WO2011111238A1 - 電線の導体接触検出装置、電線の導体接触検出方法及び電線の導体接触検出プログラム - Google Patents

電線の導体接触検出装置、電線の導体接触検出方法及び電線の導体接触検出プログラム Download PDF

Info

Publication number
WO2011111238A1
WO2011111238A1 PCT/JP2010/056338 JP2010056338W WO2011111238A1 WO 2011111238 A1 WO2011111238 A1 WO 2011111238A1 JP 2010056338 W JP2010056338 W JP 2010056338W WO 2011111238 A1 WO2011111238 A1 WO 2011111238A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
electric wire
conductor
determination
energy
Prior art date
Application number
PCT/JP2010/056338
Other languages
English (en)
French (fr)
Inventor
高志 奥谷
悦朗 西田
正 谷口
哲也 矢野
Original Assignee
新明和工業株式会社
株式会社昭和電気研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新明和工業株式会社, 株式会社昭和電気研究所 filed Critical 新明和工業株式会社
Priority to CN2010800619191A priority Critical patent/CN102742105A/zh
Priority to JP2012504263A priority patent/JP5421453B2/ja
Publication of WO2011111238A1 publication Critical patent/WO2011111238A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/12Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof
    • H02G1/1202Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by cutting and withdrawing insulation
    • H02G1/1248Machines
    • H02G1/1251Machines the cutting element not rotating about the wire or cable
    • H02G1/1253Machines the cutting element not rotating about the wire or cable making a transverse cut
    • H02G1/1256Machines the cutting element not rotating about the wire or cable making a transverse cut using wire or cable-clamping means

