line so that the sum of the effects that delay the rate of the watch constituted by the sum of the effects is balanced. It is like that.
- the removal stone is a position rotated 10 degrees from the rotation reference line and a position rotated 50 degrees from the rotation reference line in a direction far from the escape wheel. It is preferable to fix between. With this configuration, the escapement error can be further reduced as compared with the conventional spring type detent escapement.
- the removal stone is further fixed at a position rotated from 20 to 30 degrees from the rotation reference line in a direction far from the escape wheel. preferable. With this configuration, the escapement error can be greatly reduced as compared with the conventional spring type detent escapement.
- the present invention also provides a mainspring constituting a power source of a mechanical timepiece, a front wheel train that rotates by a rotational force when the mainspring is rewound, and an escapement for controlling the rotation of the front wheel train.
- the escapement is constituted by the detent escapement of the present invention described above.
- the balance with a balance spring includes a balance spring, and an outer end portion of the balance spring is fixed to a beard that is rotatable with respect to the balance.
- the position of the dislocation stone with respect to the rotation reference line and the position of the pallet can be changed by rotating the whiskers.
- the mechanical timepiece of the invention is preferably configured to include a rotatable range indicating means for indicating a range in which the whisker can be rotated.
- This configuration makes it possible to realize a mechanical watch that is thin and easy to adjust compared to a conventional spring-type detent escapement. Further, the mechanical timepiece of the present invention can reduce the escapement error as compared with the conventional detent escapement.
- the detent escapement of the present invention is configured to apply energy from the escape wheel to the balance within a narrow swing angle range where the balance passes through the dead center (vibration center). Compared with the conventional spring type detent escapement, the escapement error of the mechanical timepiece can be reduced. Further, the detent escapement of the present invention can improve the isochronous curve as compared with the detent escapement of the prior art. Further, the mechanical timepiece of the present invention can reduce the escapement error as compared with the conventional detent escapement.
- the detent escapement of this invention is a top view which shows the structure of an escapement.
- it is sectional drawing which shows a single operation spring fixed pin and a single operation spring eccentric pin.
- it is sectional drawing which shows a return spring fixing pin and a return spring eccentric pin.
- it is sectional drawing which shows a return spring fixing pin and a return spring horizontal screw.
- it is sectional drawing which shows an adjustment eccentric pin.
- it is a fragmentary sectional view which shows the receiving recessed part for receiving a return spring.
- the mechanical timepiece using the detent escapement of the present invention it is a perspective view showing the structure of the front train wheel, escapement and the like.
- the detent escapement of this invention it is a top view (the 2) which shows the operating state of an escapement.
- the detent escapement of this invention it is a top view (the 3) which shows the operating state of an escapement.
- the detent escapement of this invention is a top view (the 4) which shows the operating state of an escapement.
- the top view (the 5) which shows the operating state of an escapement.
- the top view (the 6) which shows the operating state of an escapement.
- the top view (the 7) which shows the operating state of an escapement.
- it is a graph which shows the experimental result in the 10 time model of an escapement.
- FIG. 5 is a graph showing a simulation result in the embodiment of the detent escapement of the present invention. It is the graph of the torque which shows the position change of the impact and resistance by dead center position adjustment in a detent escapement, and the top view of a balance with hairspring. It is a graph which shows the position change of the impact and resistance by dead center position adjustment in a detent escapement. It is a perspective view which shows the structure of the conventional spring type detent escapement. It is a perspective view which shows the structure of the conventional pivot type detent escapement. It is a principle diagram for explaining Airy's theorem. In the conventional detent escapement, it is a top view (the 1) which shows the operating state of the escapement in the dead point position where a rate becomes late.
- the conventional detent escapement it is a top view (the 2) which shows the operation state of the escapement in the dead point position where a rate becomes late.
- the conventional detent escapement it is a top view (the 3) which shows the operating state of the escapement in the dead point position where a rate becomes late.
- the conventional detent escapement it is a top view (the 4) which shows the operating state of the escapement in the dead point position where a rate becomes late.
- the conventional detent escapement it is a top view (the 5) which shows the operating state of the escapement in the dead point position where a rate becomes late.
- the conventional detent escapement it is a top view (the 6) which shows the operation state of the escapement in the dead point position where a rate becomes late.
- the conventional detent escapement it is a top view (the 7) which shows the operating state of the escapement in the dead point position where a rate becomes late.
- the conventional detent escapement it is a top view (the 8) which shows the operating state of the escapement in the dead point position where a rate becomes late.
- the 2 which shows the operating state of the escapement in the dead point position where a rate is delayed.
- the conventional detent escapement it is a top view (the 3) which shows the operating state of the escapement in the dead point position where a rate becomes late.
- the conventional detent escapement it is a top view (the 4) which shows the operating state of the escapement in the dead point position where a rate becomes late.
- the conventional detent escapement it is a top view (the 5) which shows the operating state of the escapement in the dead point position where a rate becomes late.
- the conventional detent escapement it is a top view (the 6) which shows the operation state of the escapement in the dead point position where a rate becomes late.
- the conventional detent escapement it is a top view (the 7) which shows the operating state of the escapement in the dead point position where a rate becomes late.
- a machine body including a driving part of a timepiece is referred to as a “movement”.
- a state in which a dial and hands are attached to the movement and put into a watch case to make a finished product is called “complete” of the watch.
- the side with the glass of the watch case that is, the side with the dial
- the side with the dial is referred to as the “back side” or “glass side” or “dial side” of the movement.
- the side with the back cover of the watch case that is, the side opposite to the dial is referred to as the “front side” or “back side” of the movement.
- a train wheel incorporated on the “front side” of the movement is referred to as a “front train wheel”.
- the train wheel incorporated in the “back side” of the movement is called “back train wheel”.
- a watch movement 300 can be equipped with the detent escapement 100 of the present invention.
- the detent escapement 100 of the present invention includes an escape wheel 110, a balance with hairspring 120, and an operating lever 130 having a stop stone 132 including a contact plane 132B that can come into contact with a tooth portion 112 of the escape wheel 110. .
- the balance with hairspring 120 includes a balance stem 114, a balance wheel 115, a large brim 116, and a hairspring 118.
- the pebbles 122 are fixed to the large brim 116.
- the balance with hairspring 120 includes a balance stem 114, a balance wheel 115, a large brim 116, and a hairspring 118.
- the removal stone 124 is fixed to the large brim 116.
- the pallet stone 122 and the removal stone 124 are configured to come into contact with the tooth portion 112 of the escape wheel 110.
- a straight line passing through the rotation center 130A of the operating lever 130 with the rotation center 120C of the balance 120 as the origin is defined as a rotation reference line 120D.
- the removal stone 124 is preferably fixed between a position rotated 10 degrees from the rotation reference line 120D and a position rotated 50 degrees from the rotation reference line 120D in a direction far from the escape wheel 110. . Further, the removal stone 124 is more preferably fixed at a position rotated 20 degrees to 30 degrees from the rotation reference line 120D in a direction far from the escape wheel 110. That is, in FIG. 1, the angle DTN between the straight line 120F connecting the rotation center of the balance with the contact surface of the removal stone 124 and the rotation reference line 120D is preferably 10 to 50 degrees. More preferably, the angle is 30 degrees. On the other hand, in the conventional detent escapement, the removal stone 124 is fixed so as to be on the rotation reference line (the angle DTN is 0 degree).
- the one-side actuating spring 140 is preferably composed of a leaf spring made of an elastic material such as stainless steel.
- the one-side actuating spring 140 includes a base portion 140B, a deformation spring portion 140D, and a removal stone contact portion 140G.
- the plate thickness direction of the deformation spring portion 140D of the one-side actuating spring 140 is preferably a direction perpendicular to the rotation center axis 130A of the actuating lever 130.
- the escape wheel & pinion 110 includes an escape wheel 109 and an escape hook 111.
- the tooth portion 112 is formed on the outer peripheral portion of the escape gear 109.
- fifteen tooth portions 112 are formed on the outer peripheral portion of the escape gear 109.
- the escape wheel & pinion 110 is incorporated in the movement so as to be rotatable with respect to the main plate 170 and a train wheel bridge (not shown).
- the upper shaft portion of the escape hook 111 is supported so as to be rotatable with respect to a train wheel bridge (not shown).
- the lower shaft portion of the hook 111 is supported so as to be rotatable with respect to the base plate 170.
- the balance with hairspring 120 is incorporated into the movement so as to be rotatable with respect to the main plate 170 and balance with balance 180.
- the upper shaft portion of the balance stem 114 is supported so as to be rotatable with respect to the balance 180.
- the lower shaft portion of the balance stem 114 is supported so as to be rotatable with respect to the main plate 170.
- An inner end portion of the hairspring 118 is fixed to a hairball 172 fixed to the balance stem 114.
- the outer end portion of the hairspring 118 is fixed to a beard 175 fixed to the beard holder 174.
- the beard holder 174 is supported so as to be rotatable by a certain angle with respect to the balance with hairspring 180.
- the beard holder 174 and the beard holder 175 integrally, the beard holder is rotated with respect to the balance holder of the removal stone 124 with respect to the rotation reference line 120D.