Definitions

  • the present invention relates to a technique for detecting contact between a cutting blade and a conductor of an electric wire, for example, a technique for detecting contact between a strip blade and a core wire when stripping a coating of an electric wire.
  • the wire coating is stripped using a strip blade.
  • the strip blade cuts into the coating of the electric wire, if the strip blade comes into contact with the core wire, the core wire is damaged.
  • Patent Document 1 discloses a technique for detecting contact between a strip blade and a core wire when stripping a coating of an electric wire.
  • contact between the strip blade and the core wire of the electric wire is detected by detecting the presence or absence of conduction between the strip blade and the core wire of the electric wire when stripping the coating of the electric wire.
  • an object of the present invention is to make it possible to more easily detect contact between a cutting blade to be cut into an electric wire and a conductor of the electric wire.
  • a first aspect is a conductor contact detection device for a wire that detects contact between a cutting blade to be cut into a wire and a conductor of the wire, and is generated by contact between the conductor of the wire and the cutting blade.
  • a detection unit capable of detecting a physical quantity in accordance with the energy to be performed, and a contact state for determining presence / absence of contact between the conductor of the electric wire and the cutting blade according to the energy generation state in the determination target period based on an output signal of the detection unit
  • a determination processing unit capable of detecting a physical quantity in accordance with the energy to be performed, and a contact state for determining presence / absence of contact between the conductor of the electric wire and the cutting blade according to the energy generation state in the determination target period based on an output signal of the detection unit.
  • a 2nd aspect is a conductor contact detection apparatus of the electric wire which concerns on a 1st aspect, Comprising:
  • the said detection part can detect the vibration of the frequency range containing the vibration frequency produced by the contact of the conductor of an electric wire, and a cutting blade. It is a vibration detector.
  • a third aspect is a conductor contact detection device for electric wires according to the first or second aspect, wherein the detection unit is a resonance type AE sensor having a resonance frequency in a range of 100 kHz to 300 kHz.
  • a fourth aspect is the conductor contact detection device for electric wires according to any one of the first to third aspects, wherein the contact state determination processing unit is provided for each of a plurality of determination periods obtained by dividing the determination target period. It is determined whether or not the contact determination criterion for each period is satisfied, and the presence or absence of contact between the strip blade and the core wire is determined based on the determination result for each period.
  • a 5th aspect is a conductor contact detection apparatus of the electric wire which concerns on a 4th aspect, Comprising: The amount according to the energy for every period based on the output signal of the said detection part is preset by the said contact state determination process part. When the energy threshold is exceeded, it is determined that the contact criterion for each period is satisfied.
  • a 6th aspect is a conductor contact detection apparatus of the electric wire which concerns on a 4th or 5th aspect, Comprising:
  • the said contact state determination process part is the contact determination number by which the number which satisfy
  • a seventh aspect is the conductor contact detection device for electric wires according to any one of the first to third aspects, wherein the contact state determination processing unit is based on an amount corresponding to energy in the determination target period. The presence or absence of contact between the conductor of the electric wire and the cutting blade is determined.
  • An eighth aspect is the conductor contact state detection device for an electric wire according to the seventh aspect, wherein the contact state determination processing unit corrects according to the degree of change in energy in the determination target period, and the determination target Find the amount according to the energy in the period.
  • a ninth aspect is the conductor contact state detection device for an electric wire according to any one of the first to third aspects, wherein the contact state determination processing unit is based on continuity of energy in the determination target period. The presence or absence of contact between the conductor of the electric wire and the cutting blade is determined.
  • a tenth aspect is a conductor contact state detection device for an electric wire according to a ninth aspect, wherein the contact state determination processing unit uses the presence or absence of energy continuity in the determination target period as an output signal of the detection unit. The determination is made based on the included frequency component.
  • An eleventh aspect is a conductor contact state detection device for an electric wire according to any one of the first to tenth aspects, wherein the determination target period includes a period during which the cutting blade cuts into the electric wire. .
  • a twelfth aspect is the conductor contact state detection device for an electric wire according to any one of the first to eleventh aspects, wherein the determination target period is after the cutting blade has been cut into the electric wire and stopped. Including period.
  • a thirteenth aspect is a conductor contact state detecting device for an electric wire according to any one of the first to twelfth aspects, wherein a cutting blade cut into the electric wire is an end portion of the electric wire during the determination target period. It includes a period of relative movement to the side to remove the coating.
  • a fourteenth aspect is a conductor contact state detection device for an electric wire according to any one of the first to thirteenth aspects, wherein a pair of cutting blades that can be cut into a coating of the electric wire and the pair of cutting blades are approached. And a blade driving unit that moves the blades apart.
  • the fifteenth aspect is a wire conductor contact state detection device according to the fourteenth aspect, wherein the detection unit is provided so as to contact at least one of the pair of cutting blades.
  • a sixteenth aspect is a conductor contact state detection device for an electric wire according to any one of the first to fifteenth aspects, wherein the detection unit includes the cutting blade and the electric wire as a strip blade for stripping the coating of the electric wire.
  • the physical quantity according to the energy generated by the contact with the core wire can be detected.
  • a seventeenth aspect is a conductor contact detection method for detecting a contact between a cutting blade to be cut into an electric wire and a conductor of the wire, and (a) performs a processing process including a process of cutting the cutting blade into the electric wire. And (b) detecting a physical quantity corresponding to the energy generated in the step (a), and (c) based on the detection result in the step (b), depending on the energy generation status in the determination target period. Determining whether or not there is contact between the conductor of the electric wire and the cutting blade.
  • a physical quantity corresponding to energy generated during processing including a process of cutting the cutting blade into the electric wire is detected, and based on the detection result, presence / absence of contact between the conductor of the electric wire and the cutting blade Is a conductor contact state detection program for an electric wire to determine whether or not a computer acquires a detection result of a physical quantity corresponding to energy generated during processing including (A) cutting a cutting blade into an electric wire. And (B) a step of determining the presence or absence of contact between the conductor of the electric wire and the cutting blade according to the energy generation status in the determination target period based on the detection result in the step (A). It is a conductor contact state detection program of an electric wire.
  • the physical quantity corresponding to the energy generated by the contact between the conductor of the electric wire and the cutting blade is detected by the detection unit. And the presence or absence of the contact of the conductor of an electric wire and a cutting blade can be determined according to the generation
  • vibration energy generated by contact between the conductor of the electric wire and the cutting blade can be detected more effectively.
  • the frequency of vibration generated by contact between a cutting blade made of metal and a conductor made of metal is usually easily observed in the range of 100 kHz to 300 kHz. Therefore, as in the third aspect, the contact between the conductor and the cutting blade can be detected more reliably by using a resonance type AE sensor having a resonance frequency in the range of 100 kHz to 300 kHz as the detection unit.
  • the contact criterion for each period is satisfied for each of a plurality of determination periods obtained by dividing the determination target period, and the contact between the strip blade and the core wire is determined based on the determination result for each period. Since the presence / absence is determined, the presence / absence of contact between the conductor and the cutting blade can be determined more accurately.
  • the possibility of contact between the conductor and the cutting blade for each period can be determined based on the magnitude of the amount according to the energy due to the contact between the cutting blade and the conductor.
  • the possibility of contact between the conductor and the cutting blade for each period can be determined based on the magnitude of the amount according to the energy due to the contact between the cutting blade and the conductor and the continuation state thereof.
  • the energy from the contact between the conductor of the wire and the cutting blade is continuously generated to some extent. Therefore, as in the seventh aspect, by determining the presence or absence of contact between the conductor of the electric wire and the cutting blade based on the amount according to the energy in the determination target period, the electric conductor and the cutting blade are more accurately determined. The presence or absence of contact can be determined.
  • the energy change due to contact between the conductor and the cutting blade is observed as a comparatively gentle change. Accordingly, as in the eighth aspect, the presence / absence of contact between the conductor and the cutting blade is determined by correcting according to the degree of change in energy in the determination target period and obtaining the amount corresponding to the energy in the determination target period. Can be determined more reliably.
  • the contact state determination processing unit determines the presence / absence of contact between the conductor of the electric wire and the cutting blade based on the continuity of energy in the period, so that the conductor of the electric wire can be accurately detected. The presence or absence of contact with the cutting blade can be determined.
  • the presence / absence of contact between the conductor and the cutting blade is determined based on whether or not the frequency component generated by the contact between the conductor of the wire and the cutting blade is continuously generated in the determination target period. be able to.
  • the determination target period includes a period during which the cutting blade cuts into the electric wire, it is possible to more accurately determine whether the cutting blade is in contact with the conductor.
  • the determination target period includes a period after the cutting blade cuts into the electric wire and stops, thereby more accurately determining whether or not the cutting blade and the conductor are in contact with each other. can do.
  • the determination target period includes a period when the cutting blade cut into the electric wire moves relative to the end side of the electric wire to remove the covering, Presence or absence of contact between the cutting blade and the conductor can be accurately determined.
  • the work of cutting into the electric wire can be performed while easily detecting the contact between the conductor and the cutting blade.
  • the detection unit since the detection unit is in contact with the cutting blade, the contact between the cutting blade and the conductor can be detected more reliably.
  • the contact between the strip blade and the core wire can be easily detected.
  • a physical quantity corresponding to the energy generated by the contact between the conductor of the electric wire and the cutting blade is detected. And the presence or absence of the contact of the conductor of an electric wire and a cutting blade can be determined according to the generation
  • a physical quantity corresponding to the energy generated by the contact between the conductor of the electric wire and the cutting blade is detected. And the presence or absence of the contact of the conductor of an electric wire and a cutting blade can be determined according to the generation condition of energy in a period. Thereby, the contact of the cutting blade cut into the electric wire and the conductor of the electric wire can be detected more easily.
  • FIG. It is a schematic side view which shows the electric wire strip processing apparatus which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows a strip blade and an electric wire. It is explanatory drawing which shows the state which the strip blade cut normally into the electric wire. It is explanatory drawing which shows the state which the strip blade contacted the core wire.
  • FIG. It is a functional block diagram of a contact state determination processing unit.
  • FIG. 10 is a flowchart illustrating processing for obtaining energy in a determination target period directly from output signal waveform data according to the third embodiment. It is explanatory drawing which shows the example of a waveform. It is a figure which shows the example of a coefficient according to the rising degree of a waveform.
  • FIG. 1 is a schematic side view showing a wire strip processing apparatus 10.
  • the wire strip processing device 10 includes a wire strip unit 12 and a core wire contact detection device 40.
  • the electric wire strip unit 12 is a device for peeling the coating Wb at the end of the electric wire W, and a pair of strip blades 14A and 14B, a blade driving unit 16, an electric wire holding unit 20, and a coating removal driving unit 22. And.
  • the pair of strip blades 14A and 14B are formed in a blade shape that can be cut into the coating Wb of the electric wire W.
  • An insulating resin member made of polyvinyl chloride or the like is used for the covering Wb.
  • the tip portions of the pair of strip blades 14A and 14B are formed in a V-shaped blade shape that is recessed in a substantially V shape (see FIG. 2).
  • the V-shaped blade-shaped part is formed so as to be able to be cut into the coating Wb of the electric wire W (see FIG. 3).
  • the shape of strip blade 14A, 14B is not restricted to the said example, For example, a substantially circular arc-shaped concave blade shape may be sufficient.
  • the blade driving unit 16 is configured to be able to move the pair of strip blades 14A and 14B closer to and away from each other.
  • the blade drive unit 16 includes a pair of blade support portions 17A and 17B, a screw portion 18 that movably supports the blade support portions 17A and 17B, and a motor 19 that rotates the screw portion 18. .
  • the screw portion 18 is arranged along a predetermined direction (here, the vertical direction), and is rotatably supported around its central axis.
  • a thread groove along a predetermined spiral direction is formed in one end side portion 18a of the screw portion 18, and a thread groove along a reverse spiral direction is formed in the other end side portion 18b of the screw portion 18. .
  • the motor 19 is configured by a motor capable of driving and controlling the rotation amount such as a servo motor, and is arranged in a manner capable of transmitting the rotational driving force to the screw portion 18.
  • the drive shaft portion of the motor 19 is directly connected to the screw portion 18.
  • the screw part 18 is comprised so that rotation in the forward / reverse direction is possible.
  • the pair of blade support portions 17A and 17B are formed as long members, and the strip blades 14A and 14B are fixedly supported at the respective tip portions.
  • a threaded portion 17Aa that can be screwed with the one end side portion 18a of the screw portion 18 is formed at the base end portion of the one blade support portion 17A, and the base end portion of the other blade support portion 17B is formed at the base end portion.
  • a threaded portion 17Ba that can be threadedly engaged with the other end portion 18b of the threaded portion 18 is formed.
  • the threaded portion 17Aa of one blade support portion 17A is screwed to the one end side portion 18a of the screw portion 18 in a posture in which the tip portions of the pair of strip blades 14A and 14B are opposed to each other, and the other blade support portion
  • the threaded portion 17Ba of 17B is threadedly engaged with the other end portion 18b of the threaded portion 18.
  • the motor 19 is controlled to rotate in the forward direction or the reverse direction, so that the pair of strip blades 14A and 14B can be moved closer to or away from each other.
  • the blade driving unit is not limited to the above-described configuration, and may be configured to be driven by an air cylinder, a hydraulic cylinder, a linear motor, or the like, and is configured to separately drive the pair of strip blades 14A and 14B. May be.
  • the electric wire holding part 20 is configured to hold the electric wire W in a posture in which the end of the electric wire W is disposed between the pair of strip blades 14A and 14B.
  • an electric wire holding part 20 for example, a known chuck mechanism that opens and closes a pair of gripping claws by driving an actuator such as an air cylinder or a hydraulic cylinder can be used. In short, the electric wire can be held.
  • a configuration can be employed.
  • the sheath removal drive unit 22 is configured as a mechanism that imparts a motion to remove the sheath Wb at the end of the wire W by moving the pair of strip blades 14A and 14B and the wire holding portion 20 in the separating direction.
  • the coating removal drive unit 22 is configured by an actuator such as an air cylinder or a hydraulic cylinder, and is configured to move the wire holding unit 20 in a direction in which the wire holding unit 20 is separated from the pair of strip blades 14A and 14B. ing.
  • the electric wire strip unit 12 strips the coating Wb at the end of the electric wire W as follows under the control of the strip processing control unit 28.
  • the end portion of the electric wire W is disposed between the pair of strip blades 14A and 14B, and the electric wire W is held by the electric wire holding portion 20 ( (See FIG. 2).
  • the pair of strip blades 14 ⁇ / b> A and 14 ⁇ / b> B are moved closer to each other by driving the blade driving unit 16.
  • the V-shaped blade-shaped portion cuts into the covering Wb in a state where the core wire Wa is disposed in a region surrounded by the V-shaped blade-shaped portions of the pair of strip blades 14A and 14B (see FIG. 3).
  • the coating removal driving unit 22 As described above, when the pair of strip blades 14A and 14B and the electric wire holding unit 20 are moved in the separation direction by driving the coating removal driving unit 22 with the V-shaped blade-shaped portion cut into the coating Wb, the coating is performed. A portion of Wb on the tip side from the V-shaped blade-shaped portion is removed from the portion of the electric wire W held by the electric wire holding portion 20 so that the core wire Wa is exposed at the end portion of the electric wire W.
  • the above operation is performed based on an operation signal given from the strip processing control unit 28 to the wire strip unit 12.
  • this operation signal a command related to the operation control of the pair of strip blades 14A and 14B, for example, a drive start command for the pair of strip blades 14A and 14B, a state in which the pair of strip blades 14A and 14B are cut into the coating Wb.
  • the target position command according to the position to be stopped is included.
  • This operation signal is input to the contact state determination processing unit 50 described later as a signal representing the operation timing of the pair of strip blades 14A and 14B.
  • the pair of strip blades 14A and 14B may come into contact with the core wire Wa (see FIG. 4). If the strip blades 14A and 14B come into contact with the core wire Wa, the core wire may be damaged or the core wire may be broken, which may cause contact failure or disconnection.
  • the core wire contact detection device 40 is configured as a device that detects the contact between the strip blades 14A and 14B and the core wire Wa when the coating Wb of the electric wire W is stripped by the strip blades 14A and 14B as described above.
  • the core wire contact detection device 40 includes a vibration detection unit 42 and a contact state determination processing unit 50.
  • the vibration detection unit 42 is configured to be able to detect a physical quantity corresponding to the energy generated by the contact between the core wire Wa and the strip blades 14A and 14B. More specifically, the vibration detection unit 42 is configured to detect the physical amount between the core wire Wa and the strip blades 14A and 14B. It is configured to be able to detect vibrations in a frequency range including vibration frequencies generated by contact.
  • the vibration detection unit 42 is configured to be able to detect vibrations in a frequency range including the vibration frequency of the AE wave due to contact between the core wire Wa and the strip blades 14A and 14B.
  • the AE wave has a waveform exhibiting a physical quantity corresponding to the vibration energy generated by the contact between the core wire Wa and the strip blades 14A and 14B, and the amplitude value of the waveform indicates a value corresponding to the energy generated by the contact.
  • the vibration frequency generated by contact between the core wire Wa and the strip blades 14A and 14B means a vibration frequency in a main range generated by the contact or a main specific vibration frequency generated by the contact. Yes.
  • the core wire Wa is made of metal, and the strip blades 14A and 14B are also made of metal.
  • An AE wave generated by metal destruction is easy to observe with little attenuation in the range of 100 kHz to 300 kHz.
  • the vibration detector 42 can detect vibrations in a frequency range that partially or entirely overlaps the range of 100 kHz to 300 kHz. More preferably, it is preferable that the vibration detection unit 42 can detect vibration with high sensitivity in a range of 100 kHz to 300 kHz. More specifically, the vibration detection unit 42 has a resonance type AE having a resonance frequency in the range of 100 kHz to 300 kHz.
  • a sensor is preferred. More preferably, it is a resonance type AE sensor having a resonance frequency of 200 kHz.
  • the vibration detector 42 is fixedly attached so as to contact the strip blade 14A. More specifically, the vibration detector 42 is attached and fixed so that the detection surface of the vibration detector 42 is in contact with one main surface of the strip blade 14A.
  • the attachment and fixing of the vibration detection unit 42 can be performed by various attachment structures such as screw fastening and adhesion. Further, the attachment position of the vibration detection unit 42 may be the strip blade 14A itself or a portion holding the strip blade 14A as long as it does not interfere with the strip operation.
  • the vibration detection unit 42 can also detect the vibration of the AE wave caused by the contact between the core wire Wa and the strip blade 14B.
  • the vibration detection part 42 may be provided in each of a pair of strip blade 14A, 14B.
  • the vibration detection signal from the vibration detection unit 42 is input to the contact state determination processing unit 50 as an analog signal having a voltage corresponding to the detected vibration, for example.
  • FIG. 5 is a block diagram showing a hardware configuration of the contact state determination processing unit 50.
  • the contact state determination processing unit 50 based on the detection signal input from the vibration detection unit 42, based on the output signal of the vibration detection unit 42, the core wire Wa and the strip blade 14A according to the energy generation status in the determination target period. , 14B is configured to be able to execute processing as 50 for determining the presence or absence of contact.
  • the determination target period means a period having a range from a certain time to another time
  • the energy generation status in the determination target period is an amount and a change according to the energy in the period having such a range. It means a situation, an intermittent situation, or the like, and means that the presence or absence of contact is not determined based only on the instantaneous energy value at a specific time.
  • the contact state determination processing unit 50 is configured by a general computer in which a CPU 52, a ROM 53, a RAM 54, an external storage device 55, and the like are interconnected via a bus line 51.
  • the ROM 53 stores basic programs and the like, and the RAM 54 is used as a work area when the CPU 52 performs predetermined processing.
  • the external storage device 55 is configured by a nonvolatile storage device such as a flash memory or a hard disk device.
  • the external storage device 55 stores a contact detection program 55a for performing a core wire contact detection process.
  • Various functions for detecting contact between the strip blades 14A and 14B and the core wire Wa are realized by the CPU 52 as the main control unit performing arithmetic processing according to the procedure described in the contact detection program 55a.
  • Each process described in the following embodiments is also a process described as an execution procedure in the contact detection program 155a, and is realized by the CPU 52 performing a predetermined calculation process according to the contact detection program 155a.
  • the contact detection program 55a is normally stored and used in advance in a memory such as the external storage device 55, but is recorded in a recording medium such as a CD-ROM or DVD-ROM or an external flash memory. It may be provided as a (program product) or provided by downloading from an external server via a network, and may be additionally or exchanged and stored in a memory such as the external storage device 55. Note that some or all of the functions performed by the contact state determination processing unit 50 may be realized by hardware using a dedicated logic circuit or the like.
  • the external storage device 55 stores a determination criterion 55b that is a reference for performing the core wire contact detection process.
  • the detection signal input circuit unit 56 the output circuit unit 57a, the input circuit unit 57b, the input unit 58, and the display unit 59 are also connected to the bus line 51.
  • the detection signal input circuit unit 56 includes an amplifier circuit, a filter circuit, an AD conversion circuit, and the like.
  • the signal is input to an AD conversion circuit through an amplifier circuit and a filter circuit and converted into a digital signal.
  • the filter circuit for example, it is preferable to use a band pass filter having a pass region of 100 kHz to 300 kHz corresponding to an AE wave caused by metal destruction.
  • the vibration detection signal converted into a digital signal by the detection signal input circuit unit 56 is stored in, for example, the RAM 54 or the external storage device 55 as waveform data whose amplitude value changes with time, and is used for contact detection processing described later. Is done.
  • the output circuit unit 57a is an output circuit that outputs control signals and the like to other devices under the control of the CPU 52.
  • Various signals from the outside, here, operation signals from the strip processing control unit 28, are input to the input circuit unit 57b through the input circuit unit 57b.
  • the input unit 58 includes various switches, a touch panel, and the like, and is configured to be able to accept various instructions to the contact state determination processing unit 50 in addition to the input setting instruction of the determination criterion 55b.
  • the display unit 59 includes a liquid crystal display device, a lamp, and the like, and is configured to be able to display various information such as a contact state determination result under the control of the CPU 52.
  • FIG. 6 is a flowchart showing contact state determination processing by the contact state determination processing unit 50.
  • the contact state determination processing unit 50 acquires determination target data based on the operation signal from the wire strip unit 12 in step T1.
  • the determination target data is preferably data corresponding to a determination target period including at least a part of the period in which the strip blades 14A and 14B cut into the electric wire W. This range is more preferably a period during which the strip blades 14A and 14B may come into contact with the core wire Wa when cutting into the electric wire W, for example, the strip blades 14A and 14B cut into the electric wire W. It is set as a period from the middle of the course until stopping or just before stopping.
  • the determination range may be obtained by cutting out a certain period with reference to the operation start command or the operation stop command of the strip blades 14A and 14B by the wire strip unit 12.
  • the cutting may be performed based on the speed information or the position information.
  • the strip blades 14A and 14B are moved from the maximum speed in view of the fact that the strip blades 14A and 14B are gradually lowered after the cut into the electric wire W and stop. It is better to cut out during a period of some deceleration.
  • the state of energy generation in the determination target period is analyzed based on the acquired determination target data. More specifically, an evaluation value corresponding to the energy generation status is calculated based on a value (data) representing the magnitude of energy at a plurality of times based on the determination target data.
  • an evaluation value for example, an evaluation value related to the satisfaction of a predetermined condition for a plurality of determination periods obtained by dividing the determination target period, an evaluation value representing an amount according to energy in the determination target period, or a determination target period
  • An evaluation value indicating the continuity of energy, an evaluation value indicating the degree of change in energy (for example, an instantaneous inclination of the waveform, an average inclination, or the like) can be considered. More specific examples of these will be described in Embodiments 2 to 4.
  • the analyzed energy generation condition satisfies the determination criterion 55b.
  • the criteria for judgment 55b are the state of energy generation in the non-contact state between the core wire Wa and the strip blades 14A and 14B, such as when the strip blades 14A and 14B cut into the coating Wb, and the strip blades 14A and 14B and the core wire Wa. This is a judgment standard (threshold value or the like) for distinguishing the occurrence state of energy observed during a period in which the contact is made, determined experimentally and empirically, and stored in the storage unit 55 in advance.
  • the determination criterion 55b When it is determined that the determination criterion 55b is satisfied, it is determined that there is a contact, and the determination result is output. Based on the determination result, the display unit 59 displays that there is contact. Alternatively, based on the determination result, a signal for stopping the strip processing is given to the electric wire strip unit 12. Thereby, on the electric wire strip unit 12 side, it is good to receive the said signal and to stop strip processing temporarily.
  • the core wire contact detection device when the strip blades 14A and 14B come into contact with the core wire Wa, vibration at that time is detected through the vibration detection unit 42. . And based on the vibration detection signal input from the vibration detection part 42, the presence or absence of contact with strip blade 14A, 14B and the core wire Wa can be determined. Thereby, when stripping the coating Wb of the electric wire W, the contact between the core wire Wa and the strip blades 14A and 14B can be easily detected without electrically connecting an inspection electrode to the core wire.
  • the contact between the strip blade and the core wire can be more accurately determined while suppressing the influence of noise.
  • the vibration detection signal from the vibration detection unit 42 includes not only vibration due to contact between the strip blade and the core wire but also various other external noises.
  • the other various external noises are larger than the magnitude of vibration caused by contact between the strip blade and the core wire. Then, when the detected amplitude of vibration exceeds a predetermined value, the method of determining that the strip blades 14A and 14B are in contact with the core wire Wa cannot eliminate the influence of the external noise and is accurate. It becomes difficult to make a determination.
  • the vibration caused by the contact between the strip blade and the core wire is continuously generated to some extent during the contact period between the strip blade and the core wire.
  • various external noises are generated only during the collision or rubbing period between metals in other parts of the machine, and in a relatively short time compared to the period of vibration generation due to contact between the strip blade and the core wire. It is common.
  • the contact state determination processing unit determines whether or not a contact criterion for each period is satisfied for each of a plurality of periods based on an amount corresponding to energy in a determination period obtained by dividing the determination target period into a plurality of periods.
  • a configuration for determining whether or not the strip blades 14A and 14B are in contact with the core wire Wa based on the determination signal for each period will be described.
  • FIG. 7 is a block diagram showing a hardware configuration of the contact state determination processing unit 50.
  • the contact state determination processing unit 50 determines whether or not the contact determination criterion for each period is satisfied for each of a plurality of determination periods based on the detection signal input from the vibration detection unit 42, and based on the determination result for each period.
  • the processing as the contact state determination processing unit 50 that determines the presence or absence of contact between the strip blades 14A and 14B and the core wire Wa is configured to be executable.
  • the contact state determination processing unit 50 is configured by a general computer in which a CPU 52, a ROM 53, a RAM 54, an external storage device 55, and the like are interconnected via a bus line 51.
  • the ROM 53 stores basic programs and the like, and the RAM 54 is used as a work area when the CPU 52 performs predetermined processing.
  • the external storage device 55 is configured by a nonvolatile storage device such as a flash memory or a hard disk device.
  • the external storage device 55 stores a contact detection program 155a for performing a core wire contact detection process described later.
  • the contact detection program 155a is normally stored and used in advance in a memory such as the external storage device 55, but is recorded in a recording medium such as a CD-ROM or DVD-ROM or an external flash memory. It may be provided as a (program product) or provided by downloading from an external server via a network, and may be additionally or exchanged and stored in a memory such as the external storage device 55. Note that some or all of the functions performed by the contact state determination processing unit 50 may be realized by hardware using a dedicated logic circuit or the like.
  • the external storage device 55 stores a threshold value 155b as a reference energy threshold value and a specified value 155c as the number of contact determinations as a reference when performing the core contact detection process.
  • the threshold value 155b and the specified value 155c will be described later.
  • the detection signal input circuit unit 56 the output circuit unit 57a, the input circuit unit 57b, the input unit 58, and the display unit 59 are also connected to the bus line 51.
  • the detection signal input circuit unit 56 includes an amplifier circuit, a filter circuit, an AD conversion circuit, and the like.
  • the signal is input to an AD conversion circuit through an amplifier circuit and a filter circuit and converted into a digital signal.
  • the filter circuit for example, it is preferable to use a band pass filter having a pass region of 100 kHz to 300 kHz corresponding to an AE wave caused by metal destruction.
  • the vibration detection signal converted into a digital signal by the detection signal input circuit unit 56 is stored in, for example, the RAM 54 or the external storage device 55 as waveform data whose amplitude value changes with time, and is used for contact detection processing described later. Is done.
  • the output circuit unit 57a is an output circuit that outputs control signals and the like to other devices under the control of the CPU 52.
  • Various signals from the outside, here, operation signals from the strip processing control unit 28, are input to the input circuit unit 57b through the input circuit unit 57b.
  • the input unit 58 includes various switches, a touch panel, and the like, and is configured to receive various instructions for the contact state determination processing unit 50 in addition to the input setting instruction for the threshold value 155b and the specified value 155c.
  • the display unit 59 includes a liquid crystal display device, a lamp, and the like, and is configured to be able to display various information such as a contact state determination result under the control of the CPU 52.
  • FIG. 8 is a functional block diagram of the contact state determination processing unit 50.
  • the contact state determination processing unit 50 has functions as a comparison unit 152a and a determination unit 152b. Each of these functions is realized by the CPU 52 performing predetermined arithmetic processing according to the contact detection program 155a as described above.
  • the comparison unit 152a determines whether or not the contact criterion for each period is satisfied based on the input vibration detection signal with reference to the threshold value. This determination is performed for each divided period by dividing a period (determination target period) that is a determination range in the input vibration detection signal. Then, the comparison unit 152a gives the comparison result to the determination unit 152b.
  • the determination unit 152b determines whether or not the strip blade and the core wire are in contact with each other based on the determination result for each period by the comparison unit 152a, and outputs the determination result.
  • the determination result is used for stop control of the electric wire strip unit 12, display on the display unit 59, and the like.
  • FIG. 9 is a flowchart showing contact state determination processing by the contact state determination processing unit 50.
  • the contact state determination processing unit 50 After the contact state determination process is started, the contact state determination processing unit 50 generates waveform data representing vibration detected by the vibration detection unit 42 in a predetermined determination range based on the operation signal from the wire strip unit 12 in step S71. Cut out.
  • the determination range preferably includes at least a part of a period during which the strip blades 14A and 14B cut into the electric wire W. More preferably, the determination range is such that when the strip blades 14A and 14B cut into the electric wire W, the strip blades 14A and 14B cut into the electric wire W, for example, during the period when the strip blades 14A and 14B may come into contact with the core wire Wa. It is set as a period from the middle of the course until stopping or just before stopping.
  • the determination range may be obtained by cutting out a certain period with reference to the operation start command or the operation stop command of the strip blades 14A and 14B by the wire strip unit 12.
  • the cutting may be performed based on the speed information or the position information.
  • the strip blades 14A and 14B are moved from the maximum speed in view of the fact that the strip blades 14A and 14B are gradually lowered after the cut into the electric wire W and stop. It is better to cut out during a period of some deceleration.
  • the determination range is divided into a plurality of periods based on the sampled waveform data, and the vibration energy amount (including the energy amount corresponding to the actual vibration) represented by the vibration detection signal for each period.
  • the amount of vibration energy detected by the vibration detector 42 is expressed as an amount corresponding to the amplitude of the amplitude waveform.
  • the vibration energy amount may be an average value, an integrated value, an effective value (a so-called approximately calculated effective value), or a true effective value of the amplitude value (absolute value) of the waveform data in each period. Or may be approximately calculated as a value corresponding to the amount of vibration energy based on the amplitude value, effective value, etc.
  • the determination range may be divided into at least two.
  • the determination range is usually divided into a plurality of equal parts, but it is not always necessary to divide the decision range evenly.
  • the calculated vibration energy amount value is individually compared with the threshold value 155b, and the number of vibration energy amount values exceeding the threshold value 155b is counted.
  • the threshold value 155b is a value larger (preferably somewhat larger) than the amplitude value observed when the strip blades 14A and 14B cut into the coating Wb, and is determined experimentally and empirically.
  • the value of the vibration energy amount is the same as the threshold value 155b, it may be added to the count number or may not be added. Then, when the comparison for all the periods is completed, the process proceeds to the next step S74.
  • step S74 it is determined whether or not the count number exceeds a specified value 155c.
  • the specified value 155c indicates how much the ratio of the period in which the value of the vibration energy amount exceeds the threshold value 155b in the determination range is determined to determine that the strip blades 14A and 14B are in contact with the core wire Wa. Reference values are shown.
  • the specified value 155c is usually a value of 2 or more, is determined experimentally and empirically according to the length of the period in which the determination range is divided, the threshold value 155b, and the like, and is stored in the storage unit 55 in advance.
  • the determination result is output. Based on the determination result, the display unit 59 displays that there is contact. Alternatively, based on the determination result, a signal for stopping the strip processing is given to the electric wire strip unit 12. Thereby, on the electric wire strip unit 12 side, it is good to receive the said signal and to stop strip processing temporarily.
  • the count number is the same as the specified value, it may be determined that there is contact or may be determined that there is contact.
  • the core wire contact detection device when the strip blades 14A and 14B come into contact with the core wire Wa, vibration at that time is detected through the vibration detection unit 42. . And based on the vibration detection signal input from the vibration detection part 42, the presence or absence of contact with strip blade 14A, 14B and the core wire Wa can be determined. Thereby, when stripping the coating Wb of the electric wire W, the contact between the core wire Wa and the strip blades 14A and 14B can be easily detected without electrically connecting an inspection electrode to the core wire.
  • the contact between the strip blade and the core wire can be more accurately determined while suppressing the influence of noise.
  • the vibration detection signal from the vibration detection unit 42 includes not only vibration due to contact between the strip blade and the core wire but also various other external noises.
  • the other various external noises are larger than the magnitude of vibration caused by contact between the strip blade and the core wire.
  • the vibration frequency due to contact between the strip blade and the core wire is similar to the frequency of external noise. . For this reason, it becomes difficult to separate a signal necessary for determination and external noise.
  • the method of determining that the strip blades 14A and 14B are in contact with the core wire Wa cannot eliminate the influence of the external noise and is accurate. It becomes difficult to make a determination.
  • the vibration caused by the contact between the strip blade and the core wire is continuously generated to some extent during the contact period between the strip blade and the core wire.
  • various external noises are generated only during the collision or rubbing period between metals in other parts of the machine, and in a relatively short time compared to the period of vibration generation due to contact between the strip blade and the core wire. It is common.
  • the vibration energy amount is calculated for each of a plurality of periods, the number of vibration energy amount values exceeding the threshold value 155b is counted, and the count number exceeds the specified value. If it is determined that there is contact, even if there is a large external noise, if the generation time is sufficiently short, the influence of the external noise is suppressed, and the strip blades 14A and 14B and the core wire The contact with Wa can be determined more accurately.
  • the presence / absence of contact is determined by determining that the strip blades 14A and 14B are in contact with the core wire Wa. This can be done relatively easily.
  • the operating range includes a period in which the strip blades 14A and 14B are cut into the electric wire W, it is possible to more accurately determine whether or not the strip blade and the core wire are in contact with each other during that period.
  • FIG. 10 shows an amplitude waveform in a period from when the strip blades 14A and 14B start the strip processing to reach the maximum speed until immediately before the strip blades 14A and 14B are sufficiently cut into the coating Wb while decelerating.
  • 4 shows an example of change with time of the moving speed of the strip blades 14A and 14B.
  • the strip blades 14A and 14B are in a state immediately before cutting into the covering Wb as shown in FIG. 11, and at the time indicated by the arrow A2, as shown in FIG.
  • the blades 14A and 14B are in a state of being cut into the coating Wb, and the strip blades 14A and 14B are sufficiently cut into the coating Wb as shown in FIG. 13 at the time indicated by the arrow A3.
  • the determination range is set as the period T1 until the strip blades 14A and 14B are cut into the electric wire W until it stops or just before it stops is described.
  • the determination range is not limited to such a case, and may be set to various periods during which vibration can occur due to contact between the strip blades 14A and 14B and the electric wire W.
  • the determination range may be set to a period T2 including a period Ta after the strip blades 14A and 14B are cut into the electric wire W and stopped.
  • the presence or absence of contact can be determined as described above by the determination period T2 including the period Ta after the strip blades 14A and 14B are cut into the electric wire W and stopped. Moreover, since the operation of the drive mechanism portion of the strip blades 14A and 14B is stopped during the period Ta after being cut into the electric wire W and stopped, the generation of external noise is suppressed. Therefore, the presence or absence of contact between the strip blades 14A and 14B and the core wire Wa can be more accurately determined by including the period Ta as the determination period.
  • the determination range may be set to a period T3 including a period Ta when the strip blades 14A and 14B cut into the electric wire W move relative to the end portion side of the electric wire W to remove the covering Wb. Good.
  • the presence or absence of contact can be determined as described above also by the period T3 including the period Tb for removing the covering Wb.
  • the determination range may be a period including only the period Ta after the strip blades 14A and 14B are cut into the electric wire W and stopped, or a period including only the period Tb for removing the coating Wb. That is, any period may be set as long as vibration can occur due to contact between the strip blades 14A and 14B and the electric wire W.
  • Such setting of the determination range (determination target period) can be similarly applied to the first embodiment, the third embodiment, the fourth embodiment, and the like.
  • the determination range may be divided into a plurality of values, and the threshold value may be set to a different value for each category.
  • the threshold value of the period Ta after the strip blades 14A and 14B are cut into the electric wire W and stopped is set to a smaller value than the threshold value during the period in which the strip blades 14A and 14B are cut into the electric wire W. It may be.
  • FIG. 14 shows the time (s) and amplitude (V) in the determination range when the strip is normally performed, that is, when only the coating Wb can be successfully removed without causing damage or cutting to the core wire Wa. (Amplitude waveform). In this case, a portion where the amplitude is exceptionally large is observed at the beginning of the determination range, but a relatively small amplitude waveform is shown as a whole.
  • FIG. 15 is a diagram showing the vibration energy amount for each period by dividing the determination range into 20 and showing the calculated vibration energy amount distribution in time order. As shown in the figure, when the strip can be performed normally, the distribution of vibration energy amount is approximately 0.1 (V) or less except that the distribution of vibration energy exceeds 0.1 (V) in two periods. Low value.
  • FIG. 16 shows an amplitude waveform when stripping can be performed normally and external noise is mixed.
  • a part where the amplitude is extremely increased due to the external noise is observed, and a relatively small amplitude waveform is shown in the other part.
  • FIG. 17 is a diagram showing the vibration energy amount distribution of FIG. 16 in time order. As shown in the figure, a portion where the vibration energy amount is relatively large due to external noise is observed in the middle of the determination range. Other portions are the same as those shown in FIG.
  • FIG. 18 shows an amplitude waveform when the core wire Wa is damaged during the strip processing. In this case, a relatively large amplitude is observed in the entire determination range.
  • FIG. 19 is a diagram showing the vibration energy amount distribution of FIG. 18 in time order. As shown in the figure, the vibration energy amount is relatively large in the entire determination range.
  • the vibration energy amount in a plurality of periods is relatively small, and even if there is an influence of external noise, the vibration energy amount in a relatively small number of periods. Is confirmed to be only large.
  • the threshold value 155b, the specified value 155c and the like are set to appropriate values so as to eliminate the change in the vibration energy amount due to the influence of the external noise, the influence of the external noise is eliminated and the strip blade 14A, It was confirmed that the presence or absence of contact between 14B and the core wire Wa can be determined more accurately.
  • threshold values and specified values as described above are actually experimental and experienced, such as the material and shape of the core wire Wa and the covering Wb, the material and shape of the strip blades 14A and 14B, and the operating conditions of the strip blades 14A and 14B. Is set.
  • whether or not the vibration energy amount exceeds the threshold value for each period is determined to satisfy the contact criterion for each period, but this is not necessarily required.
  • whether or not the contact criterion for each period is satisfied may be set based on the waveform for each period (for example, the degree of change in amplitude, waveform comparison with a certain reference waveform) or the like.
  • the determination range may be divided into a plurality, and it may be determined whether or not any determination criterion is satisfied for each divided period.
  • the specified value may be 1. In this case, if it is determined that the amount of energy exceeds the threshold value 155b in any one of the divided periods, it is determined that there is a contact. Will be.
  • the determination process may be performed by discarding either the maximum value or the minimum value of the amount of energy obtained for the divided period. Thereby, the presence or absence of contact can be more reliably determined by removing unstable factors due to accidental circumstances or the like.
  • the vibration energy due to the contact between the strip blades 14A and 14B and the core wire Wa is observed to some extent (see FIG. 18).
  • various external noises are generated only during a collision or rubbing period between metals in other parts of the machine, and compared with a generation period of vibration energy due to contact between the strip blades 14A and 14B and the core wire Wa. It is a relatively short time (see FIG. 16).
  • the amount corresponding to the energy in the determination target period may be a value obtained directly from the output signal waveform data from the vibration detector 42, or data obtained by processing the output signal waveform data ( For example, it may be data that has undergone an effective value calculation process or data that has undergone an average value calculation process at regular intervals. Further, the amount corresponding to the energy in the determination target period may be a value calculated by approximation calculation or simple calculation based on the data.
  • the following embodiments 3A and 3B are more specific examples.
  • step T1 Since the determination target data acquisition step (step T1), the process for determining whether or not the determination criterion is satisfied (step T3), and the like are the same as those in FIG. Will be described focusing on the process of directly obtaining the energy in the determination target period.
  • FIG. 20 is a flowchart showing a process for obtaining energy in the determination target period directly from the output signal waveform data
  • FIG. 21 is an explanatory diagram showing a waveform example.
  • the target waveform may be a voltage waveform or a current waveform as long as it is a waveform representing a physical quantity corresponding to energy generated by contact from the vibration detection unit 42.
  • the amount of energy exceeding a predetermined base level threshold is obtained, and the presence or absence of contact is determined based on the amount of energy.