- the position and the position of the rock stone 122 can be changed. That is, with this configuration, the position of the removal stone 124 with respect to the position of the vibration center of the balance 120 can be adjusted, and the position of the rocking stone 122 can be adjusted to correct the vibration center position of the balance 120.
- the rotatable range instructing means can be constituted by a marking 183 provided on the balance holder 180.
- the marking 183 is preferably formed at a plurality of positions.
- the marking 183 includes a short stamp on the delay side, a round stamp with an intermediate length on the delay side, a long stamp indicating a reference, and a round stamp with an intermediate length on the lead side. It can be configured to consist of a short stamp on the advance side.
- the marking 183 can be provided on the balance holder 180 or can be provided on other parts such as a train wheel holder and a barrel holder.
- the marking 183 may be engraved or printed, and may be configured in a contour shape such as a balance holder 180 or a train wheel receiver or a digging shape.
- a slow / fast needle 176 for adjusting the rate of the watch is supported so as to be rotatable by a certain angle with respect to the balance 180.
- a whisker bar 177 fixed to the slow and quick needle 176 is in contact with the vicinity of the outer end of the hairspring 118.
- the rate of the timepiece can be adjusted by changing the position at which the whisker bar 177 contacts the hairspring 118 by rotating the slow / fast hand 176.
- the operating lever 130 is incorporated in the movement so as to be rotatable with respect to the main plate 170 and a train wheel bridge (not shown).
- the operating lever 130 includes an operating lever body 134 and an operating lever true 136.
- the upper shaft portion of the operating lever true 136 is supported so as to be rotatable with respect to a train wheel bridge (not shown).
- the lower shaft portion of the operating lever true 136 is supported so as to be rotatable with respect to the main plate 170.
- the operating lever 130 can be incorporated in the movement 300 so as to be rotatable with respect to the main plate 170 and an operating lever receiver (not shown).
- the upper shaft portion of the operating lever true 136 is supported so as to be rotatable with respect to an operating lever receiver (not shown).
- a spring receiving projection 130 ⁇ / b> D is provided at the tip of the operating lever 130 closer to the balance 120.
- the removal stone contact portion 140G of the one-side actuating spring 140 is disposed so as to be in contact with the spring receiving projection portion 130D.
- the operating lever 130 is configured to be rotatable in two directions, a direction in which the retaining stone 132 approaches the escape wheel 110 and a direction in which the retaining stone 132 moves away from the escape wheel 110.
- a return spring 150 is provided for applying a force to the operating lever 130 to rotate the operating lever 130 in a direction in which the stop stone 132 approaches the escape wheel 110.
- the return spring 150 is preferably composed of a leaf spring made of an elastic material such as stainless steel.
- the return spring 150 includes a base portion 150B and a deformation spring portion 150D.
- the plate thickness direction of the deformation spring portion 150D of the return spring 150 is preferably a direction perpendicular to the rotation center axis 130A of the operating lever 130.
- the return spring 150 is configured to apply a force to the operating lever 130 in a plane perpendicular to the rotation center axis 110A of the escape wheel 110.
- the one-side actuating spring 140 and the return spring 150 are disposed at positions in a symmetric direction with respect to the rotation center 130 ⁇ / b> A of the actuating lever 130.
- the direction in which the return spring 150 applies force to the operating lever 130 is configured such that the portion of the operating lever 130 provided with the retaining stone 132 rotates in a direction approaching the escape wheel 110.
- the detent escapement of the present invention is configured such that a force to return to the initial position corresponding to the action of “pull” in the club tooth lever type escapement is applied to the operating lever 130 by the return spring 150. Therefore, the detent escapement of the present invention has a feature that it is less susceptible to disturbances than the conventional spring type detent escapement.
- the one-side actuating spring 140 and the return spring 150 are configured to include a portion located in one plane perpendicular to the rotation center axis 110A of the escape wheel 110. It is good. With this configuration, a thin detent escapement can be realized as compared with the conventional spring type detent escapement.
- the one-side actuating spring 140 is fixed to the actuating lever body 134 by a one-side actuating spring fixing pin 137.
- a single operation spring eccentric pin 138 for adjusting the position of the tip of the single operation spring 140 is fixed to the operation lever body 134.
- the single actuating spring eccentric pin 138 includes an eccentric shaft portion 138F, a head portion 138H, and a fixing portion 138K.
- the fixing portion 138K is inserted into the fixing hole of the main plate 170 so as to be rotatable.
- the amount of eccentricity of the eccentric shaft portion 138F can be set to about 0.1 mm to 2 mm, for example.
- a driver groove 138M is provided in the head portion 138H.
- the eccentric shaft portion 138F of the one-side actuating spring eccentric pin 138 is disposed in the window portion 140J of the one-side actuating spring 140.
- the one-side actuating spring 140 can rotate along the upper surface of the actuating lever body 134 with the central axis of the one-side actuating spring fixing pin 137 as the center of rotation. it can.
- a single-acting spring horizontal screw 146 for adjusting the position of the tip of the single-acting spring 140 may be provided.
- the support hole 140E of the one-side actuating spring 140 is supported between the one-side actuating spring horizontal screw 146 and the one-side actuating spring holding nut 147.
- the thread portion of the one-side actuating spring horizontal screw 146 is configured to be screwed into the female thread portion provided on the vertical wall portion 130 ⁇ / b> V of the actuating lever 130.
- the return spring 150 is fixed to the main plate 170 by the return spring fixing pin 157.
- a return spring eccentric pin 158 for adjusting the position of the tip of the return spring 150 is fixed to the main plate 170 (ie, the substrate).
- the return spring eccentric pin 158 includes an eccentric shaft portion 158F, a head portion 158H, and a fixing portion 158K.
- the fixing portion 158K is inserted and fixed in the fixing hole of the main plate 170.
- the amount of eccentricity of the eccentric shaft portion 158F can be set to about 0.1 mm to 2 mm, for example.
- a driver groove 158M is provided in the head portion 158H.
- the eccentric shaft portion 158F of the return spring eccentric pin 158 is disposed in the window portion 150J of the return spring 150.
- the return spring 150 may be configured to be fixed to the ground plate 170 (that is, the substrate) using a return spring fixing horizontal screw (not shown).
- the return spring fixing horizontal screw can be configured similarly to the structure of the one-side actuating spring horizontal screw 146 shown in FIG. With this configuration, the magnitude of the force applied to the operating lever 130 can be easily adjusted. Moreover, since the resistance added to the balance with hairspring 120 can be controlled by this configuration, the swing angle of the balance with hairspring 120 can be controlled.
- an adjustment eccentric pin 162 for adjusting the initial position of the operating lever 130 is provided on the main plate 170 (ie, the substrate) so as to be rotatable.
- the adjustment eccentric pin 162 includes an eccentric shaft portion 162F, a head portion 162H, and a fixing portion 162K.
- the fixing portion 162K is rotatably inserted into the fixing hole of the main plate 170.
- the amount of eccentricity of the eccentric shaft portion 162F can be set to about 0.1 mm to 2 mm, for example.
- a driver groove 158M is provided in the head portion 162H.
- the eccentric shaft portion 162F of the adjustment eccentric pin 162 is disposed so as to contact the side surface portion of the operating lever 130. By rotating the eccentric shaft portion 162F of the adjustment eccentric pin 162, the initial position of the operating lever 130 can be easily adjusted.
- a detachment prevention eccentric pin 164 for preventing the operation lever 130 from detaching is provided on the ground plate 170 (ie, the substrate).
- the detachment prevention eccentric pin 164 can be configured similarly to the structure of the adjustment eccentric pin 162 shown in FIG.
- the amount of eccentricity of the eccentric shaft portion of the detachment preventing eccentric pin 164 can be set to about 0.1 mm to 2 mm, for example. With this configuration, it is possible to effectively prevent the return spring from detaching from the operating lever even when the operating lever moves greatly in parallel with the substrate surface due to disturbance. By rotating the eccentric shaft portion of the detachment preventing eccentric pin 164, the movement range of the operating lever 130 can be easily adjusted.
- a receiving recess 130 ⁇ / b> G for receiving the return spring 150 is provided on the side surface of the operating lever 130.
- the operating lever contact portion of the return spring 150 is received in the receiving recess 130G.
- FIGS. 9 to 15 (a) in the drawing is a plan view showing an operating state of the detent escapement, and (b) in the drawing shows impact (torque) and resistance ( Torque), that is, “impact before dead center”, “resistance before dead center”, “impact after dead center”, “resistance after dead center” It is a figure which shows an influence.
- FIG. 9C is a partial plan view showing a configuration in which the removal stone 124 is fixed at a position facing away from the escape wheel 110 with the rotation reference line 120D as a reference. 9B to FIG.
- the horizontal axis indicates the rotation angle of the balance with hairspring 120
- the vertical axis indicates the impact (torque) and resistance (torque) applied to the balance with hairspring 120.
- the influence on the progress of the rate is indicated by the right-up hatching
- the influence on the delay of the rate is indicated by the right-down hatching.
- the “dead point” (the center of vibration of the balance with hairspring) of the balance with the balance with hairspring 120 is indicated by a vertical line (solid line).
- the maximum amplitude position of the balance with hairspring 120 is indicated by a white circle.
- 9 (b) to 15 (b) the current position of the balance with hairspring 120 is indicated by a vertical line (thick solid line).