  • the base level threshold value is set to a value exceeding the level observed in the non-operating state of the wire strip processing apparatus 10. Thereby, the amount of energy generated mainly due to the operation of the wire strip processing apparatus 10 is obtained. Note that processing in a case where a plurality of regions exceeding a predetermined base level threshold are observed in the determination target period P will be described later.
  • the flowchart shown in FIG. 20 shows a process for simply obtaining the area of a region where the level (amplitude) exceeds a predetermined base level threshold. That is, assuming that the position on the time axis where the level exceeds the base level threshold value is t1, and then the position on the time axis where the level falls below the base level threshold value is t2, the peak value of the waveform in the period from t1 to t2 is h Then, the amount of energy is calculated from the equation (t2 ⁇ t1) ⁇ h ⁇ 2.
  • the value 2 in a formula is a constant, if the point is considered in the threshold value which determines the presence or absence of a contact, the said value 2 may be abbreviate
  • the time point indicates the position (time, sampling point, etc.) of the horizontal axis of the waveform in the determination target period P, and is initially set to the initial time point of the determination target period.
  • the current value is a value (level value, amplitude value, etc.) that represents the amount of energy at the time of the determination target, and is an absolute value excluding the zero cross determination (see step S8). (If the current value is negative, the sign is inverted).
  • step S1 it is determined whether or not the variable t1a has been recorded.
  • the variable t1a is a variable for temporarily storing a time point having a current value exceeding the base level threshold, and is initially in an unrecorded state (for example, 0). If it is determined that the variable t1a has not been recorded (some time has already been stored), the process proceeds to step S2, and if it is determined to be recorded, the process proceeds to step S14.
  • step S2 it is determined whether or not base level threshold value ⁇ current value. If YES is determined, the process proceeds to step S3, the current time is written in the variable t1a, and then the process proceeds to step S4. On the other hand, if NO is determined in step S2, the process proceeds to step S4. If the base level threshold value is the current value, the process may proceed to any process. By these steps S1 to S3, the time when the current value exceeds the base level threshold is recorded in the variable t1a.
  • step S14 it is determined whether or not the variable t2a has been recorded.
  • the variable t2a is a variable for temporarily storing a time point having a current value below the base level threshold, and is initially in an unrecorded state (for example, 0). If it is determined that the variable t2a has been recorded (some time has been stored), the process proceeds to step S4. If it is determined that the variable t2a has not been recorded, the process proceeds to step S15.
  • step S4 it is determined whether h ⁇ current value. If the determination result in step S4 is YES, the process proceeds to step S5, the current value is written in the variable h, and then the process proceeds to step S6. On the other hand, if the determination result in step S4 is NO, the process proceeds to step S6.
  • the variable h is a variable for storing a time point having a current value exceeding the base level threshold value.
  • step S6 1 is added to the time point (the time point is advanced to the next time point), and the process proceeds to the next step S7.
  • step S7 it is determined whether or not the determination waveform is ended based on whether or not the time corresponds to the end time of the determination target period. If it is determined that the determination waveform has not ended, the process proceeds to step S8. If it is determined that the determination waveform has ended, the process proceeds to step S17.
  • step S8 it is determined whether or not a zero cross is present. The determination as to whether or not the zero crossing is made is based on whether or not the current value related to the level (amplitude) and the previous value cross the zero level.
  • Step S8 is a step of determining whether or not the processing related to steps S1 to S5 and S14 to S16 prior to step S6 is processing for the last time point in one mountain corresponding to a half cycle indicated by the waveform, If the decision result in the step S8 is YES, the process returns to the step S1 and the subsequent processes are repeated. On the other hand, if YES is determined in the step S8, the process proceeds to a step S9.
  • step S9 it is determined whether or not the variable t1a has been recorded. If NO is determined, the process proceeds to step S17. If YES is determined, the process proceeds to step S10.
  • step S10 it is determined whether or not the variable t1 has been recorded. If the determination result is NO, the process proceeds to step S11, and the value of the variable t1a is written into the variable t1.
  • the variable t1 is initially in an unrecorded state (for example, 0 is stored), and the value of the first written variable t1a is written into the variable t1 through steps S10 and S11. The first position on the time axis that exceeds the base level threshold value is obtained as the value of the variable t1. Thereafter, the process proceeds to step S12.
  • step S12 the value of variable t2a is stored in variable t2, and then the process proceeds to step S13.
  • step S12 the position on the time axis that is below the base level threshold is obtained as the value of the variable t2.
  • step S13 the variables t1a and t2a are cleared (unrecorded state), and then the process returns to step S1.
  • step S17 it is determined whether or not the variable t1 has been recorded. If it is determined NO, the process is terminated. That is, if a time point having a current value exceeding the base level threshold value does not occur, the process ends. On the other hand, if YES is determined in the step S17, the process proceeds to a step S18.
  • step S18 it is determined whether or not the variable t2a has been recorded. If NO is determined, the process proceeds to step S19. If YES is determined, the process proceeds to step S20. In step S19, the current time is stored in the variable t2. That is, when the variable t2 is not obtained due to the end of the determination waveform before the current value falls below the base level threshold, the current time point is stored in the variable t2 for convenience. Thereafter, the process proceeds to step S20.
  • step S20 the value of each variable is substituted into (t2 ⁇ t1) ⁇ h ⁇ 2, and the amount of energy is calculated.
  • a plurality of regions exceeding the base level threshold value are observed, and a plurality of energy amounts may be calculated accordingly.
  • any one of the plurality of calculated values exceeds the threshold value, it may be determined that there is a contact, or each of the plurality of calculated values is compared with a predetermined threshold value, When the count number exceeding the threshold exceeds a predetermined count threshold, it may be determined that there is contact.
  • the presence or absence of contact may be determined by comparing the maximum value of a plurality of calculated values with a threshold value, or the contact value may be determined by comparing an average value or a total value of a plurality of calculated values with a threshold value. The presence or absence may be determined.
  • the position on the time axis at which the level falls below the base level threshold is t2, but the point in time when the peak value h of the waveform appears is t2, and (t2 ⁇ t1) ⁇ h as described above.
  • the amount of energy may be calculated by ⁇ 2.
  • the point that the value 2 in the formula may be omitted is the same as described above.
  • the wave shape generated by the contact of the core wire and the contact of the strip blades 14A and 14B has a shape that rises relatively slowly, and the wave shape generated by electrical noise or mechanical shock. was confirmed to have a relatively steep rising shape.
  • the amount of energy based on the wave shape generated by the contact between the core wire and the strip blades 14A and 14B is obtained by multiplying the amount of energy calculated as described above by a coefficient corresponding to the rising degree of the wave shape. Find the amount of energy that emphasizes.
  • the following coefficients may be adopted as such coefficients. That is, the waveform point Q1 at the time point t1, the waveform point Q2 at the time point t2, the peak value in view of the fact that the level at the time point t1, the level at the time point t2, and the time point exhibiting the peak value can be easily obtained from the flowchart in FIG. It is assumed that the waveform point Q3 at the time of presenting (see FIG. 21). A number that is inversely related to the angle Q2Q1Q3 is used as the coefficient. For example, as shown in FIG. 22, it is preferable to employ a coefficient such that the angle Q2Q1Q3 is 0 or close to 0 at 90 degrees and close to 1 or 1 at 0 degrees.
  • Such a coefficient may be obtained by a calculation formula using the angle Q2Q1Q3 as a variable, or a table in which coefficients are associated with values of a plurality of angles Q2Q1Q3 is stored in advance. It may be obtained based on a table.
  • the predetermined period is a determination target. If it is regarded as a period, it can be considered that the value obtained by the effective value calculation (or the average value calculation) represents an amount corresponding to the energy in the determination target period having a width.
  • an amount corresponding to the energy in the determination target period P based on the waveform data subjected to the effective value calculation process (or the average value calculation) (the evaluation value in the first embodiment, hereinafter may be simply referred to as “energy”).
  • energy an amount corresponding to the energy in the determination target period P based on the waveform data subjected to the effective value calculation process (or the average value calculation) (the evaluation value in the first embodiment, hereinafter may be simply referred to as “energy”).
  • step T1 the process for determining whether or not the determination criterion is satisfied (step T3) and the like are the same as those in FIG. 6 in the first embodiment, the effective value calculation process (or average value calculation) is performed.
  • the processing for obtaining the energy in the determination target period from the obtained waveform data will be mainly described.
  • FIG. 23 is a flowchart showing a process for obtaining energy in the determination target period P from waveform data obtained by the effective value calculation process (or average value calculation), and
  • FIG. 24 is a diagram showing an example of output signal waveform data from the vibration detection unit 42.
  • FIG. 25 is a diagram showing an example of waveform data obtained by performing effective value calculation processing (or average value calculation) from output signal waveform data.
  • the output signal waveform data shown in FIG. 24 is effective value calculation processing (or average value calculation), waveform data as shown in FIG. 25 is obtained.
  • the determination target period P the amount of energy exceeding a predetermined base level threshold is obtained, and the presence or absence of contact is determined based on the amount of energy.
  • the base level threshold value is set to a value exceeding the energy (expressed by the effective value or the average value) observed in the non-operating state of the wire strip processing apparatus 10. Thereby, the amount of energy generated mainly due to the operation of the wire strip processing apparatus 10 is obtained.
  • the processing when a plurality of regions exceeding a predetermined base level threshold value are observed in the determination target period P is the same as that described in the above embodiment 3A.
  • the flowchart shown in FIG. 23 shows a process of simply obtaining the area of the region where the level (effective value or average value) exceeds a predetermined base level threshold value. That is, assuming that the position on the time axis where the level exceeds the base level threshold value is t1, and then the position on the time axis where the level falls below the base level threshold value is t2, the peak value of the waveform in the period from t1 to t2 is h Then, (t2 ⁇ t1) ⁇ h ⁇ 2 is calculated as the amount of energy. In addition, since the value 2 in the formula is a constant, the value 2 may be omitted if the point is considered in the threshold value for determining the presence or absence of contact.
  • the time point indicates the position (time, sampling point, etc.) of the horizontal axis of the waveform in the determination target period P, and is initially set to the initial time point of the determination target period.
  • step S31 it is determined whether or not the variable t1 has been recorded.
  • the variable t1 is a variable for storing a time point having a current value exceeding the base level threshold, and is initially in an unrecorded state (for example, 0). If it is determined that the variable t1 is not already recorded (some time has been stored), the process proceeds to step S32. If it is determined that the variable t1 has been recorded, the process proceeds to step S38.
  • step S32 it is determined whether or not base level threshold value ⁇ current value. If YES is determined, the process proceeds to step S33, the current time is written in the variable t1, and then the process proceeds to step S34. On the other hand, if NO is determined in step S32, the process proceeds to step S34. If the base level threshold value is the current value, the process may proceed to any process. By these steps S31 to S33, the time when the current value exceeds the base level threshold is recorded in the variable t1.
  • step S34 it is determined whether h ⁇ current value. If the determination result in step S34 is YES, the process proceeds to step S35, the current value is written in the variable h, and then the process proceeds to step S36. On the other hand, if the determination result in step S34 is NO, the process proceeds to step S36.
  • the variable h is a variable for storing a time point having a current value exceeding the base level threshold value.
  • step S36 it is determined whether or not the variable t2 has been recorded. If NO is determined, the process returns to step S31 through step S40 which adds 1 to the time point (progresses the time point to the next time point). On the other hand, if “YES” is determined in the step S36, the process proceeds to a step S37.
  • step S37 the amount of energy is calculated by substituting the value of each variable into (t2 ⁇ t1) ⁇ h ⁇ 2.
  • the processing may be terminated halfway and the processing result may be discarded, but may be as shown in the flowchart of FIG. 23
  • step S56 it is determined whether or not the variable t2 has been recorded. If it is determined YES, the process proceeds to step S61. On the other hand, if it is determined as NO in step S56, the process proceeds to step S58 via step S57 by adding 1 to the time point (advancing the time point to the next time point).
  • step S58 it is determined whether or not the determination waveform is ended based on whether or not the time corresponds to the end time of the determination target period. If it is determined that the determination waveform has not ended, the process returns to step S51 and the subsequent processing is repeated. On the other hand, if it is determined in step S58 that the determination waveform has not ended, the process proceeds to step S59.
  • step S59 it is determined whether or not the variable t1 has been recorded. If NO, the process ends. If YES, the process proceeds to step S60.
  • step S60 a value obtained by subtracting 1 from the current time point (a time point immediately before the current time point) is written in the variable t2, and then the process proceeds to step S61.
  • step S61 the value of each variable is substituted into (t2 ⁇ t1) ⁇ h ⁇ 2, and the amount of energy is calculated.
  • the amount of energy can be calculated with the time point immediately before the end time point being t2.
  • the time point at which the peak value h of the waveform appears may be t2, and the amount corresponding to the energy in the determination target period may be obtained by correcting according to the degree of energy change in the determination target period P.
  • the good point is the same as in Embodiment 3A.
  • the amount of energy is calculated for each of a plurality of divided periods, and the maximum value (or a value in an arbitrary number order) or the minimum value (or value) May determine the presence or absence of contact by comparing a threshold value that is a criterion for determination).
  • the presence or absence of contact may be determined by obtaining an average value of the amount of energy calculated for each of the plurality of divided periods and comparing the average value with a threshold value that is a criterion.
  • each of the average values of the amount of energy calculated for a plurality of divided periods is multiplied by each period width to obtain a total amount of energy, and the total amount is compared with a threshold value that is a determination criterion.
  • a threshold value that is a determination criterion.
  • the determination process may be performed by discarding either the maximum value or the minimum value of the amount of energy obtained for the divided period. Thereby, the presence or absence of contact can be more reliably determined by removing unstable factors due to accidental circumstances or the like.
  • vibration energy due to contact between the core wire Wa and the strip blades 14A and 14B is continuously generated to some extent, while various external noises are generally in a relatively short time. Therefore, the presence or absence of contact can be determined by determining whether or not the energy generated in the determination target period is continuous.
  • FIG. 27 is a flowchart showing determination processing in the present embodiment.
  • step S81 the determination target waveform obtained by the vibration detection unit 42 is subjected to frequency energy conversion, and an energy distribution for each frequency component in the determination waveform is obtained.
  • This processing itself can be realized by various frequency analysis methods such as FFT (Fast Fourier Transform).
  • FFT Fast Fourier Transform
  • the arbitrary frequency is a preset value, and is set to a frequency (for example, 200 kHz) that is considered to be observed as the largest energy among the vibration frequencies due to the contact between the core wire Wa and the strip blades 14A and 14B.
  • step S83 it is determined whether or not the energy at the determined arbitrary frequency exceeds a threshold value as a determination criterion. If the determination result is YES, it is determined that there is contact (step S84), and if it is NO, it is determined that there is no contact (step S85), and the process is terminated. In addition, when the obtained energy at an arbitrary frequency is the same as the threshold value as a determination criterion, any determination may be made.
  • FIG. 29 is a flowchart showing determination processing according to a modification of the present embodiment
  • FIG. 30 is a diagram showing an example of energy distribution for each frequency component.
  • Step S91 in FIG. 29 is the same as step S81 described above.
  • the arbitrary frequency band is a band set in advance, and is a frequency band (for example, 180 kHz to 220 kHz) that is considered to be observed as a relatively large energy among vibration frequencies due to contact between the core wire Wa and the strip blades 14A and 14B. Is set.
  • step S93 it is determined whether or not the maximum value of the obtained energy exceeds a threshold value as a determination criterion. If the determination result is YES, it is determined that there is contact (step S94), and if it is NO, it is determined that there is no contact (step S95), and the process is terminated. In addition, when the obtained energy at an arbitrary frequency is the same as the threshold value as a determination criterion, any determination may be made.
  • FIG. 31 is a flowchart showing determination processing according to another modification of the present embodiment.
  • Step S101 in FIG. 29 is the same as step S81 described above.
  • the energy distribution waveform for each frequency component (here, the FFT waveform) is multiplied by a weighting coefficient corresponding to each frequency component.
  • the weighting coefficient is set to a larger value for a frequency component that will be observed as a larger energy among vibration frequencies due to contact between the core wire Wa and the strip blades 14A and 14B. It is set to a smaller value for frequency components that will be observed as smaller energy.
  • This weighting coefficient is stored in advance as a table or a calculation formula indicating a value corresponding to the frequency component. For example, when the energy distribution waveform (FFT waveform) shown in FIG. 30 is multiplied by the weighted count shown in FIG. 32, an energy distribution waveform in which the frequency component that will be generated by contact is emphasized is obtained as shown in FIG. It is done. For this reason, the presence or absence of contact can be determined more accurately.
  • step S104 it is determined whether or not the energy at the determined arbitrary frequency exceeds a threshold value as a determination criterion. If the determination result is YES, it is determined that there is contact (step S105), and if it is NO, it is determined that there is no contact (step S106), and the process is terminated. In addition, when the obtained energy at an arbitrary frequency is the same as the threshold value as a determination criterion, any determination may be made.
  • FIG. 34 is a flowchart showing determination processing according to another modification of the present embodiment.
  • Steps S111, S112, and S114 to S116 in this process are the same as steps S101, S102, and S104 to S106 shown in FIG. 31, and the difference is step S113.
  • step S113 the maximum value of the energy in the arbitrary frequency band is obtained from the energy distribution waveform (see FIG. 33) in which the frequency component that will be generated by the contact is emphasized.
  • the arbitrary frequency band is as described in step S92 of the flowchart shown in FIG.
  • FIG. 35 is a flowchart showing determination processing according to another modification of the present embodiment. In this flowchart, each process described above can be switched.
  • step S121 the measurement waveform to be determined obtained by the vibration detector 42 is subjected to frequency energy conversion, and the energy distribution for each frequency component in the measurement waveform is obtained.
  • step S122 it is determined whether or not the weighting coefficient is used. This determination is made based on a setting instruction or the like by the user for the apparatus. If it is determined NO in step S122, the process proceeds to step S124. If it is determined YES, the process proceeds to step S123.
  • step S123 the energy distribution waveform (FFT waveform) for each frequency component is multiplied by a weighted count corresponding to each frequency component to obtain an energy distribution waveform in which the frequency component that will be generated by the contact is emphasized (see FIG. 33). ). Thereafter, the process proceeds to step S124.
  • FFT waveform frequency distribution waveform
  • step S124 it is determined whether or not the frequency band is used. This determination is made based on a setting instruction or the like by the user for the apparatus. If the determination result in this step S124 is YES, it will progress to step S125, and if it is NO, it will progress to step S128.
  • step S125 in the energy distribution for each frequency component (in the case of passing through step S123, the energy distribution waveform in which the frequency component that will be generated by contact is emphasized), the maximum value of the energy in the arbitrary frequency band is obtained. Thereafter, the process proceeds to step S126.
  • step S1208 in the energy distribution for each frequency component (in the case of passing through step S123, the energy distribution waveform in which the frequency component that would be generated by contact is emphasized), the energy of an arbitrary frequency is obtained, The process proceeds to step S126.
  • step S126 it is determined whether or not the obtained energy exceeds a threshold value as a determination criterion. If the determination result is YES, it is determined that there is a contact (step S127), and if it is NO, it is determined that there is no contact (step S129), and the process ends. In addition, when the energy in the calculated
  • a value reflecting a peak value such as a quasi-peak value (QP value: quasi-peak value) is compared with a threshold value to determine the presence or absence of contact.
  • QP value quasi-peak value
  • the presence or absence of contact may be determined by comparing the average value or sum of energy in an arbitrary frequency band with a threshold value.
  • the energy distribution for each frequency component that is the basis of each process does not need to be obtained by cutting out the entire determination target period P as one target section.
  • the determination target period P is extracted as a period divided into a plurality of periods 1 to 7, and the energy distribution for each frequency component is obtained by FFT conversion or the like for each period as shown in FIG.
  • the energy distribution for each frequency component obtained by averaging the energy distribution for each of the plurality of frequency components to obtain noise distribution may be obtained, and the above processes may be performed based on the energy distribution for each frequency component.
  • the arbitrary frequency, the arbitrary frequency band, and the weighting coefficient may be set to different values depending on the strip blades 14A and 14B, the material of the core wire Wa, and the like.
  • the conductor contact state detecting device itself of the electric wire is not limited to detecting the contact between the strip blade and the core wire, but various kinds of detecting the contact between the cutting blade and the conductor of the electric wire when the cutting blade cuts into the electric wire. Applicable to configuration.
  • the conductor of the electric wire for example, in addition to the core wire of the electric wire, various portions formed of a metal conductor such as a shield portion that surrounds the core wire of the electric wire with the inner sheath interposed therebetween are assumed.
  • the outer periphery of the core wire 201 is covered with an internal insulating layer 202, and the outer periphery thereof is covered with a braided layer such as a metal net or a shield layer 203 made of metal tape or the like.
  • the electric wire 200 whose outer periphery is covered with the outer insulating layer 204 may be the target.
  • the cutting blade 210 is cut into the external insulating layer 204, and the external insulating layer 204 is removed. In this case, it is necessary to prevent the cutting blade 210 from contacting the shield layer 203.
  • the contact state detection device described above can be applied as a device that detects contact between the cutting blade 210 and the shield layer 203.
  • outer periphery of a plurality of wires is covered with a shield layer and the outer periphery is further covered with an outer insulating layer (also referred to as a cable) and the outer insulating layer is removed with a cutting blade.
  • an outer insulating layer also referred to as a cable
  • the said embodiment is an illustration and the content of this invention is not limited to what was demonstrated by the said embodiment.
  • the contents described in Embodiments 1 to 4 and the various modifications can be combined as appropriate as long as the contents are not contradictory.