- Operation 1 Referring to FIG. 9A, the balance 120 rotates freely in the direction of the arrow A1 (counterclockwise direction) due to free vibration of the balance with hairspring 120. Referring to FIG. 9B, the balance with hairspring 120 rotates counterclockwise from the position shown in FIG. 9A toward the dead center (vibration center).
- the operation lever 130 rotates in the direction of the arrow A2 (clockwise direction), the operation lever body 134 moves away from the adjustment eccentric pin 162.
- the balance with hairspring 120 receives “resistance before the dead center”, and thus the rate is affected.
- the value of the effect that the rate is delayed in the state shown in FIG. 10A is smaller than the value of the effect that the rate is delayed due to the “impact after dead center” in the state shown in FIG. Yes.
- the operating lever 130 rotates in the direction of the arrow A3 (counterclockwise direction), and the operating lever body 134 is pushed back toward the adjusting eccentric pin 162.
- the rate is affected.
- the value of the effect of increasing the rate in the state shown in FIG. 11A is larger than the value of the effect of delaying the rate due to “impact after dead center” in the state shown in FIG.
- the balance with hairspring 120 receives “resistance after dead center”, and thus the yield is affected.
- the value of the effect of increasing the rate in the state shown in FIG. 14A is balanced with the value of the effect of delaying the rate due to the “impact after dead center” in the state shown in FIG.
- the detent escapement of the present invention can be configured such that the escapement error becomes very small compared to the conventional detent escapement.
- the removal stone 124 is fixed at a position facing away from the escape wheel 110 with the rotation reference line 120D as a reference.
- the removal stone 124 is rotated 10 degrees from the rotation reference line 120D and 50 degrees from the rotation reference line 120D in a direction far from the escape wheel 110. More preferably, it is fixed between the fixed positions.
- the removal stone 124 is fixed at a position rotated approximately 30 degrees from the rotation reference line 120D in a direction far from the escape wheel 110. know.
- the configuration of the detent escapement of Comparative Example 1 corresponds to the configuration of the conventional detent escapement, and includes a balance that is configured at a dead center where the rate is delayed.
- 23 to 30 (a) in the figure is a plan view showing the operating state of the detent escapement, and (b) in the figure is an impact (torque) and resistance ( Torque), that is, "impact before dead center”, “resistance before dead center”, “impact after dead center”, “resistance after dead center” It is a figure which shows an influence.
- FIG. 23 (c) in a state where the balance with hairspring 120G is at the vibration center, a straight line passing through the rotation center 130CG of the operating lever 130G with the rotation center 120CG of the balance 120G as the origin is defined as a rotation reference line 120DG.
- FIG. 23C is a partial plan view showing a configuration in which the removal stone 124G is fixed at a position above the rotation reference line 120DG. 23 (b) to 30 (b), the horizontal axis indicates the rotation angle of the balance with hair balance 120G, and the vertical axis indicates the impact (torque) and resistance (torque) applied to the balance with hair balance 120G.
- the influence on the progress of the rate is indicated by the right-up hatching, and the influence on the delay of the rate is indicated by the right-down hatching.
- the “dead point” (the center of vibration of the balance) of the balance 120G is indicated by the vertical line (solid line).
- the maximum amplitude position of the balance with hairspring 120G is indicated by a white circle.
- the current position of the balance with hairspring 120G is indicated by a vertical line (thick solid line).
- Operation 2 Referring to FIG. 24A, the removal stone 124G fixed to the large brim 116G rotates in the direction of the arrow A1 (counterclockwise direction) and contacts the removal stone contact portion of the one-side actuating spring 140G.
- Operation 3 Referring to FIG. 25A, the removal stone 124G then rotates in the direction of the arrow A1 (counterclockwise direction), and the one-side actuating spring 140G is pushed by the removal stone 124G to push the spring receiving projection. Then, the operating lever 130G rotates in the direction of the arrow A2 (clockwise direction). The tip of the tooth portion of the escape wheel 110G slides on the contact plane of the stop stone 112G.
- the balance with hairspring 120 ⁇ / b> G receives “resistance after dead center”, thereby being affected by the rate of progress.
- the value of the effect of increasing the rate in the state shown in FIG. 25A is smaller than the value of the effect of delaying the rate due to the “impact after dead center” in the state shown in FIG. Yes.
- the balance of the balance with hairspring 120G is affected by a delay in the rate of the post-dead-center impact.
- the value of the effect that the rate is delayed in the state shown in FIG. 26A is larger than the value of the effect that the rate is increased due to “resistance after dead center” in the state shown in FIG.
- the detent escapement of the comparative example 1 has a great influence on the delay of the rate, and has a larger escapement error than the detent escapement of the present invention.
- the configuration of the detent escapement of the comparative example 2 includes a balance with a balance formed at a dead center position where the rate is advanced.
- 31 to FIG. 37 (a) in the drawing is a plan view showing the operating state of the detent escapement of the comparative example, and (b) in the drawing is an impact (torque) by the four escapements.
- 31 (c) shows a position where the removal stone 124H is directed away from the escape wheel 110H with respect to the rotation reference line 120DH and is positioned at 60 degrees counterclockwise from the rotation reference line 120DH. It is a fragmentary top view which shows the structure currently fixed to.
- the horizontal axis represents the rotation angle of the balance with hair 120H
- the vertical axis represents the impact (torque) and resistance (torque) applied to the balance 120H.
- the influence on the progress of the rate is indicated by the right-up hatching
- the influence on the delay of the rate is indicated by the right-down hatching.
- the “dead point” (the center of vibration of the balance) of the balance 120H is indicated by a vertical line (solid line).
- the maximum amplitude position of the balance with hairspring 120H is indicated by a white circle.
- the current position of the balance with hairspring 120H is indicated by a vertical line (thick solid line).
- Operation 1 Referring to FIG. 31 (a), the balance 120H vibrates freely, causing the large collar 116H to rotate in the direction of the arrow A1 (counterclockwise direction). Referring to FIG. 31 (b), the balance with hairs 120H rotates counterclockwise from the position shown in FIG. 31 (a) toward the dead center (vibration center).
- Operation part 2 Referring to FIG. 32 (a), the removal stone 124H fixed to the large brim 116H rotates in the direction of the arrow A1 (counterclockwise direction) and contacts the removal stone contact portion of the one-side actuating spring 140H. Next, the removal stone 124H rotates in the direction of the arrow A1 (counterclockwise direction), and the one-side actuating spring 140H is pushed by the removal stone 124H to push the spring receiving projection. Then, the operating lever 130H rotates in the direction of the arrow A2 (clockwise direction). The tip of the tooth portion of the escape wheel 110H slides on the contact plane of the stop stone 132H.
- the operation lever 130H rotates in the direction of the arrow A2 (clockwise direction), the operation lever body moves away from the adjusting eccentric pin.
- the balance with hairspring 120 ⁇ / b> H receives “resistance before the dead center”, thereby being affected by the delay in the rate.
- the value of the influence of the delayed rate in the state shown in FIG. 32A is smaller than the value of the influence of the advanced rate due to the “impact before dead center” in the state shown in FIG. Yes.
- the balance of the balance with hairspring 120H is affected by the “yield before dead center”.
- the value of the effect of increasing the rate in the state shown in FIG. 33A is larger than the value of the effect of the delayed rate due to “resistance before dead center” in the state shown in FIG.
- Operation 5 Referring to FIG. 35 (a), the balance 120H freely vibrates in the direction of arrow A1 (counterclockwise direction), so that the tip of the next tooth portion of the escape wheel 110H is brought into contact with the stop stone 132H. Fall.
- the operating spring 140H is separated from the spring receiving projection of the operating lever 130H. Therefore, only the one-side actuating spring 140H is pushed out in the direction of the arrow A6 (counterclockwise direction) by the removal stone 124H in a state where the actuating lever 130H is stationary.
- the balance with hairspring 120 ⁇ / b> H receives “resistance after dead center”, so that the rate is affected.
- the value of the effect of increasing the rate in the state shown in FIG. 36A is smaller than the value of the effect of increasing the rate due to the “impact before dead center” in the state shown in FIG.
- the effect that the rate is delayed becomes equal to the effect that the rate is advanced. It is comprised as follows. That is, in this embodiment of the present invention, generally, the effect of the rate being delayed and the effect of the rate being advanced are completely offset.
- the resistance (torque) applied to the balance by the release of the operating lever is generated, and the balance ends before the balance passes through the dead center position.
- the impact (torque) applied to the balance from the escape wheel is within a range where the impact (torque) is generated, and the balance passes through the dead center position.
- the resistance (torque) applied to the balance by releasing the one-side actuating spring occurs after the balance exceeds the dead center position.
- the removal stone is in a position facing away from the escape wheel with respect to the rotation reference line, and is counterclockwise from the rotation reference line.
- the influence of the rate delay is smaller than the influence of the advance rate.
- the resistance (torque) applied to the balance by releasing the operating lever before the balance exceeds the dead center position, and the escape wheel An impact (torque) applied to the balance is generated and the process ends.
- the resistance (torque) applied to the balance by releasing the one-side actuating spring occurs after the balance exceeds the dead center position.
- FIG. 16 shows that the balance point of the balance with hairspring is 0 degrees (position corresponding to the prior art), +20 degrees (position corresponding to one correction example in the embodiment of the present invention), and ⁇ 20 degrees (the present invention).
- the balance torque is changed to three parameters (comparative example set in the reverse direction), and the impact torque received by the balance from the escape wheel at each dead center position is 0.403 [mN ⁇ m], 0.3628 [mN ⁇ m], 0.3225 [mN ⁇ m], 0.282 [mN ⁇ m], 0.2419 [mN ⁇ m], 0.202 [mN ⁇ m], 0. It is the figure which showed the impact torque received from a escape wheel when changing to 8 points of 1613 [mN * m] and 0.1209 [mN * m], and the balance change of a balance.
- the horizontal axis represents the torque of the escape wheel ( mN ⁇ m)
- the vertical axis represents the average period (sec) of the balance with hairspring.
- Simulation results A simulation model was designed and compared for the detent escapement of the present invention.
- Equation of motion The equation of motion indicating the free vibration of the one-degree-of-freedom friction system and the viscous system is represented by the following formula (1).
- ⁇ rotation angle of the balance (rad);
- I The moment of inertia of the balance (kg ⁇ mm 2 );
- F viscosity coefficient (kg ⁇ m 2 / s);
- k spring constant of the hairspring (kg ⁇ m 2 / s 2 );
- R solid friction resistance (kg ⁇ m 2 / s 2 );
- T Sum of the impact torque applied to the balance during one cycle, the release of the operating lever received by the balance, and the resistance torque when releasing the single operating spring (kg ⁇ m 2 / s 2 ) .
- T was given as a function of ⁇ , and a simulation model was created in which the timing of occurrence of (resistance / impact components before and after dead center) was changed in one cycle, and the operation of the escapement was simulated. .
- FIG. 17 shows a graph showing a simulation result in the simulation model of the escapement.
- FIG. 17 shows the rate of the watch when the balance of the balance with the balance is changed to three parameters of +10 degrees, +30 degrees, and +50 degrees and the balance angle of the balance is 200 degrees or more (1 It is the figure which showed the result of having simulated the value whose number of seconds (sec / day) which a clock delays or advances in a day is 50 seconds / day (sec / day).
- the horizontal axis indicates the balance angle (deg) of the balance with the balance
- the vertical axis indicates the rate (sec / day) of the watch.
- the present invention provides a mainspring that constitutes a power source of a mechanical timepiece, a front wheel train that rotates by a rotational force when the mainspring is unwound, and an escapement for controlling the rotation of the front wheel train.
- the escapement is constituted by the detent escapement described above. With this configuration, it is possible to realize a mechanical timepiece having a very small escapement error and high power transmission efficiency of the escapement. Further, the mechanical timepiece of the present invention can reduce the mainspring, or can achieve a long-lasting mechanical timepiece when using a barrel of the same size.
- the movement (machine body) 300 includes a ground plate 170 that constitutes the substrate of the movement 300.
- a winding stem 310 is arranged in the “3 o'clock direction” of the movement 300.
- a winding stem 110 is rotatably incorporated in a winding stem guide hole of the main plate 170.
- the detent escapement including the balance with hairspring 120, escape wheel 110, and actuating lever 130, and the front wheel train including the fourth wheel 327, the third wheel 326, the second wheel 325, and the barrel complete 320 are the front side of the movement 100. Is arranged.
- a switching device (not shown) including a setting lever, a yoke, and a yoke holder is disposed on the “back side” of the movement 300.
- a barrel holder (not shown) that rotatably supports the upper shaft portion of the barrel complete 320, an upper shaft portion of the third wheel 326, an upper shaft portion of the fourth wheel 327, the escape wheel 110
- a train wheel bridge (not shown) that rotatably supports the upper shaft portion
- an operation lever bracket (not shown) that rotatably supports the upper shaft portion of the operating lever 130
- the balance of the balance 120 A balance holder 180 that rotatably supports the shaft portion is arranged on the “front side” of the movement 300.
- the second wheel & pinion wheel 325 is configured to rotate by the rotation of the barrel complete 320.
- Second wheel & pinion 325 includes a second gear and a second pinion.
- the barrel gear is configured to mesh with the second pinion.
- the third wheel & pinion 326 is configured to rotate by the rotation of the second wheel & pinion 325.
- the third wheel & pinion 326 includes a third gear and a third pinion.
- the fourth wheel & pinion 327 is configured to rotate once per minute by the rotation of the third wheel & pinion 326.
- the fourth wheel & pinion 327 includes a fourth gear and a fourth pinion.
- the third gear is configured to mesh with the fourth pinion.
- the escape wheel & pinion 110 is configured to rotate while being controlled by the operation lever 130 by the rotation of the fourth wheel & pinion 327.
- the escape wheel & pinion 110 includes an escape gear and an escape hook.
- the fourth gear is configured so as to mesh with the escape.
- the minute wheel 329 is configured to rotate by the rotation of the barrel complete 320.