Landscapes

  • Removal Of Insulation Or Armoring From Wires Or Cables (AREA)
  • Surgical Instruments (AREA)

Abstract

 電線に切込む切込み刃と電線の導体との接触を検出する電線の導体接触検出装置である。この導体接触検出装置は、電線の導体と切込み刃との接触によって発生するエネルギーに応じた物理量を検知可能な検知部と、前記検知部の出力信号に基づいて、判定対象期間におけるエネルギー発生状況に応じて電線の導体と切込み刃との接触の有無を判定する接触状態判定処理部とを備える。

Description

電線の導体接触検出装置、電線の導体接触検出方法及び電線の導体接触検出プログラム
 この発明は、切込み刃と電線の導体との接触を検出する技術、例えば、電線の被覆をストリップする際に、ストリップ刃と芯線との接触を検出する技術に関する。
 通常、電線の被覆はストリップ刃を用いてストリップされる。ストリップ刃が電線の被覆に切込む際、ストリップ刃が芯線に接触してしまうと、芯線に傷が付いてしまう。
 従来、電線の被覆をストリップする際において、ストリップ刃と芯線との接触を検出する技術として、特許文献1に開示のものがある。
 特許文献1では、電線の被覆をストリップする際に、ストリップ刃と電線の芯線との導通の有無を検出することで、ストリップ刃と電線の芯線との接触を検出している。
特開平6-253430号公報
 しかしながら、特許文献1に開示の技術では、ストリップ刃と電線の芯線との導通の有無を検出するためには、ストリップする部分以外で、検査用の電極を電線の芯線に電気的に接続する必要があり、その接続を如何に行うかが重要な問題となっていた。特に、所定長に調尺切断された電線に関して上記接触検出を行うためには、切断された電線それぞれに対して、検査用の電極を芯線に電気的に接続する必要があり、実現性には乏しいものとなっていた。
 そこで、本発明は、電線に切込む切込み刃と電線の導体との接触をより簡易に検出できるようにすることを目的とする。
 上記課題を解決するため、第1の態様は、電線に切込む切込み刃と電線の導体との接触を検出する電線の導体接触検出装置であって、電線の導体と切込み刃との接触によって発生するエネルギーに応じた物理量を検知可能な検知部と、前記検知部の出力信号に基づいて、判定対象期間におけるエネルギー発生状況に応じて電線の導体と切込み刃との接触の有無を判定する接触状態判定処理部とを備える。
 第2の態様は、第1の態様に係る電線の導体接触検出装置であって、前記検知部は、電線の導体と切込み刃との接触によって生じる振動周波数を含む周波数域の振動を検知可能な振動検知部とされている。
 第3の態様は、第1又は第2の態様にかかる電線の導体接触検出装置であって、前記検知部は、100kHz~300kHzの範囲内の共振周波数を持つ共振型AEセンサとされている。
 第4の態様は、第1~第3のいずれか一つの態様に係る電線の導体接触検出装置であって、前記接触状態判定処理部は、前記判定対象期間を分割した複数の判定期間毎に期間毎接触判定基準を満たすか否かを判定し、期間毎の判定結果に基づいてストリップ刃と芯線との接触の有無を判定するものである。
 第5の態様は、第4の態様に係る電線の導体接触検出装置であって、前記接触状態判定処理部は、前記検知部の出力信号に基づく期間毎のエネルギーに応じた量が予め設定されたエネルギー閾値を超えるときに、期間毎接触判定基準を満たすと判定する。
 第6の態様は、第4又は第5の態様に係る電線の導体接触検出装置であって、前記接触状態判定処理部は、前記期間毎接触判定基準を満たす数が予め設定された接触判定数を超えるときに、電線の導体と切込み刃との接触有りと判定する。
 第7の態様は、第1~第3のいずれか一つの態様に係る電線の導体接触検出装置であって、前記接触状態判定処理部は、前記判定対象期間におけるエネルギーに応じた量に基づいて電線の導体と切込み刃との接触の有無を判定する。
 第8の態様は、第7の態様に係る電線の導体接触状態検出装置であって、前記接触状態判定処理部は、前記判定対象期間におけるエネルギーの変化度合に応じて補正して、前記判定対象期間におけるエネルギーに応じた量を求める。
 第9の態様は、第1~第3のいずれか一つの態様に係る電線の導体接触状態検出装置であって、前記接触状態判定処理部は、前記判定対象期間におけるエネルギーの継続性に基づいて電線の導体と切込み刃との接触の有無を判定する。
 第10の態様は、第9の態様に係る電線の導体接触状態検出装置であって、前記接触状態判定処理部は、前記判定対象期間におけるエネルギーの継続性の有無を前記検知部の出力信号に含まれる周波数成分に基づいて判定する。
 第11の態様は、第1~第10のいずれか一つの態様に係る電線の導体接触状態検出装置であって、前記判定対象期間は、前記切込み刃が前記電線に切込んでいく期間を含む。
 第12の態様は、第1~第11のいずれか一つの態様に係る電線の導体接触状態検出装置であって、前記判定対象期間は、前記切込み刃が前記電線に切込んで停止した後の期間を含む。
 第13の態様は、第1~第12のいずれか一つの態様に係る電線の導体接触状態検出装置であって、前記判定対象期間は、前記電線に切込んだ切込み刃が前記電線の端部側に相対移動して被覆を除去する際の期間を含む。
 第14の態様は、第1~第13のいずれか一つの態様に係る電線の導体接触状態検出装置であって、電線の被覆に切込み可能な一対の切込み刃と、前記一対の切込み刃を接近及び離隔移動させる刃駆動部とをさらに備える。
 第15の態様は、第14の態様に係る電線の導体接触状態検出装置であって、前記検知部が前記一対の切込み刃の少なくとも一方に接触するように設けられている。
 第16の態様は、第1~第15のいずれか一つの態様に係る電線の導体接触状態検出装置であって、前記検知部は、電線の被覆をストリップするストリップ刃としての前記切込み刃と電線の芯線との接触よって発生するエネルギーに応じた物理量を検知可能に構成されている。
 第17の態様は、電線に切込む切込み刃と電線の導体との接触を検出する電線の導体接触検出方法であって、(a)切込み刃を電線に切込ませる処理を含む加工処理を行うステップと、(b)前記ステップ(a)において発生するエネルギーに応じた物理量を検知するステップと、(c)前記工程(b)における検知結果に基づいて、判定対象期間におけるエネルギー発生状況に応じて電線の導体と切込み刃との接触の有無を判定するステップと、を備える。
 第18の態様は、切込み刃を電線に切込ませる処理を含む加工処理中に発生するエネルギーに応じた物理量を検知し、その検知結果に基づいて、電線の導体と切込み刃との接触の有無を判定するための電線の導体接触状態検出プログラムであって、コンピュータに、(A)切込み刃を電線に切込ませる処理を含む加工処理中に発生するエネルギーに応じた物理量の検知結果を取得させるステップと、(B)前記ステップ(A)における検知結果に基づいて、判定対象期間におけるエネルギー発生状況に応じて電線の導体と切込み刃との接触の有無を判定するステップと、を実現させるための電線の導体接触状態検出プログラムである。
 第1の態様によると、電線の導体と切込み刃との接触によって発生するエネルギーに応じた物理量が検知部によって検知される。そして、判定対象期間におけるエネルギーの発生状況に応じて、電線の導体と切込み刃との接触の有無を判定することができる。これにより、電線に切込む切込み刃と電線の導体との接触をより簡易に検出できる。
 第2の態様によると、電線の導体と切込み刃との接触によって生じる振動エネルギーをより効果的に検知できる。
 特に、通常、金属で形成される切込み刃と、金属で形成される導体とが接触することによって生ずる振動の周波数は、100kHz~300kHzの範囲内で観測され易い。そこで、第3の態様のように、検知部として、100kHz~300kHzの範囲内の共振周波数を持つ共振型AEセンサを用いることで、導体と切込み刃との接触をより確実に検出できる。
 第4の態様によると、前記判定対象期間を分割した複数の判定期間毎に期間毎接触判定基準を満たすか否かを判定し、期間毎の判定結果に基づいてストリップ刃と芯線との接触の有無を判定するため、より正確に導体と切込み刃との接触の有無を判定できる。
 第5の態様によると、切込み刃と導体との接触によるエネルギーに応じた量の大小に基づいて、期間毎の導体と切込み刃との接触可能性を判定できる。
 第6の態様によると、切込み刃と導体との接触によるエネルギーに応じた量の大小及びその継続状態に基づいて、期間毎の導体と切込み刃との接触可能性を判定できる。
 電線の導体と切込み刃との接触によるエネルギーは、ある程度継続して発生する。そこで、第7の態様のように、判定対象期間におけるエネルギーに応じた量に基づいて電線の導体と切込み刃との接触の有無を判定することで、より精度よく電線の導体と切込み刃との接触の有無を判定することができる。
 また、導体と切込み刃との接触によるエネルギー変化は比較的なだらかな変化として観測される。そこで、第8の態様のように、前記判定対象期間におけるエネルギーの変化度合に応じて補正して、前記判定対象期間におけるエネルギーに応じた量を求めることで、導体と切込み刃との接触の有無をより確実に判定できる。
 電線の導体と切込み刃との接触によるエネルギーは、ある程度継続して発生する。そこで、第9の態様のように、前記接触状態判定処理部は、期間におけるエネルギーの継続性に基づいて電線の導体と切込み刃との接触の有無を判定することで、より精度よく電線の導体と切込み刃との接触の有無を判定することができる。
 第10の態様によると、前記判定対象期間において電線の導体と切込み刃との接触によって発生する周波数成分が継続的に発生しているか否かにより、導体と切込み刃との接触の有無を判定することができる。
 また、切込み刃が電線に切込んでいく際に導体に接触すると、比較的大きなエネルギーが発生する。そこで、第11の態様のように、前記判定対象期間が、前記切込み刃が前記電線に切込んでいく期間を含むと、切込み刃と導体との接触の有無をより正確に判定できる。
 また、切込み刃が停止した状態でも、切込み刃と導体との接触によるエネルギーが観察される。また、切込み刃が停止した状態では、他の要因によるノイズ発生は抑制されている。そこで、第12の態様のように、前記判定対象期間が、前記切込み刃が前記電線に切込んで停止した後の期間を含むことで、より正確に切込み刃と導体との接触の有無を判定することができる。
 さらに、切込み刃が被覆を除去する際にも、切込み刃と導体が接触しているとそれによるエネルギーが観察される。そこで、第13の態様のように、前記判定対象期間が、前記電線に切込んだ切込み刃が前記電線の端部側に相対移動して前記被覆を除去する際の期間を含むことで、より正確に切込み刃と導体との接触の有無を判定することができる。
 第14の態様によると、導体と切込み刃との接触を簡易に検出しつつ、電線に切込む作業をすることができる。
 第15の態様によると、検知部が切込み刃に接触しているため、切込み刃と導体との接触をより確実に検知できる。
 第16の態様によると、ストリップ刃と芯線との接触を簡易に検出できる。
 第17の態様によると、電線の導体と切込み刃との接触によって発生するエネルギーに応じた物理量が検知される。そして、判定対象期間におけるエネルギーの発生状況に応じて、電線の導体と切込み刃との接触の有無を判定することができる。これにより、電線に切込む切込み刃と電線の導体との接触をより簡易に検出できる。
 第18の態様によると、電線の導体と切込み刃との接触によって発生するエネルギーに応じた物理量が検知される。そして、期間におけるエネルギーの発生状況に応じて、電線の導体と切込み刃との接触の有無を判定することができる。これにより、電線に切込む切込み刃と電線の導体との接触をより簡易に検出できる。
実施形態1に係る電線ストリップ処理装置を示す概略側面図である。 ストリップ刃と電線とを示す説明図である。 ストリップ刃が電線に正常に切込んだ状態を示す説明図である。 ストリップ刃が芯線に接触した状態を示す説明図である。 接触状態判定処理部のハードウエア構成を示すブロック図である。 接触状態判定処理部による接触状態判定処理を示すフローチャートである。 実施形態2に係る接触状態判定処理部のハードウエア構成を示すブロック図である。 接触状態判定処理部の機能ブロック図である。 接触状態判定処理部による接触状態判定処理を示すフローチャートである。 振幅波形とストリップ刃の移動速度との経時的な変化例及び判定範囲例を示す図である。 図10における矢符A1の切込み状態を示す説明図である。 図10における矢符A2の切込み状態を示す説明図である。 図10における矢符A3の切込み状態を示す説明図である。 ストリップを正常に行えた場合における振幅波形例を示す図である。 ストリップを正常に行えた場合における振動エネルギー量の分布を時間順に示す図である。 外来ノイズが混入した場合における振幅波形例を示す図である。 外来ノイズが混入した場合における振動エネルギー量の分布を時間順に示す図である。 芯線に傷付きが発生した場合における振幅波形例を示す図である。 芯線に傷付きが発生した場合における振動エネルギー量の分布を時間順に示す図である。 実施形態3に係る出力信号波形データから直接的に判定対象期間におけるエネルギーを求める処理を示すフローチャートである。 波形例を示す説明図である。 波形状の立上がり度合に応じた係数例を示す図である。 実効値演算処理した波形データから判定対象期間におけるエネルギーを求める処理を示すフローチャートである。 出力信号波形データ例を示す図である。 出力信号波形データから実効値演算処理(又は平均値演算)した波形データ例を示す図である。 実効値演算処理した波形データから判定対象期間におけるエネルギーを求める他の処理を示すフローチャートである。 実施形態4に係る判定処理を示すフローチャートである。 周波数成分毎のエネルギー分布の一例を示す図である。 変形例に係る判定処理を示すフローチャートである。 周波数成分毎のエネルギー分布の一例を示す図である。 他の変形例に係る判定処理を示すフローチャートである。 重み付係数の例を示す図である。 強調されたエネルギー分布波形例を示す図である。 他の変形例に係る判定処理を示すフローチャートである。 他の変形例に係る判定処理を示すフローチャートである。 周波数成分毎のエネルギー分布を求めるための他の例を示す説明図である。 周波数成分毎のエネルギー分布を求めるための他の例を示す説明図である。 適用対象に係る変形例を示す説明図である。 適用対象に係る変形例を示す説明図である。
 以下、実施の形態に係る電線の導体接触状態検出装置について説明する。ここでは、下記の各実施形態において、電線の導体接触状態検出装置を、電線の被覆をストリップ刃でストリップする際に、ストリップ刃と芯線との接触を検出する芯線接触検出装置に適用した例で説明する。
 <実施形態1>
 実施形態1では、下記の実施形態2~実施形態4を包括する基本構成について説明する。
 図1は電線ストリップ処理装置10を示す概略側面図である。この電線ストリップ処理装置10は、電線ストリップユニット12と芯線接触検出装置40とを備えている。
 電線ストリップユニット12は、電線Wの端部の被覆Wbを皮剥ぎするための装置であり、一対のストリップ刃14A,14Bと、刃駆動部16と、電線保持部20と、被覆除去駆動部22とを備えている。
 一対のストリップ刃14A,14Bは、電線Wの被覆Wbに切込み可能な刃形状に形成されている。被覆Wbにはポリ塩化ビニル製などの絶縁樹脂部材が用いられる。ここでは、一対のストリップ刃14A,14Bの先端部が略V字状に凹むV字刃形状に形成されている(図2参照)。そして、そのV字刃形状部分が電線Wの被覆Wbに切込み可能に形成されている(図3参照)。なお、ストリップ刃14A,14Bの形状は上記例に限られず、例えば、略円弧状凹刃形状であってもよい。
 刃駆動部16は、一対のストリップ刃14A,14Bを接近及び離隔移動可能に構成されている。ここでは、刃駆動部16は、一対の刃支持部17A,17Bと、刃支持部17A,17Bを移動可能に支持するねじ部18と、ねじ部18を回転させるモータ19とを有している。
 ねじ部18は、所定方向(ここでは上下方向)に沿って配設されており、その中心軸周りに回転自在に支持されている。ねじ部18の一端側部分18aには、所定の螺旋方向に沿ったネジ溝が形成され、ねじ部18の他端側部分18bには、逆の螺旋方向に沿ったネジ溝が形成されている。
 モータ19は、サーボモータ等の回転量の駆動制御が可能なモータによって構成されており、その回転駆動力をねじ部18に伝達可能な態様で配設されている。ここでは、モータ19の駆動軸部がねじ部18に直接的に連結されている。そして、モータ19の回転駆動に応じて、ねじ部18が正逆両方向に回転可能に構成されている。
 一対の刃支持部17A,17Bは、長尺状部材に形成されており、それぞれの先端部にストリップ刃14A,14Bが固定支持されている。また、一方の刃支持部17Aの基端部には、ねじ部18の一端側部分18aと螺合可能な螺合部17Aaが形成されており、他方の刃支持部17Bの基端部には、ねじ部18の他端側部分18bと螺合可能な螺合部17Baが形成されている。
 そして、一対のストリップ刃14A,14Bの先端部を対向させる姿勢で、一方の刃支持部17Aの螺合部17Aaがねじ部18の一端側部分18aに螺合されると共に、他方の刃支持部17Bの螺合部17Baがねじ部18の他端側部分18bに螺合されている。この状態で、モータ19を正方向或は逆方向に回転制御することで、一対のストリップ刃14A,14Bを接近移動或は離隔移動させることができる構成となっている。
 もっとも、刃駆動部としては上記構成に限られず、エアシリンダ、油圧シリンダ、リニアモータ等で駆動する構成であってもよく、また、一対のストリップ刃14A,14Bをそれぞれ別々に駆動する構成であってもよい。
 電線保持部20は、電線Wの端部を一対のストリップ刃14A,14B間に配設した姿勢で、当該電線Wを保持可能に構成されている。このような電線保持部20としては、例えば、エアシリンダ、油圧シリンダ等のアクチュエータの駆動により一対の把持爪を開閉駆動する周知のチャック機構等を採用することができ、要するに、電線を保持可能な構成を採用することができる。
 被覆除去駆動部22は、一対のストリップ刃14A,14Bと上記電線保持部20とを離間方向に移動させることで電線Wの端部の被覆Wbを除去する運動を付与する機構として構成されている。ここでは、被覆除去駆動部22は、エアシリンダ、油圧シリンダ等のアクチュエータ等により構成されており、上記電線保持部20を、一対のストリップ刃14A,14Bから離間させる方向に移動させるように構成されている。
 この電線ストリップユニット12は、ストリップ処理制御部28の制御下、次のようにして電線Wの端部の被覆Wbをストリップする。
 すなわち、一対のストリップ刃14A,14Bを離間移動させた状態で、一対のストリップ刃14A,14B間に電線Wの端部を配設するようにして、電線Wを電線保持部20で保持する(図2参照)。この状態で、刃駆動部16の駆動により一対のストリップ刃14A,14Bを接近移動させる。すると、一対のストリップ刃14A,14BのV字刃形状部分に囲まれた領域に芯線Waを配設した状態で、V字刃形状部分が被覆Wbに切込んでいく(図3参照)。このように、V字刃形状部分を被覆Wbに切込ませた状態で、被覆除去駆動部22の駆動により一対のストリップ刃14A,14Bと電線保持部20とを離間方向に移動させると、被覆WbのうちV字刃形状部分より先端側の部分が、電線保持部20で保持された電線W部分から除去され、電線Wの端部に芯線Waが露出するようになる。なお、上記動作は、ストリップ処理制御部28から電線ストリップユニット12に与えられる動作信号に基づいて行われる。この動作信号には、一対のストリップ刃14A,14Bの動作制御に係る指令、例えば、一対のストリップ刃14A,14Bの駆動開始指令、一対のストリップ刃14A,14Bを被覆Wbに切込ませた状態で停止させるべき位置に応じた目標位置指令等が含まれている。この動作信号は、一対のストリップ刃14A,14Bの動作タイミングを表す信号として後述する接触状態判定処理部50に入力される。
 ここで、一対のストリップ刃14A,14Bが被覆Wbに切込んだ際に、一対のストリップ刃14A,14Bが芯線Waに接触してしまうことがある(図4参照)。ストリップ刃14A,14Bが芯線Waに接触してしまうと、芯線に傷付き或は芯線切れ等が発生し、接触不良或は断線等の要因となり得る。
 芯線接触検出装置40は、上記のように電線Wの被覆Wbをストリップ刃14A,14Bでストリップする際に、ストリップ刃14A,14Bと芯線Waとの接触を検出する装置として構成されている。
 すなわち、芯線接触検出装置40は、振動検知部42と、接触状態判定処理部50とを備えている。
 振動検知部42は、芯線Waとストリップ刃14A,14Bとの接触によって発生するエネルギーに応じた物理量を検知可能に構成されており、より具体的には、芯線Waとストリップ刃14A,14Bとの接触によって生じる振動周波数を含む周波数域の振動を検知可能に構成されている。
 つまり、芯線Waとストリップ刃14A,14Bとが接触し芯線Waに傷等の破壊が生じてしまった場合、AE(Acoustic Emission)によってAE波が発生する。そこで、振動検知部42は、芯線Waとストリップ刃14A,14Bとの接触によるAE波の振動周波数を含む周波数域の振動を検知可能に構成されている。このAE波は、芯線Waとストリップ刃14A,14Bとの接触によって発生する振動エネルギーに応じた物理量を呈する波形を有しおり、その波形の振幅値は接触によって発生するエネルギーに応じた値を示す。なお、本出願において、芯線Waとストリップ刃14A,14Bとの接触によって生じる振動周波数とは、当該接触によって生じる主たる範囲の振動周波数、或は、当該接触によって生じる主たる特定の振動周波数を意味している。
 通常、芯線Waは金属で形成されており、また、ストリップ刃14A,14Bも金属で形成されている。そして、金属の破壊により発生するAE波は、100kHz~300kHzの範囲内で減衰が少なく観測し易い。このため、振動検知部42は、100kHz~300kHzの範囲に対して部分的に或は全体的に重複する周波数域の振動を検知可能であることが好ましい。より好ましくは、振動検知部42は、100kHz~300kHzの範囲で感度よく振動を検知できることが好ましく、より具体的には、振動検知部42は100kHz~300kHzの範囲内の共振周波数を持つ共振型AEセンサであることが好ましい。さらに好ましくは、200kHzの共振周波数を持つ共振型AEセンサであることが好ましい。
 ここでは、振動検知部42はストリップ刃14Aに接触するようにして取付固定されている。より具体的には、振動検知部42の検知面をストリップ刃14Aの一主面に接触させるようにして、振動検知部42が取付固定されている。振動検知部42の取付固定は、ネジ締め、接着等種々の取付構造により行うことができる。また、振動検知部42の取付位置は、上記ストリップ作業を妨げない位置であれば、ストリップ刃14A自体であってもストリップ刃14Aを保持する部分等であってもよい。このように、振動検知部42をストリップ刃14Aに接触させた態様で取付固定することで、芯線Waとストリップ刃14Aとの接触によって生じるAE波の振動をより確実に検知することができる。
 なお、芯線Waとストリップ刃14Bとの接触によって生じるAE波も、電線W,ストリップ刃14A等を介して振動検知部42に伝達される。このため、芯線Waとストリップ刃14Bとの接触によって生じるAE波の振動も、振動検知部42によって検知できる。もっとも、振動検知部42が一対のストリップ刃14A,14Bのそれぞれに設けられていてもよい。
 この振動検知部42からの振動検知信号は、例えば、検知された振動に応じた電圧を持つアナログ信号として接触状態判定処理部50に入力される。
 図5は接触状態判定処理部50のハードウエア構成を示すブロック図である。接触状態判定処理部50は、上記振動検知部42から入力される検知信号に基づいて、振動検知部42の出力信号に基づいて、判定対象期間におけるエネルギー発生状況に応じて芯線Waとストリップ刃14A,14Bとの接触の有無を判定する50としての処理を実行可能に構成されている。
 ここで、判定対象期間とは、ある時間から他の時間までの幅を持つ期間を意味し、判定対象期間におけるエネルギー発生状況とは、そのような幅を持つ期間におけるエネルギーに応じた量、変化状況、或は、断続状況等を意味し、特定の時間における瞬間的なエネルギーの値だけに基づいて接触の有無を判定するものではなないないことを意味している。
 より具体的には、接触状態判定処理部50は、CPU52、ROM53、RAM54、外部記憶装置55等がバスライン51を介して相互接続された一般的なコンピュータによって構成されている。ROM53は基本プログラム等を格納しており、RAM54はCPU52が所定の処理を行う際の作業領域として供される。外部記憶装置55は、フラッシュメモリ或はハードディスク装置等の不揮発性の記憶装置によって構成されている。外部記憶装置55には、芯線接触検出処理を行うための接触検出プログラム55aが格納されている。この接触検出プログラム55aに記述された手順に従って、主制御部としてのCPU52が演算処理を行うことにより、後述するようにストリップ刃14A,14Bと芯線Waとの接触を検出する各種機能が実現されるように構成されている。なお、以下の各実施形態で説明する各処理も、接触検出プログラム155aに実行手順として記述された処理であり、CPU52が接触検出プログラム155aに従って所定の演算処理を行うことにより実現される。接触検出プログラム55aは、通常、予め外部記憶装置55等のメモリに格納されて使用されるものであるが、CD-ROM或はDVD-ROM、外部のフラッシュメモリ等の記録媒体に記録された形態(プロフラムプロダクト)で提供され或はネットワークを介した外部サーバからのダウンロードなどにより提供され、追加的又は交換的に外部記憶装置55等のメモリに格納されるものであってもよい。なお、上記接触状態判定処理部50が行う一部或は全部の機能は、専用の論理回路等でハードウエア的に実現されてもよい。
 また、外部記憶装置55には、上記芯線接触検出処理を行う際の基準となる判断基準55bが格納されている。
 また、この接触状態判定処理部50では、検知信号入力回路部56,出力回路部57a,入力回路部57b,入力部58,表示部59もバスライン51に接続されている。
 検知信号入力回路部56は、増幅回路、フィルタ回路、AD変換回路等を有している。そして、振動検知部42によって得られた振動検知信号がアナログ信号で入力されると、増幅回路及びフィルタ回路を経て、AD変換回路に入力されてデジタル信号に変換されるように構成されている。なお、フィルタ回路としては、例えば、金属の破壊によるAE波に応じた100kHz~300kHzの通過領域を持つバンドパスフィルタを用いることが好ましい。この検知信号入力回路部56でデジタル信号に変換された振動検知信号は、例えば、振幅値が経時的に変化する波形データとしてRAM54或は外部記憶装置55に記憶され、後述する接触検出処理に供される。
 出力回路部57aは、CPU52による制御下、他の機器への制御信号等を出力する出力回路である。入力回路部57bには、外部からの諸信号、ここでは、ストリップ処理制御部28からの動作信号が、本入力回路部57bを通じて入力される。
 入力部58は、各種スイッチ、タッチパネル等により構成されており、上記判断基準55bの入力設定指示の他、接触状態判定処理部50に対する諸指示を受付可能に構成されている。
 表示部59は、液晶表示装置、ランプ等により構成されており、CPU52による制御下、接触状態の判定結果等の諸情報を表示可能に構成されている。
 図6は接触状態判定処理部50による接触状態判定処理を示すフローチャートである。
 接触状態判定処理開始後、接触状態判定処理部50は、ステップT1において、電線ストリップユニット12からの動作信号を元に、判定対象データを取得する。判定対象データは、ストリップ刃14A,14Bが電線Wに切込んでいく少なくとも一部の期間を含む判定対象期間に対応するデータであることが好ましい。この範囲は、より好ましくは、ストリップ刃14A,14Bが電線Wに切込んでいく際、芯線Waに接触してしまう可能性がある期間、例えば、ストリップ刃14A,14Bが電線Wに切込んでいく途中から停止するまで或は停止する直前までの期間として設定される。上記判定範囲は、電線ストリップユニット12によるストリップ刃14A,14Bの動作開始指令時又は動作停止指令を基準として一定期間を切出したものであってもよい。或は、ストリップ刃14A,14Bの速度情報或は位置情報がフィードバックされている場合には、当該速度情報或は位置情報に基づいて切出されてもよい。速度情報に基づいて判定範囲を切出す場合には、例えば、ストリップ刃14A,14Bが電線Wに切込んだ後徐々に速度低下して停止することに鑑み、ストリップ刃14A,14Bが最高速度からある程度減速した期間で切出すようにするとよい。
 次ステップT2では、取得された判定対象データに基づき、判定対象期間におけるエネルギーの発生状況を分析する。より具体的には、上記判定対象データに基づいて、複数の時点におけるエネルギーの大きさを表す値(データ)に基づいてエネルギーの発生状況に応じた評価値を算出する。このような評価値としては、例えば、判定対象期間を分割した複数の判定期間に対する所定の条件の充足性に関する評価値、判定対象期間におけるエネルギーに応じた量を表す評価値或は判定対象期間におけるエネルギーの継続性を示す評価値、エネルギーの変化度合を表す評価値(例えば、波形の瞬間的な傾き、平均的な傾き等)等が考えられる。これらのより具体的な例については、実施形態2~4で説明する。
 次ステップT3では、分析されたエネルギーの発生状況が判断基準55bを満たすか否かを判断する。判断基準55bは、ストリップ刃14A,14Bが被覆Wbに切込んでいく際等、芯線Waとストリップ刃14A,14Bとの非接触状態期間におけるエネルギーの発生状況と、ストリップ刃14A,14Bと芯線Waとが接触する期間において観察されるエネルギーの発生状況とを区別するための判断基準(閾値等)であり、実験的経験的に決定され、記憶部55に予め格納されている。
 そして、判断基準55bが満たされると判断されると、接触有りと判定され、その判定結果が出力される。判定結果に基づいて、表示部59において接触有る旨の表示がなされる。或は、判定結果に基づいて、ストリップ処理を停止させる旨の信号が電線ストリップユニット12に与えられる。これにより、電線ストリップユニット12側では、当該信号を受けてストリップ処理を一時的に停止するとよい。
 一方、判断基準55bが満たされないと判定されると、接触無しと判定される。これにより、続けてストリップ作業等が実施される。
 以上のように構成された芯線接触検出装置、芯線接触検出方法及び芯線接触検出プログラムによると、ストリップ刃14A,14Bと芯線Waとが接触すると、その際の振動が振動検知部42を通じて検知される。そして、振動検知部42より入力される振動検知信号に基づき、ストリップ刃14A,14Bと芯線Waとの接触の有無を判定することができる。これにより、電線Wの被覆Wbをストリップする際に、検査用の電極を芯線に電気的に接続等しなくとも、芯線Waとストリップ刃14A,14Bとの接触を簡易に検出できる。
 また、以下の理由により、ノイズの影響を抑制しつつ、ストリップ刃と芯線との接触をより正確に判定できる。
 まず、振動検知部42からの振動検知信号には、ストリップ刃と芯線との接触による振動だけではなく、他の各種外来ノイズが含まれる。他の各種外来ノイズは、ストリップ刃と芯線との接触による振動による大きさに比べて大きいのが一般的である。とすると、単に、検知された振動の振幅が所定値を越えたときに、ストリップ刃14A,14Bと芯線Waとの接触有りと判定する手法では、上記外来ノイズの影響を排除できず、正確な判定を行うことが困難となる。
 ところで、ストリップ刃と芯線との接触による振動は、ストリップ刃と芯線との接触期間中、ある程度継続的に発生する。これに対して、各種外来ノイズは、機械の他の部分の金属同士の衝突或は擦れ期間中にのみ発生し、ストリップ刃と芯線との接触による振動発生期間と比べると、比較的短時間であるのが一般的である。
 そこで、本実施形態のように、判定対象期間において、芯線Waとストリップ刃14A,14Bとの接触によって発生するエネルギーの発生状況に応じて、芯線Waとストリップ刃14A,14Bとの接触の有無を判定すると、大きな外来ノイズであっても、その発生時間が十分に短ければ、その外来ノイズの影響を抑制できる。このため、ストリップ刃14A,14Bと芯線Waとの接触をより正確に判定できることになる。
 以下、本実施形態1を前提として、実施形態2~4に基づいてより具体的な構成を説明する。なお、下記の各実施形態の説明において、本実施形態1で説明した構成と同様構成については同一符号を付する等して説明を省略することがある。
 <実施形態2>
 実施形態2では、接触状態判定処理部が、判定対象期間を複数に分割した判定期間におけるエネルギーに応じた量に基づいて複数の期間毎に期間毎接触判定基準を満たすか否かを判定し、期間毎の判定信号に基づいてストリップ刃14A,14Bと芯線Waとの接触の有無を判定する構成について説明する。
 図7は接触状態判定処理部50のハードウエア構成を示すブロック図である。接触状態判定処理部50は、上記振動検知部42から入力される検知信号に基づいて、複数の判定期間毎に期間毎接触判定基準を満たすか否かを判定し、期間毎の判定結果に基づいてストリップ刃14A,14Bと芯線Waとの接触の有無を判定する接触状態判定処理部50としての処理を実行可能に構成されている。
 より具体的には、接触状態判定処理部50は、CPU52、ROM53、RAM54、外部記憶装置55等がバスライン51を介して相互接続された一般的なコンピュータによって構成されている。ROM53は基本プログラム等を格納しており、RAM54はCPU52が所定の処理を行う際の作業領域として供される。外部記憶装置55は、フラッシュメモリ或はハードディスク装置等の不揮発性の記憶装置によって構成されている。外部記憶装置55には、後述する芯線接触検出処理を行うための接触検出プログラム155aが格納されている。この接触検出プログラム155aに記述された手順に従って、主制御部としてのCPU52が演算処理を行うことにより、後述するようにストリップ刃14A,14Bと芯線Waとの接触を検出する各種機能が実現されるように構成されている。接触検出プログラム155aは、通常、予め外部記憶装置55等のメモリに格納されて使用されるものであるが、CD-ROM或はDVD-ROM、外部のフラッシュメモリ等の記録媒体に記録された形態(プロフラムプロダクト)で提供され或はネットワークを介した外部サーバからのダウンロードなどにより提供され、追加的又は交換的に外部記憶装置55等のメモリに格納されるものであってもよい。なお、上記接触状態判定処理部50が行う一部或は全部の機能は、専用の論理回路等でハードウエア的に実現されてもよい。
 また、外部記憶装置55には、上記芯線接触検出処理を行う際の基準となるエネルギー閾値としての閾値155b、接触判定数としての規定値155cが格納されている。これらの閾値155b及び規定値155cについては後述する。
 また、この接触状態判定処理部50では、検知信号入力回路部56,出力回路部57a,入力回路部57b,入力部58,表示部59もバスライン51に接続されている。
 検知信号入力回路部56は、増幅回路、フィルタ回路、AD変換回路等を有している。そして、振動検知部42によって得られた振動検知信号がアナログ信号で入力されると、増幅回路及びフィルタ回路を経て、AD変換回路に入力されてデジタル信号に変換されるように構成されている。なお、フィルタ回路としては、例えば、金属の破壊によるAE波に応じた100kHz~300kHzの通過領域を持つバンドパスフィルタを用いることが好ましい。この検知信号入力回路部56でデジタル信号に変換された振動検知信号は、例えば、振幅値が経時的に変化する波形データとしてRAM54或は外部記憶装置55に記憶され、後述する接触検出処理に供される。
 出力回路部57aは、CPU52による制御下、他の機器への制御信号等を出力する出力回路である。入力回路部57bには、外部からの諸信号、ここでは、ストリップ処理制御部28からの動作信号が、本入力回路部57bを通じて入力される。
 入力部58は、各種スイッチ、タッチパネル等により構成されており、上記閾値155b、規定値155cの入力設定指示の他、接触状態判定処理部50に対する諸指示を受付可能に構成されている。
 表示部59は、液晶表示装置、ランプ等により構成されており、CPU52による制御下、接触状態の判定結果等の諸情報を表示可能に構成されている。
 図8は接触状態判定処理部50の機能ブロック図である。同図に示すように、接触状態判定処理部50は、比較部152aと判定部152bとしての機能を備えている。これら各機能は、上記したようにCPU52が接触検出プログラム155aに従って所定の演算処理を行うことにより実現される。
 比較部152aは、入力された振動検知信号に基づいて、前記閾値を参照して期間毎接触判定基準を満たすか否かを判定する。この判定は、入力された振動検知信号のうち判定範囲となる期間(判定対象期間)を複数に分割し、その分割された期間毎になされる。そして、比較部152aは、その比較結果を判定部152bに与える。
 判定部152bは、上記比較部152aによる期間毎の判定結果に基づいて、前記規定値を参照してストリップ刃と芯線との接触の有無を判定し、その判定結果を出力する。判定結果は、電線ストリップユニット12の停止制御、表示部59への表示等に供される。
 図9は接触状態判定処理部50による接触状態判定処理を示すフローチャートである。
 接触状態判定処理開始後、接触状態判定処理部50は、ステップS71において、電線ストリップユニット12からの動作信号を元に、振動検知部42により検知された振動を表す波形データを所定の判定範囲で切出す。ここで、判定範囲は、ストリップ刃14A,14Bが電線Wに切込んでいく少なくとも一部の期間を含むことが好ましい。判定範囲は、より好ましくは、ストリップ刃14A,14Bが電線Wに切込んでいく際、芯線Waに接触してしまう可能性がある期間、例えば、ストリップ刃14A,14Bが電線Wに切込んでいく途中から停止するまで或は停止する直前までの期間として設定される。上記判定範囲は、電線ストリップユニット12によるストリップ刃14A,14Bの動作開始指令時又は動作停止指令を基準として一定期間を切出したものであってもよい。或は、ストリップ刃14A,14Bの速度情報或は位置情報がフィードバックされている場合には、当該速度情報或は位置情報に基づいて切出されてもよい。速度情報に基づいて判定範囲を切出す場合には、例えば、ストリップ刃14A,14Bが電線Wに切込んだ後徐々に速度低下して停止することに鑑み、ストリップ刃14A,14Bが最高速度からある程度減速した期間で切出すようにするとよい。
 次ステップS72では、サンプリングされた波形データに基づき、上記判定範囲を複数の期間に分割し、それぞれの期間毎に、振動検知信号が表す振動エネルギー量(実際の振動に応じたエネルギー量を含む)を計算する。振動検知部42によって検知される振動のエネルギー量は、振幅波形の振幅の大きさに応じた量として表される。このため、振動エネルギー量は、各期間における上記波形データの振幅値(絶対値)の平均値、積算値、実効値(いわゆる近似的に算出された実効値であってもよいし、真の実効値であってもよい)、又は、後述する実施形態3或は実施形態4のように、波形データの振幅値、実効値等に基づいて振動エネルギー量に応じた値として近似的に算出される値、又は、各期間における代表値等によって表される。要するに、振動検知信号に基づいて、各期間において検知された振動エネルギーに応じた量が取得されればよい。判定範囲は、少なくとも2つに分割されていればよい。また、判定範囲は、通常、均等に複数に分割するとよいが、必ずしも均等に分割する必要はない。
 次ステップS73では、計算された振動エネルギー量の値を個々に閾値155bと比較し、振動エネルギー量の値が閾値155bを超えた数をカウントする。ここで、閾値155bは、ストリップ刃14A,14Bが被覆Wbに切込んでいく際に観察される振幅値よりも大きな(好ましくはやや大きい程度)値であり、実験的経験的に決定され、記憶部55に予め格納されている。なお、振動エネルギー量の値が閾値155bと同じである場合には、カウント数に加算してもよいし、加算しなくともよい。そして、全ての期間についての比較が終了すると、次ステップS74に進む。
 ステップS74では、カウント数が規定値155cを超えたか否かを判定する。ここで、規定値155cは、判定範囲において、振動エネルギー量の値が閾値155bを超えた期間の割合がどの程度であれば、ストリップ刃14A,14Bが芯線Waに接触したと判定するのかを示す基準値を示している。かかる規定値155cは、通常2以上の値であり、判定範囲を分割した期間の長さ、上記閾値155b等に応じて実験的経験的に決定され、記憶部55に予め格納されている。
 そして、カウント数が規定値を超えたと判定されると、接触有りと判定され、その判定結果が出力される。判定結果に基づいて、表示部59において接触有る旨の表示がなされる。或は、判定結果に基づいて、ストリップ処理を停止させる旨の信号が電線ストリップユニット12に与えられる。これにより、電線ストリップユニット12側では、当該信号を受けてストリップ処理を一時的に停止するとよい。
 一方、カウント数が規定値を超えないと判定されると、接触無しと判定される。これにより、続けてストリップ作業等が実施される。
 カウント数が規定値と同じである場合には、接触有りと判定してもよいし、接触有りと判定してもよい。
 以上のように構成された芯線接触検出装置、芯線接触検出方法及び芯線接触検出プログラムによると、ストリップ刃14A,14Bと芯線Waとが接触すると、その際の振動が振動検知部42を通じて検知される。そして、振動検知部42より入力される振動検知信号に基づき、ストリップ刃14A,14Bと芯線Waとの接触の有無を判定することができる。これにより、電線Wの被覆Wbをストリップする際に、検査用の電極を芯線に電気的に接続等しなくとも、芯線Waとストリップ刃14A,14Bとの接触を簡易に検出できる。
 また、以下の理由により、ノイズの影響を抑制しつつ、ストリップ刃と芯線との接触をより正確に判定できる。
 まず、振動検知部42からの振動検知信号には、ストリップ刃と芯線との接触による振動だけではなく、他の各種外来ノイズが含まれる。他の各種外来ノイズは、ストリップ刃と芯線との接触による振動による大きさに比べて大きいのが一般的である。しかも、外来ノイズの発生源が機械の他の部分から生じる金属同士の衝突或は擦れによるものである場合には、ストリップ刃と芯線との接触による振動周波数と外来ノイズの周波数とは似ている。このため、判定に必要な信号と外来ノイズとを分離することは困難となってしまう。とすると、単に、検知された振動の振幅が所定値を越えたときに、ストリップ刃14A,14Bと芯線Waとの接触有りと判定する手法では、上記外来ノイズの影響を排除できず、正確な判定を行うことが困難となる。
 ところで、ストリップ刃と芯線との接触による振動は、ストリップ刃と芯線との接触期間中、ある程度継続的に発生する。これに対して、各種外来ノイズは、機械の他の部分の金属同士の衝突或は擦れ期間中にのみ発生し、ストリップ刃と芯線との接触による振動発生期間と比べると、比較的短時間であるのが一般的である。
 そこで、本実施形態のように、振動検知信号に基づき、複数の期間毎に振動エネルギー量を計算して振動エネルギー量の値が閾値155bを超えた数をカウントし、カウント数が規定値を超えたと判定された場合に、接触有りと判定するようにすると、大きな外来ノイズであっても、その発生時間が十分に短ければ、その外来ノイズの影響を抑制して、ストリップ刃14A,14Bと芯線Waとの接触をより正確に判定できることになる。
 また、各期間における振動エネルギー量の値を閾値155bと比較することで、期間毎接触判定基準を満たすか否かの判定を比較的簡易な処理で行うことができる。
 また、各期間における振動エネルギー量の値が閾値155bを超えたカウント数が規定値155cを超えるときに、ストリップ刃14A,14Bと芯線Waとの接触有りと判定することで、接触の有無判定を比較的簡易に行うことができる。
 また、上記動作範囲がストリップ刃14A,14Bが電線Wに切込んでいく期間を含むと、その期間においてストリップ刃と芯線との接触の有無をより正確に判定できる。
 ここで、判定範囲(判定対象期間)の他の設定例について説明する。図10は、ストリップ刃14A,14Bがストリップ処理を開始して最高速度に達した後からストリップ刃14A,14Bが減速しつつ被覆Wbに十分に切込んで停止する直前迄の期間における、振幅波形とストリップ刃14A,14Bの移動速度との経時的な変化例を示している。図10において、矢符A1で示す時間では、図11に示すようにストリップ刃14A,14Bは被覆Wbに切込む直前状態であり、矢符A2に示す時間では、図12に示すように、ストリップ刃14A,14Bは被覆Wbに切込んだ状態であり、矢符A3に示す時間では、図13に示すように、ストリップ刃14A,14Bは被覆Wbに十分に切込んだ状態となっている。
 上記実施形態では、判定範囲は、ストリップ刃14A,14Bが電線Wに切込んでいく途中から停止するまで或は停止する直前までの期間T1として設定する例を説明した。
 判定範囲は、そのような場合に限定されず、ストリップ刃14A,14Bと電線Wとの接触により振動が発生し得る各種期間に設定されていてもよい。
 例えば、判定範囲は、ストリップ刃14A,14Bが電線Wに切込んで停止した後の期間Taを含む期間T2に設定されていてもよい。
 すなわち、ストリップ刃14A,14Bが電線Wに切込んでいき停止した状態でも、短期間ではあるものの、ストリップ刃14A,14Bと芯線Waとの接触による振動が検知されることが確認された。
 そこで、ストリップ刃14A,14Bが電線Wに切込んで停止した後の期間Taを含む判定期間T2によって、上記のように、接触の有無を判定することができる。しかも、電線Wに切込んで停止した後の期間Taは、ストリップ刃14A,14Bの駆動機構部分の動作が停止した状態であるため、外来ノイズの発生が抑制されている。そこで、当該期間Taを判定期間として含めることで、より正確にストリップ刃14A,14Bと芯線Waとの接触の有無を判定できる。
 また、例えば、判定範囲は、電線Wに切込んだストリップ刃14A,14Bが電線Wの端部側に相対移動して被覆Wbを除去する際の期間Taを含む期間T3に設定されていてもよい。
 すなわち、電線Wに切込んだストリップ刃14A,14Bを電線Wの端部側に相対移動させて被覆Wbを除去する際にも、ストリップ刃14A,14Bと芯線Waとの接触による振動が検知されることが確認された。そこで、被覆Wbを除去する期間Tbを含む期間T3によっても、上記のように接触の有無を判定することができる。
 なお、判定範囲は、ストリップ刃14A,14Bが電線Wに切込んで停止した後の期間Taのみを含む期間、或は、被覆Wbを除去する期間Tbのみを含む期間等であってもよい。つまり、ストリップ刃14A,14Bと電線Wとの接触により振動が発生し得る期間であれば、どのような期間に設定されていてもよい。このような判定範囲(判定対象期間)の設定は、上記実施形態1,実施形態3及び4等にも同様に適用できる。
 また、上記判定範囲が複数に区分され、区分毎に閾値が異なる値に設定されていてもよい。例えば、例えば、ストリップ刃14A,14Bが電線Wに切込んでいく期間における閾値に対して、ストリップ刃14A,14Bが電線Wに切込んで停止した後の期間Taの閾値が小さな値に設定されていてもよい。
 ここで、実際の実験結果に基づき、ストリップ処理時に表れる振動の振幅波形と、期間毎に計算された振動エネルギー量の分布との関係を説明する。
 図14はストリップを正常に行えた場合、つまり、芯線Waに傷、切断等を生じさせることなく、被覆Wbだけをうまく除去できた場合において、上記判定範囲における時間(s)と振幅(V)との関係(振幅波形)を示している。この場合、判定範囲初期に例外的に振幅が大きくなる箇所が観測されるものの、全体的には、比較的小さい振幅波形を示す。
 図15は、上記判定範囲を20に区分して期間毎の振動エネルギー量を算出し、算出された振動エネルギー量の分布を時間順に示した図である。同図に示すように、ストリップを正常に行えた場合には、振動エネルギー量の分布は、2つの期間で0.1(V)を超える他は、概ね0.1(V)以下となり、比較的低い値となる。
 図16は、ストリップを正常に行え、かつ、外来ノイズが混入した場合における振幅波形を示している。この場合、判定範囲中期において、外来ノイズに起因して極端に振幅が大きくなる箇所が観測され、他の箇所では比較的小さい振幅波形を示している。
 図17は、図16の振動エネルギー量の分布を時間順に示す図である。同図に示すように、判定範囲中期において、外来ノイズに起因して振動エネルギー量が比較的大きくなる箇所が観測される。他の箇所は、上記図15に示す場合と同様となる。
 図18は、ストリップ処理中に芯線Waに傷付きが発生した場合の振幅波形を示している。この場合、判定範囲全体において、比較的大きな振幅が観測されている。
 図19は、図18の振動エネルギー量の分布を時間順に示す図である。同図に示すように、判定範囲全体において、振動エネルギー量が比較的大きくなっている。
 これらに示すように、ストリップを正常に行えた場合には、複数の期間における振動エネルギー量は比較的小さく、また、外来ノイズの影響があったとしても、比較的少ない数の期間で振動エネルギー量が大きくなるだけであることが確認される。
 一方、ストリップ刃14A,14Bが芯線Waに接触した場合には、より多くの期間で振動による振動エネルギー量が大きくなることがわかる。
 このため、外来ノイズの影響による振動エネルギー量の変化を排除するように、上記閾値155b、規定値155c等を適切な値に設定することで、外来ノイズの影響を排除して、ストリップ刃14A,14Bと芯線Waとの接触の有無をより正確に判定できることが確認された。
 なお、上記のような閾値、規定値は、実際には、芯線Wa、被覆Wbの材質、形状、ストリップ刃14A,14Bの材質、形状、ストリップ刃14A,14Bの動作状況等、実験的、経験的に、設定される。
 なお、上記実施形態では、期間毎に振動エネルギー量が閾値を超えるか否かを判定することで、期間毎接触判定基準を満たすか否かを判定しているが、必ずしもその必要はない。例えば、期間毎の波形状(例えば、振幅の変化度合、ある基準波形との波形比較)等に基づいて、期間毎接触判定基準を満たすか否かが設定されていてもよい。
 要するに、判定範囲が複数に分割され、分割された期間毎に何らかの判定基準を満たすか否かが判定されればよい。
 また、そのような場合でも、その判定基準を満たす数が予め設定された接触判定数を超えるときに、ストリップ刃と芯線との接触有りと判定することができる。
 また、本実施形態において、規定値は1であってもよく、この場合、分割された期間のいずれか一つにおいてエネルギーの量が閾値155bを超えていると判断されると、接触有りと判断されることとなる。
 また、本実施形態において、分割された期間に対して求められたエネルギーの量の最大値及び最小値のいずれか一方を切捨てて上記判定処理を行ってもよい。これにより、偶発的な事情等による不安定要因を取り除いて、より確実に接触の有無を判定できる。
 <実施形態3>
 実施形態3では、接触状態判定処理部50が、判定対象期間におけるエネルギーに応じた量に基づいて芯線Waとストリップ刃14A,14Bとの接触の有無を判定する例について説明する。
 すなわち、上記したように、ストリップ刃14A,14Bと芯線Waとの接触による振動エネルギーは、ある程度継続して観察される(図18参照)。これに対して、各種外来ノイズは、機械の他の部分の金属同士の衝突或は擦れ期間中にのみ発生し、ストリップ刃14A,14Bと芯線Waとの接触による振動エネルギーの発生期間と比べると、比較的短時間である(図16参照)。
 そこで、ある程度継続的な判定対象期間におけるエネルギーに応じた量に基づくことで、外来ノイズの影響を抑制して、芯線Waとストリップ刃14A,14Bとの接触の有無をより確実に判定することが可能となる。ここで、判定対象期間におけるエネルギーに応じた量は、振動検知部42からの出力信号波形データから直接的に得られる値であってもよいし、或は、出力信号波形データを加工したデータ(例えば、実効値演算処理したデータ、或は、一定期間毎に平均値演算処理したデータ等)であってもよい。また、判定対象期間におけるエネルギーに応じた量は、それらのデータに基づいて近似計算、或は、簡易計算された値であってもよい。以下の実施形態3A、3Bはより具体的な例である。
 <実施形態3A>
 実施形態3Aでは、振動検知部42からの出力信号波形データから直接的に判定対象期間におけるエネルギーに応じた量(実施形態1における評価値、以下、便宜的に単に”エネルギー”と表記する場合がある)を求め、当該エネルギーの値が所定の閾値(判断基準)を超えたときに接触有りと判定する例について説明する。
 判定対象データの取得ステップ(ステップT1)、判断基準を満たすか否かの処理(ステップT3)等については、実施形態1における図6と同様であるため、振動検知部42からの出力信号波形データから直接的に判定対象期間におけるエネルギーを求める処理を中心に説明する。
 図20は出力信号波形データから直接的に判定対象期間におけるエネルギーを求める処理を示すフローチャートであり、図21は波形例を示す説明図である。なお、対象波形は、振動検知部42から接触によって発生するエネルギーに応じた物理量を表す波形であれば、電圧波形であっても、電流波形であってもよい。
 本処理では、概略的には判定対象期間Pにおいて、所定のベースレベル閾値を超えるエネルギーの量を求め、当該エネルギーの量に基づいて接触の有無を判定する。ベースレベル閾値は、電線ストリップ処理装置10の非動作状態で観察されるレベルを超える値に設定されている。これにより、主として、電線ストリップ処理装置10の動作を要因として発生するエネルギーの量を求めるようにしている。なお、判定対象期間Pにおいて、所定のベースレベル閾値を超える領域が複数観察された場合の処理については後で説明する。
 図20に示すフローチャートは、レベル(振幅)が所定のベースレベル閾値を超える領域の面積を簡略的に求める処理を示している。すなわち、レベルが前記ベースレベル閾値を超えた時間軸上の位置をt1、その後、レベルがベースレベル閾値を下回った時間軸上の位置をt2として、t1からt2の期間で波形のピーク値をhとすると、(t2-t1)×h÷2の式からエネルギーの量を算出している。なお、式中における値2は常数であるため、接触の有無を判定する閾値にその点を考慮しておけば、当該値2は省略してもよい。
 図20に示すフローチャートに即して説明する。なお、下記で、時点とは、判定対象期間Pにおける波形の横軸の位置(時間、サンプリングポイント等)を示しており、初期では、判定対象期間の初期時点に設定されている。また、下記の処理で、現在値とは、判断対象となる時点でのエネルギーの量を表す値(レベル値、振幅値等)であり、ゼロクロスの判定(ステップS8参照)を除いて、絶対値(現在値がマイナスの場合は符号を反転させる)で表される。