- the barrel complete 320, the second wheel 325, the third wheel 326, the fourth wheel 327, and the minute wheel 329 constitute a front train wheel.
- the minute wheel 340 is configured to rotate based on the rotation of the cylindrical pinion 329 attached to the center wheel & pinion 325.
- An hour wheel (not shown) is configured to rotate based on the rotation of the minute wheel 340.
- the third wheel & pinion 326 is configured to rotate by the rotation of the second wheel & pinion 325. By the rotation of the third wheel & pinion 326, the fourth wheel & pinion 327 is configured to rotate once per minute.
- the hour wheel is configured to rotate once in 12 hours.
- a slip mechanism is provided between the center wheel & pinion 325 and the cylindrical pinion 329.
- the center wheel & pinion 325 is configured to rotate once per hour.
- the detent escapement of the present invention can be configured so that the escapement error is very small. Furthermore, the mechanical timepiece of the present invention is not easily affected by disturbance. Therefore, the detent escapement of the present invention includes a mechanical wristwatch, a marine chronometer, a mechanical table clock, a mechanical wall clock, a large mechanical street clock, and a tourbillon escapement equipped with the present invention. The present invention can be widely applied to a wristwatch having a machine and a detent escapement of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Micromachines (AREA)
- Adornments (AREA)
Abstract
Description
本発明の目的は、従来技術のデテント脱進機よりも脱進機誤差が小さくなるように構成したデテント脱進機を提供することにある。
SEE=Rd-Rn
ここで、
SEE:静的脱進機誤差〔秒/日:sec/day〕;
Rd:脱進機駆動時の一定振り角(任意の定トルク)における歩度〔秒/日:sec/day〕;
Rn:てんぷの自由振動における歩度〔秒/日:sec/day〕。
てんぷが振動中心を通過する前に、作動ばねの先端部が、てんぷの外し石に接触して、てんぷに抵抗を加えることを「死点前の抵抗」と定義し、
てんぷが振動中心を通過する前に、がんぎ車の歯部が、てんぷの振り石に接触して、てんぷの進行方向に対して力を加えることを「死点前の衝撃」と定義し、
てんぷが振動中心を通過した後に、がんぎ車の歯部が、てんぷの振り石を押して、てんぷの進行方向に対して力を加えることを「死点後の衝撃」と定義し、
てんぷが振動中心を通過して、さらに振動中心に向かって戻るときに、作動ばねの先端部が、てんぷの外し石に接触して、てんぷに抵抗を加えることと、てんぷが振動中心を通過して、前記振動中心に向かって戻って、さらに、てんぷが前記振動中心を通過したときに、作動ばねの先端部が、てんぷの外し石に接触して、てんぷに抵抗を加えることを「死点後の抵抗」と定義し、
てんぷが振動中心にある状態において、てんぷの回転中心を原点として、前記作動レバーの回転中心を通る直線を回転基準線と定義している。
図1、図7および図8を参照すると、時計のムーブメント300は、本発明のデテント脱進機100を備えることができるようになっている。本発明のデテント脱進機100は、がんぎ車110と、てんぷ120と、がんぎ車110の歯部112と接触可能な接触平面132Bを含む止め石132を有する作動レバー130とを含む。
次に、図9から図15を参照して、本発明のデテント脱進機の作動について説明する。図9から図15において、図中の(a)は、デテント脱進機の作動状態を示す平面図であり、図中の(b)は、4つの脱進機による衝撃(トルク)および抵抗(トルク)、すなわち、「死点前の衝撃」、「死点前の抵抗」、「死点後の衝撃」、「死点後の抵抗」による歩度の進みへの影響と、歩度の遅れへの影響を示す図である。図9(c)は、外し石124が、前記回転基準線120Dを基準として、がんぎ車110から遠い方向に向かった位置に固定される構成を示す部分平面図である。図9(b)から図15(b)において、横軸は、てんぷ120の回転角度を示し、縦軸は、てんぷ120に加えられる衝撃(トルク)および抵抗(トルク)を示している。ここで、歩度の進みへの影響は右上がりのハッチングにより示されており、歩度の遅れへの影響右下がりのハッチングにより示されている。また、図9(b)から図15(b)において、てんぷ120の振動の「死点」(てんぷの振動中心)は、垂直線(実線)により示されている。図9(b)から図15(b)において、てんぷ120の最大振幅位置は、白丸により示されている。図9(b)から図15(b)において、てんぷ120の現在の位置は、垂直線(太い実線)により示されている。
図9(a)を参照すると、てんぷ120が自由振動することにより、大つば116が矢印A1の方向(反時計回り方向)に回転する。図9(b)を参照すると、てんぷ120は、図9(a)に示す位置から死点(振動中心)に向かって反時計回り方向に回転する。
図10(a)を参照すると、大つば116に固定された外し石124が矢印A1の方向(反時計回り方向)に回転して、片作動ばね140の外し石接触部140Gに接触する。次いで、外し石124が矢印A1の方向(反時計回り方向)に回転し、片作動ばね140が、外し石124に押されて、ばね受突起部130Dを押す。すると、作動レバー130は、矢印A2の方向(時計回り方向)に回転する。がんぎ車110の歯部112の先端部は、止め石132の接触平面132Bの上を摺動する。作動レバー130が矢印A2の方向(時計回り方向)に回転する作動に伴い、作動レバー体134は調整偏心ピン162から離れる。図10(b)を参照すると、てんぷ120が「死点前の抵抗」を受けることにより、歩度が遅れる影響を受ける。図10(a)に示す状態における歩度が遅れる影響の値は、その後に発生する図11(a)に示す状態における「死点後の衝撃」による歩度が遅れる影響の値より小さい値になっている。
図11(a)を参照すると、がんぎ車110の歯部112の先端部は、止め石132の接触平面132Bに接触している。ぜんまいが巻き戻されるときの回転力により回転する表輪列により、がんぎ車110は回転され、がんぎ車110は駆動される。がんぎ車110が矢印A4の方向(時計回り方向)に回転することにより、がんぎ車110の歯部112の先端部は振り石122に接触し、てんぷ120に回転力を伝える。大つば116が矢印A1の方向(反時計回り方向)に所定の角度まで回転すると、外し石124は、片作動ばね140の外し石接触部140Gから離れる。復帰ばね150のばね力により、作動レバー130は、矢印A3の方向(反時計回り方向)に回転して、当初の位置に戻ろうとする。止め石132の接触平面132Bに接触していた、がんぎ車110の歯部112の先端部は止め石132から外れる(がんぎ車110は解除される)。復帰ばね150のばね力により、作動レバー130は、矢印A3の方向(反時計回り方向)に回転して、作動レバー体134は調整偏心ピン162に向かって押し戻される。てんぷ120が「死点前の衝撃」を受けることにより歩度が進む影響を受ける。図11(a)に示す状態における歩度が進む影響の値は、図10(a)に示す状態における「死点後の衝撃」による歩度が遅れる影響の値より大きい値になっている。
図12(a)を参照すると、引き続き、がんぎ車110の歯部112の先端部は振り石122に接触し、てんぷ120に回転力を伝え、てんぷ120は死点(振動中心)を通過して回転する。復帰ばね150のばね力により、作動レバー130の作動レバー体134は調整偏心ピン162に接触する。てんぷ120が「死点後の衝撃」を受けることにより歩度が遅れる影響を受ける。図12(a)に示す状態における歩度が遅れる影響の値は、前述した図11(a)に示す状態における「死点後の衝撃」による歩度が進む影響の値と釣り合うようになっている。
図13(a)を参照すると、てんぷ120が矢印A1の方向(反時計回り方向)に自由振動することにより、がんぎ車110の次の歯部112の先端部は止め石132の接触平面132Bに落下する。図13(b)を参照すると、さらにてんぷ120が自由振動することにより、てんぷ120は、てんぷ120の最大振幅位置を越える。すると、大つば116が矢印A1の方向と反対の方向(時計回り方向)に回転するようになる。
図14(a)を参照すると、大つば116に固定された外し石124が矢印A5の方向(時計回り方向)に回転して、片作動ばね140の外し石接触部140Gに接触する。外し石124が矢印A5の方向(時計回り方向)に回転し、片作動ばね140が、外し石124に押される。このとき、作動ばね140は、作動レバー130のばね受突起部130Dから離れる。したがって、作動レバー130が静止した状態で、片作動ばね140のみが、外し石124により矢印A6の方向(反時計回り方向)に押しだされる。図14(b)を参照すると、てんぷ120が「死点後の抵抗」を受けることにより、歩度が進む影響を受ける。図14(a)に示す状態における歩度が進む影響の値は、前述した図10(a)に示す状態における「死点後の衝撃」による歩度が遅れる影響の値と釣り合うようになっている。
図15(a)を参照すると、大つば116が矢印A5の方向(時計回り方向)に所定の角度まで回転すると、外し石124は、片作動ばね140の外し石接触部140Gから離れる。すると、片作動ばね140は、当初の位置に戻り、てんぷ120は自由振動する。図15(b)を参照すると、さらにてんぷ120が自由振動することにより、てんぷ120は、次の最大振幅位置に向かって回転する。
以下同様に、図9に示す状態から図15に示す状態に至る作動を繰り返すことができる。前述したように、図12(a)に示す状態における歩度が遅れる影響の値は、図11(a)に示す状態における「死点後の衝撃」による歩度が進む影響の値と釣り合うようになっている。また、図14(a)に示す状態における歩度が遅れる影響の値は、前述した図10(a)に示す状態における「死点後の衝撃」による歩度が進む影響の値と釣り合うようになっている。さらに、図12(a)に示す状態における歩度が遅れる影響の値と、図14(a)に示す状態における歩度が遅れる影響の値の総和は、図11(a)に示す状態における歩度が進む影響の値と、図14(a)に示す状態における歩度が進む影響の値と、前述した図10(a)に示す状態における歩度が進む影響の値の総和と釣り合うように構成するのが特に好ましい。このように構成することにより、本発明のデテント脱進機は、従来のデテント脱進機と比較して、脱進機誤差が非常に小さくなるように構成することができる。
本発明のデテント脱進機において、外し石124は、前記回転基準線120Dを基準として、がんぎ車110から遠い方向に向かった位置に固定されるのが好ましい。また、本発明のデテント脱進機において、外し石124は、がんぎ車110から遠い方向に向かって、前記回転基準線120Dから10度回転した位置と、前記回転基準線120Dから50度回転した位置との間に固定されるのが更に好ましい。また、本発明のデテント脱進機において、外し石124は、がんぎ車110から遠い方向に向かって、前記回転基準線120Dから、ほぼ30度回転した位置に固定される更に一層好ましいことがわかっている。
次に、図23から図30を参照して、比較例1のデテント脱進機の作動について説明する。比較例1のデテント脱進機の構成は、従来のデテント脱進機の構成に対応するものであり、歩度が遅れになる死点位置に構成されたてんぷを含むものである。図23から図30において、図中の(a)は、デテント脱進機の作動状態を示す平面図であり、図中の(b)は、4つの脱進機による衝撃(トルク)および抵抗(トルク)、すなわち、「死点前の衝撃」、「死点前の抵抗」、「死点後の衝撃」、「死点後の抵抗」による歩度の進みへの影響と、歩度の遅れへの影響を示す図である。
図23(a)を参照すると、てんぷ820が自由振動することにより、大つば116Gが矢印A1の方向(反時計回り方向)に回転する。図23(b)を参照すると、てんぷ120Gは、図9(a)に示す位置から死点(振動中心)に向かって反時計回り方向に回転する。
図24(a)を参照すると、大つば116Gに固定された外し石124Gが矢印A1の方向(反時計回り方向)に回転して、片作動ばね140Gの外し石接触部に接触する。
(3・3)作動その3:
図25(a)を参照すると、次いで、外し石124Gが矢印A1の方向(反時計回り方向)に回転し、片作動ばね140Gが、外し石124Gに押されて、ばね受突起部を押す。すると、作動レバー130Gは、矢印A2の方向(時計回り方向)に回転する。がんぎ車110Gの歯部の先端部は、止め石112Gの接触平面の上を摺動する。作動レバー130Gが矢印A2の方向(時計回り方向)に回転する作動に伴い、作動レバー体は調整偏心ピンから離れる。図25(b)を参照すると、てんぷ120Gが「死点後の抵抗」を受けることにより、歩度が進む影響を受ける。図25(a)に示す状態における歩度が進む影響の値は、その後に発生する図26(a)に示す状態における「死点後の衝撃」による歩度が遅れる影響の値より小さい値になっている。
図26(a)を参照すると、がんぎ車110Gの歯部の先端部は、止め石112Gの接触平面に接触している。ぜんまいが巻き戻されるときの回転力により回転する表輪列により、がんぎ車110Gは回転され、がんぎ車110Gは駆動される。がんぎ車110Gが矢印A4の方向(時計回り方向)に回転することにより、がんぎ車110Gの歯部の先端部は振り石112Gに接触し、てんぷ120Gに回転力を伝える。大つば116Gが矢印A1の方向(反時計回り方向)に所定の角度まで回転すると、外し石124Gは、片作動ばね140Gの外し石接触部から離れる。復帰ばね150Gのばね力により、作動レバー130Gは、矢印A3の方向(反時計回り方向)に回転して、当初の位置に戻ろうとする。止め石112Gの接触平面Bに接触していた、がんぎ車110Gの歯部の先端部は止め石112Gから外れる(がんぎ車110Gは解除される)。復帰ばね150Gのばね力により、作動レバー130Gは、矢印A3の方向(反時計回り方向)に回転して、作動レバー体は調整偏心ピンに向かって押し戻される。てんぷ120Gが「死点後の衝撃」を受けることにより歩度が遅れる影響を受ける。図26(a)に示す状態における歩度が遅れる影響の値は、図25(a)に示す状態における「死点後の抵抗」による歩度が進む影響の値より大きい値になっている。
図27(a)を参照すると、てんぷ120Gが矢印A1の方向(反時計回り方向)に自由振動することにより、てんぷ120Gは、てんぷ120Gの最大振幅位置に向かって回転する。
図28(a)を参照すると、さらに、てんぷ120Gが自由振動することにより、てんぷ120Gは、てんぷ120Gの最大振幅位置を越える。すると、大つば116Gが矢印A5の方向(時計回り方向)に回転するようになる。大つば116Gに固定された外し石124Gが矢印A5の方向(時計回り方向)に回転して、片作動ばね140Gの外し石接触部に接触する。外し石124Gが矢印A5の方向(時計回り方向)に回転し、片作動ばね140Gが、外し石124Gに押される。このとき、作動ばね140Gは、作動レバー130Gのばね受突起部から離れる。したがって、作動レバー130Gが静止した状態で、片作動ばね140Gのみが、外し石124Gにより矢印A6の方向(反時計回り方向)に押しだされる。図28(b)を参照すると、てんぷ120Gが「死点前の抵抗」を受けることにより、歩度が遅れる影響を受ける。
図29(a)を参照すると、てんぷ120Gが矢印A5の方向(時計回り方向)に自由振動することにより、がんぎ車110Gの次の歯部の先端部は止め石112Gの接触平面に落下する。がんぎ車110Gの歯部の先端部は振り石112Gに接触し、てんぷ120Gに回転力を伝え、てんぷ120Gは死点(振動中心)を通過して回転する。復帰ばね150Gのばね力により、作動レバー130Gの作動レバー体は調整偏心ピンに接触する。てんぷ120Gが「死点後の抵抗」を受けることにより歩度が進む影響を受ける。図29(a)に示す状態における歩度が進む影響の値は、前述した図26(a)に示す状態における「死点後の衝撃」による歩度が進む影響の値より小さい値になっている。
図30(a)を参照すると、さらに、てんぷ120Gが自由振動することにより、てんぷ120Gは、次の死点に向かって回転する。
以下同様に、図23に示す状態から図30に示す状態に至る作動を繰り返すようになってい。前述したように、図26(a)に示す状態における歩度が遅れる影響の値は、図25(a)に示す状態における「死点後の抵抗」による歩度が進む影響の値より大きい値になっている。また、前述したように、図26(a)に示す状態における歩度が遅れる影響の値は、図28(a)に示す状態における「死点後の抵抗」による歩度が進む影響の値より大きい値になっている。そして、図26(a)に示す状態における歩度が遅れる影響の値と、図28(a)に示す状態における「死点前の抵抗」による歩度が遅れる影響の値を合計した値は、図25(a)に示す状態における「死点後の抵抗」による歩度が進む影響の値と、図29(a)に示す状態における「死点後の抵抗」による歩度が進む影響の値を合計した値より大きい値になっている。したがって、この比較例1のデテント脱進機は、歩度が遅れる影響が大きいものであり、本発明のデテント脱進機と比較して、脱進機誤差が大きいものである。
次に、図31から図37を参照して、比較例2のデテント脱進機の作動について説明する。比較例2のデテント脱進機の構成は、歩度が進みになる死点位置に構成されたてんぷを含むものである。図31から図37において、図中の(a)は、比較例のデテント脱進機の作動状態を示す平面図であり、図中の(b)は、4つの脱進機による衝撃(トルク)および抵抗(トルク)、すなわち、「死点前の衝撃」、「死点前の抵抗」、「死点後の衝撃」、「死点後の抵抗」による歩度の進みへの影響と、歩度の遅れへの影響を示す図である。図31(c)は、外し石124Hが、回転基準線120DHを基準として、がんぎ車110Hから遠い方向に向かった位置であって、回転基準線120DHから反時計回り方向に60度の位置に固定されている構成を示す部分平面図である。図31(b)から図37(b)において、横軸は、てんぷ120Hの回転角度を示し、縦軸は、てんぷ120Hに加えられる衝撃(トルク)および抵抗(トルク)を示している。ここで、歩度の進みへの影響は右上がりのハッチングにより示されており、歩度の遅れへの影響右下がりのハッチングにより示されている。また、図31(b)から図37(b)において、てんぷ120Hの振動の「死点」(てんぷの振動中心)は、垂直線(実線)により示されている。図31(b)から図37(b)において、てんぷ120Hの最大振幅位置は、白丸により示されている。図31(b)から図37(b)において、てんぷ120Hの現在の位置は、垂直線(太い実線)により示されている。
図31(a)を参照すると、てんぷ120Hが自由振動することにより、大つば116Hが矢印A1の方向(反時計回り方向)に回転する。図31(b)を参照すると、てんぷ120Hは、図31(a)に示す位置から死点(振動中心)に向かって反時計回り方向に回転する。
図32(a)を参照すると、大つば116Hに固定された外し石124Hが矢印A1の方向(反時計回り方向)に回転して、片作動ばね140Hの外し石接触部に接触する。次いで、外し石124Hが矢印A1の方向(反時計回り方向)に回転し、片作動ばね140Hが、外し石124Hに押されて、ばね受突起部を押す。すると、作動レバー130Hは、矢印A2の方向(時計回り方向)に回転する。がんぎ車110Hの歯部の先端部は、止め石132Hの接触平面の上を摺動する。作動レバー130Hが矢印A2の方向(時計回り方向)に回転する作動に伴い、作動レバー体は調整偏心ピンから離れる。図32(b)を参照すると、てんぷ120Hが「死点前の抵抗」を受けることにより、歩度が遅れる影響を受ける。図32(a)に示す状態における歩度が遅れる影響の値は、その後に発生する図33(a)に示す状態における「死点前の衝撃」による歩度が進む影響の値より小さい値になっている。
図33(a)を参照すると、がんぎ車110Hの歯部の先端部は、止め石132Hの接触平面に接触している。ぜんまいが巻き戻されるときの回転力により回転する表輪列により、がんぎ車110Hは回転され、がんぎ車110Hは駆動される。がんぎ車110Hが矢印A4の方向(時計回り方向)に回転することにより、がんぎ車110Hの歯部の先端部は振り石122Hに接触し、てんぷ120Hに回転力を伝える。大つば116Hが矢印A1の方向(反時計回り方向)に所定の角度まで回転すると、外し石124Hは、片作動ばね140Hの外し石接触部から離れる。復帰ばね150Hのばね力により、作動レバー130Hは、矢印A3の方向(反時計回り方向)に回転して、当初の位置に戻ろうとする。止め石132Hの接触平面に接触していた、がんぎ車110Hの歯部の先端部は止め石132Hから外れる(がんぎ車110は解除される)。復帰ばね150Hのばね力により、作動レバー130Hは、矢印A3の方向(反時計回り方向)に回転して、作動レバー体は調整偏心ピンに向かって押し戻される。てんぷ120Hが「死点前の衝撃」を受けることにより歩度が進む影響を受ける。図33(a)に示す状態における歩度が進む影響の値は、図32(a)に示す状態における「死点前の抵抗」による歩度が遅れる影響の値より大きい値になっている。
図34(a)を参照すると、引き続き、がんぎ車110Hの歯部の先端部は振り石122Hに接触し、てんぷ120Hに回転力を伝え、てんぷ120Hは死点(振動中心)を通過して回転する。復帰ばね150Hのばね力により、作動レバー130Hの作動レバー体は調整偏心ピンに接触する。
図35(a)を参照すると、てんぷ120Hが矢印A1の方向(反時計回り方向)に自由振動することにより、がんぎ車110Hの次の歯部の先端部は止め石132Hの接触平面に落下する。
図36(a)を参照すると、さらに、てんぷ120Hが自由振動することにより、てんぷ120Hは、てんぷ120Hの最大振幅位置を越える。すると、大つば116Hが矢印A1の方向と反対の方向(時計回り方向)に回転するようになる。大つば116Hに固定された外し石124Hが矢印A5の方向(時計回り方向)に回転して、片作動ばね140Hの外し石接触部に接触する。外し石124Hが矢印A5の方向(時計回り方向)に回転し、片作動ばね140Hが、外し石124Hに押される。このとき、作動ばね140Hは、作動レバー130Hのばね受突起部から離れる。したがって、作動レバー130Hが静止した状態で、片作動ばね140Hのみが、外し石124Hにより矢印A6の方向(反時計回り方向)に押しだされる。図36(b)を参照すると、てんぷ120Hが「死点後の抵抗」を受けることにより、歩度が進む影響を受ける。図36(a)に示す状態における歩度が進む影響の値は、前述した図33(a)に示す状態における「死点前の衝撃」による歩度が進む影響の値より小さい値になっている。