 ステップS1において、変数t1aが記録済か否かが判断される。変数t1aは、ベースレベル閾値を超えた現在値を有する時点を一時的に格納しておくための変数であり、初期は未記録状態(例えば、0)である。変数t1aが記録済(何らかの時点を格納済)でないと判断されると、ステップS2に進み、記録済と判断されると、ステップS14に進む。
 ステップS2では、ベースレベル閾値<現在値か否かが判断される。YESと判断されるとステップS3に進んで、変数t1aに現在の時点を書込み、その後、ステップS4に進む。一方、ステップS2において、NOと判断されるとステップS4に進む。なお、ベースレベル閾値=現在値である場合、いずれの処理へ進んでもよい。これらのステップS1~S3によって、現在値がベースレベル閾値を超えた時点が変数t1aに記録される。
 一方、ステップS14では、変数t2aが記録済か否かが判断される。変数t2aは、ベースレベル閾値を下回った現在値を有する時点を一時的に格納しておくための変数であり、初期は未記録状態(例えば、0)である。変数t2aが記録済(何らかの時点を格納済)と判断されると、ステップS4に進み、記録済でないと判断されると、ステップS15に進む。
 ステップS15では、ベースレベル閾値>現在値か否かが判断される。YESと判断されると、ステップS16に進んで、変数t2aに現在の時点を書込み、その後、ステップS14に進む。なお、ベースレベル閾値=現在値の場合、いずれの処理に進んでもよい。これらのステップS14~S16によって、現在値がベースレベル閾値を下回った時点が変数t2aに記録される。
 ステップS4では、h<現在値か否かが判定される。ステップS4における判定結果がYESであればステップS5に進み、変数hに現在値を書込んだ後、ステップS6に進む。一方、ステップS4における判定結果がNOであれば、ステップS6に進む。変数hは、ベースレベル閾値を超えた現在値を有する時点を格納するための変数であり、複数の時点に対して上記ステップS4、S5が繰返されることで、最終的には当該複数の時点を含む期間におけるピーク値が記録されることになる。
 ステップS6では、時点に1加え(時点を次の時点に進める)、次ステップS7に進む。
 ステップS7では、時点が判定対象期間の終了時点に対応するものであるか否か等に基づいて、判定波形終了か否かを判断する。そして、判定波形終了でないと判断されると、ステップS8に進み、判定波形終了と判断されると、ステップS17に進む。
 ステップS8では、ゼロクロスか否かが判断される。ゼロクロスか否かの判断は、レベル(振幅)に関する現在値とその一つ前の値がゼロレベルをまたぐ関係にあるか否かによって判断される。ステップS8は、ステップS6より前のステップS1~S5、S14~S16に係る処理が、波形が示す半周期分の一つの山における最終の時点に対する処理であるか否かを判断するステップであり、ステップS8での判断結果がYESであればステップS1に戻って、以降の処理を繰返す。一方、ステップS8においてYESと判断されると、ステップS9に進む。
 ステップS9では、変数t1aが記録済か否かが判断され、NOと判断されるとステップS17に進み、YESと判断されるとステップS10に進む。
 ステップS10では、変数t1が記録済か否かが判断される。判断結果がNOであれば、ステップS11に進んで、変数t1に変数t1aの値を書込む。変数t1は、初期では未記録状態(例えば、0が格納されている)であり、ステップS10、S11を経ることによって、最初に書込まれた変数t1aの値が変数t1に書込まれ、前記ベースレベル閾値を超えた時間軸上の最初の位置が変数t1の値として得られることになる。この後、ステップS12に進む。
 ステップS12では、変数t2に変数t2aの値を格納し、その後、ステップS13に進む。本ステップS12によって、ベースレベル閾値を下回った時間軸上の位置が変数t2の値として得られる。
 次ステップS13では、変数t1a、t2aをクリア(未記録状態に)し、その後、ステップS1に戻る。
 一方、ステップS17では、変数t1が記録済か否かが判断され、NOと判断されると処理を終了する。つまり、ベースレベル閾値を超える現在値を持つ時点が生じなかった場合には、処理を終了する。一方、ステップS17において、YESと判断されると、ステップS18に進む。
 ステップS18では、変数t2aが記録済か否かが判断され、NOと判断されるとステップS19に進み、YESと判断されるとステップS20に進む。ステップS19では、変数t2に現在の時点を格納する。すなわち、現在値がベースレベル閾値を下回る前での判定波形終了により変数t2が得られなかった場合には、便宜的に変数t2に現在の時点を格納する。この後、ステップS20に進む。
 ステップS20では、各変数の値を(t2-t1)×h÷2に代入して、エネルギーの量を算出する。
 そして、当該エネルギーの量が所定の閾値(判断基準)を超えたときに接触有りと判定する。当該エネルギーの量が所定の閾値と同じである場合には接触有り、無しのいずれに判断してもよい。
 ところで、判定対象期間Pが終了するまで、図20に示す処理を繰返すと、ベースレベル閾値を超える領域が複数観察され、それに応じて、エネルギーの量が複数算出される可能性がある。この場合には、複数の算出値のいずれか一つが閾値を超えた場合に接触有りと判定してもよいし、或は、複数の算出値それぞれについて所定の閾値との比較を行い、所定の閾値を超えたカウント数が所定のカウント閾値を超えた場合に接触有りと判断してもよい。または、複数の算出値の最大値を閾値と比較することで接触の有無を判定してもよいし、或は、複数の算出値の平均値或は合計値を閾値と比較することで接触の有無を判定してもよい。
 なお、本実施形態では、レベルがベースレベル閾値を下回った時間軸上の位置をt2としたが、波形のピーク値hが表れた時点をt2として、上記と同様に(t2-t1)×h÷2により、エネルギーの量を算出してもよい。式中における値2を省略してもよい点は上記と同様である。
 この場合に、判定対象期間Pにおいて複数のエネルギーの量が算出された場合における、接触の有無の判定例は上記した通りである。
 ところで、発明者らが検討を行ったところ、芯線の接触とストリップ刃14A,14Bとの接触によって生ずる波形状は比較的緩やかに立上がる形状を呈し、電気的ノイズや機械的衝撃によって生ずる波形状は比較的急峻な立上がり形状を呈することが確認された。
 そこで、判定対象期間におけるエネルギーの変化度合に応じて補正して、判定対象期間におけるエネルギーに応じた量を求めるとよい。すなわち、上記のように算出したエネルギーの量に対して、波形状の立上がり度合に応じた係数を乗じることで、芯線の接触とストリップ刃14A,14Bとの接触によって生ずる波形状に基づくエネルギーの量を強調したエネルギーの量を求める。
 そのような係数としては、例えば、次のような係数を採用するとよい。すなわち、図20におけるフローチャートから、時点t1におけるレベル、時点t2におけるレベル、ピーク値を呈する時点を容易に取得可能であることに鑑み、時点t1における波形ポイントQ1、時点t2における波形ポイントQ2、ピーク値を呈する時点における波形ポイントQ3とする(図21参照)。そして、係数として角Q2Q1Q3に対して逆相関の関係にある数を採用する。例えば、図22に示すように、角Q2Q1Q3が90度で0又は0に近くなり、0度で1に又は1に近くなるような係数を採用するとよい。このような係数は、角Q2Q1Q3を変数とする算出式によって求められるものであってもよいし、或は、複数の角Q2Q1Q3の値に対して係数を対応づけたテーブルが事前に格納され、当該テーブルに基づいて求められるものであってもよい。
 <実施形態3B>
 実施形態3Bでは、振動検知部42からの出力信号波形データを加工したデータ、より具体的には、実効値演算処理(又は平均値演算)した波形データに基づいて接触の有無を判定する例について説明する。
 まず、実効値演算(或は平均値演算)された値自体が、所定の期間(例えば、一波長分)のデータに基づいて演算された値であることに鑑み、当該所定の期間が判定対象期間であると捉えると、実効値演算(或は平均値演算)された値が、幅を有する当該判定対象期間におけるエネルギーに応じた量を表していると考えることができる。
 そこで、上記ある期間(例えば、上記判定対象期間Pにおける実効値(又は平均値)のピーク値(波高値)を特定し、当該ピーク値が所定の閾値(判断基準)を超えたときに接触有りと判定することができる。
 また、実効値演算処理(又は平均値演算)した波形データに基づいて判定対象期間Pにおけるエネルギーに応じた量(実施形態1における評価値、以下、単に”エネルギー”と表記する場合がある)を求め、当該エネルギーの値が所定の閾値(判断基準)を超えたときに接触有りと判定する例について説明する。
 判定対象データの取得ステップ(ステップT1)、判断基準を満たすか否かの処理(ステップT3)等については、実施形態1における図6と同様であるため、実効値演算処理(又は平均値演算)した波形データから判定対象期間におけるエネルギーを求める処理を中心に説明する。
 図23は実効値演算処理(又は平均値演算)した波形データから判定対象期間Pにおけるエネルギーを求める処理を示すフローチャートであり、図24は振動検知部42からの出力信号波形データ例を示す図であり、図25は出力信号波形データから実効値演算処理(又は平均値演算)した波形データ例を示す図である。
 すなわち、図24に示す出力信号波形データを実効値演算処理(又は平均値演算)すると、図25に示すような波形データが得られる。本処理では、概略的には判定対象期間Pにおいて、所定のベースレベル閾値を超えるエネルギーの量を求め、当該エネルギーの量に基づいて接触の有無を判定する。ベースレベル閾値は、電線ストリップ処理装置10の非動作状態で観察されるエネルギー(実効値又は平均値により表されている)を超える値に設定されている。これにより、主として、電線ストリップ処理装置10の動作を要因として発生するエネルギーの量を求めるようにしている。なお、判定対象期間Pにおいて、所定のベースレベル閾値を超える領域が複数観察された場合の処理については上記実施形態3Aで説明した場合と同様である。
 図23に示すフローチャートは、レベル(実効値又は平均値)が所定のベースレベル閾値を超える領域の面積を簡略的に求める処理を示している。すなわち、レベルが前記ベースレベル閾値を超えた時間軸上の位置をt1、その後、レベルがベースレベル閾値を下回った時間軸上の位置をt2として、t1からt2の期間で波形のピーク値をhとすると、(t2-t1)×h÷2をエネルギーの量として算出している。なお、式中の値2は常数であるため、接触の有無を判定する閾値にその点を考慮しておけば、当該値2は省略してもよい。
 図23に示すフローチャートに即して説明する。なお、下記で、時点とは、判定対象期間Pにおける波形の横軸の位置(時間、サンプリングポイント等)を示しており、初期では、判定対象期間の初期時点に設定されている。
 ステップS31において、変数t1が記録済か否かが判断される。変数t1は、ベースレベル閾値を超えた現在値を有する時点を格納しておくための変数であり、初期は未記録状態(例えば、0)である。変数t1が記録済(何らかの時点を格納済)でないと判断されると、ステップS32に進み、記録済と判断されると、ステップS38に進む。
 ステップS32では、ベースレベル閾値<現在値か否かが判断される。YESと判断されるとステップS33に進んで、変数t1に現在の時点を書込み、その後、ステップS34に進む。一方、ステップS32において、NOと判断されるとステップS34に進む。なお、ベースレベル閾値=現在値である場合、いずれの処理へ進んでもよい。これらのステップS31~S33によって、現在値がベースレベル閾値を超えた時点が変数t1に記録される。
 一方、ステップS38では、ベースレベル閾値>現在値か否かが判断される。YESと判断されると、ステップS39に進んで、変数t2に現在の時点を書込み、その後、ステップS34に進む。なお、ベースレベル閾値=現在値の場合、いずれの処理に進んでもよい。これらのステップS38~S39によって、現在値がベースレベル閾値を下回った時点が変数t2に記録される。
 ステップS34では、h<現在値か否かが判定される。ステップS34における判定結果がYESであればステップS35に進み、変数hに現在値を書込んだ後、ステップS36に進む。一方、ステップS34における判定結果がNOであれば、ステップS36に進む。変数hは、ベースレベル閾値を超えた現在値を有する時点を格納するための変数であり、複数の時点に対して上記ステップS34、S35が繰返されることで、最終的には当該複数の時点を含む期間におけるピーク値が記録されることになる。
 ステップS36では、変数t2が記録済か否かが判断され、NOと判断されると、時点に1加える(時点を次の時点に進める)ステップS40を経て、ステップS31に戻る。一方、ステップS36においてYESと判断されると、ステップS37に進む。
 ステップS37では、各変数の値を(t2-t1)×h÷2に代入して、エネルギーの量を算出する。
 そして、当該エネルギーの量が所定の閾値(判断基準)を超えたときに接触有りと判定する。当該エネルギーの量が所定の閾値と同じである場合には接触有り、無しのいずれに判断してもよい。
 図23に示すフローチャートでは、レベルがベースレベル閾値を下回ることが前提となっていたが、レベルがベースレベル閾値を下回る前に判定対象期間Pが終了することもあり得る。この場合には、処理を途中で終了して、処理結果を破棄してもよいが、図26に示すフローチャートのようにしてもよい。
 図26に示すフローチャートにおいて、ステップS51~S56に至る処理、ステップS62、S63の処理は、図23に示すフローチャートのステップS31~S36に至る処理、S38、S39に示す処理と同じである。
 ステップS56では、変数t2が記録済か否かが判断され、YESと判断されると、ステップS61に進む。一方、ステップS56において、NOと判断されると、時点に1加える(時点を次の時点に進める)ステップS57を経て、ステップS58に進む。
 ステップS58では、時点が判定対象期間の終了時点に対応するものであるか否か等に基づいて、判定波形終了か否かを判断する。そして、判定波形終了でないと判断されると、ステップS51に戻り、以降の処理を繰返す。一方、ステップS58において判定波形終了でないと判断されると、ステップS59に進む。
 ステップS59では、変数t1が記録済か否かが判断され、NOと判断されると処理を終了し、YESと判断されるとステップS60に進む。
 ステップS60では、変数t2に、現在の時点から1減算した値(現在時点よりも一つ前の時点)を書込み、その後、ステップS61に進む。
 ステップS61では、各変数の値を(t2-t1)×h÷2に代入して、エネルギーの量を算出する。
 そして、当該エネルギーの量が所定の閾値(判断基準)を超えたときに接触有りと判定する。当該エネルギーの量が所定の閾値と同じである場合には接触有り、無しのいずれに判断してもよい。
 本処理によると、判定対象期間Pが終了した段階で、レベルがベースレベル閾値を下回っていなかったときでも、終了時点の一つ前の時点をt2として、エネルギーの量を算出することができる。
 なお、上記波形のピーク値hが表れた時点をt2としてもよい点、また、判定対象期間Pにおけるエネルギーの変化度合に応じて補正して、判定対象期間におけるエネルギーに応じた量を求めてもよい点は、上記実施形態3Aと同様である。
 <実施形態3に関する変形例>
 なお、本実施形態において、分割された複数の期間のそれぞれに対してエネルギーの量を算出し、算出された複数のエネルギーの量の最大値(或は任意数順位の値)又は最小値(或は任意数順位の値)と判定基準である閾値とを比較することで、接触の有無を判定してもよい。
 さらに、分割された複数の期間のそれぞれについて算出されたエネルギーの量の平均値を求め、その平均値と判定基準である閾値とを比較することで、接触の有無を判定してもよい。
 また、分割された複数の期間について算出されたエネルギーの量の平均値のそれぞれに、各期間幅を乗算する等してエネルギーの総量を求め、当該総量と判定基準である閾値とを比較することで、接触の有無を判定してもよい。
 また、これらの場合において、分割された期間に対して求められたエネルギーの量の最大値及び最小値のいずれか一方を切捨てて上記判定処理を行ってもよい。これにより、偶発的な事情等による不安定要因を取り除いて、より確実に接触の有無を判定できる。
 <実施形態4>
 本実施形態では、判定対象期間において発生するエネルギーの継続性に基づいて芯線Waとストリップ刃14A,14Bとの接触の有無を判定する構成について説明する。
 すなわち、上記したように芯線Waとストリップ刃14A,14Bとの接触による振動エネルギーはある程度継続的に発生するのに対して、各種外来ノイズは比較的短時間であるのが一般的である。そこで、判定対象期間において発生するエネルギーが継続的か否かを判断することで、接触の有無を判定することができる。
 ここでは、判定対象期間におけるエネルギーの継続性の有無を振動検知部42の出力信号に含まれる周波数成分に基づいて判断する例について説明する。
 図27は本実施形態における判定処理を示すフローチャートである。
 すなわち、ステップS81に示すように、振動検知部42によって得られた判定対象波形を周波数エネルギー変換し、当該判定波形における周波数成分毎のエネルギー分布を求める。本処理自体は、FFT(Fast Fourier Transform)等の各種周波数解析手法によって実現することができる。周波数成分毎のエネルギー分布の一例を図28に示す。
 次ステップS82において、任意周波数のエネルギーを求める。任意周波数は、予め設定された値であり、芯線Waとストリップ刃14A,14Bとの接触による振動周波数のうち最も大きなエネルギーとして観測されると考えられる周波数(例えば、200kHz)に設定されている。
 次ステップS83では、求められた任意周波数におけるエネルギーが、判断基準としての閾値を上回るか否かが判断される。判断結果がYESであれば接触有りと判定され(ステップS84)、NOであれば接触無しと判定され(ステップS85)、処理を終了する。なお、求められた任意周波数におけるエネルギーが、判断基準としての閾値と同じである場合、いずれの判断としてもよい。
 芯線Waとストリップ刃14A,14Bとの接触によってエネルギーが発生すると、前記任意周波数における振動周波数成分の振動エネルギーが継続する。このため、上記任意周波数成分のエネルギーが大きな値として観察される。そこで、上記のように判断することで、芯線Waとストリップ刃14A,14Bとの接触によると考えられる振動周波数成分のエネルギーの継続性によって、接触の有無を判定することができる。このため、芯線Waとストリップ刃14A,14Bとの接触の有無をより確実に判定することができる。
 図29は本実施形態の変形例に係る判定処理を示すフローチャートであり、図30は周波数成分毎のエネルギー分布の一例を示す図である。
 図29のステップS91は上記ステップS81と同じである。
 次のステップS92においては、任意周波数帯域内のエネルギーの最大値を求める。任意周波数帯域は、予め設定された帯域であり、芯線Waとストリップ刃14A,14Bとの接触による振動周波数のうち比較的大きなエネルギーとして観察されると考えられる周波数帯域(例えば、180kHz~220kHz)に設定されている。
 次ステップS93では、求められたエネルギーの最大値が判断基準としての閾値を上回るか否かが判断される。判断結果がYESであれば接触有りと判定され(ステップS94)、NOであれば接触無しと判定され(ステップS95)、処理を終了する。なお、求められた任意周波数におけるエネルギーが、判断基準としての閾値と同じである場合、いずれの判断としてもよい。
 本処理によると、ある程度の幅を有する周波数帯域の中からエネルギーの最大値を求めて、接触の有無を判定するので、芯線Waとストリップ刃14A,14Bとの接触による振動周波数のうち最も大きなエネルギーとして観測されると考えられる周波数が実際とはずれてしまったような場合にも、より確実に接触の有無を判定できる。
 図31は本実施形態の他の変形例に係る判定処理を示すフローチャートである。
 図29のステップS101は上記ステップS81と同じである。
 次のステップS102においては、周波数成分毎のエネルギー分布波形(ここではFFT波形)に、各周波数成分に応じた重み付け係数を乗じる。重み付け係数は、図32に示すように、芯線Waとストリップ刃14A,14Bとの接触による振動周波数のうちより大きなエネルギーとして観察されるであろう周波数成分に対してはより大きな値に設定され、より小さなエネルギーとして観察されるであろう周波数成分に対してはより小さな値に設定されている。この重み付係数は、周波数成分に応じた値を示すテーブル又は算出式として予め記憶されている。例えば、図30に示すエネルギー分布波形(FFT波形)に、図32に示す重み付計数を乗じると、図33に示すように、接触によって生じるであろう周波数成分が強調されたエネルギー分布波形が得られる。このため、より正確に接触の有無を判定することができる。
 この後、次ステップS103において、任意周波数のエネルギーを求める。
 次ステップS104では、求められた任意周波数におけるエネルギーが、判断基準としての閾値を上回るか否かが判断される。判断結果がYESであれば接触有りと判定され(ステップS105)、NOであれば接触無しと判定され(ステップS106)、処理を終了する。なお、求められた任意周波数におけるエネルギーが、判断基準としての閾値と同じである場合、いずれの判断としてもよい。
 図34は本実施形態の他の変形例に係る判定処理を示すフローチャートである。
 本処理におけるステップS111、S112、S114~S116は、図31に示すステップS101、S102、S104~S106と同じであり、異なるのはステップS113である。
 すなわち、ステップS113では、接触によって生じるであろう周波数成分が強調されたエネルギー分布波形(図33参照)から任意周波数帯域内のエネルギーの最大値を求める。任意周波数帯域は、図29に示すフローチャートのステップS92において説明した通りである。
 図35は本実施形態の他の変形例に係る判定処理を示すフローチャートである。このフローチャートでは、上記した各処理を切替えられるようにしている。
 すなわち、ステップS121において、振動検知部42によって得られた判定対象となる測定波形を周波数エネルギー変換し、当該測定波形における周波数成分毎のエネルギー分布を求める。
 次ステップS122において、重み付け係数使用の有無が判断される。本判断は、本装置に対する利用者等による設定指示等に基づいて行われる。本ステップS122において、NOと判断されると、ステップS124に進み、YESと判断されるとステップS123に進む。
 ステップS123では、周波数成分毎のエネルギー分布波形(FFT波形)に、各周波数成分に応じた重み付計数を乗じ、接触によって生じるであろう周波数成分が強調されたエネルギー分布波形を得る(図33参照)。この後、ステップS124に進む。
 ステップS124では、周波数帯域の使用の有無が判断される。本判断は、本装置に対する利用者等による設定指示等に基づいて行われる。本ステップS124における判断結果がYESであればステップS125に進み、NOであればステップS128に進む。
 ステップS125では、周波数成分毎のエネルギー分布(ステップS123を経ている場合には接触によって生じるであろう周波数成分が強調されたエネルギー分布波形)において、任意周波数帯域内のエネルギーの最大値を求める。その後、ステップS126に進む。
 一方、ステップS128に進んだ場合、周波数成分毎のエネルギー分布(ステップS123を経ている場合には接触によって生じるであろう周波数成分が強調されたエネルギー分布波形)において、任意周波数のエネルギーを求めるその後、ステップS126に進む。
 ステップS126では、求められたエネルギーが、判断基準としての閾値を上回るか否かが判断される。判断結果がYESであれば接触有りと判定され(ステップS127)、NOであれば接触無しと判定され(ステップS129)、処理を終了する。なお、求められた周波数におけるエネルギーが、判断基準としての閾値と同じである場合、いずれの判断としてもよい。
 なお、上記各処理において、任意周波数帯域における最大値を求める代りに、quasi-peak値(QP値:準尖頭値)等のピーク値を反映した値を閾値と比較して接触の有無を判定してもよく、或は、任意周波数帯域におけるエネルギーの平均値又は総和と閾値とを比較して接触の有無を判定してもよい。
 また、上記各処理の基となる周波数成分毎のエネルギー分布は、判定対象期間P全体を一つの対象区間として切出して行ったものである必要はない。
 例えば、図36に示すように、判定対象期間Pを複数の期間1~7に分割した期間として切出し、それぞれの期間を対象としてFFT変換等によって周波数成分毎のエネルギー分布を求め、図37に示すように、その複数の周波数成分毎のエネルギー分布を平均化してノイズ除去した周波数成分毎のエネルギー分布を得、その周波数成分毎のエネルギー分布に基づいて上記各処理を行ってもよい。
 また、上記任意周波数、任意周波数帯域、重み付係数は、ストリップ刃14A,14B、芯線Waの材質等に応じて、異なる値に設定可能とされていてもよい。
 <その他>
 上記実施形態では、ストリップ刃14A,14Bと芯線Waとの接触の有無を判定する例で説明したが、必ずしもそのような例に限られない。電線の導体接触状態検出装置自体は、ストリップ刃と芯線との接触を検出する場合に限らず、切込み刃が電線に切込んでいく際に、切込み刃と電線の導体との接触を検出する各種構成に適用できる。電線の導体としては、例えば、電線の芯線以外に、電線の芯線を、内部被覆を挟んで囲うシールド部分等、金属導体で形成された各種部分が想定される。
 例えば、図38及び図39に示すように、芯線201の外周囲に内部絶縁層202が被覆され、その外周囲に金属網等の編組層又は金属テープ等により構成されるシールド層203が被覆され、さらにその外周囲に外部絶縁層204が被覆されている電線200を対象としてもよい。そのような電線200に対しては、切込み刃210を外部絶縁層204に切込ませて、当該外部絶縁層204を除去する。この場合、切込み刃210がシールド層203に接触しないようにする必要がある。このような場合に、切込み刃210とシールド層203との接触を検知する装置として、上記接触状態検出装置を適用することができる。
 また、複数の電線の外周囲をシールド層で覆うと共に、さらにその外周囲を外部絶縁層で覆った電線(ケーブルともいわれる)に対して、外部絶縁層を切込み刃で除去する場合にも、同様に上記接触状態検出装置を適用することができる。
 なお、上記実施形態は例示であって、本発明の内容は当該実施形態で説明したものに限定されない。例えば、上記実施形態1~4及び各種変形例で説明した内容は、相反する内容でない限り、適宜組合わせることができる。
 10 電線ストリップ処理装置
 14A,14B ストリップ刃
 16 刃駆動部
 20 電線保持部
 22 被覆除去駆動部
 28 ストリップ処理制御部
 40 芯線接触検出装置
 42 振動検知部
 50 接触状態判定処理部
 55 外部記憶装置
 55a 接触検出プログラム
 55b 判断基準
 152a 比較部
 152b 判定部
 155a 接触検出プログラム
 155b 閾値
 155c 規定値
 200、W 電線
 201、Wa 芯線
 203 シールド層
 210   切込み刃