図37(a)を参照すると、大つば116Hが矢印A5の方向(時計回り方向)に所定の角度まで回転すると、外し石124Hは、片作動ばね140Hの外し石接触部から離れる。すると、片作動ばね140Hは、当初の位置に戻り、てんぷ120Hは自由振動する。図37(b)を参照すると、さらに、てんぷ120Hが自由振動することにより、てんぷ120Hは、次の最大振幅位置に向かって回転する。
以下同様に、図31に示す状態から図37に示す状態に至る作動を繰り返すことができる。前述したように、図33(a)に示す状態における歩度が遅れる影響の値は、図32(a)に示す状態における歩度が遅れる影響の値より大きい値になっている。また、図33(a)に示す状態における歩度が遅れる影響の値は、図36(a)に示す状態における歩度が遅れる影響の値より大きい値になっている。さらに、図33(a)に示す状態における歩度が進む影響の値は、図32(a)に示す状態における歩度が遅れる影響の値と、図36(a)に示す状態における歩度が遅れる影響の値の合計より大きい値になっている。したがって、この比較例2のデテント脱進機は、歩度が進む影響が大きいものであり、本発明のデテント脱進機と比較して、脱進機誤差は大きいものである。
図18(a)および図19(a)を参照すると、従来のデテント脱進機の構成に対応する比較例1のデテント脱進機は、歩度が遅れになる影響が、歩度が進みになる影響より大きいものである。この比較例1の構成において、一般的に、歩度の大幅な遅れが生じる場合は、てんぷが死点位置を越えた後に作動レバーの解除によりてんぷに加えられる抵抗(トルク)と、がんぎ車からてんぷに加えられる衝撃(トルク)とが生じて終了する。一方、この比較例1の構成において、片作動ばねの解除によりてんぷに加えられる抵抗(トルク)は、てんぷが死点位置を越える前に発生する。
本発明のデテント脱進機に関して、通常の腕時計のサイズと比較して拡大したサイズで構成した脱進機部分の拡大モデルを作成して比較実験を行った。
この拡大モデルにおける主要構成部品の寸法は以下のとおりである。
・がんぎ車の直径:41(mm);
・てんぷの慣性モーメント:5.329*10-5 (kg・m2 );
・外し石の先端部の軌跡の直径:7.19(mm);
・振り石の先端部の軌跡の直径:27.39(mm);
・がんぎ車の回転中心とてんぷの回転中心との間の中心距離:33.2(mm);
・てんぷの回転中心と作動レバーの回転中心との間の中心距離:56.32(mm);
・片作動ばねのばね部の直線部の長さ:32.15(mm);
・衝撃角:34(度);
・作動レバー又は片作動ばねから外し石が抵抗を受ける位置のてんぷ回転中心からの距離:7.07(mm)。
図16を参照すると、脱進機の拡大モデルでの実験結果を示すグラフが示されている。図16は、上記条件において、てんぷの死点位置を0度(従来技術に対応する位置)、+20度(本発明の実施形態における1つの補正例に対応する位置)、-20度(本発明の実施形態における1つの補正例と逆方向に設定した比較例)の3パラメータに変化させて、各々の死点位置において、てんぷが、がんぎ車から受ける衝撃トルクを0.403〔mN・m〕、0.3628〔mN・m〕、0.3225〔mN・m〕、0.282〔mN・m〕、0.2419〔mN・m〕、0.202〔mN・m〕、0.1613〔mN・m〕、0.1209〔mN・m〕の8点に変化させたときの、がんぎ車から受ける衝撃トルクと、てんぷの周期変化を示した図である。図16において、横軸は、がんぎ車のトルク(
mN・m)を示し、縦軸は、てんぷの平均周期(sec)を示している。
この拡大モデルでの実験において、てんぷが、がんぎ車から受ける衝撃トルクの各々の値において、てんぷの自由減衰振動周期に対して死点位置の補正を行った場合、てんぷの振動周期の変化を小さく抑えることができるかどうかを確認している。
この拡大モデルでの実験を行った結果、てんぷの死点位置を+20度に補正を行うことにより、てんぷの自由減衰振動周期に対して、てんぷの振動周期の変化を小さく抑えることができることを確認することができた。また、てんぷの死点位置を+20度に補正を行うことにより、トルク変化に伴うてんぷの振動周期の変動を抑制する効果があることを確認することができた。
本発明のデテント脱進機に関して、シミュレーションモデルを設計して比較検討を行った。
1自由度摩擦系及び粘性系の自由振動を示す運動方程式は、以下の数式(1)で示される。
I:てんぷの慣性モーメント(kg・mm2 );
F:粘性係数(kg・m2 /s);
k:ひげぜんまいのばね定数(kg・m2 /s2 );
R:固体摩擦抵抗(kg・m2 /s2 );
T:1周期の間にてんぷに加えられる、がんぎ車からの衝撃トルクと、てんぷが受ける作動レバー解除、及び、片作動ばね解除時の抵抗トルクの総和(kg・m2 /s2 )。
各構成部品の寸法は、通常の腕時計の部品寸法に概略対応するように設定している。
・がんぎ車の歯数:15枚;
・作動レバー解除時にてんぷが受ける抵抗トルク:0.252*10-6 N・m;
・片作動ばね解除時にてんぷが受ける抵抗トルク:0.044*10-6 N・m。
図17を参照すると、脱進機のシミュレーションモデルでのシミュレーション結果を示すグラフが示されている。図17は、上記条件において、てんぷの補正された死点位置を+10度、+30度、+50度の3パラメータに変化させて、てんぷの振り角が200度以上のときにおける、時計の歩度(1日において時計が遅れるか進む秒数:sec/day)が50秒/日(sec/day)の値をシミュレーションした結果を示した図である。図17において、横軸は、てんぷの振り角(deg)を示し、縦軸は、時計の歩度(sec/day)を示している。
このシミュレーションにおいて、てんぷの振り角が200度以上のとき、時計の歩度(1日において時計が遅れるか進む秒数:sec/day)が50秒/日(sec/day)以内に収まるかどうかを確認している。
このシミュレーションを行った結果、てんぷの死点位置を+10度から+50度の間に設定するように補正を行うことにより、てんぷの振り角が200度以上のときに、時計の歩度を50秒/日(sec/day)以内に収めることができることを確認することができた。
上記実験結果と上記シミュレーション結果から、一般的な実用歩度(てんぷの振り角が200度以上のときに、時計の歩度を50秒/日(sec/day)以内に収める)を満たす範囲として、てんぷの死点位置の補正量として、+10度から+50度に設定することができることが確認された。また、上記実験結果と上記シミュレーション結果から、一般的なてんぷの死点位置の補正量としては+20度から+30度が適性範囲であることが確認された。また、てんぷが受ける抵抗トルクが上述した値以外の値において同様なシミュレーションを実施した結果からも、てんぷの死点位置の補正量として、+20度から+30度が適性範囲であることが確認されている。
さらに、本発明は、機械式時計の動力源を構成するぜんまいと、前記ぜんまいが巻き戻されるときの回転力により回転する表輪列と、前記表輪列の回転を制御するための脱進機とを備えるように構成された機械式時計において、前記脱進機が、上記のデテント脱進機で構成されることを特徴としている。この構成により、脱進機誤差が非常に小さく、脱進機の力の伝達効率がよい機械式時計を実現することができる。また、本発明の機械式時計は、ぜんまいを小さくすることができ、或いは、同じサイズの香箱を用いたときには長時間持続の機械式時計を達成することができる。
110 がんぎ車
118 ひげぜんまい
120 てんぷ
122 振り石
124 外し石
130 作動レバー
132 止め石
140 片作動ばね
150 復帰ばね
170 地板
300 ムーブメント(機械体)
320 香箱車
325 二番車
326 三番車
327 四番車
Claims (6)
- がんぎ車(110)と、がんぎ車(110)の歯部と接触可能な振り石(122)および外し石(124)を有するてんぷ(120)と、がんぎ車(110)の歯部と接触可能な止め石(132)を有する作動レバー(130)とを含む時計用のデテント脱進機(100)において、
てんぷが振動中心を通過する前に、作動ばねの先端部が、てんぷの外し石に接触して、てんぷに抵抗を加えることを「死点前の抵抗」と定義し、
てんぷが振動中心を通過する前に、がんぎ車の歯部が、てんぷの振り石に接触して、てんぷの進行方向に対して力を加えることを「死点前の衝撃」と定義し、
てんぷが振動中心を通過した後に、がんぎ車の歯部が、てんぷの振り石を押して、てんぷの進行方向に対して力を加えることを「死点後の衝撃」と定義し、
てんぷが振動中心を通過して、さらに振動中心に向かって戻るときに、作動ばねの先端部が、てんぷの外し石に接触して、てんぷに抵抗を加えることと、てんぷが振動中心を通過して、前記振動中心に向かって戻って、さらに、てんぷが前記振動中心を通過したときに、作動ばねの先端部が、てんぷの外し石に接触して、てんぷに抵抗を加えることを「死点後の抵抗」と定義し、
てんぷ(120)が振動中心にある状態において、てんぷ(120)の回転中心(120C)を原点として、前記作動レバー(130)の回転中心(130A)を通る直線を回転基準線(120D)と定義したときに、
前記「死点前の衝撃」により生じるてんぷの回転運動への影響、および、前記「死点後の抵抗」により生じるてんぷの回転運動への影響の合計により構成される時計の歩度を進ませる影響の総和と、前記「死点前の抵抗」により生じるてんぷの回転運動への影響、および、前記「死点後の衝撃」により生じるてんぷの回転運動への影響の合計により構成される時計の歩度を遅らせる影響の総和とが釣り合うように、前記外し石(124)は、前記回転基準線(120D)を基準として、前記がんぎ車(110)から遠い方向に向かった位置に固定される、
ことを特徴とするデテント脱進機。 - 前記外し石(124)は、前記がんぎ車(110)から遠い方向に向かって、前記回転基準線(120D)から10度回転した位置と、前記回転基準線(120D)から50度回転した位置との間に固定されることを特徴とする、請求項1に記載のデテント脱進機。
- 前記外し石(124)は、前記がんぎ車(110)から遠い方向に向かって、前記回転基準線(120D)から、20度から30度回転した位置に固定されることを特徴とする、請求項1に記載のデテント脱進機。
- 機械式時計の動力源を構成するぜんまいと、前記ぜんまいが巻き戻されるときの回転力により回転する表輪列と、前記表輪列の回転を制御するための脱進機とを備えるように構成された機械式時計において、前記脱進機が、請求項1から3のいずれか1項に記載のデテント脱進機で構成されることを特徴とする機械式時計。
- 前記てんぷ(120)は、ひげぜんまい(118)を含み、前記ひげぜんまい(118)の外端部は、てんぷ受に対して回転可能なように設けられたひげ持ち(175)に固定され、前記てんぷ受に対して前記ひげ持ち(175)を回転させることにより、前記回転基準線(120D)に対する前記外し石(124)の位置と、振り石(122)の位置を変えることができるように構成されることを特徴とする、請求項4に記載の機械式時計。
- 前記ひげ持ちを回転させることができる範囲を指示するための回転可能範囲指示手段を備えることを特徴とする、請求項5に記載の機械式時計。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/581,897 US8807827B2 (en) | 2010-03-10 | 2010-08-31 | Detent escapement and mechanical timepiece |
CH01639/12A CH704885B1 (fr) | 2010-03-10 | 2010-08-31 | Echappement à détente et pièce d'horlogerie mécanique. |
CN201080065316.9A CN102870049B (zh) | 2010-03-10 | 2010-08-31 | 天文钟擒纵机构和机械式钟表 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-053313 | 2010-03-10 | ||