Claims (18)

  1.  電線に切込む切込み刃と電線の導体との接触を検出する電線の導体接触検出装置であって、
     電線の導体と切込み刃との接触によって発生するエネルギーに応じた物理量を検知可能な検知部と、
     前記検知部の出力信号に基づいて、判定対象期間におけるエネルギー発生状況に応じて電線の導体と切込み刃との接触の有無を判定する接触状態判定処理部と、
     を備える電線の導体接触検出装置。
  2.  請求項1記載の電線の導体接触検出装置であって、
     前記検知部は、電線の導体と切込み刃との接触によって生じる振動周波数を含む周波数域の振動を検知可能な振動検知部である、電線の導体接触検出装置。
  3.  請求項1又は請求項2記載の電線の導体接触検出装置であって、
     前記検知部は、100kHz~300kHzの範囲内の共振周波数を持つ共振型AEセンサである、電線の導体接触検出装置。
  4.  請求項1~請求項3のいずれか一つに記載の電線の導体接触検出装置であって、
     前記接触状態判定処理部は、前記判定対象期間を分割した複数の判定期間毎に期間毎接触判定基準を満たすか否かを判定し、期間毎の判定結果に基づいてストリップ刃と芯線との接触の有無を判定する、電線の導体接触検出装置。
  5.  請求項4記載の電線の導体接触検出装置であって、
     前記接触状態判定処理部は、前記検知部の出力信号に基づく期間毎のエネルギーに応じた量が予め設定されたエネルギー閾値を超えるときに、期間毎接触判定基準を満たすと判定する、電線の導体接触検出装置。
  6.  請求項4又は請求項5記載の電線の導体接触検出装置であって、
     前記接触状態判定処理部は、
     前記期間毎接触判定基準を満たす数が予め設定された接触判定数を超えるときに、電線の導体と切込み刃との接触有りと判定する、電線の導体接触状態検出装置。
  7.  請求項1~請求項3のいずれか一つに記載の電線の導体接触検出装置であって、
     前記接触状態判定処理部は、前記判定対象期間におけるエネルギーに応じた量に基づいて電線の導体と切込み刃との接触の有無を判定する、電線の導体接触検出装置。
  8.  請求項7記載の電線の導体接触状態検出装置であって、
     前記接触状態判定処理部は、前記判定対象期間におけるエネルギーの変化度合に応じて補正して、前記判定対象期間におけるエネルギーに応じた量を求める、電線の導体接触状態検出装置。
  9.  請求項1~請求項3のいずれか一つに記載の電線の導体接触状態検出装置であって、
     前記接触状態判定処理部は、前記判定対象期間におけるエネルギーの継続性に基づいて電線の導体と切込み刃との接触の有無を判定する、電線の導体接触検出装置。
  10.  請求項9記載の電線の導体接触状態検出装置であって、
     前記接触状態判定処理部は、前記判定対象期間におけるエネルギーの継続性の有無を前記検知部の出力信号に含まれる周波数成分に基づいて判定する、電線の導体接触検出装置。
  11.  請求項1~請求項10のいずれか一つに記載の電線の導体接触状態検出装置であって、
     前記判定対象期間は、前記切込み刃が前記電線に切込んでいく期間を含む、電線の導体接触状態検出装置。
  12.  請求項1~請求項11のいずれか一つに記載の電線の導体接触状態検出装置であって、
     前記判定対象期間は、前記切込み刃が前記電線に切込んで停止した後の期間を含む、電線の導体接触状態検出装置。
  13.  請求項1~請求項12のいずれか一つに記載の電線の導体接触状態検出装置であって、
     前記判定対象期間は、前記電線に切込んだ切込み刃が前記電線の端部側に相対移動して被覆を除去する際の期間を含む、電線の導体接触状態検出装置。
  14.  請求項1~13のいずれか一つに記載の電線の導体接触状態検出装置であって、
     電線の被覆に切込み可能な一対の切込み刃と、
     前記一対の切込み刃を接近及び離隔移動させる刃駆動部と、
     をさらに備える電線の導体接触状態検出装置。
  15.  請求項14記載の電線の導体接触状態検出装置であって、
     前記検知部が前記一対の切込み刃の少なくとも一方に接触するように設けられている、電線の導体接触状態検出装置。
  16.  請求項1~15のいずれか一つに記載の電線の導体接触状態検出装置であって、
     前記検知部は、電線の被覆をストリップするストリップ刃としての前記切込み刃と電線の芯線との接触よって発生するエネルギーに応じた物理量を検知可能に構成されている、電線の導体接触状態検出装置。
  17.  電線に切込む切込み刃と電線の導体との接触を検出する電線の導体接触検出方法であって、
    (a)切込み刃を電線に切込ませる処理を含む加工処理を行うステップと、
    (b)前記ステップ(a)において発生するエネルギーに応じた物理量を検知するステップと、
    (c)前記工程(b)における検知結果に基づいて、判定対象期間におけるエネルギー発生状況に応じて電線の導体と切込み刃との接触の有無を判定するステップと、
     を備える電線の導体接触状態検出方法。
  18.  切込み刃を電線に切込ませる処理を含む加工処理中に発生するエネルギーに応じた物理量を検知し、その検知結果に基づいて、電線の導体と切込み刃との接触の有無を判定するための電線の導体接触状態検出プログラムであって、コンピュータに、
    (A)切込み刃を電線に切込ませる処理を含む加工処理中に発生するエネルギーに応じた物理量の検知結果を取得させるステップと、
    (B)前記ステップ(A)における検知結果に基づいて、判定対象期間におけるエネルギー発生状況に応じて電線の導体と切込み刃との接触の有無を判定するステップと、
     を実現させるための電線の導体接触状態検出プログラム。
PCT/JP2010/056338 2010-03-10 2010-04-07 電線の導体接触検出装置、電線の導体接触検出方法及び電線の導体接触検出プログラム WO2011111238A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800619191A CN102742105A (zh) 2010-03-10 2010-04-07 电线的导体接触检测装置、电线的导体接触检测方法以及电线的导体接触检测程序
JP2012504263A JP5421453B2 (ja) 2010-03-10 2010-04-07 電線の導体接触検出装置、電線の導体接触検出方法及び電線の導体接触検出プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2010/053994 2010-03-10
PCT/JP2010/053994 WO2011111184A1 (ja) 2010-03-10 2010-03-10 芯線接触検出装置、芯線接触検出方法及び芯線接触検出プログラム

Publications (1)

Publication Number Publication Date
WO2011111238A1 true WO2011111238A1 (ja) 2011-09-15

Family

ID=44563028

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/053994 WO2011111184A1 (ja) 2010-03-10 2010-03-10 芯線接触検出装置、芯線接触検出方法及び芯線接触検出プログラム
PCT/JP2010/056338 WO2011111238A1 (ja) 2010-03-10 2010-04-07 電線の導体接触検出装置、電線の導体接触検出方法及び電線の導体接触検出プログラム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053994 WO2011111184A1 (ja) 2010-03-10 2010-03-10 芯線接触検出装置、芯線接触検出方法及び芯線接触検出プログラム

Country Status (2)

Country Link
CN (1) CN102742105A (ja)
WO (2) WO2011111184A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9791397B2 (en) 2013-03-21 2017-10-17 Schleuniger Holding Ag Device for detecting contact of an electrical conductor by a tool
WO2023073434A1 (en) * 2021-10-27 2023-05-04 Schleuniger Ag Device and method for the detection of braid strand failure modes of processed braided wires

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131836A (ja) * 1988-11-02 1990-05-21 Honda Motor Co Ltd Nc加工装置
JPH07227022A (ja) * 1994-02-08 1995-08-22 Fujikura Ltd 芯線傷検出装置
JP2008061459A (ja) * 2006-09-01 2008-03-13 Furukawa Electric Co Ltd:The 電線皮剥ぎ装置及び電線皮剥ぎ方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06253430A (ja) * 1993-03-02 1994-09-09 Japan Automat Mach Co Ltd 被覆電線の切込み量設定装置
JP2008295209A (ja) * 2007-05-24 2008-12-04 Yazaki Corp 電線皮剥き装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131836A (ja) * 1988-11-02 1990-05-21 Honda Motor Co Ltd Nc加工装置
JPH07227022A (ja) * 1994-02-08 1995-08-22 Fujikura Ltd 芯線傷検出装置
JP2008061459A (ja) * 2006-09-01 2008-03-13 Furukawa Electric Co Ltd:The 電線皮剥ぎ装置及び電線皮剥ぎ方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9791397B2 (en) 2013-03-21 2017-10-17 Schleuniger Holding Ag Device for detecting contact of an electrical conductor by a tool
WO2023073434A1 (en) * 2021-10-27 2023-05-04 Schleuniger Ag Device and method for the detection of braid strand failure modes of processed braided wires

Also Published As

Publication number Publication date
WO2011111184A1 (ja) 2011-09-15
CN102742105A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5274963B2 (ja) 芯線接触検出装置、電線ストリップ処理装置、芯線接触検出方法及び芯線接触検出プログラム
CN107306021B (zh) 用于对线缆剥绝缘皮的方法和装置
JP6396008B2 (ja) ケーブルの絶縁体剥離方法
JP6481350B2 (ja) ボールねじ測定装置
JP7121933B2 (ja) 断線検知システムおよび断線検知方法
US5272941A (en) Cable severing and stripping apparatus
WO2011111238A1 (ja) 電線の導体接触検出装置、電線の導体接触検出方法及び電線の導体接触検出プログラム
EP3547474B1 (en) Method and robot for insulation machining in a cable joint
JP5421453B2 (ja) 電線の導体接触検出装置、電線の導体接触検出方法及び電線の導体接触検出プログラム
JP7162740B2 (ja) 振動検出装置、異常判定方法および異常判定システム
JP7248178B2 (ja) 断線検知方法
JP6418264B2 (ja) 評価装置、評価方法、および制御装置
JP2011188669A (ja) 電線ストリップ処理動作不具合検出装置、電線ストリップ処理動作不具合検出方法及び電線ストリップ処理動作不具合検出プログラム
WO2005026859A1 (ja) 振動抑制フィルタの自動設定方法
US20220242031A1 (en) Abnormality detection device for extrusion molding machine
JP2019045488A (ja) 状態監視装置のノイズ除去方法および状態監視装置
JP4271293B2 (ja) アーク溶接の最適制御方法及び装置
JP2006288113A (ja) 振動抑制フィルタの設定方法
JP7517290B2 (ja) 断線進行状態推定方法および断線進行状態推定装置
US20240019338A1 (en) Disconnection detection method and disconnection detection device
US20240239018A1 (en) Kneading state detection device and kneading state detection method for extrusion molding machine
US11710585B2 (en) Method of removing foil shield from cable
WO2023012752A1 (en) Method of removing foil shield from cable
JPH02151221A (ja) 被覆剥取装置における被覆切込量設定装置
KR20210031365A (ko) 서보 앰프 및 서보 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061919.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504263

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847468

Country of ref document: EP

Kind code of ref document: A1