JP2010053313A JP5441168B2 (ja) | 2010-03-10 | 2010-03-10 | デテント脱進機と機械式時計 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011111250A1 true WO2011111250A1 (ja) | 2011-09-15 |
Family
ID=44563090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/064819 WO2011111250A1 (ja) | 2010-03-10 | 2010-08-31 | デテント脱進機と機械式時計 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8807827B2 (ja) |
JP (1) | JP5441168B2 (ja) |
CN (1) | CN102870049B (ja) |
CH (1) | CH704885B1 (ja) |
WO (1) | WO2011111250A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH710759A2 (fr) * | 2015-02-20 | 2016-08-31 | Nivarox Far Sa | Oscillateur pour une pièce d'horlogerie. |
JP6548240B1 (ja) * | 2018-06-29 | 2019-07-24 | セイコーインスツル株式会社 | ひげぜんまい、調速機、時計用ムーブメント及び時計 |
CN110209034A (zh) * | 2019-06-01 | 2019-09-06 | 深圳市玺佳创新有限公司 | 一种摆轮印刷手表 |
EP3907566A1 (fr) | 2020-05-05 | 2021-11-10 | Montres Breguet S.A. | Échappement à détente pour pièce d'horlogerie |
CN116235115A (zh) * | 2020-07-30 | 2023-06-06 | 蒙特雷布勒盖股份有限公司 | 交感钟表组件 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH3299A (fr) * | 1891-03-05 | 1891-08-31 | Emile James | Perfectionnement apporté aux échappements à détente |
JP2005164599A (ja) * | 2003-12-04 | 2005-06-23 | Montres Breguet Sa | 時計用デテント脱進機 |
JP2009510425A (ja) * | 2005-09-30 | 2009-03-12 | バウムバーガー,ピーター | タイムピース用デテント脱進機 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1091261A (en) * | 1913-07-22 | 1914-03-24 | William E Walker | Chronometer-escapement. |
US2907168A (en) * | 1955-10-31 | 1959-10-06 | Inotsume Zen-Ichi | Pallet type escape mechanism for time pieces |
CH692532A5 (fr) * | 1997-10-21 | 2002-07-15 | Ebauchesfabrik Eta Ag | Procédé de fabrication d'un spiral de balancier pour mouvement d'horlogerie. |
DE60331447D1 (de) * | 2003-12-16 | 2010-04-08 | Montres Breguet Sa | Chronometerhemmung für Uhren |
DE602006004055D1 (de) * | 2005-06-28 | 2009-01-15 | Eta Sa Mft Horlogere Suisse | Verstärktes mikromechanisches teil |
CH699109A1 (fr) * | 2008-07-10 | 2010-01-15 | Swatch Group Res & Dev Ltd | Procédé de fabrication d'une pièce micromécanique. |
EP2199875B1 (fr) * | 2008-12-16 | 2014-09-24 | Rolex Sa | Échappement à détente |
EP2224292B1 (fr) * | 2009-02-26 | 2012-10-10 | Rolex Sa | Echappement à impulsion directe, notamment à détente, pour mouvement d'horlogerie |
EP2263971A1 (fr) * | 2009-06-09 | 2010-12-22 | Nivarox-FAR S.A. | Pièce de micromécanique composite et son procédé de fabrication |
JP5729666B2 (ja) * | 2010-09-14 | 2015-06-03 | セイコーインスツル株式会社 | 時計用デテント脱進機、および機械式時計 |
-
2010
- 2010-03-10 JP JP2010053313A patent/JP5441168B2/ja not_active Expired - Fee Related
- 2010-08-31 US US13/581,897 patent/US8807827B2/en not_active Expired - Fee Related
- 2010-08-31 WO PCT/JP2010/064819 patent/WO2011111250A1/ja active Application Filing
- 2010-08-31 CH CH01639/12A patent/CH704885B1/fr not_active IP Right Cessation
- 2010-08-31 CN CN201080065316.9A patent/CN102870049B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH3299A (fr) * | 1891-03-05 | 1891-08-31 | Emile James | Perfectionnement apporté aux échappements à détente |
JP2005164599A (ja) * | 2003-12-04 | 2005-06-23 | Montres Breguet Sa | 時計用デテント脱進機 |
JP2009510425A (ja) * | 2005-09-30 | 2009-03-12 | バウムバーガー,ピーター | タイムピース用デテント脱進機 |
Non-Patent Citations (1)
Title |
---|
SHIGEO MORI: "Dasshinki Gosa no Kenkyu", JOURNAL OF THE HOROLOGICAL INSTITUTE OF JAPAN, vol. 54, 25 June 1970 (1970-06-25), pages 31 - 47 * |
Also Published As
Publication number | Publication date |
---|---|
CH704885B1 (fr) | 2016-01-29 |
CN102870049B (zh) | 2014-03-05 |
JP5441168B2 (ja) | 2014-03-12 |
JP2011185849A (ja) | 2011-09-22 |
US8807827B2 (en) | 2014-08-19 |
US20130070571A1 (en) | 2013-03-21 |
CN102870049A (zh) | 2013-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5441168B2 (ja) | デテント脱進機と機械式時計 | |
JP5378822B2 (ja) | デテント脱進機とそれを組み込んだ時計 | |
JP5485859B2 (ja) | アンクル脱進機及びこれを備えた機械式時計 | |
US8556499B2 (en) | Anti-trip device for an escape mechanism | |
CN102193485B (zh) | 包括高频机械机芯的钟表 | |
US8439556B2 (en) | Synchronous escapement for a timepiece mechanism | |
US20140133281A1 (en) | Timepiece anti-trip mechanism | |
US20180372150A1 (en) | Mechanism for adjusting an average speed in a timepiece movement and timepiece movement | |
JP6678210B2 (ja) | 機械式計時器ムーブメントのためのひげ持ち保持器 | |
US8491183B2 (en) | Detent escapement for timepiece and mechanical timepiece | |
US20120113763A1 (en) | Anti-trip device for an escape mechanism | |
JP6710041B2 (ja) | ヒゲゼンマイ固定システム | |
US7527424B2 (en) | Anti-trip device for timepiece escapement | |
EP2491463B1 (en) | Lever escapement mechanism | |
US11906929B2 (en) | Detent escapement for a timepiece | |
JP5794613B2 (ja) | 時計用デテント脱進機、及び機械式時計 | |
JP5330304B2 (ja) | デテント脱進機及び機械式時計 | |
JP2019191156A (ja) | 関節連結された振動子を有する計時器用調速機構 | |
JP7397950B2 (ja) | 時計ムーブメント用のナチュラル脱進機、およびそのような脱進機を備える時計ムーブメント | |
CN118625625A (zh) | 用于自主调节摆轮游丝的有效长度的装置 | |
JP2023178243A (ja) | インデックスアセンブリシステムを設けられた時計調節部材 | |
JP2015025723A (ja) | 時計用歯車、脱進機構、時計用ムーブメントおよび機械式時計 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080065316.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10847478 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10201200001639 Country of ref document: CH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13581897 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10847478 Country of ref document: EP Kind code of ref document: A1 |